Nothing Special   »   [go: up one dir, main page]

WO2023195494A1 - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
WO2023195494A1
WO2023195494A1 PCT/JP2023/014113 JP2023014113W WO2023195494A1 WO 2023195494 A1 WO2023195494 A1 WO 2023195494A1 JP 2023014113 W JP2023014113 W JP 2023014113W WO 2023195494 A1 WO2023195494 A1 WO 2023195494A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
content
steel
less
fracture toughness
Prior art date
Application number
PCT/JP2023/014113
Other languages
French (fr)
Japanese (ja)
Inventor
美紀子 野口
潤 中村
雅之 相良
桂一 近藤
尚 天谷
裕紀 神谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023537332A priority Critical patent/JP7417181B1/en
Publication of WO2023195494A1 publication Critical patent/WO2023195494A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present disclosure relates to steel materials, and more particularly to steel materials suitable for use in oil wells.
  • oil wells and gas wells As oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to as "oil wells") become deeper, there is a demand for higher strength steel materials for oil wells, such as steel pipes for oil wells.
  • oil well steel materials of 80 ksi class yield strength of less than 80 to 95 ksi, that is, less than 552 to 655 MPa
  • 95 ksi class yield strength of less than 95 to 110 ksi, that is, less than 655 to 758 MPa
  • oil well steel materials of 110 ksi class yield strength of 758 to less than 862 MPa
  • 125 ksi or more yield strength of 862 MPa or more
  • Oil wells may also contain corrosive hydrogen sulfide gas (H 2 S), carbon dioxide gas (CO 2 ), and the like. Therefore, steel materials expected to be used as oil well steel materials are required not only to have high strength but also to have excellent corrosion resistance. Moreover, in steel materials for oil wells, stress is applied to the steel materials during use. Therefore, sulfide stress cracking resistance (hereinafter referred to as SSC resistance) has been used as an index of the excellent corrosion resistance of oil well steel materials.
  • SSC resistance sulfide stress cracking resistance
  • Patent Document 1 Japanese Patent Application Publication No. 2006-28612
  • Patent Document 2 International Publication No. 2008/123422
  • Patent Document 3 Japanese Patent Application Publication No. 2017-166060
  • the steel material disclosed in Patent Document 1 is a steel for steel pipes, and in mass %, C: 0.2 to 0.7%, Si: 0.01 to 0.8%, Mn: 0.1 to 1 .5%, S: 0.005% or less, P: 0.03% or less, Al: 0.0005-0.1%, Ti: 0.005-0.05%, Ca: 0.0004-0. 005%, N: 0.007% or less, Cr: 0.1 to 1.5%, Mo: 0.2 to 1.0%, and the remainder consists of Fe and impurities.
  • This steel material further has (Ca%)/(Al%) in the inclusions of nonmetallic inclusions containing Ca, Al, Ti, N, O, and S from 0.55 to 1.72, and (Ca% )/(Ti%) is 0.7 to 19.
  • Patent Document 1 describes that this steel material has a high yield strength exceeding 758 MPa and excellent SSC resistance.
  • This steel material further contains M 23 C 6 type precipitates with a grain size of 1 ⁇ m or more at a rate of 0.1 pieces/mm 2 or less.
  • Patent Document 2 describes that this steel material has a yield strength of 654 to 793 MPa and has excellent SSC resistance even in a high-pressure hydrogen sulfide environment.
  • the steel material disclosed in Patent Document 3 is a material for high-strength steel pipes for oil wells, and in mass %, C: 0.20 to 0.45%, Si: 0.05 to 0.40%, Mn: 0 .3 to 0.9%, P: 0.015% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.001 to 0.006%, Cr: 0. 1-0.8%, Mo: 0.1-1.6%, V: 0.02-0.2%, Nb: 0.001-0.04%, B: 0.0003-0.0030% , O (oxygen): 0.0030% or less, the remainder consisting of Fe and inevitable impurities.
  • Patent Document 3 states that with this steel material, a steel pipe having a yield strength of less than 758 to 862 MPa and excellent SSC resistance can be obtained.
  • minute flaws may be formed on the surface of the steel materials during transportation or drilling. Furthermore, as mentioned above, stress is applied to the steel material for oil wells during use. Therefore, when stress is applied to a steel material with microscopic flaws formed on its surface, the microscopic flaws may become starting points for cracks, and the cracks may propagate. Therefore, steel materials for oil wells are required to have resistance to destruction even if minute flaws are formed.
  • An object of the present disclosure is to provide a steel material that has both high strength and excellent fracture toughness.
  • the steel material according to the present disclosure is In mass%, C: 0.10-0.45%, Si: 1.00% or less, Mn: 0.01-1.00%, P: 0.050% or less, S: 0.0050% or less, Al: 0.001-0.100%, Cr: 0.1-2.0%, Mo: 0.20-2.00%, N: 0.010% or less, W: 0-0.50%, Co: 0 to 0.50%, Ni: 0 to 0.50%, Rare earth elements: 0 to 0.020%, Cu: 0 to 0.50%, and B: Contains 0 to 0.0100%, Ca: 0.0005 to 0.0200%, and Contains one or more elements selected from the group consisting of Mg: 0.0005 to 0.0200%, Ti: 0.001-0.300%, Nb: 0.001 to 0.300%, and V: Contains one or more elements selected from the group consisting of 0.01 to 0.50%, The remainder consists of Fe and impurities, satisfies formula (1) and formula (2), The yield strength is 862 MP
  • Mn ⁇ Sp ⁇ 12.0 (1) 0.05 ⁇ 7 ⁇ Ti+2 ⁇ Nb+3 ⁇ V ⁇ 0.80
  • the Mn content is substituted in mass % for "Mn” in formula (1)
  • the S content is substituted in ppm for "Sp”.
  • the content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
  • the steel material according to the present disclosure can have both high strength and excellent fracture toughness.
  • FIG. 1 shows the Mo content of the Mo-based MX type precipitate (having an equivalent circle diameter of 100 nm or less and the total content of Mo, Nb, V, and Ti being defined as 100% by mass) in this example.
  • FIG. 3 is a diagram showing the relationship between the number density (pieces/ ⁇ m 2 ) of MX-type precipitates (exceeding 50% by mass) and the CTOD value (mm), which is an index of fracture toughness.
  • FIG. 2A is a schematic diagram of a single edge notched bend (SENB) test piece used in the CTOD test for evaluating the fracture toughness of steel materials in this embodiment.
  • FIG. 2B is an enlarged view of region 10 of FIG. 2A.
  • the present inventors investigated increasing the strength and fracture toughness of steel materials intended for use in oil wells from the viewpoint of chemical composition. As a result, the present inventors found that, in mass %, C: 0.10 to 0.45%, Si: 1.00% or less, Mn: 0.01 to 1.00%, P: 0.050% or less.
  • the present inventors focused on Mn sulfide in steel materials. Mn sulfide is easily stretched and coarsened by hot working. Moreover, when coarse Mn sulfides are formed in steel materials, the fracture toughness of the steel materials is significantly reduced. Therefore, the present inventors thought that if it was possible to prevent the formation of coarse Mn sulfides in a steel material, it would be possible to improve the fracture toughness while maintaining the yield strength of the steel material.
  • the present inventors investigated various methods for reducing coarse Mn sulfides in steel materials having the above-mentioned chemical composition. As a result, it was revealed that in a steel material having the above-mentioned chemical composition, coarse Mn sulfides in the steel material can be reduced if the chemical composition satisfies the following formula (1). Mn ⁇ Sp ⁇ 12.0 (1) Here, the Mn content is substituted in mass % for "Mn" in formula (1), and the S content is substituted in ppm for "Sp".
  • Fn1 is an index of Mn sulfide in the steel material. If Fn1 exceeds 12.0, many coarse Mn sulfides are formed in the steel material, and the fracture toughness of the steel material is reduced. Therefore, on the premise that the steel material according to this embodiment has the above-mentioned chemical composition, Fn1 is set to 12.0 or less. As a result, it is possible to achieve both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
  • the present inventors focused on fine precipitates and studied ways to improve the fracture toughness of steel materials.
  • the yield strength can be improved. It has become clear that excellent fracture toughness can be stably increased while maintaining the same.
  • the MX type precipitates are mainly those with an equivalent circle diameter of 100 nm or less, and those with an equivalent circle diameter exceeding 100 nm are negligibly small. Therefore, in this specification, when the equivalent circle diameter is 100 nm or less and the total content of Mo, Nb, V, and Ti is defined as 100 mass%, the MX type with a Mo content of more than 50 mass% The precipitate is also referred to as "Mo-based MX type precipitate.”
  • FIG. 1 is a diagram showing the relationship between the number density (pieces/ ⁇ m 2 ) of Mo-based MX type precipitates and the CTOD value (mm), which is an index of fracture toughness, in this example.
  • Figure 1 shows the number density of Mo-based MX type precipitates (pieces/ ⁇ m 2 ) and the CTOD value (mm) obtained by the CTOD test described below.
  • all of the steel materials shown in FIG. 1 had a yield strength of 862 MPa or more.
  • the steel material according to this embodiment has the above-mentioned chemical composition, satisfies formula (1), and has a number density of Mo-based MX type precipitates of 20 pieces/ ⁇ m 2 or more. As a result, even if the steel material according to the present embodiment has a yield strength of 862 MPa or more, it has excellent fracture toughness with a CTOD value of 0.11 mm or more.
  • MX-type precipitates (Mo-based The details of the mechanism by which fracture toughness can be increased while maintaining the yield strength of the steel material by setting the number density of MX type precipitates to 20/ ⁇ m 2 or more have not been clarified.
  • the present inventors speculate as follows. In the above chemical composition, most of the MX type precipitates with an equivalent circle diameter of 100 nm or less are carbides, and are mainly composed of MC type carbides. MC type carbides tend to be finely dispersed in steel materials.
  • the MC type carbide is a Mo-based MC type carbide in which Mo is relatively concentrated, the hardness of the MC type carbide decreases. In other words, MC type carbide having an appropriate hardness can be finely dispersed in the steel material. As a result, fracture toughness can be increased while maintaining the strength of the steel material.
  • the fracture toughness of the steel material is increased while the yield strength of the steel material is maintained through a mechanism different from the above-mentioned speculation by the present inventors.
  • a steel material that has the above chemical composition, satisfies formula (1), and has a number density of Mo-based MX type precipitates of 20 pieces/ ⁇ m2 or more has excellent fracture toughness while maintaining yield strength. This is proven by the examples described later.
  • the chemical composition also satisfies the following formula (2). It has become clear that the number density of Mo-based MX type precipitates can be stably increased to 20 pieces/ ⁇ m 2 or more. 0.05 ⁇ 7 ⁇ Ti+2 ⁇ Nb+3 ⁇ V ⁇ 0.80 (2) Here, the content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
  • Fn2 7 ⁇ Ti+2 ⁇ Nb+3 ⁇ V.
  • Fn2 is an index regarding the precipitation state of carbides. Ti, Nb, and/or V form MX type precipitates. If Fn2 is too low, MX type precipitates themselves cannot be sufficiently formed. As a result, the number density of Mo-based MX type precipitates decreases. On the other hand, if Fn2 is too high, the Mo content in the MX type precipitates will decrease. As a result, the number density of Mo-based MX type precipitates decreases. Therefore, in the steel material according to this embodiment, Fn2 is set to 0.05 to 0.80 on the premise that it has the above-mentioned chemical composition and satisfies formula (1). As a result, the number density of Mo-based MX type precipitates can be stably increased to 20 pieces/ ⁇ m 2 or more.
  • the steel material according to the present embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), has a yield strength of 862 MPa or more, and further contains Mo-based MX type precipitates.
  • the number density is 20 pieces/ ⁇ m 2 or more.
  • the gist of the steel material according to this embodiment which was completed based on the above knowledge, is as follows.
  • a steel material In mass%, C: 0.10-0.45%, Si: 1.00% or less, Mn: 0.01-1.00%, P: 0.050% or less, S: 0.0050% or less, Al: 0.001-0.100%, Cr: 0.1-2.0%, Mo: 0.20-2.00%, N: 0.010% or less, W: 0-0.50%, Co: 0 to 0.50%, Ni: 0 to 0.50%, Rare earth elements: 0 to 0.020%, Cu: 0 to 0.50%, and B: Contains 0 to 0.0100%, Ca: 0.0005 to 0.0200%, and Contains one or more elements selected from the group consisting of Mg: 0.0005 to 0.0200%, Ti: 0.001-0.300%, Nb: 0.001 to 0.300%, and V: Contains one or more elements selected from the group consisting of 0.01 to 0.50%, The remainder consists of Fe and impurities, satisfies formula (1) and formula (2), The yield strength is 862 MPa or more
  • Mn ⁇ Sp ⁇ 12.0 (1) 0.05 ⁇ 7 ⁇ Ti+2 ⁇ Nb+3 ⁇ V ⁇ 0.80
  • the Mn content is substituted in mass % for "Mn” in formula (1)
  • the S content is substituted in ppm for "Sp”.
  • the content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
  • the steel material according to [1] or [2] is a steel pipe for oil wells, Steel material.
  • the shape of the steel material according to this embodiment is not particularly limited.
  • the steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate.
  • the round steel means a steel bar whose cross section perpendicular to the axial direction is circular.
  • the steel pipe may be a seamless steel pipe or a welded steel pipe.
  • the oil country steel pipe may be an oil country tubular product.
  • Oil country tubular goods are, for example, steel pipes used for casing and tubing applications.
  • the oil well steel pipe according to this embodiment is preferably a seamless steel pipe. If the oil well steel pipe according to the present embodiment is a seamless steel pipe, even if the wall thickness is 15 mm or more, it is possible to achieve both a yield strength of 862 MPa or more (125 ksi or more) and excellent fracture toughness.
  • C 0.10-0.45% Carbon (C) improves the hardenability of steel and increases its strength. If the C content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the C content is too high, quench cracking may easily occur during quenching during the manufacturing process even if the contents of other elements are within the ranges of this embodiment. Therefore, the C content is between 0.10 and 0.45%.
  • the preferable lower limit of the C content is 0.12%, more preferably 0.15%, and still more preferably 0.20%.
  • a preferable upper limit of the C content is 0.40%, more preferably 0.38%, and still more preferably 0.37%.
  • Si 1.00% or less Silicon (Si) is unavoidably contained. That is, the lower limit of the Si content is over 0%. Si deoxidizes steel. On the other hand, if the Si content is too high, even if the content of other elements is within the range of this embodiment, the formation of carbides will be suppressed and the fracture toughness of the steel material will decrease. Therefore, the Si content is 1.00% or less.
  • the preferable upper limit of the Si content is 0.90%, more preferably 0.80%, even more preferably 0.75%, still more preferably 0.60%, and even more preferably 0.50%. %.
  • the lower limit of the Si content is preferably 0.05%, more preferably 0.10%, and still more preferably 0.15% to effectively obtain the above effects.
  • Mn 0.01-1.00%
  • Manganese (Mn) deoxidizes steel. Mn further improves the hardenability of the steel material and increases the strength of the steel material. If the Mn content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the Mn content is too high, coarse Mn sulfides will be formed even if the contents of other elements are within the ranges of this embodiment, and the fracture toughness of the steel material will decrease. Therefore, the Mn content is 0.01 to 1.00%.
  • the lower limit of the Mn content is preferably 0.03%, more preferably 0.05%, and still more preferably 0.10%.
  • the upper limit of the Mn content is preferably 0.90%, more preferably 0.85%, even more preferably 0.80%, and still more preferably 0.75%.
  • P 0.050% or less Phosphorus (P) is an impurity. That is, the lower limit of the P content is over 0%. If the P content is too high, even if the contents of other elements are within the ranges of this embodiment, P will segregate at grain boundaries and the fracture toughness of the steel material will decrease. Therefore, the P content is 0.050% or less.
  • a preferable upper limit of the P content is 0.040%, more preferably 0.030%, still more preferably 0.020%, and still more preferably 0.015%. It is preferable that the P content is as low as possible. However, extreme reduction in P content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
  • S 0.0050% or less Sulfur (S) is an impurity. That is, the lower limit of the S content is more than 0%. If the S content is too high, coarse Mn sulfides will be formed even if the contents of other elements are within the ranges of this embodiment, and the fracture toughness of the steel material will decrease. Therefore, the S content is 0.0050% or less.
  • a preferable upper limit of the S content is 0.0040%, more preferably 0.0030%, and still more preferably 0.0020%. It is preferable that the S content is as low as possible. However, extreme reduction in S content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the S content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • Al 0.001-0.100%
  • Aluminum (Al) deoxidizes steel. If the Al content is too low, even if the contents of other elements are within the ranges of this embodiment, the above effects will not be sufficiently obtained and the corrosion resistance of the steel material will decrease. On the other hand, if the Al content is too high, even if the contents of other elements are within the ranges of this embodiment, coarse oxide-based inclusions will be generated and the corrosion resistance of the steel material will be reduced. Therefore, the Al content is 0.001 to 0.100%.
  • the preferable lower limit of the Al content is 0.005%, more preferably 0.010%, still more preferably 0.020%, and still more preferably 0.025%.
  • a preferable upper limit of the Al content is 0.080%, more preferably 0.060%, and still more preferably 0.050%.
  • the "Al” content as used herein means the content of "acid-soluble Al", that is, "sol.Al".
  • Chromium (Cr) improves the hardenability of steel materials. Cr further increases the temper softening resistance of the steel material and enables high temperature tempering. As a result, the fracture toughness of the steel material increases. If the Cr content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the Cr content is too high, the corrosion resistance of the steel material will decrease even if the other element contents are within the ranges of this embodiment. Therefore, the Cr content is between 0.1 and 2.0%.
  • the lower limit of the Cr content is preferably 0.2%, more preferably 0.4%.
  • a preferable upper limit of the Cr content is 1.9%, more preferably 1.8%, still more preferably 1.5%, and still more preferably 1.0%.
  • Mo 0.20 ⁇ 2.00%
  • Molybdenum (Mo) improves the hardenability of steel materials. Mo further forms Mo-based MX type precipitates to improve the fracture toughness of the steel material. If the Mo content is too low, even if the contents of other elements are within the ranges of this embodiment, the above effects cannot be sufficiently obtained. On the other hand, if the Mo content is too high, the above effects will be saturated. Therefore, the Mo content is between 0.20 and 2.00%.
  • the lower limit of the Mo content is preferably 0.25%, more preferably 0.30%, and still more preferably 0.50%.
  • the upper limit of the Mo content is preferably 1.90%, more preferably 1.80%, even more preferably 1.60%, and still more preferably 1.40%.
  • N 0.010% or less Nitrogen (N) is unavoidably contained. That is, the lower limit of the N content is over 0%. N combines with Ti to form nitrides and refines the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. However, if the N content is too high, coarse nitrides will be formed even if the contents of other elements are within the ranges of this embodiment, and the fracture toughness of the steel material will decrease. Therefore, the N content is 0.010% or less. A preferable upper limit of the N content is 0.008%, more preferably 0.006%. The lower limit of the N content is preferably 0.001%, more preferably 0.002%, and still more preferably 0.003% in order to more effectively obtain the above effects.
  • the chemical composition of the steel material according to this embodiment contains one or more elements selected from the group consisting of Ca and Mg. That is, in the chemical composition of the steel material according to the present embodiment, the content of either Ca or Mg may be 0%. All of these elements improve the hot workability of steel materials.
  • Ca 0.0005-0.0200%
  • Calcium (Ca) fixes S in steel materials as sulfide, rendering it harmless and improving the corrosion resistance of steel materials.
  • the Ca content is 0.0005 to 0.0200%.
  • the preferable lower limit of the Ca content is more than 0.0006%, more preferably 0.0008%, and still more preferably 0.0010%.
  • a preferable upper limit of the Ca content is 0.0150%, more preferably 0.0100%, still more preferably 0.0060%, and still more preferably 0.0040%.
  • Mg 0.0005-0.0200%
  • Mg Magnesium (Mg) fixes S in steel materials as sulfide, rendering it harmless and improving the corrosion resistance of steel materials.
  • the Mg content is 0.0005 to 0.0200%.
  • the lower limit of the Mg content is preferably more than 0.0006%, more preferably 0.0008%, and still more preferably 0.0010%.
  • a preferable upper limit of the Mg content is 0.0150%, more preferably 0.0100%, still more preferably 0.0060%, and still more preferably 0.0040%.
  • the chemical composition of the steel material according to this embodiment contains one or more elements selected from the group consisting of Ti, Nb, and V. That is, the chemical composition of the steel material according to the present embodiment may have a content of 0% except for any one of Ti, Nb, and V. All of these elements form composite MX-type precipitates together with Mo and improve the fracture toughness of the steel material.
  • Titanium (Ti) forms Mo-based MX type precipitates together with Mo, and improves the fracture toughness of steel materials.
  • the Mo-based MX type precipitates containing Ti further refine the crystal grains of the steel material due to the pinning effect and improve the fracture toughness of the steel material.
  • the Ti content in the Mo-based MX-type precipitates will become too high, and the Ti content in the Mo-based MX-type precipitates will be too high. Mo content decreases. As a result, the fracture toughness of the steel material is rather reduced. Therefore, when included, the Ti content is 0.001 to 0.300%.
  • the lower limit of the Ti content is preferably 0.002%, more preferably 0.003%, even more preferably 0.005%, and still more preferably 0.010%.
  • a preferable upper limit of the Ti content is 0.250%, more preferably 0.150%, even more preferably 0.100%, still more preferably 0.080%, and still more preferably 0.060%. %.
  • Niobium (Nb) forms Mo-based MX type precipitates together with Mo, and improves the fracture toughness of steel materials.
  • the Mo-based MX type precipitates containing Nb further refine the crystal grains of the steel material due to the pinning effect and improve the fracture toughness of the steel material.
  • Nb further increases the temper softening resistance of the steel material and increases the strength of the steel material.
  • the Nb content is too high, even if the contents of other elements are within the range of this embodiment, the Nb content in the Mo-based MX-type precipitates will be too high, and the Nb content in the Mo-based MX-type precipitates will be too high. Mo content decreases.
  • the Nb content is 0.001 to 0.300%.
  • the preferable lower limit of the Nb content is 0.003%, more preferably 0.005%, and still more preferably 0.010%.
  • a preferable upper limit of the Nb content is 0.250%, more preferably 0.150%, still more preferably 0.100%, and still more preferably 0.080%.
  • V vanadium (V) forms Mo-based MX type precipitates together with Mo, and improves the fracture toughness of steel materials.
  • the Mo-based MX type precipitates containing V further refine the crystal grains of the steel material due to the pinning effect and improve the fracture toughness of the steel material.
  • V further increases the temper softening resistance of the steel material and increases the strength of the steel material.
  • the V content in the Mo-based MX-type precipitate will be too high, and the V content in the Mo-based MX-type precipitate will be too high. Mo content decreases. As a result, the fracture toughness of the steel material is rather reduced.
  • the V content when contained, is 0.01 to 0.50%.
  • the lower limit of the V content is preferably 0.01%, more preferably 0.02%, and even more preferably 0.05%.
  • a preferable upper limit of the V content is 0.40%, more preferably 0.30%, and even more preferably 0.20%.
  • the remainder of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
  • impurities are those that are mixed in from ores used as raw materials, scraps, or the manufacturing environment when steel products are industrially manufactured, and to the extent that they do not adversely affect the steel products according to this embodiment. means permissible.
  • the chemical composition of the steel material described above may further contain one or more elements selected from the group consisting of W, Co, Ni, and rare earth elements in place of a part of Fe. All of these elements increase the corrosion resistance of steel materials.
  • W 0-0.50% Tungsten (W) is an optional element and may not be included. That is, the W content may be 0%. When contained, W forms a protective corrosion film in a corrosive environment and suppresses hydrogen from penetrating into the steel material. As a result, the corrosion resistance of the steel material is improved. If even a small amount of W is contained, the above effects can be obtained to some extent. However, if the W content is too high, even if the contents of other elements are within the ranges of this embodiment, coarse carbides will be generated in the steel material, resulting in a decrease in the corrosion resistance of the steel material. Therefore, the W content is 0 to 0.50%.
  • the lower limit of the W content is preferably more than 0%, more preferably 0.01%.
  • the upper limit of the W content is preferably 0.40%, more preferably 0.30%, even more preferably 0.20%, and still more preferably 0.10%.
  • Co 0-0.50%
  • Co is an optional element and may not be included. That is, the Co content may be 0%.
  • Co forms a protective corrosion film in a corrosive environment and suppresses hydrogen from penetrating into the steel material. As a result, the corrosion resistance of the steel material is improved. If even a small amount of Co is contained, the above effects can be obtained to some extent. However, if the Co content is too high, even if the contents of other elements are within the ranges of this embodiment, the hardenability of the steel material will be reduced and the strength of the steel material will be reduced. Therefore, the Co content is 0-0.50%.
  • the preferable lower limit of the Co content is more than 0%, more preferably 0.01%, and still more preferably 0.02%.
  • a preferable upper limit of the Co content is 0.40%, more preferably 0.30%, and still more preferably 0.20%.
  • Ni 0-0.50%
  • Nickel (Ni) is an optional element and may not be included. That is, the Ni content may be 0%. When contained, Ni dissolves in solid solution in the steel and improves the corrosion resistance of the steel material. If even a small amount of Ni is contained, these effects can be obtained to some extent. However, if the Ni content is too high, local corrosion will be promoted and the corrosion resistance of the steel material will be reduced even if the other element contents are within the ranges of this embodiment. Therefore, the Ni content is 0 to 0.50%.
  • the preferable lower limit of the Ni content is more than 0%, more preferably 0.01%, and still more preferably 0.02%.
  • a preferable upper limit of the Ni content is 0.40%, more preferably 0.30%, still more preferably 0.20%, and even more preferably 0.15%.
  • Rare earth elements are optional elements and may not be included. That is, the REM content may be 0%. When contained, REM fixes S in the steel material as sulfide, rendering it harmless and improving the corrosion resistance of the steel material. If even a small amount of REM is contained, the above effects can be obtained to some extent even if the contents of other elements are within the range of this embodiment. However, if the REM content is too high, even if the contents of other elements are within the ranges of this embodiment, the oxides in the steel material will become coarse and the corrosion resistance of the steel material will decrease. Therefore, the REM content is between 0 and 0.020%. A preferable lower limit of the REM content is more than 0%, more preferably 0.001%, still more preferably 0.003%, and still more preferably 0.005%. A preferable upper limit of the REM content is 0.018%, more preferably 0.015%.
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids such as lanthanum (La) with atomic number 57 to atomic number 71. It means one or more elements selected from the group consisting of lutetium (Lu). Moreover, the REM content in this specification means the total content of these elements.
  • the chemical composition of the steel material described above may further contain one or more elements selected from the group consisting of Cu and B in place of a part of Fe. All of these elements improve the hardenability of the steel material and increase the strength of the steel material.
  • Cu 0-0.50% Copper (Cu) is an optional element and may not be included. That is, the Cu content may be 0%. When contained, Cu improves the hardenability of the steel material and increases the strength of the steel material. If even a small amount of Cu is contained, the above effects can be obtained to some extent. However, if the Cu content is too high, even if the contents of other elements are within the ranges of this embodiment, the hardenability of the steel material will become too high and the corrosion resistance of the steel material will decrease. Therefore, the Cu content is 0-0.50%.
  • the preferable lower limit of the Cu content is more than 0%, more preferably 0.01%, even more preferably 0.02%, and still more preferably 0.05%.
  • a preferable upper limit of the Cu content is 0.35%, more preferably 0.25%, and still more preferably 0.15%.
  • B 0-0.0100% Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When contained, B increases the hardenability of the steel material and increases the strength of the steel material. If even a small amount of B is contained, the above effects can be obtained to some extent. However, if the B content is too high, even if the contents of other elements are within the ranges of this embodiment, coarse nitrides will be generated and the corrosion resistance of the steel material will deteriorate. Therefore, the B content is 0 to 0.0100%.
  • the preferable lower limit of the B content is more than 0%, more preferably 0.0001%, still more preferably 0.0003%, and still more preferably 0.0005%.
  • a preferable upper limit of the B content is 0.0080%, more preferably 0.0060%.
  • the steel material according to this embodiment satisfies the following formula (1) on the premise that it has the above-mentioned chemical composition.
  • the steel material according to this embodiment can have both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
  • the Mn content is substituted in mass % for "Mn” in formula (1), and the S content is substituted in ppm for "Sp".
  • a more preferable upper limit of Fn1 is 11.5, still more preferably 11.0, and still more preferably 10.0.
  • the lower limit of Fn1 is not particularly limited, and may be, for example, 0.1. However, when considering industrial production, the preferable lower limit of Fn1 is 0.3, more preferably 0.5.
  • the steel material according to this embodiment has the above-mentioned chemical composition and satisfies the following formula (2) on the premise that formula (1) is satisfied.
  • the steel material according to this embodiment can have both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
  • the content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
  • the lower limit of Fn2 is preferably 0.08, more preferably 0.10, and still more preferably 0.15.
  • a preferable upper limit of Fn2 is 0.75, more preferably 0.70, and still more preferably 0.60.
  • the steel material according to this embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), and has a number density of Mo-based MX type precipitates of 20/ ⁇ m 2 or more. As a result, the steel material according to this embodiment has excellent fracture toughness even if the yield strength is 862 MPa or more. In short, the yield strength of the steel material according to this embodiment is 862 MPa or more. In this embodiment, the upper limit of the yield strength is not particularly limited, but is, for example, 965 MPa. In this specification, yield strength refers to 0.6% total elongation yield strength (MPa) obtained by a tensile test at room temperature (24 ⁇ 3°C) in accordance with ASTM E8/E8M (2021) described below. means.
  • the yield strength of the steel material is determined by the following method.
  • a tensile test piece is produced from the steel material according to this embodiment.
  • the size of the tensile test piece is not particularly limited.
  • the tensile test piece is, for example, a round bar tensile test piece with a parallel part diameter of 6 mm and a gage length of 30 mm. If the steel material is a steel pipe, prepare a tensile test piece from the center of the wall thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the axial direction of the steel pipe. When the steel material is a round steel, a tensile test piece is prepared from the R/2 position.
  • the R/2 position of the round steel means the center position of the radius R in a cross section perpendicular to the axial direction of the round steel.
  • the longitudinal direction of the tensile test piece is parallel to the axial direction of the round steel.
  • the steel material is a steel plate
  • the longitudinal direction of the tensile test piece is parallel to the rolling direction of the steel plate.
  • Using the prepared tensile test piece perform a tensile test at room temperature (24 ⁇ 3 ° C.) in the atmosphere in accordance with ASTM E8/E8M (2021) to determine 0.6% total elongation yield strength (MPa).
  • the obtained 0.6% total elongation yield strength is defined as yield strength (MPa).
  • the steel material according to this embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), has an equivalent circle diameter of 100 nm or less, and contains Mo, Nb, V, and Ti.
  • the total content is defined as 100% by mass
  • the number density of MX type precipitates having an Mo content of more than 50% by mass is 20 pieces/ ⁇ m 2 or more.
  • the steel material according to this embodiment has excellent fracture toughness even if the yield strength is 862 MPa or more.
  • the equivalent circle diameter is 100 nm or less and the total content of Mo, Nb, V, and Ti is defined as 100% by mass
  • the Mo content exceeds 50% by mass.
  • the MX type precipitate is also referred to as "Mo-based MX type precipitate”.
  • MX type precipitates with an equivalent circle diameter of 100 nm or less are MC type carbides.
  • MC type carbides tend to be finely dispersed in steel materials.
  • the hardness of the MC type carbide may become too high. In this case, it is difficult to increase the fracture toughness while maintaining the strength of the steel material. Therefore, in this embodiment, an MC type carbide containing Nb and/or V and/or Ti is made into a composite carbide with Mo to form an MC type carbide enriched with Mo (Mo-based MX type precipitate). .
  • Mo-based MX type precipitate Mo-based MX type precipitate
  • the number density of Mo-based MX type precipitates is further increased. As a result, precipitates of appropriate hardness are finely dispersed in the steel material, and the fracture toughness of the steel material can be increased while maintaining the yield strength of the steel material.
  • the above-mentioned chemical composition satisfies formulas (1) and (2), and has a number density of Mo-based MX type precipitates of 20 pieces/ ⁇ m 2 or more.
  • a preferable lower limit of the number density of Mo-based MX type precipitates is 21 pieces/ ⁇ m 2 , more preferably 23 pieces/ ⁇ m 2 , and even more preferably 25 pieces/ ⁇ m 2 .
  • the upper limit of the number density of Mo-based MX type precipitates is not particularly limited, it is, for example, 200 pieces/ ⁇ m 2 .
  • the number density of Mo-based MX type precipitates is determined by the following method.
  • a micro test piece for producing an extraction replica is produced from the steel material according to this embodiment. If the steel material is a steel pipe, take a micro specimen from the center of the wall thickness. If the steel material is round steel, take a micro test piece from the R/2 position. If the steel material is a steel plate, take a micro test piece from the center of the plate thickness. The size of the micro test piece is, for example, 10 mm x 10 mm. After mirror polishing the surface of the micro test piece, the micro test piece is immersed in a 3% nital corrosive solution for 10 minutes to corrode the surface. The corroded surface is covered with a carbon evaporated film.
  • a micro specimen whose surface is covered with a vapor-deposited film is immersed in a 5% nital corrosive solution for 20 minutes.
  • the deposited film is peeled off from the immersed micro test piece.
  • the deposited film peeled off from the micro test piece is washed with ethanol, then scooped out with a sheet mesh and dried. Note that in this embodiment, a sheet mesh made of Cu is used.
  • This deposited film (replica film) is observed with a transmission electron microscope (TEM). Specifically, an arbitrary position is specified from the deposited film and observed at an observation magnification of 100,000 times and an accelerating voltage of 200 kV. Note that the size of the observation field is, for example, 2.0 ⁇ m ⁇ 3.0 ⁇ m. In each observation field, particles with an equivalent circle diameter of 100 nm or less are identified. Note that particles can be identified from the contrast. In this specification, the term “particles” is not limited to circular (spherical) particles, and may be small pieces having an angular shape or elongated elliptical pieces. Further, the equivalent circle diameter of the precipitate can be determined by image analysis of an observed image in TEM observation. In the present embodiment, the lower limit of the equivalent circle diameter of the identified particles having an equivalent circle diameter of 100 nm or less is 10 nm. That is, in this embodiment, particles having an equivalent circle diameter of 10 to 100 nm are specified.
  • Point analysis is performed on the identified particles using energy dispersive X-ray spectrometry (EDS).
  • EDS energy dispersive X-ray spectrometry
  • the content of elements contained in each particle is determined by EDS point analysis.
  • the accelerating voltage is 200 kV.
  • the target elements of point analysis are quantified as Mo, Nb, V, and Ti.
  • Mo, Nb, V, and Ti when the total content of Mo, Nb, V, and Ti is defined as 100% by mass, when the Mo content exceeds 70% by mass, M 2 X type precipitates are likely to occur. Therefore, in this embodiment, when the total content of Mo, Nb, V, and Ti is defined as 100% by mass, a precipitate with a Mo content of 70% by mass or less is specified as an MX-type precipitate.
  • the number density (pieces/ ⁇ m 2 ) of Mo-based MX-type precipitates is determined based on the total number of Mo-based MX-type precipitates identified in each observation field and the total area of the observation field. In this embodiment, the number density of Mo-based MX type precipitates is determined by rounding the obtained value to the first decimal place.
  • the steel material according to this embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), and has a number density of Mo-based MX type precipitates of 20/ ⁇ m 2 or more. As a result, the steel material according to this embodiment has excellent fracture toughness even if the yield strength is 862 MPa or more.
  • excellent fracture toughness means that the CTOD value obtained by the CTOD test at room temperature (25°C) in accordance with ISO 12135 (2021) described below is 0.11 mm or more. do.
  • FIG. 2A is a schematic diagram of a SENB test piece used in the CTOD test for evaluating the fracture toughness of steel materials in this embodiment.
  • FIG. 2B is an enlarged view of region 10 of FIG. 2A.
  • the SENB test piece has a thickness B of 10 mm, a width W of 20 mm, and a length L of 100 mm. If the steel material is a steel pipe, prepare a SENB test piece from the center of the wall thickness.
  • the longitudinal direction of the SENB test piece is parallel to the axial direction of the steel pipe. If the steel material is round steel, prepare a SENB test piece from the R/2 position. In this case, the longitudinal direction of the SENB test piece is parallel to the axial direction of the round steel. When the steel material is a steel plate, a SENB test piece is prepared from the center of the plate thickness. In this case, the longitudinal direction of the SENB test piece is parallel to the rolling direction of the steel plate.
  • the SENB test piece has a notch formed in the width W direction at the center position in the length L direction.
  • the notch in the SENB specimen is formed by machining.
  • the notch of the SENB test piece has a width of 2 mm and a depth of 8 mm.
  • a fatigue test to introduce a pre-crack is performed on the prepared SENB test piece.
  • the initial relative crack length a 0 /W is set to 0.50.
  • the fatigue test is conducted at room temperature (25° C.) so that the fatigue pre-crack introduced at the tip of the notch is 2 mm.
  • a CTOD test is conducted at room temperature (25°C) in accordance with ISO 12135 (2021) on the SENB test piece in which fatigue pre-crack has been introduced.
  • the CTOD value (mm) is determined based on ISO 12135 (2021) from the load at break in the load-opening amount curve obtained by the CTOD test and the amount of plastic component of the clip gauge opening displacement. Note that the same test is conducted three times and the minimum CTOD value (mm) is defined as the CTOD value (mm) of the steel material.
  • the CTOD value of the steel material is determined by rounding the obtained value to the second decimal place.
  • the total volume fraction of tempered martensite and tempered bainite is 90% or more.
  • the remainder of the microstructure is, for example, ferrite or pearlite.
  • the yield strength is 125 ksi, provided that the other configurations of this embodiment are satisfied. or more (862 MPa or more). That is, in this embodiment, if the yield strength of the steel material is 125 ksi or more, it is determined that the microstructure of the steel material has a total volume fraction of tempered martensite and tempered bainite of 90% or more.
  • a test piece is made from steel material.
  • the steel material is a steel pipe
  • a test piece is prepared that has an observation surface of 10 mm in the pipe axis direction and 8 mm in the wall thickness (pipe diameter) direction from the center of the wall thickness.
  • the wall thickness of the steel pipe is less than 10 mm
  • a test piece is prepared that has an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction.
  • a test piece is prepared that includes the R/2 position in the center and has an observation surface of 10 mm in the axial direction and 8 mm in the radial direction of the cross section.
  • a test piece is prepared that includes the R/2 position, has an observation surface of 10 mm in the axial direction, and has a diameter in the radial direction of the cross section.
  • the steel material is a steel plate
  • a test piece having an observation surface extending 10 mm in the rolling direction and 10 mm in the thickness direction from the central position of the plate thickness is prepared.
  • the plate thickness of the steel plate is less than 10 mm
  • a test piece having an observation surface of 10 mm in the rolling direction and the thickness of the steel plate in the plate thickness direction is prepared.
  • the etched observation surface is observed in 10 fields of view using a secondary electron image using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the field of view area is, for example, 10000 ⁇ m 2 (1000x magnification).
  • tempered martensite and tempered bainite are identified from the contrast.
  • the area ratio of the specified tempered martensite and tempered bainite is determined.
  • the method for determining the area ratio is not particularly limited, and any known method may be used.
  • the area ratio of tempered martensite and tempered bainite can be determined by image analysis.
  • the arithmetic mean value of the area ratios of tempered martensite and tempered bainite determined in all visual fields is defined as the volume ratio of tempered martensite and tempered bainite.
  • a method for manufacturing steel materials according to this embodiment will be described.
  • a method for manufacturing a seamless steel pipe will be described as an example of the steel material according to the present embodiment.
  • a method for manufacturing a seamless steel pipe includes a step of preparing a mother tube (preparation step) and a step of quenching and tempering the mother tube to form a seamless steel tube (quenching step and tempering step). Note that the manufacturing method according to this embodiment is not limited to the manufacturing method described below. Each step will be explained in detail below.
  • an intermediate steel material having the above-mentioned chemical composition is prepared.
  • the method for producing the intermediate steel material is not particularly limited.
  • the intermediate steel material here is a plate-shaped steel material when the final product is a steel plate, and is a raw pipe when the final product is a steel pipe.
  • the preparation step may include a step of preparing a material (material preparation step) and a step of hot working the material to produce an intermediate steel material (hot working step).
  • material preparation step a step of preparing a material
  • hot working step a step of hot working the material to produce an intermediate steel material
  • a material is manufactured using molten steel having the above-mentioned chemical composition.
  • the method for producing the material is not particularly limited, and any known method may be used. Specifically, a slab (slab, bloom, or billet) may be manufactured by a continuous casting method using molten steel. An ingot may be manufactured by an ingot-forming method using molten steel. If necessary, the slab, bloom, or ingot may be bloomed and rolled to produce a billet. A material (slab, bloom, or billet) is manufactured through the above steps.
  • the prepared material is hot worked to produce an intermediate steel material.
  • the steel material is a seamless steel pipe
  • the intermediate steel material corresponds to the base pipe.
  • the billet is heated in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • Hot working is performed on the billet extracted from the heating furnace to produce a raw pipe (seamless steel pipe).
  • the hot working method is not particularly limited, and may be any known method.
  • the raw pipe may be manufactured by implementing the Mannesmann method as hot working.
  • the round billet is pierced and rolled using a piercer.
  • the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0.
  • the hole-rolled round billet is further hot-rolled using a mandrel mill, reducer, sizing mill, etc. to form a blank tube.
  • the cumulative area reduction rate in the hot working step is, for example, 20 to 70%.
  • the raw tube may be manufactured by forging such as the Erhard method.
  • a raw pipe is manufactured through the above steps.
  • the wall thickness of the raw tube is not particularly limited, but is, for example, 9 to 60 mm.
  • the steel material is round steel, first heat the material in a heating furnace.
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • Hot working is performed on the material extracted from the heating furnace to produce an intermediate steel material having a circular cross section perpendicular to the axial direction.
  • the hot working is, for example, blooming rolling using a blooming mill or hot rolling using a continuous rolling mill.
  • a continuous rolling mill has a horizontal stand having a pair of grooved rolls arranged in parallel in the vertical direction and a vertical stand having a pair of grooved rolls arranged in parallel in the horizontal direction, which are arranged alternately.
  • the steel material is a steel plate
  • the heating temperature is not particularly limited, but is, for example, 1100 to 1300°C.
  • the raw material extracted from the heating furnace is hot-rolled using a blooming mill and a continuous rolling mill to produce an intermediate steel material in the shape of a steel plate.
  • the raw tube manufactured by hot working may be air-cooled (As-Rolled).
  • the raw tube manufactured by hot working may be quenched directly after hot working without being cooled to room temperature, or may be quenched after reheating (reheating) after hot working. good.
  • SR stress relief annealing
  • intermediate steel materials are prepared in the preparation process.
  • the intermediate steel material may be manufactured by the above-mentioned preferred process, or may be manufactured by a third party, or at another factory or other business office other than the factory where the quenching process and tempering process described below are carried out. You may also prepare an intermediate steel material manufactured by The hardening process will be explained in detail below.
  • quenching means quenching an intermediate steel material having an A3 point or higher.
  • temperature of the intermediate steel material immediately before quenching when quenching is performed is also referred to as quenching temperature.
  • the hardening process according to this embodiment includes a medium temperature heating process, a high temperature heating process, and a rapid cooling process. Each step will be explained in detail below.
  • the prepared intermediate steel material (raw pipe) is heated from room temperature to a heating temperature and held.
  • fine Mo-based MX type precipitates are precipitated in the intermediate steel material.
  • the preferred heating temperature in the medium temperature heating step is 400 to less than 600°C. If the heating temperature is too low, the amount of Mo-based MX type precipitates deposited in the medium temperature heating step will decrease. As a result, the number density of Mo-based MX type precipitates in the manufactured steel material decreases.
  • the heating temperature is too high, the Mo-based MX-type precipitates will grow too much, the Mo-based MX-type precipitates will become coarse in the medium temperature heating process, and the number density of the Mo-based MX-type precipitates in the manufactured steel material will decrease. descend.
  • the preferred heating temperature is 400 to less than 600°C.
  • a more preferable lower limit of the heating temperature in the medium temperature heating step is 410°C, still more preferably 420°C, and even more preferably 430°C.
  • a more preferable upper limit of the heating temperature in the medium temperature heating step is 590°C, still more preferably 580°C, and even more preferably 570°C.
  • the preferred holding time in the medium temperature heating step is 20 to 120 minutes. If the holding time is too short, the amount of Mo-based MX type precipitates deposited in the medium temperature heating step will decrease. As a result, the number density of Mo-based MX type precipitates in the manufactured steel material decreases. On the other hand, if the holding time is too long, the Mo-based MX-type precipitates grow too much, and the Mo-based MX-type precipitates become coarse in the medium temperature heating step. As a result, the number density of Mo-based MX type precipitates in the manufactured steel material decreases.
  • the preferred holding time is 20 to 120 minutes.
  • a more preferable lower limit of the holding time in the medium temperature heating step is 25 minutes.
  • a more preferable upper limit of the holding time in the medium temperature heating step is 100 minutes, and even more preferably 90 minutes.
  • the intermediate steel material (raw pipe) heated in the medium temperature heating step is heated from the heating temperature in the medium temperature heating step to the heating temperature in the high temperature heating step and held.
  • the microstructure of the steel material is transformed into a single austenite phase.
  • the intermediate steel material can be hardened through the subsequent rapid cooling step.
  • the preferred heating temperature in the high temperature heating step is 880 to 1000°C. If the heating temperature is too low, the microstructure of the intermediate steel material will not be sufficiently transformed, and the hardening effect will not be sufficiently obtained. As a result, the mechanical properties specified in this embodiment cannot be obtained in the manufactured steel material.
  • the heating temperature is too high, the austenite grains will become coarse. If the heating temperature is too high, many of the fine Mo-based MX type precipitates precipitated in the medium temperature heating step will further dissolve. As a result, the fracture toughness of the manufactured steel material decreases.
  • the preferred heating temperature is 880 to 1000°C.
  • the lower limit of the heating temperature in the high temperature heating step is more preferably 890°C, and even more preferably 900°C.
  • a more preferable upper limit of the heating temperature in the high temperature heating step is 990°C, and even more preferably 980°C.
  • the preferred holding time in the high temperature heating step is 10 to 90 minutes. If the holding time is too short, the microstructure of the intermediate steel material will not be sufficiently transformed, and the hardening effect will not be sufficiently obtained. As a result, the mechanical properties specified in this embodiment cannot be obtained in the manufactured steel material. On the other hand, if the holding time is too long, the above effects will be saturated.
  • the preferred holding time is 10 to 90 minutes.
  • a more preferable lower limit of the holding time in the high temperature heating step is 15 minutes.
  • the upper limit of the holding time in the high temperature heating step is more preferably 80 minutes, and even more preferably 60 minutes.
  • the intermediate steel material (raw pipe) heated in the high-temperature heating step is quenched.
  • the intermediate steel material (raw pipe) is continuously cooled, and the surface temperature of the raw pipe is continuously lowered.
  • the method of continuous cooling treatment is not particularly limited, and any known method may be used. Examples of the continuous cooling treatment include a method of cooling the raw tube by immersing it in a water tank, and a method of accelerating cooling of the raw tube by shower water cooling or mist cooling.
  • the cooling rate during quenching is too slow, the microstructure will not consist mainly of martensite and bainite, and the mechanical properties defined in this embodiment will not be obtained.
  • the average cooling rate in a range where the surface temperature of the intermediate steel material (raw pipe) during quenching is in the range of 800 to 500°C is defined as the cooling rate during quenching CR 800-500 .
  • the cooling rate CR 800-500 during quenching is determined at the slowest cooling rate in the cross section of the intermediate steel material to be quenched (for example, in the case of forced cooling on both surfaces, the center of the thickness of the intermediate steel material). Determined from the measured temperature.
  • a preferable cooling rate CR 800-500 during quenching is 300° C./min or more. More preferably, the lower limit of the cooling rate CR 800-500 during quenching is 450°C/min, and even more preferably 600°C/min.
  • the upper limit of the cooling rate CR 800-500 during quenching is not particularly specified, but is, for example, 60000° C./min.
  • the quenching step according to this embodiment can be performed.
  • the intermediate steel material may be heated in the austenite region multiple times and then quenched.
  • a medium temperature heating step, a high temperature heating step, and a rapid cooling step are performed in the first quenching. That is, in the second and subsequent quenching, it is preferable not to perform the medium temperature heating step.
  • Mo-based MX type precipitates may become coarse in the second and subsequent medium-temperature heating steps. As a result, the number density of Mo-based MX type precipitates in the produced steel may decrease. Therefore, when hardening is performed two or more times, it is preferable that the second and subsequent hardenings include a high temperature heating step and a rapid cooling step.
  • the tempering process will be explained in detail below.
  • tempering In the tempering step, after the above-mentioned hardening is performed, tempering is performed.
  • tempering means reheating and holding the intermediate steel material after quenching to a temperature below the A c1 point.
  • the tempering temperature is appropriately adjusted depending on the chemical composition of the steel material and the desired yield strength. That is, the tempering temperature of the intermediate steel material (raw pipe) having the chemical composition of this embodiment is adjusted to adjust the yield strength of the steel material to, for example, 125 ksi or more (862 MPa or more).
  • the tempering temperature corresponds to the temperature of a heat treatment furnace when heating and holding the intermediate steel material after quenching.
  • Tempering time means the time from when the temperature of the intermediate steel material reaches a predetermined tempering temperature until it is extracted from the heat treatment furnace.
  • the tempering temperature is adjusted as appropriate depending on the chemical composition of the steel material and the desired yield strength. That is, the tempering temperature of the intermediate steel material (raw pipe) having the chemical composition of this embodiment is adjusted to adjust the yield strength of the steel material to 862 MPa or more.
  • the preferred tempering temperature is 650 to 700°C. A more preferable lower limit of the tempering temperature is 655°C. A more preferable upper limit of the tempering temperature is 695°C.
  • the tempering time is preferably 20 to 180 minutes.
  • a more preferable lower limit of the tempering time is 30 minutes.
  • a more preferable upper limit of the tempering time is 150 minutes, and even more preferably 120 minutes.
  • the steel material according to this embodiment can be manufactured by the above manufacturing method.
  • the manufacturing method of a steel pipe was demonstrated as an example.
  • the steel material according to this embodiment may be a steel plate or other shapes. Similar to the above-described manufacturing method, the manufacturing method for steel plates and other shapes includes, for example, a preparation process, a quenching process, and a tempering process. Furthermore, the above-mentioned manufacturing method is just an example, and other manufacturing methods may be used.
  • An ingot was manufactured using the above molten steel.
  • the ingot was hot rolled to produce a steel plate with a thickness of 20 mm.
  • the steel plates of each test number were cooled to room temperature and then quenched and tempered. In the quenching process, a medium-temperature heating process and a high-temperature heating process were performed, followed by a rapid cooling process.
  • the steel plates of each test number were held at the heating temperature (° C.) listed in the “medium temperature heating step” column of Table 2 for the holding time (minutes). Further, the steel plates of each test number were held at the heating temperature (°C) listed in the "High Temperature Heating Step” column of Table 2 for 20 minutes, and then rapidly cooled with shower water.
  • the cooling rate CR 800-500 during quenching was within the range of 300 to 800°C/min.
  • the heating temperature (°C) listed in Table 2 was the temperature (°C) of the heat treatment furnace in which the steel plate was heated.
  • the holding time (minutes) listed in Table 2 was the time (minutes) during which the steel plate was held at the heating temperature.
  • Tempering was performed on the obtained steel plates of each test number. Specifically, the steel plates of each test number were tempered by holding them at the tempering temperature (° C.) listed in the “Tempering Step” column of Table 2 for the holding time (minutes).
  • the tempering temperature (°C) listed in Table 2 was the temperature (°C) of the tempering furnace in which the steel plate was heated.
  • the holding time (minutes) listed in Table 2 was the time (minutes) during which the steel plate was held at the tempering temperature.
  • the 0.6% total elongation yield strength obtained in the tensile test was defined as the yield strength. Further, the maximum stress during uniform elongation was defined as tensile strength (MPa). Table 3 shows the obtained yield strength as "YS (MPa)” and the obtained tensile strength as “TS (MPa)” for each test number.
  • a test for measuring the number density of Mo-based MX-type precipitates was performed on the steel plates of each test number to determine the number density of Mo-based MX-type precipitates. Specifically, a micro test piece was prepared from the center position of the thickness of the steel plate of each test number. A replica film was prepared using the obtained micro test piece by the method described above, and the replica film was observed using a TEM. The conditions for TEM observation were as follows: observation magnification was 100,000 times, acceleration voltage was 200 kV, and observation field size was 2.0 ⁇ m ⁇ 3.0 ⁇ m. In the observation field, particles with an equivalent circular diameter of 100 nm or less were identified using the method described above.
  • Point analysis by EDS was performed on the identified particles having an equivalent circle diameter of 100 nm or less using the method described above.
  • the total content of Mo, Nb, V, and Ti determined by EDS point analysis is defined as 100% by mass
  • particles with a Mo content of more than 50 to 70% by mass are classified as Mo-based MX-type precipitates. It was defined as The number density (pieces/ ⁇ m 2 ) of Mo-based MX-type precipitates was determined based on the total number of Mo-based MX-type precipitates identified in each observation field and the total area of the observation field. Table 3 shows the number density (pieces/ ⁇ m 2 ) of the Mo-based MX type precipitates obtained for each test number.
  • [Fracture toughness test] A fracture toughness test was performed on the steel plate of each test number, and the CTOD value was determined. Specifically, SENB test pieces shown in FIG. 2A were prepared from the center position of the thickness of the steel plates of each test number. The longitudinal direction of the SENB test piece was parallel to the rolling direction of the steel plate. The width W direction of the SENB test piece was parallel to the width direction of the steel plate. As shown in FIGS. 2A and 2B, a notch with a depth of 8 mm in the width W direction was formed in the SENB specimen by machining. A 2 mm fatigue pre-crack was introduced at the notch tip of the SENB specimen. At this time, the fatigue test was conducted at room temperature (24 ⁇ 3°C).
  • a CTOD test was conducted at room temperature (25°C) in accordance with ISO 12135 (2021) on the SENB test piece in which fatigue pre-crack was introduced.
  • the CTOD value (mm) was determined based on ISO 12135 (2021) from the load at break in the load-opening amount curve obtained by the CTOD test and the amount of plastic component of the clip gauge opening displacement.
  • the load application rate in the CTOD test was 20.94 kN/min, and the Young's modulus was 212,000 MPa.
  • the same test was conducted three times, and the minimum CTOD value (mm) was defined as the CTOD value (mm) of the steel material. Table 3 shows the CTOD values (mm) obtained for each test number.
  • the heating temperature in the medium temperature heating step was too high.
  • this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/ ⁇ m 2 .
  • this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
  • the steel plate of test number 20 had too high Fn2. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/ ⁇ m 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
  • the steel plate of Test No. 21 contained neither Ti, Nb, nor V, and furthermore, Fn2 was too low. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/ ⁇ m 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
  • the steel plate of test number 22 had too low Mo content. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/ ⁇ m 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
  • the steel plate of test number 23 had too high Mn content and too high Fn1. As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
  • the steel plate of test number 24 had too high Fn1. As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention provides a steel material having both high strength and superior fracture toughness. A steel material according to the present disclosure: contains 0.10-0.45% of C, 1.00% or less of Si, 0.01-1.00% of Mn, 0.001-0.100% of Al, 0.1-2.0% of Cr, and 0.20-2.00% of Mo; contains one or more elements from among 0.0005-0.0200% of Ca and 0.0005-0.0200% of Mg; and contains one or more elements from among 0.001-0.300% of Ti, 0.001-0.300% of Nb, and 0.01-0.50% of V, with the remainder made up by Fe and impurities. The steel material satisfies relationships (1) and (2) set out in the description. When the yield strength is 862 MPa or more, the equivalent circle diameter is 100 nm or less, and the total Mo, Nb, V, and Ti content is defined as 100 mass%, the number density of MX-type precipitates having an Mo content exceeding 50 mass% is 20/μm2 or more.

Description

鋼材steel material
 本開示は鋼材に関し、さらに詳しくは、油井での使用に適した鋼材に関する。 The present disclosure relates to steel materials, and more particularly to steel materials suitable for use in oil wells.
 油井及びガス井(以下、油井及びガス井を総称して、単に「油井」という)の深井戸化により、油井用鋼管に代表される油井用鋼材の高強度化が要求されている。具体的には、80ksi級(降伏強度が80~95ksi未満、つまり、552~655MPa未満)や、95ksi級(降伏強度が95~110ksi未満、つまり、655~758MPa未満)の油井用鋼材が広く利用されており、最近ではさらに、110ksi級(降伏強度が758~862MPa未満)、及び、125ksi以上(降伏強度が862MPa以上)の油井用鋼材が求められ始めている。 As oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to as "oil wells") become deeper, there is a demand for higher strength steel materials for oil wells, such as steel pipes for oil wells. Specifically, oil well steel materials of 80 ksi class (yield strength of less than 80 to 95 ksi, that is, less than 552 to 655 MPa) and 95 ksi class (yield strength of less than 95 to 110 ksi, that is, less than 655 to 758 MPa) are widely used. Recently, oil well steel materials of 110 ksi class (yield strength of 758 to less than 862 MPa) and 125 ksi or more (yield strength of 862 MPa or more) have begun to be sought.
 油井ではさらに、腐食性を有する硫化水素ガス(H2S)や炭酸ガス(CO2)等を含有する場合がある。そのため、油井用鋼材としての使用が想定される鋼材には、高強度だけでなく、優れた耐食性も求められる。また、油井用鋼材では、使用中の鋼材には応力が負荷される。そのため、油井用鋼材の優れた耐食性の指標として耐硫化物応力割れ性(耐Sulfide Stress Cracking性:以下、耐SSC性という)が用いられてきた。 Oil wells may also contain corrosive hydrogen sulfide gas (H 2 S), carbon dioxide gas (CO 2 ), and the like. Therefore, steel materials expected to be used as oil well steel materials are required not only to have high strength but also to have excellent corrosion resistance. Moreover, in steel materials for oil wells, stress is applied to the steel materials during use. Therefore, sulfide stress cracking resistance (hereinafter referred to as SSC resistance) has been used as an index of the excellent corrosion resistance of oil well steel materials.
 鋼材の強度と耐SSC性とを高める技術が、特開2006-28612号公報(特許文献1)、国際公開第2008/123422号(特許文献2)、及び、特開2017-166060号公報(特許文献3)に提案されている。 Techniques for increasing the strength and SSC resistance of steel materials are disclosed in Japanese Patent Application Publication No. 2006-28612 (Patent Document 1), International Publication No. 2008/123422 (Patent Document 2), and Japanese Patent Application Publication No. 2017-166060 (Patent Document 1). This is proposed in document 3).
 特許文献1に開示される鋼材は、鋼管用鋼であって、質量%で、C:0.2~0.7%、Si:0.01~0.8%、Mn:0.1~1.5%、S:0.005%以下、P:0.03%以下、Al:0.0005~0.1%、Ti:0.005~0.05%、Ca:0.0004~0.005%、N:0.007%以下、Cr:0.1~1.5%、Mo:0.2~1.0%、残部がFe及び不純物からなる。この鋼材はさらに、Ca、Al、Ti、N、O及びSを含む非金属介在物の介在物中の(Ca%)/(Al%)が0.55~1.72、かつ、(Ca%)/(Ti%)が0.7~19である。この鋼材は、758MPaを超える高い降伏強度と、優れた耐SSC性とを有する、と特許文献1には記載されている。 The steel material disclosed in Patent Document 1 is a steel for steel pipes, and in mass %, C: 0.2 to 0.7%, Si: 0.01 to 0.8%, Mn: 0.1 to 1 .5%, S: 0.005% or less, P: 0.03% or less, Al: 0.0005-0.1%, Ti: 0.005-0.05%, Ca: 0.0004-0. 005%, N: 0.007% or less, Cr: 0.1 to 1.5%, Mo: 0.2 to 1.0%, and the remainder consists of Fe and impurities. This steel material further has (Ca%)/(Al%) in the inclusions of nonmetallic inclusions containing Ca, Al, Ti, N, O, and S from 0.55 to 1.72, and (Ca% )/(Ti%) is 0.7 to 19. Patent Document 1 describes that this steel material has a high yield strength exceeding 758 MPa and excellent SSC resistance.
 特許文献2に開示される鋼材は、低合金鋼であって、質量%で、C:0.10~0.20%、Si:0.05~1.0%、Mn:0.05~1.5%、Cr:1.0~2.0%、Mo:0.05~2.0%、Al:0.10%以下、及び、Ti:0.002~0.05%を含有し、かつ、Ceq(=C+(Mn/6)+(Cr+Mo+V)/5)が0.65以上であり、残部がFe及び不純物からなり、不純物中において、P:0.025%以下、S:0.010%以下、N:0.007%以下、B:0.0003%未満である。この鋼材はさらに、粒径が1μm以上のM236型析出物が0.1個/mm2以下である。この鋼材は、654~793MPaの降伏強度を有し、高圧の硫化水素環境でも優れた耐SSC性を有する、と特許文献2には記載されている。 The steel material disclosed in Patent Document 2 is a low alloy steel, and in mass %, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1 .5%, Cr: 1.0 to 2.0%, Mo: 0.05 to 2.0%, Al: 0.10% or less, and Ti: 0.002 to 0.05%, and Ceq (=C+(Mn/6)+(Cr+Mo+V)/5) is 0.65 or more, the balance consists of Fe and impurities, and among the impurities, P: 0.025% or less, S: 0. N: 0.007% or less, B: less than 0.0003%. This steel material further contains M 23 C 6 type precipitates with a grain size of 1 μm or more at a rate of 0.1 pieces/mm 2 or less. Patent Document 2 describes that this steel material has a yield strength of 654 to 793 MPa and has excellent SSC resistance even in a high-pressure hydrogen sulfide environment.
 特許文献3に開示される鋼材は、高強度油井用鋼管用素材であって、質量%で、C:0.20~0.45%、Si:0.05~0.40%、Mn:0.3~0.9%、P:0.015%以下、S:0.005%以下、Al:0.005~0.10%、N:0.001~0.006%、Cr:0.1~0.8%、Mo:0.1~1.6%、V:0.02~0.2%、Nb:0.001~0.04%、B:0.0003~0.0030%、O(酸素):0.0030%以下、残部がFe及び不可避的不純物からなる。この鋼材はさらに、ロックウェル硬さHRCが式(15.6×[%C]+29.2≦HRC<60.5×[%C]+31.1)を満たす。この鋼材によれば、758~862MPa未満の降伏強度と、優れた耐SSC性とを有する鋼管が得られる、と特許文献3には記載されている。 The steel material disclosed in Patent Document 3 is a material for high-strength steel pipes for oil wells, and in mass %, C: 0.20 to 0.45%, Si: 0.05 to 0.40%, Mn: 0 .3 to 0.9%, P: 0.015% or less, S: 0.005% or less, Al: 0.005 to 0.10%, N: 0.001 to 0.006%, Cr: 0. 1-0.8%, Mo: 0.1-1.6%, V: 0.02-0.2%, Nb: 0.001-0.04%, B: 0.0003-0.0030% , O (oxygen): 0.0030% or less, the remainder consisting of Fe and inevitable impurities. Furthermore, the Rockwell hardness HRC of this steel material satisfies the formula (15.6×[%C]+29.2≦HRC<60.5×[%C]+31.1). Patent Document 3 states that with this steel material, a steel pipe having a yield strength of less than 758 to 862 MPa and excellent SSC resistance can be obtained.
特開2006-28612号公報Japanese Patent Application Publication No. 2006-28612 国際公開第2008/123422号International Publication No. 2008/123422 特開2017-166060号公報Japanese Patent Application Publication No. 2017-166060
 ところで、油井用鋼材では、輸送中や掘削中において、鋼材の表面に微小な疵が形成される場合がある。油井用鋼材ではさらに、上述のとおり、使用中の鋼材に応力が負荷される。そのため、表面に微小な疵が形成された鋼材に応力が負荷されると、微小な疵がき裂の起点となり、き裂が伝播する可能性がある。したがって、油井用鋼材には、微小な疵が形成されていても、破壊に対する抵抗力を有していることが求められる。 By the way, in steel materials for oil wells, minute flaws may be formed on the surface of the steel materials during transportation or drilling. Furthermore, as mentioned above, stress is applied to the steel material for oil wells during use. Therefore, when stress is applied to a steel material with microscopic flaws formed on its surface, the microscopic flaws may become starting points for cracks, and the cracks may propagate. Therefore, steel materials for oil wells are required to have resistance to destruction even if minute flaws are formed.
 本明細書において、鋼材に微小な疵が形成され、応力が負荷された場合において、破壊に対する抵抗力が高いことを、優れた破壊靭性を有するという。すなわち、破壊靭性が優れるほど、微小な疵が形成された鋼材に応力が負荷されても、破壊が生じにくい。一方、一般に、鋼材の降伏強度が高いほど、破壊靭性が低下しやすい傾向がある。そのため、油井用鋼材には、高い降伏強度と、優れた破壊靭性との両立が求められる。しかしながら、上記特許文献1~3では、鋼材の破壊靭性について、検討されていない。 In this specification, when minute flaws are formed in a steel material and stress is applied, the steel material is said to have excellent fracture toughness if it has high resistance to fracture. That is, the better the fracture toughness is, the less likely it is that fracture will occur even if stress is applied to a steel material with minute flaws formed thereon. On the other hand, generally speaking, the higher the yield strength of a steel material, the more easily its fracture toughness tends to decrease. Therefore, steel materials for oil wells are required to have both high yield strength and excellent fracture toughness. However, in the above-mentioned Patent Documents 1 to 3, the fracture toughness of the steel material is not studied.
 本開示の目的は、高強度と、優れた破壊靭性とを両立する鋼材を提供することである。 An object of the present disclosure is to provide a steel material that has both high strength and excellent fracture toughness.
 本開示による鋼材は、
 質量%で、
 C:0.10~0.45%、
 Si:1.00%以下、
 Mn:0.01~1.00%、
 P:0.050%以下、
 S:0.0050%以下、
 Al:0.001~0.100%、
 Cr:0.1~2.0%、
 Mo:0.20~2.00%、
 N:0.010%以下、
 W:0~0.50%、
 Co:0~0.50%、
 Ni:0~0.50%、
 希土類元素:0~0.020%、
 Cu:0~0.50%、及び、
 B:0~0.0100%を含有し、
 Ca:0.0005~0.0200%、及び、
 Mg:0.0005~0.0200%からなる群から選択される1元素以上を含有し、
 Ti:0.001~0.300%、
 Nb:0.001~0.300%、及び、
 V:0.01~0.50%からなる群から選択される1元素以上を含有し、
 残部がFe及び不純物からなり、
 式(1)及び式(2)を満たし、
 降伏強度が862MPa以上であり、
 前記鋼材中において、
 円相当径が100nm以下であって、
 Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物の個数密度が20個/μm2以上である。
 Mn×Sp≦12.0 (1)
 0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
 ここで、式(1)中の「Mn」には、Mn含有量が質量%で代入され、「Sp」には、S含有量がppmで代入される。式(2)中の元素記号には、対応する元素の含有量が質量%で代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
The steel material according to the present disclosure is
In mass%,
C: 0.10-0.45%,
Si: 1.00% or less,
Mn: 0.01-1.00%,
P: 0.050% or less,
S: 0.0050% or less,
Al: 0.001-0.100%,
Cr: 0.1-2.0%,
Mo: 0.20-2.00%,
N: 0.010% or less,
W: 0-0.50%,
Co: 0 to 0.50%,
Ni: 0 to 0.50%,
Rare earth elements: 0 to 0.020%,
Cu: 0 to 0.50%, and
B: Contains 0 to 0.0100%,
Ca: 0.0005 to 0.0200%, and
Contains one or more elements selected from the group consisting of Mg: 0.0005 to 0.0200%,
Ti: 0.001-0.300%,
Nb: 0.001 to 0.300%, and
V: Contains one or more elements selected from the group consisting of 0.01 to 0.50%,
The remainder consists of Fe and impurities,
satisfies formula (1) and formula (2),
The yield strength is 862 MPa or more,
In the steel material,
The equivalent circle diameter is 100 nm or less,
When the total content of Mo, Nb, V, and Ti is defined as 100% by mass, the number density of MX type precipitates having a Mo content of more than 50% by mass is 20 pieces/μm 2 or more.
Mn×Sp≦12.0 (1)
0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
Here, the Mn content is substituted in mass % for "Mn" in formula (1), and the S content is substituted in ppm for "Sp". The content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
 本開示による鋼材は、高強度と、優れた破壊靭性とを両立できる。 The steel material according to the present disclosure can have both high strength and excellent fracture toughness.
図1は、本実施例におけるMo系MX型析出物(円相当径が100nm以下であって、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物)の個数密度(個/μm2)と、破壊靭性の指標であるCTOD値(mm)との関係を示す図である。Figure 1 shows the Mo content of the Mo-based MX type precipitate (having an equivalent circle diameter of 100 nm or less and the total content of Mo, Nb, V, and Ti being defined as 100% by mass) in this example. FIG. 3 is a diagram showing the relationship between the number density (pieces/μm 2 ) of MX-type precipitates (exceeding 50% by mass) and the CTOD value (mm), which is an index of fracture toughness. 図2Aは、本実施形態において鋼材の破壊靭性を評価するCTOD試験に用いる片側ノッチ付き曲げ(SENB:Single Edge Notched Bend)試験片の模式図である。FIG. 2A is a schematic diagram of a single edge notched bend (SENB) test piece used in the CTOD test for evaluating the fracture toughness of steel materials in this embodiment. 図2Bは、図2Aの領域10の拡大図である。FIG. 2B is an enlarged view of region 10 of FIG. 2A.
 まず、本発明者らは、油井での使用が想定された鋼材の強度と、破壊靭性とを高めることについて、化学組成の観点から検討した。その結果、本発明者らは、質量%で、C:0.10~0.45%、Si:1.00%以下、Mn:0.01~1.00%、P:0.050%以下、S:0.0050%以下、Al:0.001~0.100%、Cr:0.1~2.0%、Mo:0.20~2.00%、N:0.010%以下、W:0~0.50%、Co:0~0.50%、Ni:0~0.50%、希土類元素:0~0.020%、Cu:0~0.50%、及び、B:0~0.0100%を含有し、Ca:0.0005~0.0200%、及び、Mg:0.0005~0.0200%からなる群から選択される1元素以上を含有し、Ti:0.001~0.300%、Nb:0.001~0.300%、及び、V:0.01~0.50%からなる群から選択される1元素以上を含有し、残部がFe及び不純物からなる鋼材であれば、862MPa以上(125ksi以上)の高い降伏強度と、優れた破壊靭性とを両立できる可能性があると考えた。 First, the present inventors investigated increasing the strength and fracture toughness of steel materials intended for use in oil wells from the viewpoint of chemical composition. As a result, the present inventors found that, in mass %, C: 0.10 to 0.45%, Si: 1.00% or less, Mn: 0.01 to 1.00%, P: 0.050% or less. , S: 0.0050% or less, Al: 0.001 to 0.100%, Cr: 0.1 to 2.0%, Mo: 0.20 to 2.00%, N: 0.010% or less, W: 0 to 0.50%, Co: 0 to 0.50%, Ni: 0 to 0.50%, rare earth elements: 0 to 0.020%, Cu: 0 to 0.50%, and B: Contains 0 to 0.0100%, contains one or more elements selected from the group consisting of Ca: 0.0005 to 0.0200%, and Mg: 0.0005 to 0.0200%, Ti: 0 Contains one or more elements selected from the group consisting of .001 to 0.300%, Nb: 0.001 to 0.300%, and V: 0.01 to 0.50%, with the balance being Fe and impurities. It was thought that a steel material consisting of the following could have both a high yield strength of 862 MPa or more (125 ksi or more) and excellent fracture toughness.
 本発明者らは次に、鋼材中のMn硫化物に着目した。Mn硫化物は、熱間加工によって延伸しやすく、粗大になりやすい。また、粗大なMn硫化物が鋼材中に形成した場合、鋼材の破壊靭性を顕著に低下させる。したがって、鋼材中に粗大なMn硫化物が形成されにくくできれば、鋼材の降伏強度を維持したまま、破壊靭性を高められるのではないかと本発明者らは考えた。 Next, the present inventors focused on Mn sulfide in steel materials. Mn sulfide is easily stretched and coarsened by hot working. Moreover, when coarse Mn sulfides are formed in steel materials, the fracture toughness of the steel materials is significantly reduced. Therefore, the present inventors thought that if it was possible to prevent the formation of coarse Mn sulfides in a steel material, it would be possible to improve the fracture toughness while maintaining the yield strength of the steel material.
 そこで本発明者らは、上述の化学組成を有する鋼材について、粗大なMn硫化物を低減する方法を種々検討した。その結果、上述の化学組成を有する鋼材では、化学組成が次の式(1)を満たせば、鋼材中の粗大なMn硫化物を低減できることが明らかになった。
 Mn×Sp≦12.0 (1)
 ここで、式(1)中の「Mn」には、Mn含有量が質量%で代入され、「Sp」には、S含有量がppmで代入される。
Therefore, the present inventors investigated various methods for reducing coarse Mn sulfides in steel materials having the above-mentioned chemical composition. As a result, it was revealed that in a steel material having the above-mentioned chemical composition, coarse Mn sulfides in the steel material can be reduced if the chemical composition satisfies the following formula (1).
Mn×Sp≦12.0 (1)
Here, the Mn content is substituted in mass % for "Mn" in formula (1), and the S content is substituted in ppm for "Sp".
 Fn1=Mn×Spと定義する。Fn1は、鋼材中のMn硫化物の指標である。Fn1が12.0を超えれば、鋼材中に粗大なMn硫化物が多数形成し、鋼材の破壊靭性が低下する。そこで、本実施形態による鋼材は、上述の化学組成を有することを前提に、Fn1を12.0以下とする。その結果、本実施形態の他の構成を満たすことを条件に、862MPa以上の降伏強度と、優れた破壊靭性とを両立することができる。 Define Fn1=Mn×Sp. Fn1 is an index of Mn sulfide in the steel material. If Fn1 exceeds 12.0, many coarse Mn sulfides are formed in the steel material, and the fracture toughness of the steel material is reduced. Therefore, on the premise that the steel material according to this embodiment has the above-mentioned chemical composition, Fn1 is set to 12.0 or less. As a result, it is possible to achieve both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
 一方、上述の化学組成を有し、かつ、式(1)を満たす鋼材であっても、862MPa以上の降伏強度と、優れた破壊靭性とを安定して両立できない場合があった。そこで本発明者らは、上述の化学組成を有し、かつ、式(1)を満たす鋼材について、降伏強度を維持したまま安定して破壊靭性を高める手法を種々検討した。 On the other hand, even if a steel material has the above-mentioned chemical composition and satisfies formula (1), there are cases where it is not possible to stably achieve both a yield strength of 862 MPa or more and excellent fracture toughness. Therefore, the present inventors investigated various methods for stably increasing the fracture toughness while maintaining the yield strength of a steel material that has the above-mentioned chemical composition and satisfies formula (1).
 具体的に本発明者らは、微細な析出物に着目して、鋼材の破壊靭性を高めることを検討した。本発明者らの詳細な検討の結果、上述の化学組成を有し、かつ式(1)を満たす鋼材では、Moが濃化したMX型析出物が微細に分散していれば、降伏強度を維持したまま、優れた破壊靭性を安定して高められることが明らかになった。 Specifically, the present inventors focused on fine precipitates and studied ways to improve the fracture toughness of steel materials. As a result of detailed study by the present inventors, in a steel material having the above-mentioned chemical composition and satisfying formula (1), if Mo-enriched MX-type precipitates are finely dispersed, the yield strength can be improved. It has become clear that excellent fracture toughness can be stably increased while maintaining the same.
 まず、上述の化学組成を有する鋼材において、MX型析出物は、円相当径が100nm以下のものを主体とし、円相当径が100nmを超えるものは無視できるほど少ない。そこで、本明細書において、円相当径が100nm以下であって、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物を、「Mo系MX型析出物」ともいう。 First, in the steel material having the above-mentioned chemical composition, the MX type precipitates are mainly those with an equivalent circle diameter of 100 nm or less, and those with an equivalent circle diameter exceeding 100 nm are negligibly small. Therefore, in this specification, when the equivalent circle diameter is 100 nm or less and the total content of Mo, Nb, V, and Ti is defined as 100 mass%, the MX type with a Mo content of more than 50 mass% The precipitate is also referred to as "Mo-based MX type precipitate."
 図1は、本実施例におけるMo系MX型析出物の個数密度(個/μm2)と、破壊靭性の指標であるCTOD値(mm)との関係を示す図である。図1は、後述する実施例のうち、上述の化学組成を有し、かつ、式(1)を満たす鋼材について、後述する方法で求めたMo系MX型析出物の個数密度(個/μm2)と、後述するCTOD試験によって得られたCTOD値(mm)とを用いて作成した。なお、図1に記載の鋼材は、いずれも降伏強度が862MPa以上であった。 FIG. 1 is a diagram showing the relationship between the number density (pieces/μm 2 ) of Mo-based MX type precipitates and the CTOD value (mm), which is an index of fracture toughness, in this example. Figure 1 shows the number density of Mo-based MX type precipitates (pieces/μm 2 ) and the CTOD value (mm) obtained by the CTOD test described below. In addition, all of the steel materials shown in FIG. 1 had a yield strength of 862 MPa or more.
 図1を参照して、上述の化学組成を有し、式(1)を満たし、さらに、862MPa以上の降伏強度を有する鋼材では、Mo系MX型析出物の個数密度が20個/μm2以上であれば、CTOD値が安定して0.11mm以上となることが確認できる。したがって、本実施形態による鋼材は、上述の化学組成を有し、式(1)を満たし、さらに、Mo系MX型析出物の個数密度を20個/μm2以上とする。その結果、本実施形態による鋼材は、862MPa以上の降伏強度を有していても、CTOD値が0.11mm以上の優れた破壊靭性を有する。 Referring to FIG. 1, in a steel material that has the above-mentioned chemical composition, satisfies formula (1), and has a yield strength of 862 MPa or more, the number density of Mo-based MX type precipitates is 20 pieces/μm 2 or more. If so, it can be confirmed that the CTOD value is stably 0.11 mm or more. Therefore, the steel material according to this embodiment has the above-mentioned chemical composition, satisfies formula (1), and has a number density of Mo-based MX type precipitates of 20 pieces/μm 2 or more. As a result, even if the steel material according to the present embodiment has a yield strength of 862 MPa or more, it has excellent fracture toughness with a CTOD value of 0.11 mm or more.
 なお、円相当径が100nm以下であって、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物(Mo系MX型析出物)の個数密度を20個/μm2以上とすることにより、鋼材の降伏強度を維持したまま破壊靭性を高められるメカニズムについて、詳細は明らかになっていない。しかしながら、本発明者らは、次のように推察している。上述の化学組成において、円相当径が100nm以下のMX型析出物は、そのほとんどが炭化物であり、MC型炭化物を主体とする。MC型炭化物は、鋼材中に微細に分散されやすい。一方、分散したMC型炭化物が硬すぎれば、鋼材の破壊靭性を高めることは難しい。そこで、MC型炭化物を、Moを相対的に濃化させたMo系MC型炭化物とすれば、MC型炭化物は硬さが低下する。つまり、適切な硬さのMC型炭化物を鋼材中に微細に分散させることができる。その結果、鋼材の強度を維持しつつ、破壊靭性を高めることができる。 In addition, when the equivalent circle diameter is 100 nm or less and the total content of Mo, Nb, V, and Ti is defined as 100% by mass, MX-type precipitates (Mo-based The details of the mechanism by which fracture toughness can be increased while maintaining the yield strength of the steel material by setting the number density of MX type precipitates to 20/μm 2 or more have not been clarified. However, the present inventors speculate as follows. In the above chemical composition, most of the MX type precipitates with an equivalent circle diameter of 100 nm or less are carbides, and are mainly composed of MC type carbides. MC type carbides tend to be finely dispersed in steel materials. On the other hand, if the dispersed MC type carbide is too hard, it is difficult to improve the fracture toughness of the steel material. Therefore, if the MC type carbide is a Mo-based MC type carbide in which Mo is relatively concentrated, the hardness of the MC type carbide decreases. In other words, MC type carbide having an appropriate hardness can be finely dispersed in the steel material. As a result, fracture toughness can be increased while maintaining the strength of the steel material.
 上述の本発明者らの推察とは異なるメカニズムによって、鋼材の降伏強度を維持したまま、鋼材の破壊靭性が高まっている可能性もあり得る。しかしながら、上述の化学組成を有し、式(1)を満たし、さらに、Mo系MX型析出物の個数密度が20個/μm2以上の鋼材は、降伏強度を維持したまま、優れた破壊靭性を有していることは、後述の実施例によって証明されている。 It is also possible that the fracture toughness of the steel material is increased while the yield strength of the steel material is maintained through a mechanism different from the above-mentioned speculation by the present inventors. However, a steel material that has the above chemical composition, satisfies formula (1), and has a number density of Mo-based MX type precipitates of 20 pieces/μm2 or more has excellent fracture toughness while maintaining yield strength. This is proven by the examples described later.
 以上の知見に基づく本発明者らのさらなる詳細な検討の結果、上述の化学組成を有し、式(1)を満たすことに加えてさらに、化学組成が次の式(2)を満たすことで、Mo系MX型析出物の個数密度を安定して20個/μm2以上に高められることが明らかになった。
 0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量が質量%で代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
As a result of further detailed study by the present inventors based on the above findings, in addition to having the above-mentioned chemical composition and satisfying formula (1), the chemical composition also satisfies the following formula (2). It has become clear that the number density of Mo-based MX type precipitates can be stably increased to 20 pieces/μm 2 or more.
0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
Here, the content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
 Fn2=7×Ti+2×Nb+3×Vと定義する。Fn2は炭化物の析出状態に関する指標である。Ti、Nb、及び/又はVは、MX型析出物を形成する。Fn2が低すぎれば、MX型析出物自体を十分に形成することができない。その結果、Mo系MX型析出物の個数密度が低下する。一方、Fn2が高すぎれば、MX型析出物中のMo含有量が低下する。その結果、Mo系MX型析出物の個数密度が低下する。したがって、本実施形態による鋼材では、上述の化学組成を有し、かつ、式(1)を満たすことを前提に、Fn2を0.05~0.80とする。その結果、Mo系MX型析出物の個数密度を安定して20個/μm2以上に高めることができる。 It is defined as Fn2=7×Ti+2×Nb+3×V. Fn2 is an index regarding the precipitation state of carbides. Ti, Nb, and/or V form MX type precipitates. If Fn2 is too low, MX type precipitates themselves cannot be sufficiently formed. As a result, the number density of Mo-based MX type precipitates decreases. On the other hand, if Fn2 is too high, the Mo content in the MX type precipitates will decrease. As a result, the number density of Mo-based MX type precipitates decreases. Therefore, in the steel material according to this embodiment, Fn2 is set to 0.05 to 0.80 on the premise that it has the above-mentioned chemical composition and satisfies formula (1). As a result, the number density of Mo-based MX type precipitates can be stably increased to 20 pieces/μm 2 or more.
 以上のとおり、本実施形態による鋼材は、上述の化学組成を有した上で、式(1)及び(2)を満たし、862MPa以上の降伏強度を有し、さらに、Mo系MX型析出物の個数密度が20個/μm2以上である。その結果、本実施形態による鋼材は、高強度と、優れた破壊靭性とを両立できる。 As described above, the steel material according to the present embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), has a yield strength of 862 MPa or more, and further contains Mo-based MX type precipitates. The number density is 20 pieces/μm 2 or more. As a result, the steel material according to this embodiment can have both high strength and excellent fracture toughness.
 以上の知見に基づいて完成した本実施形態による鋼材の要旨は、次のとおりである。 The gist of the steel material according to this embodiment, which was completed based on the above knowledge, is as follows.
 [1]
 鋼材であって、
 質量%で、
 C:0.10~0.45%、
 Si:1.00%以下、
 Mn:0.01~1.00%、
 P:0.050%以下、
 S:0.0050%以下、
 Al:0.001~0.100%、
 Cr:0.1~2.0%、
 Mo:0.20~2.00%、
 N:0.010%以下、
 W:0~0.50%、
 Co:0~0.50%、
 Ni:0~0.50%、
 希土類元素:0~0.020%、
 Cu:0~0.50%、及び、
 B:0~0.0100%を含有し、
 Ca:0.0005~0.0200%、及び、
 Mg:0.0005~0.0200%からなる群から選択される1元素以上を含有し、
 Ti:0.001~0.300%、
 Nb:0.001~0.300%、及び、
 V:0.01~0.50%からなる群から選択される1元素以上を含有し、
 残部がFe及び不純物からなり、
 式(1)及び式(2)を満たし、
 降伏強度が862MPa以上であり、
 前記鋼材中において、
 円相当径が100nm以下であって、
 Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物の個数密度が20個/μm2以上である、
 鋼材。
 Mn×Sp≦12.0 (1)
 0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
 ここで、式(1)中の「Mn」には、Mn含有量が質量%で代入され、「Sp」には、S含有量がppmで代入される。式(2)中の元素記号には、対応する元素の含有量が質量%で代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
[1]
A steel material,
In mass%,
C: 0.10-0.45%,
Si: 1.00% or less,
Mn: 0.01-1.00%,
P: 0.050% or less,
S: 0.0050% or less,
Al: 0.001-0.100%,
Cr: 0.1-2.0%,
Mo: 0.20-2.00%,
N: 0.010% or less,
W: 0-0.50%,
Co: 0 to 0.50%,
Ni: 0 to 0.50%,
Rare earth elements: 0 to 0.020%,
Cu: 0 to 0.50%, and
B: Contains 0 to 0.0100%,
Ca: 0.0005 to 0.0200%, and
Contains one or more elements selected from the group consisting of Mg: 0.0005 to 0.0200%,
Ti: 0.001-0.300%,
Nb: 0.001 to 0.300%, and
V: Contains one or more elements selected from the group consisting of 0.01 to 0.50%,
The remainder consists of Fe and impurities,
satisfies formula (1) and formula (2),
The yield strength is 862 MPa or more,
In the steel material,
The equivalent circle diameter is 100 nm or less,
When the total content of Mo, Nb, V, and Ti is defined as 100% by mass, the number density of MX type precipitates with a Mo content of more than 50% by mass is 20 pieces/μm 2 or more,
Steel material.
Mn×Sp≦12.0 (1)
0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
Here, the Mn content is substituted in mass % for "Mn" in formula (1), and the S content is substituted in ppm for "Sp". The content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
 [2]
 [1]に記載の鋼材であって、
 W:0.01~0.50%、
 Co:0.01~0.50%、
 Ni:0.01~0.50%、
 希土類元素:0.001~0.020%、
 Cu:0.01~0.50%、及び、
 B:0.0001~0.0100%からなる群から選択される1元素以上を含有する、
 鋼材。
[2]
The steel material according to [1],
W: 0.01-0.50%,
Co: 0.01 to 0.50%,
Ni: 0.01-0.50%,
Rare earth elements: 0.001-0.020%,
Cu: 0.01 to 0.50%, and
B: Contains one or more elements selected from the group consisting of 0.0001 to 0.0100%,
Steel material.
 [3]
 [1]又は[2]に記載の鋼材であって、
 前記鋼材は油井用鋼管である、
 鋼材。
[3]
The steel material according to [1] or [2],
The steel material is a steel pipe for oil wells,
Steel material.
 本実施形態による鋼材の形状は特に限定されない。本実施形態による鋼材は、鋼管であってもよく、丸鋼(中実材)であってもよく、鋼板であってもよい。なお、丸鋼とは、軸方向に垂直な断面が円形状の棒鋼を意味する。また、鋼管は継目無鋼管であってもよく、溶接鋼管であってもよい。 The shape of the steel material according to this embodiment is not particularly limited. The steel material according to this embodiment may be a steel pipe, a round steel (solid material), or a steel plate. Note that the round steel means a steel bar whose cross section perpendicular to the axial direction is circular. Further, the steel pipe may be a seamless steel pipe or a welded steel pipe.
 本明細書において、油井用鋼管は、油井管であってもよい。油井管は、たとえば、ケーシングやチュービング用途で用いられる鋼管である。本実施形態による油井用鋼管は、好ましくは継目無鋼管である。本実施形態による油井用鋼管が継目無鋼管であれば、肉厚が15mm以上であっても、862MPa以上(125ksi以上)の降伏強度と、優れた破壊靭性とを両立できる。 In this specification, the oil country steel pipe may be an oil country tubular product. Oil country tubular goods are, for example, steel pipes used for casing and tubing applications. The oil well steel pipe according to this embodiment is preferably a seamless steel pipe. If the oil well steel pipe according to the present embodiment is a seamless steel pipe, even if the wall thickness is 15 mm or more, it is possible to achieve both a yield strength of 862 MPa or more (125 ksi or more) and excellent fracture toughness.
 以下、本実施形態による鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。 Hereinafter, the steel material according to this embodiment will be explained in detail. "%" with respect to elements means mass % unless otherwise specified.
 [化学組成]
 本実施形態による鋼材の化学組成は、次の元素を含有する。
[Chemical composition]
The chemical composition of the steel material according to this embodiment contains the following elements.
 C:0.10~0.45%
 炭素(C)は鋼材の焼入れ性を高め、鋼材の強度を高める。C含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、製造工程中の焼入れにおいて、焼割れが発生しやすくなる場合がある。したがって、C含有量は0.10~0.45%である。C含有量の好ましい下限は0.12%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。C含有量の好ましい上限は0.40%であり、さらに好ましくは0.38%であり、さらに好ましくは0.37%である。
C: 0.10-0.45%
Carbon (C) improves the hardenability of steel and increases its strength. If the C content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the C content is too high, quench cracking may easily occur during quenching during the manufacturing process even if the contents of other elements are within the ranges of this embodiment. Therefore, the C content is between 0.10 and 0.45%. The preferable lower limit of the C content is 0.12%, more preferably 0.15%, and still more preferably 0.20%. A preferable upper limit of the C content is 0.40%, more preferably 0.38%, and still more preferably 0.37%.
 Si:1.00%以下
 ケイ素(Si)は不可避に含有される。すなわち、Si含有量の下限は0%超である。Siは鋼を脱酸する。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、炭化物の形成が抑制され、鋼材の破壊靭性が低下する。したがって、Si含有量は1.00%以下である。Si含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.75%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。上記効果を有効に得るための好ましいSi含有量の下限は0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。
Si: 1.00% or less Silicon (Si) is unavoidably contained. That is, the lower limit of the Si content is over 0%. Si deoxidizes steel. On the other hand, if the Si content is too high, even if the content of other elements is within the range of this embodiment, the formation of carbides will be suppressed and the fracture toughness of the steel material will decrease. Therefore, the Si content is 1.00% or less. The preferable upper limit of the Si content is 0.90%, more preferably 0.80%, even more preferably 0.75%, still more preferably 0.60%, and even more preferably 0.50%. %. The lower limit of the Si content is preferably 0.05%, more preferably 0.10%, and still more preferably 0.15% to effectively obtain the above effects.
 Mn:0.01~1.00%
 マンガン(Mn)は鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高め、鋼材の強度を高める。Mn含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大なMn硫化物が形成され、鋼材の破壊靭性が低下する。したがって、Mn含有量は0.01~1.00%である。Mn含有量の好ましい下限は0.03%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Mn含有量の好ましい上限は0.90%であり、さらに好ましくは0.85%であり、さらに好ましくは0.80%であり、さらに好ましくは0.75%である。
Mn: 0.01-1.00%
Manganese (Mn) deoxidizes steel. Mn further improves the hardenability of the steel material and increases the strength of the steel material. If the Mn content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the Mn content is too high, coarse Mn sulfides will be formed even if the contents of other elements are within the ranges of this embodiment, and the fracture toughness of the steel material will decrease. Therefore, the Mn content is 0.01 to 1.00%. The lower limit of the Mn content is preferably 0.03%, more preferably 0.05%, and still more preferably 0.10%. The upper limit of the Mn content is preferably 0.90%, more preferably 0.85%, even more preferably 0.80%, and still more preferably 0.75%.
 P:0.050%以下
 燐(P)は不純物である。すなわち、P含有量の下限は0%超である。P含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Pが粒界に偏析し、鋼材の破壊靭性が低下する。したがって、P含有量は0.050%以下である。P含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。P含有量はなるべく低い方が好ましい。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
P: 0.050% or less Phosphorus (P) is an impurity. That is, the lower limit of the P content is over 0%. If the P content is too high, even if the contents of other elements are within the ranges of this embodiment, P will segregate at grain boundaries and the fracture toughness of the steel material will decrease. Therefore, the P content is 0.050% or less. A preferable upper limit of the P content is 0.040%, more preferably 0.030%, still more preferably 0.020%, and still more preferably 0.015%. It is preferable that the P content is as low as possible. However, extreme reduction in P content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the P content is 0.001%, more preferably 0.002%, and still more preferably 0.003%.
 S:0.0050%以下
 硫黄(S)は不純物である。すなわち、S含有量の下限は0%超である。S含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大なMn硫化物が形成され、鋼材の破壊靭性が低下する。したがって、S含有量は0.0050%以下である。S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
S: 0.0050% or less Sulfur (S) is an impurity. That is, the lower limit of the S content is more than 0%. If the S content is too high, coarse Mn sulfides will be formed even if the contents of other elements are within the ranges of this embodiment, and the fracture toughness of the steel material will decrease. Therefore, the S content is 0.0050% or less. A preferable upper limit of the S content is 0.0040%, more preferably 0.0030%, and still more preferably 0.0020%. It is preferable that the S content is as low as possible. However, extreme reduction in S content significantly increases manufacturing costs. Therefore, when considering industrial production, the preferable lower limit of the S content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
 Al:0.001~0.100%
 アルミニウム(Al)は鋼を脱酸する。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られず、鋼材の耐食性が低下する。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物系介在物が生成して、鋼材の耐食性が低下する。したがって、Al含有量は0.001~0.100%である。Al含有量の好ましい下限は0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.025%である。Al含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%である。本明細書にいう「Al」含有量は「酸可溶Al」、つまり、「sol.Al」の含有量を意味する。
Al: 0.001-0.100%
Aluminum (Al) deoxidizes steel. If the Al content is too low, even if the contents of other elements are within the ranges of this embodiment, the above effects will not be sufficiently obtained and the corrosion resistance of the steel material will decrease. On the other hand, if the Al content is too high, even if the contents of other elements are within the ranges of this embodiment, coarse oxide-based inclusions will be generated and the corrosion resistance of the steel material will be reduced. Therefore, the Al content is 0.001 to 0.100%. The preferable lower limit of the Al content is 0.005%, more preferably 0.010%, still more preferably 0.020%, and still more preferably 0.025%. A preferable upper limit of the Al content is 0.080%, more preferably 0.060%, and still more preferably 0.050%. The "Al" content as used herein means the content of "acid-soluble Al", that is, "sol.Al".
 Cr:0.1~2.0%
 クロム(Cr)は鋼材の焼入れ性を高める。Crはさらに、鋼材の焼戻し軟化抵抗を高め、高温焼戻しを可能にする。その結果、鋼材の破壊靭性が高まる。Cr含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐食性が低下する。したがって、Cr含有量は0.1~2.0%である。Cr含有量の好ましい下限は0.2%であり、さらに好ましくは0.4%である。Cr含有量の好ましい上限は1.9%であり、さらに好ましくは1.8%であり、さらに好ましくは1.5%であり、さらに好ましくは1.0%である。
Cr: 0.1-2.0%
Chromium (Cr) improves the hardenability of steel materials. Cr further increases the temper softening resistance of the steel material and enables high temperature tempering. As a result, the fracture toughness of the steel material increases. If the Cr content is too low, the above effects cannot be sufficiently obtained even if the contents of other elements are within the ranges of this embodiment. On the other hand, if the Cr content is too high, the corrosion resistance of the steel material will decrease even if the other element contents are within the ranges of this embodiment. Therefore, the Cr content is between 0.1 and 2.0%. The lower limit of the Cr content is preferably 0.2%, more preferably 0.4%. A preferable upper limit of the Cr content is 1.9%, more preferably 1.8%, still more preferably 1.5%, and still more preferably 1.0%.
 Mo:0.20~2.00%
 モリブデン(Mo)は鋼材の焼入れ性を高める。Moはさらに、Mo系MX型析出物を形成して、鋼材の破壊靭性を高める。Mo含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が高すぎれば、上記効果が飽和する。したがって、Mo含有量は0.20~2.00%である。Mo含有量の好ましい下限は0.25%であり、さらに好ましくは0.30%であり、さらに好ましくは0.50%である。Mo含有量の好ましい上限は1.90%であり、さらに好ましくは1.80%であり、さらに好ましくは1.60%であり、さらに好ましくは1.40%である。
Mo: 0.20~2.00%
Molybdenum (Mo) improves the hardenability of steel materials. Mo further forms Mo-based MX type precipitates to improve the fracture toughness of the steel material. If the Mo content is too low, even if the contents of other elements are within the ranges of this embodiment, the above effects cannot be sufficiently obtained. On the other hand, if the Mo content is too high, the above effects will be saturated. Therefore, the Mo content is between 0.20 and 2.00%. The lower limit of the Mo content is preferably 0.25%, more preferably 0.30%, and still more preferably 0.50%. The upper limit of the Mo content is preferably 1.90%, more preferably 1.80%, even more preferably 1.60%, and still more preferably 1.40%.
 N:0.010%以下
 窒素(N)は不可避に含有される。すなわち、N含有量の下限は0%超である。NはTiと結合して窒化物を形成し、ピンニング効果により、鋼材の結晶粒を微細化する。その結果、鋼材の強度が高まる。しかしながら、N含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が形成され、鋼材の破壊靭性が低下する。したがって、N含有量は0.010%以下である。N含有量の好ましい上限は0.008%であり、さらに好ましくは0.006%である。上記効果をより有効に得るためのN含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
N: 0.010% or less Nitrogen (N) is unavoidably contained. That is, the lower limit of the N content is over 0%. N combines with Ti to form nitrides and refines the crystal grains of the steel material due to the pinning effect. As a result, the strength of the steel material increases. However, if the N content is too high, coarse nitrides will be formed even if the contents of other elements are within the ranges of this embodiment, and the fracture toughness of the steel material will decrease. Therefore, the N content is 0.010% or less. A preferable upper limit of the N content is 0.008%, more preferably 0.006%. The lower limit of the N content is preferably 0.001%, more preferably 0.002%, and still more preferably 0.003% in order to more effectively obtain the above effects.
 本実施形態による鋼材の化学組成は、Ca、及び、Mgからなる群から選択される1元素以上を含有する。すなわち、本実施形態による鋼材の化学組成は、Ca、及び、Mgのいずれか一方は、その含有量が0%であってもよい。これらの元素はいずれも、鋼材の熱間加工性を高める。 The chemical composition of the steel material according to this embodiment contains one or more elements selected from the group consisting of Ca and Mg. That is, in the chemical composition of the steel material according to the present embodiment, the content of either Ca or Mg may be 0%. All of these elements improve the hot workability of steel materials.
 Ca:0.0005~0.0200%
 カルシウム(Ca)は鋼材中のSを硫化物として固定することで無害化し、鋼材の耐食性を高める。しかしながら、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の破壊靭性が低下する。したがって、含有される場合、Ca含有量は0.0005~0.0200%である。Ca含有量の好ましい下限は0.0006%超であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0150%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%である。
Ca: 0.0005-0.0200%
Calcium (Ca) fixes S in steel materials as sulfide, rendering it harmless and improving the corrosion resistance of steel materials. However, if the Ca content is too high, even if the contents of other elements are within the ranges of this embodiment, the oxides in the steel material will become coarse and the fracture toughness of the steel material will decrease. Therefore, when contained, the Ca content is 0.0005 to 0.0200%. The preferable lower limit of the Ca content is more than 0.0006%, more preferably 0.0008%, and still more preferably 0.0010%. A preferable upper limit of the Ca content is 0.0150%, more preferably 0.0100%, still more preferably 0.0060%, and still more preferably 0.0040%.
 Mg:0.0005~0.0200%
 マグネシウム(Mg)は鋼材中のSを硫化物として固定することで無害化し、鋼材の耐食性を高める。しかしながら、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の破壊靭性が低下する。したがって、含有される場合、Mg含有量は0.0005~0.0200%である。Mg含有量の好ましい下限は0.0006%超であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0010%である。Mg含有量の好ましい上限は0.0150%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%である。
Mg: 0.0005-0.0200%
Magnesium (Mg) fixes S in steel materials as sulfide, rendering it harmless and improving the corrosion resistance of steel materials. However, if the Mg content is too high, even if the contents of other elements are within the ranges of this embodiment, the oxides in the steel material will become coarse and the fracture toughness of the steel material will decrease. Therefore, when included, the Mg content is 0.0005 to 0.0200%. The lower limit of the Mg content is preferably more than 0.0006%, more preferably 0.0008%, and still more preferably 0.0010%. A preferable upper limit of the Mg content is 0.0150%, more preferably 0.0100%, still more preferably 0.0060%, and still more preferably 0.0040%.
 本実施形態による鋼材の化学組成は、Ti、Nb、及び、Vからなる群から選択される1元素以上を含有する。すなわち、本実施形態による鋼材の化学組成は、Ti、Nb、及び、Vのいずれか1元素以外は、その含有量が0%であってもよい。これらの元素はいずれも、Moとともに複合MX型析出物を形成し、鋼材の破壊靭性を高める。 The chemical composition of the steel material according to this embodiment contains one or more elements selected from the group consisting of Ti, Nb, and V. That is, the chemical composition of the steel material according to the present embodiment may have a content of 0% except for any one of Ti, Nb, and V. All of these elements form composite MX-type precipitates together with Mo and improve the fracture toughness of the steel material.
 Ti:0.001~0.300%
 チタン(Ti)はMoとともにMo系MX型析出物を形成し、鋼材の破壊靭性を高める。Tiを含むMo系MX型析出物はさらに、ピンニング効果により、鋼材の結晶粒を微細化し、鋼材の破壊靭性を高める。しかしながら、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Mo系MX型析出物中のTi含有量が高くなりすぎ、Mo系MX型析出物中のMo含有量が低下する。その結果、鋼材の破壊靭性がかえって低下する。したがって、含有される場合、Ti含有量は0.001~0.300%である。Ti含有量の好ましい下限は0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Ti含有量の好ましい上限は0.250%であり、さらに好ましくは0.150%であり、さらに好ましくは0.100%であり、さらに好ましくは0.080%であり、さらに好ましくは0.060%である。
Ti: 0.001-0.300%
Titanium (Ti) forms Mo-based MX type precipitates together with Mo, and improves the fracture toughness of steel materials. The Mo-based MX type precipitates containing Ti further refine the crystal grains of the steel material due to the pinning effect and improve the fracture toughness of the steel material. However, if the Ti content is too high, even if the contents of other elements are within the range of this embodiment, the Ti content in the Mo-based MX-type precipitates will become too high, and the Ti content in the Mo-based MX-type precipitates will be too high. Mo content decreases. As a result, the fracture toughness of the steel material is rather reduced. Therefore, when included, the Ti content is 0.001 to 0.300%. The lower limit of the Ti content is preferably 0.002%, more preferably 0.003%, even more preferably 0.005%, and still more preferably 0.010%. A preferable upper limit of the Ti content is 0.250%, more preferably 0.150%, even more preferably 0.100%, still more preferably 0.080%, and still more preferably 0.060%. %.
 Nb:0.001~0.300%
 ニオブ(Nb)はMoとともにMo系MX型析出物を形成し、鋼材の破壊靭性を高める。Nbを含むMo系MX型析出物はさらに、ピンニング効果により、鋼材の結晶粒を微細化し、鋼材の破壊靭性を高める。Nbはさらに、鋼材の焼戻し軟化抵抗を高め、鋼材の強度を高める。しかしながら、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Mo系MX型析出物中のNb含有量が高くなりすぎ、Mo系MX型析出物中のMo含有量が低下する。その結果、鋼材の破壊靭性がかえって低下する。したがって、含有される場合、Nb含有量は0.001~0.300%である。Nb含有量の好ましい下限は0.003%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Nb含有量の好ましい上限は0.250%であり、さらに好ましくは0.150%であり、さらに好ましくは0.100%であり、さらに好ましくは0.080%である。
Nb: 0.001-0.300%
Niobium (Nb) forms Mo-based MX type precipitates together with Mo, and improves the fracture toughness of steel materials. The Mo-based MX type precipitates containing Nb further refine the crystal grains of the steel material due to the pinning effect and improve the fracture toughness of the steel material. Nb further increases the temper softening resistance of the steel material and increases the strength of the steel material. However, if the Nb content is too high, even if the contents of other elements are within the range of this embodiment, the Nb content in the Mo-based MX-type precipitates will be too high, and the Nb content in the Mo-based MX-type precipitates will be too high. Mo content decreases. As a result, the fracture toughness of the steel material is rather reduced. Therefore, when included, the Nb content is 0.001 to 0.300%. The preferable lower limit of the Nb content is 0.003%, more preferably 0.005%, and still more preferably 0.010%. A preferable upper limit of the Nb content is 0.250%, more preferably 0.150%, still more preferably 0.100%, and still more preferably 0.080%.
 V:0.01~0.50%
 バナジウム(V)はMoとともにMo系MX型析出物を形成し、鋼材の破壊靭性を高める。Vを含むMo系MX型析出物はさらに、ピンニング効果により、鋼材の結晶粒を微細化し、鋼材の破壊靭性を高める。Vはさらに、鋼材の焼戻し軟化抵抗を高め、鋼材の強度を高める。しかしながら、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、Mo系MX型析出物中のV含有量が高くなりすぎ、Mo系MX型析出物中のMo含有量が低下する。その結果、鋼材の破壊靭性がかえって低下する。したがって、含有される場合、V含有量は0.01~0.50%である。V含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%である。V含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%である。
V:0.01~0.50%
Vanadium (V) forms Mo-based MX type precipitates together with Mo, and improves the fracture toughness of steel materials. The Mo-based MX type precipitates containing V further refine the crystal grains of the steel material due to the pinning effect and improve the fracture toughness of the steel material. V further increases the temper softening resistance of the steel material and increases the strength of the steel material. However, if the V content is too high, even if the content of other elements is within the range of this embodiment, the V content in the Mo-based MX-type precipitate will be too high, and the V content in the Mo-based MX-type precipitate will be too high. Mo content decreases. As a result, the fracture toughness of the steel material is rather reduced. Therefore, when contained, the V content is 0.01 to 0.50%. The lower limit of the V content is preferably 0.01%, more preferably 0.02%, and even more preferably 0.05%. A preferable upper limit of the V content is 0.40%, more preferably 0.30%, and even more preferably 0.20%.
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、本実施形態による鋼材に悪影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the steel material according to this embodiment consists of Fe and impurities. Here, impurities are those that are mixed in from ores used as raw materials, scraps, or the manufacturing environment when steel products are industrially manufactured, and to the extent that they do not adversely affect the steel products according to this embodiment. means permissible.
 [任意元素]
 上述の鋼材の化学組成はさらに、Feの一部に代えて、W、Co、Ni、及び、希土類元素からなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、鋼材の耐食性を高める。
[Optional element]
The chemical composition of the steel material described above may further contain one or more elements selected from the group consisting of W, Co, Ni, and rare earth elements in place of a part of Fe. All of these elements increase the corrosion resistance of steel materials.
 W:0~0.50%
 タングステン(W)は任意元素であり、含有されなくてもよい。すなわち、W含有量は0%であってもよい。含有される場合、Wは腐食環境において、保護性の腐食被膜を形成し、鋼材への水素の侵入を抑制する。その結果、鋼材の耐食性を高める。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大な炭化物が生成して、鋼材の耐食性が低下する。したがって、W含有量は0~0.50%である。W含有量の好ましい下限は0%超であり、さらに好ましくは0.01%である。W含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%である。
W: 0-0.50%
Tungsten (W) is an optional element and may not be included. That is, the W content may be 0%. When contained, W forms a protective corrosion film in a corrosive environment and suppresses hydrogen from penetrating into the steel material. As a result, the corrosion resistance of the steel material is improved. If even a small amount of W is contained, the above effects can be obtained to some extent. However, if the W content is too high, even if the contents of other elements are within the ranges of this embodiment, coarse carbides will be generated in the steel material, resulting in a decrease in the corrosion resistance of the steel material. Therefore, the W content is 0 to 0.50%. The lower limit of the W content is preferably more than 0%, more preferably 0.01%. The upper limit of the W content is preferably 0.40%, more preferably 0.30%, even more preferably 0.20%, and still more preferably 0.10%.
 Co:0~0.50%
 コバルト(Co)は任意元素であり、含有されなくてもよい。すなわち、Co含有量は0%であってもよい。含有される場合、Coは腐食環境において、保護性の腐食被膜を形成し、鋼材への水素の侵入を抑制する。その結果、鋼材の耐食性を高める。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が低下して、鋼材の強度が低下する。したがって、Co含有量は0~0.50%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Co含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%である。
Co: 0-0.50%
Cobalt (Co) is an optional element and may not be included. That is, the Co content may be 0%. When contained, Co forms a protective corrosion film in a corrosive environment and suppresses hydrogen from penetrating into the steel material. As a result, the corrosion resistance of the steel material is improved. If even a small amount of Co is contained, the above effects can be obtained to some extent. However, if the Co content is too high, even if the contents of other elements are within the ranges of this embodiment, the hardenability of the steel material will be reduced and the strength of the steel material will be reduced. Therefore, the Co content is 0-0.50%. The preferable lower limit of the Co content is more than 0%, more preferably 0.01%, and still more preferably 0.02%. A preferable upper limit of the Co content is 0.40%, more preferably 0.30%, and still more preferably 0.20%.
 Ni:0~0.50%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。すなわち、Ni含有量は0%であってもよい。含有される場合、Niは鋼に固溶して、鋼材の耐食性を高める。Niが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、局部的な腐食が促進され、鋼材の耐食性が低下する。したがって、Ni含有量は0~0.50%である。Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。Ni含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%である。
Ni: 0-0.50%
Nickel (Ni) is an optional element and may not be included. That is, the Ni content may be 0%. When contained, Ni dissolves in solid solution in the steel and improves the corrosion resistance of the steel material. If even a small amount of Ni is contained, these effects can be obtained to some extent. However, if the Ni content is too high, local corrosion will be promoted and the corrosion resistance of the steel material will be reduced even if the other element contents are within the ranges of this embodiment. Therefore, the Ni content is 0 to 0.50%. The preferable lower limit of the Ni content is more than 0%, more preferably 0.01%, and still more preferably 0.02%. A preferable upper limit of the Ni content is 0.40%, more preferably 0.30%, still more preferably 0.20%, and even more preferably 0.15%.
 希土類元素(REM):0~0.020%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。すなわち、REM含有量は0%であってもよい。含有される場合、REMは鋼材中のSを硫化物として固定することで無害化し、鋼材の耐食性を高める。REMが少しでも含有されれば、他の元素含有量が本実施形態の範囲内であっても、上記効果がある程度得られる。しかしながら、REM含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の耐食性が低下する。したがって、REM含有量は0~0.020%である。REM含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。REM含有量の好ましい上限は0.018%であり、さらに好ましくは0.015%である。
Rare earth elements (REM): 0 to 0.020%
Rare earth elements (REM) are optional elements and may not be included. That is, the REM content may be 0%. When contained, REM fixes S in the steel material as sulfide, rendering it harmless and improving the corrosion resistance of the steel material. If even a small amount of REM is contained, the above effects can be obtained to some extent even if the contents of other elements are within the range of this embodiment. However, if the REM content is too high, even if the contents of other elements are within the ranges of this embodiment, the oxides in the steel material will become coarse and the corrosion resistance of the steel material will decrease. Therefore, the REM content is between 0 and 0.020%. A preferable lower limit of the REM content is more than 0%, more preferably 0.001%, still more preferably 0.003%, and still more preferably 0.005%. A preferable upper limit of the REM content is 0.018%, more preferably 0.015%.
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素を意味する。また、本明細書におけるREM含有量とは、これら元素の合計含有量を意味する。 In this specification, REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanoids such as lanthanum (La) with atomic number 57 to atomic number 71. It means one or more elements selected from the group consisting of lutetium (Lu). Moreover, the REM content in this specification means the total content of these elements.
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Cu、及び、Bからなる群から選択される1元素以上を含有してもよい。これらの元素はいずれも、鋼材の焼入れ性を高め、鋼材の強度を高める。 The chemical composition of the steel material described above may further contain one or more elements selected from the group consisting of Cu and B in place of a part of Fe. All of these elements improve the hardenability of the steel material and increase the strength of the steel material.
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。すなわち、Cu含有量は0%であってもよい。含有される場合、Cuは鋼材の焼入れ性を高め、鋼材の強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が高くなりすぎ、鋼材の耐食性が低下する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%である。Cu含有量の好ましい上限は0.35%であり、さらに好ましくは0.25%であり、さらに好ましくは0.15%である。
Cu: 0-0.50%
Copper (Cu) is an optional element and may not be included. That is, the Cu content may be 0%. When contained, Cu improves the hardenability of the steel material and increases the strength of the steel material. If even a small amount of Cu is contained, the above effects can be obtained to some extent. However, if the Cu content is too high, even if the contents of other elements are within the ranges of this embodiment, the hardenability of the steel material will become too high and the corrosion resistance of the steel material will decrease. Therefore, the Cu content is 0-0.50%. The preferable lower limit of the Cu content is more than 0%, more preferably 0.01%, even more preferably 0.02%, and still more preferably 0.05%. A preferable upper limit of the Cu content is 0.35%, more preferably 0.25%, and still more preferably 0.15%.
 B:0~0.0100%
 ホウ素(B)は任意元素であり、含有されなくてもよい。すなわち、B含有量は0%であってもよい。含有される場合、Bは鋼材の焼入れ性を高め、鋼材の強度を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が生成して、鋼材の耐食性が低下する。したがって、B含有量は0~0.0100%である。B含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。B含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%である。
B: 0-0.0100%
Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When contained, B increases the hardenability of the steel material and increases the strength of the steel material. If even a small amount of B is contained, the above effects can be obtained to some extent. However, if the B content is too high, even if the contents of other elements are within the ranges of this embodiment, coarse nitrides will be generated and the corrosion resistance of the steel material will deteriorate. Therefore, the B content is 0 to 0.0100%. The preferable lower limit of the B content is more than 0%, more preferably 0.0001%, still more preferably 0.0003%, and still more preferably 0.0005%. A preferable upper limit of the B content is 0.0080%, more preferably 0.0060%.
 [式(1)]
 本実施形態による鋼材は、上述の化学組成を有することを前提に、次の式(1)を満たす。その結果、本実施形態による鋼材は、本実施形態の他の構成を満たすことを条件に、862MPa以上の降伏強度と、優れた破壊靭性とを両立することができる。
 Mn×Sp≦12.0 (1)
 ここで、式(1)中の「Mn」には、Mn含有量が質量%で代入され、「Sp」には、S含有量がppmで代入される。
[Formula (1)]
The steel material according to this embodiment satisfies the following formula (1) on the premise that it has the above-mentioned chemical composition. As a result, the steel material according to this embodiment can have both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
Mn×Sp≦12.0 (1)
Here, the Mn content is substituted in mass % for "Mn" in formula (1), and the S content is substituted in ppm for "Sp".
 Fn1(=Mn×Sp)は、鋼材中のMn硫化物の指標である。Fn1が12.0を超えれば、鋼材中に粗大なMn硫化物が多数形成し、鋼材の破壊靭性が低下する。そこで、本実施形態による鋼材は、上述の化学組成を有することを前提に、Fn1を12.0以下とする。その結果、本実施形態の他の構成を満たすことを条件に、862MPa以上の降伏強度と、優れた破壊靭性とを両立することができる。 Fn1 (=Mn×Sp) is an index of Mn sulfide in the steel material. If Fn1 exceeds 12.0, many coarse Mn sulfides are formed in the steel material, and the fracture toughness of the steel material is reduced. Therefore, on the premise that the steel material according to this embodiment has the above-mentioned chemical composition, Fn1 is set to 12.0 or less. As a result, it is possible to achieve both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
 Fn1のさらに好ましい上限は11.5であり、さらに好ましくは11.0であり、さらに好ましくは10.0である。なお、Fn1の下限は特に限定されず、たとえば0.1であってもよい。しかしながら、工業生産を考慮した場合、Fn1の好ましい下限は0.3であり、さらに好ましくは0.5である。 A more preferable upper limit of Fn1 is 11.5, still more preferably 11.0, and still more preferably 10.0. Note that the lower limit of Fn1 is not particularly limited, and may be, for example, 0.1. However, when considering industrial production, the preferable lower limit of Fn1 is 0.3, more preferably 0.5.
 [式(2)]
 本実施形態による鋼材は、上述の化学組成を有し、式(1)を満たすことを前提に、次の式(2)を満たす。その結果、本実施形態による鋼材は、本実施形態の他の構成を満たすことを条件に、862MPa以上の降伏強度と、優れた破壊靭性とを両立することができる。
 0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量が質量%で代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
[Formula (2)]
The steel material according to this embodiment has the above-mentioned chemical composition and satisfies the following formula (2) on the premise that formula (1) is satisfied. As a result, the steel material according to this embodiment can have both a yield strength of 862 MPa or more and excellent fracture toughness, provided that the other configurations of this embodiment are satisfied.
0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
Here, the content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
 Fn2(=7×Ti+2×Nb+3×V)は、炭化物の析出状態に関する指標である。Ti、Nb、及び/又はVは、MX型析出物を形成する。Fn2が低すぎれば、MX型析出物自体を十分に形成することができない。その結果、Mo系MX型析出物の個数密度が低下する。一方、Fn2が高すぎれば、MX型析出物中のMo含有量が低下する。その結果、Mo系MX型析出物の個数密度が低下する。したがって、本実施形態による鋼材では、上述の化学組成を有し、かつ、式(1)を満たすことを前提に、Fn2を0.05~0.80とする。その結果、Mo系MX型析出物の個数密度を安定して20個/μm2以上に高めることができる。 Fn2 (=7×Ti+2×Nb+3×V) is an index regarding the precipitation state of carbides. Ti, Nb, and/or V form MX type precipitates. If Fn2 is too low, MX type precipitates themselves cannot be sufficiently formed. As a result, the number density of Mo-based MX type precipitates decreases. On the other hand, if Fn2 is too high, the Mo content in the MX type precipitates will decrease. As a result, the number density of Mo-based MX type precipitates decreases. Therefore, in the steel material according to this embodiment, Fn2 is set to 0.05 to 0.80 on the premise that it has the above-mentioned chemical composition and satisfies formula (1). As a result, the number density of Mo-based MX type precipitates can be stably increased to 20 pieces/μm 2 or more.
 Fn2の好ましい下限は0.08であり、さらに好ましくは0.10であり、さらに好ましくは0.15である。Fn2の好ましい上限は0.75であり、さらに好ましくは0.70であり、さらに好ましくは0.60である。 The lower limit of Fn2 is preferably 0.08, more preferably 0.10, and still more preferably 0.15. A preferable upper limit of Fn2 is 0.75, more preferably 0.70, and still more preferably 0.60.
 [降伏強度]
 本実施形態による鋼材は、上述の化学組成を有した上で、式(1)及び(2)を満たし、さらに、Mo系MX型析出物の個数密度を20個/μm2以上とする。その結果、本実施形態による鋼材は、降伏強度が862MPa以上であっても、優れた破壊靭性を有する。要するに、本実施形態による鋼材の降伏強度は862MPa以上である。本実施形態において、降伏強度の上限は特に限定されないが、たとえば、965MPaである。本明細書において降伏強度とは、以下に記載のASTM E8/E8M(2021)に準拠した常温(24±3℃)での引張試験により得られた、0.6%全伸び耐力(MPa)を意味する。
[Yield strength]
The steel material according to this embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), and has a number density of Mo-based MX type precipitates of 20/μm 2 or more. As a result, the steel material according to this embodiment has excellent fracture toughness even if the yield strength is 862 MPa or more. In short, the yield strength of the steel material according to this embodiment is 862 MPa or more. In this embodiment, the upper limit of the yield strength is not particularly limited, but is, for example, 965 MPa. In this specification, yield strength refers to 0.6% total elongation yield strength (MPa) obtained by a tensile test at room temperature (24±3°C) in accordance with ASTM E8/E8M (2021) described below. means.
 具体的に、本実施形態では、鋼材の降伏強度を次の方法で求める。まず、本実施形態による鋼材から、引張試験片を作製する。引張試験片のサイズは特に限定されない。引張試験片はたとえば、平行部径が6mm、標点距離が30mmの丸棒引張試験片とする。鋼材が鋼管の場合、肉厚中央位置から引張試験片を作製する。この場合、引張試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が丸鋼の場合、R/2位置から引張試験片を作製する。なお、本明細書において、丸鋼のR/2位置とは、丸鋼の軸方向に垂直な断面において、半径Rの中央位置を意味する。また、この場合、引張試験片の長手方向は、丸鋼の軸方向と平行とする。鋼材が鋼板の場合、板厚中央位置から引張試験片を作製する。この場合、引張試験片の長手方向は、鋼板の圧延方向と平行とする。作製した引張試験片を用いて、ASTM E8/E8M(2021)に準拠して、常温(24±3℃)、大気中にて引張試験を行い、0.6%全伸び耐力(MPa)を求める。求めた0.6%全伸び耐力を降伏強度(MPa)と定義する。 Specifically, in this embodiment, the yield strength of the steel material is determined by the following method. First, a tensile test piece is produced from the steel material according to this embodiment. The size of the tensile test piece is not particularly limited. The tensile test piece is, for example, a round bar tensile test piece with a parallel part diameter of 6 mm and a gage length of 30 mm. If the steel material is a steel pipe, prepare a tensile test piece from the center of the wall thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the axial direction of the steel pipe. When the steel material is a round steel, a tensile test piece is prepared from the R/2 position. In this specification, the R/2 position of the round steel means the center position of the radius R in a cross section perpendicular to the axial direction of the round steel. In this case, the longitudinal direction of the tensile test piece is parallel to the axial direction of the round steel. If the steel material is a steel plate, prepare a tensile test piece from the center of the plate thickness. In this case, the longitudinal direction of the tensile test piece is parallel to the rolling direction of the steel plate. Using the prepared tensile test piece, perform a tensile test at room temperature (24 ± 3 ° C.) in the atmosphere in accordance with ASTM E8/E8M (2021) to determine 0.6% total elongation yield strength (MPa). . The obtained 0.6% total elongation yield strength is defined as yield strength (MPa).
 [Mo系MX型析出物]
 本実施形態による鋼材は、上述の化学組成を有した上で、式(1)及び(2)を満たし、さらに、円相当径が100nm以下であって、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物の個数密度を20個/μm2以上とする。その結果、本実施形態による鋼材は、降伏強度が862MPa以上であっても、優れた破壊靭性を有する。上述のとおり、本明細書において、円相当径が100nm以下であって、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物を、「Mo系MX型析出物」ともいう。
[Mo-based MX type precipitate]
The steel material according to this embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), has an equivalent circle diameter of 100 nm or less, and contains Mo, Nb, V, and Ti. When the total content is defined as 100% by mass, the number density of MX type precipitates having an Mo content of more than 50% by mass is 20 pieces/μm 2 or more. As a result, the steel material according to this embodiment has excellent fracture toughness even if the yield strength is 862 MPa or more. As mentioned above, in this specification, when the equivalent circle diameter is 100 nm or less and the total content of Mo, Nb, V, and Ti is defined as 100% by mass, the Mo content exceeds 50% by mass. The MX type precipitate is also referred to as "Mo-based MX type precipitate".
 ここで、円相当径が100nm以下のMX型析出物は、そのほとんどがMC型炭化物である。また、MC型炭化物は、鋼材中に微細に分散されやすい。一方、MC型炭化物を構成する元素によっては、MC型炭化物の硬さが高くなりすぎる場合がある。この場合、鋼材の強度を維持したまま破壊靭性を高めることが難しい。そこで本実施形態では、Nb、及び/又は、V、及び/又は、Tiを含むMC型炭化物をMoとの複合炭化物として、Moが濃化したMC型炭化物(Mo系MX型析出物)にする。本実施形態ではさらに、Mo系MX型析出物の個数密度を高める。その結果、適当な硬さの析出物が鋼材中に微細に分散され、鋼材の降伏強度を維持したまま、鋼材の破壊靭性を高めることができる。 Here, most of the MX type precipitates with an equivalent circle diameter of 100 nm or less are MC type carbides. Furthermore, MC type carbides tend to be finely dispersed in steel materials. On the other hand, depending on the elements constituting the MC type carbide, the hardness of the MC type carbide may become too high. In this case, it is difficult to increase the fracture toughness while maintaining the strength of the steel material. Therefore, in this embodiment, an MC type carbide containing Nb and/or V and/or Ti is made into a composite carbide with Mo to form an MC type carbide enriched with Mo (Mo-based MX type precipitate). . In this embodiment, the number density of Mo-based MX type precipitates is further increased. As a result, precipitates of appropriate hardness are finely dispersed in the steel material, and the fracture toughness of the steel material can be increased while maintaining the yield strength of the steel material.
 したがって、本実施形態では、上述の化学組成を有し、式(1)及び(2)を満たし、さらに、Mo系MX型析出物の個数密度を20個/μm2以上とする。Mo系MX型析出物の個数密度の好ましい下限は21個/μm2であり、さらに好ましくは23個/μm2であり、さらに好ましくは25個/μm2である。Mo系MX型析出物の個数密度の上限は特に限定されないが、たとえば、200個/μm2である。 Therefore, in this embodiment, it has the above-mentioned chemical composition, satisfies formulas (1) and (2), and has a number density of Mo-based MX type precipitates of 20 pieces/μm 2 or more. A preferable lower limit of the number density of Mo-based MX type precipitates is 21 pieces/μm 2 , more preferably 23 pieces/μm 2 , and even more preferably 25 pieces/μm 2 . Although the upper limit of the number density of Mo-based MX type precipitates is not particularly limited, it is, for example, 200 pieces/μm 2 .
 本実施形態では、Mo系MX型析出物の個数密度を次の方法で求める。まず、本実施形態による鋼材から、抽出レプリカ作製用のミクロ試験片を作製する。鋼材が鋼管の場合、肉厚中央位置からミクロ試験片を採取する。鋼材が丸鋼の場合、R/2位置からミクロ試験片を採取する。鋼材が鋼板の場合、板厚中央位置からミクロ試験片を採取する。ミクロ試験片の大きさは、たとえば、10mm×10mmである。ミクロ試験片の表面を鏡面研磨した後、ミクロ試験片を3%ナイタール腐食液に10分浸漬し、表面を腐食させる。腐食させた表面を、カーボン蒸着膜で覆う。蒸着膜で表面を覆ったミクロ試験片を、5%ナイタール腐食液に20分浸漬する。浸漬したミクロ試験片から、蒸着膜を剥離する。ミクロ試験片から剥離した蒸着膜を、エタノールで洗浄した後、シートメッシュですくい取り、乾燥する。なお、本実施形態では、Cu製のシートメッシュを用いる。 In this embodiment, the number density of Mo-based MX type precipitates is determined by the following method. First, a micro test piece for producing an extraction replica is produced from the steel material according to this embodiment. If the steel material is a steel pipe, take a micro specimen from the center of the wall thickness. If the steel material is round steel, take a micro test piece from the R/2 position. If the steel material is a steel plate, take a micro test piece from the center of the plate thickness. The size of the micro test piece is, for example, 10 mm x 10 mm. After mirror polishing the surface of the micro test piece, the micro test piece is immersed in a 3% nital corrosive solution for 10 minutes to corrode the surface. The corroded surface is covered with a carbon evaporated film. A micro specimen whose surface is covered with a vapor-deposited film is immersed in a 5% nital corrosive solution for 20 minutes. The deposited film is peeled off from the immersed micro test piece. The deposited film peeled off from the micro test piece is washed with ethanol, then scooped out with a sheet mesh and dried. Note that in this embodiment, a sheet mesh made of Cu is used.
 この蒸着膜(レプリカ膜)を、透過電子顕微鏡(TEM:Transmission Electron Microscope)で観察する。具体的には、蒸着膜から任意の位置を特定し、観察倍率を10万倍、加速電圧を200kVとして観察する。なお、観察視野の大きさは、たとえば、2.0μm×3.0μmである。各観察視野において、円相当径が100nm以下の粒子を特定する。なお、粒子は、コントラストから特定可能である。なお、本明細書において、「粒子」とは、円形(球形)の粒子に限定されず、角形状を有している小片であってもよく、延伸した楕円形の小片であってもよい。また、析出物の円相当径は、TEM観察における観察画像を画像解析することによって求めることができる。なお、本実施形態では、特定する円相当径が100nm以下の粒子の、円相当径の下限は10nmとする。すなわち、本実施形態では、円相当径が10~100nmの粒子を特定する。 This deposited film (replica film) is observed with a transmission electron microscope (TEM). Specifically, an arbitrary position is specified from the deposited film and observed at an observation magnification of 100,000 times and an accelerating voltage of 200 kV. Note that the size of the observation field is, for example, 2.0 μm×3.0 μm. In each observation field, particles with an equivalent circle diameter of 100 nm or less are identified. Note that particles can be identified from the contrast. In this specification, the term "particles" is not limited to circular (spherical) particles, and may be small pieces having an angular shape or elongated elliptical pieces. Further, the equivalent circle diameter of the precipitate can be determined by image analysis of an observed image in TEM observation. In the present embodiment, the lower limit of the equivalent circle diameter of the identified particles having an equivalent circle diameter of 100 nm or less is 10 nm. That is, in this embodiment, particles having an equivalent circle diameter of 10 to 100 nm are specified.
 特定した粒子に対して、エネルギー分散型X線分析法(EDS:Energy Dispersive X-ray Spectrometry)による点分析を行う。EDSの点分析により、各粒子中に含まれる元素の含有量を求める。EDSの点分析では、加速電圧を200kVとする。また、点分析の対象元素をMo、Nb、V、及び、Tiとして定量する。ここで、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が70質量%を超えると、M2X型析出物になりやすい。そのため、本実施形態では、Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が70質量%以下の析出物を、MX型析出物と特定する。したがって、本実施形態では、EDSの点分析によって定量されたMo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50超~70質量%の粒子を、Mo系MX型析出物であると特定する。 Point analysis is performed on the identified particles using energy dispersive X-ray spectrometry (EDS). The content of elements contained in each particle is determined by EDS point analysis. In the EDS point analysis, the accelerating voltage is 200 kV. In addition, the target elements of point analysis are quantified as Mo, Nb, V, and Ti. Here, when the total content of Mo, Nb, V, and Ti is defined as 100% by mass, when the Mo content exceeds 70% by mass, M 2 X type precipitates are likely to occur. Therefore, in this embodiment, when the total content of Mo, Nb, V, and Ti is defined as 100% by mass, a precipitate with a Mo content of 70% by mass or less is specified as an MX-type precipitate. Therefore, in this embodiment, when the total content of Mo, Nb, V, and Ti determined by EDS point analysis is defined as 100% by mass, particles with a Mo content of more than 50 to 70% by mass are , it is identified as a Mo-based MX type precipitate.
 各観察視野で特定されたMo系MX型析出物の総個数と、観察視野の総面積とに基づき、Mo系MX型析出物の個数密度(個/μm2)を求める。なお、本実施形態では、Mo系MX型析出物の個数密度は、得られた数値の小数第一位を四捨五入して求める。 The number density (pieces/μm 2 ) of Mo-based MX-type precipitates is determined based on the total number of Mo-based MX-type precipitates identified in each observation field and the total area of the observation field. In this embodiment, the number density of Mo-based MX type precipitates is determined by rounding the obtained value to the first decimal place.
 [破壊靭性]
 本実施形態による鋼材は、上述の化学組成を有した上で、式(1)及び(2)を満たし、さらに、Mo系MX型析出物の個数密度を20個/μm2以上とする。その結果、本実施形態による鋼材は、降伏強度が862MPa以上であっても、優れた破壊靭性を有する。本実施形態において、優れた破壊靭性とは、以下に記載のISO 12135(2021)に準拠した常温(25℃)でのCTOD試験により得られた、CTOD値が0.11mm以上であることを意味する。
[Fracture toughness]
The steel material according to this embodiment has the above-mentioned chemical composition, satisfies formulas (1) and (2), and has a number density of Mo-based MX type precipitates of 20/μm 2 or more. As a result, the steel material according to this embodiment has excellent fracture toughness even if the yield strength is 862 MPa or more. In this embodiment, excellent fracture toughness means that the CTOD value obtained by the CTOD test at room temperature (25°C) in accordance with ISO 12135 (2021) described below is 0.11 mm or more. do.
 具体的に、本実施形態では、鋼材の破壊靭性を次の方法で評価する。まず、本実施形態による鋼材から、図2A及び図2Bに示される片側ノッチ付き曲げ(SENB:Single Edge Notched Bend)試験片を作製する。図2Aは、本実施形態において鋼材の破壊靭性を評価するCTOD試験に用いるSENB試験片の模式図である。図2Bは、図2Aの領域10の拡大図である。図2Aを参照して、SENB試験片の大きさは、厚さBが10mm、幅Wが20mm、長さLが100mmとする。鋼材が鋼管の場合、肉厚中央位置からSENB試験片を作製する。この場合、SENB試験片の長手方向は、鋼管の管軸方向と平行とする。鋼材が丸鋼の場合、R/2位置からSENB試験片を作製する。この場合、SENB試験片の長手方向は、丸鋼の軸方向と平行とする。鋼材が鋼板の場合、板厚中央位置からSENB試験片を作製する。この場合、SENB試験片の長手方向は、鋼板の圧延方向と平行とする。 Specifically, in this embodiment, the fracture toughness of steel material is evaluated by the following method. First, a single edge notched bend (SENB) test piece shown in FIGS. 2A and 2B is produced from the steel material according to the present embodiment. FIG. 2A is a schematic diagram of a SENB test piece used in the CTOD test for evaluating the fracture toughness of steel materials in this embodiment. FIG. 2B is an enlarged view of region 10 of FIG. 2A. Referring to FIG. 2A, the SENB test piece has a thickness B of 10 mm, a width W of 20 mm, and a length L of 100 mm. If the steel material is a steel pipe, prepare a SENB test piece from the center of the wall thickness. In this case, the longitudinal direction of the SENB test piece is parallel to the axial direction of the steel pipe. If the steel material is round steel, prepare a SENB test piece from the R/2 position. In this case, the longitudinal direction of the SENB test piece is parallel to the axial direction of the round steel. When the steel material is a steel plate, a SENB test piece is prepared from the center of the plate thickness. In this case, the longitudinal direction of the SENB test piece is parallel to the rolling direction of the steel plate.
 図2Aを参照して、SENB試験片は、長さL方向の中央位置に、幅W方向にノッチが形成されている。SENB試験片のノッチは、機械加工によって形成される。また、図2Bを参照して、SENB試験片のノッチは、幅2mm、深さ8mmとする。作製されたSENB試験片に対して、予き裂を導入するための疲労試験を実施する。本実施形態では、初期相対き裂長さa0/Wを0.50とする。具体的に、ノッチの先端に導入される疲労予き裂が2mmとなるように、常温(25℃)にて、疲労試験を実施する。 Referring to FIG. 2A, the SENB test piece has a notch formed in the width W direction at the center position in the length L direction. The notch in the SENB specimen is formed by machining. Further, referring to FIG. 2B, the notch of the SENB test piece has a width of 2 mm and a depth of 8 mm. A fatigue test to introduce a pre-crack is performed on the prepared SENB test piece. In this embodiment, the initial relative crack length a 0 /W is set to 0.50. Specifically, the fatigue test is conducted at room temperature (25° C.) so that the fatigue pre-crack introduced at the tip of the notch is 2 mm.
 疲労予き裂が導入されたSENB試験片に対して、ISO 12135(2021)に準拠して、常温(25℃)にてCTOD試験を実施する。CTOD試験によって得られた、荷重-開口量曲線における破断時の荷重と、クリップゲージ開口変位の塑性成分量とから、ISO 12135(2021)に基づき、CTOD値(mm)を求める。なお、同様の試験を3回実施して、最小のCTOD値(mm)を、鋼材のCTOD値(mm)と定義する。なお、本実施形態では、鋼材のCTOD値は、得られた数値の小数第三位を四捨五入して求める。 A CTOD test is conducted at room temperature (25°C) in accordance with ISO 12135 (2021) on the SENB test piece in which fatigue pre-crack has been introduced. The CTOD value (mm) is determined based on ISO 12135 (2021) from the load at break in the load-opening amount curve obtained by the CTOD test and the amount of plastic component of the clip gauge opening displacement. Note that the same test is conducted three times and the minimum CTOD value (mm) is defined as the CTOD value (mm) of the steel material. In this embodiment, the CTOD value of the steel material is determined by rounding the obtained value to the second decimal place.
 [ミクロ組織]
 本実施形態による鋼材のミクロ組織は、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上である。ミクロ組織の残部はたとえば、フェライト、又は、パーライトである。上述の化学組成を有する鋼材のミクロ組織が、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上を含有すれば、本実施形態の他の構成を満たすことを条件に、降伏強度が125ksi以上(862MPa以上)を示す。すなわち、本実施形態では、鋼材の降伏強度が125ksi以上であれば、鋼材のミクロ組織は焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上であると判断する。
[Microstructure]
In the microstructure of the steel material according to this embodiment, the total volume fraction of tempered martensite and tempered bainite is 90% or more. The remainder of the microstructure is, for example, ferrite or pearlite. If the microstructure of the steel material having the above-mentioned chemical composition contains a total volume fraction of tempered martensite and tempered bainite of 90% or more, the yield strength is 125 ksi, provided that the other configurations of this embodiment are satisfied. or more (862 MPa or more). That is, in this embodiment, if the yield strength of the steel material is 125 ksi or more, it is determined that the microstructure of the steel material has a total volume fraction of tempered martensite and tempered bainite of 90% or more.
 なお、焼戻しマルテンサイト及び焼戻しベイナイトの体積率を観察により求める場合、以下の方法で求めることができる。まず、鋼材から試験片を作製する。鋼材が鋼管の場合、肉厚中央位置から、管軸方向10mm、肉厚(管径)方向8mmの観察面を有する試験片を作製する。なお、鋼管の肉厚が10mm未満の場合、管軸方向10mm、管径方向に鋼管の肉厚の観察面を有する試験片を作製する。鋼材が丸鋼の場合、R/2位置を中央に含み、軸方向10mm、断面の径方向8mmの観察面を有する試験片を作製する。なお、丸鋼の断面の直径が10mm未満の場合、R/2位置を含み、軸方向10mm、断面の径方向が直径の観察面を有する試験片を作製する。鋼材が鋼板の場合、板厚中央位置から、圧延方向10mm、板厚方向10mmの観察面を有する試験片を作製する。なお、鋼板の板厚が10mm未満の場合、圧延方向10mm、板厚方向に鋼板の厚さの観察面を有する試験片を作製する。 Note that when determining the volume fraction of tempered martensite and tempered bainite by observation, it can be determined by the following method. First, a test piece is made from steel material. When the steel material is a steel pipe, a test piece is prepared that has an observation surface of 10 mm in the pipe axis direction and 8 mm in the wall thickness (pipe diameter) direction from the center of the wall thickness. In addition, when the wall thickness of the steel pipe is less than 10 mm, a test piece is prepared that has an observation surface of the wall thickness of the steel pipe 10 mm in the pipe axis direction and in the pipe radial direction. When the steel material is a round steel, a test piece is prepared that includes the R/2 position in the center and has an observation surface of 10 mm in the axial direction and 8 mm in the radial direction of the cross section. In addition, when the diameter of the cross section of the round steel is less than 10 mm, a test piece is prepared that includes the R/2 position, has an observation surface of 10 mm in the axial direction, and has a diameter in the radial direction of the cross section. When the steel material is a steel plate, a test piece having an observation surface extending 10 mm in the rolling direction and 10 mm in the thickness direction from the central position of the plate thickness is prepared. In addition, when the plate thickness of the steel plate is less than 10 mm, a test piece having an observation surface of 10 mm in the rolling direction and the thickness of the steel plate in the plate thickness direction is prepared.
 試験片の観察面を鏡面に研磨した後、ナイタール腐食液に10秒程度浸漬して、エッチングによる組織現出を行う。エッチングした観察面を、走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、二次電子像にて10視野観察する。視野面積は、たとえば、10000μm2(倍率1000倍)である。各視野において、コントラストから焼戻しマルテンサイト及び焼戻しベイナイトを特定する。特定した焼戻しマルテンサイト及び焼戻しベイナイトの面積率を求める。面積率を求める方法は特に限定されず、周知の方法でよい。たとえば、画像解析によって、焼戻しマルテンサイト及び焼戻しベイナイトの面積率を求めることができる。本実施形態では、全ての視野で求めた、焼戻しマルテンサイト及び焼戻しベイナイトの面積率の算術平均値を、焼戻しマルテンサイト及び焼戻しベイナイトの体積率と定義する。 After polishing the observation surface of the test piece to a mirror surface, it is immersed in a nital corrosive solution for about 10 seconds to reveal the structure by etching. The etched observation surface is observed in 10 fields of view using a secondary electron image using a scanning electron microscope (SEM). The field of view area is, for example, 10000 μm 2 (1000x magnification). In each field of view, tempered martensite and tempered bainite are identified from the contrast. The area ratio of the specified tempered martensite and tempered bainite is determined. The method for determining the area ratio is not particularly limited, and any known method may be used. For example, the area ratio of tempered martensite and tempered bainite can be determined by image analysis. In the present embodiment, the arithmetic mean value of the area ratios of tempered martensite and tempered bainite determined in all visual fields is defined as the volume ratio of tempered martensite and tempered bainite.
 [製造方法]
 本実施形態による鋼材の製造方法を説明する。以下、本実施形態による鋼材の一例として、継目無鋼管の製造方法を説明する。継目無鋼管の製造方法は、素管を準備する工程(準備工程)と、素管に対して焼入れ及び焼戻しを実施して、継目無鋼管とする工程(焼入れ工程及び焼戻し工程)とを備える。なお、本実施形態による製造方法は、以下に説明する製造方法に限定されない。以下、各工程について詳述する。
[Production method]
A method for manufacturing steel materials according to this embodiment will be described. Hereinafter, a method for manufacturing a seamless steel pipe will be described as an example of the steel material according to the present embodiment. A method for manufacturing a seamless steel pipe includes a step of preparing a mother tube (preparation step) and a step of quenching and tempering the mother tube to form a seamless steel tube (quenching step and tempering step). Note that the manufacturing method according to this embodiment is not limited to the manufacturing method described below. Each step will be explained in detail below.
 [準備工程]
 準備工程では、上述の化学組成を有する中間鋼材を準備する。中間鋼材が上記化学組成を有していれば、中間鋼材の製造方法は特に限定されない。ここでいう中間鋼材は、最終製品が鋼板の場合は、板状の鋼材であり、最終製品が鋼管の場合は素管である。
[Preparation process]
In the preparation step, an intermediate steel material having the above-mentioned chemical composition is prepared. As long as the intermediate steel material has the above chemical composition, the method for producing the intermediate steel material is not particularly limited. The intermediate steel material here is a plate-shaped steel material when the final product is a steel plate, and is a raw pipe when the final product is a steel pipe.
 準備工程は、素材を準備する工程(素材準備工程)と、素材を熱間加工して中間鋼材を製造する工程(熱間加工工程)とを含んでもよい。以下、素材準備工程と、熱間加工工程を含む場合について、詳述する。 The preparation step may include a step of preparing a material (material preparation step) and a step of hot working the material to produce an intermediate steel material (hot working step). Hereinafter, a case including a material preparation process and a hot working process will be described in detail.
 [素材準備工程]
 素材準備工程では、上述の化学組成を有する溶鋼を用いて素材を製造する。素材の製造方法は特に限定されず、周知の方法でよい。具体的には、溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造してもよい。溶鋼を用いて造塊法によりインゴットを製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
[Material preparation process]
In the material preparation step, a material is manufactured using molten steel having the above-mentioned chemical composition. The method for producing the material is not particularly limited, and any known method may be used. Specifically, a slab (slab, bloom, or billet) may be manufactured by a continuous casting method using molten steel. An ingot may be manufactured by an ingot-forming method using molten steel. If necessary, the slab, bloom, or ingot may be bloomed and rolled to produce a billet. A material (slab, bloom, or billet) is manufactured through the above steps.
 [熱間加工工程]
 熱間加工工程では、準備された素材を熱間加工して中間鋼材を製造する。鋼材が継目無鋼管である場合、中間鋼材は素管に相当する。始めに、ビレットを加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出されたビレットに対して熱間加工を実施して、素管(継目無鋼管)を製造する。熱間加工の方法は、特に限定されず、周知の方法でよい。
[Hot processing process]
In the hot working step, the prepared material is hot worked to produce an intermediate steel material. When the steel material is a seamless steel pipe, the intermediate steel material corresponds to the base pipe. First, the billet is heated in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. Hot working is performed on the billet extracted from the heating furnace to produce a raw pipe (seamless steel pipe). The hot working method is not particularly limited, and may be any known method.
 たとえば、熱間加工としてマンネスマン法を実施して、素管を製造してもよい。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、たとえば、1.0~4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサー、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率はたとえば、20~70%である。 For example, the raw pipe may be manufactured by implementing the Mannesmann method as hot working. In this case, the round billet is pierced and rolled using a piercer. In the case of piercing rolling, the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0. The hole-rolled round billet is further hot-rolled using a mandrel mill, reducer, sizing mill, etc. to form a blank tube. The cumulative area reduction rate in the hot working step is, for example, 20 to 70%.
 他の熱間加工方法を実施して、ビレットから素管を製造してもよい。たとえば、カップリングのように短尺の厚肉鋼材である場合、エルハルト法等の鍛造により素管を製造してもよい。以上の工程により素管が製造される。素管の肉厚は特に限定されないが、たとえば、9~60mmである。 Other hot working methods may be used to manufacture the raw pipe from the billet. For example, in the case of a short thick-walled steel material such as a coupling, the raw tube may be manufactured by forging such as the Erhard method. A raw pipe is manufactured through the above steps. The wall thickness of the raw tube is not particularly limited, but is, for example, 9 to 60 mm.
 鋼材が丸鋼の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して熱間加工を実施して、軸方向に垂直な断面が円形の中間鋼材を製造する。熱間加工はたとえば、分塊圧延機による分塊圧延、又は、連続圧延機による熱間圧延である。連続圧延機は、上下方向に並んで配置された一対の孔型ロールを有する水平スタンドと、水平方向に並んで配置された一対の孔型ロールを有する垂直スタンドとが交互に配列されている。 If the steel material is round steel, first heat the material in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. Hot working is performed on the material extracted from the heating furnace to produce an intermediate steel material having a circular cross section perpendicular to the axial direction. The hot working is, for example, blooming rolling using a blooming mill or hot rolling using a continuous rolling mill. A continuous rolling mill has a horizontal stand having a pair of grooved rolls arranged in parallel in the vertical direction and a vertical stand having a pair of grooved rolls arranged in parallel in the horizontal direction, which are arranged alternately.
 鋼材が鋼板の場合、初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100~1300℃である。加熱炉から抽出された素材に対して、分塊圧延機、及び、連続圧延機を用いて熱間圧延を実施して、鋼板形状の中間鋼材を製造する。 If the steel material is a steel plate, first heat the material in a heating furnace. The heating temperature is not particularly limited, but is, for example, 1100 to 1300°C. The raw material extracted from the heating furnace is hot-rolled using a blooming mill and a continuous rolling mill to produce an intermediate steel material in the shape of a steel plate.
 熱間加工により製造された素管は空冷されてもよい(As-Rolled)。熱間加工により製造された素管は、常温まで冷却せずに、熱間加工後に直接焼入れを実施してもよく、熱間加工後に補熱(再加熱)した後、焼入れを実施してもよい。 The raw tube manufactured by hot working may be air-cooled (As-Rolled). The raw tube manufactured by hot working may be quenched directly after hot working without being cooled to room temperature, or may be quenched after reheating (reheating) after hot working. good.
 熱間加工後に直接焼入れ、又は、補熱した後焼入れを実施する場合、焼入れ途中に冷却の停止、又は、緩冷却を実施してもよい。この場合、素管に焼割れが発生するのを抑制できる。熱間加工後に直接焼入れ、又は、補熱した後焼入れを実施する場合さらに、焼入れ後であって次工程の熱処理前に、応力除去焼鈍(SR)を実施してもよい。この場合、素管の残留応力が除去される。 When directly quenching after hot working or quenching after reheating, cooling may be stopped during quenching or slow cooling may be performed. In this case, it is possible to suppress the occurrence of quench cracks in the raw pipe. In the case where direct quenching is performed after hot working or quenching is performed after reheating, stress relief annealing (SR) may be performed after quenching and before the next step of heat treatment. In this case, residual stress in the raw pipe is removed.
 以上のとおり、準備工程では中間鋼材を準備する。中間鋼材は、上述の好ましい工程により製造されてもよく、第三者により製造された中間鋼材、又は、後述の焼入れ工程及び焼戻し工程が実施される工場以外の他の工場、他の事業所にて製造された中間鋼材を準備してもよい。以下、焼入れ工程について詳述する。 As described above, intermediate steel materials are prepared in the preparation process. The intermediate steel material may be manufactured by the above-mentioned preferred process, or may be manufactured by a third party, or at another factory or other business office other than the factory where the quenching process and tempering process described below are carried out. You may also prepare an intermediate steel material manufactured by The hardening process will be explained in detail below.
 [焼入れ工程]
 焼入れ工程では、準備された中間鋼材(素管)に対して、焼入れを実施する。本明細書において、「焼入れ」とは、A3点以上の中間鋼材を急冷することを意味する。ここで、本明細書において、焼入れを実施する際の急冷直前の中間鋼材の温度を焼入れ温度ともいう。ここで、本実施形態による焼入れ工程では、中温での加熱を行った後、高温での加熱を行い、その後急冷する。すなわち、本実施形態による焼入れ工程は、中温加熱工程と、高温加熱工程と、急冷工程とを備える。以下、各工程について詳述する。
[Quenching process]
In the quenching process, the prepared intermediate steel material (raw pipe) is quenched. In this specification, "quenching" means quenching an intermediate steel material having an A3 point or higher. Here, in this specification, the temperature of the intermediate steel material immediately before quenching when quenching is performed is also referred to as quenching temperature. Here, in the quenching process according to the present embodiment, after heating at a medium temperature, heating at a high temperature is performed, and then rapid cooling is performed. That is, the hardening process according to this embodiment includes a medium temperature heating process, a high temperature heating process, and a rapid cooling process. Each step will be explained in detail below.
 [中温加熱工程]
 中温加熱工程では、準備された中間鋼材(素管)を、室温から加熱温度まで加熱して、保持する。このようにして、中温加熱工程では、中間鋼材中に微細なMo系MX型析出物を析出させる。具体的に、中温加熱工程における好ましい加熱温度は、400~600℃未満である。加熱温度が低すぎれば、中温加熱工程における、Mo系MX型析出物の析出量が低下する。その結果、製造された鋼材中のMo系MX型析出物の個数密度が低下する。一方、加熱温度が高すぎれば、Mo系MX型析出物が成長しすぎ、中温加熱工程においてMo系MX型析出物が粗大化し、製造された鋼材中のMo系MX型析出物の個数密度が低下する。
[Medium temperature heating process]
In the medium temperature heating step, the prepared intermediate steel material (raw pipe) is heated from room temperature to a heating temperature and held. In this way, in the medium temperature heating step, fine Mo-based MX type precipitates are precipitated in the intermediate steel material. Specifically, the preferred heating temperature in the medium temperature heating step is 400 to less than 600°C. If the heating temperature is too low, the amount of Mo-based MX type precipitates deposited in the medium temperature heating step will decrease. As a result, the number density of Mo-based MX type precipitates in the manufactured steel material decreases. On the other hand, if the heating temperature is too high, the Mo-based MX-type precipitates will grow too much, the Mo-based MX-type precipitates will become coarse in the medium temperature heating process, and the number density of the Mo-based MX-type precipitates in the manufactured steel material will decrease. descend.
 したがって、本実施形態による中温加熱工程では、好ましい加熱温度は400~600℃未満である。中温加熱工程におけるさらに好ましい加熱温度の下限は410℃であり、さらに好ましくは420℃であり、さらに好ましくは430℃である。中温加熱工程におけるさらに好ましい加熱温度の上限は590℃であり、さらに好ましくは580℃であり、さらに好ましくは570℃である。 Therefore, in the medium temperature heating step according to the present embodiment, the preferred heating temperature is 400 to less than 600°C. A more preferable lower limit of the heating temperature in the medium temperature heating step is 410°C, still more preferably 420°C, and even more preferably 430°C. A more preferable upper limit of the heating temperature in the medium temperature heating step is 590°C, still more preferably 580°C, and even more preferably 570°C.
 中温加熱工程における好ましい保持時間は20~120分である。保持時間が短すぎれば、中温加熱工程における、Mo系MX型析出物の析出量が低下する。その結果、製造された鋼材中のMo系MX型析出物の個数密度が低下する。一方、保持時間が長すぎれば、Mo系MX型析出物が成長しすぎ、中温加熱工程においてMo系MX型析出物が粗大化する。その結果、製造された鋼材中のMo系MX型析出物の個数密度が低下する。 The preferred holding time in the medium temperature heating step is 20 to 120 minutes. If the holding time is too short, the amount of Mo-based MX type precipitates deposited in the medium temperature heating step will decrease. As a result, the number density of Mo-based MX type precipitates in the manufactured steel material decreases. On the other hand, if the holding time is too long, the Mo-based MX-type precipitates grow too much, and the Mo-based MX-type precipitates become coarse in the medium temperature heating step. As a result, the number density of Mo-based MX type precipitates in the manufactured steel material decreases.
 したがって、本実施形態による中温加熱工程では、好ましい保持時間は20~120分である。中温加熱工程におけるさらに好ましい保持時間の下限は25分である。中温加熱工程におけるさらに好ましい保持時間の上限は100分であり、さらに好ましくは90分である。 Therefore, in the medium temperature heating step according to the present embodiment, the preferred holding time is 20 to 120 minutes. A more preferable lower limit of the holding time in the medium temperature heating step is 25 minutes. A more preferable upper limit of the holding time in the medium temperature heating step is 100 minutes, and even more preferably 90 minutes.
 [高温加熱工程]
 高温加熱工程では、中温加熱工程で加熱された中間鋼材(素管)を、中温加熱工程の加熱温度から、高温加熱工程の加熱温度まで加熱して、保持する。このようにして、高温加熱工程では、鋼材のミクロ組織をオーステナイト単相に変態させる。その結果、続く急冷工程によって、中間鋼材に対して焼入れを実施することができる。具体的に、高温加熱工程における好ましい加熱温度は、880~1000℃である。加熱温度が低すぎれば、中間鋼材のミクロ組織が十分に変態せず、焼入れの効果が十分に得られない。その結果、製造された鋼材において、本実施形態で規定する機械的特性が得られない。一方、加熱温度が高すぎれば、オーステナイト粒が粗大化する。加熱温度が高すぎればさらに、中温加熱工程で析出した微細なMo系MX型析出物の多くが溶解する。その結果、製造された鋼材の破壊靭性が低下する。
[High temperature heating process]
In the high temperature heating step, the intermediate steel material (raw pipe) heated in the medium temperature heating step is heated from the heating temperature in the medium temperature heating step to the heating temperature in the high temperature heating step and held. In this way, in the high temperature heating step, the microstructure of the steel material is transformed into a single austenite phase. As a result, the intermediate steel material can be hardened through the subsequent rapid cooling step. Specifically, the preferred heating temperature in the high temperature heating step is 880 to 1000°C. If the heating temperature is too low, the microstructure of the intermediate steel material will not be sufficiently transformed, and the hardening effect will not be sufficiently obtained. As a result, the mechanical properties specified in this embodiment cannot be obtained in the manufactured steel material. On the other hand, if the heating temperature is too high, the austenite grains will become coarse. If the heating temperature is too high, many of the fine Mo-based MX type precipitates precipitated in the medium temperature heating step will further dissolve. As a result, the fracture toughness of the manufactured steel material decreases.
 したがって、本実施形態による高温加熱工程では、好ましい加熱温度は880~1000℃である。高温加熱工程におけるさらに好ましい加熱温度の下限は890℃であり、さらに好ましくは900℃である。高温加熱工程におけるさらに好ましい加熱温度の上限は990℃であり、さらに好ましくは980℃である。 Therefore, in the high temperature heating step according to this embodiment, the preferred heating temperature is 880 to 1000°C. The lower limit of the heating temperature in the high temperature heating step is more preferably 890°C, and even more preferably 900°C. A more preferable upper limit of the heating temperature in the high temperature heating step is 990°C, and even more preferably 980°C.
 高温加熱工程における好ましい保持時間は10~90分である。保持時間が短すぎれば、中間鋼材のミクロ組織が十分に変態せず、焼入れの効果が十分に得られない。その結果、製造された鋼材において、本実施形態で規定する機械的特性が得られない。一方、保持時間が長すぎても、上記効果が飽和する。 The preferred holding time in the high temperature heating step is 10 to 90 minutes. If the holding time is too short, the microstructure of the intermediate steel material will not be sufficiently transformed, and the hardening effect will not be sufficiently obtained. As a result, the mechanical properties specified in this embodiment cannot be obtained in the manufactured steel material. On the other hand, if the holding time is too long, the above effects will be saturated.
 したがって、本実施形態による高温加熱工程では、好ましい保持時間は10~90分である。高温加熱工程におけるさらに好ましい保持時間の下限は15分である。高温加熱工程におけるさらに好ましい保持時間の上限は80分であり、さらに好ましくは60分である。 Therefore, in the high temperature heating step according to the present embodiment, the preferred holding time is 10 to 90 minutes. A more preferable lower limit of the holding time in the high temperature heating step is 15 minutes. The upper limit of the holding time in the high temperature heating step is more preferably 80 minutes, and even more preferably 60 minutes.
 [急冷工程]
 急冷工程では、高温加熱工程で加熱された中間鋼材(素管)を、急冷する。急冷工程では、中間鋼材(素管)を連続的に冷却し、素管の表面温度を連続的に低下させる。連続冷却処理の方法は特に限定されず、周知の方法でよい。連続冷却処理の方法はたとえば、水槽に素管を浸漬して冷却する方法や、シャワー水冷又はミスト冷却により素管を加速冷却する方法である。
[Quick cooling process]
In the quenching step, the intermediate steel material (raw pipe) heated in the high-temperature heating step is quenched. In the quenching process, the intermediate steel material (raw pipe) is continuously cooled, and the surface temperature of the raw pipe is continuously lowered. The method of continuous cooling treatment is not particularly limited, and any known method may be used. Examples of the continuous cooling treatment include a method of cooling the raw tube by immersing it in a water tank, and a method of accelerating cooling of the raw tube by shower water cooling or mist cooling.
 焼入れ時の冷却速度が遅すぎれば、マルテンサイト及びベイナイト主体のミクロ組織とならず、本実施形態で規定する機械的特性が得られない。ここで、本実施形態による急冷工程では、焼入れ時の中間鋼材(素管)の表面温度が800~500℃の範囲における平均冷却速度を、焼入れ時冷却速度CR800-500と定義する。具体的には、焼入れ時冷却速度CR800-500は、焼入れされる中間鋼材の断面内で最も遅く冷却される部位(たとえば、両表面を強制冷却する場合、中間鋼材厚さの中心部)において測定された温度から決定される。 If the cooling rate during quenching is too slow, the microstructure will not consist mainly of martensite and bainite, and the mechanical properties defined in this embodiment will not be obtained. Here, in the quenching process according to the present embodiment, the average cooling rate in a range where the surface temperature of the intermediate steel material (raw pipe) during quenching is in the range of 800 to 500°C is defined as the cooling rate during quenching CR 800-500 . Specifically, the cooling rate CR 800-500 during quenching is determined at the slowest cooling rate in the cross section of the intermediate steel material to be quenched (for example, in the case of forced cooling on both surfaces, the center of the thickness of the intermediate steel material). Determined from the measured temperature.
 本実施形態による急冷工程では、好ましい焼入れ時冷却速度CR800-500は300℃/分以上である。さらに好ましい焼入れ時冷却速度CR800-500の下限は450℃/分であり、さらに好ましくは600℃/分である。焼入れ時冷却速度CR800-500の上限は特に規定しないが、たとえば、60000℃/分である。 In the rapid cooling step according to the present embodiment, a preferable cooling rate CR 800-500 during quenching is 300° C./min or more. More preferably, the lower limit of the cooling rate CR 800-500 during quenching is 450°C/min, and even more preferably 600°C/min. The upper limit of the cooling rate CR 800-500 during quenching is not particularly specified, but is, for example, 60000° C./min.
 以上の工程により、本実施形態による焼入れ工程を実施することができる。なお、本実施形態による焼入れ工程では、中間鋼材に対してオーステナイト域での加熱を複数回実施した後、焼入れを実施してもよい。ただし、この場合、1回目の焼入れにおいて、中温加熱工程と、高温加熱工程と、急冷工程とを実施する。つまり、2回目以降の焼入れでは、中温加熱工程を実施しない方が好ましい。2回目以降の焼入れにおいても中温加熱工程を実施した場合、2回目以降の中温加熱工程において、Mo系MX型析出物が粗大化する場合がある。その結果、製造された鋼材中のMo系MX型析出物の個数密度が低下する場合がある。したがって、2回以上の焼入れを実施する場合、2回目以降の焼入れでは、高温加熱工程と、急冷工程とを実施するのが好ましい。以下、焼戻し工程について詳述する。 Through the above steps, the quenching step according to this embodiment can be performed. In addition, in the quenching step according to the present embodiment, the intermediate steel material may be heated in the austenite region multiple times and then quenched. However, in this case, in the first quenching, a medium temperature heating step, a high temperature heating step, and a rapid cooling step are performed. That is, in the second and subsequent quenching, it is preferable not to perform the medium temperature heating step. If a medium-temperature heating step is also performed in the second and subsequent quenching, Mo-based MX type precipitates may become coarse in the second and subsequent medium-temperature heating steps. As a result, the number density of Mo-based MX type precipitates in the produced steel may decrease. Therefore, when hardening is performed two or more times, it is preferable that the second and subsequent hardenings include a high temperature heating step and a rapid cooling step. The tempering process will be explained in detail below.
 [焼戻し工程]
 焼戻し工程は、上述の焼入れを実施した後、焼戻しを実施する。本明細書において、「焼戻し」とは、焼入れ後の中間鋼材をAc1点以下で再加熱して、保持することを意味する。焼戻し温度は、鋼材の化学組成、及び、得ようとする降伏強度に応じて適宜調整する。つまり、本実施形態の化学組成を有する中間鋼材(素管)に対して、焼戻し温度を調整して、鋼材の降伏強度を、たとえば、125ksi以上(862MPa以上)に調整する。ここで、焼戻し温度とは、焼入れ後の中間鋼材を加熱して、保持する際の熱処理炉の温度に相当する。焼戻し時間とは、中間鋼材の温度が所定の焼戻し温度に到達してから、熱処理炉から抽出されるまでの時間を意味する。
[Tempering process]
In the tempering step, after the above-mentioned hardening is performed, tempering is performed. In this specification, "tempering" means reheating and holding the intermediate steel material after quenching to a temperature below the A c1 point. The tempering temperature is appropriately adjusted depending on the chemical composition of the steel material and the desired yield strength. That is, the tempering temperature of the intermediate steel material (raw pipe) having the chemical composition of this embodiment is adjusted to adjust the yield strength of the steel material to, for example, 125 ksi or more (862 MPa or more). Here, the tempering temperature corresponds to the temperature of a heat treatment furnace when heating and holding the intermediate steel material after quenching. Tempering time means the time from when the temperature of the intermediate steel material reaches a predetermined tempering temperature until it is extracted from the heat treatment furnace.
 焼戻し温度は、鋼材の化学組成、及び、得ようとする降伏強度に応じて適宜調整する。つまり、本実施形態の化学組成を有する中間鋼材(素管)に対して、焼戻し温度を調整して、鋼材の降伏強度を862MPa以上に調整する。本実施形態による焼戻し工程において、好ましい焼戻し温度は650~700℃である。焼戻し温度のさらに好ましい下限は655℃である。焼戻し温度のさらに好ましい上限は695℃である。 The tempering temperature is adjusted as appropriate depending on the chemical composition of the steel material and the desired yield strength. That is, the tempering temperature of the intermediate steel material (raw pipe) having the chemical composition of this embodiment is adjusted to adjust the yield strength of the steel material to 862 MPa or more. In the tempering process according to this embodiment, the preferred tempering temperature is 650 to 700°C. A more preferable lower limit of the tempering temperature is 655°C. A more preferable upper limit of the tempering temperature is 695°C.
 焼戻し時間が短すぎれば、焼戻しマルテンサイト及び焼戻しベイナイト主体のミクロ組織が得られない場合がある。一方、焼戻し時間が長すぎれば、上記効果は飽和する。したがって、本実施形態の焼戻し工程において、焼戻し時間は20~180分とするのが好ましい。焼戻し時間のさらに好ましい下限は30分である。焼戻し時間のさらに好ましい上限は150分であり、さらに好ましくは120分である。 If the tempering time is too short, a microstructure consisting mainly of tempered martensite and tempered bainite may not be obtained. On the other hand, if the tempering time is too long, the above effect will be saturated. Therefore, in the tempering step of this embodiment, the tempering time is preferably 20 to 180 minutes. A more preferable lower limit of the tempering time is 30 minutes. A more preferable upper limit of the tempering time is 150 minutes, and even more preferably 120 minutes.
 以上の製造方法によって、本実施形態による鋼材を製造することができる。なお、上述の製造方法では、一例として鋼管の製造方法を説明した。しかしながら、本実施形態による鋼材は、鋼板や他の形状であってもよい。鋼板や他の形状の製造方法も、上述の製造方法と同様に、たとえば、準備工程と、焼入れ工程と、焼戻し工程とを備える。さらに、上述の製造方法は一例であり、他の製造方法によって製造されてもよい。 The steel material according to this embodiment can be manufactured by the above manufacturing method. In addition, in the above-mentioned manufacturing method, the manufacturing method of a steel pipe was demonstrated as an example. However, the steel material according to this embodiment may be a steel plate or other shapes. Similar to the above-described manufacturing method, the manufacturing method for steel plates and other shapes includes, for example, a preparation process, a quenching process, and a tempering process. Furthermore, the above-mentioned manufacturing method is just an example, and other manufacturing methods may be used.
 以下、実施例によって本発明をさらに具体的に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
 表1-1及び表1-2に示す化学組成を有する、180kgの溶鋼を製造した。なお、表1-1及び表1-2中の「-」は、該当する元素の含有量が不純物レベルであったことを意味する。具体的に、鋼RのV含有量、W含有量、Co含有量、Ni含有量、及び、Cu含有量は、小数第三位を四捨五入して0%であったことを意味する。同様に、鋼RのTi含有量、Nb含有量、及び、希土類元素(REM)含有量は、小数第四位を四捨五入して0%であったことを意味する。同様に、鋼CのCa含有量、鋼RのMg含有量、及び、鋼RのB含有量は、小数第五位を四捨五入して0%であったことを意味する。また、表1に記載の化学組成と、上述の定義とから求めたFn1、及び、Fn2を表2に示す。 180 kg of molten steel having the chemical composition shown in Tables 1-1 and 1-2 was produced. Note that "-" in Tables 1-1 and 1-2 means that the content of the corresponding element was at the impurity level. Specifically, this means that the V content, W content, Co content, Ni content, and Cu content of Steel R were rounded to the second decimal place and were 0%. Similarly, the Ti content, Nb content, and rare earth element (REM) content of Steel R were rounded to the fourth decimal place, meaning that they were 0%. Similarly, the Ca content of Steel C, the Mg content of Steel R, and the B content of Steel R are rounded to the fifth decimal place and mean that they were 0%. Furthermore, Table 2 shows Fn1 and Fn2 determined from the chemical composition shown in Table 1 and the above definition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記溶鋼を用いてインゴットを製造した。インゴットを熱間圧延して、板厚20mmの鋼板を製造した。熱間圧延後、常温まで冷却した各試験番号の鋼板に対して、焼入れ及び焼戻しを実施した。焼入れ工程では、中温加熱工程及び高温加熱工程を実施した後、急冷工程を実施した。具体的には、各試験番号の鋼板に対して、表2の「中温加熱工程」欄に記載の加熱温度(℃)で、保持時間(分)だけ保持した。さらに、各試験番号の鋼板に対して、表2の「高温加熱工程」欄に記載の加熱温度(℃)で20分だけ保持した後、シャワー水冷による急冷を実施した。なお、各試験番号において、焼入れ時冷却速度CR800-500は、いずれも300~800℃/分の範囲内であった。また、表2に記載の加熱温度(℃)は、鋼板を加熱した熱処理炉の温度(℃)とした。さらに、表2に記載の保持時間(分)は、鋼板を加熱温度で保持した時間(分)とした。 An ingot was manufactured using the above molten steel. The ingot was hot rolled to produce a steel plate with a thickness of 20 mm. After hot rolling, the steel plates of each test number were cooled to room temperature and then quenched and tempered. In the quenching process, a medium-temperature heating process and a high-temperature heating process were performed, followed by a rapid cooling process. Specifically, the steel plates of each test number were held at the heating temperature (° C.) listed in the “medium temperature heating step” column of Table 2 for the holding time (minutes). Further, the steel plates of each test number were held at the heating temperature (°C) listed in the "High Temperature Heating Step" column of Table 2 for 20 minutes, and then rapidly cooled with shower water. In each test number, the cooling rate CR 800-500 during quenching was within the range of 300 to 800°C/min. Moreover, the heating temperature (°C) listed in Table 2 was the temperature (°C) of the heat treatment furnace in which the steel plate was heated. Further, the holding time (minutes) listed in Table 2 was the time (minutes) during which the steel plate was held at the heating temperature.
 得られた各試験番号の鋼板に対して、焼戻しを実施した。具体的には、各試験番号の鋼板を、表2の「焼戻し工程」欄に記載の焼戻し温度(℃)で保持時間(分)だけ保持する焼戻しを実施した。ここで、表2に記載の焼戻し温度(℃)は、鋼板を加熱した焼戻し炉の温度(℃)とした。さらに、表2に記載の保持時間(分)は、鋼板を焼戻し温度で保持した時間(分)とした。以上の製造工程により、各試験番号の鋼板を得た。 Tempering was performed on the obtained steel plates of each test number. Specifically, the steel plates of each test number were tempered by holding them at the tempering temperature (° C.) listed in the “Tempering Step” column of Table 2 for the holding time (minutes). Here, the tempering temperature (°C) listed in Table 2 was the temperature (°C) of the tempering furnace in which the steel plate was heated. Furthermore, the holding time (minutes) listed in Table 2 was the time (minutes) during which the steel plate was held at the tempering temperature. Through the above manufacturing process, steel plates of each test number were obtained.
 [評価試験]
 得られた各試験番号の鋼板に対して、以下に説明する引張試験、Mo系MX型析出物の個数密度測定試験、及び、破壊靭性試験を実施した。
[Evaluation test]
A tensile test, a Mo-based MX precipitate number density measurement test, and a fracture toughness test, which will be described below, were conducted on the steel plates of each test number obtained.
 [引張試験]
 各試験番号の鋼板に対して、引張試験を実施して、降伏強度及び引張強度を求めた。引張試験はASTM E8/E8M(2021)に準拠して行った。具体的に、各試験番号の鋼板の板厚中央位置から、平行部径が6mm、標点距離が30mmの丸棒引張試験片を作製した。丸棒引張試験片の長手方向は、鋼板の圧延方向と平行であった。作製した丸棒引張試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、各試験番号の鋼板の降伏強度(MPa)を得た。なお、本実施例では、引張試験で得られた0.6%全伸び耐力を、降伏強度と定義した。また、一様伸び中の最大応力を引張強度(MPa)と定義した。各試験番号について、得られた降伏強度を「YS(MPa)」として、得られた引張強度を「TS(MPa)」として表3に示す。
[Tensile test]
A tensile test was performed on the steel plate of each test number to determine the yield strength and tensile strength. The tensile test was conducted in accordance with ASTM E8/E8M (2021). Specifically, a round bar tensile test piece with a parallel portion diameter of 6 mm and a gage length of 30 mm was prepared from the thickness center position of the steel plate of each test number. The longitudinal direction of the round bar tensile test piece was parallel to the rolling direction of the steel plate. Using the produced round bar tensile test pieces, a tensile test was conducted at room temperature (25° C.) in the atmosphere to obtain the yield strength (MPa) of the steel plate of each test number. In this example, the 0.6% total elongation yield strength obtained in the tensile test was defined as the yield strength. Further, the maximum stress during uniform elongation was defined as tensile strength (MPa). Table 3 shows the obtained yield strength as "YS (MPa)" and the obtained tensile strength as "TS (MPa)" for each test number.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [Mo系MX型析出物の個数密度測定試験]
 各試験番号の鋼板に対して、Mo系MX型析出物の個数密度測定試験を実施して、Mo系MX型析出物の個数密度を求めた。具体的に、各試験番号の鋼板の板厚中央位置から、ミクロ試験片を作製した。得られたミクロ試験片を用いて、上述の方法でレプリカ膜を作製し、レプリカ膜をTEMで観察した。TEM観察の条件は、観察倍率を10万倍、加速電圧を200kV、観察視野の大きさを2.0μm×3.0μmとした。観察視野において、上述の方法で、円相当径が100nm以下の粒子を特定した。特定された円相当径が100nm以下の粒子に対して、上述の方法でEDSによる点分析を実施した。EDSの点分析によって定量されたMo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50超~70質量%の粒子を、Mo系MX型析出物と定義した。各観察視野で特定されたMo系MX型析出物の総個数と、観察視野の総面積とに基づき、Mo系MX型析出物の個数密度(個/μm2)を求めた。各試験番号について、得られたMo系MX型析出物の個数密度(個/μm2)を表3に示す。
[Number density measurement test of Mo-based MX type precipitates]
A test for measuring the number density of Mo-based MX-type precipitates was performed on the steel plates of each test number to determine the number density of Mo-based MX-type precipitates. Specifically, a micro test piece was prepared from the center position of the thickness of the steel plate of each test number. A replica film was prepared using the obtained micro test piece by the method described above, and the replica film was observed using a TEM. The conditions for TEM observation were as follows: observation magnification was 100,000 times, acceleration voltage was 200 kV, and observation field size was 2.0 μm×3.0 μm. In the observation field, particles with an equivalent circular diameter of 100 nm or less were identified using the method described above. Point analysis by EDS was performed on the identified particles having an equivalent circle diameter of 100 nm or less using the method described above. When the total content of Mo, Nb, V, and Ti determined by EDS point analysis is defined as 100% by mass, particles with a Mo content of more than 50 to 70% by mass are classified as Mo-based MX-type precipitates. It was defined as The number density (pieces/μm 2 ) of Mo-based MX-type precipitates was determined based on the total number of Mo-based MX-type precipitates identified in each observation field and the total area of the observation field. Table 3 shows the number density (pieces/μm 2 ) of the Mo-based MX type precipitates obtained for each test number.
 [破壊靭性試験]
 各試験番号の鋼板に対して、破壊靭性試験を実施して、CTOD値を求めた。具体的に、各試験番号の鋼板の板厚中央位置から、図2Aに示されるSENB試験片を作製した。SENB試験片の長手方向は、鋼板の圧延方向と平行であった。SENB試験片の幅W方向は、鋼板の板幅方向と平行であった。図2A及び図2Bに示されるように、SENB試験片には、機械加工によって幅W方向に8mmの深さのノッチが形成されていた。SENB試験片のノッチ先端に、2mmの疲労予き裂を導入した。このとき、疲労試験は室温(24±3℃)で実施した。
[Fracture toughness test]
A fracture toughness test was performed on the steel plate of each test number, and the CTOD value was determined. Specifically, SENB test pieces shown in FIG. 2A were prepared from the center position of the thickness of the steel plates of each test number. The longitudinal direction of the SENB test piece was parallel to the rolling direction of the steel plate. The width W direction of the SENB test piece was parallel to the width direction of the steel plate. As shown in FIGS. 2A and 2B, a notch with a depth of 8 mm in the width W direction was formed in the SENB specimen by machining. A 2 mm fatigue pre-crack was introduced at the notch tip of the SENB specimen. At this time, the fatigue test was conducted at room temperature (24±3°C).
 疲労予き裂が導入されたSENB試験片に対して、ISO 12135(2021)に準拠して、常温(25℃)にてCTOD試験を実施した。CTOD試験によって得られた、荷重-開口量曲線における破断時の荷重と、クリップゲージ開口変位の塑性成分量とから、ISO 12135(2021)に基づき、CTOD値(mm)を求めた。本実施例では、CTOD試験における荷重負荷速度を20.94kN/分、ヤング率を212000MPaとした。なお、同様の試験を3回実施して、最小のCTOD値(mm)を、鋼材のCTOD値(mm)と定義した。各試験番号について、得られたCTOD値(mm)を表3に示す。 A CTOD test was conducted at room temperature (25°C) in accordance with ISO 12135 (2021) on the SENB test piece in which fatigue pre-crack was introduced. The CTOD value (mm) was determined based on ISO 12135 (2021) from the load at break in the load-opening amount curve obtained by the CTOD test and the amount of plastic component of the clip gauge opening displacement. In this example, the load application rate in the CTOD test was 20.94 kN/min, and the Young's modulus was 212,000 MPa. The same test was conducted three times, and the minimum CTOD value (mm) was defined as the CTOD value (mm) of the steel material. Table 3 shows the CTOD values (mm) obtained for each test number.
 [試験結果]
 表3に試験結果を示す。
[Test results]
Table 3 shows the test results.
 表1-1、表1-2、表2、及び、表3を参照して、試験番号1~16の鋼板の化学組成は適切であり、降伏強度が862MPa以上(125ksi以上)であった。これらの鋼板はさらに、Fn1が12.0以下であり、Fn2が0.05~0.80であった。これらの鋼板はさらに、Mo系MX型析出物の個数密度が20個/μm2以上であった。その結果、これらの鋼板は、CTOD値が0.11mm以上となり、優れた破壊靭性を示した。 Referring to Table 1-1, Table 1-2, Table 2, and Table 3, the chemical compositions of the steel plates of test numbers 1 to 16 were appropriate, and the yield strength was 862 MPa or more (125 ksi or more). Furthermore, these steel plates had Fn1 of 12.0 or less and Fn2 of 0.05 to 0.80. Furthermore, these steel plates had a number density of Mo-based MX type precipitates of 20 pieces/μm 2 or more. As a result, these steel plates had a CTOD value of 0.11 mm or more and exhibited excellent fracture toughness.
 一方、試験番号17の鋼板は、中温加熱工程の保持時間が短すぎた。その結果、この鋼板は、Mo系MX型析出物の個数密度が20個/μm2未満となった。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 On the other hand, for the steel plate of test number 17, the holding time in the medium temperature heating step was too short. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/μm 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号18の鋼板は、中温加熱工程の加熱温度が低すぎた。その結果、この鋼板は、Mo系MX型析出物の個数密度が20個/μm2未満となった。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 In the steel plate of test number 18, the heating temperature in the medium temperature heating step was too low. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/μm 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号19の鋼板は、中温加熱工程の加熱温度が高すぎた。その結果、この鋼板は、Mo系MX型析出物の個数密度が20個/μm2未満となった。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 For the steel plate of test number 19, the heating temperature in the medium temperature heating step was too high. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/μm 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号20の鋼板は、Fn2が高すぎた。その結果、この鋼板は、Mo系MX型析出物の個数密度が20個/μm2未満となった。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 The steel plate of test number 20 had too high Fn2. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/μm 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号21の鋼板は、Ti、Nb、及び、Vをいずれも含有せず、さらにFn2が低すぎた。その結果、この鋼板は、Mo系MX型析出物の個数密度が20個/μm2未満となった。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 The steel plate of Test No. 21 contained neither Ti, Nb, nor V, and furthermore, Fn2 was too low. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/μm 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号22の鋼板は、Mo含有量が低すぎた。その結果、この鋼板は、Mo系MX型析出物の個数密度が20個/μm2未満となった。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 The steel plate of test number 22 had too low Mo content. As a result, this steel plate had a number density of Mo-based MX type precipitates of less than 20 pieces/μm 2 . As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号23の鋼板は、Mn含有量が高すぎ、Fn1が高すぎた。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 The steel plate of test number 23 had too high Mn content and too high Fn1. As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 試験番号24の鋼板は、Fn1が高すぎた。その結果、この鋼板は、CTOD値が0.11mm未満となり、優れた破壊靭性を示さなかった。 The steel plate of test number 24 had too high Fn1. As a result, this steel plate had a CTOD value of less than 0.11 mm, and did not exhibit excellent fracture toughness.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiments of the present disclosure have been described above. However, the embodiments described above are merely examples for implementing the present disclosure. Therefore, the present disclosure is not limited to the embodiments described above, and the embodiments described above can be modified and implemented as appropriate without departing from the spirit thereof.

Claims (3)

  1.  鋼材であって、
     質量%で、
     C:0.10~0.45%、
     Si:1.00%以下、
     Mn:0.01~1.00%、
     P:0.050%以下、
     S:0.0050%以下、
     Al:0.001~0.100%、
     Cr:0.1~2.0%、
     Mo:0.20~2.00%、
     N:0.010%以下、
     W:0~0.50%、
     Co:0~0.50%、
     Ni:0~0.50%、
     希土類元素:0~0.020%、
     Cu:0~0.50%、及び、
     B:0~0.0100%を含有し、
     Ca:0.0005~0.0200%、及び、
     Mg:0.0005~0.0200%からなる群から選択される1元素以上を含有し、
     Ti:0.001~0.300%、
     Nb:0.001~0.300%、及び、
     V:0.01~0.50%からなる群から選択される1元素以上を含有し、
     残部がFe及び不純物からなり、
     式(1)及び式(2)を満たし、
     降伏強度が862MPa以上であり、
     前記鋼材中において、
     円相当径が100nm以下であって、
     Mo、Nb、V、及び、Tiの総含有量を100質量%と定義したとき、Mo含有量が50質量%を超えるMX型析出物の個数密度が20個/μm2以上である、
     鋼材。
     Mn×Sp≦12.0 (1)
     0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
     ここで、式(1)中の「Mn」には、Mn含有量が質量%で代入され、「Sp」には、S含有量がppmで代入される。式(2)中の元素記号には、対応する元素の含有量が質量%で代入される。なお、対応する元素が含有されない場合、当該元素記号には「0」が代入される。
    A steel material,
    In mass%,
    C: 0.10-0.45%,
    Si: 1.00% or less,
    Mn: 0.01-1.00%,
    P: 0.050% or less,
    S: 0.0050% or less,
    Al: 0.001-0.100%,
    Cr: 0.1-2.0%,
    Mo: 0.20-2.00%,
    N: 0.010% or less,
    W: 0-0.50%,
    Co: 0 to 0.50%,
    Ni: 0 to 0.50%,
    Rare earth elements: 0 to 0.020%,
    Cu: 0 to 0.50%, and
    B: Contains 0 to 0.0100%,
    Ca: 0.0005 to 0.0200%, and
    Contains one or more elements selected from the group consisting of Mg: 0.0005 to 0.0200%,
    Ti: 0.001-0.300%,
    Nb: 0.001 to 0.300%, and
    V: Contains one or more elements selected from the group consisting of 0.01 to 0.50%,
    The remainder consists of Fe and impurities,
    satisfies formula (1) and formula (2),
    The yield strength is 862 MPa or more,
    In the steel material,
    The equivalent circle diameter is 100 nm or less,
    When the total content of Mo, Nb, V, and Ti is defined as 100% by mass, the number density of MX type precipitates with a Mo content of more than 50% by mass is 20 pieces/μm 2 or more,
    Steel material.
    Mn×Sp≦12.0 (1)
    0.05≦7×Ti+2×Nb+3×V≦0.80 (2)
    Here, the Mn content is substituted in mass % for "Mn" in formula (1), and the S content is substituted in ppm for "Sp". The content of the corresponding element in mass % is substituted for the element symbol in formula (2). Note that when the corresponding element is not contained, "0" is substituted for the element symbol.
  2.  請求項1に記載の鋼材であって、
     W:0.01~0.50%、
     Co:0.01~0.50%、
     Ni:0.01~0.50%、
     希土類元素:0.001~0.020%、
     Cu:0.01~0.50%、及び、
     B:0.0001~0.0100%からなる群から選択される1元素以上を含有する、
     鋼材。
    The steel material according to claim 1,
    W: 0.01-0.50%,
    Co: 0.01 to 0.50%,
    Ni: 0.01-0.50%,
    Rare earth elements: 0.001-0.020%,
    Cu: 0.01 to 0.50%, and
    B: Contains one or more elements selected from the group consisting of 0.0001 to 0.0100%,
    Steel material.
  3.  請求項1又は請求項2に記載の鋼材であって、
     前記鋼材は油井用鋼管である、
     鋼材。
    The steel material according to claim 1 or claim 2,
    The steel material is a steel pipe for oil wells,
    Steel material.
PCT/JP2023/014113 2022-04-06 2023-04-05 Steel material WO2023195494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023537332A JP7417181B1 (en) 2022-04-06 2023-04-05 steel material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022063428 2022-04-06
JP2022-063428 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023195494A1 true WO2023195494A1 (en) 2023-10-12

Family

ID=88243011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014113 WO2023195494A1 (en) 2022-04-06 2023-04-05 Steel material

Country Status (2)

Country Link
JP (1) JP7417181B1 (en)
WO (1) WO2023195494A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094169A (en) * 2009-10-27 2011-05-12 Kobe Steel Ltd Case hardening steel having excellent crystal grain coarsening prevention characteristic
JP2012197507A (en) * 2011-02-07 2012-10-18 Dalmine Spa High-strength steel pipe having excellent toughness at low temperature and sulfide stress corrosion cracking resistance
WO2016035316A1 (en) * 2014-09-04 2016-03-10 新日鐵住金株式会社 Thick-walled steel pipe for oil well and method of manufacturing same
WO2019167945A1 (en) * 2018-02-28 2019-09-06 日本製鉄株式会社 Steel material suitable for use in sour environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094169A (en) * 2009-10-27 2011-05-12 Kobe Steel Ltd Case hardening steel having excellent crystal grain coarsening prevention characteristic
JP2012197507A (en) * 2011-02-07 2012-10-18 Dalmine Spa High-strength steel pipe having excellent toughness at low temperature and sulfide stress corrosion cracking resistance
WO2016035316A1 (en) * 2014-09-04 2016-03-10 新日鐵住金株式会社 Thick-walled steel pipe for oil well and method of manufacturing same
WO2019167945A1 (en) * 2018-02-28 2019-09-06 日本製鉄株式会社 Steel material suitable for use in sour environment

Also Published As

Publication number Publication date
JP7417181B1 (en) 2024-01-18
JPWO2023195494A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
US9188252B2 (en) Ultra high strength steel having good toughness
JP6859835B2 (en) Seamless steel pipe for steel materials and oil wells
WO2018181404A1 (en) Martensitic stainless steel material
WO2020067247A1 (en) Martensitic stainless steel material
US10246765B2 (en) Martensitic Cr-containing steel and oil country tubular goods
WO2011136175A1 (en) High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
JP7425360B2 (en) Martensitic stainless steel material and method for producing martensitic stainless steel material
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
WO2016132403A1 (en) High-strength seamless thick-walled steel pipe and process for producing same
WO2018139400A1 (en) Steel material, and steel material manufacturing method
WO2021039431A1 (en) Steel material suitable for use in sour environment
WO2017150251A1 (en) Steel material and steel pipe for use in oil well
JP6672620B2 (en) Stainless steel for oil well and stainless steel tube for oil well
CN108431246B (en) Method for producing stainless steel pipe for oil well and stainless steel pipe for oil well
JP6981527B2 (en) Steel material suitable for use in sour environment
JP6315076B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
JP7211554B2 (en) Steel suitable for use in sour environments
JP7417181B1 (en) steel material
JP7417180B1 (en) steel material
JP7564499B1 (en) Steel
JP7364993B1 (en) steel material
WO2023204294A1 (en) Steel material
JP2024125075A (en) Steel
WO2023195361A1 (en) Martensite stainless steel material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023537332

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784778

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024019677

Country of ref document: BR