WO2023113330A1 - 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 - Google Patents
음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- WO2023113330A1 WO2023113330A1 PCT/KR2022/019530 KR2022019530W WO2023113330A1 WO 2023113330 A1 WO2023113330 A1 WO 2023113330A1 KR 2022019530 W KR2022019530 W KR 2022019530W WO 2023113330 A1 WO2023113330 A1 WO 2023113330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- weight
- anode
- parts
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 68
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 54
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000004020 conductor Substances 0.000 claims description 76
- 229920000642 polymer Polymers 0.000 claims description 76
- 239000002409 silicon-based active material Substances 0.000 claims description 54
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 42
- 239000007773 negative electrode material Substances 0.000 claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 33
- 239000011884 anode binding agent Substances 0.000 claims description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 26
- -1 alkyl diacrylamide Chemical compound 0.000 claims description 25
- 239000000178 monomer Substances 0.000 claims description 25
- 239000011883 electrode binding agent Substances 0.000 claims description 24
- 150000007524 organic acids Chemical class 0.000 claims description 23
- CHDKQNHKDMEASZ-UHFFFAOYSA-N n-prop-2-enoylprop-2-enamide Chemical compound C=CC(=O)NC(=O)C=C CHDKQNHKDMEASZ-UHFFFAOYSA-N 0.000 claims description 22
- 239000006183 anode active material Substances 0.000 claims description 21
- 125000004386 diacrylate group Chemical group 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 15
- 150000002825 nitriles Chemical class 0.000 claims description 14
- 235000005985 organic acids Nutrition 0.000 claims description 12
- 239000002388 carbon-based active material Substances 0.000 claims description 7
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 50
- 239000010410 layer Substances 0.000 description 43
- 239000011230 binding agent Substances 0.000 description 39
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 26
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 25
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 24
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 21
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 20
- 238000007599 discharging Methods 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000011267 electrode slurry Substances 0.000 description 14
- 238000006116 polymerization reaction Methods 0.000 description 12
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 11
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 11
- 229910001873 dinitrogen Inorganic materials 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 238000010992 reflux Methods 0.000 description 10
- 239000011149 active material Substances 0.000 description 9
- 239000002041 carbon nanotube Substances 0.000 description 9
- 229910021393 carbon nanotube Inorganic materials 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000011856 silicon-based particle Substances 0.000 description 8
- 229910021383 artificial graphite Inorganic materials 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- 239000002210 silicon-based material Substances 0.000 description 7
- 239000002109 single walled nanotube Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910021382 natural graphite Inorganic materials 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000006245 Carbon black Super-P Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000006182 cathode active material Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910021385 hard carbon Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910021384 soft carbon Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229920000265 Polyparaphenylene Chemical class 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical class O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical class [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 150000002641 lithium Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920005608 sulfonated EPDM Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- UTOVMEACOLCUCK-SNAWJCMRSA-N (e)-4-butoxy-4-oxobut-2-enoic acid Chemical compound CCCCOC(=O)\C=C\C(O)=O UTOVMEACOLCUCK-SNAWJCMRSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- OIYTYGOUZOARSH-UHFFFAOYSA-N 4-methoxy-2-methylidene-4-oxobutanoic acid Chemical compound COC(=O)CC(=C)C(O)=O OIYTYGOUZOARSH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000011837 N,N-methylenebisacrylamide Substances 0.000 description 1
- ZHGDJTMNXSOQDT-UHFFFAOYSA-N NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O Chemical compound NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O ZHGDJTMNXSOQDT-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- QDDVNKWVBSLTMB-UHFFFAOYSA-N [Cu]=O.[Li] Chemical compound [Cu]=O.[Li] QDDVNKWVBSLTMB-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000006256 anode slurry Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ZUNGGJHBMLMRFJ-UHFFFAOYSA-O ethoxy-hydroxy-oxophosphanium Chemical compound CCO[P+](O)=O ZUNGGJHBMLMRFJ-UHFFFAOYSA-O 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002391 graphite-based active material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- CASZBAVUIZZLOB-UHFFFAOYSA-N lithium iron(2+) oxygen(2-) Chemical group [O-2].[Fe+2].[Li+] CASZBAVUIZZLOB-UHFFFAOYSA-N 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical group CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to a negative electrode composition, a negative electrode for a lithium secondary battery including the same, and a lithium secondary battery including the negative electrode.
- a secondary battery is a representative example of an electrochemical device using such electrochemical energy, and its use area is gradually expanding.
- lithium secondary batteries having high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and widely used.
- an electrode for such a high-capacity lithium secondary battery research is being actively conducted on a method for manufacturing a high-density electrode having a higher energy density per unit volume.
- a secondary battery is composed of an anode, a cathode, an electrolyte, and a separator.
- the negative electrode includes a negative electrode active material for intercalating and deintercalating lithium ions from the positive electrode, and silicon-based particles having a high discharge capacity may be used as the negative electrode active material.
- volume expansion itself is suppressed, such as a method of adjusting the driving potential, a method of additionally coating a thin film on the active material layer, and a method of controlling the particle diameter of the silicon-based compound.
- Various methods for preventing or preventing the conductive path from being disconnected are being discussed, but in the case of the above methods, the performance of the battery may be deteriorated, so there is a limit to the application, and a negative electrode battery with a high silicon-based compound content is still Commercialization of manufacturing has limitations.
- Patent Document 1 Japanese Unexamined Patent Publication No. 2009-080971
- the present application relates to a negative electrode composition, a negative electrode for a lithium secondary battery including the same, and a lithium secondary battery including the negative electrode.
- An exemplary embodiment of the present specification is an anode composition including an anode binder polymer, an anode active material, and an anode conductive material, wherein the anode binder polymer includes a (meth)acrylamide group-containing compound; unsaturated organic acids or salts of unsaturated organic acids; monomers containing ⁇ , ⁇ -unsaturated nitriles; and a diacrylamide or diacrylate-containing compound; wherein, based on 100 parts by weight of the anode binder polymer, the ⁇ , ⁇ -unsaturated nitrile-containing monomer is 1 part by weight or more and 30 parts by weight or less; and 0.1 parts by weight or more and 15 parts by weight or less of the diacrylamide or diacrylate-containing compound.
- the anode binder polymer includes a (meth)acrylamide group-containing compound; unsaturated organic acids or salts of unsaturated organic acids; monomers containing ⁇ , ⁇ -unsaturated nitriles; and a
- a negative electrode current collector layer In another exemplary embodiment, a negative electrode current collector layer; and a negative electrode active material layer including the negative electrode composition according to the present application formed on one side or both sides of the negative electrode current collector layer.
- the anode A negative electrode for a lithium secondary battery according to the present application; a separator provided between the anode and the cathode; And an electrolyte; it provides a lithium secondary battery comprising a.
- a negative electrode composition according to an exemplary embodiment of the present invention includes a (meth)acrylamide group-containing compound; unsaturated organic acids or salts of unsaturated organic acids; monomers containing ⁇ , ⁇ -unsaturated nitriles; and a diacrylamide or diacrylate-containing compound.
- anode binder polymer based on 100 parts by weight of the anode binder polymer, 1 part by weight or more and 30 parts by weight or less of a monomer containing the ⁇ , ⁇ -unsaturated nitrile; and 0.1 part by weight or more and 15 parts by weight or less of the diacrylamide or diacrylate-containing compound. Accordingly, even in the case of using an anode active material (in particular, a silicon-based active material) having a large volume expansion due to charge/discharge, volume expansion and contraction can be suppressed and thickness change due to electrode swelling can be minimized. It is characterized in that the lifespan performance of the lithium secondary battery is excellent.
- the anode binder polymer according to the present application is characterized in that a partially crosslinked structure is formed by including a specific amount of diacrylamide or diacrylate in order to partially crosslink the linear polymer.
- the thickness change of the electrode during charging and discharging is small due to the partially crosslinked structure of the binder itself, and the capacity retention rate is improved during life evaluation.
- the degree of partial crosslinking of the polymer can be expressed by the amount of the diacrylamide or diacrylate-containing compound.
- the negative electrode composition according to an exemplary embodiment of the present invention includes a silicon-based active material having a high theoretical capacity as a negative electrode active material to improve capacity characteristics, and the volume expansion due to charging and discharging, which is a problem of the silicon-based active material, is reduced in the specific negative electrode according to the present application. It is a feature of the present invention that it has been solved using a binder polymer.
- FIG. 1 is a diagram showing a laminated structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
- FIG. 2 is a diagram showing a laminated structure of a lithium secondary battery according to an exemplary embodiment of the present application.
- 'p to q' means a range of 'p or more and q or less'.
- specific surface area is measured by the BET method, and is specifically calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mino II of BEL Japan. That is, in the present application, the BET specific surface area may mean the specific surface area measured by the above measuring method.
- Dn means a particle size distribution, and means a particle diameter at the n% point of the cumulative distribution of the number of particles according to the particle diameter. That is, D50 is the particle diameter (average particle diameter) at the 50% point of the cumulative distribution of the number of particles according to the particle size, D90 is the particle size at the 90% point of the cumulative distribution of the number of particles according to the particle size, and D10 is the cumulative number of particles according to the particle size. It is the particle size at the 10% point of the distribution. Meanwhile, the particle size distribution can be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (e.g. Microtrac S3500) to measure the difference in diffraction pattern according to the particle size when the particles pass through the laser beam to distribute the particle size. yields
- a laser diffraction particle size measuring device e.g. Microtrac S3500
- a polymer includes a certain monomer or compound as a monomer or compound unit means that the monomer or compound participates in a polymerization reaction and is included as a repeating unit in the polymer.
- a polymer when a polymer includes a monomer or a compound, it is interpreted as the same as that the polymer includes a monomer or a compound as a monomer unit.
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) are measured using a commercially available monodisperse polystyrene polymer (standard sample) of various degrees of polymerization for molecular weight measurement as a standard material, and gel permeation chromatography (Gel Permeation It is the molecular weight in terms of polystyrene measured by chromatography; GPC).
- molecular weight means a weight average molecular weight unless otherwise specified.
- An exemplary embodiment of the present specification is an anode composition including an anode binder polymer, an anode active material, and an anode conductive material, wherein the anode binder polymer includes a (meth)acrylamide group-containing compound; unsaturated organic acids or salts of unsaturated organic acids; monomers containing ⁇ , ⁇ -unsaturated nitriles; and a diacrylamide or diacrylate-containing compound; wherein, based on 100 parts by weight of the anode binder polymer, the ⁇ , ⁇ -unsaturated nitrile-containing monomer is 1 part by weight or more and 30 parts by weight or less; and 0.1 parts by weight or more and 15 parts by weight or less of the diacrylamide or diacrylate-containing compound.
- the anode binder polymer includes a (meth)acrylamide group-containing compound; unsaturated organic acids or salts of unsaturated organic acids; monomers containing ⁇ , ⁇ -unsaturated nitriles; and a
- the anode binder polymer according to the present application is characterized in that a partially crosslinked structure is formed by including a specific content of diacrylamide or diacrylate-containing compound in order to partially crosslink the linear polymer. That is, when the negative electrode binder polymer having the above characteristics is included, the thickness change of the electrode during charging and discharging is small due to the partially crosslinked structure of the binder itself, and the capacity retention rate is improved during life evaluation.
- the negative electrode binder polymer is a (meth)acrylamide group-containing compound; unsaturated organic acids or salts of unsaturated organic acids; monomers containing ⁇ , ⁇ -unsaturated nitriles; and a compound containing diacrylamide or diacrylate.
- the (meth)acrylamide group-containing compound may include 30 parts by weight or more and 80 parts by weight or less.
- the (meth)acrylamide group-containing compound is 30 parts by weight or more and 80 parts by weight or less, preferably 35 parts by weight or more and 75 parts by weight or less, more preferably may include 40 parts by weight or more and 70 parts by weight or less.
- the unsaturated organic acid or the salt of the unsaturated organic acid is 5 parts by weight or more and 40 parts by weight or less, preferably 10 parts by weight or more and 35 parts by weight or less, more preferably may include 15 parts by weight or more and 35 parts by weight or less.
- the ⁇ , ⁇ -unsaturated nitrile-containing monomer is 1 part by weight or more and 30 parts by weight or less; and 0.1 parts by weight or more and 15 parts by weight or less of the diacrylamide or diacrylate-containing compound.
- the ⁇ , ⁇ -unsaturated nitrile-containing monomer is 1 part by weight or more and 30 parts by weight or less, preferably 3 parts by weight or more and 30 parts by weight or less, Preferably, it may be 5 parts by weight or more and 30 parts by weight or less.
- the diacrylamide or diacrylate-containing compound may satisfy 0.1 part by weight or more and 15 parts by weight or less, preferably 0.5 parts by weight or more and 12 parts by weight or less. there is.
- the anode binder polymer according to the present application is characterized in that it includes the four types of monomers as described above, and particularly includes the above content.
- the negative electrode binder polymer forms a partially crosslinked structure, and the bonding strength is improved, so that the change in thickness of the electrode during charging and discharging of the electrode including it is small, and thus the capacity retention rate is improved during life evaluation.
- the fact that the above composition is included in a specific weight part based on 100 parts by weight of the negative electrode binder polymer means the weight ratio of each component monomer with respect to the total weight of 100 of the monomer group of the negative electrode binder polymer. and expressed as parts by weight.
- a negative electrode composition in which the (meth)acrylamide group-containing compound:the unsaturated organic acid or salt of the unsaturated organic acid has a molar ratio of 1:0.1 to 1:0.6.
- the molar ratio may mean the ratio of moles included based on 100 parts by weight of the negative electrode binder polymer according to the present application, and may specifically mean the ratio of mol%.
- the negative electrode binder polymer may include a (meth)acrylamide group-containing compound.
- the (meth)acrylamide is methacrylamide; or acrylamide.
- the unsaturated organic acid may be used without limitation as long as it is an organic acid that may be included in the binder, but specifically, acrylic acid may be used.
- the salt of the unsaturated organic acid may mean a salt form including an ion in the unsaturated organic acid, which may also be used without limitation.
- the unsaturated organic acid includes, for example, a carboxylic acid or a salt thereof.
- carboxylic acid carboxylic acid monomers such as (meth)acrylic acid, itaconic acid, fumaric acid, crotonic acid, maleic acid, monomethyl itaconate, methyl fumarate, and monobutyl fumarate or salts thereof may be used. Two or more types may be mixed and used.
- the monomer containing ⁇ , ⁇ -unsaturated nitrile may be acrylonitrile.
- the diacrylamide or diacrylate-containing compound is alkyl diacrylamide; Alkylene oxide diacrylamide; or alkylene oxide diacrylate; it provides a negative electrode composition.
- the diacrylamide or diacrylate-containing compound is N,N-methylenebisacrylamide; or ethylene glycol diacrylate; may be included.
- the anode binder polymer according to the present application includes four components having a specific content and composition as described above, even when using an anode active material (in particular, a silicon-based active material) having a large volume expansion according to charge/discharge. Expansion and contraction can be suppressed and thickness change due to electrode swelling can be minimized, and thus lifespan performance of the lithium secondary battery can be enhanced.
- an anode active material in particular, a silicon-based active material
- the above four components may be polymerized to form an anode binder polymer.
- an anode composition in which the weight average molecular weight of the anode binder polymer is 100,000 g/mol or more and 3,000,000 g/mol or less is provided.
- the weight average molecular weight of the anode binder polymer may satisfy a range of 100,000 g/mol or more and 3,000,000 g/mol or less, preferably 200,000 g/mol or more and 1,500,000 g/mol or less.
- the weight average molecular weight of the anode binder polymer satisfies the above range, the mechanical strength is excellent and the binding force of the electrode is excellent due to high interaction between molecules.
- the viscosity of the negative electrode binder can be selected within an appropriate range, and when a negative electrode is manufactured using this, the electrode has excellent coating properties.
- the negative electrode binder polymer may include 1 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the negative electrode composition.
- the negative electrode binder polymer is 1 part by weight or more and 20 parts by weight or less, preferably 3 parts by weight or more and 15 parts by weight or less, more preferably 4 parts by weight based on 100 parts by weight of the negative electrode composition. It may be more than 15 parts by weight or less.
- the negative electrode active material When included in the above range, the negative electrode active material can be effectively dispersed, and has the characteristics of having high binding strength between the electrode adhesive force and the active material inside the electrode against contraction and expansion of the negative electrode active material due to charging and discharging of the lithium secondary battery. .
- the negative electrode binder polymer may have a Young's modulus of 10 3 MPa or more.
- the Young's modulus of the anode binder polymer may be 1x10 3 MPa or more, preferably 2x10 3 MPa, more preferably 5x10 3 MPa or more, and 25x10 3 MPa or less, preferably 22x10 3 MPa or less, more preferably 20x10 3 MPa or less may be satisfied.
- the anode binder polymer is put in a coated bowl and dried at room temperature for a long time to remove moisture.
- the film blown with moisture is subjected to vacuum drying at 130° C. for 10 hr according to the electrode drying temperature to obtain a dried film.
- the dried film can be cut or punched in the form of a sample of 6 mm x 100 mm to collect samples, and the tensile strength (Young's modulus) can be measured using UTM equipment.
- the Young's modulus of the negative electrode binder polymer differs depending on the measurement method, speed, and measuring state of the binder, but the Young's modulus of the negative electrode binder polymer has a dew point of -5 °C to 10 °C and is measured in a dry room at a temperature of about 20 °C to 22 °C. can mean one value.
- the dew point refers to the temperature at which condensation starts at a certain temperature when humid air is cooled, and the partial pressure of water vapor in the air becomes equal to the saturated vapor pressure of water at that temperature. That is, when the temperature of the gas containing water vapor is dropped as it is, it may mean the temperature when the relative humidity becomes 100% and dew begins to form.
- the dew point of -5 ° C to 10 ° C and the temperature of 20 ° C to 22 ° C can generally be defined as a dry room, and the humidity at this time corresponds to a very low level.
- the anode binder polymer has dispersibility for dispersing the anode active material in the anode slurry state containing the anode composition and adhesiveness for binding to the anode current collector layer and the anode active material layer after drying.
- the adhesive strength corresponds to a binder that is not high. That is, the negative electrode binder polymer according to the present application satisfies the Young's modulus, and may mean a binder having a surface bonding form.
- the anode binder polymer has hydrophilic properties and is generally insoluble in an electrolyte or an electrolyte solution used in a secondary battery. When applied to an anode or a lithium secondary battery, this property may impart strong stress or tensile strength to the anode binder polymer, and thus, the problem of volume expansion/contraction caused by charge/discharge of the silicon-based active material may be effectively suppressed.
- the anode binder polymer is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile , polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, In the group consisting of ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, polyacrylic acid, and materials in which hydrogen is substituted with Li, Na or K, etc. It may further include at least one selected from them, and may further include various copolymers thereof.
- EPDM ethylene-propylene-diene monomer
- SBR styrene butadiene rubber
- the anode binder polymer serves to hold the anode active material and the anode conductive material to prevent distortion and structural deformation of the anode structure in volume expansion and relaxation of the silicon-based active material.
- the negative active material provides a negative electrode composition comprising at least one selected from the group consisting of a silicon-based active material and a carbon-based active material.
- the negative active material includes at least one selected from the group consisting of a silicon-based active material and a carbon-based active material
- the negative electrode active material includes a silicon-based active material
- the negative electrode active material is made of a silicon-based active material
- the active material of the present invention includes a silicon-based active material.
- the silicon-based active material may be SiOx, Si/C, or Si.
- SiOx may include a compound represented by SiOx (0 ⁇ x ⁇ 2). Since SiO 2 does not react with lithium ions and cannot store lithium, x is preferably within the above range.
- the silicon-based active material may be Si/C or Si composed of a composite of Si and C. In addition, two or more of the above silicon-based active materials may be mixed and used.
- the anode active material may further include a carbon-based active material together with the silicon-based active material described above. The carbon-based active material may contribute to improving cycle characteristics or battery life performance of the negative electrode or secondary battery of the present invention.
- silicon-based active materials are known to have a capacity that is 10 times higher than that of carbon-based active materials, and accordingly, when silicon-based active materials are applied to negative electrodes, it is expected that an electrode having a high level of energy density can be realized even with a thin thickness. .
- the carbon-based active material may include at least one selected from the group consisting of artificial graphite, natural graphite, hard carbon, and soft carbon, and preferably composed of artificial graphite and natural graphite. It may contain at least one selected from the group.
- the negative electrode active material is (1) at least one of artificial graphite, natural graphite, surface-modified graphite, coke, hard carbon, soft carbon, carbon fiber, conductive carbon, and combinations thereof, (2 ) silicon-based alloy, (3) i) at least one of artificial graphite, natural graphite, surface modified graphite, coke, hard carbon, soft carbon, carbon fiber, conductive carbon, and combinations thereof and ii) Al, Ag, Bi ( 6) silicon-graphene, (7) silicon-carbon nanotubes, (8) silicon oxide, (9) silicon, and (10) combinations thereof.
- pure silicon Si
- the average particle diameter (D50) of the silicon-based active material of the present invention may be 5 ⁇ m to 10 ⁇ m, specifically 5.5 ⁇ m to 8 ⁇ m, and more specifically 6 ⁇ m to 7 ⁇ m.
- the average particle diameter is within the above range, the viscosity of the negative electrode slurry is formed within an appropriate range, including the specific surface area of the particles within a suitable range. Accordingly, the dispersion of the particles constituting the negative electrode slurry becomes smooth.
- the contact area between the silicon particles and the conductive material is excellent due to the composite made of the conductive material and the binder in the negative electrode slurry, so that the possibility of continuing the conductive network increases, thereby increasing the capacity retention rate is increased.
- the average particle diameter satisfies the above range, excessively large silicon particles are excluded to form a smooth surface of the negative electrode, thereby preventing current density non-uniformity during charging and discharging.
- the silicon-based active material generally has a characteristic BET specific surface area.
- the BET specific surface area of the silicon-based active material is preferably 0.01 m 2 /g to 150.0 m 2 /g, more preferably 0.1 m 2 /g to 100.0 m 2 /g, particularly preferably 0.2 m 2 /g to 80.0 m 2 /g, most preferably from 0.2 m 2 /g to 18.0 m 2 /g.
- the BET specific surface area is determined according to DIN 66131 (using nitrogen).
- the silicon-based active material may exist, for example, in a crystalline or amorphous form, and is preferably not porous.
- the silicon particles are preferably spherical or fragment-shaped particles. Alternatively but less preferably, the silicon particles may also have a fibrous structure or be present in the form of a silicon-comprising film or coating.
- the negative electrode active material is provided in an amount of 60 parts by weight or more based on 100 parts by weight of the negative electrode composition.
- the silicon-based active material provides a negative electrode composition that is 60 parts by weight or more based on 100 parts by weight of the negative electrode composition.
- the silicon-based active material may include 60 parts by weight or more, preferably 65 parts by weight or more, more preferably 70 parts by weight or more, based on 100 parts by weight of the negative electrode composition, and 95 parts by weight or less , Preferably it may include 90 parts by weight or less, more preferably 85 parts by weight or less.
- the negative electrode composition according to the present application uses a specific conductive material and a binder capable of controlling the volume expansion rate during charging and discharging even when a silicon-based active material having a significantly high capacity is used in the above range, and the performance of the negative electrode even includes the above range It does not degrade and has excellent output characteristics in charging and discharging.
- the silicon-based active material may have a non-spherical shape and its sphericity is, for example, 0.9 or less, for example, 0.7 to 0.9, for example 0.8 to 0.9, for example 0.85 to 0.9 am.
- the circularity (circularity) is determined by the following formula 1-1, A is the area, P is the boundary line.
- the negative electrode composition may include a specific negative electrode conductive material while using a binder having the above characteristics.
- the negative electrode conductive material is a dotted conductive material; planar conductive material; And it provides a negative electrode composition comprising at least one selected from the group consisting of a linear conductive material.
- the dot-shaped conductive material may be used to improve conductivity of the negative electrode, and may form conductivity without causing chemical change, and means a conductive material having a circular or dotted shape.
- the point-shaped conductive material is natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, It may be at least one selected from the group consisting of potassium titanate, titanium oxide, and polyphenylene derivatives, and may preferably include carbon black in terms of high conductivity and excellent dispersibility.
- the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 / g or less . /g or more and 60 m 2 /g or less.
- the particle diameter of the dotted conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 40 nm to 60 nm.
- the conductive material may include a planar conductive material.
- the planar conductive material refers to a conductive material that improves conductivity by increasing surface contact between silicon particles in the negative electrode and suppresses disconnection of a conductive path due to volume expansion.
- the planar conductive material may be expressed as a plate-shaped conductive material or a bulk-type conductive material.
- the planar conductive material may include at least one selected from the group consisting of plate-like graphite, graphene, graphene oxide, and graphite flakes, and preferably may be plate-like graphite.
- the average particle diameter (D50) of the planar conductive material may be 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 6 ⁇ m, and more specifically 4 ⁇ m to 5 ⁇ m. .
- D50 average particle diameter
- the planar conductive material provides a negative electrode composition in which D10 is 0.5 ⁇ m or more and 1.5 ⁇ m or less, D50 is 4.0 ⁇ m or more and 5.0 ⁇ m or less, and D90 is 7.0 ⁇ m or more and 15.0 ⁇ m or less.
- the planar conductive material is a high specific surface area planar conductive material having a high BET specific surface area; Alternatively, a planar conductive material having a low specific surface area may be used.
- the planar conductive material includes a high specific surface area planar conductive material;
- a planar conductive material with a low specific surface area may be used without limitation, but in particular, since the planar conductive material according to the present application may be affected by dispersion to some extent in electrode performance, it is particularly preferable to use a planar conductive material with a low specific surface area that does not cause a problem in dispersion. may be desirable.
- the planar conductive material may have a BET specific surface area of 1 m 2 /g or more.
- the planar conductive material may have a BET specific surface area of 1 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g or more. g or more and 250 m 2 /g or less.
- the planar conductive material is a high specific surface area planar conductive material, and the BET specific surface area is 50 m 2 /g or more and 500 m 2 /g or less, preferably 80 m 2 /g or more and 300 m 2 /g or less, more preferably Preferably, a range of 100 m 2 /g or more and 250 m 2 /g or less may be satisfied.
- the planar conductive material is a planar conductive material with a low specific surface area
- the BET specific surface area is 1 m 2 /g or more and 40 m 2 /g or less, preferably 5 m 2 /g or more and 30 m 2 /g or less, more preferably Preferably, a range of 5 m 2 /g or more and 25 m 2 /g or less may be satisfied.
- Other conductive materials may include linear conductive materials such as carbon nanotubes.
- the carbon nanotubes may be bundled carbon nanotubes.
- the bundled carbon nanotubes may include a plurality of carbon nanotube units.
- the term 'bundle type' herein means, unless otherwise specified, a bundle in which a plurality of carbon nanotube units are arranged side by side or entangled in substantially the same orientation with axes in the longitudinal direction of the carbon nanotube units. It refers to a secondary shape in the form of a bundle or rope.
- the carbon nanotube unit has a graphite sheet having a cylindrical shape with a nano-sized diameter and an sp2 bonding structure.
- the characteristics of a conductor or a semiconductor may be exhibited according to the angle and structure of the graphite surface being rolled.
- the bundled carbon nanotubes can be uniformly dispersed during manufacturing of the negative electrode, and the conductivity of the negative electrode can be improved by smoothly forming a conductive network in the negative electrode.
- the negative electrode conductive material includes a linear conductive material, and the linear conductive material provides a negative electrode composition that is a carbon nanotube.
- the carbon nanotubes may be SWCNTs or/and MWCNTs.
- the linear conductive agent is SWCNT
- the length of the SWCNT may be 0.5 ⁇ m to 100 ⁇ m, preferably 1 ⁇ m to 80 ⁇ m.
- the negative electrode conductive material is provided in an amount of 5 parts by weight or more and 40 parts by weight or less based on 100 parts by weight of the negative electrode composition.
- the negative electrode conductive material is 5 parts by weight or more and 40 parts by weight or less, preferably 5 parts by weight or more and 30 parts by weight or less, more preferably 5 parts by weight or more and 25 parts by weight based on 100 parts by weight of the negative electrode composition. May include the following.
- the negative electrode conductive material includes a dotted conductive material and a linear conductive material, and a ratio of the dotted conductive material to the linear conductive material may satisfy 1:0.001 to 1:0.05.
- the negative electrode conductive material includes a dotted conductive material and a linear conductive material and satisfies the composition and ratio, respectively, it does not significantly affect the lifespan characteristics of an existing lithium secondary battery, and charging and discharging As the number of possible points increases, output characteristics are excellent at a high C-rate.
- the negative electrode conductive material according to the present application has a completely different configuration from the conductive material applied to the positive electrode. That is, in the case of the anode conductive material according to the present application, it serves to hold the contact between silicon-based active materials whose volume expansion of the electrode is very large due to charging and discharging. As a role of imparting, its composition and role are completely different from those of the negative electrode conductive material of the present invention.
- a negative electrode for a lithium secondary battery in which a thickness change rate of the negative electrode active material layer after curing or drying the negative electrode composition satisfies Equation 1 below.
- X1 is the thickness of the negative electrode active material layer after curing or drying the negative electrode composition in 0 Cycle of the negative electrode for a lithium secondary battery
- X2 is the thickness of the negative electrode active material layer after curing or drying the negative electrode composition after 30 cycles of the negative electrode for a lithium secondary battery.
- the 0 cycle may mean a state in which a negative electrode for a lithium secondary battery is manufactured and charging/discharging is not performed, and may specifically mean a negative electrode for a lithium secondary battery after manufacturing.
- the negative electrode composition may form a negative electrode slurry by including a solvent for forming the negative electrode slurry, and the negative electrode slurry may be applied to a negative electrode current collector layer to form a negative electrode.
- the solid content of the negative electrode slurry may be 10% to 60%.
- the solvent for forming the negative electrode slurry may be used without limitation as long as it can dissolve and disperse the negative electrode composition, but distilled water or NMP may be specifically used.
- the cathode slurry mixing method is not particularly limited, and a ball mill, sand mill, pigment disperser, ultrasonic disperser, homogenizer, planetary mixer, Hobart mixer, etc. are exemplified, Preferably, kneading is performed using a homogenizer and/or a planetary mixer.
- the means for applying the negative electrode slurry to the negative electrode current collector layer is not particularly limited, and a conventionally known coating device such as a comma coater, a gravure coater, a micro gravure coater, a die coater, a bar coater, etc. can be used
- a drying process may be performed after applying the negative electrode slurry, and the drying means is not particularly limited, and the temperature is suitably 60° C. to 200° C., preferably 100° C. to 180° C.
- the atmosphere may be dry air or an inert atmosphere.
- the thickness of the electrode (cured coating film) is not particularly limited, but is suitable to be 5 ⁇ m to 300 ⁇ m, and preferably 10 ⁇ m to 250 ⁇ m.
- the negative current collector layer In one embodiment of the present application, the negative current collector layer; and a negative electrode active material layer including the negative electrode composition according to the present application formed on one side or both sides of the negative electrode current collector layer.
- a negative electrode active material layer may be additionally provided on a surface opposite to a surface of the negative electrode active material layer in contact with the negative electrode current collector layer.
- a generally used anode active material layer such as carbon-based or silicon-based may be used.
- FIG. 1 is a diagram showing a laminated structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application. Specifically, the negative electrode 100 for a lithium secondary battery including the negative electrode active material layer 20 on one surface of the negative electrode current collector layer 10 can be confirmed, and FIG. 1 shows that the negative electrode active material layer is formed on one surface, but the negative electrode collector It can be included on both sides of the entire layer.
- the negative current collector layer generally has a thickness of 1 ⁇ m to 100 ⁇ m.
- Such an anode current collector layer is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
- a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
- fine irregularities may be formed on the surface to enhance the bonding strength of the negative active material, and may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and nonwoven fabrics.
- copper foil is preferable as a collector.
- the negative electrode current collector layer has a thickness of 1 ⁇ m or more and 100 ⁇ m or less, and the negative electrode active material layer has a thickness of 20 ⁇ m or more and 500 ⁇ m or less.
- the thickness may be variously modified depending on the type and purpose of the negative electrode used, but is not limited thereto.
- a negative electrode for a rechargeable lithium battery in which a thickness change rate of the negative active material layer satisfies Equation 1 below.
- X1 is the thickness of the negative electrode active material layer at 0 Cycle of the negative electrode for a lithium secondary battery
- X2 is the thickness of the anode active material layer after 30 cycles of the anode for a lithium secondary battery.
- the 0 cycle may mean a state in which a negative electrode for a lithium secondary battery is manufactured and charging/discharging is not performed, and may specifically mean a negative electrode for a lithium secondary battery after manufacturing.
- the thickness change rate means a thickness change rate of the negative electrode active material layer after curing or drying the above-described negative electrode composition.
- the negative electrode for a lithium secondary battery according to the present application is characterized in that the thickness change is small by preventing volume expansion of the negative electrode active material even when cycles are repeated by using a specific negative electrode binder polymer.
- FIG. 2 is a diagram showing a laminated structure of a lithium secondary battery according to an exemplary embodiment of the present application.
- the negative electrode 100 for a lithium secondary battery including the negative electrode active material layer 20 on one surface of the negative electrode current collector layer 10 can be confirmed, and the positive electrode active material layer 40 on one surface of the positive electrode current collector layer 50
- the positive electrode 200 for a lithium secondary battery including a and the negative electrode 100 for a lithium secondary battery and the positive electrode 200 for a lithium secondary battery are formed in a laminated structure with a separator 30 interposed therebetween.
- a secondary battery may include the anode for a lithium secondary battery described above.
- the secondary battery may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
- the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
- the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- stainless steel, aluminum, nickel, titanium, fired carbon, or carbon on the surface of aluminum or stainless steel. , those surface-treated with nickel, titanium, silver, etc. may be used.
- the cathode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and adhesion of the cathode active material may be increased by forming fine irregularities on the surface of the current collector.
- it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
- the cathode active material may be a commonly used cathode active material.
- the cathode active material may include layered compounds such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), or compounds substituted with one or more transition metals; lithium iron oxides such as LiFe 3 O 4 ; lithium manganese oxides such as Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Represented by the formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B, and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.3) Ni site-type lithium nickel oxide; Formula
- the positive electrode active material layer may include a positive electrode conductive material and a positive electrode binder together with the positive electrode active material described above.
- the positive electrode conductive material is used to impart conductivity to the electrode, and in the configured battery, any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
- any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
- Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
- the positive electrode binder serves to improve adhesion between particles of the positive electrode active material and adhesion between the positive electrode active material and the positive electrode current collector.
- specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like may be used alone or in a mixture of two or more of them.
- PVDF polyvinylidene fluoride
- PVDF-co-HFP vinylidene fluoride-
- the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion movement. If it is normally used as a separator in a secondary battery, it can be used without particular limitation. It is desirable Specifically, a porous polymer film, for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
- a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
- porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
- a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
- electrolyte examples include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in manufacturing a lithium secondary battery.
- the electrolyte may include a non-aqueous organic solvent and a metal salt.
- non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dimethine Toxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxorane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxy methane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propionic acid
- An aprotic organic solvent such as ethyl may be used.
- ethylene carbonate and propylene carbonate which are cyclic carbonates
- an electrolyte having high electrical conductivity can be made and can be used more preferably.
- the metal salt may be a lithium salt, and the lithium salt is a material that is soluble in the non-aqueous electrolyte.
- the anion of the lithium salt is F - , Cl - , I - , NO 3 - , N (CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C
- the electrolyte may include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides for the purpose of improving battery life characteristics, suppressing battery capacity decrease, and improving battery discharge capacity.
- haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides
- Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
- One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included.
- the lithium secondary battery according to the present invention is useful for portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs), and is particularly preferable as a component battery of medium-large-sized battery modules.
- HEVs hybrid electric vehicles
- the present invention also provides a medium- or large-sized battery module including the lithium secondary battery as a unit battery.
- One embodiment of the present invention provides a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include the secondary battery having high capacity, high rate and cycle characteristics, a medium or large-sized device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system can be used as a power source for
- 900 g of water, 65 g of acrylamide, 20 g of acrylic acid, 10 g of acrylonitrile, 5 g of ethylene glycol diacrylate and 0.5 g of ammonium persulfate as a polymerization initiator were added to a reactor equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet pipe. After that, the temperature was raised to 90 ° C., polymerization was performed for 5 hours, and the pH was adjusted to 5 with an aqueous NaOH solution to prepare a binder polymer.
- 900g of water, 50g of acrylamide, 35g of acrylic acid, 15g of N'N'-methylenebisacrylamide and 0.5g of ammonium persulfate as a polymerization initiator were added to a reactor equipped with a stirrer, thermometer, reflux cooling pipe, and nitrogen gas inlet pipe, and then , The temperature was raised to 90 ° C., polymerization was performed for 5 hours, and the pH was adjusted to 5 with an aqueous NaOH solution to prepare a binder polymer.
- 900 g of water, 50 g of acrylamide, 30 g of acrylic acid, and 20 g of acrylonitrile, and 0.5 g of ammonium persulfate as a polymerization initiator were added to a reactor equipped with a stirrer, thermometer, reflux condenser, and nitrogen gas inlet pipe, and the temperature was raised to 90°C. After polymerization for 5 hours, a binder polymer was prepared by adjusting the pH to 5 with an aqueous NaOH solution.
- the composition was prepared. At this time, the content of water as a solvent was adjusted in consideration of coating properties, viscosity, and solid content. The viscosity of the obtained slurry composition was adjusted to be 5,000 to 6,000cps.
- each of the binders prepared in Table 1 was used.
- a negative electrode composition was prepared by mixing at a ratio of 5:10. At this time, the content of water as a solvent was adjusted in consideration of coating properties, viscosity, and solid content. The viscosity of the obtained slurry composition was adjusted to be 5,000 to 6,000cps.
- the negative electrode slurries of Examples 1 to 4 and Comparative Examples 1 to 6 were coated on copper foil having a thickness of 18 ⁇ m and dried, and an active material layer having a thickness of 50 ⁇ m was formed on one side of the copper foil, and a circular shape having a diameter of 14 ⁇ was punched for testing.
- An electrode (cathode) was prepared.
- a metal lithium foil with a thickness of 0.3 mm was used as an anode, a porous polyethylene sheet with a thickness of 0.1 mm was used as a separator, and a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1 as an electrolyte,
- EC ethylene carbonate
- DEC diethyl carbonate
- a lithium salt one in which LiPF 6 was dissolved at a concentration of about 1 mol/L was used.
- the negative electrode, the positive electrode, the separator, and the electrolyte were sealed in a stainless steel container to prepare a coin cell for evaluation having a thickness of 2 mm and a diameter of 32 mm.
- the evaluation results are shown in Table 2 below.
- Example 1 Example 2 Example 3
- Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5
- Example 6 note Initial Efficiency (%) 87.4 87.1 92.5 87.9 87.3 86.1 76.8 77.4 79.1
- Discharge capacity/charge capacity Capacity retention rate (%) 87 88 82 85 68 71 61 59 69 69 30 cycles
- the thickness (X1) of the negative electrode active material layer in the manufactured coin cell the coin cell is charged with a constant current of 0.05C until the voltage becomes 0.01V, and the voltage is 1.5V with a constant current of 0.05C After discharging, the cycle characteristics were measured in the same voltage range as above with a constant current of 0.2C, and the thickness (X2) of the negative electrode active material layer in the coin cell was measured after 30 cycles.
- Examples 1 to 4 correspond to cases in which the anode binder according to the present invention is used. Accordingly, even in the case of using an anode active material (in particular, a silicon-based active material) having a large volume expansion due to charge/discharge, volume expansion and contraction can be suppressed and thickness change due to electrode swelling can be minimized. It was confirmed that the life performance of the secondary battery was excellent.
- an anode active material in particular, a silicon-based active material
- a specific amount of diacrylamide or diacrylate compound is included to form a partially crosslinked structure, and the electrode during charge and discharge due to the partially crosslinked structure of the binder itself. It was confirmed that there was little change in thickness and that the capacity retention rate was improved during life evaluation.
- Example 3 100% Si was applied as the negative electrode active material.
- pure Si it is generally difficult to apply it due to severe volume expansion according to charging and discharging.
- the initial efficiency was superior to other Examples 1, 2 and 4 as described above by including the specific binder according to the present invention.
- the increase in thickness is also increased in terms of material properties compared to other Examples 1 and 2 using pure Si particles, but by applying the binder of the present invention, the thickness increase rate is within the range of 0 to 15%, in which case it is not a problem to drive the negative electrode. applicable That is, in the case of the negative electrode of Example 3, it was confirmed that the volume expansion can be easily controlled while maximizing the capacity characteristics.
- Comparative Example 1 and Comparative Example 2 are monomers containing ⁇ , ⁇ -unsaturated nitrile; Or diacrylamide or diacrylate-containing compound; is the case that does not include.
- the initial efficiency is similar to that of the embodiment, but it can be confirmed that the silicon-based active material does not function as a binder because it does not control the volume expansion of the active material.
- Comparative Examples 3 and 5 include four compositions in the negative electrode binder polymer as in the present invention, but the contents are different. In this case, as in Comparative Examples 1 and 2, the volume expansion of the silicon-based active material was not captured. , it was confirmed that the performance of the battery deteriorated because the conductive path was damaged.
- Comparative Example 6 uses a monomer containing hydroxyalkyl (meth)acrylate.
- the initial efficiency is similar to that of the embodiment, but it can be confirmed that the silicon-based active material does not function as a binder because it does not control the volume expansion of the active material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
(메트)아크릴아마이드기 함유 화합물 (중량부) |
불포화 유기산 또는 불포화 유기산의 염 (중량부) |
α,β-불포화 니트릴을 포함하는 단량체 (중량부) |
디아크릴아마이드 또는 디아크릴레이트 함유 화합물 (중량부) |
중량 평균 분자량(Mw) | |
실시예 1 | 아크릴아마이드 (65) | 아크릴산(20) | 아크릴로나이트릴(10) | N'N'-메틸렌비스아크릴아마이드(5) | 360,000 |
실시예 2 | 아크릴아마이드 (60) | 아크릴산(23) | 아크릴로나이트릴(5) | N'N'-메틸렌비스아크릴아마이드(12) | 640,000 |
실시예 3 | 아크릴아마이드 (65) | 아크릴산(20) | 아크릴로나이트릴(10) | N'N'-메틸렌비스아크릴아마이드(5) | 360,000 |
실시예 4 | 아크릴아마이드 (65) | 아크릴산(20) | 아크릴로나이트릴(10) | 에틸렌글리콜 디아크릴레이트(5) | 360,000 |
비교예 1 | 아크릴아마이드 (50) | 아크릴산(35) | - | N'N'-메틸렌비스아크릴아마이드 (15) |
790,000 |
비교예 2 | 아크릴아마이드 (50) | 아크릴산(30) | 아크릴로나이트릴(20) | - | 290,000 |
비교예 3 | 아크릴아마이드 (15) | 아크릴산(20) | 아크릴로나이트릴(60) | N'N'-메틸렌비스아크릴아마이드(5) | 230,000 |
비교예 4 | 아크릴아마이드 (45) | 아크릴산(20) | 아크릴로나이트릴(10) | N'N'-메틸렌비스아크릴아마이드(25) | 1,100,000 |
비교예 5 | 아크릴아마이드 (45) | 아크릴산(20) | 아크릴로나이트릴(10) | N'N'-메틸렌비스아크릴아마이드(17) | 820,000 |
비교예 6 | 아크릴아마이드 (40) | 아크릴산(30) | HEA (히드록시에틸 아크릴레이트)(20) | N'N'-메틸렌비스아크릴아마이드(5) | 820,000 |
실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 비교예 1 | 비교예 2 | 비교예 3 | 비교예 4 | 비교예 5 | 비교예 6 | 비고 | |
초기 효율(%) | 87.4 | 87.1 | 92.5 | 87.9 | 87.3 | 86.1 | 76.8 | 77.4 | 79.1 | 85 | 방전용량/충전용량 |
용량 유지율(%) | 87 | 88 | 82 | 85 | 68 | 71 | 61 | 59 | 69 | 69 | 30 cycle |
두께 증가율(%) | 13 | 10 | 14 | 14 | 27 | 23 | 32 | 31 | 24 | 20 | 30 cycle |
Claims (16)
- 음극 바인더 중합체, 음극 활물질, 및 음극 도전재를 포함하는 음극 조성물로,상기 음극 바인더 중합체는 (메트)아크릴아마이드기 함유 화합물; 불포화 유기산 또는 불포화 유기산의 염; α,β-불포화 니트릴을 포함하는 단량체; 및 디아크릴아마이드 또는 디아크릴레이트 함유 화합물;을 포함하며,상기 음극 바인더 중합체 100 중량부 기준 상기 α,β-불포화 니트릴을 포함하는 단량체는 1 중량부 이상 30 중량부 이하; 및 상기 디아크릴아마이드 또는 디아크릴레이트 함유 화합물은 0.1 중량부 이상 15 중량부 이하를 포함하는 것인 음극 조성물.
- 청구항 1에 있어서, 상기 디아크릴아마이드 또는 디아크릴레이트 함유 화합물은 알킬 디아크릴아마이드; 알킬렌옥사이드 디아크릴아마이드; 또는 알킬렌옥사이드 디아크릴레이트;인 것인 음극 조성물.
- 청구항 1에 있어서, 상기 (메트)아크릴아마이드기 함유 화합물:상기 불포화 유기산 또는 불포화 유기산의 염이 1:0.1 내지 1:0.6의 몰비인 것인 음극 조성물.
- 청구항 1에 있어서, 상기 음극 조성물 100 중량부 기준 상기 음극 바인더 중합체는 1 중량부 이상 20 중량부 이하를 포함하는 것인 음극 조성물.
- 청구항 1에 있어서,상기 음극 바인더 중합체의 중량 평균 분자량이 100,000 g/mol 이상 3,000,000 g/mol 이하인 음극 조성물.
- 청구항 1에 있어서,상기 음극 도전재는 점형 도전재; 면형 도전재; 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.
- 청구항 1에 있어서,상기 음극 활물질은 실리콘계 활물질 및 탄소계 활물질로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.
- 청구항 7에 있어서,상기 음극 활물질은 실리콘계 활물질을 포함하며, 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 조성물.
- 청구항 1에 있어서,상기 음극 활물질은 실리콘계 활물질로 이루어지며, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 조성물.
- 청구항 9에 있어서,상기 실리콘계 활물질의 평균 입경(D50)은 5㎛ 내지 10㎛인 것인 음극 조성물.
- 청구항 1에 있어서,상기 음극 도전재는 점형 도전재 및 선형 도전재를 포함하며, 상기 점형 도전재:선형 도전재의 비율은 1:0.001 내지 1:0.05를 만족하는 것인 음극 조성물.
- 청구항 1에 있어서,상기 음극 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상인 것인 음극 조성물.
- 음극 집전체층; 및상기 음극 집전체층의 일면 또는 양면에 형성된 청구항 1 내지 청구항 12 중 어느 한 항에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극.
- 청구항 13에 있어서,상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며,상기 음극 활물질층의 두께는 20μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극.
- 청구항 13에 있어서,상기 음극 활물질층의 두께 변화율이 하기 식 1을 만족하는 것인 리튬 이차 전지용 음극:[식 1]0% ≤ [(X2-X1) / X1] x 100(%) ≤15%상기 식 1에 있어서,X1은 상기 리튬 이차 전지용 음극의 0Cycle에서의 상기 음극 활물질층의 두께이고,X2는 상기 리튬 이차 전지용 음극의 30Cycle 후의 상기 음극 활물질층의 두께이다.
- 양극;청구항 13에 따른 리튬 이차 전지용 음극;상기 양극과 상기 음극 사이에 구비된 분리막; 및전해질;을 포함하는 리튬 이차 전지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22907799.5A EP4293747A1 (en) | 2021-12-15 | 2022-12-02 | Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode |
JP2023552557A JP7575171B2 (ja) | 2021-12-15 | 2022-12-02 | 負極組成物、これを含むリチウム二次電池用負極、および負極を含むリチウム二次電池 |
CN202280021779.8A CN117015868A (zh) | 2021-12-15 | 2022-12-02 | 阳极组合物、包括该阳极组合物的用于锂二次电池的阳极和包括该阳极的锂二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0180143 | 2021-12-15 | ||
KR20210180143 | 2021-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023113330A1 true WO2023113330A1 (ko) | 2023-06-22 |
Family
ID=86769034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/019530 WO2023113330A1 (ko) | 2021-12-15 | 2022-12-02 | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230197961A1 (ko) |
EP (1) | EP4293747A1 (ko) |
JP (1) | JP7575171B2 (ko) |
KR (1) | KR102606420B1 (ko) |
CN (1) | CN117015868A (ko) |
WO (1) | WO2023113330A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118658995A (zh) * | 2024-08-14 | 2024-09-17 | 广州鹿山新材料股份有限公司 | 水性粘结剂及其制备方法和涂碳铝箔 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009080971A (ja) | 2007-09-25 | 2009-04-16 | Tokyo Univ Of Science | リチウムイオン電池用負極 |
KR20160028534A (ko) * | 2014-09-03 | 2016-03-14 | 오씨아이 주식회사 | 탄소-Si 복합체 및 이의 제조방법 |
JP2017174804A (ja) * | 2016-02-18 | 2017-09-28 | 福建藍海黒石科技有限公司Blue Ocean & Black Stone Technology Co.,Ltd.(Fujian) | リチウムイオン電池負極用水性バインダー及びその調製方法 |
KR20200139016A (ko) * | 2019-06-03 | 2020-12-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
KR20210023749A (ko) * | 2019-08-22 | 2021-03-04 | 아라까와 가가꾸 고교 가부시끼가이샤 | 리튬이온전지용 열가교성 바인더 수용액, 리튬이온전지 부극용 열가교성 슬러리, 리튬이온전지용 부극 및 리튬이온전지 |
KR20210034966A (ko) * | 2019-09-23 | 2021-03-31 | 주식회사 엘지화학 | 리튬이차전지 음극용 바인더 및 이를 포함하는 리튬이차전지용 음극 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196547A1 (ja) * | 2013-06-04 | 2014-12-11 | 日本ゼオン株式会社 | リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池 |
WO2018008555A1 (ja) * | 2016-07-07 | 2018-01-11 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
CN108666499B (zh) * | 2017-03-28 | 2022-04-15 | 荒川化学工业株式会社 | 用于锂离子电池的热交联型浆料、电极、隔膜、隔膜/电极积层体以及锂离子电池 |
CN111418099B (zh) * | 2017-11-30 | 2022-12-27 | 日本瑞翁株式会社 | 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池 |
JP7306272B2 (ja) * | 2017-12-27 | 2023-07-11 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池 |
CN108963187B (zh) * | 2018-07-19 | 2021-01-12 | 桑德新能源技术开发有限公司 | 硅碳负极、其制备方法、锂离子电池及电动车辆 |
WO2021059880A1 (ja) * | 2019-09-27 | 2021-04-01 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 |
CN110982008B (zh) * | 2019-12-30 | 2022-01-07 | 浙江研一新能源科技有限公司 | 锂离子电池负极水性粘结剂 |
CN111057184B (zh) * | 2019-12-30 | 2022-02-25 | 宣城研一新能源科技有限公司 | 负极极片水性粘结剂的制备方法 |
CN113555558B (zh) * | 2021-07-12 | 2022-12-20 | 珠海冠宇电池股份有限公司 | 一种乳液型粘结剂和包括该粘结剂的锂离子电池 |
-
2022
- 2022-12-02 JP JP2023552557A patent/JP7575171B2/ja active Active
- 2022-12-02 KR KR1020220167020A patent/KR102606420B1/ko active IP Right Grant
- 2022-12-02 CN CN202280021779.8A patent/CN117015868A/zh active Pending
- 2022-12-02 WO PCT/KR2022/019530 patent/WO2023113330A1/ko active Application Filing
- 2022-12-02 EP EP22907799.5A patent/EP4293747A1/en active Pending
- 2022-12-08 US US18/077,521 patent/US20230197961A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009080971A (ja) | 2007-09-25 | 2009-04-16 | Tokyo Univ Of Science | リチウムイオン電池用負極 |
KR20160028534A (ko) * | 2014-09-03 | 2016-03-14 | 오씨아이 주식회사 | 탄소-Si 복합체 및 이의 제조방법 |
JP2017174804A (ja) * | 2016-02-18 | 2017-09-28 | 福建藍海黒石科技有限公司Blue Ocean & Black Stone Technology Co.,Ltd.(Fujian) | リチウムイオン電池負極用水性バインダー及びその調製方法 |
KR20200139016A (ko) * | 2019-06-03 | 2020-12-11 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
KR20210023749A (ko) * | 2019-08-22 | 2021-03-04 | 아라까와 가가꾸 고교 가부시끼가이샤 | 리튬이온전지용 열가교성 바인더 수용액, 리튬이온전지 부극용 열가교성 슬러리, 리튬이온전지용 부극 및 리튬이온전지 |
KR20210034966A (ko) * | 2019-09-23 | 2021-03-31 | 주식회사 엘지화학 | 리튬이차전지 음극용 바인더 및 이를 포함하는 리튬이차전지용 음극 |
Also Published As
Publication number | Publication date |
---|---|
JP2024508143A (ja) | 2024-02-22 |
EP4293747A1 (en) | 2023-12-20 |
KR102606420B1 (ko) | 2023-11-29 |
JP7575171B2 (ja) | 2024-10-29 |
KR20230091016A (ko) | 2023-06-22 |
CN117015868A (zh) | 2023-11-07 |
US20230197961A1 (en) | 2023-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023113330A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023113464A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2021251663A1 (ko) | 음극 및 이를 포함하는 이차전지 | |
WO2023059015A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법 | |
WO2023113462A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023068601A1 (ko) | 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 리튬 이차 전지용 음극의 제조 방법 | |
WO2024128823A1 (ko) | 패턴을 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023068838A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법 | |
WO2023059016A1 (ko) | 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지 | |
WO2023055215A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법 | |
WO2023153666A1 (ko) | 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023068880A1 (ko) | 음극 선분산액, 이를 포함하는 음극 조성물, 음극 조성물을 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법 | |
WO2023182852A1 (ko) | 음극 조성물, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023249446A1 (ko) | 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지 | |
WO2023120966A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023249442A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 및 음극을 포함하는 리튬 이차 전지 | |
WO2024136628A1 (ko) | 리튬 이차 전지 | |
WO2023249445A1 (ko) | 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지 | |
WO2023167449A1 (ko) | 리튬 이차 전지의 제조 방법 및 리튬 이차 전지 | |
WO2023085691A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법 | |
WO2023146256A1 (ko) | 리튬 이차 전지용 전극의 전리튬화 방법, 전극 중간체 및 전극을 포함하는 리튬 이차 전지 | |
WO2023249444A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 | |
WO2023121257A1 (ko) | 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법 | |
WO2023146254A1 (ko) | 전사 적층체, 리튬 이차 전지용 전극의 전리튬화 방법 및 전극을 포함하는 리튬 이차 전지 | |
WO2024144188A1 (ko) | 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22907799 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023552557 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317058709 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022907799 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280021779.8 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022907799 Country of ref document: EP Effective date: 20230912 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |