WO2023119565A1 - Outdoor unit for air conditioner - Google Patents
Outdoor unit for air conditioner Download PDFInfo
- Publication number
- WO2023119565A1 WO2023119565A1 PCT/JP2021/047910 JP2021047910W WO2023119565A1 WO 2023119565 A1 WO2023119565 A1 WO 2023119565A1 JP 2021047910 W JP2021047910 W JP 2021047910W WO 2023119565 A1 WO2023119565 A1 WO 2023119565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- heat exchanger
- panel
- metal
- outdoor unit
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 110
- 239000002184 metal Substances 0.000 claims abstract description 110
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 239000003507 refrigerant Substances 0.000 description 48
- 238000005192 partition Methods 0.000 description 23
- 230000003071 parasitic effect Effects 0.000 description 18
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 150000002739 metals Chemical class 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 238000005536 corrosion prevention Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 230000012447 hatching Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/56—Casing or covers of separate outdoor units, e.g. fan guards
Definitions
- the present disclosure relates to an outdoor unit of an air conditioner that includes a housing and a heat exchanger.
- a conventional outdoor unit of an air conditioner there is known one that includes a box-shaped housing and a heat exchanger arranged in the housing, and the heat exchanger and the housing are formed of dissimilar metals. .
- the types of metals used for the heat exchanger and housing are selected according to the required properties. For example, aluminum is generally used for heat exchangers that require high thermal conductivity, and iron is generally used for housings that require strength.
- the non-conductive member electrically insulates the heat exchanger from the housing, resulting in parasitic capacitance between the heat exchanger and the housing.
- electromagnetic noise generated from an electronic substrate, a compressor, or the like arranged in the housing causes a change in voltage in the parasitic capacitance, and this voltage change causes further electromagnetic noise.
- the back of the housing is formed with an air supply port for inflowing outdoor air, and the heat exchanger is positioned facing the air supply port to exchange heat with the outdoor air. are placed in Electromagnetic noise is radiated to the outside of the housing from between the heat exchanger and the housing through the air supply port.
- Patent Literature 1 discloses a technique in which a conductive connection member is interposed between a heat exchanger and a housing.
- the connection member includes a first connection portion that is formed of the same metal as the metal used for the heat exchanger and is in direct contact with the heat exchanger, and a housing that is formed of the same metal as the metal used for the housing. and a second connection portion that is in direct contact with the .
- An insulating layer is provided between the first connection portion and the second connection portion to electrically insulate the first connection portion and the second connection portion.
- the present disclosure has been made in view of the above, and an object thereof is to obtain an outdoor unit of an air conditioner that has a simple structure and is capable of achieving both prevention of corrosion and reduction of electromagnetic noise.
- an outdoor unit of an air conditioner is formed with an air supply port for introducing outdoor air, and is made of a first metal.
- a box-shaped housing and at least a portion of which is formed of a second metal having a standard electrode potential different from that of the first metal, is arranged in the housing, and is fixed to the housing via a non-conductive member.
- the outdoor unit of the air conditioner according to the present disclosure has the effect of achieving both corrosion prevention and electromagnetic noise reduction with a simple structure.
- FIG. 1 is an exploded perspective view schematically showing an outdoor unit of an air conditioner according to Embodiment 1.
- FIG. Fig. 2 is a front view showing the outdoor unit of the air conditioner according to the first embodiment, showing a state in which the housing front panel of the housing is removed; 1 is an exploded perspective view showing an electronic board box and an interface panel according to Embodiment 1; FIG. 4 is a perspective view showing a state in which the electronic board box and the interface panel shown in FIG. 3 are assembled; FIG. The right side view showing the outdoor unit of the air conditioner according to Embodiment 1.
- Sectional view along the VI-VI line shown in FIG. FIG. 2 is a rear view showing the lattice body according to Embodiment 1; Fig.
- FIG. 2 is a rear view showing the outdoor unit of the air conditioner according to the first embodiment, showing a state in which a grid is attached to the housing;
- Sectional view along line IX-IX shown in FIG. 1 is a perspective view schematically showing the heat exchanger according to Embodiment 1.
- FIG. 1 is a front view showing the heat exchanger according to Embodiment 1.
- FIG. 11 is an enlarged view of the main part of the heat exchanger shown in FIG.
- FIG. 2 is a schematic diagram showing, as an electric circuit, a transmission path of electromagnetic noise generated in the outdoor unit of the air conditioner according to Embodiment 1;
- FIG. 2 is a circuit diagram showing an equivalent circuit of a path along which a current that causes electromagnetic noise is transmitted in the outdoor unit of the air conditioner according to the first embodiment
- FIG. 2 is a rear view of the outdoor unit of the air conditioner according to Embodiment 1, showing a state where the grid is removed and a location where electromagnetic noise is generated
- FIG. 4 is a circuit diagram showing an equivalent circuit of a path through which a current that becomes electromagnetic noise is transmitted when the heat exchanger and the housing are brought into direct contact without an insulating member in the outdoor unit of the air conditioner according to the first embodiment.
- FIG. 2 is a rear view of the outdoor unit of the air conditioner according to Embodiment 1, showing a state where a grid is attached and a location where electromagnetic noise is generated;
- FIG. 1 is an exploded perspective view schematically showing an outdoor unit 1 of an air conditioner according to Embodiment 1.
- an outdoor unit 1 of an air conditioner includes a housing 2, a lattice 3, a partition plate 4, a blower 5, a heat exchanger 6, two insulating members 7, and a compressor. 8 and an electronic board box 9.
- the outdoor unit 1 of the air conditioner may be simply referred to as the outdoor unit 1 in some cases.
- the depth direction of the outdoor unit 1 is the X-axis direction
- the height direction of the outdoor unit 1 is the Y-axis direction
- the width direction of the outdoor unit 1 is the Z-axis direction. do.
- the positive direction in the X-axis direction is forward
- the negative direction in the X-axis direction is backward.
- the + direction of the X-axis direction is the direction from the - side to the + side of the X-axis
- the - direction of the X-axis direction is the direction from the + side to the - side of the X-axis.
- the positive direction in the Y-axis direction is defined as upward, and the negative direction in the Y-axis direction is defined as downward.
- the + direction of the Y-axis is the direction from the - side to the + side of the Y-axis, and the - direction of the Y-axis is the direction from the + side to the - side of the Y-axis.
- the positive direction of the Z-axis is defined as the right side, and the negative direction of the Z-axis direction is defined as the left side.
- the + direction of the Z-axis direction is the direction from the - side to the + side of the Z-axis
- the - direction of the Z-axis direction is the direction from the + side to the - side of the Z-axis.
- the side of the outdoor unit 1 where the airflow generated by the blower 5 is discharged to the outside is the front side
- the opposite side of the front side is the back side.
- An arrow Y shown in FIG. 1 represents the blowing direction of the airflow generated by the blower 5 .
- FIG. 2 is a front view showing the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the housing front panel 2c of the housing 2 is removed.
- the heat exchanger 6 is indicated by dot hatching for easy understanding.
- the housing 2 is a box-shaped member that serves as the outer shell of the outdoor unit 1 .
- the housing 2 is made of a first metal.
- the first metal is preferably a metal with high strength.
- the first metal is, for example, iron or an iron alloy.
- the housing 2 has a housing floor panel 2a, a housing top panel 2b, a housing front panel 2c, and a housing side panel 2d.
- the housing floor panel 2 a constitutes the bottom surface of the outer shell of the outdoor unit 1 .
- the plan view shape of the housing floor panel 2a is a rectangle with rounded corners.
- the housing top panel 2b is arranged above the housing floor panel 2a and away from the housing floor panel 2a.
- the housing top surface panel 2b constitutes the ceiling surface of the outer shell of the outdoor unit 1.
- the planar view shape of the housing top panel 2b is the same as the planar view shape of the housing floor panel 2a.
- the housing front panel 2c and the housing side panel 2d connect the housing floor panel 2a and the housing top panel 2b.
- the plan view shape of the housing front panel 2c is L-shaped.
- the housing front panel 2c includes a front panel main body portion 2e extending along the Z-axis direction and a front panel extending rearward from a left edge serving as one edge portion of the front panel main body portion 2e along the Z-axis direction. and an extension 2f.
- the front panel body 2e connects the front edge of the housing floor panel 2a and the front edge of the housing top panel 2b.
- the front panel main body portion 2 e constitutes the front surface of the outer shell of the outdoor unit 1 .
- the front panel extension 2f connects the left edge of the housing floor panel 2a and the left edge of the housing top panel 2b.
- the front panel extension 2f constitutes the left side of the outer shell of the outdoor unit 1.
- the front panel extension 2f may also be referred to as the "casing side panel 2g".
- the front panel body 2e and the housing side panel 2g are integrally formed in this embodiment, they may be formed separately.
- the planar view shape of the housing side panel 2d is L-shaped.
- the housing side panel 2d includes a side panel body portion 2h extending along the X-axis direction, and a side surface extending leftward from a rear edge portion serving as one edge along the X-axis direction of the side panel body portion 2h. and a panel extension 2i.
- the side panel body 2h connects the right edge of the housing floor panel 2a and the right edge of the housing top panel 2b.
- the side panel body portion 2h constitutes the right side surface of the outer shell of the outdoor unit 1. As shown in FIG.
- the side panel extension 2i connects part of the rear edge of the housing floor panel 2a and part of the rear edge of the housing top panel 2b.
- the side panel extension 2i forms part of the rear surface of the outer shell of the outdoor unit 1. As shown in FIG. Hereinafter, the side panel extension 2i may also be referred to as a "casing rear panel 2j". Although the side panel body portion 2h and the housing rear panel 2j are integrally formed in this embodiment, they may be formed separately. With the panels shown in FIG. 1 assembled, the left edge of the housing rear panel 2j and the rear edge of the housing side panel 2g are separated from each other.
- the lattice body 3 is a metal member that is arranged away from the heat exchanger 6 on the upstream side of the heat exchanger 6 in the direction of air flow, is fixed to the housing 2, and is electrically connected to the housing 2. .
- the term "electrically connected" between metal members means a state in which the metal members are in direct contact with each other and conduct, and a state in which the metal members are in contact with each other through a gap. included.
- the grid 3 is arranged between the left edge of the housing rear panel 2j and the rear edge of the housing side panel 2g.
- the grid 3 is arranged on the rear side of the heat exchanger 6 and away from the heat exchanger 6 .
- the grid 3 is made of the same first metal as the housing 2 .
- the partition plate 4 is a metal member that divides the inside of the housing 2 into a fan room 10 and an electric room 11.
- the fan chamber 10 and the electric chamber 11 are formed side by side in the Z-axis direction.
- the partition plate 4 extends in the Y-axis direction over the electronic board box 9 from the housing floor panel 2a.
- the partition plate 4 extends in the X-axis direction from the housing front panel 2c to the housing rear panel 2j shown in FIG.
- the housing 2, grid 3, and partition plate 4 shown in FIG. 1 are made of the same kind of first metal.
- the portions where the housing 2, the lattice 3, and the partition plate 4 contact each other are joined by welding, screws, or the like. If the surface of each panel of the housing 2 is painted or the like and the electrical resistance of the surface of each panel is high, for example, part or all of the joints are masked in advance, or screws are screwed using serration screws. The electrical resistance of the surface of each panel can be lowered by peeling off the coating when tightening.
- the blower 5 is a device that is arranged in the fan room 10 and generates an air flow.
- the blower 5 includes a support 5a rising from the floor panel 2a of the enclosure, a fan motor 5b attached to the support 5a, and a propeller fan 5c attached to the rotating shaft of the fan motor 5b and rotating as the fan motor 5b rotates. and
- the upper end of the column 5a is fixed to the housing top panel 2b.
- a lower end portion of the column 5a is fixed to the housing floor panel 2a.
- the fan motor 5b is electrically connected via a fan drive wire 12 to an electronic board 9c, which will be described later.
- the fan motor 5b rotates when it receives a drive signal output from the electronic board 9c via the fan drive wire 12.
- the heat exchanger 6 is a member that is arranged in the fan room 10 and performs heat exchange between the refrigerant and the outdoor air. Outdoor air to be taken in by the blower 5 passes through the heat exchanger 6 .
- the heat exchanger 6 is, for example, a parallel flow heat exchanger.
- the heat exchanger 6 is arranged inside the housing 2 and fixed to the housing 2 via an insulating member 7 that is a non-conductive member. At least part of the heat exchanger 6 is made of a second metal having a standard electrode potential different from that of the first metal.
- the second metal is preferably a metal with high thermal conductivity.
- the second metal is, for example, aluminum or an aluminum alloy.
- the standard electrode potential of the first metal is higher than the standard electrode potential of the second metal.
- the plan view shape of the heat exchanger 6 is L-shaped.
- the heat exchanger 6 extends forward along the X-axis direction after extending along the Z-axis direction.
- a portion of the heat exchanger 6 along the Z-axis direction is arranged behind the blower 5 .
- a portion of the heat exchanger 6 along the X-axis direction is arranged to the left of the blower 5 .
- the heat exchanger 6 and the blower 5 are spaced apart and electrically insulated, or are electrically insulated via an insulating member (not shown).
- the heat exchanger 6, the housing front panel 2c, and the housing side panel 2d are electrically insulated by being spaced apart from each other, or are electrically insulated via an insulating member (not shown). effectively insulated.
- the upper end of the heat exchanger 6 is fixed to the housing top panel 2b via an insulating member 7.
- a lower end portion of the heat exchanger 6 is fixed to the housing floor panel 2a via an insulating member 7 .
- Heat exchanger 6 is electrically insulated from housing top panel 2b and housing floor panel 2a.
- the heat exchanger 6 is arranged without being electrically connected to metal members such as the housing 2 , the grid 3 , the blower 5 and the like arranged around the heat exchanger 6 .
- a material having electrical insulation such as resin is used as the material of the two insulating members 7 shown in FIG.
- the insulating member 7 provided at the lower end of the heat exchanger 6 will be referred to as a first insulating member 7a
- the insulating member 7 provided at the upper end of the heat exchanger 6 will be referred to as a first insulating member 7a.
- the member 7 is called a second insulating member 7b.
- a first insulating member 7a and a second insulating member 7b having the same planar shape and size as the heat exchanger 6 are used to cover the entire bottom surface and top surface of the heat exchanger 6.
- the heat exchanger 6 and the housing 2 are electrically insulated by covering, it is not intended to limit the means for electrically insulating the two members.
- several pedestals made of an electrically insulating material are provided on the bottom surface of the heat exchanger 6, and the pedestals are interposed between the heat exchanger 6 and the housing floor panel 2a. good too.
- the heat exchanger 6 and the housing floor panel 2a are separated from each other in the Y-axis direction, so that the heat exchanger 6 and the housing floor panel 2a can be electrically insulated.
- the compressor 8 is a device that is arranged in the electric room 11 and compresses the refrigerant flowing through the heat exchanger 6 .
- the compressor 8 is arranged on the housing floor panel 2 a in the lower space of the electric room 11 .
- the compressor 8 is fixed to the housing floor panel 2a with screws or the like.
- the electronic board box 9 is a member that houses an electronic board 9c such as a control board necessary for operating the outdoor unit 1.
- the electronic board box 9 is formed in a hollow rectangular parallelepiped shape.
- the electronic board box 9 is fixed to the upper end of the partition plate 4 and arranged across the fan room 10 and the electrical room 11 .
- a downwardly extending heat sink 9 d is attached to the portion of the electronic board box 9 that is located in the fan chamber 10 .
- the heat sink 9 d is exposed to the fan chamber 10 .
- the heat sink 9 d is cooled by the air flow generated by the blower 5 .
- the part of the electronic board box 9 placed in the electrical room 11 is placed above the compressor 8 .
- a compressor drive wire 13 is connected to a portion of the electronic board 9c disposed in the electrical chamber 11 .
- the compressor 8 is electrically connected to the electronic substrate 9c via a compressor drive wire 13. As shown in FIG. Compressor 8 is driven when it receives a drive signal output from electronic board 9c via compressor drive wire 13 .
- the electric room 11 is surrounded by the housing floor panel 2a, the partition plate 4, the housing side panel 2d, the electronic board box 9, and the housing front panel 2c and housing rear panel 2j shown in FIG. It has a waterproof structure that prevents water such as rainwater from entering from the outside of the housing 2 .
- a stop valve 17 is provided at the lower portion of the outer surface of the housing side panel 2d. The stop valve 17 serves as a terminal for connecting a refrigerant pipe connected to an indoor unit (not shown).
- the compressor 8 and the stop valve 17 are connected to each other via multiple refrigerant pipes 18 .
- Compressor 8 and heat exchanger 6 are connected to each other via a plurality of refrigerant pipes 18 .
- a connecting portion 19 between the heat exchanger 6 and the refrigerant pipe 18 is arranged in the electric chamber 11 having a waterproof structure. By arranging the connecting portion 19 in the electrical chamber 11 in this way, it is possible to prevent the connecting portion 19 from coming into contact with moisture, and thus corrosion of the connecting portion 19 can be prevented.
- the connecting portion 19 may be waterproofed by winding a waterproof tape or the like.
- the refrigerant pipe 18 is connected to valve devices such as a four-way valve for switching the direction of flow of the refrigerant and an expansion valve for expanding the refrigerant to a predetermined pressure.
- valve devices such as a four-way valve for switching the direction of flow of the refrigerant and an expansion valve for expanding the refrigerant to a predetermined pressure.
- the connection form of the refrigerant pipe 18 is not limited to the illustrated example.
- An interface panel 20 is installed in the upper space of the electrical room 11 .
- the interface panel 20 is fixed to the inner surface of the housing side panel 2d and the lower surface of the electronic board box 9, respectively.
- a terminal block 21 is installed on the interface panel 20 .
- An external AC power line 14 and an internal power line 15 are connected to the terminal block 21 .
- the external AC power line 14 is electrically connected to the internal power line 15 via the terminal block 21 .
- the internal power line 15 is electrically connected to the electronic board 9c. Power to the electronic board 9 c is supplied via the external AC power line 14 , the terminal block 21 and the internal power line 15 .
- the voltage of the power supplied to the electronic board 9c is, for example, single-phase 200 V, but is not limited to this voltage.
- the interface panel 20 is made of the same first metal as the housing side panel 2d. Therefore, the interface panel 20 is joined to the housing side panel 2d with low electrical resistance.
- the interface panel 20 is connected to the signal ground of the electronic board 9c.
- the interface panel 20 has a ground connection point 20e to which the ground wire 16 is connected. Interface panel 20 is grounded via ground connection point 20 e and ground wire 16 .
- the housing 2 joined to the interface panel 20 and the partition plate 4 joined to the housing 2 are grounded through the ground connection point 20 e and the ground wire 16 .
- the heat exchanger 6 is electrically connected to the housing 2 via the connecting portion 19 to the refrigerant pipe 18 , the compressor 8 , etc., but is not directly short-circuited with the housing 2 and the partition plate 4 . In other words, heat exchanger 6 is indirectly short-circuited with housing 2 and partition plate 4 via compressor 8 or the like, and is not short-circuited by direct contact with housing 2 and partition plate 4 .
- FIG. 3 is an exploded perspective view showing electronic board box 9 and interface panel 20 according to the first embodiment.
- FIG. 4 is a perspective view showing a state in which the electronic board box 9 and the interface panel 20 shown in FIG. 3 are assembled.
- the electronic board box 9 includes a box-shaped lower box 9a opening upward, an upper lid 9b covering the upper opening of the lower box 9a, an electronic board 9c, and a heat sink 9d.
- the electronic board 9c is fixed inside the lower box 9a.
- the electronic board 9 c has an internal power line 15 connected to the terminal block 21 and a compressor drive wire 13 connected to the compressor 8 .
- the electronic board 9c has a heating element, a fan motor 5b, various power lines for operating other driving devices, and the like.
- the heat sink 9d is fixed to the electronic board 9c while being in close contact with the electronic board 9c.
- the heat sink 9d serves to cool the heat generating elements of the electronic substrate 9c.
- the heating element is, for example, a power semiconductor represented by an IGBT (Insulated Gate Bipolar Transistor).
- the electronic board 9c to which the heat sink 9d is fixed is inserted into the lower box 9a through the upper opening of the lower box 9a. As shown in FIG. 4, part or all of the heat sink 9d is exposed to the outside of the lower box 9a through a hole 9e formed in the bottom wall of the lower box 9a.
- the lower box 9a and the upper lid 9b shown in FIG. 3 are made of, for example, rubber, resin, metal such as iron, or a combination thereof.
- the electronic board 9c is covered with metal, so that the electromagnetic noise generated from the electronic board 9c does not reach the outside of the electronic board box 9. Radiation can be suppressed.
- Moisture such as rainwater splashing in the fan chamber 10 may enter the electric chamber 11 inside the electronic board box 9 through the hole 9e formed in the bottom wall of the lower box 9a. Therefore, in practice, the electronic board box is designed to prevent moisture from entering by devising the shape of the hole 9e and the shape of the lower box 9a, or by adding a new waterproof structure. 9 and the electric room 11 are ensured to be waterproof.
- the interface panel 20 has an interface vertical wall 20a, an upper joint flange portion 20b, an interface horizontal wall 20c, and a lower joint flange portion 20d.
- the interface vertical wall 20a is a vertical wall extending along the Y-axis direction.
- the upper joint flange portion 20b extends horizontally in the Z-axis direction from the upper end of the interface vertical wall 20a.
- the upper joining flange portion 20b is joined to the lower surface of the bottom wall of the lower box 9a.
- the interface lateral wall 20c extends horizontally in the Z-axis direction from the lower end of the interface vertical wall 20a.
- the lower joint flange portion 20d extends downward in the Y-axis direction from the tip portion of the interface lateral wall 20c.
- the lower joining flange portion 20d is joined to the inner surface of the housing side panel 2d shown in FIG.
- the interface panel 20 is fixed and electrically connected to the housing side panel 2d at the lower joint flange portion 20d.
- the interface panel 20 is fixed to the housing side panel 2d and the lower box 9a, respectively.
- FIG. 5 is a right side view showing the outdoor unit 1 of the air conditioner according to Embodiment 1.
- FIG. 5 is a right side view showing the outdoor unit 1 of the air conditioner according to Embodiment 1.
- An opening 2k that communicates the inside and outside of the housing 2 is formed in the housing side panel 2d.
- An interface cover 22 is detachably attached to the housing side panel 2d.
- the interface cover 22 can be opened and closed by attachment and detachment.
- the interface cover 22 covers the opening 2k when closed.
- the interface cover 22 opens the opening 2k when open.
- the interface panel 20 and the terminal block 21 installed in the electrical room 11 are visible and accessible through the opening 2k. Connection work of various power lines can be performed by opening the interface cover 22 and through the opening 2k.
- the interface cover 22 serves to prevent moisture such as rainwater from entering the electrical room 11 while ensuring ventilation between the electrical room 11 and the outside of the housing 2 .
- the interface cover 22 is made of resin, metal such as iron, or a combination thereof. When the interface cover 22 is made of a metal such as iron and is joined to the housing side panel 2d in a state of low electrical resistance, the interface cover 22 closes the opening 2k so that the opening 2k is exposed to the housing. 2, the radiation of electromagnetic noise to the outside can be suppressed.
- the interface cover 22 has a common hole for the purpose of ensuring ventilation between the electric room 11 and the outside of the housing 2 and allowing power lines to enter and exit the electric room 11 and the outside of the housing 2. is formed.
- Waterproofing means is provided in the common hole so that moisture such as rainwater does not enter the electric chamber 11 .
- a waterproofing means for example, there is a means to cover the gaps of the common holes with a sponge or make the common holes into a shutter structure.
- FIG. 6 is a cross-sectional view taken along line VI-VI shown in FIG. In FIG. 6, only the housing 2 is hatched with oblique lines for easy understanding.
- the partition plate 4 has a first partition portion 4a and a second partition portion 4b connected to the rear end portion of the first partition portion 4a.
- An introduction hole 4c for introducing the end of the heat exchanger 6 in the Z-axis direction into the electric chamber 11 is formed in the second partition portion 4b.
- the heat exchanger 6 and the second partition portion 4b are made of different metals. In order to avoid contact between dissimilar metals, it is preferable, for example, to interpose a resin material between the heat exchanger 6 and the second partition portion 4b.
- FIG. 7 is a rear view showing the grid 3 according to Embodiment 1.
- FIG. 7 is a rear view showing the grid 3 according to Embodiment 1.
- the lattice 3 has a fixed frame 31, a plurality of metal wires 32, a plurality of intersections 33, and a plurality of lattice connection portions 34.
- the lattice body 3 is a lattice member formed by crossing a plurality of metal wires 32 in the Y-axis direction and the Z-axis direction.
- the material of the lattice 3 is not particularly limited as long as it is the same first metal as the housing 2 .
- the rear view shape of the fixed frame 31 is a square frame.
- the fixed frame 31 has a first vertical frame portion 31a, a second vertical frame portion 31b, a first horizontal frame portion 31c, and a second horizontal frame portion 31d.
- the first vertical frame portion 31a and the second vertical frame portion 31b extend along the Y-axis direction.
- the first vertical frame portion 31a and the second vertical frame portion 31b are arranged parallel to each other with a space therebetween in the Z-axis direction.
- the first horizontal frame portion 31c and the second horizontal frame portion 31d extend along the Z-axis direction.
- the first horizontal frame portion 31c and the second horizontal frame portion 31d are arranged parallel to each other with an interval in the Y-axis direction.
- the first horizontal frame portion 31c connects the upper end portion of the first vertical frame portion 31a and the upper end portion of the second vertical frame portion 31b.
- the second horizontal frame portion 31d connects the lower end portion of the first vertical frame portion 31a and the lower end portion of the second vertical frame portion 31b.
- the metal wire 32 has a plurality of vertically extending first metal wires 32a and a plurality of horizontally extending second metal wires 32b.
- the first metal wire 32a extends along the Y-axis direction and bridges the first horizontal frame portion 31c and the second horizontal frame portion 31d.
- the plurality of first metal wires 32a are arranged parallel to each other at equal intervals A in the Z-axis direction.
- the second metal wire 32b extends along the Z-axis direction and bridges the first vertical frame portion 31a and the second vertical frame portion 31b.
- the plurality of second metal lines 32b are arranged parallel to each other with equal intervals B in the Y-axis direction.
- the interval A may be referred to as the lattice interval A
- the interval B may be referred to as the lattice interval B.
- the crossing portion 33 is a portion where the first metal wire 32a and the second metal wire 32b cross each other.
- the intersection portion 33 is a portion where the first metal wire 32a and the second metal wire 32b are fixed to each other and where the first metal wire 32a and the second metal wire 32b are electrically connected.
- the means for fixing the first metal wire 32a and the second metal wire 32b are, for example, welding and screws.
- the lattice connection part 34 is a part where both ends along the extending direction of the metal wire 32 are fixed on the fixed frame 31 .
- the lattice connecting portion 34 is a portion where the metal wires 32 and the fixed frame 31 are fixed to each other and the metal wires 32 and the fixed frame 31 are electrically connected. Fixing means between the metal wire 32 and the fixed frame 31 is, for example, welding or screws.
- the lattice spacing A and the lattice spacing B of the grid 3 are less than half the wavelength of the electromagnetic noise generated from inside the housing 2 .
- the grid 3 is arranged on the path of the air passing through the heat exchanger 6 towards the fan chamber 10 shown in FIG. It is Therefore, it is desirable to make the thickness of the metal wire 32 thin enough to ignore the bad influence of the air flow to the heat exchanger 6 and thick enough to reduce the impedance component such as electric resistance sufficiently. Moreover, it is desirable that the thickness of the fixed frame 31 is made thin to such an extent that the adverse effect of ventilation on the heat exchanger 6 can be ignored.
- FIG. 8 is a rear view showing the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the lattice 3 is attached to the housing 2.
- the housing 2 is formed with an air supply port 2m for introducing outdoor air.
- the air supply port 2m is an opening for allowing air outside the housing 2 to flow into the fan chamber 10 .
- the air supply port 2m is surrounded by the housing floor panel 2a, the housing rear panel 2j, the housing top panel 2b, and the housing side panel 2g.
- the lattice body 3 is provided side by side with the housing rear panel 2j in the Z-axis direction.
- the lattice 3 is fixed to the housing floor panel 2a, the housing top panel 2b, the housing rear panel 2j, and the housing side panel 2g at the position of the air supply port 2m.
- the grid 3 and the housing 2 are electrically connected.
- the second horizontal frame portion 31d of the fixed frame 31 is fixed and electrically connected to the housing floor panel 2a.
- the first horizontal frame portion 31c of the fixed frame 31 is fixed and electrically connected to the housing top panel 2b.
- the first vertical frame portion 31a of the fixed frame 31 is fixed and electrically connected to the housing rear panel 2j.
- the second vertical frame portion 31b of the fixed frame 31 is fixed and electrically connected to the housing side panel 2g.
- Means for fixing the grid 3 and the housing 2 are, for example, welding and screws.
- FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG.
- An exhaust port 2n is formed in the front panel body portion 2e of the housing front panel 2c.
- the exhaust port 2n is an opening for discharging the airflow generated by the blower 5 to the outside of the fan chamber 10.
- a bell mouth 23 is provided on the inner peripheral surface of the exhaust port 2n to improve ventilation between the inside and outside of the fan chamber 10.
- a front cover 24 having a ventilation hole 25 is attached in front of the exhaust port 2n in the front panel body 2e. The front cover 24 can prevent foreign matter from entering from the outside of the fan chamber 10 while ensuring ventilation between the inside and the outside of the fan chamber 10 . Foreign matter is, for example, dirt or dust.
- the upper end of the post 5a extends rearward along the housing top panel 2b.
- the upper end of the column 5a is fixed to the heat exchanger 6 via the second insulating member 7b on the back side inside the housing 2.
- the first horizontal frame portion 31c which is the upper end portion of the lattice body 3, may be fixed to and electrically connected to the upper end portion of the support column 5a. It does not have to be.
- the heat exchanger 6 and the lattice body 3 are spaced apart from each other in the X-axis direction.
- the heat exchanger 6 and the grid 3 are connected via a plurality of members including the insulating member 7 .
- the heat exchanger 6 and the grid 3 are arranged so as not to be electrically connected.
- a downwardly folded top flange portion 2o is formed on the periphery of the housing top panel 2b.
- the top flange portion 2o is provided so as to cover the housing front panel 2c and the grid 3 from the outside of the housing 2.
- the top flange portion 2o is fixed to the housing front panel 2c and the lattice 3.
- the top flange portion 2o is also provided so as to cover the housing side panel 2d from the outside of the housing 2, and is also fixed to the housing side panel 2d. It is desirable to electrically connect the lattice body 3 and the top flange portion 2o to minimize the gap between them.
- a bottom flange portion 2p folded upward is formed on the periphery of the housing floor panel 2a.
- the bottom flange portion 2p is provided so as to be located on the inner side of the housing 2 between the housing front panel 2c and the grid 3. As shown in FIG.
- the bottom flange portion 2 p is fixed to the housing front panel 2 c and the lattice 3 .
- the bottom flange portion 2p is also provided on the housing side panel 2d so as to be positioned inside the housing 2. As shown in FIG.
- the bottom flange portion 2p is also fixed to the housing side panel 2d. It is desirable to electrically connect the lattice body 3 and the bottom flange portion 2p to minimize the gap between them.
- FIG. 10 is a perspective view schematically showing heat exchanger 6 according to the first embodiment.
- 11 is a front view showing the heat exchanger 6 according to Embodiment 1.
- FIG. FIG. 12 is an enlarged view of the main part of the heat exchanger 6 shown in FIG. 11.
- FIG. 10 is a perspective view schematically showing heat exchanger 6 according to the first embodiment.
- 11 is a front view showing the heat exchanger 6 according to Embodiment 1.
- FIG. FIG. 12 is an enlarged view of the main part of the heat exchanger 6 shown in FIG. 11.
- the heat exchanger 6 is a parallel flow heat exchanger in this embodiment. As shown in FIG. 11, the heat exchanger 6 has two headers 6a and 6b, multiple refrigerant conduits 6c, and multiple fins 6d.
- Both of the two headers 6a and 6b are hollow metal members. Each header 6a, 6b extends along the Y-axis direction. As shown in FIG. 10, the two headers 6a and 6b are arranged apart from each other in the Z-axis direction and are arranged to be offset from each other in the X-axis direction. A refrigerant pipe 18 is connected to the header 6b.
- Each refrigerant conduit 6c shown in FIG. 11 is a hollow metal member.
- a flat-shaped flat tube is used for each refrigerant
- the plurality of coolant conduits 6c are arranged at intervals in the Y-axis direction.
- Each refrigerant conduit 6c extends from one header 6a toward the other header 6b.
- the extending direction of each refrigerant conduit 6c is orthogonal to the Y-axis direction.
- One end in the extension direction of each refrigerant conduit 6c is connected to one header 6a, and the other end in the extension direction of each refrigerant conduit 6c is connected to the other header 6b.
- Each refrigerant conduit 6c communicates between one header 6a and the other header 6b.
- the fin 6d is a plate-like member made of metal.
- the fins 6d are arranged between adjacent refrigerant conduits 6c.
- the shape of the fins 6d is not particularly limited, but in this embodiment, the fins 6d have a corrugated shape protruding upward and downward alternately. That is, corrugated fins are used for the fins 6d in this embodiment. As shown in FIG. 12, the fins 6d are in contact with each of the adjacent refrigerant conduits 6c and joined by welding or the like.
- a coolant flows inside the headers 6a and 6b and the coolant conduit 6c shown in FIG.
- One of the two headers 6a, 6b serves to distribute refrigerant to each of the plurality of refrigerant conduits 6c.
- the other of the two headers 6a and 6b serves to merge the refrigerants flowing out from each of the plurality of refrigerant conduits 6c.
- the refrigerant conduit 6c serves to exchange heat between the refrigerant and the outdoor air. That is, heat is exchanged between the refrigerant flowing inside the refrigerant conduit 6c and the outdoor air flowing around the refrigerant conduit 6c.
- the fins 6d play a role of promoting heat exchange between the refrigerant and the outdoor air.
- the electronic board 9c when electric power is supplied from the external AC power line 14 to the electronic board 9c via the internal power line 15, the electronic board 9c enters a standby state.
- the electronic board 9c receives an operation start command signal from the indoor unit via a communication signal line between the indoor unit and the outdoor unit 1 (not shown), the operation of the outdoor unit 1 is started.
- the electronic board 9c outputs a drive signal to the fan motor 5b through the fan drive wire 12 to drive the fan motor 5b.
- the electronic board 9 c outputs another drive signal to the compressor 8 through the compressor drive wire 13 to drive the compressor 8 .
- the driving signal output from the electronic board 9c is generally a rectangular wave pulse generated by switching of the power semiconductor.
- the drive signal contains high-frequency components such as switching noise of power semiconductors and harmonic components of rectangular wave pulses, which are not essentially necessary for driving the AC motors of the compressor 8 and the fan motor 5b.
- a high-frequency component becomes an electromagnetic noise source, and becomes one of the causes of radiation of the electromagnetic noise to the outside of the housing 2 through a transmission path, which will be described later.
- FIG. 13 is a schematic diagram showing a transmission path of electromagnetic noise generated in the outdoor unit 1 of the air conditioner according to Embodiment 1 as an electric circuit.
- the heat exchanger 6 is indicated by dot hatching for easy understanding.
- the electromagnetic noise generated in the electronic board 9c passes through the neutral point 8d of the three-phase motor windings to the motor windings 8a and the compressor. It is transmitted to the housing of the compressor 8 through the parasitic capacitance 8b existing between the housing of the compressor 8 and the housing of the compressor 8. Part of the electromagnetic noise transmitted to the housing of the compressor 8 is returned to the electronic board 9c after being transmitted to the housing floor panel 2a.
- the characteristics of the parasitic impedance component of the heat exchanger 6 differ depending on the structure of the heat exchanger 6.
- the heat exchanger 6 is a parallel flow type heat exchanger provided with fins 6d and flat refrigerant conduits 6c shown in FIG. 27 are combined as shown in FIG. 13 as an example of an equivalent circuit.
- a parasitic impedance component such as the parasitic inductance 27 of the heat exchanger 6 exists in a complicated manner as a distributed constant circuit as shown in FIG. Since the heat exchanger 6 and the housing 2 are electrically insulated by the first insulating member 7a and the second insulating member 7b, there is a parasitic capacitance 26a between the heat exchanger 6 and the housing 2. , 26b are generated.
- a parasitic capacitance 26a is generated between the heat exchanger 6 and the housing floor panel 2a
- a parasitic capacitance 26b is generated between the heat exchanger 6 and the housing top panel 2b.
- the parasitic capacitances 26a and 26b are generated on the electromagnetic noise transmission path.
- FIG. 14 is a circuit diagram showing an equivalent circuit of the path along which current that causes electromagnetic noise is transmitted in the outdoor unit 1 of the air conditioner according to Embodiment 1.
- the heat exchanger 6 and the housing floor panel 2a are electrically insulated by the first insulating member 7a shown in FIG. 2b are electrically insulated, voltage changes occur in the parasitic capacitances 26a and 26b due to resonance.
- FIG. 15 is a rear view of the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the lattice 3 is removed and a location where electromagnetic noise is generated.
- the heat exchanger 6 is hatched for easy understanding. Between the heat exchanger 6 and each panel of the housing 2, gaps G1, G2, G3 and G4 are formed to ensure electrical insulation.
- the respective positions of the gaps G1, G2, G3 and G4 are surrounded by dashed lines.
- FIG. 15 shows that there are no gaps G1, G2, G3, and G4 between the heat exchanger 6 and the housing 2, the gaps G1, G2, G3, and G4 actually extend so as to surround the four sides of the heat exchanger 6.
- gaps G1, G2, G3 and G4 are locations where electromagnetic noise is generated. Voltage changes occur between the heat exchanger 6 and the housing floor panel 2a and between the heat exchanger 6 and the housing top panel 2b through parasitic capacitances 26a and 26b shown in FIG. As a result, the gaps G1, G2, G3 and G4 function as slot antennas and further generate electromagnetic noise in response to changes in the voltage applied across the gaps G1, G2, G3 and G4. Electromagnetic noise generated in the gaps G1, G2, G3, and G4 is radiated to the outside of the housing 2 through the air supply port 2m.
- FIG. 16 shows that in the outdoor unit 1 of the air conditioner according to Embodiment 1, when the heat exchanger 6 and the housing 2 are brought into direct contact without the insulating member 7, a current that becomes electromagnetic noise is transmitted.
- FIG. 3 is a circuit diagram in which a path is converted into an equivalent circuit;
- the gaps G1, G2, G3 , G4 can prevent the generation of electromagnetic noise and reduce the radiation of electromagnetic noise to the outside of the housing 2. occurs.
- the insulating member 7 is provided between the heat exchanger 6 and the housing 2, the corrosion of the heat exchanger 6 having a low standard electrode potential can be prevented at the contact point between the heat exchanger 6 and the housing 2.
- electromagnetic noise is generated in the gaps G1, G2, G3, and G4, and the radiation amount of the electromagnetic noise to the outside of the housing 2 increases.
- FIG. 17 is a rear view of the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the grid 3 is attached and locations where electromagnetic noise is generated.
- the heat exchanger 6 is indicated by dot hatching for easy understanding.
- the outdoor unit 1 is arranged upstream of the heat exchanger 6 in the direction of air flow, away from the heat exchanger 6, fixed to the housing 2, and electrically connected to the housing 2. It has a grid 3 made of metal.
- the gaps G1, G2, G3 and G4 are divided by the lattice spacings A and B by the lattice body 3. As shown in FIG.
- the frequency of the electromagnetic noise whose radiation to the outside of the housing 2 is suppressed is determined by the lattice intervals A and B between adjacent metal wires 32 .
- the outdoor unit 1 includes a box-shaped housing 2 made of a first metal and at least a portion of which is made of the first metal. is a heat exchanger 6 made of a second metal having a different standard electrode potential, arranged in the housing 2 and fixed to the housing 2 via an insulating member 7, and arranged away from the heat exchanger 6 and a lattice 3 .
- the heat exchanger 6 and the housing 2 are not electrically connected, and the heat exchanger 6 and the grid 3 are not electrically connected. Therefore, corrosion due to contact between dissimilar metals can be prevented.
- the grid 3 is made of the same first metal as the housing 2, corrosion due to contact between the grid 3 and the housing 2 can be prevented. Therefore, in the present embodiment, corrosion prevention and electromagnetic noise reduction can be realized at the same time simply by arranging the metal lattice 3 and the non-conductive insulating member 7 . That is, it is possible to achieve both corrosion prevention and electromagnetic noise reduction with a cheaper and simpler structure than conventional ones.
- the standard electrode potential of the first metal is higher than the standard electrode potential of the second metal, so that when heat exchanger 6 is electrically connected to housing 2 and grid 3, would cause corrosion to occur in the heat exchanger 6 made of the second metal.
- the heat exchanger 6 since the heat exchanger 6 is not electrically connected to the housing 2 and the lattice 3 as described above, the corrosion of the heat exchanger 6 can be prevented.
- the first metal is iron
- the strength of the housing 2 made of the first metal can be increased.
- the second metal is aluminum, the thermal conductivity of the heat exchanger 6 made of the second metal can be enhanced.
- the lattice intervals A and B of the lattice body 3 are less than half the wavelength of the electromagnetic noise generated from the inside of the housing 2, so that the electromagnetic noise can be further reduced. can be done.
- the grid 3 is fixed to the housing floor panel 2a, the housing top panel 2b, the housing rear panel 2j, and the housing side panel 2g. Therefore, the contact resistance and parasitic inductance 28 of the housing 2 can be reduced. Therefore, the electromagnetic noise transmitted to the electronic board 9c, the compressor 8, and each panel of the housing 2, that is, the noise terminal voltage, the interference power intensity, etc., can be reduced.
- the lattice 3 may be fixed to at least one of the housing floor panel 2a, the housing top panel 2b, the housing rear panel 2j, and the housing side panel 2g.
- serpentine heat exchangers and aluminum parallel flow heat exchangers. Both serpentine heat exchangers and parallel flow heat exchangers have fins and refrigerant conduits. In a serpentine heat exchanger, it is common to use aluminum for the fins and copper for the refrigerant conduits.
- the magnitude relationship of the standard electrode potentials of the respective metals is aluminum ⁇ iron ⁇ copper. In other words, the magnitude relationship of the standard electrode potentials of the metal members is fin ⁇ casing 2 ⁇ refrigerant conduit.
- the fins and refrigerant conduits of the serpentine heat exchanger are brought into direct contact with the housing 2 and moisture adheres to the contact points, the fins having a lower standard electrode potential than the housing 2 will corrode. Corrosion does not occur in coolant conduits having a higher standard electrode potential than housing 2, although this may occur.
- achieving both corrosion prevention and electromagnetic noise reduction by using the lattice 3 and the insulating member 7 as in the present embodiment is difficult due to corrosion as in parallel flow type heat exchangers made of aluminum. It is particularly useful when using a heat exchanger that has a large adverse effect.
- achieving both corrosion prevention and electromagnetic noise reduction by using the lattice 3 and the insulating member 7 as in the present embodiment means that the standard electrode potential of the refrigerant conduit is equal to that of the surrounding members such as the housing 2. It is particularly useful with heat exchangers below the standard electrode potential of .
- the configuration of the lattice body 3 is not limited to the example shown in FIG.
- the metal wire 32 may be directly fixed to the housing 2 without the grid 3 having the fixed frame 31 .
- the fixed frame 31 in the shape of a square frame is exemplified, but it is not essential that the fixed frame 31 has four frame portions.
- the fixed frame 31 may not have the second horizontal frame portion 31d, and one end of the first metal wire 32a in the Y-axis direction may be a free end without being fixed to the fixed frame 31.
- FIG. In this way, some electromagnetic noise may be radiated from the lower end of the lattice 3, but since the lower end of the lattice 3 is close to the installation surface such as the ground, the adverse effect on the electromagnetic noise is limited. , the same effects as those of the first embodiment can be obtained.
- the method of manufacturing the grid 3 is not particularly limited.
- a method of manufacturing the lattice body 3 for example, a method of fixing a metal wire 32 formed separately from the fixed frame 31 to the fixed frame 31 may be used, or a method of punching sheet metal is used to attach the fixed frame 31 and the metal wires 32 to each other. and may be integrally molded.
- the outdoor unit 1 can be manufactured by a simpler method at a lower cost.
- the entire heat exchanger 6 need not be made of the second metal, and at least part of the heat exchanger 6 should be made of the second metal.
- at least one of the fins of the heat exchanger 6 and the refrigerant conduit should be made of the second metal.
- 1 outdoor unit of air conditioner 2 housing, 2a housing floor panel, 2b housing top panel, 2c housing front panel, 2d housing side panel, 2e front panel main body, 2f front panel extension, 2g housing side panel, 2h side panel main body, 2i side panel extension, 2j housing rear panel, 2k opening, 2m air supply port, 2n exhaust port, 2o top flange, 2p bottom flange, 3 grating body, 4 partition plate, 4a first partition, 4b second partition, 4c introduction hole, 5 blower, 5a strut, 5b fan motor, 5c propeller fan, 6 heat exchanger, 6a, 6b header, 6c refrigerant Conduit 6d Fin 7 Insulating member 7a First insulating member 7b Second insulating member 8 Compressor 8a Motor winding 8b, 26a, 26b Parasitic capacitance 8c Contact resistance 8d Three-phase motor winding Neutral point, 9 electronic board box, 9a lower box, 9b upper lid, 9c electronic board, 9d heat sink, 9
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
An outdoor unit (1) for an air conditioner comprises: a box-shaped housing (2) that is formed from a first metal, and has formed therein an air supply aperture for allowing outdoor air to flow in; a heat exchanger (6) that is at least partially formed from a second metal having a different standard electrode potential from the first metal, is positioned within the housing (2), and is fixed to the housing (2) via a non-conductive member; and a grille (3) that is positioned at a distance from the heat exchanger (6) and on the upstream side of the heat exchanger (6) in the airflow direction, is fixed to the housing (2) and electrically connected to the housing (2), and is formed from the first metal.
Description
本開示は、筐体と熱交換器とを備える空気調和機の室外機に関する。
The present disclosure relates to an outdoor unit of an air conditioner that includes a housing and a heat exchanger.
従来の空気調和機の室外機として、箱状の筐体と筐体内に配置される熱交換器とを備え、熱交換器と筐体とがそれぞれ異種金属により形成されたものが知られている。熱交換器と筐体とは、要求される特性に応じて金属の種類が選択されている。例えば、高い熱伝導率が要求される熱交換器にはアルミニウムが用いられ、強度が要求される筐体には鉄が用いられるのが一般的である。
As a conventional outdoor unit of an air conditioner, there is known one that includes a box-shaped housing and a heat exchanger arranged in the housing, and the heat exchanger and the housing are formed of dissimilar metals. . The types of metals used for the heat exchanger and housing are selected according to the required properties. For example, aluminum is generally used for heat exchangers that require high thermal conductivity, and iron is generally used for housings that require strength.
異種金属である熱交換器と筐体とを直接接触させると、接触箇所に水分が付着したときに、標準電極電位が低い方の金属において異種金属接触腐食が発生する。以下、異種金属接触腐食を単に腐食と称する。腐食を防ぐ手段としては、樹脂などの非導電性部材を介して熱交換器と筐体とを間接的に接続する手段が知られている。
When the heat exchanger and housing, which are dissimilar metals, are brought into direct contact with each other, contact corrosion occurs in the metal with the lower standard electrode potential when moisture adheres to the contact point. In the following, galvanic corrosion is simply referred to as corrosion. As means for preventing corrosion, means for indirectly connecting the heat exchanger and the housing via a non-conductive member such as resin is known.
しかし、このような手段を用いると、非導電性部材により熱交換器と筐体とが電気的に絶縁されるため、熱交換器と筐体との間に寄生容量が生じる。そして、筐体内に配置される電子基板、圧縮機などから発生する電磁ノイズにより寄生容量に電圧の変化を発生させ、この電圧の変化によりさらに電磁ノイズが発生するという問題がある。なお、筐体の背面には、室外の空気を流入させるための給気口が形成されていて、熱交換器は、室外の空気との間で熱交換を行うために給気口に臨む位置に配置されている。電磁ノイズは、熱交換器と筐体との間から給気口を通じて筐体の外部へと放射される。
However, when such means are used, the non-conductive member electrically insulates the heat exchanger from the housing, resulting in parasitic capacitance between the heat exchanger and the housing. In addition, there is a problem that electromagnetic noise generated from an electronic substrate, a compressor, or the like arranged in the housing causes a change in voltage in the parasitic capacitance, and this voltage change causes further electromagnetic noise. In addition, the back of the housing is formed with an air supply port for inflowing outdoor air, and the heat exchanger is positioned facing the air supply port to exchange heat with the outdoor air. are placed in Electromagnetic noise is radiated to the outside of the housing from between the heat exchanger and the housing through the air supply port.
そこで、腐食の防止と電磁ノイズの低減という2つの課題を同時に解決するための技術が開発されている。例えば、特許文献1には、熱交換器と筐体との間に導電性の接続部材を介在させた技術が開示されている。接続部材は、熱交換器に用いられた金属と同種の金属により形成されて熱交換器に直接接触する第1接続部と、筐体に用いられた金属と同種の金属により形成されて筐体に直接接触する第2接続部とを有している。また、第1接続部と第2接続部との間には、第1接続部と第2接続部とを電気的に絶縁する絶縁層が設けられている。
Therefore, technology is being developed to simultaneously solve the two challenges of preventing corrosion and reducing electromagnetic noise. For example, Patent Literature 1 discloses a technique in which a conductive connection member is interposed between a heat exchanger and a housing. The connection member includes a first connection portion that is formed of the same metal as the metal used for the heat exchanger and is in direct contact with the heat exchanger, and a housing that is formed of the same metal as the metal used for the housing. and a second connection portion that is in direct contact with the . An insulating layer is provided between the first connection portion and the second connection portion to electrically insulate the first connection portion and the second connection portion.
特許文献1に開示された技術では、絶縁層の一部を除去して異種金属である第1接続部と第2接続部とを部分的に直接接触させることにより電気的導通を確保して電磁ノイズを低減させる一方で、防水テープなどの被覆部材で第1接続部と第2接続部との接触箇所を被覆することにより接触箇所への水分の浸入を遮断して金属の腐食を防いでいる。
In the technique disclosed in Patent Document 1, a portion of the insulating layer is removed to partially bring the first connection portion and the second connection portion, which are dissimilar metals, into direct contact with each other, thereby ensuring electrical continuity and electromagnetic interference. While noise is reduced, by covering the contact points between the first connection portion and the second connection portion with a covering member such as a waterproof tape, the infiltration of moisture to the contact points is blocked and the corrosion of the metal is prevented. .
しかしながら、特許文献1に開示された技術では、接続部材に複数種類の金属を用いること、絶縁層を設けること、および、防水用の被覆部材を用いることにより構造の複雑化を招くため、製造工数の増加、部品点数の増加といった問題がある。
However, in the technique disclosed in Patent Document 1, the use of multiple types of metals for the connecting member, the provision of the insulating layer, and the use of the waterproof covering member result in a complicated structure. There are problems such as an increase in the number of components and an increase in the number of parts.
本開示は、上記に鑑みてなされたものであって、簡易な構造で、腐食の防止と電磁ノイズの低減との両立を図ることができる空気調和機の室外機を得ることを目的とする。
The present disclosure has been made in view of the above, and an object thereof is to obtain an outdoor unit of an air conditioner that has a simple structure and is capable of achieving both prevention of corrosion and reduction of electromagnetic noise.
上述した課題を解決し、目的を達成するために、本開示にかかる空気調和機の室外機は、室外の空気を流入させるための給気口が形成され、第1の金属により形成されている箱状の筐体と、少なくとも一部が第1の金属とは標準電極電位が異なる第2の金属により形成され、筐体内に配置されて非導電性部材を介して筐体に固定される熱交換器と、空気の流れ方向で熱交換器の上流側に熱交換器から離れて配置され、筐体に固定されて筐体と電気的に接続され、第1の金属により形成されている格子体と、を備えている。
In order to solve the above-described problems and achieve the object, an outdoor unit of an air conditioner according to the present disclosure is formed with an air supply port for introducing outdoor air, and is made of a first metal. A box-shaped housing and at least a portion of which is formed of a second metal having a standard electrode potential different from that of the first metal, is arranged in the housing, and is fixed to the housing via a non-conductive member. an exchanger and a grid arranged upstream of the heat exchanger in the direction of air flow and spaced from the heat exchanger, fixed to and electrically connected to the housing and formed of a first metal; It has a body and
本開示にかかる空気調和機の室外機では、簡易な構造で、腐食の防止と電磁ノイズの低減との両立を図ることができるという効果を奏する。
The outdoor unit of the air conditioner according to the present disclosure has the effect of achieving both corrosion prevention and electromagnetic noise reduction with a simple structure.
以下に、実施の形態にかかる空気調和機の室外機を図面に基づいて詳細に説明する。
Below, the outdoor unit of the air conditioner according to the embodiment will be described in detail based on the drawings.
実施の形態1.
図1は、実施の形態1にかかる空気調和機の室外機1を模式的に示した分解斜視図である。図1に示すように、空気調和機の室外機1は、筐体2と、格子体3と、仕切り板4と、送風機5と、熱交換器6と、2つの絶縁部材7と、圧縮機8と、電子基板箱9とを備えている。以下、空気調和機の室外機1を単に室外機1と称する場合もある。Embodiment 1.
FIG. 1 is an exploded perspective view schematically showing anoutdoor unit 1 of an air conditioner according to Embodiment 1. FIG. As shown in FIG. 1, an outdoor unit 1 of an air conditioner includes a housing 2, a lattice 3, a partition plate 4, a blower 5, a heat exchanger 6, two insulating members 7, and a compressor. 8 and an electronic board box 9. Hereinafter, the outdoor unit 1 of the air conditioner may be simply referred to as the outdoor unit 1 in some cases.
図1は、実施の形態1にかかる空気調和機の室外機1を模式的に示した分解斜視図である。図1に示すように、空気調和機の室外機1は、筐体2と、格子体3と、仕切り板4と、送風機5と、熱交換器6と、2つの絶縁部材7と、圧縮機8と、電子基板箱9とを備えている。以下、空気調和機の室外機1を単に室外機1と称する場合もある。
FIG. 1 is an exploded perspective view schematically showing an
以下、室外機1の各構成要素について方向を説明するときには、室外機1の奥行方向をX軸方向、室外機1の高さ方向をY軸方向、室外機1の幅方向をZ軸方向とする。また、X軸方向の+向きを前方、X軸方向の-向きを後方とする。X軸方向の+向きは、X軸の-側から+側への向きであり、X軸方向の-向きは、X軸の+側から-側への向きである。また、Y軸方向の+向きを上方、Y軸方向の-向きを下方とする。Y軸方向の+向きは、Y軸の-側から+側への向きであり、Y軸方向の-向きは、Y軸の+側から-側への向きである。また、Z軸方向の+向きを右方、Z軸方向の-向きを左方とする。Z軸方向の+向きは、Z軸の-側から+側への向きであり、Z軸方向の-向きは、Z軸の+側から-側への向きである。本実施の形態では、室外機1のうち送風機5によって発生された空気流が外部へ排出される方を正面とし、正面の反対側を背面とする。図1に示される矢印Yは、送風機5によって発生された空気流の送風方向を表している。
Hereinafter, when describing the direction of each component of the outdoor unit 1, the depth direction of the outdoor unit 1 is the X-axis direction, the height direction of the outdoor unit 1 is the Y-axis direction, and the width direction of the outdoor unit 1 is the Z-axis direction. do. The positive direction in the X-axis direction is forward, and the negative direction in the X-axis direction is backward. The + direction of the X-axis direction is the direction from the - side to the + side of the X-axis, and the - direction of the X-axis direction is the direction from the + side to the - side of the X-axis. In addition, the positive direction in the Y-axis direction is defined as upward, and the negative direction in the Y-axis direction is defined as downward. The + direction of the Y-axis is the direction from the - side to the + side of the Y-axis, and the - direction of the Y-axis is the direction from the + side to the - side of the Y-axis. Also, the positive direction of the Z-axis is defined as the right side, and the negative direction of the Z-axis direction is defined as the left side. The + direction of the Z-axis direction is the direction from the - side to the + side of the Z-axis, and the - direction of the Z-axis direction is the direction from the + side to the - side of the Z-axis. In the present embodiment, the side of the outdoor unit 1 where the airflow generated by the blower 5 is discharged to the outside is the front side, and the opposite side of the front side is the back side. An arrow Y shown in FIG. 1 represents the blowing direction of the airflow generated by the blower 5 .
図2は、実施の形態1にかかる空気調和機の室外機1を示した正面図であって、筐体2の筐体前面パネル2cを取り外した状態を示した図である。図2では、理解の容易化のために、熱交換器6にドットハッチングを付している。図1および図2に示すように、筐体2は、室外機1の外殻となる箱状の部材である。筐体2は、第1の金属により形成されている。第1の金属は、強度が高い金属であることが好ましい。第1の金属は、例えば、鉄、鉄合金である。
FIG. 2 is a front view showing the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the housing front panel 2c of the housing 2 is removed. In FIG. 2, the heat exchanger 6 is indicated by dot hatching for easy understanding. As shown in FIGS. 1 and 2 , the housing 2 is a box-shaped member that serves as the outer shell of the outdoor unit 1 . The housing 2 is made of a first metal. The first metal is preferably a metal with high strength. The first metal is, for example, iron or an iron alloy.
図1に示すように、筐体2は、筐体床面パネル2aと、筐体天面パネル2bと、筐体前面パネル2cと、筐体側面パネル2dとを有している。筐体床面パネル2aは、室外機1の外殻の底面を構成する。筐体床面パネル2aの平面視形状は、四隅が丸みを帯びた矩形である。筐体天面パネル2bは、筐体床面パネル2aの上方に筐体床面パネル2aから離れて配置されている。筐体天面パネル2bは、室外機1の外殻の天井面を構成する。筐体天面パネル2bの平面視形状は、筐体床面パネル2aの平面視形状と同じである。
As shown in FIG. 1, the housing 2 has a housing floor panel 2a, a housing top panel 2b, a housing front panel 2c, and a housing side panel 2d. The housing floor panel 2 a constitutes the bottom surface of the outer shell of the outdoor unit 1 . The plan view shape of the housing floor panel 2a is a rectangle with rounded corners. The housing top panel 2b is arranged above the housing floor panel 2a and away from the housing floor panel 2a. The housing top surface panel 2b constitutes the ceiling surface of the outer shell of the outdoor unit 1. As shown in FIG. The planar view shape of the housing top panel 2b is the same as the planar view shape of the housing floor panel 2a.
筐体前面パネル2cおよび筐体側面パネル2dは、筐体床面パネル2aと筐体天面パネル2bとを連結する。筐体前面パネル2cの平面視形状は、L字である。筐体前面パネル2cは、Z軸方向に沿って延びる前面パネル本体部2eと、前面パネル本体部2eのZ軸方向に沿った一方の縁部となる左縁部から後方に向かって延びる前面パネル延長部2fとを有している。前面パネル本体部2eは、筐体床面パネル2aの前縁部と筐体天面パネル2bの前縁部とを連結する。前面パネル本体部2eは、室外機1の外殻の正面を構成する。前面パネル延長部2fは、筐体床面パネル2aの左縁部と筐体天面パネル2bの左縁部とを連結する。前面パネル延長部2fは、室外機1の外殻の左側面を構成する。以下、前面パネル延長部2fを「筐体側面パネル2g」と称する場合もある。前面パネル本体部2eと筐体側面パネル2gとは本実施の形態では一体に形成されているが、別体で形成されてもよい。
The housing front panel 2c and the housing side panel 2d connect the housing floor panel 2a and the housing top panel 2b. The plan view shape of the housing front panel 2c is L-shaped. The housing front panel 2c includes a front panel main body portion 2e extending along the Z-axis direction and a front panel extending rearward from a left edge serving as one edge portion of the front panel main body portion 2e along the Z-axis direction. and an extension 2f. The front panel body 2e connects the front edge of the housing floor panel 2a and the front edge of the housing top panel 2b. The front panel main body portion 2 e constitutes the front surface of the outer shell of the outdoor unit 1 . The front panel extension 2f connects the left edge of the housing floor panel 2a and the left edge of the housing top panel 2b. The front panel extension 2f constitutes the left side of the outer shell of the outdoor unit 1. As shown in FIG. Hereinafter, the front panel extension 2f may also be referred to as the "casing side panel 2g". Although the front panel body 2e and the housing side panel 2g are integrally formed in this embodiment, they may be formed separately.
筐体側面パネル2dの平面視形状は、L字である。筐体側面パネル2dは、X軸方向に沿って延びる側面パネル本体部2hと、側面パネル本体部2hのX軸方向に沿った一方の縁部となる後縁部から左方に向かって延びる側面パネル延長部2iとを有している。側面パネル本体部2hは、筐体床面パネル2aの右縁部と筐体天面パネル2bの右縁部とを連結する。側面パネル本体部2hは、室外機1の外殻の右側面を構成する。側面パネル延長部2iは、筐体床面パネル2aの後縁部の一部と筐体天面パネル2bの後縁部の一部とを連結する。側面パネル延長部2iは、室外機1の外殻の背面の一部を構成する。以下、側面パネル延長部2iを「筐体背面パネル2j」と称する場合もある。側面パネル本体部2hと筐体背面パネル2jとは本実施の形態では一体に形成されているが、別体で形成されてもよい。図1に示される各パネルが組み付けられた状態で、筐体背面パネル2jの左縁部と筐体側面パネル2gの後縁部とは、互いに離れている。
The planar view shape of the housing side panel 2d is L-shaped. The housing side panel 2d includes a side panel body portion 2h extending along the X-axis direction, and a side surface extending leftward from a rear edge portion serving as one edge along the X-axis direction of the side panel body portion 2h. and a panel extension 2i. The side panel body 2h connects the right edge of the housing floor panel 2a and the right edge of the housing top panel 2b. The side panel body portion 2h constitutes the right side surface of the outer shell of the outdoor unit 1. As shown in FIG. The side panel extension 2i connects part of the rear edge of the housing floor panel 2a and part of the rear edge of the housing top panel 2b. The side panel extension 2i forms part of the rear surface of the outer shell of the outdoor unit 1. As shown in FIG. Hereinafter, the side panel extension 2i may also be referred to as a "casing rear panel 2j". Although the side panel body portion 2h and the housing rear panel 2j are integrally formed in this embodiment, they may be formed separately. With the panels shown in FIG. 1 assembled, the left edge of the housing rear panel 2j and the rear edge of the housing side panel 2g are separated from each other.
格子体3は、空気の流れ方向で熱交換器6の上流側に熱交換器6から離れて配置され、筐体2に固定されて筐体2と電気的に接続される金属製部材である。本明細書において金属製部材同士における「電気的に接続」とは、金属製部材同士が直接接触して導通している状態の他、金属製部材同士が隙間を介して導通している状態も含まれる。格子体3は、筐体背面パネル2jの左縁部と筐体側面パネル2gの後縁部との間に配置されている。格子体3は、熱交換器6の背面側に熱交換器6から離れて配置されている。格子体3は、筐体2と同じ第1の金属により形成されている。
The lattice body 3 is a metal member that is arranged away from the heat exchanger 6 on the upstream side of the heat exchanger 6 in the direction of air flow, is fixed to the housing 2, and is electrically connected to the housing 2. . In this specification, the term "electrically connected" between metal members means a state in which the metal members are in direct contact with each other and conduct, and a state in which the metal members are in contact with each other through a gap. included. The grid 3 is arranged between the left edge of the housing rear panel 2j and the rear edge of the housing side panel 2g. The grid 3 is arranged on the rear side of the heat exchanger 6 and away from the heat exchanger 6 . The grid 3 is made of the same first metal as the housing 2 .
図2に示すように、仕切り板4は、筐体2の内部をファン室10と電気室11とに区画する金属製部材である。ファン室10と電気室11とは、Z軸方向に並んで形成されている。仕切り板4は、筐体床面パネル2aから電子基板箱9に亘ってY軸方向に延びている。仕切り板4は、図1に示される筐体前面パネル2cから筐体背面パネル2jに亘ってX軸方向に延びている。
As shown in FIG. 2, the partition plate 4 is a metal member that divides the inside of the housing 2 into a fan room 10 and an electric room 11. The fan chamber 10 and the electric chamber 11 are formed side by side in the Z-axis direction. The partition plate 4 extends in the Y-axis direction over the electronic board box 9 from the housing floor panel 2a. The partition plate 4 extends in the X-axis direction from the housing front panel 2c to the housing rear panel 2j shown in FIG.
図1に示される筐体2と格子体3と仕切り板4とは、同種の第1の金属により形成されている。筐体2と格子体3と仕切り板4とが互いに接触する箇所は、溶接、ネジなどにより接合されている。筐体2の各パネルの表面に塗装などが施されて各パネルの表面の電気抵抗が高い場合には、例えば、あらかじめ接合部の一部または全部にマスキングを施したり、セレーションネジを用いてネジ締めの際に塗装を剥がしたりして、各パネルの表面の電気抵抗を下げればよい。
The housing 2, grid 3, and partition plate 4 shown in FIG. 1 are made of the same kind of first metal. The portions where the housing 2, the lattice 3, and the partition plate 4 contact each other are joined by welding, screws, or the like. If the surface of each panel of the housing 2 is painted or the like and the electrical resistance of the surface of each panel is high, for example, part or all of the joints are masked in advance, or screws are screwed using serration screws. The electrical resistance of the surface of each panel can be lowered by peeling off the coating when tightening.
図2に示すように、送風機5は、ファン室10に配置されて、空気流を発生させる機器である。送風機5は、筐体床面パネル2aから立ち上がる支柱5aと、支柱5aに取り付けられたファンモータ5bと、ファンモータ5bの回転軸に取り付けられてファンモータ5bの回転に伴って回転するプロペラファン5cとを有している。支柱5aの上端部は、筐体天面パネル2bに固定されている。支柱5aの下端部は、筐体床面パネル2aに固定されている。ファンモータ5bは、ファン駆動電線12を介して後記する電子基板9cと電気的に接続されている。ファンモータ5bは、ファン駆動電線12を介して電子基板9cから出力される駆動信号を受信したときに回転する。
As shown in FIG. 2, the blower 5 is a device that is arranged in the fan room 10 and generates an air flow. The blower 5 includes a support 5a rising from the floor panel 2a of the enclosure, a fan motor 5b attached to the support 5a, and a propeller fan 5c attached to the rotating shaft of the fan motor 5b and rotating as the fan motor 5b rotates. and The upper end of the column 5a is fixed to the housing top panel 2b. A lower end portion of the column 5a is fixed to the housing floor panel 2a. The fan motor 5b is electrically connected via a fan drive wire 12 to an electronic board 9c, which will be described later. The fan motor 5b rotates when it receives a drive signal output from the electronic board 9c via the fan drive wire 12. As shown in FIG.
熱交換器6は、ファン室10に配置されて、冷媒と室外の空気との熱交換を行うための部材である。熱交換器6には、送風機5に取り込むための室外の空気が通過する。熱交換器6は、例えば、パラレルフロー型の熱交換器である。熱交換器6は、筐体2内に配置されて、非導電性部材である絶縁部材7を介して筐体2に固定されている。熱交換器6の少なくとも一部は、第1の金属とは標準電極電位が異なる第2の金属により形成されている。第2の金属は、熱伝導率の高い金属であることが好ましい。第2の金属は、例えば、アルミニウム、アルミニウム合金である。第1の金属の標準電極電位は、第2の金属の標準電極電位よりも高い。
The heat exchanger 6 is a member that is arranged in the fan room 10 and performs heat exchange between the refrigerant and the outdoor air. Outdoor air to be taken in by the blower 5 passes through the heat exchanger 6 . The heat exchanger 6 is, for example, a parallel flow heat exchanger. The heat exchanger 6 is arranged inside the housing 2 and fixed to the housing 2 via an insulating member 7 that is a non-conductive member. At least part of the heat exchanger 6 is made of a second metal having a standard electrode potential different from that of the first metal. The second metal is preferably a metal with high thermal conductivity. The second metal is, for example, aluminum or an aluminum alloy. The standard electrode potential of the first metal is higher than the standard electrode potential of the second metal.
図1に示すように、熱交換器6の平面視形状は、L字である。熱交換器6は、Z軸方向に沿って延びた後に、X軸方向に沿って前方に延びている。熱交換器6のうちZ軸方向に沿った部分は、送風機5の後方に配置されている。熱交換器6のうちX軸方向に沿った部分は、送風機5の左方に配置されている。熱交換器6と送風機5とは、互いに間隔を空けて配置されていて電気的に絶縁されているか、または、図示しない絶縁部材を介して配置されていて電気的に絶縁されている。
As shown in FIG. 1, the plan view shape of the heat exchanger 6 is L-shaped. The heat exchanger 6 extends forward along the X-axis direction after extending along the Z-axis direction. A portion of the heat exchanger 6 along the Z-axis direction is arranged behind the blower 5 . A portion of the heat exchanger 6 along the X-axis direction is arranged to the left of the blower 5 . The heat exchanger 6 and the blower 5 are spaced apart and electrically insulated, or are electrically insulated via an insulating member (not shown).
熱交換器6と筐体前面パネル2cおよび筐体側面パネル2dとは、互いに間隔を空けて配置されていて電気的に絶縁されているか、または、図示しない絶縁部材を介して配置されていて電気的に絶縁されている。図2に示すように、熱交換器6の上端部は、絶縁部材7を介して筐体天面パネル2bに固定されている。熱交換器6の下端部は、絶縁部材7を介して筐体床面パネル2aに固定されている。熱交換器6と筐体天面パネル2bおよび筐体床面パネル2aとは、電気的に絶縁されている。熱交換器6は、熱交換器6の周辺に配置される筐体2、格子体3、送風機5などの金属製部材と電気的に接続されることなく配置されている。
The heat exchanger 6, the housing front panel 2c, and the housing side panel 2d are electrically insulated by being spaced apart from each other, or are electrically insulated via an insulating member (not shown). effectively insulated. As shown in FIG. 2, the upper end of the heat exchanger 6 is fixed to the housing top panel 2b via an insulating member 7. As shown in FIG. A lower end portion of the heat exchanger 6 is fixed to the housing floor panel 2a via an insulating member 7 . Heat exchanger 6 is electrically insulated from housing top panel 2b and housing floor panel 2a. The heat exchanger 6 is arranged without being electrically connected to metal members such as the housing 2 , the grid 3 , the blower 5 and the like arranged around the heat exchanger 6 .
図1に示される2つの絶縁部材7の材料には、樹脂などの電気的な絶縁性を有する材料が用いられる。以下、2つの絶縁部材7を区別する場合には、熱交換器6の下端部に設けられた絶縁部材7を第1の絶縁部材7aと称し、熱交換器6の上端部に設けられた絶縁部材7を第2の絶縁部材7bと称する。本実施の形態では、熱交換器6と同じ平面視形状および同じ大きさである第1の絶縁部材7aおよび第2の絶縁部材7bを用いて、熱交換器6の底面および天面の全面を覆うことにより熱交換器6と筐体2とを電気的に絶縁しているが、両部材の電気的な絶縁手段を限定する趣旨ではない。例えば、電気的な絶縁性を有する材料により形成された台を熱交換器6の底面に数箇所設けて、熱交換器6と筐体床面パネル2aとの間に台を介在させる構成にしてもよい。このような構成にすると、熱交換器6と筐体床面パネル2aとが互いにY軸方向に離れるため、熱交換器6と筐体床面パネル2aとを電気的に絶縁することができる。
A material having electrical insulation such as resin is used as the material of the two insulating members 7 shown in FIG. Hereinafter, when distinguishing between the two insulating members 7, the insulating member 7 provided at the lower end of the heat exchanger 6 will be referred to as a first insulating member 7a, and the insulating member 7 provided at the upper end of the heat exchanger 6 will be referred to as a first insulating member 7a. The member 7 is called a second insulating member 7b. In this embodiment, a first insulating member 7a and a second insulating member 7b having the same planar shape and size as the heat exchanger 6 are used to cover the entire bottom surface and top surface of the heat exchanger 6. Although the heat exchanger 6 and the housing 2 are electrically insulated by covering, it is not intended to limit the means for electrically insulating the two members. For example, several pedestals made of an electrically insulating material are provided on the bottom surface of the heat exchanger 6, and the pedestals are interposed between the heat exchanger 6 and the housing floor panel 2a. good too. With such a configuration, the heat exchanger 6 and the housing floor panel 2a are separated from each other in the Y-axis direction, so that the heat exchanger 6 and the housing floor panel 2a can be electrically insulated.
図2に示すように、圧縮機8は、電気室11に配置されて、熱交換器6内を流れる冷媒を圧縮する機器である。圧縮機8は、電気室11のうち下方空間において、筐体床面パネル2aの上に配置されている。圧縮機8は、ネジなどにより筐体床面パネル2aに固定されている。
As shown in FIG. 2 , the compressor 8 is a device that is arranged in the electric room 11 and compresses the refrigerant flowing through the heat exchanger 6 . The compressor 8 is arranged on the housing floor panel 2 a in the lower space of the electric room 11 . The compressor 8 is fixed to the housing floor panel 2a with screws or the like.
電子基板箱9は、室外機1を運転させるために必要な制御基板などの電子基板9cを収容する部材である。電子基板箱9は、中空の直方体状に形成されている。電子基板箱9は、仕切り板4の上端部に固定されていて、ファン室10と電気室11とに跨って配置されている。電子基板箱9のうちファン室10に配置された部分には、下向きに延びるヒートシンク9dが取り付けられている。ヒートシンク9dは、ファン室10に露出している。ヒートシンク9dは、送風機5が発生させた空気流により冷却される。
The electronic board box 9 is a member that houses an electronic board 9c such as a control board necessary for operating the outdoor unit 1. The electronic board box 9 is formed in a hollow rectangular parallelepiped shape. The electronic board box 9 is fixed to the upper end of the partition plate 4 and arranged across the fan room 10 and the electrical room 11 . A downwardly extending heat sink 9 d is attached to the portion of the electronic board box 9 that is located in the fan chamber 10 . The heat sink 9 d is exposed to the fan chamber 10 . The heat sink 9 d is cooled by the air flow generated by the blower 5 .
電子基板箱9のうち電気室11に配置された部分は、圧縮機8の上方に配置されている。電子基板9cのうち電気室11に配置された部分には、圧縮機駆動電線13が接続されている。圧縮機8は、圧縮機駆動電線13を介して電子基板9cと電気的に接続されている。圧縮機8は、圧縮機駆動電線13を介して電子基板9cから出力される駆動信号を受信したときに駆動する。
The part of the electronic board box 9 placed in the electrical room 11 is placed above the compressor 8 . A compressor drive wire 13 is connected to a portion of the electronic board 9c disposed in the electrical chamber 11 . The compressor 8 is electrically connected to the electronic substrate 9c via a compressor drive wire 13. As shown in FIG. Compressor 8 is driven when it receives a drive signal output from electronic board 9c via compressor drive wire 13 .
電気室11は、筐体床面パネル2aと仕切り板4と筐体側面パネル2dと電子基板箱9と図1に示される筐体前面パネル2cと筐体背面パネル2jとに囲われて形成されていて、筐体2の外部からの雨水などの水分の浸入を防げる防水構造となっている。筐体側面パネル2dの外面の下部には、ストップバルブ17が設けられている。ストップバルブ17は、図示しない室内機ユニットと繋がる冷媒配管を接続するためのターミナルとなる。
The electric room 11 is surrounded by the housing floor panel 2a, the partition plate 4, the housing side panel 2d, the electronic board box 9, and the housing front panel 2c and housing rear panel 2j shown in FIG. It has a waterproof structure that prevents water such as rainwater from entering from the outside of the housing 2 . A stop valve 17 is provided at the lower portion of the outer surface of the housing side panel 2d. The stop valve 17 serves as a terminal for connecting a refrigerant pipe connected to an indoor unit (not shown).
圧縮機8とストップバルブ17とは、複数本の冷媒配管18を介して互いに接続されている。圧縮機8と熱交換器6とは、複数本の冷媒配管18を介して互いに接続されている。熱交換器6と冷媒配管18との接続部19は、防水構造となっている電気室11に配置されている。このように接続部19を電気室11に配置すると、接続部19と水分との接触を防止することができるため、接続部19の腐食を防止できる。なお、接続部19に対する防水効果をさらに高めるため、接続部19に防水テープなどを巻き付けて防水加工を施してもよい。具体的な図示は省略するが、冷媒配管18には、冷媒の流れる方向を切り替える四方弁、冷媒を既定の圧力まで膨張させる膨張弁といった弁装置が接続される。冷媒配管18の接続形態は、図示した例に限定されない。
The compressor 8 and the stop valve 17 are connected to each other via multiple refrigerant pipes 18 . Compressor 8 and heat exchanger 6 are connected to each other via a plurality of refrigerant pipes 18 . A connecting portion 19 between the heat exchanger 6 and the refrigerant pipe 18 is arranged in the electric chamber 11 having a waterproof structure. By arranging the connecting portion 19 in the electrical chamber 11 in this way, it is possible to prevent the connecting portion 19 from coming into contact with moisture, and thus corrosion of the connecting portion 19 can be prevented. In order to further enhance the waterproof effect of the connecting portion 19, the connecting portion 19 may be waterproofed by winding a waterproof tape or the like. Although not specifically illustrated, the refrigerant pipe 18 is connected to valve devices such as a four-way valve for switching the direction of flow of the refrigerant and an expansion valve for expanding the refrigerant to a predetermined pressure. The connection form of the refrigerant pipe 18 is not limited to the illustrated example.
電気室11のうち上方空間には、インターフェースパネル20が設置されている。インターフェースパネル20は、筐体側面パネル2dの内面と電子基板箱9の下面とにそれぞれ固定されている。インターフェースパネル20には、端子台21が設置されている。端子台21には、外部AC電力線14と内部電力線15とが接続されている。外部AC電力線14は、端子台21を介して、内部電力線15と電気的に接続されている。内部電力線15は、電子基板9cと電気的に接続されている。電子基板9cへの電力は、外部AC電力線14、端子台21および内部電力線15を経由して供給される。電子基板9cに供給される電力の電圧は、例えば、単相200Vであるが、この電圧に限定されない。
An interface panel 20 is installed in the upper space of the electrical room 11 . The interface panel 20 is fixed to the inner surface of the housing side panel 2d and the lower surface of the electronic board box 9, respectively. A terminal block 21 is installed on the interface panel 20 . An external AC power line 14 and an internal power line 15 are connected to the terminal block 21 . The external AC power line 14 is electrically connected to the internal power line 15 via the terminal block 21 . The internal power line 15 is electrically connected to the electronic board 9c. Power to the electronic board 9 c is supplied via the external AC power line 14 , the terminal block 21 and the internal power line 15 . The voltage of the power supplied to the electronic board 9c is, for example, single-phase 200 V, but is not limited to this voltage.
インターフェースパネル20は、筐体側面パネル2dと同じ第1の金属により形成されている。そのため、インターフェースパネル20は、電気抵抗が低い状態で筐体側面パネル2dに接合されている。インターフェースパネル20は、電子基板9cのシグナルグラウンドに接続されている。インターフェースパネル20は、アース線16が接続されるアース接続点20eを有している。インターフェースパネル20は、アース接続点20eおよびアース線16を介して接地されている。インターフェースパネル20に接合される筐体2と筐体2に接合される仕切り板4とは、アース接続点20eおよびアース線16を介して接地されている。熱交換器6は、冷媒配管18との接続部19、圧縮機8などを介して筐体2と電気的に接続されるが、筐体2および仕切り板4と直接的に短絡されない。言い換えると、熱交換器6は、圧縮機8などを介して筐体2および仕切り板4と間接的に短絡され、筐体2および仕切り板4と直接接触して短絡されない。
The interface panel 20 is made of the same first metal as the housing side panel 2d. Therefore, the interface panel 20 is joined to the housing side panel 2d with low electrical resistance. The interface panel 20 is connected to the signal ground of the electronic board 9c. The interface panel 20 has a ground connection point 20e to which the ground wire 16 is connected. Interface panel 20 is grounded via ground connection point 20 e and ground wire 16 . The housing 2 joined to the interface panel 20 and the partition plate 4 joined to the housing 2 are grounded through the ground connection point 20 e and the ground wire 16 . The heat exchanger 6 is electrically connected to the housing 2 via the connecting portion 19 to the refrigerant pipe 18 , the compressor 8 , etc., but is not directly short-circuited with the housing 2 and the partition plate 4 . In other words, heat exchanger 6 is indirectly short-circuited with housing 2 and partition plate 4 via compressor 8 or the like, and is not short-circuited by direct contact with housing 2 and partition plate 4 .
次に、室外機1の構成についてさらに詳しく説明する。まず、図3および図4を参照して、電子基板箱9およびインターフェースパネル20の構成について説明する。図3は、実施の形態1における電子基板箱9およびインターフェースパネル20を示した分解斜視図である。図4は、図3に示される電子基板箱9とインターフェースパネル20とを組み立てた状態を示した斜視図である。
Next, the configuration of the outdoor unit 1 will be explained in more detail. First, the configurations of the electronic board box 9 and the interface panel 20 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is an exploded perspective view showing electronic board box 9 and interface panel 20 according to the first embodiment. FIG. 4 is a perspective view showing a state in which the electronic board box 9 and the interface panel 20 shown in FIG. 3 are assembled.
図3に示すように、電子基板箱9は、上方に開口する箱状の下箱9aと、下箱9aの上部の開口を覆う上蓋9bと、電子基板9cと、ヒートシンク9dとを有している。電子基板9cは、下箱9a内に固定される。電子基板9cは、端子台21に接続される内部電力線15と、圧縮機8に接続される圧縮機駆動電線13とを有している。図示は省略するが、電子基板9cは、発熱素子、ファンモータ5b、その他の駆動機器を動作させるための各種電力線などを有している。
As shown in FIG. 3, the electronic board box 9 includes a box-shaped lower box 9a opening upward, an upper lid 9b covering the upper opening of the lower box 9a, an electronic board 9c, and a heat sink 9d. there is The electronic board 9c is fixed inside the lower box 9a. The electronic board 9 c has an internal power line 15 connected to the terminal block 21 and a compressor drive wire 13 connected to the compressor 8 . Although illustration is omitted, the electronic board 9c has a heating element, a fan motor 5b, various power lines for operating other driving devices, and the like.
ヒートシンク9dは、電子基板9cに密着した状態で、電子基板9cに固定される。ヒートシンク9dは、電子基板9cの発熱素子を冷却する役割を果たしている。発熱素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)に代表されるパワー半導体である。ヒートシンク9dが固定された電子基板9cは、下箱9aの上部の開口から下箱9a内に挿入される。図4に示すように、ヒートシンク9dの一部または全部は、下箱9aの底壁に形成された孔9eを通じて下箱9aの外部に露出する。
The heat sink 9d is fixed to the electronic board 9c while being in close contact with the electronic board 9c. The heat sink 9d serves to cool the heat generating elements of the electronic substrate 9c. The heating element is, for example, a power semiconductor represented by an IGBT (Insulated Gate Bipolar Transistor). The electronic board 9c to which the heat sink 9d is fixed is inserted into the lower box 9a through the upper opening of the lower box 9a. As shown in FIG. 4, part or all of the heat sink 9d is exposed to the outside of the lower box 9a through a hole 9e formed in the bottom wall of the lower box 9a.
図3に示される下箱9aと上蓋9bとは、例えば、ゴム、樹脂、鉄などの金属、または、これらの組み合わせにより形成されている。例えば、下箱9aと上蓋9bとが金属により形成された場合には、電子基板9cの周囲を金属で覆う構造になるため、電子基板9cから発生する電磁ノイズの電子基板箱9の外部への放射を抑制できる。ファン室10で飛散する雨水などの水分が、下箱9aの底壁に形成された孔9eを通じて、電子基板箱9内、電気室11に浸入する虞がある。そのため、実際には、水分が浸入しにくいように孔9eの形状および下箱9aの形状を工夫したり、防水用の構造物を新たに追加したりするなどの手段を講じて、電子基板箱9内および電気室11の防水性を確保している。
The lower box 9a and the upper lid 9b shown in FIG. 3 are made of, for example, rubber, resin, metal such as iron, or a combination thereof. For example, when the lower box 9a and the upper lid 9b are made of metal, the electronic board 9c is covered with metal, so that the electromagnetic noise generated from the electronic board 9c does not reach the outside of the electronic board box 9. Radiation can be suppressed. Moisture such as rainwater splashing in the fan chamber 10 may enter the electric chamber 11 inside the electronic board box 9 through the hole 9e formed in the bottom wall of the lower box 9a. Therefore, in practice, the electronic board box is designed to prevent moisture from entering by devising the shape of the hole 9e and the shape of the lower box 9a, or by adding a new waterproof structure. 9 and the electric room 11 are ensured to be waterproof.
インターフェースパネル20は、インターフェース縦壁20aと、上側接合フランジ部20bと、インターフェース横壁20cと、下側接合フランジ部20dとを有している。インターフェース縦壁20aは、Y軸方向に沿って延びる鉛直状の壁である。上側接合フランジ部20bは、インターフェース縦壁20aの上端部から水平にZ軸方向に延びている。上側接合フランジ部20bは、下箱9aの底壁の下面に接合される。インターフェース横壁20cは、インターフェース縦壁20aの下端部から水平にZ軸方向に延びている。下側接合フランジ部20dは、インターフェース横壁20cの先端部から下方に向かってY軸方向に延びている。下側接合フランジ部20dは、図2に示される筐体側面パネル2dの内面に接合される。インターフェースパネル20は、下側接合フランジ部20dにおいて、筐体側面パネル2dに固定されるとともに電気的に接続される。インターフェースパネル20は、筐体側面パネル2dと下箱9aとにそれぞれ固定される。
The interface panel 20 has an interface vertical wall 20a, an upper joint flange portion 20b, an interface horizontal wall 20c, and a lower joint flange portion 20d. The interface vertical wall 20a is a vertical wall extending along the Y-axis direction. The upper joint flange portion 20b extends horizontally in the Z-axis direction from the upper end of the interface vertical wall 20a. The upper joining flange portion 20b is joined to the lower surface of the bottom wall of the lower box 9a. The interface lateral wall 20c extends horizontally in the Z-axis direction from the lower end of the interface vertical wall 20a. The lower joint flange portion 20d extends downward in the Y-axis direction from the tip portion of the interface lateral wall 20c. The lower joining flange portion 20d is joined to the inner surface of the housing side panel 2d shown in FIG. The interface panel 20 is fixed and electrically connected to the housing side panel 2d at the lower joint flange portion 20d. The interface panel 20 is fixed to the housing side panel 2d and the lower box 9a, respectively.
続いて、図5を参照して、室外機1の右側面の構成について説明する。図5は、実施の形態1における空気調和機の室外機1を示した右側面図である。
Next, the configuration of the right side surface of the outdoor unit 1 will be described with reference to FIG. 5 is a right side view showing the outdoor unit 1 of the air conditioner according to Embodiment 1. FIG.
筐体側面パネル2dには、筐体2の内部と外部とを連通する開口部2kが形成されている。筐体側面パネル2dには、インターフェースカバー22が着脱可能に取り付けられている。インターフェースカバー22は、着脱により開閉可能である。インターフェースカバー22は閉じているときに開口部2kを覆う。インターフェースカバー22は開いているときに開口部2kを開放する。電気室11に設置されたインターフェースパネル20と端子台21とは、開口部2kを通じて視認可能かつ取り扱い可能である。各種電力線の結線作業は、インターフェースカバー22を開けて開口部2kを通じて行うことができる。
An opening 2k that communicates the inside and outside of the housing 2 is formed in the housing side panel 2d. An interface cover 22 is detachably attached to the housing side panel 2d. The interface cover 22 can be opened and closed by attachment and detachment. The interface cover 22 covers the opening 2k when closed. The interface cover 22 opens the opening 2k when open. The interface panel 20 and the terminal block 21 installed in the electrical room 11 are visible and accessible through the opening 2k. Connection work of various power lines can be performed by opening the interface cover 22 and through the opening 2k.
インターフェースカバー22は、電気室11と筐体2の外部との通風性を確保しながら、電気室11への雨水などの水分の浸入を防ぐ役割を果たしている。インターフェースカバー22は、樹脂、鉄などの金属、または、これらの組み合わせにより形成されている。インターフェースカバー22が鉄などの金属により形成されて、筐体側面パネル2dと電気抵抗が低い状態で接合される場合には、インターフェースカバー22によって開口部2kを閉じることで、開口部2kから筐体2の外部への電磁ノイズの放射を抑制できる。
The interface cover 22 serves to prevent moisture such as rainwater from entering the electrical room 11 while ensuring ventilation between the electrical room 11 and the outside of the housing 2 . The interface cover 22 is made of resin, metal such as iron, or a combination thereof. When the interface cover 22 is made of a metal such as iron and is joined to the housing side panel 2d in a state of low electrical resistance, the interface cover 22 closes the opening 2k so that the opening 2k is exposed to the housing. 2, the radiation of electromagnetic noise to the outside can be suppressed.
図示は省略するが、インターフェースカバー22には、電気室11と筐体2の外部との通風性の確保および電気室11と筐体2の外部とに電力線を出入りさせることを目的に、通用孔が形成される。通用孔には、電気室11に雨水などの水分が浸入しないように、防水手段が講じられる。防水手段としては、例えば、通用孔の隙間にスポンジを敷き詰めたり、通用孔を鎧戸構造にしたりする手段がある。
Although illustration is omitted, the interface cover 22 has a common hole for the purpose of ensuring ventilation between the electric room 11 and the outside of the housing 2 and allowing power lines to enter and exit the electric room 11 and the outside of the housing 2. is formed. Waterproofing means is provided in the common hole so that moisture such as rainwater does not enter the electric chamber 11 . As a waterproofing means, for example, there is a means to cover the gaps of the common holes with a sponge or make the common holes into a shutter structure.
続いて、図6を参照して、仕切り板4の構成について説明する。図6は、図2に示されたVI-VI線に沿った断面図である。図6では、理解の容易化のために、筐体2のみに斜線ハッチングを付している。
Next, the configuration of the partition plate 4 will be described with reference to FIG. FIG. 6 is a cross-sectional view taken along line VI-VI shown in FIG. In FIG. 6, only the housing 2 is hatched with oblique lines for easy understanding.
仕切り板4は、第1の仕切り部4aと、第1の仕切り部4aの後端部に連なる第2の仕切り部4bとを有している。第2の仕切り部4bには、熱交換器6のZ軸方向の端部を電気室11に導入するための導入孔4cが形成される。熱交換器6と第2の仕切り部4bとは、異種金属により形成される。異種金属同士の接触を避けるために、例えば、熱交換器6と第2の仕切り部4bとの間に樹脂材料を介在することが好ましい。
The partition plate 4 has a first partition portion 4a and a second partition portion 4b connected to the rear end portion of the first partition portion 4a. An introduction hole 4c for introducing the end of the heat exchanger 6 in the Z-axis direction into the electric chamber 11 is formed in the second partition portion 4b. The heat exchanger 6 and the second partition portion 4b are made of different metals. In order to avoid contact between dissimilar metals, it is preferable, for example, to interpose a resin material between the heat exchanger 6 and the second partition portion 4b.
続いて、図7を参照して、格子体3の構成について説明する。図7は、実施の形態1における格子体3を示した背面図である。
Next, the configuration of the grid 3 will be described with reference to FIG. FIG. 7 is a rear view showing the grid 3 according to Embodiment 1. FIG.
格子体3は、固定枠31と、複数本の金属線32と、複数の交差部33と、複数の格子体接続部34とを有している。格子体3は、複数本の金属線32をY軸方向およびZ軸方向に交差させて形成された格子状の部材である。格子体3の材料は、筐体2と同じ第1の金属であれば特に制限されない。
The lattice 3 has a fixed frame 31, a plurality of metal wires 32, a plurality of intersections 33, and a plurality of lattice connection portions 34. The lattice body 3 is a lattice member formed by crossing a plurality of metal wires 32 in the Y-axis direction and the Z-axis direction. The material of the lattice 3 is not particularly limited as long as it is the same first metal as the housing 2 .
固定枠31の背面視形状は、四角枠である。固定枠31は、第1の縦枠部31aと、第2の縦枠部31bと、第1の横枠部31cと、第2の横枠部31dとを有している。第1の縦枠部31aおよび第2の縦枠部31bは、Y軸方向に沿って延びている。第1の縦枠部31aと第2の縦枠部31bとは、Z軸方向に互いに間隔を空けて平行に配置されている。第1の横枠部31cおよび第2の横枠部31dは、Z軸方向に沿って延びている。第1の横枠部31cと第2の横枠部31dとは、Y軸方向に互いに間隔を空けて平行に配置されている。第1の横枠部31cは、第1の縦枠部31aの上端部と第2の縦枠部31bの上端部とを連結している。第2の横枠部31dは、第1の縦枠部31aの下端部と第2の縦枠部31bの下端部とを連結している。
The rear view shape of the fixed frame 31 is a square frame. The fixed frame 31 has a first vertical frame portion 31a, a second vertical frame portion 31b, a first horizontal frame portion 31c, and a second horizontal frame portion 31d. The first vertical frame portion 31a and the second vertical frame portion 31b extend along the Y-axis direction. The first vertical frame portion 31a and the second vertical frame portion 31b are arranged parallel to each other with a space therebetween in the Z-axis direction. The first horizontal frame portion 31c and the second horizontal frame portion 31d extend along the Z-axis direction. The first horizontal frame portion 31c and the second horizontal frame portion 31d are arranged parallel to each other with an interval in the Y-axis direction. The first horizontal frame portion 31c connects the upper end portion of the first vertical frame portion 31a and the upper end portion of the second vertical frame portion 31b. The second horizontal frame portion 31d connects the lower end portion of the first vertical frame portion 31a and the lower end portion of the second vertical frame portion 31b.
金属線32は、鉛直に延びる複数本の第1の金属線32aと、水平に延びる複数本の第2の金属線32bとを有している。第1の金属線32aは、Y軸方向に沿って延びていて、第1の横枠部31cと第2の横枠部31dとに架け渡されている。複数本の第1の金属線32aは、Z軸方向に互いに等しい間隔Aを空けて平行に配置されている。第2の金属線32bは、Z軸方向に沿って延びていて、第1の縦枠部31aと第2の縦枠部31bとに架け渡されている。複数本の第2の金属線32bは、Y軸方向に互いに等しい間隔Bを空けて平行に配置されている。以下、間隔Aを格子間隔A、間隔Bを格子間隔Bと称する場合もある。
The metal wire 32 has a plurality of vertically extending first metal wires 32a and a plurality of horizontally extending second metal wires 32b. The first metal wire 32a extends along the Y-axis direction and bridges the first horizontal frame portion 31c and the second horizontal frame portion 31d. The plurality of first metal wires 32a are arranged parallel to each other at equal intervals A in the Z-axis direction. The second metal wire 32b extends along the Z-axis direction and bridges the first vertical frame portion 31a and the second vertical frame portion 31b. The plurality of second metal lines 32b are arranged parallel to each other with equal intervals B in the Y-axis direction. Hereinafter, the interval A may be referred to as the lattice interval A, and the interval B may be referred to as the lattice interval B.
交差部33は、第1の金属線32aと第2の金属線32bとが互いに交差する部分である。交差部33は、第1の金属線32aと第2の金属線32bとが互いに固定されて、かつ、第1の金属線32aと第2の金属線32bとが電気的に接続される部分である。第1の金属線32aと第2の金属線32bとの固定手段は、例えば、溶接、ネジである。
The crossing portion 33 is a portion where the first metal wire 32a and the second metal wire 32b cross each other. The intersection portion 33 is a portion where the first metal wire 32a and the second metal wire 32b are fixed to each other and where the first metal wire 32a and the second metal wire 32b are electrically connected. be. The means for fixing the first metal wire 32a and the second metal wire 32b are, for example, welding and screws.
格子体接続部34は、金属線32の延伸方向に沿った両端部が固定枠31上に固定される部分である。格子体接続部34は、金属線32と固定枠31とが互いに固定されて、かつ、金属線32と固定枠31とが電気的に接続される部分である。金属線32と固定枠31との固定手段は、例えば、溶接、ネジである。
The lattice connection part 34 is a part where both ends along the extending direction of the metal wire 32 are fixed on the fixed frame 31 . The lattice connecting portion 34 is a portion where the metal wires 32 and the fixed frame 31 are fixed to each other and the metal wires 32 and the fixed frame 31 are electrically connected. Fixing means between the metal wire 32 and the fixed frame 31 is, for example, welding or screws.
格子体3の格子間隔Aおよび格子間隔Bは、筐体2の内部から発生する電磁ノイズの波長の2分の1以下の長さである。格子体3は、図2に示されるファン室10へと向かって流れて熱交換器6を通過する空気の通り道上に配置されていて、空気の流れ方向で熱交換器6の上流側に配置されている。そのため、金属線32の太さを、熱交換器6への通風の悪影響が無視できる程度に細く、かつ、電気抵抗などのインピーダンス成分が十分に小さくなる程度に太くすることが望ましい。また、固定枠31の太さを、熱交換器6への通風の悪影響が無視できる程度に細くすることが望ましい。
The lattice spacing A and the lattice spacing B of the grid 3 are less than half the wavelength of the electromagnetic noise generated from inside the housing 2 . The grid 3 is arranged on the path of the air passing through the heat exchanger 6 towards the fan chamber 10 shown in FIG. It is Therefore, it is desirable to make the thickness of the metal wire 32 thin enough to ignore the bad influence of the air flow to the heat exchanger 6 and thick enough to reduce the impedance component such as electric resistance sufficiently. Moreover, it is desirable that the thickness of the fixed frame 31 is made thin to such an extent that the adverse effect of ventilation on the heat exchanger 6 can be ignored.
図8は、実施の形態1にかかる空気調和機の室外機1を示した背面図であって、筐体2に格子体3を取り付けた状態を示した図である。筐体2には、室外の空気を流入させるための給気口2mが形成されている。給気口2mは、筐体2の外部の空気をファン室10に流入させるための開口である。給気口2mは、筐体床面パネル2aと筐体背面パネル2jと筐体天面パネル2bと筐体側面パネル2gとに囲まれて形成されている。
FIG. 8 is a rear view showing the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the lattice 3 is attached to the housing 2. FIG. The housing 2 is formed with an air supply port 2m for introducing outdoor air. The air supply port 2m is an opening for allowing air outside the housing 2 to flow into the fan chamber 10 . The air supply port 2m is surrounded by the housing floor panel 2a, the housing rear panel 2j, the housing top panel 2b, and the housing side panel 2g.
格子体3は、筐体背面パネル2jとZ軸方向に並んで設けられている。格子体3は、給気口2mの位置で、筐体床面パネル2a、筐体天面パネル2b、筐体背面パネル2jおよび筐体側面パネル2gに固定されている。格子体3と筐体2とは、電気的に接続されている。固定枠31の第2の横枠部31dは、筐体床面パネル2aに固定されるとともに電気的に接続されている。固定枠31の第1の横枠部31cは、筐体天面パネル2bに固定されるとともに電気的に接続されている。固定枠31の第1の縦枠部31aは、筐体背面パネル2jに固定されるとともに電気的に接続されている。固定枠31の第2の縦枠部31bは、筐体側面パネル2gに固定されるとともに電気的に接続されている。格子体3と筐体2との固定手段は、例えば、溶接、ネジである。
The lattice body 3 is provided side by side with the housing rear panel 2j in the Z-axis direction. The lattice 3 is fixed to the housing floor panel 2a, the housing top panel 2b, the housing rear panel 2j, and the housing side panel 2g at the position of the air supply port 2m. The grid 3 and the housing 2 are electrically connected. The second horizontal frame portion 31d of the fixed frame 31 is fixed and electrically connected to the housing floor panel 2a. The first horizontal frame portion 31c of the fixed frame 31 is fixed and electrically connected to the housing top panel 2b. The first vertical frame portion 31a of the fixed frame 31 is fixed and electrically connected to the housing rear panel 2j. The second vertical frame portion 31b of the fixed frame 31 is fixed and electrically connected to the housing side panel 2g. Means for fixing the grid 3 and the housing 2 are, for example, welding and screws.
続いて、図9を参照して、筐体2、送風機5、熱交換器6および格子体3の構成についてさらに説明する。図9は、図8に示されたIX-IX線に沿った断面図である。
Next, with reference to FIG. 9, the configurations of the housing 2, the blower 5, the heat exchanger 6 and the grid 3 will be further described. FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG.
筐体前面パネル2cの前面パネル本体部2eには、排気口2nが形成されている。排気口2nは、送風機5によって発生された空気流をファン室10の外部へ排出するための開口である。排気口2nの内周面には、ファン室10の内部と外部との通風性を向上させるために、ベルマウス23が設けられている。前面パネル本体部2eにおいて排気口2nの前方には、通風孔25を有する前カバー24が取り付けられている。前カバー24により、ファン室10の内部と外部との通風性を確保しながら、ファン室10の外部から内部への異物の侵入を防ぐことができる。異物は、例えば、ゴミ、埃である。ファンモータ5bが回転してプロペラファン5cが駆動すると、ファン室10が負圧になるため、室外機1の外部の空気は、給気口2mからファン室10に流入する。ファン室10に流入した空気は、熱交換器6を通過して、送風機5によって空気流となり、排気口2nからファン室10の外部へと排出される。
An exhaust port 2n is formed in the front panel body portion 2e of the housing front panel 2c. The exhaust port 2n is an opening for discharging the airflow generated by the blower 5 to the outside of the fan chamber 10. As shown in FIG. A bell mouth 23 is provided on the inner peripheral surface of the exhaust port 2n to improve ventilation between the inside and outside of the fan chamber 10. As shown in FIG. A front cover 24 having a ventilation hole 25 is attached in front of the exhaust port 2n in the front panel body 2e. The front cover 24 can prevent foreign matter from entering from the outside of the fan chamber 10 while ensuring ventilation between the inside and the outside of the fan chamber 10 . Foreign matter is, for example, dirt or dust. When the fan motor 5b rotates and the propeller fan 5c drives, the pressure in the fan chamber 10 becomes negative. The air that has flowed into the fan chamber 10 passes through the heat exchanger 6, becomes an air flow by the blower 5, and is discharged to the outside of the fan chamber 10 from the exhaust port 2n.
支柱5aの上端部は、筐体天面パネル2bに沿って後方に向かって延びている。支柱5aの上端部は、筐体2内の背面側において、第2の絶縁部材7bを介して熱交換器6に固定されている。格子体3の上端部となる第1の横枠部31cは、支柱5aの上端部に固定されるとともに電気的に接続されてもよいが、支柱5aの上端部に固定されないとともに電気的に接続されなくてもよい。熱交換器6と格子体3とは、X軸方向に互いに間隔を空けて配置されている。また、熱交換器6と格子体3とは、絶縁部材7を含む複数の部材を介して繋がっている。熱交換器6と格子体3とは、電気的に接続されないように配置されている。
The upper end of the post 5a extends rearward along the housing top panel 2b. The upper end of the column 5a is fixed to the heat exchanger 6 via the second insulating member 7b on the back side inside the housing 2. As shown in FIG. The first horizontal frame portion 31c, which is the upper end portion of the lattice body 3, may be fixed to and electrically connected to the upper end portion of the support column 5a. It does not have to be. The heat exchanger 6 and the lattice body 3 are spaced apart from each other in the X-axis direction. Moreover, the heat exchanger 6 and the grid 3 are connected via a plurality of members including the insulating member 7 . The heat exchanger 6 and the grid 3 are arranged so as not to be electrically connected.
筐体天面パネル2bの周縁には、下向きに折り返された天面フランジ部2oが形成されている。天面フランジ部2oは、筐体前面パネル2cと格子体3とを筐体2の外部側から覆うように設けられている。天面フランジ部2oは、筐体前面パネル2cと格子体3とに固定されている。図9では図示しないが、天面フランジ部2oは、筐体側面パネル2dを筐体2の外部側から覆うようにも設けられていて、筐体側面パネル2dにも固定されている。格子体3と天面フランジ部2oとを電気的に接続させて、両者の間の隙間を極力小さくすることが望ましい。
A downwardly folded top flange portion 2o is formed on the periphery of the housing top panel 2b. The top flange portion 2o is provided so as to cover the housing front panel 2c and the grid 3 from the outside of the housing 2. As shown in FIG. The top flange portion 2o is fixed to the housing front panel 2c and the lattice 3. As shown in FIG. Although not shown in FIG. 9, the top flange portion 2o is also provided so as to cover the housing side panel 2d from the outside of the housing 2, and is also fixed to the housing side panel 2d. It is desirable to electrically connect the lattice body 3 and the top flange portion 2o to minimize the gap between them.
筐体床面パネル2aの周縁には、上向きに折り返された底面フランジ部2pが形成されている。底面フランジ部2pは、筐体前面パネル2cと格子体3との筐体2の内部側に位置するように設けられている。底面フランジ部2pは、筐体前面パネル2cと格子体3とに固定されている。図9では図示しないが、底面フランジ部2pは、筐体側面パネル2dの筐体2の内部側に位置するようにも設けられている。底面フランジ部2pは、筐体側面パネル2dにも固定されている。格子体3と底面フランジ部2pとを電気的に接続させて、両者の間の隙間を極力小さくすることが望ましい。
A bottom flange portion 2p folded upward is formed on the periphery of the housing floor panel 2a. The bottom flange portion 2p is provided so as to be located on the inner side of the housing 2 between the housing front panel 2c and the grid 3. As shown in FIG. The bottom flange portion 2 p is fixed to the housing front panel 2 c and the lattice 3 . Although not shown in FIG. 9, the bottom flange portion 2p is also provided on the housing side panel 2d so as to be positioned inside the housing 2. As shown in FIG. The bottom flange portion 2p is also fixed to the housing side panel 2d. It is desirable to electrically connect the lattice body 3 and the bottom flange portion 2p to minimize the gap between them.
続いて、図10から図12を参照して、熱交換器6の構成についてさらに説明する。図10は、実施の形態1における熱交換器6を模式的に示した斜視図である。図11は、実施の形態1における熱交換器6を示した正面図である。図12は、図11に示された熱交換器6の要部拡大図である。
Next, the configuration of the heat exchanger 6 will be further described with reference to FIGS. 10 to 12. FIG. FIG. 10 is a perspective view schematically showing heat exchanger 6 according to the first embodiment. 11 is a front view showing the heat exchanger 6 according to Embodiment 1. FIG. FIG. 12 is an enlarged view of the main part of the heat exchanger 6 shown in FIG. 11. FIG.
図10に示すように、熱交換器6は、本実施の形態ではパラレルフロー型熱交換器である。図11に示すように、熱交換器6は、2つのヘッダ6a,6bと、複数の冷媒導管6cと、複数のフィン6dとを有している。
As shown in FIG. 10, the heat exchanger 6 is a parallel flow heat exchanger in this embodiment. As shown in FIG. 11, the heat exchanger 6 has two headers 6a and 6b, multiple refrigerant conduits 6c, and multiple fins 6d.
2つのヘッダ6a,6bは、いずれも中空形状の金属製部材である。各ヘッダ6a,6bは、Y軸方向に沿って延びている。図10に示すように、2つのヘッダ6a,6bは、Z軸方向に互いに離れて配置されるとともに、X軸方向に互いにずれて配置されている。ヘッダ6bには、冷媒配管18が接続されている。
Both of the two headers 6a and 6b are hollow metal members. Each header 6a, 6b extends along the Y-axis direction. As shown in FIG. 10, the two headers 6a and 6b are arranged apart from each other in the Z-axis direction and are arranged to be offset from each other in the X-axis direction. A refrigerant pipe 18 is connected to the header 6b.
図11に示される各冷媒導管6cは、中空形状の金属製部材である。各冷媒導管6cには、例えば、扁平形状の扁平管が用いられる。複数の冷媒導管6cは、Y軸方向に互いに間隔を空けて配置されている。各冷媒導管6cのそれぞれは、一方のヘッダ6aから他方のヘッダ6bに向かって延びている。各冷媒導管6cの延伸方向は、Y軸方向と直交している。各冷媒導管6cの延伸方向の一端部は、一方のヘッダ6aに接続されていて、各冷媒導管6cの延伸方向の他端部は、他方のヘッダ6bに接続されている。各冷媒導管6cは、一方のヘッダ6aと他方のヘッダ6bとを連通している。
Each refrigerant conduit 6c shown in FIG. 11 is a hollow metal member. A flat-shaped flat tube is used for each refrigerant|coolant conduit 6c, for example. The plurality of coolant conduits 6c are arranged at intervals in the Y-axis direction. Each refrigerant conduit 6c extends from one header 6a toward the other header 6b. The extending direction of each refrigerant conduit 6c is orthogonal to the Y-axis direction. One end in the extension direction of each refrigerant conduit 6c is connected to one header 6a, and the other end in the extension direction of each refrigerant conduit 6c is connected to the other header 6b. Each refrigerant conduit 6c communicates between one header 6a and the other header 6b.
フィン6dは、金属製の板状部材である。フィン6dは、隣り合う冷媒導管6cの間に配置されている。フィン6dの形状は、特に制限されないが、本実施の形態では上方と下方とに交互に突出する波形形状である。すなわち、本実施の形態ではフィン6dにコルゲートフィンが用いられている。図12に示すように、フィン6dは、隣り合う冷媒導管6cのそれぞれと接触するとともに溶接などで接合されている。
The fin 6d is a plate-like member made of metal. The fins 6d are arranged between adjacent refrigerant conduits 6c. The shape of the fins 6d is not particularly limited, but in this embodiment, the fins 6d have a corrugated shape protruding upward and downward alternately. That is, corrugated fins are used for the fins 6d in this embodiment. As shown in FIG. 12, the fins 6d are in contact with each of the adjacent refrigerant conduits 6c and joined by welding or the like.
図11に示されるヘッダ6a,6bの内部および冷媒導管6cの内部には、冷媒が流れる。2つのヘッダ6a,6bのうち一方は、複数の冷媒導管6cのそれぞれに冷媒を分配する役割を果たす。2つのヘッダ6a,6bのうち他方は、複数の冷媒導管6cのそれぞれから流出した冷媒を合流させる役割を果たす。冷媒導管6cは、冷媒と室外の空気との間で熱交換させる役割を果たす。すなわち、冷媒導管6cの内部を流れる冷媒と、冷媒導管6cの周囲を流れる室外の空気との間で熱交換が行われる。フィン6dは、冷媒と室外の空気との熱交換を促進させる役割を果たす。
A coolant flows inside the headers 6a and 6b and the coolant conduit 6c shown in FIG. One of the two headers 6a, 6b serves to distribute refrigerant to each of the plurality of refrigerant conduits 6c. The other of the two headers 6a and 6b serves to merge the refrigerants flowing out from each of the plurality of refrigerant conduits 6c. The refrigerant conduit 6c serves to exchange heat between the refrigerant and the outdoor air. That is, heat is exchanged between the refrigerant flowing inside the refrigerant conduit 6c and the outdoor air flowing around the refrigerant conduit 6c. The fins 6d play a role of promoting heat exchange between the refrigerant and the outdoor air.
次に、実施の形態1にかかる室外機1の動作および効果について説明する。
Next, the operation and effects of the outdoor unit 1 according to Embodiment 1 will be described.
図2に示すように、電力が外部AC電力線14から内部電力線15を経由して電子基板9cに供給されると、電子基板9cが待機状態となる。電子基板9cは、図示しない室内機と室外機1との連絡信号線を介して室内機から運転開始の指令信号を受信すると、室外機1の運転を開始する。具体的には、電子基板9cは、ファン駆動電線12を通じてファンモータ5bに駆動信号を出力し、ファンモータ5bを駆動させる。また、電子基板9cは、圧縮機駆動電線13を通じて圧縮機8に別の駆動信号を出力し、圧縮機8を駆動させる。このとき、電子基板9cが出力する駆動信号には、パワー半導体のスイッチングによる矩形波パルスが一般に用いられる。そのため、駆動信号には、パワー半導体のスイッチングノイズ、矩形波パルスの高調波成分などの、圧縮機8およびファンモータ5bの交流モータを駆動させるのに本来必要ではない高周波成分が含まれる。このような高周波成分が電磁ノイズ源となり、後記する伝達経路を通じて電磁ノイズが筐体2の外部へ放射される一因となる。
As shown in FIG. 2, when electric power is supplied from the external AC power line 14 to the electronic board 9c via the internal power line 15, the electronic board 9c enters a standby state. When the electronic board 9c receives an operation start command signal from the indoor unit via a communication signal line between the indoor unit and the outdoor unit 1 (not shown), the operation of the outdoor unit 1 is started. Specifically, the electronic board 9c outputs a drive signal to the fan motor 5b through the fan drive wire 12 to drive the fan motor 5b. Further, the electronic board 9 c outputs another drive signal to the compressor 8 through the compressor drive wire 13 to drive the compressor 8 . At this time, the driving signal output from the electronic board 9c is generally a rectangular wave pulse generated by switching of the power semiconductor. Therefore, the drive signal contains high-frequency components such as switching noise of power semiconductors and harmonic components of rectangular wave pulses, which are not essentially necessary for driving the AC motors of the compressor 8 and the fan motor 5b. Such a high-frequency component becomes an electromagnetic noise source, and becomes one of the causes of radiation of the electromagnetic noise to the outside of the housing 2 through a transmission path, which will be described later.
図13は、実施の形態1にかかる空気調和機の室外機1において発生する電磁ノイズの伝達経路を電気回路として示した模式図である。図13では、理解の容易化のために、熱交換器6にドットハッチングを付している。例えば、圧縮機8の交流モータに三相モータを用いた場合には、電子基板9cで発生した電磁ノイズは、三相モータ巻線中性点8dを経由して、モータ巻線8aと圧縮機8の筐体との間に存在する寄生容量8bを通じて圧縮機8の筐体へと伝達される。圧縮機8の筐体に伝達された電磁ノイズの一部は、筐体床面パネル2aへと伝達された後に電子基板9cへと還流される。しかし、圧縮機8の筐体と筐体床面パネル2aとの間の接触抵抗8cなどのインピーダンス成分があるため、圧縮機8の筐体に伝達された電磁ノイズの一部は、冷媒配管18を通じて熱交換器6へと伝達される。
FIG. 13 is a schematic diagram showing a transmission path of electromagnetic noise generated in the outdoor unit 1 of the air conditioner according to Embodiment 1 as an electric circuit. In FIG. 13, the heat exchanger 6 is indicated by dot hatching for easy understanding. For example, when a three-phase motor is used as the AC motor of the compressor 8, the electromagnetic noise generated in the electronic board 9c passes through the neutral point 8d of the three-phase motor windings to the motor windings 8a and the compressor. It is transmitted to the housing of the compressor 8 through the parasitic capacitance 8b existing between the housing of the compressor 8 and the housing of the compressor 8. Part of the electromagnetic noise transmitted to the housing of the compressor 8 is returned to the electronic board 9c after being transmitted to the housing floor panel 2a. However, since there is an impedance component such as a contact resistance 8c between the housing of the compressor 8 and the housing floor panel 2a, part of the electromagnetic noise transmitted to the housing of the compressor 8 is transferred to the refrigerant piping 18. is transmitted to the heat exchanger 6 through the
熱交換器6の寄生インピーダンス成分の特性は、熱交換器6の構造により異なる。ここでは一例として、熱交換器6が図11に示されるフィン6dと扁平形状の冷媒導管6cとを備えたパラレルフロー型の熱交換器である場合を想定し、熱交換器6が有する寄生インダクタンス27が図13に示すように組み合わされた等価回路を例として示す。熱交換器6が有する寄生インダクタンス27などの寄生インピーダンス成分は、図13に示すような分布定数回路として複雑に存在する。第1の絶縁部材7aと第2の絶縁部材7bとによって熱交換器6と筐体2とが電気的に絶縁されているため、熱交換器6と筐体2との間には寄生容量26a,26bが発生する。すなわち、熱交換器6と筐体床面パネル2aとの間には、寄生容量26aが発生し、熱交換器6と筐体天面パネル2bとの間には、寄生容量26bが発生する。寄生容量26a,26bは、電磁ノイズの伝達経路上に発生する。
The characteristics of the parasitic impedance component of the heat exchanger 6 differ depending on the structure of the heat exchanger 6. Here, as an example, it is assumed that the heat exchanger 6 is a parallel flow type heat exchanger provided with fins 6d and flat refrigerant conduits 6c shown in FIG. 27 are combined as shown in FIG. 13 as an example of an equivalent circuit. A parasitic impedance component such as the parasitic inductance 27 of the heat exchanger 6 exists in a complicated manner as a distributed constant circuit as shown in FIG. Since the heat exchanger 6 and the housing 2 are electrically insulated by the first insulating member 7a and the second insulating member 7b, there is a parasitic capacitance 26a between the heat exchanger 6 and the housing 2. , 26b are generated. That is, a parasitic capacitance 26a is generated between the heat exchanger 6 and the housing floor panel 2a, and a parasitic capacitance 26b is generated between the heat exchanger 6 and the housing top panel 2b. The parasitic capacitances 26a and 26b are generated on the electromagnetic noise transmission path.
図14は、実施の形態1にかかる空気調和機の室外機1において、電磁ノイズとなる電流が伝達する経路を等価回路化した回路図である。電子基板9cから圧縮機8を通じて図13に示される熱交換器6と筐体2とに伝達された電磁ノイズは、熱交換器6が有する寄生インダクタンス27との間で共振を発生させるとともに寄生容量26a,26bとの間で共振を発生させ、さらには筐体2の各パネルが有する寄生インダクタンス28などの寄生インピーダンス成分との間で共振を発生させる。図13に示される第1の絶縁部材7aによって熱交換器6と筐体床面パネル2aとが電気的に絶縁されているとともに第2の絶縁部材7bによって熱交換器6と筐体天面パネル2bとが電気的に絶縁されているため、寄生容量26a,26bには共振による電圧の変化が発生する。
FIG. 14 is a circuit diagram showing an equivalent circuit of the path along which current that causes electromagnetic noise is transmitted in the outdoor unit 1 of the air conditioner according to Embodiment 1. As shown in FIG. The electromagnetic noise transmitted from the electronic board 9c through the compressor 8 to the heat exchanger 6 and the housing 2 shown in FIG. 26a and 26b, and furthermore, resonance is generated with a parasitic impedance component such as a parasitic inductance 28 that each panel of the housing 2 has. The heat exchanger 6 and the housing floor panel 2a are electrically insulated by the first insulating member 7a shown in FIG. 2b are electrically insulated, voltage changes occur in the parasitic capacitances 26a and 26b due to resonance.
図15は、実施の形態1にかかる空気調和機の室外機1の背面図であって、格子体3を取り外した状態と電磁ノイズが発生する箇所とを示した図である。図15では、理解の容易化のために、熱交換器6にドットハッチングを付している。熱交換器6と筐体2の各パネルとの間には、電気的な絶縁性を確保するために隙間G1,G2,G3,G4が形成される。図15では、隙間G1,G2,G3,G4のそれぞれの位置を破線で囲んでいる。図15では熱交換器6と筐体2との間の一部に隙間G1,G2,G3,G4がないように図示されているが、実際には熱交換器6の四辺を取り囲むように延びる細長い形状の隙間G1,G2,G3,G4が存在する。隙間G1,G2,G3,G4は、電磁ノイズが発生する箇所となる。熱交換器6と筐体床面パネル2aとの間および熱交換器6と筐体天面パネル2bとの間には、図13に示される寄生容量26a,26bを通じて電圧の変化が発生する。その結果、隙間G1,G2,G3,G4は、スロットアンテナとして機能し、隙間G1,G2,G3,G4の両端に印加される電圧の変化に応じて電磁ノイズをさらに発生させる。この隙間G1,G2,G3,G4で発生した電磁ノイズは、給気口2mを通じて筐体2の外部へと放射される。
FIG. 15 is a rear view of the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the lattice 3 is removed and a location where electromagnetic noise is generated. In FIG. 15, the heat exchanger 6 is hatched for easy understanding. Between the heat exchanger 6 and each panel of the housing 2, gaps G1, G2, G3 and G4 are formed to ensure electrical insulation. In FIG. 15, the respective positions of the gaps G1, G2, G3 and G4 are surrounded by dashed lines. Although FIG. 15 shows that there are no gaps G1, G2, G3, and G4 between the heat exchanger 6 and the housing 2, the gaps G1, G2, G3, and G4 actually extend so as to surround the four sides of the heat exchanger 6. There are elongated gaps G1, G2, G3 and G4. The gaps G1, G2, G3, and G4 are locations where electromagnetic noise is generated. Voltage changes occur between the heat exchanger 6 and the housing floor panel 2a and between the heat exchanger 6 and the housing top panel 2b through parasitic capacitances 26a and 26b shown in FIG. As a result, the gaps G1, G2, G3 and G4 function as slot antennas and further generate electromagnetic noise in response to changes in the voltage applied across the gaps G1, G2, G3 and G4. Electromagnetic noise generated in the gaps G1, G2, G3, and G4 is radiated to the outside of the housing 2 through the air supply port 2m.
図16は、実施の形態1にかかる空気調和機の室外機1において、絶縁部材7を介することなく熱交換器6と筐体2とを直接接触させた場合に電磁ノイズとなる電流が伝達する経路を等価回路化した回路図である。図15に示される第1の絶縁部材7aおよび第2の絶縁部材7bを取り除くことにより、熱交換器6と筐体2の各パネルとが電気的に接続される。つまり、熱交換器6と筐体2の各パネルとが電気的に短絡される。そのため、図16に示すように、熱交換器6と筐体2の各パネルとの間で発生する寄生容量26a,26bが短絡される。これにより、図15に示される熱交換器6と筐体床面パネル2aとの間および熱交換器6と筐体天面パネル2bとの間には、図16に示される寄生容量26a,26bを通じて電圧の変化が発生せず、隙間G1,G2,G3,G4で電磁ノイズが発生しない。
FIG. 16 shows that in the outdoor unit 1 of the air conditioner according to Embodiment 1, when the heat exchanger 6 and the housing 2 are brought into direct contact without the insulating member 7, a current that becomes electromagnetic noise is transmitted. FIG. 3 is a circuit diagram in which a path is converted into an equivalent circuit; By removing the first insulating member 7a and the second insulating member 7b shown in FIG. 15, the heat exchanger 6 and each panel of the housing 2 are electrically connected. That is, the heat exchanger 6 and each panel of the housing 2 are electrically short-circuited. Therefore, as shown in FIG. 16, parasitic capacitances 26a and 26b generated between the heat exchanger 6 and each panel of the housing 2 are short-circuited. 16 between the heat exchanger 6 and the housing floor panel 2a and between the heat exchanger 6 and the housing top panel 2b shown in FIG. No voltage change occurs through the gaps G1, G2, G3, and G4, and electromagnetic noise does not occur.
図15に示される熱交換器6と筐体2とを異種金属により形成する場合には、熱交換器6と筐体2との間に絶縁部材7を設けないと、隙間G1,G2,G3,G4における電磁ノイズの発生を防止して筐体2の外部への電磁ノイズの放射を低減できるが熱交換器6と筐体2との接触箇所で標準電極電位が低い熱交換器6に腐食が発生する。一方で、熱交換器6と筐体2との間に絶縁部材7を設けると、熱交換器6と筐体2との接触箇所で標準電極電位が低い熱交換器6の腐食を防止できるが、隙間G1,G2,G3,G4で電磁ノイズが発生して筐体2の外部への電磁ノイズの放射量が増大する。
When the heat exchanger 6 and the housing 2 shown in FIG. 15 are made of dissimilar metals, the gaps G1, G2, G3 , G4 can prevent the generation of electromagnetic noise and reduce the radiation of electromagnetic noise to the outside of the housing 2. occurs. On the other hand, if the insulating member 7 is provided between the heat exchanger 6 and the housing 2, the corrosion of the heat exchanger 6 having a low standard electrode potential can be prevented at the contact point between the heat exchanger 6 and the housing 2. , electromagnetic noise is generated in the gaps G1, G2, G3, and G4, and the radiation amount of the electromagnetic noise to the outside of the housing 2 increases.
図17は、実施の形態1にかかる空気調和機の室外機1の背面図であって、格子体3を取り付けた状態と電磁ノイズが発生する箇所とを示した図である。図17では、理解の容易化のために、熱交換器6にドットハッチングを付している。本実施の形態では、室外機1は、空気の流れ方向で熱交換器6の上流側に熱交換器6から離れて配置され、筐体2に固定されて筐体2と電気的に接続される金属製の格子体3を備えている。これにより、隙間G1,G2,G3,G4が格子体3によって格子間隔A,Bで分割される。そのため、隙間G1,G2,G3,G4から給気口2mを経て筐体2の外部への電磁ノイズの放射が抑制されて、筐体2の外部への電磁ノイズの放射量を低減させることができる。なお、筐体2の外部への放射が抑制される電磁ノイズの周波数は、隣り合う金属線32同士の格子間隔A,Bにより決まる。
FIG. 17 is a rear view of the outdoor unit 1 of the air conditioner according to Embodiment 1, showing a state in which the grid 3 is attached and locations where electromagnetic noise is generated. In FIG. 17, the heat exchanger 6 is indicated by dot hatching for easy understanding. In the present embodiment, the outdoor unit 1 is arranged upstream of the heat exchanger 6 in the direction of air flow, away from the heat exchanger 6, fixed to the housing 2, and electrically connected to the housing 2. It has a grid 3 made of metal. As a result, the gaps G1, G2, G3 and G4 are divided by the lattice spacings A and B by the lattice body 3. As shown in FIG. Therefore, the radiation of electromagnetic noise to the outside of the housing 2 from the gaps G1, G2, G3, and G4 via the air supply port 2m is suppressed, and the amount of electromagnetic noise radiated to the outside of the housing 2 can be reduced. can. The frequency of the electromagnetic noise whose radiation to the outside of the housing 2 is suppressed is determined by the lattice intervals A and B between adjacent metal wires 32 .
一方で、本実施の形態では、図15および図17に示すように、室外機1は、第1の金属により形成されている箱状の筐体2と、少なくとも一部が第1の金属とは標準電極電位が異なる第2の金属により形成され筐体2内に配置されて絶縁部材7を介して筐体2に固定される熱交換器6と、熱交換器6から離れて配置された格子体3とを備えている。これにより、熱交換器6と筐体2とが電気的に接続されないとともに、熱交換器6と格子体3とが電気的に接続されない。そのため、異種金属の接触による腐食を防止することができる。また、本実施の形態では、格子体3が筐体2と同じ第1の金属により形成されているため、格子体3と筐体2との接触による腐食を防止することができる。したがって、本実施の形態では、金属製の格子体3と非導電性の絶縁部材7とを配置するだけで、腐食の防止と電磁ノイズの低減とを同時に実現することができる。つまり、従来よりも低廉かつ簡易な構造で、腐食の防止と電磁ノイズの低減とを両立させることができる。
On the other hand, in the present embodiment, as shown in FIGS. 15 and 17, the outdoor unit 1 includes a box-shaped housing 2 made of a first metal and at least a portion of which is made of the first metal. is a heat exchanger 6 made of a second metal having a different standard electrode potential, arranged in the housing 2 and fixed to the housing 2 via an insulating member 7, and arranged away from the heat exchanger 6 and a lattice 3 . As a result, the heat exchanger 6 and the housing 2 are not electrically connected, and the heat exchanger 6 and the grid 3 are not electrically connected. Therefore, corrosion due to contact between dissimilar metals can be prevented. Further, in the present embodiment, since the grid 3 is made of the same first metal as the housing 2, corrosion due to contact between the grid 3 and the housing 2 can be prevented. Therefore, in the present embodiment, corrosion prevention and electromagnetic noise reduction can be realized at the same time simply by arranging the metal lattice 3 and the non-conductive insulating member 7 . That is, it is possible to achieve both corrosion prevention and electromagnetic noise reduction with a cheaper and simpler structure than conventional ones.
本実施の形態では、第1の金属の標準電極電位が第2の金属の標準電極電位よりも高いことにより、熱交換器6と筐体2および格子体3とを電気的に接続した場合には、第2の金属で形成された熱交換器6の方に腐食が発生することになる。この点、本実施の形態では、前記のように熱交換器6と筐体2および格子体3とが電気的に接続されないため、熱交換器6の腐食を防止することができる。
In the present embodiment, the standard electrode potential of the first metal is higher than the standard electrode potential of the second metal, so that when heat exchanger 6 is electrically connected to housing 2 and grid 3, would cause corrosion to occur in the heat exchanger 6 made of the second metal. In this regard, in the present embodiment, since the heat exchanger 6 is not electrically connected to the housing 2 and the lattice 3 as described above, the corrosion of the heat exchanger 6 can be prevented.
本実施の形態では、第1の金属が鉄であることにより、第1の金属で形成された筐体2の強度を高めることができる。また、本実施の形態では、第2の金属がアルミニウムであることにより、第2の金属で形成された熱交換器6の熱伝導性を高めることができる。
In the present embodiment, since the first metal is iron, the strength of the housing 2 made of the first metal can be increased. Moreover, in the present embodiment, since the second metal is aluminum, the thermal conductivity of the heat exchanger 6 made of the second metal can be enhanced.
本実施の形態では、格子体3の格子間隔A,Bが筐体2の内部から発生する電磁ノイズの波長の2分の1以下の長さであることにより、電磁ノイズをより一層低減させることができる。
In the present embodiment, the lattice intervals A and B of the lattice body 3 are less than half the wavelength of the electromagnetic noise generated from the inside of the housing 2, so that the electromagnetic noise can be further reduced. can be done.
本実施の形態では、格子体3は、筐体床面パネル2a、筐体天面パネル2b、筐体背面パネル2jおよび筐体側面パネル2gに固定されていることにより、各パネル同士の電気的な接続が高まり、筐体2が持つ接触抵抗および寄生インダクタンス28を低減させることができる。そのため、電子基板9cと圧縮機8と筐体2の各パネルとに伝わる電磁ノイズ、すなわち雑音端子電圧、妨害電力強度などを低減させることができる。なお、格子体3は、筐体床面パネル2a、筐体天面パネル2b、筐体背面パネル2jおよび筐体側面パネル2gのうち少なくとも1つに固定されていればよい。
In this embodiment, the grid 3 is fixed to the housing floor panel 2a, the housing top panel 2b, the housing rear panel 2j, and the housing side panel 2g. Therefore, the contact resistance and parasitic inductance 28 of the housing 2 can be reduced. Therefore, the electromagnetic noise transmitted to the electronic board 9c, the compressor 8, and each panel of the housing 2, that is, the noise terminal voltage, the interference power intensity, etc., can be reduced. The lattice 3 may be fixed to at least one of the housing floor panel 2a, the housing top panel 2b, the housing rear panel 2j, and the housing side panel 2g.
従来の熱交換器として、サーペンタイン型の熱交換器、アルミニウム製のパラレルフロー型の熱交換器がある。サーペンタイン型の熱交換器、パラレルフロー型の熱交換器は、いずれもフィンと冷媒導管とを有する。サーペンタイン型の熱交換器では、フィンの材料にアルミニウムが用いられ、冷媒導管の材料に銅が用いられることが一般的である。筐体2の材料に鉄を用いた場合には、それぞれの金属が有する標準電極電位の大小関係は、アルミニウム<鉄<銅の関係になる。すなわち、各金属製部材の標準電極電位の大小関係は、フィン<筐体2<冷媒導管の関係になる。仮に、サーペンタイン型の熱交換器のフィンおよび冷媒導管と筐体2とを直接接触させて、接触箇所に水分が付着した場合には、筐体2よりも標準電極電位が低いフィンには腐食が発生する可能性があるが、筐体2よりも標準電極電位が高い冷媒導管には腐食が発生しない。
Conventional heat exchangers include serpentine heat exchangers and aluminum parallel flow heat exchangers. Both serpentine heat exchangers and parallel flow heat exchangers have fins and refrigerant conduits. In a serpentine heat exchanger, it is common to use aluminum for the fins and copper for the refrigerant conduits. When iron is used as the material of the housing 2, the magnitude relationship of the standard electrode potentials of the respective metals is aluminum<iron<copper. In other words, the magnitude relationship of the standard electrode potentials of the metal members is fin<casing 2<refrigerant conduit. If the fins and refrigerant conduits of the serpentine heat exchanger are brought into direct contact with the housing 2 and moisture adheres to the contact points, the fins having a lower standard electrode potential than the housing 2 will corrode. Corrosion does not occur in coolant conduits having a higher standard electrode potential than housing 2, although this may occur.
一方で、アルミニウム製のパラレルフロー型の熱交換器では、フィンおよび冷媒導管の材料にアルミニウムが用いられるため、筐体2の材料に鉄を用いた場合には、フィンおよび冷媒導管の両方に腐食が発生する可能性がある。冷媒導管に腐食が発生して孔が開けば、冷媒導管内の冷媒が大気中に漏出する。冷媒の大気中への漏出は、空気調和機としての冷暖房機能が損なわれる。このようにアルミニウム製のパラレルフロー型の熱交換器では、腐食による弊害が大きいことから腐食の防止対策を講じる重要性が高く、腐食の防止対策を講じることにより発生する電磁ノイズの低減対策も併せて講じる必要がある。そのため、本実施の形態のように格子体3と絶縁部材7とを用いて腐食の防止と電磁ノイズの低減とを両立させることは、アルミニウム製のパラレルフロー型の熱交換器のような腐食による弊害が大きい熱交換器を用いた場合に特に有用である。換言すると、本実施の形態のように格子体3と絶縁部材7とを用いて腐食の防止と電磁ノイズの低減とを両立させることは、冷媒導管の標準電極電位が筐体2などの周辺部材の標準電極電位よりも低い熱交換器を用いた場合に特に有用である。
On the other hand, in a parallel-flow heat exchanger made of aluminum, since aluminum is used as the material for the fins and refrigerant conduits, if iron is used as the material for the housing 2, both the fins and the refrigerant conduits will corrode. may occur. If the refrigerant conduit is corroded and perforated, the refrigerant in the refrigerant conduit leaks into the atmosphere. Leakage of the refrigerant into the atmosphere impairs the cooling and heating function of the air conditioner. In this way, parallel flow type heat exchangers made of aluminum are greatly affected by corrosion, so it is very important to take measures to prevent corrosion. It is necessary to take Therefore, achieving both corrosion prevention and electromagnetic noise reduction by using the lattice 3 and the insulating member 7 as in the present embodiment is difficult due to corrosion as in parallel flow type heat exchangers made of aluminum. It is particularly useful when using a heat exchanger that has a large adverse effect. In other words, achieving both corrosion prevention and electromagnetic noise reduction by using the lattice 3 and the insulating member 7 as in the present embodiment means that the standard electrode potential of the refrigerant conduit is equal to that of the surrounding members such as the housing 2. It is particularly useful with heat exchangers below the standard electrode potential of .
なお、格子体3の構成は、図8に示した例に限定されない。例えば、格子体3が固定枠31を有さずに、金属線32が筐体2に直接固定されてもよい。また、固定枠31の四つの枠部の全部が筐体2に電気的に接続されることは必須ではなく、固定枠31の四つの枠部の少なくとも一つが筐体2に電気的に接続されていればよい。このようにしても、前記した実施の形態1と同様の効果を奏することができる。
The configuration of the lattice body 3 is not limited to the example shown in FIG. For example, the metal wire 32 may be directly fixed to the housing 2 without the grid 3 having the fixed frame 31 . Further, it is not essential that all four frame portions of the fixed frame 31 are electrically connected to the housing 2, and at least one of the four frame portions of the fixed frame 31 is electrically connected to the housing 2. It is good if there is. Even in this way, the same effects as those of the first embodiment can be obtained.
本実施の形態では、四角枠状の固定枠31を例示したが、固定枠31が四つの枠部を有することは必須ではない。例えば、固定枠31が第2の横枠部31dを有さずに、第1の金属線32aのY軸方向の片端が固定枠31に固定されずに自由端になってもよい。このようにすると、格子体3の下端部から電磁ノイズが多少放射される可能性があるが、格子体3の下端部は地面などの据付面に近いため、電磁ノイズへの悪影響は限定的となり、前記した実施の形態1と同様の効果を奏することができる。
In the present embodiment, the fixed frame 31 in the shape of a square frame is exemplified, but it is not essential that the fixed frame 31 has four frame portions. For example, the fixed frame 31 may not have the second horizontal frame portion 31d, and one end of the first metal wire 32a in the Y-axis direction may be a free end without being fixed to the fixed frame 31. FIG. In this way, some electromagnetic noise may be radiated from the lower end of the lattice 3, but since the lower end of the lattice 3 is close to the installation surface such as the ground, the adverse effect on the electromagnetic noise is limited. , the same effects as those of the first embodiment can be obtained.
格子体3の製造方法は、特に制限されない。格子体3の製造方法としては、例えば、固定枠31と別体に形成された金属線32を固定枠31に固定する方法でもよいし、板金の打ち抜き加工を用いて固定枠31と金属線32とを一体成形してもよい。このように固定枠31と金属線32とを一体成形すると、より一層低廉かつ簡易な方法で室外機1を製造することができる。
The method of manufacturing the grid 3 is not particularly limited. As a method of manufacturing the lattice body 3, for example, a method of fixing a metal wire 32 formed separately from the fixed frame 31 to the fixed frame 31 may be used, or a method of punching sheet metal is used to attach the fixed frame 31 and the metal wires 32 to each other. and may be integrally molded. By integrally molding the fixing frame 31 and the metal wire 32 in this way, the outdoor unit 1 can be manufactured by a simpler method at a lower cost.
熱交換器6の全部が第2の金属により形成されている必要はなく、熱交換器6の少なくとも一部が第2の金属により形成されていればよい。例えば、熱交換器6のフィンおよび冷媒導管のうち少なくとも一方が第2の金属により形成されていればよい。
The entire heat exchanger 6 need not be made of the second metal, and at least part of the heat exchanger 6 should be made of the second metal. For example, at least one of the fins of the heat exchanger 6 and the refrigerant conduit should be made of the second metal.
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
1 空気調和機の室外機、2 筐体、2a 筐体床面パネル、2b 筐体天面パネル、2c 筐体前面パネル、2d 筐体側面パネル、2e 前面パネル本体部、2f 前面パネル延長部、2g 筐体側面パネル、2h 側面パネル本体部、2i 側面パネル延長部、2j 筐体背面パネル、2k 開口部、2m 給気口、2n 排気口、2o 天面フランジ部、2p 底面フランジ部、3 格子体、4 仕切り板、4a 第1の仕切り部、4b 第2の仕切り部、4c 導入孔、5 送風機、5a 支柱、5b ファンモータ、5c プロペラファン、6 熱交換器、6a,6b ヘッダ、6c 冷媒導管、6d フィン、7 絶縁部材、7a 第1の絶縁部材、7b 第2の絶縁部材、8 圧縮機、8a モータ巻線、8b,26a,26b 寄生容量、8c 接触抵抗、8d 三相モータ巻線中性点、9 電子基板箱、9a 下箱、9b 上蓋、9c 電子基板、9d ヒートシンク、9e 孔、10 ファン室、11 電気室、12 ファン駆動電線、13 圧縮機駆動電線、14 外部AC電力線、15 内部電力線、16 アース線、17 ストップバルブ、18 冷媒配管、19 接続部、20 インターフェースパネル、20a インターフェース縦壁、20b 上側接合フランジ部、20c インターフェース横壁、20d 下側接合フランジ部、20e アース接続点、21 端子台、22 インターフェースカバー、23 ベルマウス、24 前カバー、25 通風孔、27,28 寄生インダクタンス、31 固定枠、31a 第1の縦枠部、31b 第2の縦枠部、31c 第1の横枠部、31d 第2の横枠部、32 金属線、32a 第1の金属線、32b 第2の金属線、33 交差部、34 格子体接続部。
1 outdoor unit of air conditioner, 2 housing, 2a housing floor panel, 2b housing top panel, 2c housing front panel, 2d housing side panel, 2e front panel main body, 2f front panel extension, 2g housing side panel, 2h side panel main body, 2i side panel extension, 2j housing rear panel, 2k opening, 2m air supply port, 2n exhaust port, 2o top flange, 2p bottom flange, 3 grating body, 4 partition plate, 4a first partition, 4b second partition, 4c introduction hole, 5 blower, 5a strut, 5b fan motor, 5c propeller fan, 6 heat exchanger, 6a, 6b header, 6c refrigerant Conduit 6d Fin 7 Insulating member 7a First insulating member 7b Second insulating member 8 Compressor 8a Motor winding 8b, 26a, 26b Parasitic capacitance 8c Contact resistance 8d Three-phase motor winding Neutral point, 9 electronic board box, 9a lower box, 9b upper lid, 9c electronic board, 9d heat sink, 9e hole, 10 fan chamber, 11 electric room, 12 fan drive wire, 13 compressor drive wire, 14 external AC power line, 15 Internal power line, 16 Ground line, 17 Stop valve, 18 Refrigerant pipe, 19 Connection, 20 Interface panel, 20a Interface vertical wall, 20b Upper joint flange, 20c Interface lateral wall, 20d Lower joint flange, 20e Ground connection point , 21 terminal block, 22 interface cover, 23 bell mouth, 24 front cover, 25 ventilation hole, 27, 28 parasitic inductance, 31 fixed frame, 31a first vertical frame portion, 31b second vertical frame portion, 31c first 31d second horizontal frame portion 32 metal wire 32a first metal wire 32b second metal wire 33 intersection portion 34 grid connection portion.
Claims (6)
- 室外の空気を流入させるための給気口が形成され、第1の金属により形成されている箱状の筐体と、
少なくとも一部が前記第1の金属とは標準電極電位が異なる第2の金属により形成され、前記筐体内に配置されて非導電性部材を介して前記筐体に固定される熱交換器と、
前記空気の流れ方向で前記熱交換器の上流側に前記熱交換器から離れて配置され、前記筐体に固定されて前記筐体と電気的に接続され、前記第1の金属により形成されている格子体と、
を備えている空気調和機の室外機。 a box-shaped housing formed of a first metal and having an air supply port for introducing outdoor air;
a heat exchanger at least partially formed of a second metal having a standard electrode potential different from that of the first metal, arranged in the housing and fixed to the housing via a non-conductive member;
arranged apart from the heat exchanger upstream of the heat exchanger in the air flow direction, fixed to the housing and electrically connected to the housing, and formed of the first metal a grid with
The outdoor unit of an air conditioner equipped with - 前記筐体は、筐体床面パネルと、前記筐体床面パネルの上方に前記筐体床面パネルから離れて配置される筐体天面パネルと、前記筐体床面パネルと前記筐体天面パネルとを連結する筐体背面パネルおよび筐体側面パネルと、を有し、
前記格子体は、前記筐体床面パネル、前記筐体天面パネル、前記筐体背面パネルおよび前記筐体側面パネルのうち少なくとも1つに固定されている請求項1に記載の空気調和機の室外機。 The housing comprises a housing floor panel, a housing top panel disposed above the housing floor panel and away from the housing floor panel, and the housing floor panel and the housing. having a housing rear panel and a housing side panel that are connected to the top panel,
2. The air conditioner according to claim 1, wherein the grid is fixed to at least one of the housing floor panel, the housing top panel, the housing rear panel and the housing side panel. Outdoor unit. - 前記第1の金属の標準電極電位は、前記第2の金属の標準電極電位よりも高い請求項1または2に記載の空気調和機の室外機。 The outdoor unit of the air conditioner according to claim 1 or 2, wherein the standard electrode potential of the first metal is higher than the standard electrode potential of the second metal.
- 前記第1の金属は、鉄であり、
前記第2の金属は、アルミニウムである請求項1から3のいずれか1項に記載の空気調和機の室外機。 the first metal is iron,
The outdoor unit for an air conditioner according to any one of claims 1 to 3, wherein the second metal is aluminum. - 前記熱交換器は、パラレルフロー型の熱交換器である請求項1から4のいずれか1項に記載の空気調和機の室外機。 The outdoor unit of the air conditioner according to any one of claims 1 to 4, wherein the heat exchanger is a parallel flow type heat exchanger.
- 前記格子体の格子間隔は、前記筐体の内部から発生する電磁ノイズの波長の2分の1以下の長さである請求項1から5のいずれか1項に記載の空気調和機の室外機。 The outdoor unit of the air conditioner according to any one of claims 1 to 5, wherein a lattice interval of the lattice body is half or less of a wavelength of electromagnetic noise generated from inside the housing. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/047910 WO2023119565A1 (en) | 2021-12-23 | 2021-12-23 | Outdoor unit for air conditioner |
JP2023568941A JPWO2023119565A1 (en) | 2021-12-23 | 2021-12-23 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/047910 WO2023119565A1 (en) | 2021-12-23 | 2021-12-23 | Outdoor unit for air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023119565A1 true WO2023119565A1 (en) | 2023-06-29 |
Family
ID=86901795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047910 WO2023119565A1 (en) | 2021-12-23 | 2021-12-23 | Outdoor unit for air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023119565A1 (en) |
WO (1) | WO2023119565A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041425A1 (en) * | 2007-09-28 | 2009-04-02 | Toshiba Carrier Corporation | Outdoor unit for air conditioner |
JP2011066226A (en) * | 2009-09-17 | 2011-03-31 | Daikin Industries Ltd | Board device, and air conditioner including the same |
JP2014081139A (en) * | 2012-10-16 | 2014-05-08 | Sharp Corp | Air conditioner |
JP2016017646A (en) * | 2014-07-04 | 2016-02-01 | 三菱電機株式会社 | Grip for carriage and outdoor unit of air conditioner |
JP2018109471A (en) * | 2017-01-04 | 2018-07-12 | 日立ジョンソンコントロールズ空調株式会社 | Outdoor unit and refrigeration cycle device |
CN210463328U (en) * | 2019-08-30 | 2020-05-05 | 广东美的制冷设备有限公司 | Protective net for air conditioner outdoor unit and air conditioner outdoor unit with protective net |
-
2021
- 2021-12-23 WO PCT/JP2021/047910 patent/WO2023119565A1/en active Application Filing
- 2021-12-23 JP JP2023568941A patent/JPWO2023119565A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009041425A1 (en) * | 2007-09-28 | 2009-04-02 | Toshiba Carrier Corporation | Outdoor unit for air conditioner |
JP2011066226A (en) * | 2009-09-17 | 2011-03-31 | Daikin Industries Ltd | Board device, and air conditioner including the same |
JP2014081139A (en) * | 2012-10-16 | 2014-05-08 | Sharp Corp | Air conditioner |
JP2016017646A (en) * | 2014-07-04 | 2016-02-01 | 三菱電機株式会社 | Grip for carriage and outdoor unit of air conditioner |
JP2018109471A (en) * | 2017-01-04 | 2018-07-12 | 日立ジョンソンコントロールズ空調株式会社 | Outdoor unit and refrigeration cycle device |
CN210463328U (en) * | 2019-08-30 | 2020-05-05 | 广东美的制冷设备有限公司 | Protective net for air conditioner outdoor unit and air conditioner outdoor unit with protective net |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023119565A1 (en) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5323039B2 (en) | Power converter | |
JP2008121966A (en) | Outdoor unit for air conditioner | |
EP4007149B1 (en) | Inverter | |
AU747235B2 (en) | Air conditioner | |
JP5716598B2 (en) | Power supply | |
JPH06123449A (en) | Outdoor device of air conditioner | |
JP5469838B2 (en) | Multiple power converters arranged side by side and installation method thereof | |
JPWO2018207240A1 (en) | Power converter cooling structure | |
WO2023119565A1 (en) | Outdoor unit for air conditioner | |
WO2001016531A1 (en) | Air conditioner | |
JP4807307B2 (en) | Power supply | |
WO2023218639A1 (en) | Outdoor unit for air conditioner | |
JP5901233B2 (en) | Electronic component cooling structure | |
EP1500882B1 (en) | Outdoor unit for use in air conditioner | |
JP6095627B2 (en) | Electronic component cooling structure | |
WO2023199518A1 (en) | Outdoor unit of air conditioner | |
WO2024016510A1 (en) | Controller housing, central controller, and automobile | |
JP2004356130A (en) | Power converter | |
JP5609811B2 (en) | Power supply | |
JP2005166777A (en) | Cooling structure of electronic device | |
JP6186439B2 (en) | DC-DC converter device | |
WO2021193090A1 (en) | Power conversion device | |
JP2015117906A (en) | Terminal board and air conditioner | |
JP2018189266A (en) | Outdoor unit for air conditioner | |
JP2018189263A (en) | Outdoor equipment of air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21969000 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023568941 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |