WO2023119450A1 - 半導体モジュール及び積層モジュール - Google Patents
半導体モジュール及び積層モジュール Download PDFInfo
- Publication number
- WO2023119450A1 WO2023119450A1 PCT/JP2021/047418 JP2021047418W WO2023119450A1 WO 2023119450 A1 WO2023119450 A1 WO 2023119450A1 JP 2021047418 W JP2021047418 W JP 2021047418W WO 2023119450 A1 WO2023119450 A1 WO 2023119450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chip
- semiconductor module
- memory
- stacking direction
- input
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 79
- 230000015654 memory Effects 0.000 claims abstract description 143
- 230000006870 function Effects 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 3
- 229910000679 solder Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 241000724291 Tobacco streak virus Species 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
Definitions
- the present invention relates to semiconductor modules and laminated modules.
- RAM volatile memories
- DRAM Dynamic Random Access Memory
- logic chips arithmetic units
- an increase in the amount of data Therefore, attempts have been made to increase the capacity by miniaturizing the memory (memory cell array, memory chip) and increasing the number of cells in a plane.
- this type of increase in capacity has reached its limit due to the vulnerability to noise due to miniaturization, the increase in chip area, and the like.
- Patent Document 1 In the storage device of Patent Document 1, a command die and a memory die are stacked. In Patent Document 1, a command die and a memory die are connected by a TSV (Through Silicon Via). In Patent Document 1, as the number of stacked memory dies increases, the number of stages of TSVs increases, so it is conceivable that the yield will decrease. Further, in Patent Document 1, when a plurality of TSVs bypassing between dies are provided, an increase in die size and an increase in manufacturing cost can be considered. Furthermore, in Japanese Patent Laid-Open No. 2002-100001, even when the variation of the storage device is increased, it is necessary to change the positions of the TSVs, etc., so that the die size and the manufacturing cost may increase.
- the present invention has been made in view of the above problems, and aims to provide a semiconductor module and a laminated module that can be manufactured easily.
- the present invention includes a plurality of memory sections stacked in a stacking direction, each having input/output terminals for inputting and outputting signals and connection terminals for connecting to other memory sections. are arranged between the memory units adjacent in the stacking direction and on one surface of the memory unit on one end side in the stacking direction, and protrude beyond the end face of the memory unit in a direction crossing the stacking direction.
- a rewiring layer having an edge; and an external electrode disposed between the rewiring layers adjacent in the stacking direction and electrically connecting the edge of the rewiring layer, wherein the rewiring layer and the The external electrode relates to a semiconductor module forming a connection circuit connecting the connection terminal of one memory section and the input/output terminal of another memory section.
- the memory section preferably has a plurality of stacked memory chips.
- the memory section preferably has a primary chip having the input/output terminals and the connection terminals, and a secondary chip connected to the primary chip.
- the primary chip preferably has a timing control section that adjusts operation timings of the primary chip and the secondary chip.
- the primary chip and the secondary chip are the same chip with partially changed functions.
- the primary chip is preferably connected to the secondary chip by a bumpless TSV.
- the primary chip is preferably connected to the adjacent secondary chip by hybrid bonding.
- the primary chip is preferably connected to the secondary chip by contactless communication.
- connection circuit connects the connection terminal for the clock signal and the command signal of one of the memory sections and the input/output terminal for the clock signal and the command signal of the other memory section.
- the semiconductor module preferably further comprises a logic chip arranged at the end of the rewiring layer.
- the present invention also relates to a laminated module in which a plurality of the above semiconductor modules are laminated.
- FIG. 1 is a cross-sectional view showing a semiconductor module according to a first embodiment of the invention
- FIG. 1 is a block diagram showing a semiconductor module of a first embodiment
- FIG. 1 is a circuit diagram showing a semiconductor module of a first embodiment
- FIG. It is a block diagram showing a semiconductor module according to a second embodiment of the present invention. It is a circuit diagram showing a semiconductor module of a second embodiment. It is a block diagram showing a semiconductor module according to a third embodiment of the present invention. It is a circuit diagram which shows the semiconductor module of 3rd Embodiment.
- It is a block diagram showing a semiconductor module according to a fourth embodiment of the present invention. It is a circuit diagram which shows the semiconductor module of 4th Embodiment.
- FIG. 11 is a cross-sectional view taken along line AA of FIG. 10;
- FIG. 11 is a cross-sectional view showing a laminate module according to a sixth embodiment of the present invention.
- a semiconductor module 1 and a laminated module 100 according to each embodiment of the present invention will be described below with reference to FIGS. 1 to 12.
- FIG. First, outlines of the semiconductor module 1 and the laminated module 100 according to each embodiment will be described.
- the semiconductor module 1 and the stacked module 100 are, for example, stacking a plurality of stacked memories.
- the semiconductor module 1 and the stacked module 100 are configured by stacking a plurality of memory chips.
- external wirings for electrically connecting the stacked memories are arranged in a direction crossing the stacking direction D of the stacked memories.
- the semiconductor module 1 and the laminated module 100 bypass the communication of the laminated memory using external wiring (for example, the external electrodes 14). Accordingly, in the following embodiments, the semiconductor module 1 and the laminated module 100 are intended to be manufactured easily.
- the laminated module 100 is obtained by laminating a plurality of semiconductor modules 1 .
- FIG. A semiconductor module 1 includes a plurality of stacked memories, as shown in FIG.
- the semiconductor module 1 includes a memory section 11 , a rewiring layer 12 , a mold section 13 , external electrodes 14 and solder balls 15 .
- the memory units 11 are, as shown in FIGS. 2 and 3, a plurality of memory units 11 stacked in the stacking direction D, each having input/output terminals 31 and connection terminals 32 .
- the memory unit 11 has a plurality of stacked memory chips. Specifically, the memory unit 11 has four stacked memory chips. Also, the memory unit 11 has a primary chip 110 and a secondary chip 120 . Note that the primary chip 110 and the secondary chip 120 are the same chip with partially changed functions. In this embodiment, the memory unit 11 has one primary chip 110 and three secondary chips 120 . Note that, in the present embodiment, the memory unit 11 arranged at one end in the stacking direction D is also described as a primary stack 21 .
- the input/output terminal 31 is, for example, a terminal for inputting/outputting signals to/from the outside.
- the input/output terminal 31 has, for example, a clock terminal 311 , a command terminal 312 and a data terminal 313 .
- the clock terminal 311 receives, for example, a signal from the outside.
- the clock terminal 311 receives an input of a clock signal provided from the outside, for example.
- the command terminal 312 receives, for example, signals from the outside.
- the command terminal 312 receives an input of a command signal provided from the outside, for example.
- the data terminal 313 receives input/output of data with the outside, for example.
- the data terminal 313 receives input/output of data signals with the outside, for example.
- the connection terminal 32 is a terminal for connecting to another memory unit 11, for example.
- the connection terminal 32 has a clock terminal 321 , a command terminal 322 , and a data terminal 323 like the input/output terminal 31 .
- the connection terminal 32 is connected to the input/output terminal 31 via the buffer 41 as shown in FIG.
- the primary chip 110 has input/output terminals 31 and connection terminals 32, as shown in FIGS.
- one primary chip 110 is arranged at one end in the stacking direction D in the memory section 11 .
- the primary chip 110 is connected to a secondary chip 120, which will be described later, by a bumpless TSV 200, for example.
- the primary chip 110 has transfer terminals 121 for transferring clock signals, command signals, and data signals to other stacked memory chips.
- the primary chip 110 has a timing control section 111 that adjusts operation timings of the primary chip 110 and a secondary chip 120, which will be described later.
- the primary chip 110 has a timing controller 111 including memory cells (not shown) and memory control circuits (not shown).
- the secondary chip 120 is stacked on the primary chip 110, for example. Secondary chip 120 is connected to primary chip 110 .
- the secondary chip 120 has transfer terminals 121 for transferring clock signals, command signals, and data signals between the primary chip 110 or other secondary chips 120 adjacent in the stacking direction D.
- FIG. In this embodiment, three secondary chips 120 are stacked within one memory unit 11 .
- Each of the secondary chips 120 are connected to the primary chip 110 using bumpless TSVs 200 .
- the secondary chip 120 has a memory controller 122 including memory cells (not shown) and memory control circuits (not shown).
- the rewiring layer 12 is arranged between the memory sections 11 adjacent in the stacking direction D and on one surface of the memory section 11 on one end side in the stacking direction D.
- the rewiring layer 12 is arranged adjacent to the primary chip 110 in the stacking direction D, for example.
- the rewiring layer 12 is electrically connected to the input/output terminals 31 and the connection terminals 32 of the primary chip 110 .
- the rewiring layer 12 has an end portion 42 that protrudes from the end face of the memory portion 11 in the direction intersecting the stacking direction D. As shown in FIG.
- the rewiring layer 12 has, for example, end portions 42 arranged to protrude from both end faces of the memory portion 11 in a direction intersecting the stacking direction D, for example.
- the molded part 13 is made of epoxy resin or the like, for example.
- the mold part 13 is arranged between the end parts 42 of the adjacent rewiring layers 12 .
- the mold part 13 is formed to have the same height as the memory part 11 in the stacking direction D, for example.
- the external electrodes 14 are arranged between the rewiring layers 12 adjacent in the stacking direction D, and electrically connect the ends 42 of the rewiring layers 12 .
- the external electrodes 14 are formed, for example, as mold through electrodes penetrating the mold portion 13, as shown in FIG.
- the external electrodes 14 electrically connect adjacent rewiring layers 12 .
- the external electrodes 14 are arranged across the memory section 11 in the direction intersecting the stacking direction D.
- the number of external electrodes 14 corresponding to the number of circuits connecting the plurality of connection circuits 50 is provided.
- one external electrode 14 is provided as one set of three in accordance with the clock signal, the command signal, and the input/output signal.
- a connection circuit 50 for connecting the connection terminal 32 and the input/output terminal 31 of the other memory section 11 is formed.
- the connection terminal 32 connects one memory unit 11 (primary stack 21 ) and the other three memory units 11 . That is, the connection circuit 50 connects the clock terminal 311, the command terminal 312, and the data terminal 313 of the connection terminal 32 of the primary stack 21, and the clock signals, command signals, and data signals of the input/output terminals 31 of all the other memory units 11. It is connected to the signal input/output terminal 31 .
- connection circuit 50 bypass-connects the three memory units 11 to the primary stack 21 .
- the connection circuit 50 aggregates the data signals input/output from the other three memory units 11 to the primary stack 21 according to the clock signal and command signal input to the primary stack 21 .
- a plurality of solder balls 15 are arranged in contact with the rewiring layer 12 at one end in the stacking direction D, for example.
- the solder balls 15 are arranged to electrically connect the semiconductor module 1 to another substrate (not shown) or the like.
- the primary stack 21 (for example, the memory section 11 arranged at one end in the stacking direction D) is connected via the solder ball 15 and the rewiring layer 12 at one end in the stacking direction D connected to the solder ball 15 . ) are input with a clock signal, a command signal, and a data signal for writing.
- the connection terminal 32 of the primary stack 21 outputs the clock signal, command signal, and data signal input to the input/output terminal 31 to the connection circuit 50 .
- the output clock signal, command signal, and data signal are input to the input/output terminals 31 of the other memory section 11 via the external electrodes 14 and the rewiring layer 12 that constitute the connection circuit 50 .
- the primary chip 110 of each memory unit 11 uses transfer terminals 121 to transfer clock signals, command signals, and data signals to the secondary chip 120 .
- the primary chip 110 and secondary chip 120 access the memory areas of their respective chips in response to clock signals, command signals, and data signals.
- the primary chip 110 and the secondary chip 120 write data to their respective memory areas based on clock signals, command signals, and data signals.
- the primary stack 21 (for example, the memory section arranged at one end in the stacking direction D) is connected to the solder ball 15 and the rewiring layer 12 connected to the solder ball 15 at one end in the stacking direction D.
- a clock signal and a command signal are input to the input/output terminal 31 of 11).
- the connection terminal 32 of the primary stack 21 outputs the clock signal and command signal input to the input/output terminal 31 to the connection circuit 50 .
- the output clock signal and command signal are input to the input/output terminal 31 of the other memory section 11 via the external electrode 14 and the rewiring layer 12 that constitute the connection circuit 50 .
- the primary chip 110 of each memory unit 11 uses the transfer terminal 121 to transfer the clock signal and command signal to the secondary chip 120 .
- the primary chip 110 and the secondary chip 120 access the memory area of each chip according to clock signals and command signals.
- the primary chip 110 and secondary chip 120 read data from their respective memory areas based on the clock signal and command signal.
- the secondary chip 120 transfers the data read using the transfer terminal 121 to the primary chip 110 as a data signal.
- the primary chip 110 buffers its own read data and transferred data.
- the primary chip 110 of the other memory unit 11 uses the input/output terminal 31 and the connection circuit 50 to transmit the buffered data signal to the connection terminal 32 of the primary stack 21 .
- the primary chip 110 of the primary stack 21 receives its own buffered data and the data transmitted from the other memory unit 11 as data signals to the outside via the input/output terminal 31, the rewiring layer 12, and the solder balls 15. output to
- a semiconductor module 1 including a plurality of stacked memories a plurality of memory sections 11 stacked in the stacking direction, each having an input/output terminal 31 for inputting/outputting a signal and a terminal for connecting to another memory section.
- the memory section 11 having the connection terminal 32 and the memory sections 11 adjacent in the stacking direction are arranged between the memory sections 11 adjacent to each other in the stacking direction and on one surface of the memory section on one end side in the stacking direction, and the memory section is arranged in the direction crossing the stacking direction.
- connection circuit 50 that connects the connection terminal 32 of one memory section 11 and the input/output terminal 31 of another memory section.
- the memory unit 11 has a plurality of memory chips stacked using bumpless TSV200. As a result, the memory capacity can be easily increased while suppressing the height of the memory section 11 in the stacking direction and facilitating manufacturing.
- the memory unit 11 has a primary chip 110 having input/output terminals 31 and connection terminals 32 and a secondary chip 120 connected to the primary chip 110 . Thereby, it is possible to easily control the plurality of stacked memory units 11 . Also, the circuit configuration can be simplified for a plurality of memory chips.
- the primary chip 110 has a timing control section 111 that adjusts the operation timings of the primary chip 110 and secondary chip 120 . Thereby, it is possible to appropriately control the operation of a plurality of memory chips.
- FIG. 1 a semiconductor module 1 according to a second embodiment of the invention will be described with reference to FIGS. 4 and 5.
- FIG. In 2nd Embodiment the same code
- the semiconductor module 1 according to the second embodiment differs from the first embodiment in that the data terminal 313 of the connection terminals 32 is not connected to the connection circuit 50, as shown in FIGS.
- the data terminal 313 among the input/output terminals 31 of the plurality of memory units 11 includes the rewiring layer 12 adjacent to the primary chip 110, the external electrode 14, the rewiring layer 12 at one end in the stacking direction D, and the solder.
- the data terminal 313 among the input/output terminals 31 of the plurality of memory units 11 is directly connected to the outside. Accordingly, the data terminal 313 of the connection terminals 32 of the primary stack 21 is not connected to the connection circuit 50 .
- the semiconductor module 1 according to the first embodiment as described above has the following effects.
- (4) The data terminals 313 among the input/output terminals 31 of the plurality of memory units 11 are connected to the outside via the adjacent rewiring layer 12, the external electrode 14, the rewiring layer 12 at one end in the stacking direction D, and the solder balls 15. connected to As a result, the data signal is directly communicated with the outside, so that the data transmission path can be shortened and the data quality can be improved. Also, by operating a plurality of memory units 11 simultaneously, the number of data signals can be increased and the bandwidth can be improved.
- FIG. 1 differs from the first and second embodiments in that a plurality of primary stacks 21 and connection circuits 50 are provided as shown in FIGS.
- the third embodiment differs from the first and second embodiments in that two sets of one primary stack 21, one other memory section 11, and a connection circuit 50 connecting the two are provided. That is, the semiconductor module 1 according to the third embodiment differs from the first and second embodiments in that two input/output terminals 31 of the primary stack 21 connected to the outside are provided.
- the semiconductor module 1 according to the third embodiment as described above has the following effects. (5) A plurality of sets of one memory section 11, another memory section 11, and a connection circuit 50 connecting the two are provided. As a result, the input/output terminals 31 can be multi-channeled, so that the utilization efficiency of the semiconductor module 1 can be improved.
- FIG. 8 and 9 a semiconductor module 1 according to a fourth embodiment of the invention will be described with reference to FIGS. 8 and 9.
- FIG. 8 and 9 the same code
- the semiconductor module 1 according to the fourth embodiment is different from the first in that one memory section 11 is connected in series with another memory section 11 using a connection circuit 50 . It differs from the third embodiment.
- the semiconductor module 1 includes a connection circuit 50 that connects the connection terminal 32 of the primary stack 21 and the input/output terminal 31 of the other memory section 11, and It differs from the first to third embodiments in that it has a connection circuit 50 that connects the connection terminal 32 and the input/output terminal 31 of the other memory section 11 .
- the semiconductor module 1 according to the fourth embodiment as described above has the following effects. (6) One memory section 11 is connected in series with another memory section 11 using the connection circuit 50 . As a result, the path of the connection circuit 50 can be shortened, so that the yield can be improved. In addition, since the parasitic resistance and parasitic capacitance of the connection circuit 50 can be kept substantially constant regardless of the number of stacked memory units 11, the number of stacked memory units 11 can be easily changed.
- the semiconductor module 1 according to the fifth embodiment is different from the first to fourth embodiments in that it further includes a logic chip 130 arranged at the end portion 42 of the rewiring layer 12 . different.
- a plurality of dummy silicon layers 132 are arranged over the logic chip 130 .
- the plurality of memory units 11 are arranged in pairs with the logic chip 130 interposed therebetween.
- the logic chip 130 also has a controller 131 that is connected to the memory section 11 and controls input/output of signals to/from the memory section 11 .
- the semiconductor module 1 according to the fifth embodiment as described above has the following effects.
- the semiconductor module 1 further includes a logic chip 130 arranged at the end portion 42 of the rewiring layer 12 . Thereby, the wiring distance between the memory unit 11 and the logic chip 130 can be shortened. Therefore, the semiconductor module 1 with high memory frequency (signal quality) and low data transfer power can be realized.
- a stacked module 100 according to the sixth embodiment differs from the first to fifth embodiments in that a plurality of semiconductor modules 1 according to the first to fifth embodiments are stacked.
- the stacked module 100 connects a plurality of semiconductor modules 1 using microbumps 16, for example, as shown in FIG.
- the rewiring layer 12 is arranged on the surface of the other end side of the semiconductor module 1 on which the other semiconductor module 1 is stacked on the one end side in the stacking direction D.
- Other semiconductor modules 1 are electrically connected using the arranged rewiring layers 12 and microbumps 16 .
- the laminated module 100 is formed by laminating a plurality of the semiconductor modules 1 described above. As a result, the number of memory units 11 included in the semiconductor module 1 can be reduced, so that the yield of the semiconductor module 1 can be improved. Thereby, the yield of the laminated module 100 can also be improved. In addition, since the number of stages of the memory section 11 of the semiconductor module 1 can be reduced, assembly can be facilitated.
- the present invention is not limited to the above-described embodiments and can be modified as appropriate.
- the memory unit 11 includes a plurality of memory chips in the above embodiment, it may include one memory chip.
- the primary chip 110 may be connected to the adjacent secondary chip 120 by hybrid bonding. Also, the primary chip 110 may be connected to the secondary chip 120 by contactless communication. As a result, the height of the memory section 11 in the stacking direction can be suppressed, so that the manufacturing of the semiconductor module 1 can be facilitated.
- the number of primary stacks 21 and other memory units 11 is not limited to four. Also, the number of secondary chips 120 is not limited.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
Abstract
製造を容易にすることが可能な半導体モジュール及び積層モジュールを提供すること。 複数の積層メモリを含む半導体モジュール1において、積層方向Dに積層される複数のメモリ部11であって、それぞれが信号を入出力する入出力端子31と他のメモリ部11と接続するための接続端子32とを有するメモリ部11と、積層方向Dにおいて隣接するメモリ部11の間と積層方向D一端側のメモリ部11の一面上とに配置され、積層方向Dに交差する方向においてメモリ部11の端面よりも突出する端部42を有する再配線層12と、積層方向Dにおいて隣接する再配線層12の間に配置され、再配線層12の端部42を電気的に接続する外部電極14と、を備え、再配線層12及び外部電極14は、1つのメモリ部11の接続端子32と他のメモリ部11の入出力端子31とを接続する接続回路50を形成する。
Description
本発明は、半導体モジュール及び積層モジュールに関する。
従来より、記憶装置としてDRAM(Dynamic Random Access Memory)等の揮発性メモリ(RAM)が知られている。DRAMには、演算装置(以下、論理チップあるいはロジックチップという)の高性能化やデータ量の増大に耐えうる大容量化が求められている。そこで、メモリ(メモリセルアレイ、メモリチップ)の微細化及びセルの平面的な増設による大容量化が図られてきた。一方で、微細化によるノイズへの惰弱性や、チップ面積の増加等により、この種の大容量化は限界に達してきている。
そこで、昨今では、平面的なメモリを複数積層して3次元化(3D化)して大容量化を実現する技術が開発されている。また、データ量の増大に伴い、チップ(ロジックチップ及びメモリチップ)間のデータ通信の高速化が図られている(例えば、特許文献1及び2参照)。
特許文献1の記憶装置では、コマンドダイと、メモリダイとが積層される。特許文献1では、コマンドダイとメモリダイとがTSV(Through Silicon Via)により接続される。特許文献1では、メモリダイの積層数が増加すると、TSVの段数が増加するので、歩留まりが低下することが考えられる。また、特許文献1では、ダイの間をバイパスするTSVを複数設ける場合、ダイサイズの増加及び製造コストの増加が考えられる。さらには、特許文献1において、記憶装置のバリエーションを増やす場合にも、TSVの位置変更等が必要であるので、ダイサイズの増加及び製造コストの増加が考えられる。
特許文献2のメモリシステムでは、複数のDRAM積層体をマザーボード上に搭載している。特許文献2では、DRAM積層体がマザーボードの面内方向に配置されるので、配置面積が大きくなることが考えられる。
本発明は、上記のような課題に鑑みてなされたものであり、製造を容易にすることが可能な半導体モジュール及び積層モジュールを提供することを目的とする。
本発明は、複数の積層メモリを含む半導体モジュールにおいて、積層方向に積層される複数のメモリ部であって、それぞれが信号を入出力する入出力端子と他のメモリ部と接続するための接続端子とを有するメモリ部と、積層方向において隣接する前記メモリ部の間と積層方向一端側の前記メモリ部の一面上とに配置され、積層方向に交差する方向において前記メモリ部の端面よりも突出する端部を有する再配線層と、積層方向において隣接する前記再配線層の間に配置され、前記再配線層の端部を電気的に接続する外部電極と、を備え、前記再配線層及び前記外部電極は、1つの前記メモリ部の前記接続端子と他の前記メモリ部の前記入出力端子とを接続する接続回路を形成する半導体モジュールに関する。
また、前記メモリ部は、積層された複数のメモリチップを有するのが好ましい。
また、前記メモリ部は、前記入出力端子及び前記接続端子を有するプライマリチップと、前記プライマリチップに接続されるセカンダリチップと、を有するのが好ましい。
また、前記プライマリチップは、前記プライマリチップ及び前記セカンダリチップの動作タイミングを調整するタイミング制御部を有するのが好ましい。
また、前記プライマリチップと前記セカンダリチップとは同一チップの一部機能を変更したものであることが好ましい。
また、前記プライマリチップは、前記セカンダリチップとバンプレスTSVにより接続されるのが好ましい。
前記プライマリチップは、隣接する前記セカンダリチップとハイブリッドボンディングにより接続されるのが好ましい。
また、前記プライマリチップは、前記セカンダリチップと非接触通信により接続されるのが好ましい。
また、前記接続回路は、1つの前記メモリ部のクロック信号及びコマンド信号の前記接続端子と、他の前記メモリ部の前記クロック信号及び前記コマンド信号の前記入出力端子とを接続するのが好ましい。
また、半導体モジュールは、前記再配線層の端部に配置されるロジックチップをさらに備えるのが好ましい。
また、本発明は、上記の半導体モジュールを複数積層した積層モジュールに関する。
本発明によれば、製造を容易にすることが可能な半導体モジュール及び積層モジュールを提供することができる。
以下、本発明の各実施形態に係る半導体モジュール1及び積層モジュール100について、図1から図12を参照して説明する。
まず、各実施形態に係る半導体モジュール1及び積層モジュール100の概要について説明する。
まず、各実施形態に係る半導体モジュール1及び積層モジュール100の概要について説明する。
各実施形態に係る半導体モジュール1及び積層モジュール100は、例えば、複数の積層メモリを積層したものである。具体的には、半導体モジュール1及び積層モジュール100は、複数のメモリチップを積層して構成される。また、半導体モジュール1及び積層モジュール100は、積層メモリの積層方向Dに交差する方向において、積層メモリを電気的に接続する外部配線が配置される。半導体モジュール1及び積層モジュール100は、外部配線(例えば、外部電極14)を用いて積層メモリの通信をバイパスする。これにより、以下の実施形態では、半導体モジュール1及び積層モジュール100の製造を容易にすることを図ったものである。なお、積層モジュール100は、半導体モジュール1を複数積層したものである。
[第1実施形態]
次に、本発明の第1実施形態に係る半導体モジュール1及び積層モジュール100について、図1から図3を参照して説明する。
半導体モジュール1は、図1に示すように、複数の積層メモリを含む。半導体モジュール1は、メモリ部11と、再配線層12と、モールド部13と、外部電極14と、半田ボール15と、を備える。
次に、本発明の第1実施形態に係る半導体モジュール1及び積層モジュール100について、図1から図3を参照して説明する。
半導体モジュール1は、図1に示すように、複数の積層メモリを含む。半導体モジュール1は、メモリ部11と、再配線層12と、モールド部13と、外部電極14と、半田ボール15と、を備える。
メモリ部11は、図2及び図3に示すように、積層方向Dに積層される複数のメモリ部11であって、それぞれが入出力端子31と接続端子32とを有する。本実施形態において、メモリ部11は、積層された複数のメモリチップを有する。具体的には、メモリ部11は、積層された4つのメモリチップを有する。また、メモリ部11は、プライマリチップ110と、セカンダリチップ120と、を有する。なお、プライマリチップ110及びセカンダリチップ120は、同一チップの一部機能を変更したものである。本実施形態において、メモリ部11は、1つのプライマリチップ110と、3つのセカンダリチップ120とを備える。なお、本実施形態において、積層方向D一端に配置されるメモリ部11は、プライマリスタック21とも記載される。
入出力端子31は、例えば、外部に信号を入出力する端子である。入出力端子31は、例えば、クロック端子311と、コマンド端子312と、データ端子313と、を有する。
クロック端子311は、例えば、外部からの信号を受け付ける。クロック端子311は、例えば、外部から提供されるクロック信号の入力を受け付ける。
コマンド端子312は、例えば、外部からの信号を受け付ける。コマンド端子312は、例えば、外部から提供されるコマンド信号の入力を受け付ける。
データ端子313は、例えば、外部との間でデータの入出力を受け付ける。データ端子313は、例えば外部との間でのデータ信号の入出力を受け付ける。
接続端子32は、例えば、他のメモリ部11と接続するための端子である。接続端子32は、入出力端子31と同様に、クロック端子321と、コマンド端子322と、データ端子323と、を有する。接続端子32は、図3に示すように、バッファ41を介して入出力端子31と接続される。
プライマリチップ110は、図2及び図3に示すように、入出力端子31及び接続端子32を有する。プライマリチップ110は、例えば、メモリ部11内において、積層方向D一端に1つ配置される。また、プライマリチップ110は、例えば、後述するセカンダリチップ120とバンプレスTSV200により接続される。プライマリチップ110は、積層される他のメモリチップにクロック信号、コマンド信号、及びデータ信号を転送するための転送端子121を有する。さらには、プライマリチップ110は、プライマリチップ110及び後述するセカンダリチップ120の動作タイミングを調整するタイミング制御部111を有する。本実施形態において、プライマリチップ110は、メモリセル(図示せず)及びメモリ制御回路(図示せず)を含むタイミング制御部111を有する。
セカンダリチップ120は、例えば、プライマリチップ110に積層される。セカンダリチップ120は、プライマリチップ110に接続される。セカンダリチップ120は、積層方向Dで隣接するプライマリチップ110又は他のセカンダリチップ120との間でクロック信号、コマンド信号、及びデータ信号を転送する転送端子121を有する。本実施形態において、セカンダリチップ120は、1つのメモリ部11内に3つ積層される。セカンダリチップ120のそれぞれは、バンプレスTSV200を用いてプライマリチップ110に接続される。本実施形態において、セカンダリチップ120は、メモリセル(図示せず)及びメモリ制御回路(図示せず)を含むメモリ制御部122を有する。
再配線層12は、積層方向Dにおいて隣接するメモリ部11の間と積層方向D一端側のメモリ部11の一面上とに配置される。再配線層12は、例えば、積層方向Dにおいて、プライマリチップ110に隣接して配置される。また、再配線層12は、プライマリチップ110の入出力端子31及び接続端子32と電気的に接続される。再配線層12は、積層方向Dに交差する方向においてメモリ部11の端面よりも突出する端部42を有する。再配線層12は、例えば、積層方向Dに交差する方向において、メモリ部11の両端面のそれぞれよりも突出して配置される端部42を有する。
モールド部13は、例えば、エポキシ樹脂等により形成される。モールド部13は、隣接する再配線層12の端部42間に配置される。モールド部13は、例えば、積層方向Dにおけるメモリ部11の高さと同じ高さで形成される。
外部電極14は、積層方向Dにおいて隣接する再配線層12の間に配置され、再配線層12の端部42を電気的に接続する。外部電極14は、例えば、図1に示すように、モールド部13を貫通するモールド貫通電極として形成される。外部電極14は、隣接する再配線層12を電気的に接続する。本実施形態において、外部電極14は、積層方向Dに交差する方向において、メモリ部11を挟んで配置される。また、外部電極14は、複数の接続回路50を接続する回路数に応じた数だけ設けられる。また、本実施形態において、1つの外部電極14は、クロック信号、コマンド信号、及び入出力信号に合わせて3つを1セットとして設けられる。
以上の接続端子32、入出力端子31、再配線層12、及び外部電極14によれば、図2及び図3に示すように、再配線層12及び外部電極14は、1つのメモリ部11の接続端子32と他のメモリ部11の入出力端子31とを接続する接続回路50を形成する。本実施形態において、接続端子32は、1つのメモリ部11(プライマリスタック21)と、他の3つのメモリ部11とを接続する。すなわち、接続回路50は、プライマリスタック21の接続端子32のクロック端子311、コマンド端子312、及びデータ端子313と、他の全てのメモリ部11の入出力端子31のクロック信号、コマンド信号、及びデータ信号の入出力端子31とを接続する。これにより、接続回路50は、プライマリスタック21に対して3つのメモリ部11をバイパス接続する。接続回路50は、プライマリスタック21に入力されたクロック信号及びコマンド信号に応じて、他の3つのメモリ部11から入出力されたデータ信号をプライマリスタック21に集約する。
半田ボール15は、例えば、積層方向D一端の再配線層12に接触して複数配置される。半田ボール15は、他の基板(図示しない)等に半導体モジュール1を電気的に接続するために配置される
次に、半導体モジュール1の動作について説明する。
まず、メモリ領域にデータ書き込む場合、半田ボール15と、半田ボール15に接続する積層方向D一端の再配線層12を介して、プライマリスタック21(例えば、積層方向D一端に配置されるメモリ部11)の入出力端子31にクロック信号、コマンド信号、及び書き込み用のデータ信号が入力される。プライマリスタック21の接続端子32は、入出力端子31に入力されたクロック信号、コマンド信号、及びデータ信号を接続回路50に出力する。出力されたクロック信号、コマンド信号、及びデータ信号は、接続回路50を構成する外部電極14及び再配線層12を介して、他のメモリ部11の入出力端子31に入力される。
まず、メモリ領域にデータ書き込む場合、半田ボール15と、半田ボール15に接続する積層方向D一端の再配線層12を介して、プライマリスタック21(例えば、積層方向D一端に配置されるメモリ部11)の入出力端子31にクロック信号、コマンド信号、及び書き込み用のデータ信号が入力される。プライマリスタック21の接続端子32は、入出力端子31に入力されたクロック信号、コマンド信号、及びデータ信号を接続回路50に出力する。出力されたクロック信号、コマンド信号、及びデータ信号は、接続回路50を構成する外部電極14及び再配線層12を介して、他のメモリ部11の入出力端子31に入力される。
各メモリ部11のプライマリチップ110は、転送端子121を用いて、クロック信号、コマンド信号、及びデータ信号をセカンダリチップ120に転送する。プライマリチップ110及びセカンダリチップ120は、クロック信号、コマンド信号、及びデータ信号に応じて、それぞれのチップのメモリ領域にアクセスする。プライマリチップ110及びセカンダリチップ120は、クロック信号、コマンド信号、及びデータ信号に基づいて、それぞれのメモリ領域にデータを書き込む。
また、メモリ領域からデータを読み出す場合、半田ボール15と、半田ボール15に接続する積層方向D一端の再配線層12を介して、プライマリスタック21(例えば、積層方向D一端に配置されるメモリ部11)の入出力端子31にクロック信号及びコマンド信号が入力される。プライマリスタック21の接続端子32は、入出力端子31に入力されたクロック信号及びコマンド信号を接続回路50に出力する。出力されたクロック信号及びコマンド信号は、接続回路50を構成する外部電極14及び再配線層12を介して、他のメモリ部11の入出力端子31に入力される。
各メモリ部11のプライマリチップ110は、転送端子121を用いて、クロック信号及びコマンド信号をセカンダリチップ120に転送する。プライマリチップ110及びセカンダリチップ120は、クロック信号及びコマンド信号に応じて、それぞれのチップのメモリ領域にアクセスする。プライマリチップ110及びセカンダリチップ120は、クロック信号及びコマンド信号に基づいて、それぞれのメモリ領域からデータを読み出す。セカンダリチップ120は、転送端子121を用いて読み出したデータをデータ信号としてプライマリチップ110に転送する。プライマリチップ110は、自身の読み出したデータと、転送されたデータとをバッファリングする。
他のメモリ部11のプライマリチップ110は、入出力端子31と接続回路50とを用いて、バッファリングしたデータ信号をプライマリスタック21の接続端子32に送信する。プライマリスタック21のプライマリチップ110は、自身のバッファリングしたデータと、他のメモリ部11から送信されたデータとをデータ信号として入出力端子31、再配線層12、及び半田ボール15を介して外部に出力する。
以上のような第1実施形態に係る半導体モジュール1及び積層モジュール100によれば、以下の効果を奏する。
(1)複数の積層メモリを含む半導体モジュール1において、積層方向に積層される複数のメモリ部11であって、それぞれが信号を入出力する入出力端子31と他のメモリ部と接続するための接続端子32とを有するメモリ部11と、積層方向において隣接する前記メモリ部11の間と積層方向一端側の前記メモリ部の一面上とに配置され、前記積層方向に交差する方向において前記メモリ部11の端面よりも突出する端部を有する再配線層12と、積層方向において隣接する前記再配線層12の間に配置され、前記再配線層12の端部を電気的に接続する外部電極14と、を備え、前記再配線層12及び前記外部電極14は、1つの前記メモリ部11の前記接続端子32と他の前記メモリ部の前記入出力端子31とを接続する接続回路50を形成する。これにより、製造を容易にすることが可能な半導体モジュール1及び積層モジュール100を提供することができる。また、メモリ部11とは別に外部配線を設けることにより、メモリ部11内に配線を形成する必要が無いので、歩留まりを向上することができる。また、外部配線の形成を変更することにより、半導体モジュール1のバリエーションを容易に増やすことができる。また、プライマリチップ110及びセカンダリチップ120は、同一チップの一部機能を変更したものであるので、例えばヒューズ素子等を用いて変更することで製造を容易にすることができる。
(1)複数の積層メモリを含む半導体モジュール1において、積層方向に積層される複数のメモリ部11であって、それぞれが信号を入出力する入出力端子31と他のメモリ部と接続するための接続端子32とを有するメモリ部11と、積層方向において隣接する前記メモリ部11の間と積層方向一端側の前記メモリ部の一面上とに配置され、前記積層方向に交差する方向において前記メモリ部11の端面よりも突出する端部を有する再配線層12と、積層方向において隣接する前記再配線層12の間に配置され、前記再配線層12の端部を電気的に接続する外部電極14と、を備え、前記再配線層12及び前記外部電極14は、1つの前記メモリ部11の前記接続端子32と他の前記メモリ部の前記入出力端子31とを接続する接続回路50を形成する。これにより、製造を容易にすることが可能な半導体モジュール1及び積層モジュール100を提供することができる。また、メモリ部11とは別に外部配線を設けることにより、メモリ部11内に配線を形成する必要が無いので、歩留まりを向上することができる。また、外部配線の形成を変更することにより、半導体モジュール1のバリエーションを容易に増やすことができる。また、プライマリチップ110及びセカンダリチップ120は、同一チップの一部機能を変更したものであるので、例えばヒューズ素子等を用いて変更することで製造を容易にすることができる。
(2)メモリ部11は、バンプレスTSV200を用いて積層された複数のメモリチップを有する。これにより、メモリ部11の積層方向の高さを抑えて製造を容易にしつつ、メモリ容量を容易に増やすことができる。
(3)メモリ部11は、入出力端子31及び接続端子32を有するプライマリチップ110と、プライマリチップ110に接続されるセカンダリチップ120と、を有する。これにより、複数の積層されたメモリ部11の制御を容易にすることができる。また、複数のメモリチップに対して、回路構成を単純化することができる。
(4)プライマリチップ110は、プライマリチップ110及びセカンダリチップ120の動作タイミングを調整するタイミング制御部111を有する。これにより、複数のメモリチップに対して適切に動作を制御することができる。
[第2実施形態]
次に、本発明の第2実施形態に係る半導体モジュール1について、図4及び図5を参照して説明する。第2実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第2実施形態に係る半導体モジュール1は、図4及び図6に示すように、接続端子32のうち、データ端子313が接続回路50に接続されていない点で、第1実施形態と異なる。具体的には、複数のメモリ部11の入出力端子31のうちのデータ端子313は、プライマリチップ110に隣接する再配線層12、外部電極14、積層方向D一端の再配線層12、及び半田ボール15を介して外部に接続される。すなわち、複数のメモリ部11の入出力端子31のうちのデータ端子313は、直接外部に接続される。これに伴い、プライマリスタック21の接続端子32のうち、データ端子313は、接続回路50に接続されない。
次に、本発明の第2実施形態に係る半導体モジュール1について、図4及び図5を参照して説明する。第2実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第2実施形態に係る半導体モジュール1は、図4及び図6に示すように、接続端子32のうち、データ端子313が接続回路50に接続されていない点で、第1実施形態と異なる。具体的には、複数のメモリ部11の入出力端子31のうちのデータ端子313は、プライマリチップ110に隣接する再配線層12、外部電極14、積層方向D一端の再配線層12、及び半田ボール15を介して外部に接続される。すなわち、複数のメモリ部11の入出力端子31のうちのデータ端子313は、直接外部に接続される。これに伴い、プライマリスタック21の接続端子32のうち、データ端子313は、接続回路50に接続されない。
以上のような第1実施形態に係る半導体モジュール1によれば、以下の効果を奏する。
(4)複数のメモリ部11の入出力端子31のうちのデータ端子313は、隣接する再配線層12、外部電極14、積層方向D一端の再配線層12、及び半田ボール15を介して外部に接続される。これにより、データ信号が直接外部と通信されるので、データの伝送経路を短くしてデータ品質を向上することができる。また、複数のメモリ部11を同時に動作させるようにしてデータ信号の本数を増やし、バンド幅を向上することができる。
(4)複数のメモリ部11の入出力端子31のうちのデータ端子313は、隣接する再配線層12、外部電極14、積層方向D一端の再配線層12、及び半田ボール15を介して外部に接続される。これにより、データ信号が直接外部と通信されるので、データの伝送経路を短くしてデータ品質を向上することができる。また、複数のメモリ部11を同時に動作させるようにしてデータ信号の本数を増やし、バンド幅を向上することができる。
[第3実施形態]
次に、本発明の第3実施形態に係る半導体モジュール1について、図6及び図7を参照して説明する。第3実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第3実施形態に係る半導体モジュール1は、図6及び図7に示すように、プライマリスタック21と、接続回路50を複数設ける点で、第1及び第2実施形態と異なる。具体的には、第3実施形態は、1つのプライマリスタック21と1つの他のメモリ部11と両者を接続する接続回路50とを2セット設ける点で、第1及び第2実施形態と異なる。すなわち、第3実施形態に係る半導体モジュール1は、外部に接続されるプライマリスタック21の入出力端子31が2つ設けられる点で、第1及び第2実施形態と異なる。
次に、本発明の第3実施形態に係る半導体モジュール1について、図6及び図7を参照して説明する。第3実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第3実施形態に係る半導体モジュール1は、図6及び図7に示すように、プライマリスタック21と、接続回路50を複数設ける点で、第1及び第2実施形態と異なる。具体的には、第3実施形態は、1つのプライマリスタック21と1つの他のメモリ部11と両者を接続する接続回路50とを2セット設ける点で、第1及び第2実施形態と異なる。すなわち、第3実施形態に係る半導体モジュール1は、外部に接続されるプライマリスタック21の入出力端子31が2つ設けられる点で、第1及び第2実施形態と異なる。
以上のような第3実施形態に係る半導体モジュール1によれば、以下の効果を奏する。
(5)1つのメモリ部11と、他のメモリ部11と、両者を接続する接続回路50とを複数セット設けた。これにより、入出力端子31を多チャンネル化することができるので、半導体モジュール1の利用効率を向上することができる。
(5)1つのメモリ部11と、他のメモリ部11と、両者を接続する接続回路50とを複数セット設けた。これにより、入出力端子31を多チャンネル化することができるので、半導体モジュール1の利用効率を向上することができる。
[第4実施形態]
次に、本発明の第4実施形態に係る半導体モジュール1について、図8及び図9を参照して説明する。第4実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第4実施形態に係る半導体モジュール1は、図8及び図9に示すように、1つのメモリ部11が、他のメモリ部11と接続回路50を用いて直列に接続される点で第1から第3実施形態と異なる。具体的には、第4実施形態に係る半導体モジュール1は、プライマリスタック21の接続端子32と、他のメモリ部11の入出力端子31とを接続する接続回路50と、他のメモリ部11の接続端子32とさらに他のメモリ部11の入出力端子31とを接続する接続回路50とを有している点で第1から第3実施形態と異なる。
次に、本発明の第4実施形態に係る半導体モジュール1について、図8及び図9を参照して説明する。第4実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第4実施形態に係る半導体モジュール1は、図8及び図9に示すように、1つのメモリ部11が、他のメモリ部11と接続回路50を用いて直列に接続される点で第1から第3実施形態と異なる。具体的には、第4実施形態に係る半導体モジュール1は、プライマリスタック21の接続端子32と、他のメモリ部11の入出力端子31とを接続する接続回路50と、他のメモリ部11の接続端子32とさらに他のメモリ部11の入出力端子31とを接続する接続回路50とを有している点で第1から第3実施形態と異なる。
以上のような第4実施形態に係る半導体モジュール1によれば、以下の効果を奏する。
(6)1つのメモリ部11が、他のメモリ部11と接続回路50を用いて直列に接続されるようにした。これにより、接続回路50の経路を短くすることができるので、歩留まりを向上することができる。また、積層するメモリ部11の個数によらず接続回路50の寄生抵抗と寄生容量を概ね一定に揃えることができるので、積層するメモリ部11の個数を容易に変更することができる。
(6)1つのメモリ部11が、他のメモリ部11と接続回路50を用いて直列に接続されるようにした。これにより、接続回路50の経路を短くすることができるので、歩留まりを向上することができる。また、積層するメモリ部11の個数によらず接続回路50の寄生抵抗と寄生容量を概ね一定に揃えることができるので、積層するメモリ部11の個数を容易に変更することができる。
[第5実施形態]
次に、本発明の第5実施形態に係る半導体モジュール1について、図10及び図11を参照して説明する。第5実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第5実施形態に係る半導体モジュール1は、図10及び図11に示すように、再配線層12の端部42に配置されるロジックチップ130をさらに備える点で、第1から第4実施形態と異なる。なお、第5実施形態に係る半導体モジュール1は、ロジックチップ130に重ねて複数のダミーシリコン132を配置する。本実施形態において、複数のメモリ部11は、ロジックチップ130を挟んで一対に配置される。また、ロジックチップ130は、メモリ部11と接続され、メモリ部11との間の信号の入出力を制御するコントローラ131を有する。
次に、本発明の第5実施形態に係る半導体モジュール1について、図10及び図11を参照して説明する。第5実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第5実施形態に係る半導体モジュール1は、図10及び図11に示すように、再配線層12の端部42に配置されるロジックチップ130をさらに備える点で、第1から第4実施形態と異なる。なお、第5実施形態に係る半導体モジュール1は、ロジックチップ130に重ねて複数のダミーシリコン132を配置する。本実施形態において、複数のメモリ部11は、ロジックチップ130を挟んで一対に配置される。また、ロジックチップ130は、メモリ部11と接続され、メモリ部11との間の信号の入出力を制御するコントローラ131を有する。
以上のような第5実施形態に係る半導体モジュール1によれば、以下の効果を奏する。
(7)半導体モジュール1は、再配線層12の端部42に配置されるロジックチップ130をさらに備える。これにより、メモリ部11とロジックチップ130との間の配線距離を短くすることができる。したがって、メモリ周波数(信号品質)が高く、データ移動電力の少ない半導体モジュール1を実現することができる。
(7)半導体モジュール1は、再配線層12の端部42に配置されるロジックチップ130をさらに備える。これにより、メモリ部11とロジックチップ130との間の配線距離を短くすることができる。したがって、メモリ周波数(信号品質)が高く、データ移動電力の少ない半導体モジュール1を実現することができる。
[第6実施形態]
次に、本発明の第6実施形態に係る積層モジュール100について、図12を参照して説明する。第6実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第6実施形態に係る積層モジュール100は、上記第1実施形態から第5実施形態の半導体モジュール1を複数積層している点で、第1から第5実施形態と異なる。積層モジュール100は、例えば、図12に示すように、マイクロバンプ16を用いて、複数の半導体モジュール1を接続する。このとき、積層方向D一端側で他の半導体モジュール1を積層する半導体モジュール1の他端側の表面には、再配線層12が配置される。他の半導体モジュール1は、配置された再配線層12とマイクロバンプ16を用いて電気的に接続される。
次に、本発明の第6実施形態に係る積層モジュール100について、図12を参照して説明する。第6実施形態において、同一構成について同一の符号を付し、説明を簡略化又は省略する。
第6実施形態に係る積層モジュール100は、上記第1実施形態から第5実施形態の半導体モジュール1を複数積層している点で、第1から第5実施形態と異なる。積層モジュール100は、例えば、図12に示すように、マイクロバンプ16を用いて、複数の半導体モジュール1を接続する。このとき、積層方向D一端側で他の半導体モジュール1を積層する半導体モジュール1の他端側の表面には、再配線層12が配置される。他の半導体モジュール1は、配置された再配線層12とマイクロバンプ16を用いて電気的に接続される。
以上のような第6実施形態に係る積層モジュール100によれば、以下の効果を奏する。
(8)積層モジュール100は、上記の半導体モジュール1を複数積層して形成される。これにより、半導体モジュール1に含めるメモリ部11の数を減らすことができるので、半導体モジュール1の歩留まりを向上することができる。これにより、積層モジュール100の歩留まりも向上することができる。また、半導体モジュール1のメモリ部11の段数を減らすことができるので、組立を容易にすることができる。
(8)積層モジュール100は、上記の半導体モジュール1を複数積層して形成される。これにより、半導体モジュール1に含めるメモリ部11の数を減らすことができるので、半導体モジュール1の歩留まりを向上することができる。これにより、積層モジュール100の歩留まりも向上することができる。また、半導体モジュール1のメモリ部11の段数を減らすことができるので、組立を容易にすることができる。
以上、本発明の半導体モジュール及び積層モジュールの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
例えば、上記実施形態において、メモリ部11が複数のメモリチップを含むとしたが、1つのメモリチップを含んでもよい。
例えば、上記実施形態において、メモリ部11が複数のメモリチップを含むとしたが、1つのメモリチップを含んでもよい。
また、上記実施形態において、プライマリチップ110は、隣接するセカンダリチップ120とハイブリッドボンディングにより接続されてもよい。また、プライマリチップ110は、セカンダリチップ120と非接触通信により接続されてもよい。これによりメモリ部11の積層方向の高さを抑えられるので、半導体モジュール1の製造を容易にできる。
また、上記実施形態において、プライマリスタック21及び他のメモリ部11の数は4つに制限されない。また、セカンダリチップ120の数も制限されない。
1 半導体モジュール
11 メモリ部
12 再配線層
13 モールド部
14 外部電極
15 半田ボール
16 マイクロバンプ
21 プライマリスタック
31 入出力端子
32 接続端子
41 バッファ
42 端部
50 接続回路
100 積層モジュール
110 プライマリチップ
111 タイミング制御部
120 セカンダリチップ
121 転送端子
130 ロジックチップ
131 コントローラ
132 ダミーシリコン
200 バンプレスTSV
311、321 クロック端子
312、322 コマンド端子
313、323 データ端子
D 積層方向
11 メモリ部
12 再配線層
13 モールド部
14 外部電極
15 半田ボール
16 マイクロバンプ
21 プライマリスタック
31 入出力端子
32 接続端子
41 バッファ
42 端部
50 接続回路
100 積層モジュール
110 プライマリチップ
111 タイミング制御部
120 セカンダリチップ
121 転送端子
130 ロジックチップ
131 コントローラ
132 ダミーシリコン
200 バンプレスTSV
311、321 クロック端子
312、322 コマンド端子
313、323 データ端子
D 積層方向
Claims (11)
- 複数の積層メモリを含む半導体モジュールにおいて、
積層方向に積層される複数のメモリ部であって、それぞれが信号を入出力する入出力端子と他のメモリ部と接続するための接続端子とを有するメモリ部と、
積層方向において隣接する前記メモリ部の間と積層方向一端側の前記メモリ部の一面上とに配置され、積層方向に交差する方向において前記メモリ部の端面よりも突出する端部を有する再配線層と、
積層方向において隣接する前記再配線層の間に配置され、前記再配線層の端部を電気的に接続する外部電極と、
を備え、
前記再配線層及び前記外部電極は、1つの前記メモリ部の前記接続端子と他の前記メモリ部の前記入出力端子とを接続する接続回路を形成する半導体モジュール。 - 前記メモリ部は、積層された複数のメモリチップを有する請求項1に記載の半導体モジュール。
- 前記メモリ部は、
前記入出力端子及び前記接続端子を有するプライマリチップと、
前記プライマリチップに接続されるセカンダリチップと、
を有する請求項2に記載の半導体モジュール。 - 前記プライマリチップは、前記プライマリチップ及び前記セカンダリチップの動作タイミングを調整するタイミング制御部を有する請求項3に記載の半導体モジュール。
- 前記プライマリチップと前記セカンダリチップとは同一チップの一部機能を変更した請求項3又は4に記載の半導体モジュール。
- 前記プライマリチップは、前記セカンダリチップとバンプレスTSVにより接続される請求項3から5のいずれかに記載の半導体モジュール。
- 前記プライマリチップは、隣接する前記セカンダリチップとハイブリッドボンディングにより接続される請求項3から6のいずれかに記載の半導体モジュール。
- 前記プライマリチップは、前記セカンダリチップと非接触通信により接続される請求項3から5のいずれかに記載の半導体モジュール。
- 前記接続回路は、1つの前記メモリ部のクロック信号及びコマンド信号の前記接続端子と、他の前記メモリ部の前記クロック信号及び前記コマンド信号の前記入出力端子とを接続する請求項1から8のいずれかに記載の半導体モジュール。
- 前記再配線層の端部に配置されるロジックチップをさらに備える請求項1から8のいずれかに記載の半導体モジュール。
- 請求項1から10のいずれかに記載の半導体モジュールを複数積層した積層モジュール。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023568850A JPWO2023119450A1 (ja) | 2021-12-21 | 2021-12-21 | |
PCT/JP2021/047418 WO2023119450A1 (ja) | 2021-12-21 | 2021-12-21 | 半導体モジュール及び積層モジュール |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/047418 WO2023119450A1 (ja) | 2021-12-21 | 2021-12-21 | 半導体モジュール及び積層モジュール |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023119450A1 true WO2023119450A1 (ja) | 2023-06-29 |
Family
ID=86901562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047418 WO2023119450A1 (ja) | 2021-12-21 | 2021-12-21 | 半導体モジュール及び積層モジュール |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023119450A1 (ja) |
WO (1) | WO2023119450A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002368185A (ja) * | 2001-06-01 | 2002-12-20 | Toshiba Corp | 半導体装置 |
JP2009016786A (ja) * | 2007-07-02 | 2009-01-22 | Nepes Corp | 超薄型半導体パッケージ及びその製造方法 |
JP2009295699A (ja) * | 2008-06-03 | 2009-12-17 | Keio Gijuku | 電子回路 |
JP2013201218A (ja) * | 2012-03-23 | 2013-10-03 | Toshiba Corp | 半導体装置とそれを用いた半導体モジュール |
WO2018220846A1 (ja) * | 2017-06-02 | 2018-12-06 | ウルトラメモリ株式会社 | 半導体モジュール |
US20200227386A1 (en) * | 2019-01-14 | 2020-07-16 | Intel Corporation | Dual rdl stacked die package using vertical wire |
US20210118851A1 (en) * | 2019-10-17 | 2021-04-22 | Micron Technology, Inc. | Microelectronic device assemblies and packages including surface mount components |
-
2021
- 2021-12-21 WO PCT/JP2021/047418 patent/WO2023119450A1/ja active Application Filing
- 2021-12-21 JP JP2023568850A patent/JPWO2023119450A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002368185A (ja) * | 2001-06-01 | 2002-12-20 | Toshiba Corp | 半導体装置 |
JP2009016786A (ja) * | 2007-07-02 | 2009-01-22 | Nepes Corp | 超薄型半導体パッケージ及びその製造方法 |
JP2009295699A (ja) * | 2008-06-03 | 2009-12-17 | Keio Gijuku | 電子回路 |
JP2013201218A (ja) * | 2012-03-23 | 2013-10-03 | Toshiba Corp | 半導体装置とそれを用いた半導体モジュール |
WO2018220846A1 (ja) * | 2017-06-02 | 2018-12-06 | ウルトラメモリ株式会社 | 半導体モジュール |
US20200227386A1 (en) * | 2019-01-14 | 2020-07-16 | Intel Corporation | Dual rdl stacked die package using vertical wire |
US20210118851A1 (en) * | 2019-10-17 | 2021-04-22 | Micron Technology, Inc. | Microelectronic device assemblies and packages including surface mount components |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023119450A1 (ja) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11693801B2 (en) | Stacked semiconductor device assembly in computer system | |
US7834450B2 (en) | Semiconductor package having memory devices stacked on logic device | |
KR102716191B1 (ko) | 반도체 메모리 장치 및 이를 구비하는 메모리 모듈 | |
US11410970B2 (en) | Semiconductor module | |
JP2013197387A (ja) | 半導体装置 | |
US11682627B2 (en) | Semiconductor package including an interposer | |
US20120049361A1 (en) | Semiconductor integrated circuit | |
JP2011222807A (ja) | 半導体装置 | |
WO2023119450A1 (ja) | 半導体モジュール及び積層モジュール | |
JPWO2019102528A1 (ja) | 半導体モジュール | |
US10679956B2 (en) | Semiconductor memory chip, semiconductor memory package, and electronic system using the same | |
JP2014220473A (ja) | 集積回路装置およびその構成方法 | |
JP6993023B2 (ja) | 半導体モジュール | |
CN215955274U (zh) | 一种三维异质集成的可编程芯片结构和电子设备 | |
JP7584180B2 (ja) | モジュール及びその製造方法 | |
US10002850B2 (en) | Semiconductor chip flexibly applied to various routing structures and semiconductor chip module using the same | |
CN118103975A (zh) | 芯片及电子设备 | |
CN113629044A (zh) | 一种三维异质集成的可编程芯片结构和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21968887 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023568850 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |