WO2023113406A1 - 표시 장치 및 표시 장치의 제조방법 - Google Patents
표시 장치 및 표시 장치의 제조방법 Download PDFInfo
- Publication number
- WO2023113406A1 WO2023113406A1 PCT/KR2022/020151 KR2022020151W WO2023113406A1 WO 2023113406 A1 WO2023113406 A1 WO 2023113406A1 KR 2022020151 W KR2022020151 W KR 2022020151W WO 2023113406 A1 WO2023113406 A1 WO 2023113406A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electrode
- hole
- area
- region
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 230000000149 penetrating effect Effects 0.000 claims description 15
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 439
- 239000002346 layers by function Substances 0.000 description 60
- 239000000463 material Substances 0.000 description 48
- 238000005538 encapsulation Methods 0.000 description 30
- 239000003990 capacitor Substances 0.000 description 27
- 239000010936 titanium Substances 0.000 description 24
- 230000000903 blocking effect Effects 0.000 description 22
- 239000010949 copper Substances 0.000 description 22
- 239000002096 quantum dot Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 16
- 229910052719 titanium Inorganic materials 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 239000011368 organic material Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 239000011810 insulating material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- -1 region Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 239000007769 metal material Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 150000003608 titanium Chemical class 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910021480 group 4 element Inorganic materials 0.000 description 2
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/124—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/824—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/865—Intermediate layers comprising a mixture of materials of the adjoining active layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
- H10K59/1315—Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/38—Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
Definitions
- Embodiments of the present invention relate to a device and a method, and to a display device and a manufacturing method of the display device.
- Background art should be understood as providing a useful background for understanding the technology.
- background art may include ideas, concepts, or perceptions that are not part of what was known or recognized by those skilled in the art prior to the applicable effective filing date of the subject matter disclosed herein.
- the display device may include a liquid crystal display device that does not emit light by itself but uses light from a backlight, or a light emitting display device including a display element capable of emitting light.
- a light emitting display device may include display elements including a light emitting layer.
- Embodiments of the present invention relate to devices and methods, and more specifically, provide a structure related to a display device and a manufacturing method of the display device.
- An embodiment of the present invention is a substrate, an organic insulating layer disposed on the substrate and having an opening, a first electrode on the organic insulating layer, and disposed on the organic insulating layer, wherein the first portion is the organic insulating layer.
- a bank layer defined with an auxiliary electrode overlapping the opening of an insulating layer, a first bank opening overlapping the first electrode, and a second bank opening overlapping the first portion of the auxiliary electrode;
- An intermediate layer disposed on the first electrode and the auxiliary electrode and including a hole exposing a part of the auxiliary electrode, disposed on the intermediate layer to overlap the first electrode and the auxiliary electrode, and including a hole in the intermediate layer
- a display device including a second electrode contacting the auxiliary electrode through the middle layer, and the thickness of the middle layer is variable as the hole is further away from the center.
- the quality of the contact area between the auxiliary electrode and the second electrode on the auxiliary electrode can be secured by providing an intermediate layer having a hole. Also, according to embodiments of the present invention, it is possible to provide clear images.
- the above effects are exemplary, and the scope of the present invention is not limited by these effects.
- FIG. 1 is a perspective view schematically illustrating a display device according to an exemplary embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically illustrating each pixel of a display device according to an exemplary embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically illustrating each optical part of the color conversion-transmitting layer of FIG. 2 .
- FIG. 4 is an equivalent circuit diagram schematically illustrating a light emitting diode included in a display device according to an exemplary embodiment and a pixel circuit electrically connected to the light emitting diode.
- FIG. 5 is a plan view schematically illustrating light emitting diodes and wires arranged around them of a display device according to an exemplary embodiment of the present invention.
- FIG. 6 is a cross-sectional view taken along line A-A′ of FIG. 5 .
- FIG. 7A is a plan view schematically illustrating structures of a common voltage line and an auxiliary electrode of a display device according to an exemplary embodiment of the present invention.
- FIG. 7B is a plan view schematically illustrating the periphery of the hole shown in FIG. 7A.
- FIG. 8 is a cross-sectional view taken along line BB′ of FIG. 7A.
- 9AA is a cross-sectional view taken along line C-C′ of FIG. 7A.
- FIG. 9B is a cross-sectional view schematically illustrating an enlarged portion of FIG. 9AA.
- 10 to 14 are cross-sectional views of a manufacturing process of a display device according to an exemplary embodiment of the present invention.
- FIG. 15 is a cross-sectional view schematically illustrating a hole and a hole periphery of a display device according to another exemplary embodiment of the present invention.
- 16 is a cross-sectional view schematically illustrating a hole and a hole periphery of a display device according to another exemplary embodiment of the present invention.
- An embodiment of the present invention is a substrate, an organic insulating layer disposed on the substrate and having an opening, a first electrode on the organic insulating layer, and disposed on the organic insulating layer, wherein the first portion is the organic insulating layer.
- a bank layer defined with an auxiliary electrode overlapping the opening of an insulating layer, a first bank opening overlapping the first electrode, and a second bank opening overlapping the first portion of the auxiliary electrode;
- An intermediate layer disposed on the first electrode and the auxiliary electrode and including a hole exposing a part of the auxiliary electrode, disposed on the intermediate layer to overlap the first electrode and the auxiliary electrode, and including a hole in the intermediate layer
- a display device including a second electrode contacting the auxiliary electrode through the middle layer, and the thickness of the middle layer is variable as the hole is further away from the center.
- the intermediate layer further includes a first region adjacent to the hole, and a second region adjacent to the first region, connected to the first region, and including a highest point having the highest height of the intermediate layer.
- the thickness of the first region may increase as the distance from the hole increases.
- planar shape of at least one of the first area and the second area may be a ring shape.
- the planar area of the hole may be about 60 ⁇ 20% of the sum of the planar area of the hole, the planar area of the first region, and the planar area of the second region.
- the radius of the planar shape of the hole measured in one direction may be about 60 ⁇ 20% of the radius of the outer edge of the planar shape of the second region.
- the distance from the edge of the hole measured in one direction to the planar outer edge of the first area may be about 15 ⁇ 10% of the radius of the planar outer edge of the second area.
- the distance from the planar outer edge of the first area to the planar outer edge of the second area measured in one direction is about 25 of the radius of the planar outer edge of the second area. It can be ⁇ 10%.
- the thickness of the intermediate layer disposed in the first region may be about 10 ⁇ 5% of the thickness of the intermediate layer disposed outside the second region.
- the thickness of the intermediate layer disposed in the first region may be in a range of about 200 ⁇ or more and about 600 ⁇ or less.
- the maximum value of the thickness of the intermediate layer disposed in the second region may be about 140 ⁇ 20% of the thickness of the intermediate layer disposed outside the second region.
- the intermediate layer may include a light emitting layer
- the hole of the intermediate layer may include a hole penetrating the light emitting layer
- a contact hole defined in a common voltage line disposed on the substrate and extending in one direction, and at least one insulating layer overlapping the common voltage line and interposed between the common voltage line and the common voltage line. and an auxiliary common voltage line electrically connected to the common voltage line through ?, and the auxiliary common voltage line and the common voltage line may overlap the opening of the organic insulating layer.
- an inorganic insulating layer directly contacting an upper surface of the auxiliary common voltage line may be further included.
- the auxiliary electrode overlaps the opening of the organic insulating layer and is integrally formed with the first portion having a width greater than the opening of the organic insulating layer, A second portion having a smaller width than the first portion may be included, and the second portion of the auxiliary electrode may be electrically connected to the auxiliary common voltage line through a contact hole penetrating the organic insulating layer and the inorganic insulating layer. there is.
- Another aspect of the present invention is a substrate, an organic insulating layer disposed on the substrate and having an opening, a first electrode on the organic insulating layer, and disposed on the organic insulating layer, wherein the first portion is the organic insulating layer.
- a bank layer defining an auxiliary electrode overlapping the opening of an insulating layer, a first bank opening overlapping the first electrode, and a second bank opening overlapping the first portion of the auxiliary electrode;
- An intermediate layer disposed on the electrode and the auxiliary electrode and including a hole exposing a part of the auxiliary electrode, disposed on the intermediate layer to overlap the first electrode and the auxiliary electrode, and through the hole of the intermediate layer a second electrode in contact with the auxiliary electrode, wherein the intermediate layer is adjacent to the hole and is adjacent to a first region having a variable first thickness; is adjacent to the first region and is connected to the first region;
- a display device further including a second region having a variable second thickness and having a peak at which the thickness of the intermediate layer is the
- the first thickness may increase as the distance from the hole increases.
- planar shape of at least one of the first area and the second area may be a ring shape.
- the planar area of the hole may be about 60 ⁇ 20% of the sum of the planar area of the hole, the planar area of the first region, and the planar area of the second region.
- the radius of the planar shape of the hole measured in one direction may be about 60 ⁇ 20% of the radius of the outer edge of the planar shape of the second region.
- the distance from the edge of the hole measured in one direction to the planar outer edge of the first area may be about 15 ⁇ 10% of the radius of the planar outer edge of the second area.
- the distance from the planar outer edge of the first area to the planar outer edge of the second area measured in one direction is about 25 of the radius of the planar outer edge of the second area. It can be ⁇ 20%.
- the first thickness may be about 10 ⁇ 5% of the third thickness.
- the first thickness may be in a range of about 200 ⁇ or more and about 600 ⁇ or less.
- the maximum value of the second thickness may be about 140 ⁇ 20% of the third thickness.
- the intermediate layer may include a light emitting layer
- the hole of the intermediate layer may include a hole penetrating the light emitting layer
- a contact hole defined in a common voltage line disposed on the substrate and extending in one direction, and at least one insulating layer overlapping the common voltage line and interposed between the common voltage line and the common voltage line. and an auxiliary common voltage line electrically connected to the common voltage line through ?, and the auxiliary common voltage line and the common voltage line may overlap the opening of the organic insulating layer.
- an inorganic insulating layer directly contacting an upper surface of the auxiliary common voltage line may be further included.
- the auxiliary electrode overlaps the opening of the organic insulating layer and is integrally formed with the first portion having a width greater than the opening of the organic insulating layer, A second portion having a smaller width than the first portion may be included, and the second portion of the auxiliary electrode may be electrically connected to the auxiliary common voltage line through a contact hole penetrating the organic insulating layer and the inorganic insulating layer. there is.
- Another embodiment of the present invention is a step of forming an organic insulating layer having an opening on a substrate, a step of forming a first electrode on the organic insulating layer, and a first portion in the opening of the organic insulating layer.
- a bank layer in which a step of forming an overlapping auxiliary electrode on the organic insulating layer, a first bank opening overlapping the first electrode, and a second bank opening overlapping the first portion of the auxiliary electrode are defined.
- a forming step a step of forming an intermediate layer to be positioned on the first electrode and the auxiliary electrode, and a step of irradiating a laser to the intermediate layer to form a hole in the intermediate layer exposing a part of the auxiliary electrode; a process of irradiating a laser to the intermediate layer to remove a part of the first region of the intermediate layer around the hole and protruding a second region of the intermediate layer connected to the first region; and the auxiliary electrode through the hole of the intermediate layer.
- a method of manufacturing a display device including a step of forming a second electrode on the intermediate layer to be in contact with the middle layer.
- the output per unit area of the laser may be about 200mJ/cm 2 or less.
- the laser may be an ultraviolet laser having a wavelength of about 300 nm or more and about 400 nm or less.
- At least one of A, B, and C may mean one A, one B, one C, A and B, A and C, B and C, A, B, and C, and various Combinations are possible.
- first, second, etc. may be used herein to describe various components, it will be understood that these components should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
- films, regions, components, etc. when it is assumed that films, regions, components, etc. are connected, not only are the films, regions, and components directly connected, but also other films, regions, and components are interposed between the films, regions, and components. This includes cases where it is connected indirectly.
- a film, region, component, etc. is electrically connected in this specification, not only is the film, region, component, etc. directly electrically connected, but another film, region, component, etc. is interposed therebetween. Including cases of indirect electrical connection.
- connection to may include a physical or electrical connection or coupling.
- spatially relative terms “below”, “below”, “lower”, “above”, “upper” and the like are used herein to describe one element or a relationship between another element and to facilitate explanation. can be used An element or component as shown in the drawings. It will be appreciated that spatially relative terms are intended to include various orientations of the device in use or operation in addition to the orientations depicted in the drawings. For example, when a device shown in the drawings is turned over, a device that is “below” or “beneath” another device may be positioned “above” the other device. Thus, the exemplary term “below” can include both lower and upper positions. Devices may also be oriented in other orientations, so spatially relative terms may be interpreted differently depending on the orientation.
- overlap means that a first object can be above or below or to the side of a second object and vice versa. Additionally, the term “overlapping” may include layer, stack, face or face, extending over, covering, or partially covering, or any other suitable term understood and understood by one skilled in the art.
- opposite and opposite mean that the first element may directly or indirectly oppose the second element.
- a third element is interposed between the first and second elements, it may be understood that the first and second elements face each other but indirectly face each other.
- FIG. 1 is a perspective view schematically illustrating a display device according to an exemplary embodiment of the present invention.
- the display device DV may include a display area DA and a non-display area NDA outside the display area DA.
- the display device may provide an image in the display area DA through an array of a plurality of pixels two-dimensionally arranged (or arranged) on an x-y plane.
- the plurality of pixels include a first pixel, a second pixel, and a third pixel.
- the first pixel is a red pixel (Pr)
- the second pixel is a green pixel (Pg)
- a case in which the pixel is a blue pixel Pb will be described.
- the red pixel Pr, the green pixel Pg, and the blue pixel Pb are regions capable of emitting red, green, and blue light, respectively, and the display device DV uses the light emitted from the pixels. image can be provided.
- the non-display area NDA is an area that does not provide an image, and may be disposed adjacent to or entirely surrounding the display area DA.
- a driver or main voltage line for providing electrical signals or power to the pixel circuits may be disposed in the non-display area NDA.
- the non-display area NDA may include a pad that is an area to which an electronic device or a printed circuit board can be electrically connected.
- the display area DA may have a polygonal shape including a quadrangle.
- the display area DA may have a rectangular shape in which a horizontal length is greater than a vertical length, a rectangular shape in which a horizontal length is smaller than a vertical length, or a square shape.
- the display area DA may have various shapes such as an ellipse or a circle.
- FIG. 2 is a cross-sectional view schematically illustrating each pixel of a display device according to an exemplary embodiment of the present invention.
- the display device DV may include a circuit layer 200 on a substrate 100 .
- the circuit layer 200 includes first to third pixel circuits PC1 , PC2 , and PC3 , and each of the first to third pixel circuits PC1 , PC2 , and PC3 are first to third pixel circuits of the light emitting diode layer 300 . It may be electrically connected to the third light emitting diodes LED1 , LED2 , and LED3 .
- the first to third light emitting diodes LED1 , LED2 , and LED3 may include organic light emitting diodes including organic materials.
- the first to third light emitting diodes LED1 , LED2 , and LED3 may be inorganic light emitting diodes including inorganic materials.
- the inorganic light emitting diode may include a PN junction diode including inorganic semiconductor-based materials. When a forward voltage is applied to the PN junction diode, holes and electrons are injected, and energy generated by recombination of the holes and electrons is converted into light energy to emit light of a predetermined color.
- the aforementioned inorganic light emitting diode may have a width of several to hundreds of micrometers or several to several hundred nanometers.
- the light emitting diode (LED) may be a light emitting diode including quantum dots.
- the light emitting layer of the light emitting diode (LED) may include organic materials, inorganic materials, quantum dots, organic materials and quantum dots, or inorganic materials and quantum dots.
- the first to third light emitting diodes LED1 , LED2 , and LED3 may emit light of the same color.
- light eg, blue light Lb
- light emitted from the first to third light emitting diodes LED1 , LED2 , and LED3 passes through the encapsulation layer 400 on the light emitting diode layer 300 and passes through the color conversion-transmitting layer 500 . can pass
- the color conversion-transmitting layer 500 may include optical units that convert or transmit the color of light emitted from the light emitting diode layer 300 (eg, blue light Lb).
- the color conversion-transmitting layer 500 includes color conversion units that convert light emitted from the light emitting diode layer 300 (eg, blue light Lb) into light of a different color, and light emitted from the light emitting diode layer 300. (eg, blue light Lb) may include a transmission unit that transmits without color conversion.
- the color conversion-transmitting layer 500 includes a first color conversion unit 510 corresponding to a red pixel Pr, a second color conversion unit 520 corresponding to a green pixel Pg, and a blue pixel ( A transmission part 530 corresponding to Pb) may be included.
- the first color conversion unit 510 may convert blue light Lb into red light Lr
- the second color conversion unit 520 may convert blue light Lb into green light Lg.
- the transmitting part 530 may pass the blue light Lb without converting it.
- the color layer 600 may be disposed on the color conversion-transmitting layer 500 .
- the color layer 600 may include first to third color filters 610, 620, and 630 of different colors.
- the first color filter 610 may be a red color filter
- the second color filter 620 may be a green color filter
- the third color filter 630 may be a blue color filter.
- Color purity may be improved while the color converted light and the transmitted light in the color conversion-transmitting layer 500 pass through the first to third color filters 610, 620, and 630, respectively.
- the color layer 600 may prevent or minimize external light (eg, light incident from the outside of the display device DV toward the display device DV) from being reflected and recognized by the user.
- a light-transmitting substrate layer 700 may be included on the color layer 600 .
- the light-transmitting substrate layer 700 may include glass or a light-transmitting organic material.
- the light-transmitting substrate layer 700 may include a light-transmitting organic material such as an acrylic resin.
- the light-transmitting base layer 700 is a kind of substrate, and after the color layer 600 and the color conversion-transmitting layer 500 are formed on the light-transmitting base layer 700, the color conversion-transmitting layer 500 It may be integrated so as to face the encapsulation layer 400 .
- the light-transmissive substrate layer 700 is applied or directly applied on the color layer 600 and It can be cured and formed.
- another optical film such as an anti-reflection (AR) film, may be disposed on the light-transmitting substrate layer 700 .
- AR anti-reflection
- the display device DV having the above structure may include a television, a billboard, a screen for a movie theater, a monitor, a tablet PC, a laptop computer, and the like.
- FIG. 3 shows each optical part of the color conversion-transmitting layer of FIG. 2 .
- the first color conversion unit 510 may convert incident blue light Lb into red light Lr.
- the first color conversion unit 510 includes a first photosensitive polymer 1151, first quantum dots 1152 dispersed in the first photosensitive polymer 1151, and first scattering particles 1153. may include
- the first quantum dots 1152 may be excited by the blue light Lb and isotropically emit red light Lr having a longer wavelength than the blue light.
- the first photosensitive polymer 1151 may be an organic material having light transmission.
- the first scattering particles 1153 scatter blue light Lb that is not absorbed by the first quantum dots 1152 so that more first quantum dots 1152 are excited, thereby increasing color conversion efficiency.
- the first scattering particles 1153 may be, for example, titanium oxide (TiO 2 ) or metal particles.
- the first quantum dots 1152 may be selected from a group II-VI compound, a group III-V compound, a group IV-VI compound, a group IV element, a group IV compound, and a combination thereof.
- the second color conversion unit 520 may convert incident blue light Lb into green light Lg. As shown in FIG. 3, the second color conversion unit 520 includes a second photosensitive polymer 1161, second quantum dots 1162 dispersed in the second photosensitive polymer 1161, and second scattering particles 1163. may include
- the second quantum dots 1162 may be excited by the blue light Lb and isotropically emit green light Lg having a longer wavelength than the blue light.
- the second photosensitive polymer 1161 may be an organic material having light transmission.
- the second scattering particles 1163 scatter blue light Lb that is not absorbed by the second quantum dots 1162 so that more second quantum dots 1162 are excited, thereby increasing color conversion efficiency.
- the second scattering particles 1163 may be, for example, titanium oxide (TiO 2 ) or metal particles.
- the second quantum dots 1162 may be selected from a group II-VI compound, a group III-V compound, a group IV-VI compound, a group IV element, a group IV compound, and a combination thereof.
- the first quantum dot 1152 and the second quantum dot 1162 may be the same material or a similar material.
- the sizes of the first quantum dots 1152 may be larger than those of the second quantum dots 1162 .
- the transmission part 530 may transmit the blue light Lb without converting the blue light Lb incident to the transmission part 530 .
- the transmission part 530 may include a third photosensitive polymer 1171 in which third scattering particles 1173 are dispersed.
- the third photosensitive polymer 1171 may be, for example, an organic material having light transmission such as a silicone resin or an epoxy resin, and may be the same material as or a similar material to the first and second photosensitive polymers 1151 and 1161. there is.
- the third scattering particles 1173 may scatter and emit the blue light Lb, and may be made of the same material as the first and second scattering particles 1153 and 1163.
- FIG. 4 is an equivalent circuit diagram schematically illustrating a light emitting diode included in a display device according to an exemplary embodiment and a pixel circuit electrically connected to the light emitting diode.
- a light emitting diode for example, a first electrode (eg, anode) of the light emitting diode (LED) is connected to the pixel circuit (PC), and a second electrode (eg, cathode) of the light emitting diode (LED) has a common It may be connected to the common voltage line VSL providing the power supply voltage ELVSS.
- the light emitting diode (LED) may emit light with a luminance corresponding to the amount of current supplied from the pixel circuit (PC).
- the light emitting diode (LED) of FIG. 4 corresponds to each of the first to third light emitting diodes (LED1, LED2, LED3) shown in FIG. 2, respectively, and the pixel circuit (PC) of FIG. It may correspond to each of the first to third pixel circuits PC1 , PC2 , and PC3 .
- the pixel circuit PC may control the amount of current flowing from the driving power voltage ELVDD to the common power voltage ELVSS via the light emitting diode LED in response to the data signal.
- the pixel circuit PC may include a driving transistor M1 , a switching transistor M2 , a sensing transistor M3 , and a storage capacitor Cst.
- Each of the driving transistor M1, the switching transistor M2, and the sensing transistor M3 may be an oxide semiconductor thin film transistor including a semiconductor layer made of an oxide semiconductor or a silicon semiconductor thin film transistor including a semiconductor layer made of polysilicon.
- the first electrode may be one of the source electrode and the drain electrode
- the second electrode may be the other one of the source electrode and the drain electrode.
- a first electrode of the driving transistor M1 may be connected to the driving voltage line VDL for supplying the driving power voltage ELVDD, and a second electrode may be connected to the first electrode of the light emitting diode LED.
- a gate electrode of the driving transistor M1 may be connected to the first node N1. The driving transistor M1 may control the amount of current flowing through the light emitting diode LED from the driving power supply voltage ELVDD in response to the voltage of the first node N1.
- the switching transistor M2 may be a switching transistor.
- a first electrode of the switching transistor M2 may be connected to the data line DL, and a second electrode may be connected to the first node N1.
- a gate electrode of the switching transistor M2 may be connected to the scan line SL.
- the switching transistor M2 is turned on when a scan signal is supplied to the scan line SL to electrically connect the data line DL and the first node N1.
- the sensing transistor M3 may be an initialization transistor and/or a sensing transistor.
- a first electrode of the sensing transistor M3 may be connected to the second node N2 and a second electrode may be connected to the sensing line SEL.
- a gate electrode of the sensing transistor M3 may be connected to the control line CL.
- the storage capacitor Cst may be connected between the first node N1 and the second node N2.
- the first capacitor electrode of the storage capacitor Cst may be connected to the gate electrode of the driving transistor M1
- the second capacitor electrode of the storage capacitor Cst may be connected to the first electrode of the light emitting diode LED.
- the driving transistor M1, the switching transistor M2, and the sensing transistor M3 are shown as NMOS in FIG. 4, the present invention is not limited thereto.
- at least one of the driving transistor M1 , the switching transistor M2 , and the sensing transistor M3 may be formed of a PMOS.
- the pixel circuit PC may include four or more transistors.
- FIG. 5 is a plan view schematically illustrating light emitting diodes and wires arranged around them of a display device according to an exemplary embodiment of the present invention.
- common voltage lines VSL are disposed in the display area DA, and each of the common voltage lines VSL may extend along the y direction.
- the common voltage lines VSL are spaced apart from each other, but light emitting diodes, for example organic light emitting diodes, may be disposed between two adjacent common voltage lines VSL.
- FIG. 5 illustrates that the first to third organic light emitting diodes OLED1 , OLED2 , and OLED3 are disposed between two adjacent common voltage lines VSL.
- Auxiliary lines extending along a direction (eg, x direction) crossing the common voltage lines VSL may be disposed in the display area DA.
- FIG. 5 shows that the first and second auxiliary lines AL1 and AL2 extend along the x direction, and the first and second auxiliary lines AL1 and AL2 are first to third organic lines.
- the light emitting diodes (OLED1, OLED2, OLED3) may be spaced apart from each other.
- Each common voltage line VSL may be electrically connected to at least one of the first and second auxiliary lines AL1 and AL2.
- the structure shown in FIG. 5 represents a portion of the display area DA, and the display area DA can be regarded as having the structure of FIG. 5 repeatedly arranged.
- a plurality of common voltage lines VSL and a plurality of auxiliary lines are electrically connected while crossing each other, and the common voltage lines VSL and auxiliary lines may form a mesh structure on a plan view. there is.
- the common voltage lines VSL and auxiliary lines have a schematic mesh structure on a plane. It is possible to prevent or minimize the voltage drop described above by forming.
- the auxiliary electrode 180 may be disposed to overlap a part of the common voltage line VSL.
- the auxiliary electrode 180 may be electrically connected to the common voltage line VSL by using the first contact hole CT1 and the second contact hole CT2, and may receive power from the common voltage line VSL.
- Second electrodes (eg, cathodes) of the light emitting diodes, for example, the first to third organic light emitting diodes OLED1 , OLED2 , and OLED3 may be electrically connected to the common voltage line VSL through the auxiliary electrode 180 .
- the common voltage line VSL may be electrically connected to the auxiliary common voltage line VSL-A disposed to overlap the common voltage line VSL.
- the auxiliary common voltage line VSL-A may be connected to the common voltage line VSL through the second contact hole CT2.
- the first electrode 150 (eg, anode) of each of the light emitting diodes, for example, the first to third organic light emitting diodes (OLED1, OLED2, OLED3) electrically connects to the pixel circuit disposed thereunder through the sixth contact hole CT6. can be connected.
- a pixel circuit connected to each of the first to third organic light emitting diodes OLED1 , OLED2 , and OLED3 may include a plurality of transistors and a storage capacitor as described above with reference to FIG. 4 .
- FIG. 6 is a schematic cross-sectional view taken along line A-A′ of FIG. 5 .
- a light emitting diode for example, a first organic light emitting diode (OLED1) is disposed on a substrate 100, and a pixel circuit (PC) is disposed between the substrate 100 and the first organic light emitting diode (OLED1). It can be.
- FIG. 6 illustrates the driving transistor M1 and the storage capacitor Cst included in the pixel circuit PC.
- the second organic light emitting diode OLED2 and a pixel circuit connected thereto and the third organic light emitting diode OLED3 and a pixel circuit connected thereto also have the same structure as the pixel circuit PC shown in FIG. 6 . can do.
- the substrate 100 may be formed of a material such as a glass material, a metal material, or an organic material.
- the substrate 100 may include a glass material containing SiO 2 as a main component, or may include various materials having flexible or bendable properties, for example, a polymer resin.
- the driving transistor M1 may include a semiconductor layer A1 and a gate electrode G1.
- the semiconductor layer A1 may include an oxide-based material or a silicon-based material (eg, amorphous silicon or polysilicon).
- the semiconductor layer A1 may include indium (In), gallium (Ga), stanium (Sn), zirconium (Zr), vanadium (V), hafnium (Hf), cadmium (Cd), germanium (Ge), chromium It may include oxides of at least one material selected from the group including (Cr), titanium (Ti), and zinc (Zn).
- the semiconductor layer A1 may include a channel region C1 and first and second low resistance regions B1 and D1 disposed on both sides with the channel region C1 interposed therebetween.
- the first and second low resistance regions B1 and D1 are regions having a lower resistance than the channel region C1, and one of the first and second low resistance regions B1 and D1 is a source region and the other is a drain region. area may apply.
- the semiconductor layer A1 may be positioned on the first insulating layer 101 on the substrate 100 .
- the first insulating layer 101 may prevent impurities from penetrating into the semiconductor layer A1.
- the first insulating layer 101 may include an inorganic insulating material such as silicon nitride, silicon oxide, and/or silicon oxynitride.
- a second insulating layer 103 may be interposed between the semiconductor layer A1 and the gate electrode G1.
- the second insulating layer 103 may be a kind of gate insulating layer and may include an inorganic insulating material such as silicon nitride, silicon oxide, and/or silicon oxynitride.
- the gate electrode G1 may overlap the channel region C1 of the semiconductor layer A1.
- the gate electrode G1 includes molybdenum (Mo), copper (Cu), titanium (Ti), and the like, and may include a single-layer or multi-layer structure including the above-mentioned materials.
- any one of the first and second low resistance regions B1 and D1 of the semiconductor layer A1 may be electrically connected to the driving voltage line VDL.
- the driving voltage line VDL may be disposed below the first insulating layer 101 .
- FIG. 6 shows that the driving voltage line VDL is connected to the second low resistance region D1 through the connection electrode CE on the third insulating layer 105 .
- the driving voltage line VDL may include a metal material such as molybdenum (Mo), copper (Cu), or titanium (Ti).
- the driving voltage line VDL may include a stacked structure of a titanium layer (lower layer) and a copper layer (upper layer) thicker than the titanium layer.
- the driving voltage line VDL may include a multilayer structure of one or more metal layer(s) including the aforementioned metal material and a transparent conductive oxide layer such as ITO disposed on the one or more metal layer(s).
- the third insulating layer 105 may include an inorganic insulating material such as silicon nitride, silicon oxide, and/or silicon oxynitride.
- connection electrode CE is the source electrode (or drain electrode) of the driving transistor M1
- the second low resistance region D1 is the drain region. (or source region)
- the connection electrode CE may be the drain electrode (or source electrode) of the driving transistor M1.
- the connection electrode CE is connected to the driving voltage line VDL through the third contact hole CT3 passing through the first to third insulating layers 101, 103, and 105, and the second and third insulating layers ( It may be connected to a part (eg, the second low resistance region D1) of the semiconductor layer A1 of the driving transistor M1 through the fourth contact hole CT4 passing through 103 and 105 .
- connection electrode CE may include a metal material such as molybdenum (Mo), copper (Cu), or titanium (Ti).
- the connection electrode CE may include a multilayer structure including a titanium layer and a copper layer.
- the connection electrode CE may include a multi-layer structure of one or more metal layer(s) including the aforementioned metal material and a transparent conductive oxide layer such as ITO disposed on the one or more metal layer(s). there is.
- the storage capacitor Cst includes a first capacitor electrode CE1 and a second capacitor electrode CE2 overlapping the first capacitor electrode CE1 with at least one insulating layer interposed therebetween.
- the first capacitor electrode CE1 is formed on the same layer as the gate electrode G1 and may include the same material or a similar material.
- the first capacitor electrode CE1 includes molybdenum (Mo), copper (Cu), titanium (Ti), and the like, and may have a single-layer or multi-layer structure including the above materials.
- the second capacitor electrode CE2 may include two sub-capacitor electrodes CE2a and CE2b disposed below and above the first capacitor electrode CE1 therebetween.
- One of the subcapacitor electrodes CE2a and CE2b (hereinafter referred to as a first subcapacitor electrode, CE2a) may be disposed between the substrate 100 and the first insulating layer 101, and
- One subcapacitor electrode (hereinafter referred to as a second subcapacitor electrode, CE2b) may be disposed on the third insulating layer 105 .
- the first subcapacitor electrode CE2a and the second subcapacitor electrode CE2b may include molybdenum (Mo), copper (Cu), titanium (Ti), or the like, and may have a single-layer or multi-layer structure including the above materials.
- Mo molybdenum
- Cu copper
- Ti titanium
- the first subcapacitor electrode CE2a is disposed on the same layer as the driving voltage line VDL, and may include the same material or a similar material.
- the second subcapacitor electrode CE2b may be connected to the first subcapacitor electrode CE2a through the fifth contact hole CT5 penetrating the first to third insulating layers 101 , 103 , and 105 .
- a capacitance is formed between the first subcapacitor electrode CE2a and the first capacitor electrode CE1 overlapping each other with the first and second insulating layers 101 and 103 interposed therebetween, and the third insulating layer 105 is formed.
- a capacitance may be formed between the first capacitor electrode CE1 and the second subcapacitor electrode CE2b overlapping each other with a gap therebetween.
- the second capacitor electrode CE2 since the second capacitor electrode CE2 includes a plurality of sub-capacitor electrodes, the capacitance of the storage capacitor Cst can be improved.
- the fourth insulating layer 107 is disposed on the pixel circuit PC including the driving transistor M1 and the storage capacitor Cst.
- the fourth insulating layer 107 may include an inorganic insulating material such as silicon nitride, silicon oxide, and/or silicon oxynitride.
- the fourth insulating layer 107 may prevent a wire including a metal (eg, copper) that may be damaged by an etchant from being exposed to an etching environment in a manufacturing process of a display device.
- the fifth insulating layer 109 is disposed on the fourth insulating layer 107 and may include an organic insulating material.
- the fifth insulating layer 109 may include an organic insulating material such as acrylic, benzocyclobutene (BCB), polyimide, or hexamethyldisiloxane (HMDSO).
- the first electrode 150 of the light emitting diode is formed on the fifth insulating layer 109, and in relation to this, FIG. 6 shows the first electrode 150 of the first organic light emitting diode OLED21.
- the first electrode 150 is the second sub of the pixel circuit PC, for example, the storage capacitor Cst, through the sixth contact hole CT6 penetrating the fourth insulating layer 107 and the fifth insulating layer 109. It may be connected to the capacitor electrode CE2b.
- the first electrode 150 is made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In 2 O 3 ), indium gallium oxide (IGO), or aluminum zinc oxide (AZO).
- ITO indium tin oxide
- IZO indium zinc oxide
- ZnO zinc oxide
- IGO indium gallium oxide
- AZO aluminum zinc oxide
- the first electrode 150 is silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd) ), iridium (Ir), chromium (Cr), or a reflective film including a compound thereof.
- the first electrode 150 may further include a film formed of ITO, IZO, ZnO, or In 2 O 3 above/below the reflective film.
- the first electrode 150 may have a three-layer structure in which an ITO layer, a silver (Ag) layer, and an ITO layer are stacked.
- the bank layer BNL may cover or overlap an edge of the first electrode 150 and may include a first bank opening B-OP1 overlapping a central portion of the first electrode 150 .
- the bank layer BNL may include an organic insulating material such as polyimide.
- the intermediate layer 160 may contact the first electrode 150 through the first bank opening B-OP1 of the bank layer BNL.
- the stacked structure of the first electrode 150, the intermediate layer 160, and the second electrode 170 positioned in the first bank opening B-OP1 may emit light of a predetermined color.
- the first bank opening B-OP1 of the bank layer BNL may correspond to the light emitting area EA emitting light.
- the size (or width) of the first bank opening B-OP1 of the bank layer BNL may correspond to the size (or width) of the light emitting area EA.
- the intermediate layer 160 may include the light emitting layer 162 .
- the light emitting layer 162 may include a polymer or a low molecular weight organic material that emits light of a predetermined color. As described above with reference to FIG. 2 , when the light emitting diode layer 300 ( FIG. 2 ) emits blue light, the light emitting layer 162 may include a polymer or low molecular weight organic material that emits blue light.
- the intermediate layer 160 may further include at least one functional layer.
- the intermediate layer 160 may further include a first functional layer 161 under the light emitting layer 162 and/or a second functional layer 163 above the light emitting layer 162.
- the first functional layer 161 may be interposed between the first electrode 150 and the light emitting layer 162, and the second functional layer 163 may be interposed between the light emitting layer 162 and the second electrode 170 to be described later. there is.
- the first functional layer 161 may include a hole transport layer (HTL) and/or a hole injection layer (HIL).
- the second functional layer 163 may include an electron transport layer (ETL) and/or an electron injection layer (EIL).
- the second electrode 170 may be made of a conductive material having a low work function.
- the second electrode 170 includes silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), or a (semi)transparent layer containing alloys thereof.
- the second electrode 170 may further include a layer such as ITO, IZO, ZnO, or In 2 O 3 on the (semi)transparent layer containing the above-described material.
- the encapsulation layer 400 may be disposed on the second electrode 170 .
- the encapsulation layer 400 may include at least one inorganic encapsulation layer and at least one organic encapsulation layer. 6 shows that the encapsulation layer 400 includes a first inorganic encapsulation layer 410, a second inorganic encapsulation layer 430, and the first and second inorganic encapsulation layers 410 and 430. It shows that including the organic encapsulation layer 420 between.
- Each of the first and second inorganic encapsulation layers 410 and 430 may include one or more inorganic insulators.
- the inorganic insulator may include aluminum oxide, titanium oxide, tantalum oxide, hafnium oxide, zinc oxide, silicon oxide, silicon nitride, and/or silicon oxynitride.
- the organic encapsulation layer 420 may include a polymer-based material.
- Polymer-based materials may include acrylic resins, epoxy resins, polyimide, and polyethylene.
- the organic encapsulation layer 420 may include an acrylic resin such as polymethyl methacrylate or polyacrylic acid.
- the organic encapsulation layer 420 may be formed by curing a monomer or applying a polymer.
- An intermediate material layer 501 may be disposed on the encapsulation layer 400 .
- the intermediate material layer 501 may include an inorganic insulator and/or an organic insulator.
- a color conversion-transmitting layer 500 is positioned on the intermediate material layer 501 .
- FIG. 6 shows the light blocking part 540 of the color conversion-transmitting layer 500 and the first color conversion part 510 positioned in the opening area defined by the light blocking part 540 .
- a barrier layer 550 may be formed on the color conversion-transmission layer 500 .
- the barrier layer 550 may include an inorganic insulator such as silicon oxide, silicon nitride, and/or silicon oxynitride.
- the color layer 600 may be disposed on the color conversion-transmitting layer 500 .
- FIG. 6 shows the light blocking portion 640 of the color layer 600 and the first color filter 610 positioned in an opening area defined by the light blocking portion 640 .
- the light blocking portion 540 (hereinafter referred to as a first light blocking portion) of the color conversion-transmitting layer 500 and the light blocking portion 640 (hereinafter referred to as a second light blocking portion) of the color layer 600 are disposed to overlap each other.
- Each of the first light blocking portion 540 and the second light blocking portion 640 may include a light blocking material.
- each of the first light blocking portion 540 and the second light blocking portion 640 may include an organic material having a predetermined color such as black.
- each of the first light-blocking portion 540 and the second light-blocking portion 640 may include a polyimide (PI)-based binder and a pigment in which red, green, and blue colors are mixed.
- the first light blocking portion 540 and the second light blocking portion 640 may each include a cardo-based binder resin and a mixture of lactam-based black pigment and blue pigment.
- each of the first light blocking portion 540 and the second light blocking portion 640 may include carbon black.
- the first light blocking portion 540 and the second light blocking portion 640 may include the same material or a similar material.
- the second light blocking portion 640 may include a structure in which at least two or more color filters forming the color layer 600 are overlapped.
- the second light-blocking portion 640 does not include the aforementioned light-blocking material, and two or three color filter materials selected from among the first to third color filters 610, 620, and 630 (FIG. 2) are stacked. can have a structure.
- the light-transmitting substrate layer 700 may include glass or a light-transmitting organic material.
- the light-transmitting substrate layer 700 may include a light-transmitting organic material such as an acrylic resin.
- FIG. 7A is a plan view schematically illustrating structures of a common voltage line and an auxiliary electrode of a display device according to an exemplary embodiment of the present invention, and may correspond to an enlarged schematic plan view of a portion of FIG. 5 .
- the common voltage line VSL extending along the y direction may overlap the auxiliary electrode 180 and the auxiliary common voltage line VSL-A.
- the length (length in the y direction) of the auxiliary common voltage line VSL-A may be smaller than the length (length in the y direction) of the common voltage line VSL.
- the width (width in the x direction, W2) of the auxiliary common voltage line VSL-A may be different from the width W1 of the common voltage line VSL.
- the width W2 of the auxiliary common voltage line VSL-A may be smaller than the width W1 of the common voltage line VSL.
- the common voltage line VSL and the auxiliary common voltage line VSL-A disposed on different layers may be connected through the first contact hole CT1 penetrating the insulating layer disposed therebetween, and thus have a common voltage line VSL-A. Resistance of the voltage line VSL may be reduced.
- the auxiliary electrode 180 is disposed on the common voltage line VSL and the auxiliary common voltage line VSL-A.
- the auxiliary electrode 180 may overlap the common voltage line VSL and/or the auxiliary common voltage line VSL-A.
- the auxiliary electrode 180 may have a planar shape different from that of the common voltage line VSL and the auxiliary common voltage line VSL-A.
- the auxiliary electrode 180 includes a relatively wide first portion (hereinafter, referred to as a wide portion, 180A) and a relatively small second portion (hereinafter, referred to as a narrow width portion) on a schematic plane. Referred to as a group, 180B) may be included.
- the wide portion 180A and the narrow portion 180B are integrally connected.
- the width (width in the x direction, W3) of the wide portion 180A is greater than the width (width in the x direction, W4) of the narrow portion 180B.
- a width W3 of the wide portion 180A may be greater than that of the common voltage line VSL and/or the auxiliary common voltage line VSL-A.
- 7A shows that the width W3 of the wide portion 180A is greater than the width W2 of the auxiliary common voltage line VSL-A and is greater than the width W1 of the common voltage line VSL. represents a small
- the width W3 of the wide portion 180A may be larger than the width W2 of the auxiliary common voltage line VSL-A and the width W1 of the common voltage line VSL, respectively.
- a portion of the auxiliary electrode 180 may be connected to either one of the common voltage line VSL and the auxiliary common voltage line VSL-A having the same voltage level.
- the narrow portion 180B of the auxiliary electrode 180 may be connected to the auxiliary common voltage line VSL-A through the second contact hole CT2.
- auxiliary electrode 180 may be connected to the second electrode 170 (FIG. 6) of the light emitting diode.
- the second electrode 170 (FIG. 6) of the light emitting diode is connected to the wide portion 180A of the auxiliary electrode 180 through a hole 160H formed in the intermediate layer 160 (FIG. 6) disposed below the second electrode. It can be.
- the hole 160H of the intermediate layer overlaps the wide portion 180A of the auxiliary electrode 180, but may be positioned within the second bank opening B-OP2 of the bank layer BNL (FIG. 6). . Roughly, on a plane, the hole 160H of the intermediate layer may entirely overlap the second bank opening B-OP2.
- the hole 160H of the intermediate layer may overlap the opening 109OP of the fifth insulating layer 109 .
- the hole 160H of the intermediate layer may be disposed inside the opening 109OP of the fifth insulating layer 109 when viewed from a plan view.
- FIGS. 8 and 9A A detailed structure of the auxiliary electrode 180 and its peripheral components will be described with reference to FIGS. 8 and 9A.
- FIG. 7B is a plan view schematically illustrating the periphery of the hole shown in FIG. 7A.
- a first region 160 - 1 in which at least a part of the intermediate layer remains may be disposed around the hole 160H.
- a second area 160-2 may be disposed around the first area 160-1 so as to surround the first area 160-1 and having a protruding middle layer area disposed thereon.
- the first area 160-1 and the second area 160-2 may be formed in an annular shape (or ring shape).
- a hole 160H When viewed from a plan view, a hole 160H is disposed inside the first region 160-1, and the first region 160-1 and the hole 160H are disposed inside the second region 160-2. can be placed.
- the rim of the planar shape of the hole 160H may be a circle.
- the planar shape of the first area 160-1 and the planar shape of the second area 160-2 may each be an annular shape (ring type or annular shape).
- a planar shape of the hole 160H may be an ellipse.
- the planar shape of the first area 160-1 and the planar shape of the second area 160-2 may be circular (or ring-shaped), and each outline may be an ellipse.
- the planar shape of the hole 160H is not limited to the above, and may include all planar shapes in which a distance from the center to the edge of the hole 160H is within a certain range in a shape similar to a circle.
- the planar area of the hole 160H may be about 60 ⁇ 20% of the inner area of the planar outermost edge of the second region 160-2.
- the area inside the outermost edge of the planar shape of the second area 160-2 is the area of the flat shape of the hole 160H, the area of the planar shape of the first area 160-1, and the area of the second area 160-1. 2) may be the sum of the areas of the planar shape.
- the area of the planar shape of the hole 160H exceeds about 80% of the area inside the outermost rim of the planar shape of the second area 160-2, the slope of the first area 160-1 increases. As a result, a problem in which the second electrode 170 is not properly connected may occur.
- the planar area of the hole 160H is less than about 40% of the inner area of the planar outermost rim of the second region 160-2, the second electrode 170 and the auxiliary electrode 180 As the connection area is reduced, the effect of reducing the voltage drop due to the auxiliary electrode 180 may be reduced.
- the planar circumference of the hole 160H measured in the first direction is similar to the relationship between the planar area of the hole 160H and the area inside the outermost rim of the planar shape of the second region 160-2. Preferably, it may be 60 ⁇ 20% of the circumference of the planar outer edge of the second region 160-2.
- the first distance L1 which is the radius of the hole 160H, may be 60 ⁇ 20% of the total distance L.
- the total area of the first region 160-1 which is an annular shape (or annular shape), may be 15 ⁇ 10% of the inner area of the outermost rim of the planar shape of the second region 160-2.
- a second distance (L2) from the inner edge of the first region 160-1 measured in the first direction to the outer edge of the first region 160-1 is about 15 ⁇ 10% of the total distance (L).
- the total area of the annular (or annular) second area 160-2 may be about 25 ⁇ 10% of the inner area of the planar outermost edge of the second area 160-2.
- a third distance L3 from the inner edge of the second area 160-2 measured in the first direction to the outer edge of the second area 160-2 is about 15 ⁇ 10% of the total distance L. can At this time, when the third distance L3 exceeds about 25% of the total distance L, the area of the hole 160H may become too small, so the contact area between the auxiliary electrode 180 and the second electrode 170 is small. As a result, a problem in which the auxiliary electrode 180 and the second electrode 170 do not come into contact may occur. On the other hand, when the third distance L3 is less than about 5% of the total distance L, the thickness of the protruding portion of the middle layer increases, so that the second electrode 170 disposed at the protruding portion of the middle layer may be disconnected.
- FIG. 8 is a schematic cross-sectional view taken along the line BB′ of FIG. 7A
- FIG. 9A is a schematic cross-sectional view taken along the line C-C′ of FIG. 7A
- FIG. 9B is an enlarged cross-sectional view schematically showing a part of FIG. am.
- a common voltage line VSL is disposed on the substrate 100 .
- the common voltage line VSL may contact or directly contact the upper surface of the substrate 100 .
- the common voltage line VSL may include a metal material such as molybdenum (Mo), copper (Cu), or titanium (Ti).
- Mo molybdenum
- Cu copper
- Ti titanium
- the common voltage line VSL may include the same material as or a similar material to the driving voltage line VDL described above with reference to FIG. 6 .
- the common voltage line VSL may include a stacked structure of a titanium layer (lower layer) and a copper layer (upper layer) thicker than the titanium layer.
- the common voltage line VSL may include a multilayer structure of one or more metal layer(s) including the aforementioned metal material and a transparent conductive oxide layer such as ITO disposed on the one or more metal layer(s).
- An auxiliary common voltage line VSL-A may be disposed on the common voltage line VSL, and at least one insulating layer may be disposed between the common voltage line VSL and the auxiliary common voltage line VSL-A.
- FIGS. 8 and 9A show that the first to third insulating layers 101 , 103 , and 105 are disposed between the common voltage line VSL and the auxiliary common voltage line VSL-A.
- the auxiliary common voltage line VSL-A passes through the first contact hole CT1 penetrating the first to third insulating layers 101, 103, and 105 to form the common voltage line VSL. ) can be accessed.
- the auxiliary common voltage line VSL-A may include a metal material such as molybdenum (Mo), copper (Cu), or titanium (Ti).
- Mo molybdenum
- Cu copper
- Ti titanium
- the auxiliary common voltage line VSL-A may include the same material as or a material similar to that of the common voltage line VSL.
- the auxiliary common voltage line VSL-A may include a stacked structure of a titanium layer (lower layer) and a copper layer (upper layer) thicker than the titanium layer.
- the auxiliary common voltage line VSL-A may include a material different from that of the common voltage line VSL.
- the auxiliary common voltage line VSL-A may include a multilayer structure of one or more metal layer(s) including the aforementioned metal material and a transparent conductive oxide layer such as ITO disposed on the one or more metal layer(s).
- the common voltage line VSL may include only layer(s) including metal without including transparent conductive oxide.
- the auxiliary common voltage line VSL-A may be protected by the fourth insulating layer 107 .
- the fourth insulating layer 107 may cover or overlap the auxiliary common voltage line VSL-A while contacting or directly contacting the upper surface of the auxiliary common voltage line VSL-A.
- the fourth insulating layer 107 may cover or overlap a portion of the auxiliary common voltage line VSL-A immediately below the opening 109OP of the fifth insulating layer 109 .
- the fourth insulating layer 107 may include an inorganic insulating material.
- the fifth insulating layer 109 is disposed on the fourth insulating layer 107 .
- the opening 109OP of the fifth insulating layer 109 may provide an out-gassing passage.
- gas contained in the fifth insulating layer 109 formed of an organic insulating material may be released through the opening 109OP of the fifth insulating layer 109 .
- the opening 109OP of the fifth insulating layer 109 may overlap the auxiliary common voltage line VSL-A.
- the auxiliary common voltage line VSL-A is positioned directly below the opening 109OP.
- a portion of the voltage line VSL-A may be covered or overlapped with the fourth insulating layer 107 .
- the auxiliary common voltage line VSL-A may include copper having relatively low resistance.
- the auxiliary common voltage line VSL-A may include a stacked structure of a titanium layer (lower layer) and a copper layer (upper layer), and the copper layer, which is relatively easily damaged, is covered by the fourth insulating layer 107. It can be overlapped or overlapped to prevent damage.
- the auxiliary electrode 180 may be disposed on the fifth insulating layer 109 .
- the auxiliary electrode 180 may be connected to the auxiliary common voltage line VSL-A through the second contact hole CT2 penetrating the fifth insulating layer 109 and the fourth insulating layer 107 . Since the auxiliary common voltage line VSL-A is connected to the common voltage line VSL through the first contact hole CT1, the auxiliary electrode 180 supplies the common voltage through the auxiliary common voltage line VSL-A. It may be electrically connected to the line VSL.
- the auxiliary electrode 180 may include the same material as or a material similar to that of the first electrode (150 in FIG. 6 ) of the light emitting diode.
- the auxiliary electrode 180 may include a stacked structure of an ITO layer, an Ag layer, and an ITO layer.
- a portion of the auxiliary electrode 180 for example, the wide portion 180A may overlap the opening 109OP of the fifth insulating layer 109 .
- the wide portion 180A of the auxiliary electrode 180 may contact or directly contact the upper surface of the fourth insulating layer 107 through the opening 109OP.
- the upper surface of the fourth insulating layer 107 is in direct contact with the auxiliary electrode 180, and the lower surface of the fourth insulating layer 107 is in direct contact with the auxiliary electrode 180. It can contact or directly contact the auxiliary common voltage line (VSL-A).
- VSL-A auxiliary common voltage line
- the bank layer BNL may be disposed on the auxiliary electrode 180 .
- the bank layer BNL includes a second bank opening B-OP2 overlapping the wide portion 180A of the auxiliary electrode 180 and a third bank opening B overlapping the narrow portion 180B of the auxiliary electrode 180. -OP3) may be included.
- the second bank opening B-OP2 overlaps the entire opening 109OP of the fifth insulating layer 109, and the size (or width, ow2) of the second bank opening B-OP2 is the fifth insulating layer ( 109) is larger than the size (or width, ow1) of the opening 109OP. Accordingly, the opening 109OP of the fifth insulating layer 109 exists in the second bank opening B-OP2 on the schematic plan view of FIG. 7A.
- FIG. 7A schematically shows that, on a plane, the outline 109B of the opening 109OP of the fifth insulating layer 109 is located within the outline BNLB of the second bank opening B-OP2. .
- An intermediate layer 160 including a first functional layer 161 , an emission layer 162 , and a second functional layer 163 is disposed on the bank layer BNL.
- a portion of the intermediate layer 160 is positioned within the second bank opening B-OP2 and includes a hole 160H overlapping the opening 109OP of the fifth insulating layer 109.
- the hole 160H of the intermediate layer 160 may pass through the first functional layer 161 , the light emitting layer 162 , and the second functional layer 163 .
- the second electrode 170 of the light emitting diode may be connected to the auxiliary electrode 180 through the hole 160H of the intermediate layer 160 .
- the hole 160H of the intermediate layer 160 may overlap the opening 109OP of the fifth insulating layer 109 .
- a first area 160-1 and a second area 160-2 may be disposed around the hole 160H arranged as described above.
- the first area 160-1 may be disposed to surround an edge of the hole 160H
- the second area 160-2 may be disposed to surround an outer edge of the first area 160-1.
- the first thickness H1 of the first region 160-1 and the second thickness H2 of the second region 160-2 may be variable in the first direction (eg, the x direction in FIG. 9A). there is.
- the first thickness H1 may decrease in the first direction.
- the first thickness H1 may increase as the distance from the center of the hole 160H increases.
- the second thickness H2 may increase and then decrease in the first direction.
- the highest point of the intermediate layer 160 may exist.
- the second thickness H2 increases as the distance from the first region 160-1 increases, and then decreases after passing through the highest point.
- the first region 160 - 1 may be a region in which only a part of the intermediate layer 160 remains.
- the first region 160 - 1 may be a region in which at least a portion of the intermediate layer 160 is removed.
- the first region 160 - 1 may be a region in which at least a portion of the uppermost second functional layer 163 of the intermediate layer 160 is removed.
- the first region 160-1 may be a region in which the uppermost second functional layer 163 of the intermediate layer 160 is completely removed and a portion of the light emitting layer 162 is removed.
- the first region 160 -1) means a region in which the uppermost second functional layer 163 of the intermediate layer 160 is completely removed, a portion of the light emitting layer 162 is removed, and at least a portion of the first functional layer 161 is removed. It is also possible to do
- the first region 160-1 may refer to a region in which the thickness of the intermediate layer 160 is less than or equal to the thickness of the third region 160-3 disposed outside the second region 160-2.
- the thickness of at least one layer of the intermediate layer 160 is an intermediate layer disposed in a third region 160-3 disposed outside the second region 160-2. It may mean an area smaller than the thickness of at least one layer of In this case, one of the intermediate layers 160 compared in the first region 160-1 and the third region 160-3 may mean a layer of the same material or a similar material.
- the second region 160-2 may be a region in which the intermediate layer 160 is not removed.
- the second region 160 - 2 may refer to a region in which the thickness of the intermediate layer 160 is greater than that of the intermediate layer 160 disposed in the third region 160 - 3 .
- the thickness of each layer included in the intermediate layer 160 is an intermediate layer disposed in a third region 160-3 disposed outside the second region 160-2. It may mean an area larger than the thickness of each layer included in .
- One of the intermediate layers 160 compared in the first region 160-1 and the third region 160-3 may refer to a layer of the same material or a similar material.
- first region 160-1 and the second region 160-2 may also be defined through the entire thickness of the intermediate layer 160.
- the first thickness H1 of the first region 160-1 may be smaller than the third thickness H3 of the third region 160-3.
- the first thickness H1 may be 10 ⁇ 5% of the third thickness H3.
- the first thickness H1 may be in a range of about 200 ⁇ or more and about 600 ⁇ or less. In this case, the first thickness H1 sequentially increases as the distance from the hole 160H increases, thereby preventing the second electrode 170 from being bent abruptly at the boundary between the hole 160H and the first region 160-1. can do.
- the second thickness H2 may be greater than the first thickness H1.
- the maximum value of the second thickness H2 may be about 140 ⁇ 20% of the third thickness H3.
- the second electrode 170 is broken by controlling the bending angle of the second electrode 170 disposed on the intermediate layer 160 and the inclination angle of the second electrode 170 after being formed, It is possible to solve the problem that the second electrode 170 and the auxiliary electrode 180 do not come into contact throughout the hole 160H.
- the first thickness H1 , the second thickness H2 , and the third thickness H3 may mean distances from the upper surface of the auxiliary electrode 180 to the upper surface of the intermediate layer 160 disposed on the uppermost layer of each region. there is.
- the first thickness H1 , the second thickness H2 , and the third thickness H3 may be measured in the z direction of FIGS. 9A and 9B .
- the center HC of the hole 160H of the intermediate layer 160 may be positioned within the opening 109OP of the fifth insulating layer 109 as shown in FIG. 9A .
- the center HC of the hole 160H of the intermediate layer 160 defines the opening 109OP and corresponds to the outline 109B of the fifth insulating layer 109 ( FIG. 7A ) of the fifth insulating layer 109 .
- ) may be located on the inside of the inner edge 109oe.
- the center HC of the hole 160H of the intermediate layer 160 may be substantially the same as the center of the opening 109OP.
- the hole 160H of the intermediate layer 160 may be formed by irradiating a laser beam.
- the encapsulation layer 400 including the first inorganic encapsulation layer 410, the organic encapsulation layer 420, and the second inorganic encapsulation layer 430 is between the auxiliary electrode 180 and the second electrode 170 of the light emitting diode.
- the contact area (or connection area) is covered or overlapped.
- the contact area between the auxiliary electrode 180 and the second electrode 170 of the light emitting diode is the intermediate material layer 501 on the encapsulation layer 400, the first light blocking portion 540 of the color conversion-transmitting layer 500, It may overlap the barrier layer 550 , the second light blocking portion 640 of the color layer 600 , and the light-transmitting substrate layer 700 .
- FIGS. 10 to 14 are schematic cross-sectional views of a manufacturing process of a display device according to an exemplary embodiment of the present invention.
- FIGS. 10 to 14 are schematic cross-sections of a manufacturing process of a display device, and are schematic cross-sections taken along line A-A' in FIG. 5 and line C-C' in FIG. 7A. shows
- a first electrode 150 and an auxiliary electrode 180 of a light emitting diode are formed on an insulating layer, for example, a fifth insulating layer 109 .
- the first electrode 150 and the auxiliary electrode 180 may be formed together in the same process and may include the same material or a similar material.
- a pixel circuit PC including a driving transistor M1 and a storage capacitor Cst is formed on the substrate 100.
- First to fifth insulating layers 101 , 103 , 105 , 107 , and 109 may be formed on the substrate 100 , and exemplary materials and positions thereof are described with reference to FIGS. 6 , 8 , and 9A. As explained.
- a driving voltage line VDL, a common voltage line VSL, and an auxiliary common voltage line VSL-A may be formed together with electrodes of the driving transistor M1 and/or the storage capacitor Cst.
- the first contact hole CT1 (FIG. 8) penetrating the first to third insulating layers 101, 103, and 105 is formed.
- the common voltage line VSL may be connected to the auxiliary common voltage line VSL-A through the first contact hole CT1 ( FIG. 8 ).
- a fourth insulating layer 107 including an inorganic insulating material may be formed.
- the fifth insulating layer 109 is formed on the fourth insulating layer 107 .
- the process of forming the fifth insulating layer 109 includes the process of forming the sixth contact hole CT6 for connection between the pixel circuit PC and the first electrode 150, and the process of forming the fifth insulating layer 109.
- a process of forming the opening 109OP may be included.
- the opening 109OP may be formed by etching a portion of the fifth insulating layer 109 overlapping the auxiliary common voltage line VLS-A. can overlap.
- the second contact hole CT2 ( FIG. 8 ) described above with reference to FIG. 8 may be formed.
- the bank layer BNL is formed on the first electrode 150 and the auxiliary electrode 180 and overlaps the first bank opening B-OP1 overlapping the first electrode 150 and the auxiliary electrode 180.
- a second bank opening B-OP2 may be included.
- the size (or width) of the second bank opening B-OP2 may be smaller than that of the first bank opening B-OP1.
- an intermediate layer 160 is formed on the bank layer BNL.
- the intermediate layer 160 may overlap the first electrode 150 exposed through the first bank opening B-OP1 and the auxiliary electrode 180 exposed through the second bank opening B-OP2.
- the intermediate layer 160 includes the light emitting layer 162 , and thus the process of forming the intermediate layer 160 may include the process of forming the light emitting layer 162 .
- the process of forming the intermediate layer 160 includes the process of forming the first functional layer 161 disposed below the light emitting layer 162 and/or the second functional layer 163 disposed above the light emitting layer 162. can include more.
- the intermediate layer 160 will be described as including a first functional layer 161 , a light emitting layer 162 , and a second functional layer 163 .
- a laser beam is irradiated onto the intermediate layer 160 to form a hole 160H as shown in FIG. 11 .
- a laser beam may use a UV laser having a wavelength in a range of about 300 to 400 nm, and an output per unit area may be about 200 mJ/cm 2 or less.
- the laser beam may have a Gaussian beam shape. The energy density of the laser beam is highest at the center, and the energy density of the laser beam may decrease as the distance from the center of the laser beam increases.
- the laser beam When the laser beam is irradiated, the laser beam is positioned within the second bank opening B-OP2, but the center of the laser beam is the opening of the fifth insulating layer 109 ( 109OP).
- the center of the laser beam may be positioned inside the inner edge 109oe of the fifth insulating layer 109 corresponding to the outline of the opening 109OP of the fifth insulating layer 109 .
- the center of the laser beam may be located at the center of the opening 190OP.
- the center of the laser beam crosses the inner edge 109oe and overlaps the material portion of the fifth insulating layer 109, the fifth insulating layer 109 and/or the auxiliary electrode 180 are formed by outgassing. Since this excitation may occur, it may be appropriate that the center of the laser beam is positioned within the opening 109OP of the fifth insulating layer 109 .
- a hole in the first functional layer 161 , a hole in the light emitting layer 162 , and a hole in the second functional layer 163 may be formed by a laser beam.
- the center of the hole of the light emitting layer 162 may coincide with the center of the hole of the functional layer, for example, the center of the hole of the first functional layer 161 and the center of the hole 162H of the light emitting layer 162 .
- the size of the hole of the first functional layer 161, the size of the hole of the light emitting layer 162, and the size of the hole of the second functional layer 163 may be the same or different from each other.
- the hole 160H of the intermediate layer 160 may be formed by overlapping the hole of the first functional layer 161 , the hole of the light emitting layer 162 , and the hole of the second functional layer 163 .
- the center of the hole 161H of the first functional layer 161, the center of the hole 162H of the light emitting layer 162, and the center of the hole 163H of the second functional layer 163 have been previously described with reference to FIG. 9A. This may correspond to the center HC of the hole 160H.
- the first region 160-1 and the second region 160-2 described with reference to FIG. 9B may be formed around the hole 160H.
- the shapes of the first area 160-1 and the second area 160-2 are the same as or similar to those described with reference to FIG. 9B, a detailed description thereof will be omitted.
- a hole 160H is formed by completely removing the intermediate layer 160 in an area adjacent to the center of the laser beam, and spaced apart from the center of the laser beam Like the first region 160-1, a region in which at least a portion of the intermediate layer 160 is removed may be formed on the removed portion.
- the second electrode 170 disposed in the hole 160H may have a smooth slope without being sharply bent at the boundary between the first region 160-1 and the hole 160H.
- the second electrode 170 of the light emitting diode is formed.
- the second electrode 170 may contact or directly contact and electrically connect to the auxiliary electrode 180 through the hole 160H.
- a contact area between the second electrode 170 and the auxiliary electrode 180 is positioned within the second bank opening B-OP2, but a portion may be positioned on the inclined surface BSS of the fifth insulating layer 109.
- an encapsulation layer 400 is formed on the second electrode 170 .
- the encapsulation layer 400 may include first and second inorganic encapsulation layers 410 and 430 formed by chemical vapor deposition and an organic encapsulation layer 420 that may be formed by curing after applying a monomer.
- a color conversion-transmitting layer 500 , a color layer 600 , and a light-transmitting substrate layer 700 may be formed on the encapsulation layer 400 .
- the lower structure LS is formed from the substrate 100 to the encapsulation layer 400, and includes a color conversion-transmitting layer 500, a color layer 600, and a light-transmitting base layer 700.
- the lower structure LS and the upper structure US are formed so that the encapsulation layer 400 and the color conversion-transmitting layer 500 face each other with the intermediate material layer 501 interposed therebetween. can be placed and joined.
- the intermediate material layer 501 is formed on the encapsulation layer 400 without separately forming the lower structure LS and the upper structure US, and the color conversion- The transmissive layer 500 , the color layer 600 , and the translucent substrate layer 700 may be sequentially formed.
- FIG. 15 is a cross-sectional view schematically illustrating a hole and a hole periphery of a display device according to another exemplary embodiment of the present invention.
- the first area 160-1 and the second area 160-2 disposed around the hole 160H may be the same as or similar to those described above.
- a hole 161H of the first functional layer 161, a hole 162H of the light emitting layer 162, and a hole of the second functional layer 163 are formed by a laser beam. (163H) may be arranged.
- the center of the hole 162H of the light emitting layer 162 may coincide with the center of the hole 162H of the functional layer, for example, the center of the hole 161H of the first functional layer 161.
- the hole 160H of the intermediate layer 160 is formed by overlapping the hole 161H of the first functional layer 161, the hole 162H of the light emitting layer 162, and the hole 163H of the second functional layer 163.
- the center of the hole 161H of the first functional layer 161, the center of the hole 162H of the light emitting layer 162, and the center of the hole 163H of the second functional layer 163 are shown in FIG. 9A. It may correspond to the center HC of the hole 160H described with reference to.
- the hole 163H of the second functional layer 163 is disposed inside the hole 162H of the light emitting layer 162, and the hole 162H of the light emitting layer 162 is inside the hole 161H of the first functional layer 161.
- the hole 160H of the intermediate layer 160 may be defined by the hole 161H of the first functional layer 161 .
- the first functional layer 161 and the light emitting layer 162 overlap and in the portion where the first functional layer 161, the light emitting layer 162, and the second functional layer 163 overlap each other, the first functional layer 161 and the light emitting layer (The thickness of each of the 162 and the second functional layer 163 may be reduced.
- the first functional layer 161 overlaps with the light emitting layer 162 in the portion where the first functional layer 161 and the light emitting layer 162 overlap.
- the first functional layer 161, the light emitting layer 162, and the second functional layer 163 overlap with each other in the portion where the first functional layer 161 and the light emitting layer 162 respectively It is also possible that the thickness of is maintained the same as before.
- 16 is a cross-sectional view schematically illustrating a hole and a hole periphery of a display device according to another exemplary embodiment of the present invention.
- the first area 160-1 and the second area 160-2 disposed around the hole 160H may be the same as or similar to those described above.
- a hole 161H of the first functional layer 161, a hole 162H of the light emitting layer 162, and a hole of the second functional layer 163 are formed by a laser beam. (163H) may be arranged.
- the center of the hole 162H of the light emitting layer 162 may coincide with the center of the hole 162H of the functional layer, for example, the center of the hole 161H of the first functional layer 161.
- Holes 161H of the first functional layer 161 , holes 162H of the light emitting layer 162 , and holes 163H of the second functional layer 163 may be similar to those described with reference to FIG. 15 .
- Inner surfaces of the hole 161H of the first functional layer 161 , the hole 162H of the light emitting layer 162 , and the hole 163H of the second functional layer 163 may be inclined.
- the first functional layer 161 , the light emitting layer 162 , and the second functional layer 163 may be arranged stepwise with respect to the hole 160H of the intermediate layer 160 .
- the embodiments of the present invention can be applied to automobiles, mobile phones, laptop computers, monitors, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Electroluminescent Light Sources (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
본 발명은 표시 장치 및 표시 장치의 제조방법을 개시한다. 본 발명은, 기판과, 상기 기판 상에 배치되며, 개구를 갖는 유기절연층과, 상기 유기절연층 상의 제1전극과, 상기 유기절연층 상에 배치되되, 제1부분이 상기 유기절연층의 상기 개구에 중첩하는, 보조전극과, 상기 제1전극과 중첩하는 제1뱅크개구, 및 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구가 정의된, 뱅크층과, 상기 제1전극 및 상기 보조전극 상에 위치하며, 상기 보조전극의 일부를 노출하는 홀을 포함하는 중간층과, 상기 제1전극 및 상기 보조전극과 중첩하도록 상기 중간층 상에 배치되며, 상기 중간층의 상기 홀을 통해 상기 보조전극과 접촉하는 제2전극을 포함하며, 상기 중간층은 상기 홀을 중심으로부터 멀어질수록 상기 중간층의 두께는 가변한다.
Description
본 발명의 실시예들은 장치 및 방법에 관한 것으로서, 표시 장치 및 표시 장치의 제조방법에 관한 것이다.
각종 전기적 정보를 시각적으로 표현하는 표시 분야가 급속도로 발전함에 따라, 박형화, 경량화, 저소비 전력화 등의 우수한 특성을 지닌 다양한 표시 장치가 소개되고 있다.
배경기술은 기술을 이해하기 위한 유용한 배경을 제공하기 위한 것으로 이해되어야 한다. 그러나 배경기술은 여기에 개시된 주제의 해당 유효 출원일 이전에 관련 기술 분야의 숙련자에 의해 알려지거나 인식된 것의 일부가 아닌 아이디어, 개념 또는 인식이 포함될 수도 있다.
표시 장치는 스스로 빛을 방출하지 않고 백라이트의 빛을 이용하는 액정표시 장치, 또는 빛을 방출할 수 있는 표시요소를 포함하는 발광 표시 장치를 포함할 수 있다. 발광 표시 장치는 발광층을 포함하는 표시요소들을 포함할 수 있다.
본 발명의 실시예들은 장치 및 방법에 관한 것으로서, 보다 구체적으로 표시 장치 및 표시 장치의 제조방법에 관한 구조를 제공한다.
본 발명의 일 실시예는 기판과, 상기 기판 상에 배치되며, 개구를 갖는 유기절연층과, 상기 유기절연층 상의 제1전극과, 상기 유기절연층 상에 배치되되, 제1부분이 상기 유기절연층의 상기 개구에 중첩하는, 보조전극과, 상기 제1전극과 중첩하는 제1뱅크개구, 및 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구가 정의된, 뱅크층과, 상기 제1전극 및 상기 보조전극 상에 위치하며, 상기 보조전극의 일부를 노출하는 홀을 포함하는 중간층과, 상기 제1전극 및 상기 보조전극과 중첩하도록 상기 중간층 상에 배치되며, 상기 중간층의 상기 홀을 통해 상기 보조전극과 접촉하는 제2전극을 포함하며, 상기 중간층은 상기 홀을 중심으로부터 멀어질수록 상기 중간층의 두께는 가변하는 표시 장치를 개시한다.
본 발명의 실시예들에 따르면, 홀을 구비한 중간층을 구비함으로써 보조전극과 보조전극 상의 제2전극의 접촉영역의 품질을 확보할 수 있다. 또한, 본 발명의 실시예들에 따르면 선명한 이미지를 제공하는 것이 가능하다. 전술한 효과는 예시적인 것으로서, 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 표시 장치를 개략적으로 나타낸 사시도이다.
도 2는 본 발명의 일 실시예에 따른 표시 장치의 각 화소들을 개략적으로 나타낸 단면도이다.
도 3은 도 2의 색변환-투과층의 각 광학부들을 개략적으로 나타낸 단면도이다.
도 4는 본 발명의 일 실시예에 따른 표시 장치에 포함된 발광다이오드 및 발광다이오드에 전기적으로 연결된 화소회로를 개략적으로 나타낸 등가회로도이다.
도 5는 본 발명의 일 실시예에 따른 표시 장치의 발광다이오드들 및 주변에 배치된 배선을 개략적으로 나타낸 평면도이다.
도 6은 도 5의 A-A’선에 따른 단면도이다.
도 7a는 본 발명의 일 실시예에 따른 표시 장치의 공통전압라인과 보조전극의 구조를 개략적으로 나타낸 평면도이다.
도 7b는 도 7a에 도시된 홀 주변을 개략적으로 나타낸 평면도이다.
도 8은 도 7a의 B-B’선에 따른 단면도이다.
도 9aa는 도 7a의 C-C’선에 따른 단면도이다.
도 9b는 도 9aa의 일부를 확대하여 개략적으로 보여주는 단면도이다.
도 10 내지 도 14는 본 발명의 일 실시예에 따른 표시 장치의 제조 공정에 따른 단면도이다.
도 15는 본 발명의 다른 실시예에 따른 표시 장치의 홀과 홀 주변을 개략적으로 보여주는 단면도이다.
도 16은 본 발명의 또 다른 실시예에 따른 표시 장치의 홀과 홀 주변을 개략적으로 보여주는 단면도이다.
본 발명의 일 실시예는 기판과, 상기 기판 상에 배치되며, 개구를 갖는 유기절연층과, 상기 유기절연층 상의 제1전극과, 상기 유기절연층 상에 배치되되, 제1부분이 상기 유기절연층의 상기 개구에 중첩하는, 보조전극과, 상기 제1전극과 중첩하는 제1뱅크개구, 및 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구가 정의된, 뱅크층과, 상기 제1전극 및 상기 보조전극 상에 위치하며, 상기 보조전극의 일부를 노출하는 홀을 포함하는 중간층과, 상기 제1전극 및 상기 보조전극과 중첩하도록 상기 중간층 상에 배치되며, 상기 중간층의 상기 홀을 통해 상기 보조전극과 접촉하는 제2전극을 포함하며, 상기 중간층은 상기 홀을 중심으로부터 멀어질수록 상기 중간층의 두께는 가변하는 표시 장치를 개시한다.
본 실시예에 있어서, 상기 중간층은, 상기 홀과 인접하는 제1영역과, 상기 제1영역과 인접하며, 상기 제1영역과 연결되고, 상기 중간층의 높이가 최고인 최고점을 포함한 제2영역을 더 포함할 수 있다.
본 실시예에 있어서, 상기 제1영역의 두께는 상기 홀로부터 멀어질수록 커질 수 있다.
본 실시예에 있어서, 상기 제1영역 및 상기 제2영역 중 적어도 하나의 평면 형상은 고리 형태일 수 있다.
본 실시예에 있어서, 상기 홀의 평면 형상의 면적은 상기 홀의 평면 형상의 면적, 상기 제1영역의 평면 형상의 면적 및 상기 제2영역의 평면 형상의 면적의 합의 약 60±20%일 수 있다.
본 실시예에 있어서, 일 방향으로 측정된 상기 홀의 평면 형상의 반지름은 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 60±20%일 수 있다.
본 실시예에 있어서, 일 방향으로 측정된 상기 홀의 테두리로부터 상기 제1영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 15±10%일 수 있다.
본 실시예에 있어서, 일 방향으로 측정된 상기 제1영역의 평면 형상의 외곽테두리로부터 상기 제2영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 25±10%일 수 있다.
본 실시예에 있어서, 상기 제1영역에 배치된 상기 중간층의 두께는 상기 제2영역의 외곽에 배치된 상기 중간층의 두께의 약 10±5%일 수 있다.
본 실시예에 있어서, 상기 제1영역에 배치된 상기 중간층의 두께는 약 200Å이상이면서 약 600Å이하의 범위일 수 있다.
본 실시예에 있어서, 상기 제2영역에 배치된 상기 중간층의 두께 중 최대값은 상기 제2영역의 외곽에 배치된 상기 중간층의 두께의 약 140±20%일 수 있다.
본 실시예에 있어서, 상기 중간층은 발광층을 포함하며, 상기 중간층의 홀은 상기 발광층을 관통하는 홀을 포함할 수 있다.
본 실시예에 있어서, 상기 기판 상에 배치되며 일 방향으로 연장된 공통전압라인과, 상기 공통전압라인과 중첩하며, 상기 공통전압라인과의 사이에 개재된 적어도 하나의 절연층에 정의된 콘택홀을 통해 상기 공통전압라인과 전기적으로 연결된 보조 공통전압라인을 포함하며, 상기 보조 공통전압라인 및 상기 공통전압라인은 상기 유기절연층의 상기 개구와 중첩할 수 있다.
본 실시예에 있어서, 상기 보조 공통전압라인의 상면과 직접 접촉하는 무기절연층을 더 포함할 수 있다.
본 실시예에 있어서, 상기 보조전극은, 상기 유기절연층의 개구에 중첩하며, 상기 유기절연층의 상기 개구 보다 큰 폭을 갖는 상기 제1부분과, 상기 제1부분과 일체로 형성되되, 상기 제1부분 보다 폭이 작은 제2부분을 포함하며, 상기 보조전극의 상기 제2부분은, 상기 유기절연층 및 상기 무기절연층을 관통하는 콘택홀을 통해 상기 보조 공통전압라인에 전기적으로 연결될 수 있다.
본 발명의 다른 측면은, 기판과, 상기 기판 상에 배치되며, 개구를 갖는 유기절연층과, 상기 유기절연층 상의 제1전극과, 상기 유기절연층 상에 배치되되, 제1부분이 상기 유기절연층의 상기 개구에 중첩하는 보조전극과, 상기 제1전극과 중첩하는 제1뱅크개구, 및 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구가 정의된 뱅크층과, 상기 제1전극 및 상기 보조전극 상에 위치하며, 상기 보조전극의 일부를 노출하는 홀을 포함하는 중간층과, 상기 제1전극 및 상기 보조전극과 중첩하도록 상기 중간층 상에 배치되며, 상기 중간층의 상기 홀을 통해 상기 보조전극과 접촉하는 제2전극을 포함하며, 상기 중간층은, 상기 홀과 인접하며, 제1두께가 가변하는 제1영역과, 상기 제1영역과 인접하며, 상기 제1영역과 연결되고, 상기 중간층의 두께가 최고인 최고점을 구비한 제2두께가 가변하는 제2영역과, 상기 제2영역의 외곽에 배치되며, 제3두께가 일정한 제3영역을 더 포함하는 표시 장치를 개시한다.
본 실시예에 있어서, 상기 제1두께는 상기 홀로부터 멀어질수록 커질 수 있다.
본 실시예에 있어서, 상기 제1영역 및 상기 제2영역 중 적어도 하나의 평면 형상은 고리 형태일 수 있다.
본 실시예에 있어서, 상기 홀의 평면 형상의 면적은 상기 홀의 평면 형상의 면적, 상기 제1영역의 평면 형상의 면적 및 상기 제2영역의 평면 형상의 면적의 합의 약 60±20%일 수 있다.
본 실시예에 있어서, 일 방향으로 측정된 상기 홀의 평면 형상의 반지름은 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 60±20%일 수 있다.
본 실시예에 있어서, 일 방향으로 측정된 상기 홀의 테두리로부터 상기 제1영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 15±10%일 수 있다.
본 실시예에 있어서, 일 방향으로 측정된 상기 제1영역의 평면 형상의 외곽테두리로부터 상기 제2영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 25±20%일 수 있다.
본 실시예에 있어서, 상기 제1두께는 상기 제3두께의 약 10±5%일 수 있다.
본 실시예에 있어서, 상기 제1두께는 약 200Å이상이면서 약 600Å이하의 범위일 수 있다.
본 실시예에 있어서, 상기 제2두께 중 최대값은 상기 제3두께의 약 140±20%일 수 있다.
본 실시예에 있어서, 상기 중간층은 발광층을 포함하며, 상기 중간층의 홀은 상기 발광층을 관통하는 홀을 포함할 수 있다.
본 실시예에 있어서, 상기 기판 상에 배치되며 일 방향으로 연장된 공통전압라인과, 상기 공통전압라인과 중첩하며, 상기 공통전압라인과의 사이에 개재된 적어도 하나의 절연층에 정의된 콘택홀을 통해 상기 공통전압라인과 전기적으로 연결된 보조 공통전압라인을 포함하며, 상기 보조 공통전압라인 및 상기 공통전압라인은 상기 유기절연층의 상기 개구와 중첩할 수 있다.
본 실시예에 있어서, 상기 보조 공통전압라인의 상면과 직접 접촉하는 무기절연층을 더 포함할 수 있다.
본 실시예에 있어서, 상기 보조전극은, 상기 유기절연층의 개구에 중첩하며, 상기 유기절연층의 상기 개구 보다 큰 폭을 갖는 상기 제1부분과, 상기 제1부분과 일체로 형성되되, 상기 제1부분 보다 폭이 작은 제2부분을 포함하며, 상기 보조전극의 상기 제2부분은, 상기 유기절연층 및 상기 무기절연층을 관통하는 콘택홀을 통해 상기 보조 공통전압라인에 전기적으로 연결될 수 있다.
본 발명의 또 다른 실시예는, 기판 상에 개구를 갖는 유기절연층을 형성하는 공정과, 상기 유기절연층 상의 제1전극을 형성하는 공정과, 제1부분이 상기 유기절연층의 상기 개구에 중첩하는 보조전극을 상기 유기절연층 상에 형성하는 공정과, 상기 제1전극과 중첩하는 제1뱅크개구, 및 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구가 정의된 뱅크층을 형성하는 공정과, 상기 제1전극 및 상기 보조전극 상에 위치하도록 중간층을 형성하는 공정과, 상기 중간층에 레이저를 조사하여, 상기 보조전극의 일부를 노출하는 상기 중간층의 홀을 형성하는 공정과, 상기 중간층에 레이저를 조사하여 상기 홀의 주변의 상기 중간층의 제1영역 일부를 제거하고, 상기 제1영역과 연결된 상기 중간층의 제2영역을 돌출시키는 공정과, 상기 중간층의 상기 홀을 통해 상기 보조전극과 접촉하도록 상기 중간층 상에 제2전극을 형성하는 공정을 포함하는 표시 장치의 제조 방법을 개시한다.
본 실시예에 있어서, 상기 레이저의 단위면적당 출력은 약 200mJ/cm2이하일 수 있다.
본 실시예에 있어서, 상기 레이저는 파장이 약 300nm이상이면서 약 400nm이하의 범위 내인 자외선 레이저일 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
"구성하다", "구성하는", "포함하다" 및/또는 "포함하는", "가지다", "가지다" 및/또는 "가지다" 및 이들의 변형어는 본 명세서에서 사용될 때 다음의 존재를 명시한다. 명시된 특징, 정수, 단계, 동작, 요소, 구성 요소 및/또는 이들의 그룹이지만 하나 이상의 다른 특징, 정수, 단계, 동작, 요소, 구성 요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않을 수 있다.
이하의 실시예에서 "A, B 및 C 중 적어도 하나는"는 A 하나,B 하나,C하나, A와 B, A와 C, B와 C, A,B,C 모두를 의미할 수 있으며 다양한 조합이 가능하다.
제1, 제2 등의 용어가 본 명세서에서 다양한 구성요소를 설명하기 위해 사용될 수 있지만, 이러한 구성요소가 이러한 용어에 의해 제한되어서는 안된다는 것이 이해될 것이다. 이러한 용어는 한 요소를 다른 요소와 구별하는 데에만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 예를 들면, 단수형 및 "상기"는 문맥상 명백하게 다르게 나타내지 않는 한 복수형도 포함할 수 있다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
"평면 상에서 볼 때"라 함은 대상물을 위에서 바라본 것을 의미하고, "개략적인 단면도"라 함은 대상물을 수직으로 절단한 단면을 측면에서 본 것을 의미한다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
이하의 실시예에서, 막, 영역, 구성 요소 등이 연결되었다고 할 때, 막, 영역, 구성 요소들이 직접적으로 연결된 경우뿐만 아니라 막, 영역, 구성요소들 중간에 다른 막, 영역, 구성 요소들이 개재되어 간접적으로 연결된 경우도 포함한다. 예컨대, 본 명세서에서 막, 영역, 구성 요소 등이 전기적으로 연결되었다고 할 때, 막, 영역, 구성 요소 등이 직접 전기적으로 연결된 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 간접적으로 전기적 연결된 경우도 포함한다.
"~에 연결된" 또는 "~에 결합된"이라는 용어는 물리적 또는 전기적 연결 또는 결합을 포함할 수 있음을 이해될 수 있다.
공간적으로 상대적인 용어 "아래", "아래", "하부", "위", "상부" 등은 하나의 요소 또는 구성요소와 다른 요소 사이의 관계를 설명하기 위해 설명을 용이하게 하기 위해 본 명세서에서 사용될 수 있다. 도면에 도시된 바와 같은 요소 또는 구성요소. 공간적으로 상대적인 용어는 도면에 묘사된 방향에 추가하여 사용 또는 작동 중인 장치의 다양한 방향을 포함하도록 의도된 것임을 이해될 수 있다. 예를 들어, 도면에 도시된 장치를 뒤집은 경우, 다른 장치의 "아래" 또는 "아래"에 위치하는 장치는 다른 장치의 "위"에 위치할 수 있다. 따라서, 예시적인 용어 "아래"는 하위 및 상위 위치를 모두 포함할 수 있다. 장치는 또한 다른 방향으로 배향될 수 있으므로 공간적으로 상대적인 용어는 배향에 따라 다르게 해석될 수 있다.
"중첩하다" 또는 "중첩된"이라는 용어는 제1 객체가 제2 객체의 위 또는 아래 또는 측면에 있을 수 있고 그 반대일 수 있음을 의미한다. 추가로, "겹침"이라는 용어는 층, 스택, 면 또는 대면, 위로 연장, 덮음, 또는 부분적으로 덮음 또는 당업자에 의해 이해되고 이해되는 임의의 다른 적합한 용어를 포함할 수 있다.
어떤 요소가 다른 요소와 '겹치지 않는' 것으로 기술될 때, 이는 요소들이 서로 이격되거나, 서로 오프셋되거나, 서로 떨어져 있거나 또는 당업자가 인식하고 이해할 수 있으며, 용어의 임의의 다른 적합한 것을 포함할 수 있다.
"마주보다" 및 "마주본"이라는 용어는 제1 요소가 제2 요소에 직접적으로 또는 간접적으로 대향할 수 있음을 의미한다. 상기 제1 및 제2요소 사이에 제3요소가 개재하는 경우, 상기 제1 및 제2요소는 서로 마주하지만 간접적으로 서로 대향하는 것으로 이해될 수 있다.
본 명세서에서 사용된 "약" 또는 "대략"은 언급된 값을 포함하며, 해당 측정 및 오류를 고려하여 당업자에 의해 결정된 특정 값에 대한 편차의 허용 가능한 범위 내를 의미할 수 있다. 특정 양의 측정과 관련된 것(즉, 측정 시스템의 한계). 예를 들어, "약"은 하나 이상의 표준 편차 이내 또는 명시된 값의 ±30%, 20%, 10%, 5% 이내를 의미할 수 있다.
본 명세서에서 달리 정의되거나 암시되지 않는 한, 여기서 사용되는 모든 용어(기술 및 과학 용어 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의된 것과 같은 용어는 관련 기술의 맥락에서 그 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며 이상화되거나 지나치게 형식적인 의미로 해석되지 않을 것입니다. 명시적으로 여기에 정의되어 있다.
도 1은 본 발명의 일 실시예에 따른 표시 장치를 개략적으로 나타낸 사시도이다.
도 1을 참조하면, 표시 장치(DV)는 표시영역(DA) 및 표시영역(DA)에 외측의 비표시영역(NDA)을 포함할 수 있다. 표시 장치는 표시영역(DA)에 x-y평면 상에서 2차원적으로 배열된(또는 배치된) 복수의 화소들의 어레이를 통해 이미지를 제공할 수 있다. 복수의 화소들은 제1화소, 제2화소, 및 제3화소를 포함하며, 이하에서는 설명의 편의상 제1화소가 적색 화소(Pr)이고, 제2화소가 녹색 화소(Pg)이며, 및 제3화소가 청색 화소(Pb)인 경우로 설명한다.
적색 화소(Pr), 녹색 화소(Pg), 및 청색 화소(Pb)는 각각 적색, 녹색, 및 청색의 빛을 방출할 수 있는 영역으로, 표시 장치(DV)는 화소들에서 방출되는 빛을 이용하여 이미지를 제공할 수 있다.
비표시영역(NDA)은 이미지를 제공하지 않는 영역으로서, 표시영역(DA)을 전체적으로 둘러싸거나 인접하게 배치될 수 있다. 비표시영역(NDA)에는 화소회로들에 전기적 신호나 전원을 제공하기 위한 드라이버 또는 메인전압라인이 배치될 수 있다. 비표시영역(NDA)에는 전자소자나 인쇄회로기판이 전기적으로 연결될 수 있는 영역인 패드가 포함할 수 있다.
표시영역(DA)은 도 1에 도시된 바와 같이 사각형을 포함한 다각형의 형상을 가질 수 있다. 예컨대, 표시영역(DA)은 가로의 길이가 세로의 길이 보다 큰 직사각형의 형상을 갖거나, 가로의 길이가 세로의 길이 보다 작은 직사각형의 형상을 갖거나, 정사각형의 형상을 가질 수 있다. 예를 들면, 표시영역(DA)은 타원 또는 원형과 같이 다양한 형상을 가질 수 있다.
도 2는 본 발명의 일 실시예에 따른 표시 장치의 각 화소들을 개략적으로 나타낸 단면도이다.
도 2를 참조하면, 표시 장치(DV)는 기판(100) 상의 회로층(200)을 포함할 수 있다. 회로층(200)은 제1 내지 제3화소회로(PC1, PC2, PC3)을 포함하며, 제1 내지 제3화소회로(PC1, PC2, PC3) 각각은 발광다이오드층(300)의 제1 내지 제3발광다이오드(LED1, LED2, LED3)에 전기적으로 연결될 수 있다.
제1 내지 제3발광다이오드(LED1, LED2, LED3)는 유기물을 포함하는 유기 발광다이오드를 포함할 수 있다. 일 실시예로, 제1 내지 제3발광다이오드(LED1, LED2, LED3)는 무기물을 포함하는 무기 발광다이오드일 수 있다. 무기발광다이오드는 무기물 반도체 기반의 재료들을 포함하는 PN 접합 다이오드를 포함할 수 있다. PN 접합 다이오드에 순방향으로 전압을 인가하면 정공과 전자가 주입되고, 그 정공과 전자의 재결합으로 생기는 에너지를 빛 에너지로 변환시켜 소정의 색상의 빛을 방출할 수 있다. 전술한 무기발광다이오드는 수~수백 마이크로미터 또는 수~수백 나노미터의 폭을 가질 수 있다. 일 실시예에서, 발광다이오드(LED)는 양자점을 포함하는 발광다이오드일 수 있다. 전술한 바와 같이, 발광다이오드(LED)의 발광층은 유기물을 포함하거나, 무기물을 포함하거나, 양자점을 포함하거나, 유기물과 양자점을 포함하거나, 무기물과 양자점을 포함할 수 있다.
제1 내지 제3발광다이오드(LED1, LED2, LED3)는 동일한 색의 빛을 방출할 수 있다. 예컨대, 제1 내지 제3발광다이오드(LED1, LED2, LED3)에서 방출된 광(예컨대, 청색광 Lb)은 발광다이오드층(300) 상의 봉지층(400)을 지나 색변환-투과층(500)을 통과할 수 있다.
색변환-투과층(500)은 발광다이오드층(300)에서 방출된 빛(예, 청색광 Lb)의 색을 변환하거나 변환하지 않고 투과시키는 광학부들을 포함할 수 있다. 예컨대, 색변환-투과층(500)은 발광다이오드층(300)에서 방출된 빛(예, 청색광 Lb)을 다른 색의 빛으로 변환하는 색변환부들, 및 발광다이오드층(300)에서 방출된 빛(예, 청색광 Lb)을 색변환하지 않고 투과시키는 투과부를 포함할 수 있다. 색변환-투과층(500)은 적색의 화소(Pr)와 대응하는 제1색변환부(510), 녹색의 화소(Pg)와 대응하는 제2색변환부(520), 및 청색의 화소(Pb)에 대응하는 투과부(530)를 포함할 수 있다. 제1색변환부(510)는 청색광(Lb)을 적색의 광(Lr)으로 변환하고, 제2색변환부(520)는 청색광(Lb)을 녹색의 광(Lg)로 변환할 수 있다. 투과부(530)는 청색광(Lb)을 변환하지 않고 통과시킬 수 있다.
컬러층(600)은 색변환-투과층(500) 상에 배치될 수 있다. 컬러층(600)은 서로 다른 색의 제1 내지 제3컬러필터(610, 620, 630)를 포함할 수 있다. 예컨대, 제1컬러필터(610)는 적색의 컬러필터이고, 제2컬러필터(620)는 녹색의 컬러필터이며, 및 제3컬러필터(630)는 청색의 컬러필터일 수 있다.
색변환-투과층(500)에서 색변환된 빛 및 투과된 빛은 각각 제1 내지 제3컬러필터(610, 620, 630)를 통과하면서 색순도가 향상될 수 있다. 컬러층(600)은 외부의 광(예컨대, 표시 장치(DV)의 외부에서 표시 장치(DV)를 향해 입사하는 빛)이 반사되어 사용자에게 시인되는 것을 방지하거나 최소화할 수 있다.
컬러층(600) 상에는 투광성 기재층(700)을 포함할 수 있다. 투광성 기재층(700)은 글래스 또는 투광성 유기물을 포함할 수 있다. 예컨대, 투광성 기재층(700)은 아크릴 계열의 수지와 같은 투광성 유기물을 포함할 수 있다.
일 실시예로서, 투광성 기재층(700)은 일종의 기판으로서, 투광성 기재층(700) 상에 컬러층(600) 및 색변환-투과층(500)이 형성된 후, 색변환-투과층(500)이 봉지층(400)과 마주보도록 일체화될 수 있다.
일 실시예로서, 봉지층(400) 상에 색변환-투과층(500) 및 컬러층(600)이 순차적으로 형성된 후 투광성 기재층(700)이 컬러층(600) 상에 도포 또는 직접 도포 및 경화되어 형성될 수 있다. 일부 실시예로서, 투광성 기재층(700) 상에는 다른 광학적 필름, 예컨대 AR(anti-reflection) 필름 등이 배치될 수 있다.
전술한 구조를 갖는 표시 장치(DV)는 텔레비전, 광고판, 영화관용 스크린, 모니터, 태블릿 PC, 노트북 등을 포함할 수 있다.
도 3은 도 2의 색변환-투과층의 각 광학부들을 나타낸다.
도 3을 참조하면, 제1색변환부(510)는 입사되는 청색광(Lb)을 적색의 광(Lr)으로 변환할 수 있다. 제1색변환부(510)는 도 3에 도시된 바와 같이, 제1감광성 폴리머(1151), 제1감광성 폴리머(1151)에 분산된 제1양자점(1152)들과 제1산란입자(1153)들을 포함할 수 있다.
제1양자점(1152)들은 청색광(Lb)에 의해 여기되어 청색광의 파장보다 긴 파장을 갖는 적색의 광(Lr)을 등방성으로 방출할 수 있다. 제1감광성 폴리머(1151)는 광 투과성을 갖는 유기 물질일 수 있다. 제1산란입자(1153)들은 제1양자점(1152)들에 흡수되지 못한 청색광(Lb)을 산란시켜 더 많은 제1양자점(1152)들이 여기되도록 함으로써, 색변환 효율을 증가시킬 수 있다. 제1산란입자(1153)들은 예를 들어, 산화 티타늄(TiO2)이나 금속 입자 등일 수 있다. 제1양자점(1152)들은 II-VI족 화합물, III-V족 화합물, IV-VI족 화합물, IV족 원소, IV족 화합물 및 이들의 조합에서 선택될 수 있다.
제2색변환부(520)는 입사되는 청색광(Lb)을 녹색의 광(Lg)으로 변환할 수 있다. 제2색변환부(520)는 도 3에 도시된 바와 같이, 제2감광성 폴리머(1161), 제2감광성 폴리머(1161)에 분산된 제2양자점(1162)들과 제2산란입자(1163)들을 포함할 수 있다.
제2양자점(1162)들은 청색광(Lb)에 의해 여기되어 청색광의 파장보다 긴 파장을 갖는 녹색의 광(Lg)을 등방성으로 방출할 수 있다. 제2감광성 폴리머(1161)는 광 투과성을 갖는 유기 물질일 수 있다.
제2산란입자(1163)들은 제2양자점(1162)들에 흡수되지 못한 청색광(Lb)을 산란시켜 더 많은 제2양자점(1162)들이 여기되도록 함으로써, 색변환 효율을 증가시킬 수 있다. 제2산란입자(1163)들은, 예를 들어, 산화 티타늄(TiO2)이나 금속 입자 등일 수 있다. 제2양자점(1162)들은 II-VI족 화합물, III-V족 화합물, IV-VI족 화합물, IV족 원소, IV족 화합물 및 이들의 조합에서 선택될 수 있다.
일 실시예로서, 제1양자점(1152) 및 제2양자점(1162)들과 동일한 물질 또는 유사한 물질일 수 있다. 제1양자점(1152)들의 크기는 제2양자점(1162)들의 크기 보다 클 수 있다.
투과부(530)는 투과부(530)로 입사하는 청색광(Lb)을 변환하지 않고 청색광(Lb)을 투과할 수 있다. 투과부(530)는 도 3에 도시된 바와 같이, 제3산란입자(1173)들이 분산된 제3 감광성 폴리머(1171)를 포함할 수 있다. 제3 감광성 폴리머(1171)는, 예를 들어, 실리콘 수지, 에폭시 수지 등의 광 투과성을 갖는 유기 물질일 수 있으며, 제1 및 제2감광성 폴리머(1151, 1161)와 동일한 물질 또는 유사한 물질일 수 있다. 제3산란입자(1173)들은 청색광(Lb)을 산란시켜 방출할 수 있으며, 제1 및 제2산란입자(1153, 1163)들과 동일한 물질일 수 있다.
도 4는 본 발명의 일 실시예에 따른 표시 장치에 포함된 발광다이오드 및 발광다이오드에 전기적으로 연결된 화소회로를 개략적으로 나타낸 등가회로도이다.
도 4를 참조하면, 발광다이오드, 예컨대 발광다이오드(LED)의 제1전극(예, 애노드)은 화소회로(PC)에 연결되고, 발광다이오드(LED)의 제2전극(예, 캐소드)은 공통전원전압(ELVSS)을 제공하는 공통전압라인(VSL)에 연결될 수 있다. 발광다이오드(LED)는 화소회로(PC)로부터 공급되는 전류량에 상응하는 휘도로 발광할 수 있다.
도 4의 발광다이오드(LED)는 앞서 도 2에 도시된 제1 내지 제3발광다이오드(LED1, LED2, LED3) 각각에 해당하며, 도 4의 화소회로(PC)는 앞서 도 2에 도시된 제1 내지 제3화소회로(PC1, PC2, PC3) 각각에 해당할 수 있다.
화소회로(PC)는 데이터신호에 대응하여 구동전원전압(ELVDD)으로부터 발광다이오드(LED)를 경유하여 공통전원전압(ELVSS)으로 흐르는 전류량을 제어할 수 있다. 화소회로(PC)는 구동 트랜지스터(M1), 스위칭 트랜지스터(M2), 센싱 트랜지스터(M3) 및 스토리지 커패시터(Cst)를 포함할 수 있다.
구동 트랜지스터(M1), 스위칭 트랜지스터(M2), 센싱 트랜지스터(M3) 각각은, 산화물 반도체로 구성된 반도체층을 포함하는 산화물 반도체 박막 트랜지스터이거나, 폴리 실리콘으로 구성된 반도체층을 포함하는 실리콘 반도체 박막 트랜지스터일 수 있다. 트랜지스터의 타입에 따라 제1전극은 소스전극 및 드레인전극 중 하나일 수 있고, 제2전극은 소스전극 및 드레인전극 중 다른 하나일 수 있다.
구동 트랜지스터(M1)의 제1전극은 구동전원전압(ELVDD)을 공급하는 구동전압라인(VDL)에 연결되고, 제2전극은 발광다이오드(LED)의 제1전극에 연결될 수 있다. 구동 트랜지스터(M1)의 게이트전극은 제1노드(N1)에 연결될 수 있다. 구동 트랜지스터(M1)는 제1노드(N1)의 전압에 대응하여 구동전원전압(ELVDD)으로부터 발광다이오드(LED)를 흐르는 전류량을 제어할 수 있다.
스위칭 트랜지스터(M2)는 스위칭 트랜지스터일 수 있다. 스위칭 트랜지스터(M2)의 제1전극은 데이터라인(DL)에 연결되고, 제2전극은 제1노드(N1)에 연결될 수 있다. 스위칭 트랜지스터(M2)의 게이트전극은 스캔라인(SL)에 연결될 수 있다. 스위칭 트랜지스터(M2)는 스캔라인(SL)으로 주사신호가 공급되는 경우 턴-온되어 데이터라인(DL)과 제1노드(N1)를 전기적으로 연결할 수 있다.
센싱 트랜지스터(M3)는 초기화 트랜지스터 및/또는 센싱 트랜지스터일 수 있다. 센싱 트랜지스터(M3)의 제1전극은 제2노드(N2)에 연결될 수 있고, 제2전극은 센싱라인(SEL)에 연결될 수 있다. 센싱 트랜지스터(M3)의 게이트전극은 제어라인(CL)에 연결될 수 있다.
스토리지 커패시터(Cst)는 제1노드(N1)와 제2노드(N2) 사이에 연결될 수 있다. 예컨대, 스토리지 커패시터(Cst)의 제1커패시터전극은 구동 트랜지스터(M1)의 게이트전극에 연결되고, 스토리지 커패시터(Cst)의 제2커패시터전극은 발광다이오드(LED)의 제1전극에 연결될 수 있다.
도 4에서는 구동 트랜지스터(M1), 스위칭 트랜지스터(M2), 및 센싱 트랜지스터(M3)를 NMOS로 도시하였지만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 구동 트랜지스터(M1), 스위칭 트랜지스터(M2), 및 센싱 트랜지스터(M3) 중 적어도 하나는 PMOS로 형성될 수 있다.
도 4에는 3개의 트랜지스터들이 도시되어 있으나, 본 발명은 이에 한정되지 않는다. 화소회로(PC)는 4개 또는 그 이상의 트랜지스터들을 포함할 수 있다.
도 5는 본 발명의 일 실시예에 따른 표시 장치의 발광다이오드들 및 주변에 배치된 배선을 개략적으로 나타낸 평면도이다.
도 5를 참조하면, 표시영역(DA)에는 공통전압라인(VSL)들이 배치되되, 공통전압라인(VSL)들 각각은 y방향을 따라 연장될 수 있다. 공통전압라인(VSL)들은 상호 이격되어 배치되되, 인접한 두 개의 공통전압라인(VSL)들 사이에 발광다이오드들, 예컨대 유기발광다이오드들이 배치될 수 있다. 일 실시예로, 도 5는 이웃한 두 개의 공통전압라인(VSL)들 사이에 제1 내지 제3유기발광다이오드(OLED1, OLED2, OLED3)가 배치될 것을 도시한다.
표시영역(DA)에는 공통전압라인(VSL)들과 교차하는 방향(예, x방향)을 따라 연장된 보조라인들이 배치될 수 있다. 일 실시예로, 도 5는 제1 및 제2보조라인(AL1, AL2)들이 x방향을 따라 연장된 것을 도시하며, 제1 및 제2보조라인(AL1, AL2)들은 제1 내지 제3유기발광다이오드(OLED1, OLED2, OLED3)를 사이에 두고 상호 이격될 수 있다. 각 공통전압라인(VSL)은 제1 및 제2보조라인(AL1, AL2)들 중 적어도 어느 하나와 전기적으로 연결될 수 있다.
도 5에 도시된 구조는 표시영역(DA)의 일 부분을 나타낸 것으로, 표시영역(DA)은 도 5의 구조가 반복 배열된 것으로 볼 수 있다. 예컨대, 표시영역(DA)에는 복수의 공통전압라인(VSL)들 및 복수의 보조라인들이 서로 교차하면서 전기적으로 연결되며, 평면도 상에서 공통전압라인(VSL)들 및 보조라인들은 메쉬 구조를 형성할 수 있다. 표시영역(DA)이 비교적 큰 면적을 가지는 경우 공통전압라인(VSL)을 통해 제공되는 공통전압의 전압강하가 야기될 수 있는데, 공통전압라인(VSL)들 및 보조라인들이 개략적으로 평면상에서 메쉬 구조를 형성함으로써 전술한 전압강하를 방지하거나 최소화할 수 있다.
보조전극(180)은 공통전압라인(VSL)의 일부와 중첩하도록 배치될 수 있다. 보조전극(180)은 제1콘택홀(CT1) 및 제2콘택홀(CT2)을 이용하여 공통전압라인(VSL)에 전기적으로 연결될 수 있으며, 공통전압라인(VSL)으로부터 전원을 공급받을 수 있다. 발광다이오드, 예컨대 제1 내지 제3유기발광다이오드(OLED1, OLED2, OLED3)의 제2전극(예, 캐소드)은 보조전극(180)을 통해 공통전압라인(VSL)에 전기적으로 연결될 수 있다.
공통전압라인(VSL)은 공통전압라인(VSL)에 중첩하게 배치된 보조 공통전압라인(VSL-A)과 전기적으로 연결될 수 있다. 예컨대, 보조 공통전압라인(VSL-A)은 제2콘택홀(CT2)을 통해 공통전압라인(VSL)에 접속될 수 있다.
발광다이오드, 예컨대 제1 내지 제3유기발광다이오드(OLED1, OLED2, OLED3) 각각의 제1전극(150, 예, 애노드)은 제6콘택홀(CT6)을 통해 그 아래에 배치된 화소회로에 전기적을 연결될 수 있다. 제1 내지 제3유기발광다이오드(OLED1, OLED2, OLED3) 각각에 연결된 화소회로는 앞서 도 4를 참조하여 설명한 것과 마찬가지로 복수의 트랜지스터들 및 스토리지 커패시터를 포함할 수 있다.
도 6은 도 5의 A-A’선에 따른 개략적인 단면도이다.
도 6을 참조하면, 기판(100) 상에 발광다이오드, 예컨대 제1유기발광다이오드(OLED1)가 배치되되, 기판(100)과 제1유기발광다이오드(OLED1) 사이에는 화소회로(PC)가 배치될 수 있다. 이와 관련하여, 도 6은 화소회로(PC)에 포함된 구동 트랜지스터(M1) 및 스토리지 커패시터(Cst)를 도시한다. 도 6에 도시되지 않았으나, 제2유기발광다이오드(OLED2)와 이에 연결된 화소회로, 및 제3유기발광다이오드(OLED3)와 이에 연결된 화소회로도 도 6에 도시된 화소회로(PC)와 동일한 구조를 포함할 수 있다.
기판(100)은 글래스재, 금속재, 유기물 등과 같은 물질로 형성될 수 있다. 예컨대, 기판(100)은 SiO2를 주성분으로 하는 글래스재를 포함하거나, 플렉서블 또는 벤더블 특성을 갖는 다양한 물질, 예를 들어, 폴리머 수지를 포함할 수 있다
구동 트랜지스터(M1)는 반도체층(A1) 및 게이트전극(G1)을 포함할 수 있다. 반도체층(A1)은 산화물계 물질 또는 실리콘계 물질(예컨대, 아모퍼스 실리콘, 폴리 실리콘)을 포함할 수 있다. 예컨대, 반도체층(A1)은 인듐(In), 갈륨(Ga), 스태늄(Sn), 지르코늄(Zr), 바나듐(V), 하프늄(Hf), 카드뮴(Cd), 게르마늄(Ge), 크로뮴(Cr), 티타늄(Ti) 및 아연(Zn)을 포함하는 군에서 선택된 적어도 하나 이상의 물질의 산화물을 포함할 수 있다.
반도체층(A1)은 채널영역(C1), 채널영역(C1)을 사이에 두고 양측에 배치된 제1 및 제2저저항영역(B1, D1)을 포함할 수 있다. 제1 및 제2저저항영역(B1, D1)은 채널영역(C1) 보다 저항이 작은 영역으로, 제1 및 제2저저항영역(B1, D1) 중 어느 하나는 소스 영역이고 다른 하나는 드레인 영역에 해당할 수 있다.
반도체층(A1)은 기판(100) 상의 제1절연층(101) 상에 위치할 수 있다. 제1절연층(101)은 불순물이 반도체층(A1)으로 침투하는 것을 방지할 수 있다. 제1절연층(101)은 실리콘나이트라이드, 실리콘옥사이드, 및/또는 실리콘옥시나이트라이드와 같은 무기절연물을 포함할 수 있다.
반도체층(A1) 및 게이트전극(G1) 사이에는 제2절연층(103)이 개재될 수 있다. 제2절연층(103)은 일종의 게이트절연층일 수 있으며, 실리콘나이트라이드, 실리콘옥사이드, 및/또는 실리콘옥시나이트라이드와 같은 무기절연물을 포함할 수 있다.
게이트전극(G1)은 반도체층(A1)의 채널영역(C1)과 중첩할 수 있다. 게이트전극(G1)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등을 포함하며, 전술한 물질을 포함하는 단층 또는 다층 구조를 포함할 수 있다.
반도체층(A1)의 제1 및 제2저저항영역(B1, D1) 중 어느 하나는 구동전압라인(VDL)에 전기적으로 연결될 수 있다. 구동전압라인(VDL)은 제1절연층(101)의 아래에 배치될 수 있다. 도 6은 구동전압라인(VDL)이 제3절연층(105) 상의 연결전극(CE)을 통해 제2저저항영역(D1)에 접속된 것을 도시한다.
구동전압라인(VDL)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등과 같은 금속물질을 포함할 수 있다. 예컨대, 구동전압라인(VDL)은 티타늄층(하층) 및 티타늄층 보다 두께가 두꺼운 구리층(상층)의 적층 구조를 포함할 수 있다. 다른 실시예로, 구동전압라인(VDL)은 전술한 금속물질을 포함하는 하나 이상의 금속층(들), 및 하나 이상의 금속층(들) 상에 배치된 ITO와 같은 투명도전성산화물층의 다층 구조를 포함할 수 있다. 제3절연층(105)은 실리콘나이트라이드, 실리콘옥사이드, 및/또는 실리콘옥시나이트라이드와 같은 무기절연물을 포함할 수 있다.
제2저저항영역(D1)이 소스영역(또는 드레인영역)인 경우 연결전극(CE)은 구동 트랜지스터(M1)의 소스전극(또는 드레인전극)이고, 제2저저항영역(D1)이 드레인영역(또는 소스영역)인 경우 연결전극(CE)은 구동 트랜지스터(M1)의 드레인전극(또는 소스전극)일 수 있다. 연결전극(CE)은 제1 내지 제3절연층(101, 103, 105)을 관통하는 제3콘택홀(CT3)을 통해 구동전압라인(VDL)에 접속되고, 제2 및 제3절연층(103, 105)을 관통하는 제4콘택홀(CT4)을 통해 구동 트랜지스터(M1)의 반도체층(A1)의 일부 (예컨대, 제2저저항영역, D1)에 접속될 수 있다. 연결전극(CE)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등과 같은 금속물질을 포함할 수 있다. 예컨대, 연결전극(CE)은 티타늄층 및 구리층을 포함하는 다층 구조를 포함할 수 있다. 일 실시예로, 연결전극(CE)은 전술한 금속물질을 포함하는 하나 이상의 금속층(들), 및 하나 이상의 금속층(들) 상에 배치된 ITO와 같은 투명도전성산화물층의 다층 구조를 포함할 수 있다.
스토리지 커패시터(Cst)는 제1커패시터전극(CE1) 및 적어도 하나의 절연층을 개재한 채 제1커패시터전극(CE1)과 중첩하는 제2커패시터전극(CE2)을 포함한다. 제1커패시터전극(CE1)은 게이트전극(G1)과 동일한 층 상에 형성되며, 동일한 물질 또는 유사한 물질을 포함할 수 있다. 제1커패시터전극(CE1)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등을 포함하며, 전술한 물질을 포함하는 단층 또는 다층 구조를 포함할 수 있다.
일 실시예에서, 제2커패시터전극(CE2)은 제1커패시터전극(CE1)을 사이에 두고 아래와 위에 배치된 두 개의 서브 커패시터전극들(CE2a, CE2b)을 포함할 수 있다. 서브 커패시터전극들(CE2a, CE2b) 중 어느 하나의 서브커패시터전극(이하, 제1서브커패시터전극이라 함, CE2a)은 기판(100)과 제1절연층(101) 사이에 배치될 수 있으며, 다른 하나의 서브커패시터전극(이하, 제2서브커패시터전극이라 함, CE2b)은 제3절연층(105) 상에 배치될 수 있다.
제1서브커패시터전극(CE2a) 및 제2서브커패시터전극(CE2b)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등을 포함하며, 전술한 물질을 포함하는 단층 또는 다층 구조를 포함할 수 있다. 일 실시예로, 제1서브커패시터전극(CE2a)은 구동전압라인(VDL)과 동일한 층 상에 배치되며, 동일한 물질 또는 유사한 물질을 포함할 수 있다.
제2서브커패시터전극(CE2b)은 제1 내지 제3절연층(101, 103, 105)을 관통하는 제5콘택홀(CT5)을 통해 제1서브커패시터전극(CE2a)에 접속할 수 있다. 제1 및 제2절연층(101, 103)을 사이에 두고 서로 중첩하는 제1서브커패시터전극(CE2a)과 제1커패시터전극(CE1) 사이에 커패시턴스가 형성되고, 제3절연층(105)을 사이에 두고 서로 중첩하는 제1커패시터전극(CE1)과 제2서브커패시터전극(CE2b) 사이에 커패시턴스가 형성될 수 있다. 이와 같이 제2커패시터전극(CE2)이 복수의 서브 커패시터전극들을 포함함으로써, 스토리지 커패시터(Cst)의 커패시턴스를 향상시킬 수 있다.
제4절연층(107)은 구동 트랜지스터(M1) 및 스토리지 커패시터(Cst)를 포함하는 화소회로(PC) 상에 배치된다. 제4절연층(107)은 실리콘나이트라이드, 실리콘옥사이드, 및/또는 실리콘옥시나이트라이드와 같은 무기절연물을 포함할 수 있다. 제4절연층(107)은 표시 장치의 제조 공정에서 에천트에 의해 손상될 수 있는 금속(예컨대, 구리 등)을 포함하는 배선이 에칭 환경에 노출되는 것을 방지할 수 있다.
제5절연층(109)은 제4절연층(107) 상에 배치되며, 유기 절연물을 포함할 수 있다. 제5절연층(109)은 아크릴, BCB(Benzocyclobutene), 폴리이미드(polyimide) 또는 HMDSO(Hexamethyldisiloxane) 등과 같은 유기절연물을 포함할 수 있다.
제5절연층(109) 상에는 발광다이오드의 제1전극(150)이 형성되며, 이와 관련하여 도 6은 제1유기발광다이오드(OLED21)의 제1전극(150)을 도시한다.
제1전극(150)은 제4절연층(107) 및 제5절연층(109)을 관통하는 제6콘택홀(CT6)을 통해 화소회로(PC), 예컨대 스토리지 커패시터(Cst)의 제2서브커패시터전극(CE2b)에 접속될 수 있다.
제1전극(150)은 인듐주석산화물(ITO), 인듐아연산화물(IZO), 아연산화물(ZnO), 인듐산화물(In2O3), 인듐갈륨산화물(IGO) 또는 알루미늄아연산화물(AZO)과 같은 투명도전성산화물을 포함할 수 있다. 일 실시예로, 제1전극(150)은 은(Ag), 마그네슘(Mg), 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크로뮴(Cr) 또는 이들의 화합물을 포함하는 반사막을 포함할 수 있다. 일 실시예로, 제1전극(150)은 전술한 반사막의 위/아래에 ITO, IZO, ZnO 또는 In2O3로 형성된 막을 더 포함할 수 있다. 예컨대, 제1전극(150)은 ITO층, 은(Ag)층, 및 ITO층이 적층된 3층 구조일 수 있다.
뱅크층(BNL)은 제1전극(150)의 에지를 커버 또는 중첩하며, 제1전극(150)의 중심부분과 중첩하는 제1뱅크개구(B-OP1)를 포함할 수 있다. 뱅크층(BNL)은 폴리이미드와 같은 유기절연물을 포함할 수 있다.
중간층(160)은 뱅크층(BNL)의 제1뱅크개구(B-OP1)를 통해 제1전극(150)과 접촉할 수 있다. 제1뱅크개구(B-OP1)에 위치하는 제1전극(150), 중간층(160), 및 제2전극(170)의 적층 구조는 소정의 색의 빛을 방출할 수 있다. 뱅크층(BNL)의 제1뱅크개구(B-OP1)는 빛이 방출하는 발광영역(EA)에 해당할 수 있다. 예컨대, 뱅크층(BNL)의 제1뱅크개구(B-OP1)의 크기(또는 폭)는 발광영역(EA)의 크기(또는 폭)에 해당할 수 있다.
중간층(160)은 발광층(162)을 포함할 수 있다. 발광층(162)은 소정의 색상의 빛을 방출하는 고분자 또는 저분자 유기물을 포함할 수 있다. 앞서 도 2를 참조하여 설명한 바와 같이, 발광다이오드층(300, 도 2)이 청색의 빛을 방출하는 경우, 발광층(162)은 청색의 방출하는 고분자 또는 저분자 유기물을 포함할 수 있다.
중간층(160)은 적어도 하나의 기능층을 더 포함할 수 있다. 일 실시예로, 도 6에 도시된 바와 같이 중간층(160)은 발광층(162) 아래의 제1기능층(161) 및/또는 발광층(162) 위의 제2기능층(163)을 더 포함할 수 있다. 제1기능층(161)은 제1전극(150) 및 발광층(162) 사이에 개재되고, 제2기능층(163)은 발광층(162)과 후술할 제2전극(170) 사이에 개재될 수 있다.
제1기능층(161)은 홀 수송층(HTL: Hole Transport Layer) 및/또는 홀 주입층(HIL: Hole Injection Layer)을 포함할 수 있다. 제2기능층(163)은 전자 수송층(ETL: Electron Transport Layer) 및/또는 전자 주입층(EIL: Electron Injection Layer)을 포함할 수 있다.
제2전극(170)은 일함수가 낮은 도전성 물질로 이루어질 수 있다. 예컨대, 제2전극(170)은 은(Ag), 마그네슘(Mg), 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크로뮴(Cr), 리튬(Li), 칼슘(Ca) 또는 이들의 합금 등을 포함하는 (반)투명층을 포함할 수 있다. 또는, 제2전극(170)은 전술한 물질을 포함하는 (반)투명층 상에 ITO, IZO, ZnO 또는 In2O3과 같은 층을 더 포함할 수 있다.
봉지층(400)은 제2전극(170) 상에 배치될 수 있다. 봉지층(400)은 적어도 하나의 무기봉지층과 적어도 하나의 유기봉지층을 포함할 수 있다. 일 실시예로, 도 6은 봉지층(400)이 제1무기봉지층(410), 제2무기봉지층(430), 및 제1무기봉지층(410)과 제2무기봉지층(430) 사이의 유기봉지층(420)을 포함하는 것을 도시한다.
제1 및 제2무기봉지층(410, 430)은 각각 하나 이상의 무기 절연물을 포함할 수 있다. 무기 절연물은 알루미늄옥사이드, 티타늄옥사이드, 탄탈륨옥사이드, 하프늄옥사이드, 징크옥사이드, 실리콘옥사이드, 실리콘나이트라이드, 및/또는 실리콘옥시나이트라이드를 포함할 수 있다.
유기봉지층(420)은 폴리머(polymer)계열의 물질을 포함할 수 있다. 폴리머 계열의 소재로는 아크릴계 수지, 에폭시계 수지, 폴리이미드 및 폴리에틸렌 등을 포함할 수 있다. 예컨대, 유기봉지층(420)은 아크릴계 수지, 예컨대 폴리메틸메타크릴레이트, 폴리아크릴산 등을 포함할 수 있다. 유기봉지층(420)은 모노머를 경화하거나, 폴리머를 도포하여 형성할 수 있다.
봉지층(400) 상에는 중간물질층(501)이 배치될 수 있다. 중간물질층(501)은 무기절연물 및/또는 유기절연물을 포함할 수 있다. 중간물질층(501) 상에는 색변환-투과층(500)이 위치한다. 이와 관련하여, 도 6은 색변환-투과층(500)의 차광부(540) 및 차광부(540)에 의해 정의된 개구영역에 위치하는 제1색변환부(510)를 도시한다.
색변환-투과층(500) 상에는 배리어층(550)이 형성될 수 있다. 배리어층(550)은 실리콘옥사이드, 실리콘나이트라이드, 및/또는 실리콘옥시나이트라이드와 같은 무기절연물을 포함할 수 있다.
컬러층(600)은 색변환-투과층(500) 상에 배치될 수 있다. 이와 관련하여, 도 6은 컬러층(600)의 차광부(640) 및 차광부(640)에 의해 정의된 개구영역에 위치하는 제1컬러필터(610)를 도시한다. 색변환-투과층(500)의 차광부(540, 이하 제1 차광부라 함)와 컬러층(600)의 차광부(640, 이하 제2차광부라 함)는 서로 중첩하도록 배치된다.
제1차광부(540) 및 제2차광부(640)는 각각 차광성 물질을 포함할 수 있다. 예컨대, 제1차광부(540) 및 제2차광부(640)는 각각 검은색과 같이 소정의 색을 갖는 유기물을 포함할 수 있다. 예컨대, 제1차광부(540) 및 제2차광부(640)는 각각 폴리이미드(PI)계 바인더, 및 적색, 녹색과 청색이 혼합된 피그먼트를 포함할 수 있다. 또는, 제1차광부(540) 및 제2차광부(640)는 각각 cardo계 바인더 수지 및 락탐계 블랙 피그먼트(lactam black pigment)와 블루 피그먼트의 혼합물을 포함할 수 있다. 또는, 제1차광부(540) 및 제2차광부(640)는 각각 카본블랙을 포함할 수 있다.
일 실시예로, 제1차광부(540)와 제2차광부(640)는 동일한 물질 또는 유사한 물질을 포함할 수 있다. 일 실시예로서, 제2차광부(640)는 컬러층(600)을 형성하는 컬러필터들이 적어도 2개 이상 중첩된 구조를 포함할 수 있다. 예컨대, 제2차광부(640)는 전술한 차광성 물질을 포함하지 않고, 제1 내지 제3컬러필터(610, 620, 630, 도 2) 중에서 선택된 2개 또는 3개의 컬러필터 물질이 적층된 구조를 가질 수 있다.
투광성 기재층(700)은 글래스 또는 투광성 유기물을 포함할 수 있다. 예컨대, 투광성 기재층(700)은 아크릴 계열의 수지와 같은 투광성 유기물을 포함할 수 있다.
도 7a는 본 발명의 일 실시예에 따른 표시 장치의 공통전압라인과 보조전극의 구조를 개략적으로 나타낸 평면도로서, 도 5의 일 부분을 확대한 개략적인 평면도에 해당할 수 있다.
도 5 및 도 7a를 참조하면, y방향을 따라 연장된 공통전압라인(VSL)은 보조전극(180) 및 보조 공통전압라인(VSL-A)과 중첩할 수 있다. 보조 공통전압라인(VSL-A)의 길이(y방향으로의 길이)는 공통전압라인(VSL)의 길이(y방향으로의 길이) 보다 작을 수 있다. 보조 공통전압라인(VSL-A)의 폭(x방향으로의 폭, W2)은 공통전압라인(VSL)의 폭(W1)과 다를 수 있다. 일 실시예로, 보조 공통전압라인(VSL-A)의 폭(W2)은 공통전압라인(VSL)의 폭(W1) 보다 작을 수 있다.
서로 다른 층 상에 배치된 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A)은 이들 사이에 배치된 절연층을 관통하는 제1콘택홀(CT1)을 통해 접속될 수 있으며, 따라서 공통전압라인(VSL)의 저항을 줄일 수 있다.
보조전극(180)은 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A) 상에 배치된다. 보조전극(180)은 공통전압라인(VSL) 및/또는 보조 공통전압라인(VSL-A)과 중첩할 수 있다. 보조전극(180)은 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A)과 다른 평면 형상을 가질 수 있다. 예컨대, 보조전극(180)은 도 7a에 도시된 바와 같이, 개략적인 평면상에서 상대적으로 폭이 넓은 제1부분(이하, 광폭부라 함, 180A) 및 상대적으로 폭이 작은 제2부분(이하, 협폭부라 함, 180B)를 포함할 수 있다. 광폭부(180A) 및 협폭부(180B)는 일체로 연결된다.
광폭부(180A)의 폭(x방향으로의 폭, W3)은 협폭부(180B)의 폭(x방향으로의 폭, W4) 보다 크다. 광폭부(180A)의 폭(W3)은 공통전압라인(VSL) 및/또는 보조 공통전압라인(VSL-A)의 폭 보다 클 수 있다. 일 실시예로, 도 7a는 광폭부(180A)의 폭(W3)이 보조 공통전압라인(VSL-A)의 폭(W2) 보다 크고, 공통전압라인(VSL)의 폭(W1)의 폭 보다 작은 것을 나타낸다. 일 실시예로서, 광폭부(180A)의 폭(W3)은 각각 보조 공통전압라인(VSL-A)의 폭(W2) 및 공통전압라인(VSL)의 폭(W1) 보다 클 수 있다.
보조전극(180)의 일 부분은, 동일한 전압 레벨을 갖는 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A) 중 어느 하나에 접속될 수 있다. 예컨대, 보조전극(180)의 협폭부(180B)는 제2콘택홀(CT2)을 통해 보조 공통전압라인(VSL-A)에 접속될 수 있다.
보조전극(180)의 다른 부분은, 발광다이오드의 제2전극(170, 도 6)에 접속될 수 있다. 예컨대, 발광다이오드의 제2전극(170, 도 6)은 제2전극 아래에 배치된 중간층(160, 도 6)에 형성된 홀(160H)을 통해 보조전극(180)의 광폭부(180A)에 접속될 수 있다.
개략적으로 평면상에서, 중간층의 홀(160H)은 보조전극(180)의 광폭부(180A)와 중첩하되, 뱅크층(BNL, 도 6)의 제2뱅크개구(B-OP2) 내에 위치할 수 있다. 개략적으로 평면 상에서 중간층의 홀(160H)은 전체적으로 제2뱅크개구(B-OP2)와 중첩할 수 있다. 중간층의 홀(160H)은 제5절연층(109)의 개구(109OP)와 중첩할 수 있다. 구체적으로, 중간층의 홀(160H)은 평면 상에서 볼 때 제5절연층(109)의 개구(109OP)의 내부에 배치될 수 있다. 보조전극(180) 및 그 주변 구성요소들의 구체적 구조는 도 8 및 도 9a를 참조하여 설명한다.
도 7b는 도 7a에 도시된 홀 주변을 개략적으로 나타낸 평면도이다.
도 7b를 참고하면, 홀(160H)의 주변에는 중간층의 적어도 일부가 잔존하는 제1영역(160-1)이 배치될 수 있다. 제1영역(160-1)의 주변에는 제1영역(160-1)을 감싸도록 배치되며, 돌출된 중간층 영역이 배치된 제2영역(160-2)이 배치될 수 있다. 제1영역(160-1)과 제2영역(160-2)은 환형(또는 고리 모양)으로 형성될 수 있다.
개략적으로 평면 상에서 볼 때 제1영역(160-1)의 내부에는 홀(160H)이 배치되고, 제2영역(160-2)의 내부에는 제1영역(160-1)과 홀(160H)이 배치될 수 있다. 이러한 경우 홀(160H)의 평면 형상의 테두리는 원일 수 있다. 또한, 제1영역(160-1)의 평면 형상과 제2영역(160-2)의 평면 형상은 각각 환형(Ring type 또는 고리 모양)일 수 있다. 일 실시예로서 홀(160H)의 평면 형상은 타원일 수 있다. 제1영역(160-1)의 평면 형상과 제2영역(160-2)의 평면 형상은 환형(또는 고리 모양)일 수 있으며, 각각의 외곽선이 타원일 수 있다. 홀(160H)의 평면 형상은 상기에 한정되는 것은 아니며 원과 유사한 형태로서 중심에서부터 홀(160H)의 테두리까지의 거리가 일정 범위인 평면 형상을 모두 포함할 수 있다.
상기와 같은 경우 홀(160H)의 평면 형상의 면적은 제2영역(160-2)의 평면 형상의 최외곽테두리의 내부의 면적의 약 60±20%일 수 있다. 제2영역(160-2)이 평면 형상의 최외곽테두리의 내부의 면적은 홀(160H)의 평면 형사의 면적, 제1영역(160-1)의 평면 형상의 면적과 제2영역(160-2)의 평면 형상의 면적의 합일 수 있다.
이러한 경우 홀(160H)의 평면 형상의 면적이 제2영역(160-2)의 평면 형상의 최외곽테두리의 내부의 면적의 약 80%를 초과하는 경우 제1영역(160-1)의 경사지 커짐으로써 제2전극(170)이 제대로 연결되지 못하는 문제가 발생할 수 있다. 또한, 홀(160H)의 평면 형상의 면적이 제2영역(160-2)의 평면 형상의 최외곽테두리의 내부의 면적의 약 40% 미만인 경우 제2전극(170)과 보조전극(180)의 연결면적이 작아짐으로써 보조전극(180)으로 인한 전압 강하의 저감 효과가 줄어들 수 있다.
제1방향으로 측정된 홀(160H)의 평면 형상의 원주는 홀(160H)의 평면 형상의 면적 및 제2영역(160-2)의 평면 형상의 최외곽테두리의 내부의 면적 사이의 관계와 유사하게 제2영역(160-2)의 평면 형상의 외곽테두리의 원주의 60±20%일 수 있다. 예를 들면, 제1방향(예를 들면, 도 7b의 x축 방향)으로 측정되며, 홀(160H)의 중심으로부터 제2영역(160-2)의 평면 형상의 최외곽테두리까지의 전체거리(L)에 대해서 홀(160H)의 반지름인 제1거리(L1)는 전체거리(L)의 60±20%일 수 있다.
환영(또는 고리모양)인 제1영역(160-1)의 전체면적은 제2영역(160-2)의 평면 형상의 최외곽테두리의 내부의 면적의 15±10%일 수 있다. 제1방향으로 측정되는 제1영역(160-1)의 내측 테두리로부터 제1영역(160-1)의 외측 테두리까지의 제2거리(L2)는 전체거리(L)의 약 15±10%일 수 있다. 이때, 제2거리(L2)가 전체거리(L)의 약 5% 미만인 경우 제1영역(160-1)의 두께가 급격히 증가함으로서 제1영역(160-1) 상에 배치되는 제2전극(170)이 제1영역(160-1)에 끊어지는 일이 발생할 수 있다. 또한, 제2거리(L2)가 전체거리(L)의 약 25%를 초과하는 경우 홀(160H)의 크기가 작아짐으로써 제2전극(170)과 보조전극(180)의 접촉이 원활하지 않을 수 있다.
환형(또는 고리 모양)인 제2영역(160-2)의 전체면적은 제2영역(160-2)의 평면 형상의 최외곽테두리의 내부의 면적의 약 25±10%일 수 있다. 제1방향으로 측정되는 제2영역(160-2)의 내측 테두리로부터 제2영역(160-2)의 외측 테두리까지의 제3거리(L3)는 전체거리(L)의 약 15±10%일 수 있다. 이때, 제3거리(L3)가 전체거리(L)의 약 25%를 초과하는 경우 홀(160H) 영역이 너무 작아질 수 있어 보조전극(180)과 제2전극(170)의 접촉면적이 작아져 보조전극(180)과 제2전극(170)이 접촉하지 못하는 문제가 발생할 수 있다. 반면, 제3거리(L3)가 전체거리(L)의 약 5%미만인 경우 중간층의 돌출되는 부분의 두께가 커짐으로써 중간층의 돌출된 부분에 배치된 제2전극(170)이 단절될 수 있다.
도 8는 도 7a의 B-B’선에 따른 개략적인 단면도이고, 도 9a는 도 7a의 C-C’선에 따른 개략적인 단면도이며, 도 9b는 도 9a의 일부를 확대하여 개략적으로 보여주는 단면도이다.
도 7a, 도 8, 도 9a 및 도 9b를 참조하면, 기판(100) 상에 공통전압라인(VSL)이 배치된다. 공통전압라인(VSL)은 기판(100)의 상면과 접촉하거나 직접 접촉할 수 있다. 공통전압라인(VSL)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등과 같은 금속물질을 포함할 수 있다. 공통전압라인(VSL)은 앞서 도 6을 참조하여 설명한 구동전압라인(VDL)과 동일한 물질 또는 유사한 물질을 포함할 수 있다. 공통전압라인(VSL)은 티타늄층(하층) 및 티타늄층 보다 두께가 두꺼운 구리층(상층)의 적층 구조를 포함할 수 있다. 일 실시예로, 공통전압라인(VSL)은 전술한 금속물질을 포함하는 하나 이상의 금속층(들), 및 하나 이상의 금속층(들) 상에 배치된 ITO와 같은 투명도전성산화물층의 다층 구조를 포함할 수 있다.
공통전압라인(VSL) 상에는 보조 공통전압라인(VSL-A)이 배치되며, 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A) 사이에는 적어도 하나의 절연층이 배치될 수 있다. 이와 관련하여, 도 8 및 도 9a는 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A) 사이에 제1 내지 제3절연층(101, 103, 105)이 배치된 것을 도시한다.
보조 공통전압라인(VSL-A)은, 도 8에 도시된 바와 같이, 제1 내지 제3절연층(101, 103, 105)을 관통하는 제1콘택홀(CT1)을 통해 공통전압라인(VSL)에 접속될 수 있다. 보조 공통전압라인(VSL-A)은 몰리브덴(Mo), 구리(Cu), 티타늄(Ti) 등과 같은 금속물질을 포함할 수 있다. 보조 공통전압라인(VSL-A)은 공통전압라인(VSL)과 동일한 물질 또는 유사한 물질을 포함할 수 있다. 예컨대, 보조 공통전압라인(VSL-A)은 티타늄층(하층) 및 티타늄층 보다 두께가 두꺼운 구리층(상층)의 적층 구조를 포함할 수 있다. 일 실시예로, 보조 공통전압라인(VSL-A)은 공통전압라인(VSL)과 다른 물질을 포함할 수 있다. 예컨대, 보조 공통전압라인(VSL-A)은 전술한 금속물질을 포함하는 하나 이상의 금속층(들), 및 하나 이상의 금속층(들) 상에 배치된 ITO와 같은 투명도전성산화물층의 다층 구조를 포함할 수 있는데 반해, 공통전압라인(VSL)은 투명도전성산화물을 포함하지 않은 채, 금속을 포함하는 층(들)만 포함할 수 있다.
보조 공통전압라인(VSL-A)은 제4절연층(107)으로 보호될 수 있다. 예컨대, 제4절연층(107)은 보조 공통전압라인(VSL-A)의 상면과 접촉하거나 직접 접촉한 채 보조 공통전압라인(VSL-A)을 커버하거나 중첩할 수 있다. 예를 들어, 제4절연층(107)은 제5절연층(109)의 개구(109OP) 바로 아래에 있는 보조 공통전압라인(VSL-A)의 일부를 커버하거나 중첩할 수 있다. 제4절연층(107)은 앞서 설명한 바와 같이 무기절연물을 포함할 수 있다.
제5절연층(109)은 제4절연층(107) 상에 배치된다. 제5절연층(109)의 개구(109OP)는 아웃 개싱 통로를 제공할 수 있다. 예컨대, 표시 장치의 제조 공정 중 유기절연물로 형성된 제5절연층(109)에 포함된 가스가 제5절연층(109)의 개구(109OP)를 통해 방출될 수 있다.
제5절연층(109)의 개구(109OP)는 보조 공통전압라인(VSL-A)에 중첩할 수 있다. 개구(109OP)를 형성하는 공정 및/또는 개구(109OP)를 형성한 이후의 공정에서, 보조 공통전압라인(VSL-A)이 손상되는 것을 방지하기 위하여 개구(109OP) 바로 아래에 위치하는 보조 공통전압라인(VSL-A)의 부분은 제4절연층(107)으로 커버되거나 중첩될 수 있다. 일 실시예로, 보조 공통전압라인(VSL-A)은 비교적 저저항인 구리를 포함할 수 있다. 예컨대, 보조 공통전압라인(VSL-A)은 티타늄층(하층)과 구리층(상층)의 적층 구조를 포함할 수 있으며, 상대적으로 손상되기 쉬운 구리층이 제4절연층(107)에 의해 커버되거나 중첩되므로 손상을 방지할 수 있다.
보조전극(180)은 제5절연층(109) 상에 배치될 수 있다. 보조전극(180)은 제5절연층(109) 및 제4절연층(107)을 관통하는 제2콘택홀(CT2)을 통해 보조 공통전압라인(VSL-A)에 접속될 수 있다. 보조 공통전압라인(VSL-A)은 제1콘택홀(CT1)을 통해 공통전압라인(VSL)에 접속되어 있기에, 보조전극(180)은 보조 공통전압라인(VSL-A)을 매개로 공통전압라인(VSL)과 전기적으로 연결될 수 있다.
보조전극(180)은 발광다이오드의 제1전극(도 6, 150)과 동일한 물질 또는 유사한 물질을 포함할 수 있다. 예컨대, 보조전극(180)은 ITO층, Ag층, ITO층의 적층 구조를 포함할 수 있다. 보조전극(180)의 일부, 예컨대 광폭부(180A)는 제5절연층(109)의 개구(109OP)에 중첩할 수 있다. 보조전극(180)의 광폭부(180A)는 개구(109OP)를 통해 제4절연층(107)의 상면과 접촉하거나 직접 접촉할 수 있다. 예컨대, 제5절연층(109)의 개구(109OP)와 대응하는 영역에서, 제4절연층(107)의 상면은 보조전극(180)과 직접 접촉하고, 제4절연층(107)의 하면은 보조 공통전압라인(VSL-A)과 접촉하거나 직접 접촉할 수 있다.
뱅크층(BNL)은 보조전극(180) 상에 배치될 수 있다. 뱅크층(BNL)은 보조전극(180)의 광폭부(180A)와 중첩하는 제2뱅크개구(B-OP2) 및 보조전극(180)의 협폭부(180B)와 중첩하는 제3뱅크개구(B-OP3)를 포함할 수 있다.
제2뱅크개구(B-OP2)는 제5절연층(109)의 개구(109OP) 전체와 중첩하며, 제2뱅크개구(B-OP2)의 크기(또는 폭, ow2)는 제5절연층(109)의 개구(109OP)의 크기(또는 폭, ow1) 보다 크다. 따라서, 도 7a의 개략적인 평면도 상에서 제2뱅크개구(B-OP2) 내에 제5절연층(109)의 개구(109OP)가 존재하게 된다. 이와 관련하여, 도 7a는 개략적으로 평면상에서, 제5절연층(109)의 개구(109OP)의 윤곽선(109B)이 제2뱅크개구(B-OP2)의 윤곽선(BNLB) 내에 위치하는 것을 도시한다.
뱅크층(BNL) 상에는 제1기능층(161), 발광층(162) 및 제2기능층(163)을 포함하는 중간층(160)이 배치된다. 중간층(160)의 일 부분은 제2뱅크개구(B-OP2) 내에 위치하되, 제5절연층(109)의 개구(1O9OP)와 중첩하는 홀(160H)을 포함한다. 중간층(160)의 홀(160H)은 제1기능층(161), 발광층(162) 및 제2기능층(163)을 관통할 수 있다. 중간층(160)의 홀(160H)을 통해 발광다이오드의 제2전극(170)은 보조전극(180)에 접속될 수 있다.
도 8, 도 9a 및 도 9b에 도시된 바와 같이, 중간층(160)의 홀(160H)은 제5절연층(109)의 개구(109OP)에 중첩할 수 있다.
도 8, 도 9a 및 도 9b에 도시된 바와 같이, 상기와 같이 배치된 홀(160H)의 주변에는 제1영역(160-1) 및 제2영역(160-2)이 배치될 수 있다. 제1영역(160-1)은 홀(160H)의 테두리를 감싸도록 배치되며, 제2영역(160-2)은 제1영역(160-1)의 외곽테두리를 감싸도록 배치될 수 있다.
제1영역(160-1)의 제1두께(H1) 및 제2영역(160-2)의 제2두께(H2)는 제1방향(예를 들면, 도 9a의 x 방향)으로 가변할 수 있다. 예를 들면, 제1두께(H1)는 제1방향으로 줄어들 수 있다. 제1두께(H1)는 홀(160H)의 중심으로부터 멀어질수록 커질 수 있다. 또한, 제2두께(H2)는 제1방향으로 갈수록 늘어나다가 줄어들 수 있다. 제2영역(160-2)에는 중간층(160)의 두께가 가장 큰 최고점이 존재할 수 있다. 예를 들면, 제2두께(H2)는 제1영역(160-1)으로부터 멀어질수록 커지다가 최고점을 통과한 후 줄어들 수 있다.
일 실시예로서 제1영역(160-1)은 중간층(160)의 일부만 잔존하는 영역일 수 있다. 예를 들면, 제1영역(160-1)은 중간층(160) 중 적어도 일부가 제거된 영역일 수 있다. 예를 들어, 제1영역(160-1)은 중간층(160) 중 가장 상부에 있는 제2기능층(163) 중 적어도 일부가 제거된 영역일 수 있다. 또는 제1영역(160-1)은 중간층(160) 중 가장 상부에 있는 제2기능층(163)이 완전히 제거되고, 발광층(162의 일부가 제거된 영역일 수 있다. 또는 제1영역(160-1)은 중간층(160) 중 가장 상부에 있는 제2기능층(163)이 완전히 제거되고, 발광층(162의 일부가 제거되며, 제1기능층(161)의 적어도 일부가 제거된 영역을 의미하는 것도 가능하다.
일 실시예로서 제1영역(160-1)은 중간층(160)의 두께가 제2영역(160-2)의 외곽에 배치된 제3영역(160-3)의 두께이하인 영역을 의미할 수 있다. 일 실시예로서 제1영역(160-1)은 중간층(160) 중 적어도 하나의 층의 두께가 제2영역(160-2)의 외곽에 배치된 제3영역(160-3)에 배치된 중간층 중 적어도 하나의 층의 두께보다 작은 영역을 의미할 수 있다. 이때, 제1영역(160-1)과 제3영역(160-3)에서 비교되는 중간층(160) 중 하나의 층은 서로 동일한 물질 또는 유사한 물질인 층을 의미할 수 있다.
제2영역(160-2)은 제1영역(160-1)과 상이하게 중간층(160)이 제거되지 않은 영역일 수 있다. 일 실시예로서 제2영역(160-2)은 중간층(160)의 두께가 제3영역(160-3)에 배치된 중간층(160)의 두께보다 큰 영역을 의미할 수 있다. 일 실시예로서 제1영역(160-1)은 중간층(160)에 포함된 각 층의 두께가 제2영역(160-2)의 외곽에 배치된 제3영역(160-3)에 배치된 중간층에 포함된 각 층의 두께보다 큰 영역을 의미할 수 있다. 제1영역(160-1)과 제3영역(160-3)에서 비교되는 중간층(160) 중 하나의 층은 서로 동일한 물질 또는 유사한 물질인 층을 의미할 수 있다.
제1영역(160-1)과 제2영역(160-2)은 상기와 같이 정의되는 것 이외에도 중간층(160)의 전체두께를 통하여 정의되는 것도 가능하다.
예를 들면, 제1영역(160-1)의 제1두께(H1)는 제3영역(160-3)이 제3두께(H3)보다 작을 수 있다. 이때, 제1두께(H1)는 제3두께(H3)의 10±5%일 수 있다. 예를 들어, 제1두께(H1)는 약 200Å이상이면서 약 600Å이하의 범위일 수 있다. 이러한 경우 제1두께(H1)는 홀(160H)로부터 멀어질수록 순차적으로 증가함으로써 홀(160H)과 제1영역(160-1)의 경계에서 제2전극(170)이 급격하게 꺾기는 것을 방지할 수 있다.
제2두께(H2)는 제1두께(H1)보다 클 수 있다. 제2두께(H2)의 최대값은 제3두께(H3)의 약 140±20%일 수 있다.
상기와 같은 구조를 통하여 중간층(160) 상에 배치되는 제2전극(170)의 꺾기는 각도, 형성된 후 제2전극(170)의 경사 각도 등을 제어함으로써 제2전극(170)이 끊기는 문제, 제2전극(170)과 보조전극(180)이 홀(160H) 전체에서 접촉되지 못하는 문제를 해결하는 것이 가능하다.
제1두께(H1), 제2두께(H2) 및 제3두께(H3)는 각각 보조전극(180)의 상면에서 각 영역의 최상층에 배치된 중간층(160)의 상면까지의 거리를 의미할 수 있다. 예를 들면, 제1두께(H1), 제2두께(H2) 및 제3두께(H3)는 도 9a 및 도 9b의 z 방향으로 측정될 수 있다.
중간층(160)의 홀(160H)의 중심(HC)은 도 9a에 도시된 바와 같이 제5절연층(109)의 개구(109OP) 내에 위치할 수 있다. 바꾸어 말하면, 중간층(160)의 홀(160H)의 중심(HC)은, 개구(109OP)를 정의하며 제5절연층(109)의 윤곽선(109B, 도 7a)에 해당하는 제5절연층(109)의 내측에지(109oe)의 안쪽에 위치할 수 있다. 예를 들면, 중간층(160)의 홀(160H)의 중심(HC)은 개구(109OP)의 중심과 거의 동일하게 배치될 수 있다.
중간층(160)의 홀(160H)은 레이저 빔을 조사함으로써 형성될 수 있다.
제1무기봉지층(410), 유기봉지층(420), 및 제2무기봉지층(430)을 포함하는 봉지층(400)은 보조전극(180)과 발광다이오드의 제2전극(170) 간의 접촉영역(또는 접속영역)을 커버 또는 중첩한다. 보조전극(180)과 발광다이오드의 제2전극(170) 간의 접촉영역은, 봉지층(400) 상의 중간물질층(501), 색변환-투과층(500)의 제1차광부(540), 배리어층(550), 컬러층(600)의 제2차광부(640), 및 투광성 기재층(700)에 중첩될 수 있다.
도 10 내지 도 14는 본 발명의 일 실시예에 따른 표시 장치의 제조 공정에 따른 개략적인 단면도이다. 설명의 편의를 위하여, 도 10 내지 도 14는, 표시 장치의 제조 공정에 따른 개략적인 단면으로서, 도 5의 A-A’ 선에 따른 단면 및 도 7a의 C-C’선에 따른 개략적인단면을 도시한다.
도 10을 참조하면, 절연층, 예컨대 제5절연층(109) 상에 발광다이오드의 제1전극(150) 및 보조전극(180)이 형성된다. 제1전극(150) 및 보조전극(180)은 동일한 공정에서 함께 형성될 수 있으며, 동일한 물질 또는 유사한 물질을 포함할 수 있다.
기판(100) 상에 제1전극(150) 및 보조전극(180)이 형성되기 전, 기판(100) 상에는 구동 트랜지스터(M1) 및 스토리지 커패시터(Cst)를 포함하는 화소회로(PC)가 형성될 수 있다. 기판(100) 상에 제1 내지 제5절연층(101, 103, 105, 107, 109)이 형성될 수 있으며, 이들의 예시적 물질 및 위치는 앞서 도 6, 도 8 및 도 9a를 참조하여 설명한 바와 같다.
구동 트랜지스터(M1) 및/또는 스토리지 커패시터(Cst)의 전극과 함께 구동전압라인(VDL), 공통전압라인(VSL) 및 보조 공통전압라인(VSL-A)이 형성될 수 있다. 도 10에는 도시되지 않았으나, 보조 공통전압라인(VSL-A)을 형성하는 공정전에, 제1 내지 제3절연층(101, 103, 105)을 관통하는 제1콘택홀(CT1, 도 8)이 형성될 수 있으며, 제1콘택홀(CT1, 도 8)을 통해 공통전압라인(VSL)이 보조 공통전압라인(VSL-A)에 접속될 수 있다. 보조 공통전압라인(VSL-A)이 형성된 후, 무기절연물을 포함하는 제4절연층(107)이 형성될 수 있다.
제5절연층(109)은 제4절연층(107) 상에 형성된다. 제5절연층(109)을 형성하는 공정은, 화소회로(PC)와 제1전극(150)의 접속을 위한 제6콘택홀(CT6)을 형성하는 공정, 및 제5절연층(109)의 개구(1O9OP)를 형성하는 공정을 포함할 수 있다. 개구(109OP)는 제5절연층(109) 중 보조 공통전압라인(VLS-A)에 중첩하는 부분을 식각하여 형성할 수 있으며, 따라서 개구(109OP)는 보조 공통전압라인(VLS-A)과 중첩할 수 있다. 제5절연층(109)의 개구(1O9OP)와 함께, 앞서 도 8을 참조하여 설명한 제2콘택홀(CT2, 도 8)이 형성될 수 있다.
뱅크층(BNL)은 제1전극(150) 및 보조전극(180) 상에 형성되되, 제1전극(150)에 중첩하는 제1뱅크개구(B-OP1) 및 보조전극(180)에 중첩하는 제2뱅크개구(B-OP2)를 포함할 수 있다. 제2뱅크개구(B-OP2)의 크기(또는 폭)은 제1뱅크개구(B-OP1)의 크기(또는 폭) 보다 작게 형성될 수 있다.
도 11을 참조하면, 뱅크층(BNL) 상에 중간층(160)을 형성한다. 중간층(160)은 제1뱅크개구(B-OP1)를 통해 노출된 제1전극(150) 및 제2뱅크개구(B-OP2)를 통해 노출된 보조전극(180)과 중첩할 수 있다.
중간층(160)은 발광층(162)을 포함하며, 따라서 중간층(160)을 형성하는 공정은 발광층(162)을 형성하는 공정을 포함할 수 있다. 중간층(160)을 형성하는 공정은, 발광층(162)의 아래에 배치된 제1기능층(161), 및/또는 발광층(162)의 위에 배치된 제2기능층(163)을 형성하는 공정을 더 포함할 수 있다. 도 11, 및 후술할 도 12 내지 도 14에서는 중간층(160)이 제1기능층(161), 발광층(162), 및 제2기능층(163)을 포함하는 것으로 설명한다.
중간층(160) 상에 레이저 빔(Laser beam)을 조사하여, 도 11에 도시된 바와 같이 홀(160H)을 형성한다. 일 실시예로, 레이저 빔(Laser beam)은 약 300~400nm의 범위의 파장을 갖는 UV레이저를 사용할 수 있으며, 단위 면적당 출력은 약 200mJ/cm2 이하일 수 있다. 레이저 빔(Laser beam)은 가우시안 빔 형태일 수 있다. 레이저 빔(Laser beam)은 중심에서 에너지 밀도가 가장 높고, 레이저 빔(Laser beam)의 중심으로부터 멀어질수록 레이저 빔(Laser beam)의 에너지 밀도는 작아질 수 있다.
레이저 빔(Laser beam)의 조사되는 경우, 레이저 빔(Laser beam)은 제2뱅크개구(B-OP2) 내에 위치하되, 레이저 빔(Laser beam)의 중심이 제5절연층(109)의 개구(109OP) 내에 위치하도록 할 수 있다. 제5절연층(109)의 개구(109OP)의 윤곽선에 해당하는 제5절연층(109)의 내측에지(109oe) 안쪽에 레이저 빔(Laser beam)의 중심이 위치하도록 할 수 있다. 예를 들면, 레이저 빔(Laser beam)의 중심은 개구(190OP)의 중심에 위치할 수 있다. 레이저 빔(Laser beam)의 중심이 내측에지(109oe)를 넘어 제5절연층(109)의 물질 부분과 중첩하는 경우, 아웃 개싱에 의해 제5절연층(109) 및/또는 보조전극(180)이 들뜨는 현상이 발생할 수 있으므로, 레이저 빔(Laser beam)의 중심이 제5절연층(109)의 개구(109OP) 내에 위치함이 적절할 수 있다.
레이저 빔(Laser beam)에 의해 제1기능층(161)의 홀, 발광층(162)의 홀, 및 제2기능층(163)의 홀이 형성될 수 있다. 발광층(162)의 홀의 중심은 기능층의 홀의 중심, 예컨대 제1기능층(161)의 홀의 중심 발광층(162)의 홀(162H)의 중심과 일치할 수 있다. 이때, 제1기능층(161)의 홀의 크기, 발광층(162의 홀의 크기 및 제2기능층(163)의 홀의 크기는 서로 동일하거나 서로 상이할 수 있다.
제1기능층(161)의 홀, 발광층(162)의 홀, 및 제2기능층(163)의 홀이 중첩되면서 중간층(160)의 홀(160H)이 형성될 수 있다. 제1기능층(161)의 홀(161H)의 중심, 발광층(162)의 홀(162H)의 중심, 및 제2기능층(163)의 홀(163H)의 중심은 앞서 도 9a를 참조하여 설명한 홀(160H)의 중심(HC)에 해당할 수 있다.
레이저 빔(Laser beam)을 중간층(160)에 조사함으로서 홀(160H) 주변에 상기 도 9b에서 설명한 제1영역(160-1) 및 제2영역(160-2)을 형성할 수 있다. 이때, 제1영역(160-1) 및 제2영역(160-2)의 형태는 도 9b에서 설명한 것과 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.
레이저 빔(Laser beam)이 가우시안 형태를 가짐으로써 레이저 빔(Laser beam)의 중심과 인접한 영역에서는 중간층(160)을 완전히 제거함으로써 홀(160H)을 형성하고, 레이저 빔(Laser beam)의 중심으로부터 이격된 부분에는 제1영역(160-1)과 같이 중간층(160)의 적어도 일부분이 제거된 영역을 형성할 수 있다. 이를 통하여 홀(160H)에 배치된 제2전극(170)이 제1영역(160-1)과 홀(160H)의 경계에서 급격하게 꺾기지 않고 원만한 경사를 가지도록 할 수 있다.
도 13에 도시된 바와 같이 발광다이오드의 제2전극(170)을 형성한다. 제2전극(170)은 홀(160H)을 통해 보조전극(180)과 접촉 또는 직접 접촉 및 전기적으로 연결될 수 있다. 제2전극(170)과 보조전극(180)의 접촉영역은 제2뱅크개구(B-OP2) 내에 위치하되, 일부는 제5절연층(109)의 경사면(BSS) 상에 위치할 수 있다.
도 14를 참조하면, 제2전극(170) 상에 봉지층(400)을 형성한다. 봉지층(400)은 화학기상증착법에 의해 형성되는 제1 및 제2무기봉지층(410, 430) 및 모노머를 도포한 후 경화하는 방식 등으로 형성될 수 있는 유기봉지층(420)을 포함할 수 있다. 봉지층(400) 상에는 색변환-투과층(500), 컬러층(600), 및 투광성 기재층(700)이 형성될 수 있다.
일 실시예로, 기판(100)으로부터 봉지층(400)까지의 하부 구조체(LS)를 형성하고, 색변환-투과층(500), 컬러층(600), 및 투광성 기재층(700)을 포함하는 상부 구조체(US)를 형성한 후, 중간물질층(501)을 사이에 두고 봉지층(400)과 색변환-투과층(500)이 마주보도록 하부 구조체(LS)와 상부 구조체(US)를 배치 및 접합할 수 있다.
일 실시예로, 하부 구조체(LS)와 상부 구조체(US)를 별도로 형성하지 않고, 봉지층(400) 상에 중간물질층(501)을 형성하고, 중간물질층(501) 상에 색변환-투과층(500), 컬러층(600), 및 투광성 기재층(700)을 순차적으로 형성할 수 있다.
도 15는 본 발명의 다른 실시예에 따른 표시 장치의 홀과 홀 주변을 개략적으로 보여주는 단면도이다.
도 15를 참고하면, 홀(160H)의 주변에 배치되는 제1영역(160-1)과 제2영역(160-2)은 상기에서 설명한 것과 동이 또는 유사할 수 있다. 제1영역(160-1)에는 레이저 빔(Laser beam)에 의해 제1기능층(161)의 홀(161H), 발광층(162)의 홀(162H), 및 제2기능층(163)의 홀(163H)이 배치될 수 있다. 발광층(162)의 홀(162H)의 중심은 기능층의 홀의 중심, 예컨대 제1기능층(161)의 홀(161H)의 중심 발광층(162)의 홀(162H)의 중심과 일치할 수 있다.
제1기능층(161)의 홀(161H), 발광층(162)의 홀(162H), 및 제2기능층(163)의 홀(163H)이 중첩되면서 중간층(160)의 홀(160H)이 형성될 수 있으며, 제1기능층(161)의 홀(161H)의 중심, 발광층(162)의 홀(162H)의 중심, 및 제2기능층(163)의 홀(163H)의 중심은 앞서 도 9a를 참조하여 설명한 홀(160H)의 중심(HC)에 해당할 수 있다.
제2기능층(163)의 홀(163H)은 발광층(162)의 홀(162H) 내부에 배치되며, 발광층(162)의 홀(162H)은 제1기능층(161)의 홀(161H) 내부에 배치될 수 있다. 중간층(160)의 홀(160H)은 제1기능층(161)의 홀(161H)에 의해 정의될 수 있다. 제1기능층(161)과 발광층(162이 중첩되는 부분과 제1기능층(161), 발광층(162 및 제2기능층(163)이 서로 중첩되는 부분에서는 제1기능층(161), 발광층(162 및 제2기능층(163) 각각의 두께가 줄어들 수 있다. 일 실시예로서 도면에 도시되어 있지는 않지만 제1기능층(161)과 발광층(162이 중첩되는 부분에서는 제1기능층(161)의 두께는 기존과 동일하게 유지될 수 있으며, 제1기능층(161), 발광층(162 및 제2기능층(163)이 서로 중첩되는 부분에서는 제1기능층(161)과 발광층(162 각각의 두께가 기존과 동일하게 유지되는 것도 가능하다.
도 16은 본 발명의 또 다른 실시예에 따른 표시 장치의 홀과 홀 주변을 개략적으로 보여주는 단면도이다.
도 16을 참고하면, 홀(160H)의 주변에 배치되는 제1영역(160-1)과 제2영역(160-2)은 상기에서 설명한 것과 동이 또는 유사할 수 있다. 제1영역(160-1)에는 레이저 빔(Laser beam)에 의해 제1기능층(161)의 홀(161H), 발광층(162)의 홀(162H), 및 제2기능층(163)의 홀(163H)이 배치될 수 있다. 발광층(162)의 홀(162H)의 중심은 기능층의 홀의 중심, 예컨대 제1기능층(161)의 홀(161H)의 중심 발광층(162)의 홀(162H)의 중심과 일치할 수 있다. 제1기능층(161)의 홀(161H), 발광층(162)의 홀(162H), 및 제2기능층(163)의 홀(163H)은 도 15에서 설명한 것과 유사할 수 있다.
제1기능층(161)의 홀(161H), 발광층(162)의 홀(162H), 및 제2기능층(163)의 홀(163H) 각각의 내면은 경사지게 형성될 수 있다. 제1기능층(161), 발광층(162 및 제2기능층(163)은 중간층(160)의 홀(160H)를 기준으로 단차지게 배치될 수 있다.
본 발명의 일 실시예에 따르면, 홀을 포함하는 중간층을 가짐으로써 서로 접촉하는 보조 전극 및 그 위의 제2 전극의 면적의 접촉 품질을 확보할 수 있다. 또한, 본 발명의 실시예에 따르면 생생한 이미지를 제공할 수 있다. 그러나 이러한 유리한 효과는 예시에 불과하며 실시예의 범위가 이에 한정되는 것은 아니다.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명의 일 실시예에 의하면, 표시 장치 및 표시 장치의 제조방법을 제공하여, 자동차, 휴대폰, 노트북, 모니터, 등에 본 발명의 실시예들을 적용할 수 있다.
Claims (32)
- 기판 상에 배치되며, 개구를 갖는 유기절연층;상기 유기절연층 상에 배치된 제1전극;상기 유기절연층 상에 배치되되, 평면 상에서 제1부분이 상기 유기절연층의 상기 개구에 중첩하는, 보조전극;평면 상에서 상기 제1전극과 중첩하는 제1뱅크개구, 및 평면 상에서 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구를 구비하는, 뱅크층;상기 제1전극 및 상기 보조전극 상에 위치하며, 상기 보조전극의 일부를 노출하는 홀을 포함하는 중간층; 및평면 상에서 상기 제1전극 및 상기 보조전극과 중첩하도록 상기 중간층 상에 배치되며, 상기 중간층의 상기 홀을 통해 상기 보조전극과 전기적으로 접촉하는 제2전극;을 포함하며,상기 중간층은 상기 중간층의 홀을 중심으로부터 멀어질수록 상기 중간층의 두께는 가변하는, 표시 장치.
- 제 1 항에 있어서,상기 중간층은,상기 중간층의 홀과 인접하는 제1영역; 및상기 제1영역과 인접하며, 상기 제1영역에서 연장되고, 상기 중간층의 높이가 최고인 최고점을 포함한 제2영역;을 더 포함하는, 표시 장치.
- 제 2 항에 있어서,상기 제1영역의 두께는 상기 중간층의 홀로부터 멀어질수록 커지는, 표시 장치.
- 제 2 항에 있어서,상기 제1영역 및 상기 제2영역 중 적어도 하나의 평면 형상은 고리 형태인, 표시 장치.
- 제 2 항에 있어서,상기 중간층의 홀의 평면 형상의 면적은 상기 중간층의 홀의 평면 형상의 면적, 상기 제1영역의 평면 형상의 면적 및 상기 제2영역의 평면 형상의 면적의 합의 약 60±20%인, 표시 장치.
- 제 2 항에 있어서,일 방향으로 측정된 상기 중간층의 홀의 평면 형상의 반지름은 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 60±20%인, 표시 장치.
- 제 2 항에 있어서,상기 중간층의 홀의 테두리로부터 상기 제1영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 15±10%인, 표시 장치.
- 제 2 항에 있어서,상기 제1영역의 평면 형상의 외곽테두리로부터 상기 제2영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 25±20%인, 표시 장치.
- 제 2 항에 있어서,상기 제1영역에 배치된 상기 중간층의 두께는 상기 제2영역의 외곽에 배치된 상기 중간층의 두께의 약 10±5%인, 표시 장치.
- 제 2 항에 있어서,상기 제1영역에 배치된 상기 중간층의 두께는 약 200Å이상이면서 약 600Å이하의 범위인, 표시 장치.
- 제 2 항에 있어서,상기 제2영역에 배치된 상기 중간층의 두께 중 최대값은 상기 제2영역의 외곽에 배치된 상기 중간층의 두께의 약 140±20%인, 표시 장치.
- 제 1 항에 있어서,상기 중간층은 발광층을 포함하며, 상기 중간층의 홀은 상기 발광층을 관통하는 홀을 포함하는, 표시 장치.
- 제 1 항에 있어서,상기 기판 상에 배치되며 일 방향으로 연장된 공통전압라인; 및평면 상에서 상기 공통전압라인과 중첩하며, 상기 공통전압라인과의 사이에 개재된 적어도 하나의 절연층의 콘택홀을 통해 상기 공통전압라인과 전기적으로 연결된 보조 공통전압라인;을 포함하며,평면 상에서 상기 보조 공통전압라인 및 상기 공통전압라인은 상기 유기절연층의 상기 개구와 중첩하는, 표시 장치.
- 제 13 항에 있어서,상기 보조 공통전압라인의 상면과 직접 접촉하는 무기절연층을 더 포함하는, 표시 장치.
- 제 14 항에 있어서,상기 보조전극은,평면 상에서 상기 유기절연층의 개구에 중첩하며, 상기 유기절연층의 상기 개구 보다 큰 폭을 갖는 상기 제1부분; 및상기 제1부분과 일체로 형성되되, 상기 제1부분 보다 폭이 작은 제2부분;을 포함하며,상기 보조전극의 상기 제2부분은, 상기 유기절연층 및 상기 무기절연층을 관통하는 콘택홀을 통해 상기 보조 공통전압라인에 전기적으로 연결된, 표시 장치.
- 기판 상에 배치되며, 개구를 갖는 유기절연층;상기 유기절연층 상에 배치된 제1전극;상기 유기절연층 상에 배치되되, 평면 상에서 제1부분이 상기 유기절연층의 상기 개구에 중첩하는, 보조전극;평면 상에서 상기 제1전극과 중첩하는 제1뱅크개구, 및 평면 상에서 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구를 구비한, 뱅크층;상기 제1전극 및 상기 보조전극 상에 위치하며, 상기 보조전극의 일부를 노출하는 홀을 포함하는 중간층; 및평면 상에서 상기 제1전극 및 상기 보조전극과 중첩하도록 상기 중간층 상에 배치되며, 상기 중간층의 상기 홀을 통해 상기 보조전극과 전기적으로 접촉하는 제2전극;을 포함하며,상기 중간층은,상기 중간층의 홀과 인접하며, 제1두께가 가변하는 제1영역;상기 제1영역과 인접하며, 상기 제1영역에서 연장되고, 상기 중간층의 두께가 최고인 최고점을 구비하며 제2두께가 가변하는 제2영역; 및상기 제2영역의 외곽에 배치되며, 제3두께가 일정한 제3영역;을 더 포함하는, 표시 장치.
- 제 16 항에 있어서,상기 제1두께는 상기 중간층의 홀로부터 멀어질수록 커지는, 표시 장치.
- 제 16 항에 있어서,상기 제1영역 및 상기 제2영역 중 적어도 하나의 평면 형상은 고리 형태인, 표시 장치.
- 제 16 항에 있어서,상기 중간층의 홀의 평면 형상의 면적은 상기 중간층의 홀의 평면 형상의 면적, 상기 제1영역의 평면 형상의 면적 및 상기 제2영역의 평면 형상의 면적의 합의 약 60±20%인, 표시 장치.
- 제 16 항에 있어서,상기 중간층의 홀의 평면 형상의 반지름은 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 60±20%인, 표시 장치.
- 제 16 항에 있어서,상기 중간층의 홀의 테두리로부터 상기 제1영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 15±10%인, 표시 장치.
- 제 16 항에 있어서,상기 제1영역의 평면 형상의 외곽테두리로부터 상기 제2영역의 평면 형상의 외곽테두리까지의 거리는 상기 제2영역의 평면 형상의 외곽테두리의 반지름의 약 25±20%인, 표시 장치.
- 제 16 항에 있어서,상기 제1두께는 상기 제3두께의 약 10±5%인, 표시 장치.
- 제 16 항에 있어서,상기 제1두께는 약 200Å이상이면서 약 600Å이하의 범위인, 표시 장치.
- 제 16 항에 있어서,상기 제2두께 중 최대값은 상기 제3두께의 약 140±20%인, 표시 장치.
- 제 16 항에 있어서,상기 중간층은 발광층을 포함하며, 상기 중간층의 홀은 상기 발광층을 관통하는 홀을 포함하는, 표시 장치.
- 제 16 항에 있어서,상기 기판 상에 배치되며 일 방향으로 연장된 공통전압라인; 및평면 상에서 상기 공통전압라인과 중첩하며, 상기 공통전압라인과의 사이에 개재된 적어도 하나의 절연층의 콘택홀을 통해 상기 공통전압라인과 전기적으로 연결된 보조 공통전압라인;을 포함하며,평면 상에서 상기 보조 공통전압라인 및 상기 공통전압라인은 상기 유기절연층의 상기 개구와 중첩하는, 표시 장치.
- 제 27 항에 있어서,상기 보조 공통전압라인의 상면과 직접 접촉하는 무기절연층을 더 포함하는, 표시 장치.
- 제 28 항에 있어서,상기 보조전극은,평면 상에서 상기 유기절연층의 개구에 중첩하며, 상기 유기절연층의 상기 개구 보다 큰 폭을 갖는 상기 제1부분; 및상기 제1부분과 일체로 형성되되, 상기 제1부분 보다 폭이 작은 제2부분;을 포함하며,상기 보조전극의 상기 제2부분은, 상기 유기절연층 및 상기 무기절연층을 관통하는 콘택홀을 통해 상기 보조 공통전압라인에 전기적으로 연결된, 표시 장치.
- 기판 상에 개구를 갖는 유기절연층을 형성하는 공정;상기 유기절연층 상의 제1전극을 형성하는 공정;평면 상에서 제1부분이 상기 유기절연층의 상기 개구에 중첩하는 보조전극을 상기 유기절연층 상에 형성하는 공정;평면 상에서 상기 제1전극과 중첩하는 제1뱅크개구, 및 평면 상에서 상기 보조전극의 상기 제1부분과 중첩하는 제2뱅크개구를 구비한 뱅크층을 형성하는 공정;상기 제1전극 및 상기 보조전극 상에 위치하도록 중간층을 형성하는 공정;상기 중간층에 레이저를 조사하여, 상기 보조전극의 일부를 노출하는 상기 중간층의 홀을 형성하는 공정;상기 중간층에 레이저를 조사하여 상기 중간층의 홀의 주변의 상기 중간층의 제1영역 일부를 제거하고, 상기 제1영역에서 연장되는 상기 중간층의 제2영역을 돌출시키는 공정; 및상기 중간층의 홀을 통해 상기 보조전극과 전기적으로 접촉하도록 상기 중간층 상에 제2전극을 형성하는 공정;을 포함하는, 표시 장치의 제조 방법.
- 제 30 항에 있어서,상기 레이저의 단위면적당 출력은 약 200mJ/cm2이하인, 표시 장치의 제조 방법.
- 제 30 항에 있어서,상기 레이저는 파장이 약 300nm이상이면서 약 400nm이하의 범위 내인 자외선 레이저인, 표시 장치의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22907873.8A EP4440279A1 (en) | 2021-12-13 | 2022-12-12 | Display device and method for manufacturing display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0178034 | 2021-12-13 | ||
KR1020210178034A KR20230089624A (ko) | 2021-12-13 | 2021-12-13 | 표시 장치 및 표시 장치의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023113406A1 true WO2023113406A1 (ko) | 2023-06-22 |
Family
ID=86458307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/020151 WO2023113406A1 (ko) | 2021-12-13 | 2022-12-12 | 표시 장치 및 표시 장치의 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230189547A1 (ko) |
EP (1) | EP4440279A1 (ko) |
KR (1) | KR20230089624A (ko) |
CN (2) | CN116322155A (ko) |
WO (1) | WO2023113406A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170015633A (ko) * | 2015-07-29 | 2017-02-09 | 엘지디스플레이 주식회사 | 박막 트랜지스터 어레이 기판 및 이를 포함하는 유기발광 표시장치 |
KR20180066320A (ko) * | 2016-12-07 | 2018-06-19 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
KR20180104225A (ko) * | 2017-03-09 | 2018-09-20 | 삼성디스플레이 주식회사 | 유기발광 표시장치 |
US20190115561A1 (en) * | 2017-10-13 | 2019-04-18 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | A method of manufacturing an oled panel and an oled panel |
KR102122401B1 (ko) * | 2013-10-14 | 2020-06-12 | 엘지디스플레이 주식회사 | 유기전계 발광소자 및 이의 제조 방법 |
-
2021
- 2021-12-13 KR KR1020210178034A patent/KR20230089624A/ko active Search and Examination
-
2022
- 2022-12-12 WO PCT/KR2022/020151 patent/WO2023113406A1/ko active Application Filing
- 2022-12-12 US US18/079,496 patent/US20230189547A1/en active Pending
- 2022-12-12 EP EP22907873.8A patent/EP4440279A1/en active Pending
- 2022-12-13 CN CN202211600972.5A patent/CN116322155A/zh active Pending
- 2022-12-13 CN CN202223343710.3U patent/CN219108130U/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122401B1 (ko) * | 2013-10-14 | 2020-06-12 | 엘지디스플레이 주식회사 | 유기전계 발광소자 및 이의 제조 방법 |
KR20170015633A (ko) * | 2015-07-29 | 2017-02-09 | 엘지디스플레이 주식회사 | 박막 트랜지스터 어레이 기판 및 이를 포함하는 유기발광 표시장치 |
KR20180066320A (ko) * | 2016-12-07 | 2018-06-19 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
KR20180104225A (ko) * | 2017-03-09 | 2018-09-20 | 삼성디스플레이 주식회사 | 유기발광 표시장치 |
US20190115561A1 (en) * | 2017-10-13 | 2019-04-18 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | A method of manufacturing an oled panel and an oled panel |
Also Published As
Publication number | Publication date |
---|---|
CN219108130U (zh) | 2023-05-30 |
EP4440279A1 (en) | 2024-10-02 |
US20230189547A1 (en) | 2023-06-15 |
KR20230089624A (ko) | 2023-06-21 |
CN116322155A (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020054915A1 (ko) | 표시 패널 | |
WO2020071614A1 (ko) | 발광 장치 및 이의 제조 방법 | |
WO2014104702A1 (en) | Organic light emitting element, organic light emitting display device, and method of manufacturing the organic light emitting display device | |
WO2020122337A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2017142315A1 (ko) | 반도체 발광 소자를 이용한 디스플레이 장치 | |
WO2020141651A1 (ko) | 색변환 기판 및 표시 장치 | |
WO2020027369A1 (ko) | 표시 장치 | |
WO2016068418A1 (en) | Display device using semiconductor light emitting device and method of fabricating the same | |
WO2020149474A1 (ko) | 발광 장치, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법 | |
WO2022025395A1 (ko) | 표시 장치 | |
WO2020149476A1 (ko) | 발광 장치, 이를 포함하는 표시 장치 | |
WO2022154517A1 (ko) | 표시 장치 | |
WO2021091062A1 (ko) | 표시 장치 | |
WO2022265310A1 (ko) | 표시장치, 전자장치 및 표시장치 제조방법 | |
WO2022030763A1 (ko) | 표시 장치 | |
WO2022240094A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2021080030A1 (ko) | 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법 | |
WO2022065706A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2022131794A1 (ko) | 표시 장치 | |
WO2022050685A1 (ko) | 표시 장치 | |
WO2023113406A1 (ko) | 표시 장치 및 표시 장치의 제조방법 | |
WO2020235803A1 (ko) | 표시 장치 및 이의 제조 방법 | |
WO2020141670A1 (ko) | 표시 장치 및 이의 제조 방법 | |
WO2023068604A1 (ko) | 표시 패널, 이를 포함하는 전자 장치, 및 표시 패널 제조 방법 | |
WO2022154400A1 (ko) | 표시 장치 및 표시 장치의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22907873 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022907873 Country of ref document: EP Effective date: 20240628 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202447053005 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |