Nothing Special   »   [go: up one dir, main page]

WO2023195487A1 - 半導体装置および過電流保護装置 - Google Patents

半導体装置および過電流保護装置 Download PDF

Info

Publication number
WO2023195487A1
WO2023195487A1 PCT/JP2023/014095 JP2023014095W WO2023195487A1 WO 2023195487 A1 WO2023195487 A1 WO 2023195487A1 JP 2023014095 W JP2023014095 W JP 2023014095W WO 2023195487 A1 WO2023195487 A1 WO 2023195487A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
gate
sense
current
igbt
Prior art date
Application number
PCT/JP2023/014095
Other languages
English (en)
French (fr)
Inventor
茂樹 佐藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112023000181.2T priority Critical patent/DE112023000181T5/de
Priority to JP2024514291A priority patent/JPWO2023195487A1/ja
Priority to CN202380013539.8A priority patent/CN117981224A/zh
Publication of WO2023195487A1 publication Critical patent/WO2023195487A1/ja
Priority to US18/602,638 priority patent/US20240219449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • G01R31/2617Circuits therefor for testing bipolar transistors for measuring switching properties thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking

Definitions

  • the present invention relates to a semiconductor device and an overcurrent protection device.
  • next-generation semiconductors such as silicon carbide compound semiconductor (SiC) devices and gallium nitride compound semiconductor (GaN) devices have been developed as next-generation technology for IGBT (Insulated Gate Bipolar Transistor), which is a power semiconductor device. Development of the device is progressing.
  • SiC silicon carbide compound semiconductor
  • GaN gallium nitride compound semiconductor
  • a technique has been proposed in which overcurrent detection is performed using a circuit in which a voltage dividing resistor is placed between the gate of a main IGBT and the gate of a sense IGBT (Patent Document 1). Furthermore, a technology has been proposed in which a transient sense period of a sense current detection signal is detected in response to turn-on of a semiconductor element, and the semiconductor element is controlled based on the sense current detection signal in the transient sense period (Patent Document 2). Furthermore, a technique has been proposed to prevent erroneous detection of overcurrent by applying a gate signal to the gate of the sense element to instruct conduction earlier than that of the main element (Patent Document 3).
  • a semiconductor device called an IPS Intelligent Power Switch
  • IPS Intelligent Power Switch
  • main IGBT which is a power semiconductor element for load operation
  • sense IGBT which is a power semiconductor element for current monitoring, which flows a sense current proportional to the current flowing through the main IGBT.
  • the IPS also includes an overcurrent detection circuit that detects overcurrent of the main IGBT using a sense current detection signal (sense current detection signal).
  • Patent Document 1 uses a voltage dividing resistor to control the gate voltage of the main IGBT and the gate voltage of the sense IGBT to different values. ing.
  • FIG. 6 is a diagram showing the configuration of a conventional semiconductor device equipped with a voltage dividing resistor.
  • the semiconductor device 2 includes a main IGBT 101, a sense IGBT 102, and a voltage dividing circuit 2c, as described in Patent Document 1.
  • Voltage dividing circuit 2c includes resistors Rdiv11 and Rdiv12.
  • the collector of the main IGBT 101 and the collector of the sense IGBT 102 are connected to the terminal C.
  • a sense emitter of the sense IGBT 102 is connected to the terminal SE.
  • the gate of main IGBT101 is connected to terminal G and one end of resistor Rdiv11.
  • the other end of the resistor Rdiv11 is connected to the gate of the sense IGBT 102 and one end of the resistor Rdiv12.
  • the other end of the resistor Rdiv12 is connected to the emitter of the main IGBT 101 and the terminal E.
  • a resistor Rdiv11 is arranged between the gate of the main IGBT 101 and the gate of the sense IGBT 102, and a resistor Rdiv12 is arranged between the gate of the sense IGBT 102 and the emitter of the main IGBT 101.
  • the voltage applied to the gate of the sense IGBT 102 is lower than that of the main IGBT 101 so that the currents of the main IGBT 101 and the sense IGBT 102 rise simultaneously, thereby suppressing current concentration to the sense IGBT 102.
  • the IGBT 100 since the IGBT 100 has a gate wiring, the effective voltage applied to the gate of the IGBT 100 is lower than the gate voltage output from the gate driver. Furthermore, in the semiconductor device 2, the other end of the resistor Rdiv12 is connected to the emitter side of the main IGBT 101, which has a larger voltage drop than the sense emitter side of the sense IGBT 102.
  • an object of the present invention is to provide a semiconductor device and an overcurrent protection device that can charge the gates of a power semiconductor element for load operation and a power semiconductor element for current monitoring with an appropriate voltage. .
  • the semiconductor device includes an output element, a current monitor element, and a voltage divider circuit.
  • the output element switches based on the drive signal to operate the load.
  • the current monitor element monitors the current flowing through the output element.
  • the voltage divider circuit is connected between the gate of the output element and the sense emitter of the current monitor element, and divides the voltage of the drive signal applied to the gate of the output element and applies it to the gate of the current monitor element.
  • the overcurrent protection device includes an output element, a current monitoring element, a voltage dividing circuit, a control circuit, a current detection resistor, and an overcurrent detection circuit.
  • the output element is connected to a power supply voltage through a power supply terminal, connected to a load through an output terminal, and operates the load by switching based on a drive signal.
  • the current monitor element monitors the current flowing through the output element.
  • the voltage divider circuit is connected between the gate of the output element and the sense emitter of the current monitor element, and divides the voltage of the drive signal applied to the gate of the output element and applies the divided voltage to the gate of the current monitor element.
  • the control circuit outputs a drive signal to control switching of the output element.
  • the current detection resistor outputs the sense current output from the current monitor element as a voltage sense current detection signal.
  • the overcurrent detection circuit detects an overcurrent state of the output element by comparing the sense current detection signal with a reference voltage.
  • FIG. 2 is a diagram for explaining an example of a semiconductor device.
  • 1 is a diagram illustrating an example of the configuration of a semiconductor device including an overcurrent protection circuit. It is a figure which shows an example of a simulation waveform. It is a figure which shows an example of a simulation waveform. It is a figure showing an example of composition of an overcurrent protection device. 1 is a diagram showing the configuration of a conventional semiconductor device including a voltage dividing resistor.
  • FIG. 1 is a diagram for explaining an example of a semiconductor device.
  • the semiconductor device 1 includes an output element 1a, a current monitor element 1b, and a voltage dividing circuit 1c.
  • Voltage dividing circuit 1c includes a resistor Rdiv1 (first resistor) and a resistor Rdiv2 (second resistor).
  • the output element 1a and the current monitor element 1b are, for example, an IGBT or an RC (Reverse Conducting)-IGBT in which an IGBT and an FWD (Free Wheeling Diode) are integrated into one chip.
  • a SiC (Silicon carbide) device may be used.
  • SiC devices include SiC-MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) and the like.
  • the output element will be referred to as a main IGBT, and the current monitor element will be referred to as a sense IGBT.
  • the collector of the main IGBT 1a and the collector of the sense IGBT 1b are connected to the power supply voltage Vcc via the terminal C.
  • the emitter of the main IGBT 1a is connected to the load 3 via a terminal E.
  • the gate of the main IGBT1a is connected to the terminal G and one end of the resistor Rdiv1.
  • the other end of the resistor Rdiv1 is connected to the gate of the sense IGBT1b and one end of the resistor Rdiv2.
  • the other end of the resistor Rdiv2 is connected to the sense emitter of the sense IGBT1b and the terminal SE.
  • the main IGBT 1a operates the load 3 by switching based on the drive signal s0.
  • the main IGBT 1a when there is an instruction to turn on the main IGBT 1a by the drive signal s0, the main IGBT 1a is turned on and current flows from the collector to the emitter.
  • the sense IGBT1b is an element that monitors the current of the main IGBT1a, and when there is an instruction to turn on the main IGBT1a by the drive signal s0, it directs a sense current proportional to the current flowing through the main IGBT1a from the collector to the sense emitter. Flow.
  • the voltage dividing circuit 1c is connected between the gate of the main IGBT 1a and the sense emitter of the sense IGBT 1b, and divides the voltage of the drive signal s0 applied to the gate of the main IGBT 1a and applies it to the gate of the sense IGBT 1b.
  • the main IGBT1a and the sense IGBT1b included in the semiconductor device 1 are formed on the same semiconductor substrate, and the resistors Rdiv1 and Rdiv2 are formed of polysilicon, for example, on the semiconductor substrate on which the main IGBT1a and the sense IGBT1b are formed. Further, the semiconductor device 1 is formed into one chip including these constituent elements.
  • the voltage of the drive signal s0 input from the terminal G is directly supplied to the gate terminal of the main IGBT1a, and the voltage obtained by dividing the gate voltage by the resistors Rdiv1 and Rdiv2 is supplied to the gate terminal of the sense IGBT1b. .
  • the rise of the current of the sense IGBT 1b is delayed from the rise of the current of the main IGBT 1a. .
  • the current in the sense IGBT 1b does not rise first and cause current concentration in the sense IGBT 1b, and the transient sense current is suppressed.
  • the delay in the rise of the current of the sense IGBT 1b is set by the voltage division ratio determined by the resistance values of the resistors Rdiv1 and Rdiv2.
  • the resistance values of the resistors Rdiv1 and Rdiv2 are adjusted, for example, so that the rise of the current in the sense IGBT 1b coincides with the rise of the current in the main IGBT 1a.
  • Such adjustment of the voltage division ratio can be performed by using a trimming method such as laser trimming of the resistor Rdiv1 or the resistor Rdiv2 or both.
  • the other end of the resistor Rdiv12 is connected to the emitter of the main IGBT 101, whereas in the semiconductor device 1 of the present invention, the other end of the resistor Rdiv2 is connected to the sense emitter of the sense IGBT1b. It is connected to the.
  • the flow of gate current output from the gate driver toward the voltage dividing resistor side can be suppressed compared to the configuration of the semiconductor device 2. Therefore, it becomes possible to charge the gates of the main IGBT 1a and the sense IGBT 1b with an appropriate voltage, and the configuration of the semiconductor device 1 can also improve proper charging of the gates of the main IGBT 1a and the sense IGBT 1b.
  • FIG. 2 is a diagram showing an example of the configuration of a semiconductor device including an overcurrent protection circuit.
  • the semiconductor device 1-1 includes a main IGBT 1a, a sense IGBT 1b, a voltage dividing circuit 1c, and an overcurrent protection circuit 10.
  • the overcurrent protection circuit 10 includes a resistor Rs (current detection resistor) and an overcurrent detection circuit 11.
  • One end of the resistor Rs is connected to the sense emitter of the sense IGBT 1b, the other end of the resistor Rdiv2, and the input end of the overcurrent detection circuit 11, and the other end of the resistor Rs is connected to the emitter of the main IGBT 1a and the load 3.
  • a sense current detection signal Vsense which is the sense current output from the sense IGBT 1b converted into a voltage, is output from one end of the resistor Rs. Further, the overcurrent detection circuit 11 detects an overcurrent state of the main IGBT 1a by comparing the sense current detection signal Vsense with a reference voltage.
  • the gate of the sense IGBT 1b is connected between the gate of the main IGBT 1a and the sense emitter of the sense IGBT 1b, and the voltage of the drive signal s0 applied to the gate of the main IGBT 1a is divided. It has a voltage dividing circuit 1c that applies voltage to the voltage. This makes it possible to charge the gates of the main IGBT 1a and the sense IGBT 1b with appropriate voltages, so that the main IGBT 1a and the sense IGBT 1b can be driven with high accuracy, and it is possible to prevent erroneous overcurrent detection.
  • the resistor Rs since a discrete component is generally used for the resistor Rs, there is a high degree of freedom in setting the constant, and there is less area restriction when mounting it inside the IGBT chip.
  • the resistance values of the resistors Rdiv1 and Rdiv2 can be added to the resistance value of the resistor Rs. Therefore, even if there is no area in the IGBT chip to provide resistors Rdiv1 and Rdiv2 having a predetermined combined resistance value or more, the resistor Rs can be used in place of the resistors Rdiv1 and Rdiv2.
  • the timing at which the currents of the main IGBT1a and the sense IGBT1b rise can be adjusted, and the overcurrent detection of the main IGBT1a by the sense IGBT1b is performed in real time without delay. be able to.
  • the semiconductor device 1 has a configuration in which the other end of the resistor Rdiv2 is connected to the sense emitter of the sense IGBT1b to suppress the flow of the gate current output from the gate driver to the voltage dividing resistor side. .
  • the combined resistance value of the resistors Rdiv1 and Rdiv2 is, for example, 10 ⁇ or more.
  • FIG. 3 is a diagram showing an example of a simulation waveform.
  • 7 shows simulation waveforms of collector current Ic and gate voltage Vge for semiconductor device 2 shown in FIG. 6.
  • the left vertical axis represents the collector current Ic (A) of the main IGBT 101
  • the right vertical axis represents the gate voltage Vge (V) of the main IGBT 101
  • the horizontal axis represents time (s). Note that the combined resistance value of the resistor Rdiv11 and the resistor Rdiv12 of the semiconductor device 2 is set to be less than 10 ⁇ .
  • FIG. 4 is a diagram showing an example of a simulation waveform.
  • 2 shows simulation waveforms of collector current Ic and gate voltage Vge for semiconductor device 1 of the present invention shown in FIG. 1.
  • FIG. The left vertical axis represents the collector current Ic (A) of the main IGBT 1a
  • the right vertical axis represents the gate voltage Vge (V) of the main IGBT 1a
  • the horizontal axis represents time (s). Note that the combined resistance value of the resistor Rdiv1 and the resistor Rdiv2 of the semiconductor device 1 is set to 10 ⁇ or more.
  • [Waveform k1] This is the gate voltage Vge of the main IGBT 1a. Turn-on of the IGBT 1a starts at time t1, and turn-off of the IGBT 1a starts at time t2.
  • [Waveform k2] This is the collector current Ic of the main IGBT 1a. Since the IGBT 1a is turned on at time t1, the collector current Ic flows and is maintained at a constant value, and then at the time t2, the IGBT 1a is turned off and the collector current Ic decreases.
  • the appropriate value of the level of gate voltage applied to the main IGBT is 15V.
  • the gate current output from the gate driver flows to the voltage dividing resistor side and an appropriate voltage is not applied to the gate, so the gate voltage does not reach 15V as shown in the simulation waveform of FIG. do not have.
  • the semiconductor device 1 of the present invention since the flow of the gate current output from the gate driver to the voltage dividing resistor side is suppressed, an appropriate voltage is applied to the gate, and as shown in FIG. As shown in the simulation waveform, the gate voltage has reached 15V.
  • FIG. 5 is a diagram showing an example of the configuration of an overcurrent protection device.
  • the overcurrent protection device 10-1 includes an input terminal IN, an output terminal OUT, a power supply terminal VT, and a ground terminal GND.
  • a pulse-like control signal output from a microcomputer or the like is input to the input terminal IN.
  • a load 3 is connected to the output terminal OUT.
  • a power supply voltage Vcc is connected to the power supply terminal VT, and a ground (GND) is connected to the ground terminal GND.
  • the overcurrent protection device 10-1 includes a main IGBT 1a, a sense IGBT 1b, a voltage dividing circuit 1c, a resistor Rs (current detection resistor), an overcurrent detection circuit 11, and a control circuit 12.
  • Control circuit 12 includes a logic circuit 12a and a gate driver 12b.
  • the logic circuit 12a receives a control signal input through the input terminal IN and generates a logic signal that turns on or off the main IGBT 1a.
  • the gate driver 12b generates a drive signal s0 for turning on or off the main IGBT 1a based on the logic signal output from the logic circuit 12a, and applies it to the gate of the main IGBT 1a.
  • the resistor Rs is connected between the sense emitter of the sense IGBT 1b and the emitter of the main IGBT 1a, and detects the potential generated when the sense current flowing from the sense emitter flows through the resistor Rs. Thereby, the sense current is detected as a sense current detection signal Vsense.
  • the overcurrent detection circuit 11 detects whether the main IGBT 1a is in an overcurrent state by comparing the sense current detection signal Vsense with a reference voltage, and outputs an overcurrent detection signal s1 when an overcurrent state is detected. do.
  • the logic circuit 12a detects the overcurrent detection signal s1, it turns off the main IGBT 1a.
  • the overcurrent protection device 10-1 having the configuration of the semiconductor device 1 of FIG. It has a voltage dividing circuit 1c that divides the voltage of the signal s0 and applies it to the gate of the sense IGBT 1b.
  • the voltage dividing circuit 1c is connected between the gate of the main IGBT 1a and the sense emitter of the sense IGBT 1b, and divides the voltage of the drive signal s0 applied to the gate of the main IGBT 1a. The voltage is applied to the gate of the sense IGBT 1b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)

Abstract

負荷作動用パワー半導体素子および電流モニタ用パワー半導体素子のゲートを適正な電圧で充電する。 メインIGBT(1a)とセンスIGBT(1b)のコレクタは、端子(C)を介して電源電圧に接続される。メインIGBT(1a)のエミッタは、端子(E)を介して負荷(3)に接続される。分圧回路(1c)は、メインIGBT(1a)のゲートとセンスIGBT(1b)のセンスエミッタとの間に接続され、メインIGBT(1a)のゲートに印加される駆動信号(s0)の電圧を分圧してセンスIGBT(1b)のゲートに印加する。メインIGBT(1a)のゲートは、端子(G)および抵抗(Rdiv1)の一端に接続される。抵抗(Rdiv1)の他端は、センスIGBT(1b)のゲートおよび抵抗(Rdiv2)の一端に接続される。抵抗(Rdiv2)の他端は、センスIGBT(1b)のセンスエミッタおよび端子(SE)に接続される。

Description

半導体装置および過電流保護装置
 本発明は、半導体装置および過電流保護装置に関する。
 近年、パワー半導体素子であるIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)の次世代技術として、シリコンカーバイド化合物半導体(SiC:Silicon carbide)素子、窒化ガリウム化合物半導体(GaN)素子等の次世代半導体素子の開発が進められている。
 関連技術としては、例えば、メインIGBTのゲートとセンスIGBTのゲートとの間に分圧抵抗を配置した回路で過電流検出を行う技術が提案されている(特許文献1)。また、半導体素子のターンオンに応じてセンス電流の検出信号の過渡センス期間を検出し、過渡センス期間におけるセンス電流の検出信号にもとづいて、半導体素子の制御を行う技術が提案されている(特許文献2)。さらに、センス素子のゲートにメイン素子より早く導通を指示するゲート信号を与えて過電流の誤検出を防ぐ技術が提案されている(特許文献3)。
特開2020-14103号公報 国際公開第2018/211840号 国際公開第2014/097739号
 IPS(Intelligent Power Switch)と呼ばれる半導体装置は、負荷作動用のパワー半導体素子であるメインIGBTと、メインIGBTを流れる電流に比例するセンス電流を流す電流モニタ用パワー半導体素子であるセンスIGBTとを備えている。また、IPSは、センス電流の検出信号(センス電流検出信号)により、メインIGBTの過電流検出を行う過電流検出回路を備えている。
 このようなIPSでは、メインIGBTおよびセンスIGBTのゲート端子に同一の駆動信号が入力されると、メイン電流およびセンス電流は、理想的には、同じタイミングで流れ始める。
 しかし、メインIGBTとセンスIGBTとではサイズが違うので、ゲート端子の寄生容量(ゲート・エミッタ間容量およびゲート・コレクタ間容量)の違いからメインIGBTおよびセンスIGBTの特性にアンバランスが生じる。
 メインIGBTおよびセンスIGBTに特性上のアンバランスがあると、IGBTのターンオン期間において、センスIGBTに電流集中が生じる。すなわち、メインIGBTのコレクタ電流が立ち上がる前にセンスIGBTへ過渡センス電流が流れて、センスIGBTへの電流集中が生じることになる。
 センスIGBTへの電流集中が生じると、過電流検出回路が過電流を誤検出する可能性がある。この場合、過電流の誤検出によって過電流検出回路から過電流検出信号が出力されてメインIGBTの駆動が誤停止してしまう。
 このようなセンスIGBTへの電流集中を抑制するために、上記の特許文献1では、分圧抵抗を使用してメインIGBTのゲート電圧とセンスIGBTのゲート電圧とを異なる値になるように制御している。
 図6は分圧抵抗を備える従来の半導体装置の構成を示す図である。半導体装置2は、特許文献1に記載されるように、メインIGBT101、センスIGBT102および分圧回路2cを備える。分圧回路2cは、抵抗Rdiv11、Rdiv12を含む。
 メインIGBT101のコレクタおよびセンスIGBT102のコレクタは、端子Cに接続される。センスIGBT102のセンスエミッタは、端子SEに接続される。メインIGBT101のゲートは、端子Gおよび抵抗Rdiv11の一端に接続される。抵抗Rdiv11の他端は、センスIGBT102のゲートおよび抵抗Rdiv12の一端に接続される。抵抗Rdiv12の他端は、メインIGBT101のエミッタおよび端子Eに接続される。
 半導体装置2では、メインIGBT101のゲートとセンスIGBT102のゲートの間に抵抗Rdiv11が配置され、センスIGBT102のゲートとメインIGBT101のエミッタの間に抵抗Rdiv12が配置されている。
 このような構成により、センスIGBT102のゲートに電圧される電圧をメインIGBT101より下げてメインIGBT101およびセンスIGBT102の電流が同時に立ち上がるようにして、センスIGBT102への電流集中を抑制している。
 しかし、IGBT100にはゲート配線があるため、IGBT100のゲートに掛かる実効電圧は、ゲートドライバから出力されるゲート電圧より低くなる。また、半導体装置2では、センスIGBT102のセンスエミッタ側よりも電圧降下の大きいメインIGBT101のエミッタ側に抵抗Rdiv12の他端が接続されている。
 このような構成の場合、ゲートドライバから出力されるゲート電流がIGBT100のゲートに向かうよりも、抵抗Rdiv11、Rdiv12の直列抵抗に向かってより流れてしまう可能性がある。
 このため、メインIGBT101およびセンスIGBT102のゲート電圧が適正値よりも低くなってゲートを適正な電圧で充電できない現象が生じ、精度よくIGBT100を駆動することが困難になるという問題がある。
 1つの側面では、本発明は、負荷作動用パワー半導体素子および電流モニタ用パワー半導体素子のゲートを適正な電圧で充電することが可能な半導体装置および過電流保護装置を提供することを目的とする。
 上記課題を解決するために、半導体装置が提供される。半導体装置は、出力素子、電流モニタ素子および分圧回路を有する。出力素子は、駆動信号にもとづきスイッチングして負荷を作動する。電流モニタ素子は、出力素子に流れる電流をモニタする。分圧回路は、出力素子のゲートと電流モニタ素子のセンスエミッタとの間に接続され、出力素子のゲートに印加される駆動信号の電圧を分圧して電流モニタ素子のゲートに印加する。
 また、上記課題を解決するために、過電流保護装置が提供される。過電流保護装置は、出力素子、電流モニタ素子、分圧回路、制御回路、電流検出用抵抗および過電流検出回路を有する。出力素子は、電源端子を介して電源電圧に接続し、出力端子を介して負荷に接続して、駆動信号にもとづきスイッチングして負荷を作動する。電流モニタ素子は、出力素子に流れる電流をモニタする。分圧回路は、出力素子のゲートと電流モニタ素子のセンスエミッタとの間に接続され、出力素子のゲートに印加される駆動信号の電圧を分圧して電流モニタ素子のゲートに印加する。制御回路は、駆動信号を出力して出力素子のスイッチングを制御する。電流検出用抵抗は、電流モニタ素子から出力されるセンス電流を電圧のセンス電流検出信号として出力する。過電流検出回路は、センス電流検出信号と基準電圧との比較により、出力素子の過電流状態を検出する。
 1側面によれば、負荷作動用パワー半導体素子および電流モニタ用パワー半導体素子のゲートを適正な電圧で充電することが可能になる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
半導体装置の一例を説明するための図である。 過電流保護回路を含む半導体装置の構成の一例を示す図である。 シミュレーション波形の一例を示す図である。 シミュレーション波形の一例を示す図である。 過電流保護装置の構成の一例を示す図である。 分圧抵抗を備える従来の半導体装置の構成を示す図である。
 以下、本実施の形態について図面を参照して説明する。なお、本明細書および図面において実質的に同一の機能を有する要素については、同一の符号を付することにより重複説明を省略する場合がある。
 図1は半導体装置の一例を説明するための図である。半導体装置1は、出力素子1a、電流モニタ素子1bおよび分圧回路1cを備える。分圧回路1cは、抵抗Rdiv1(第1の抵抗)および抵抗Rdiv2(第2の抵抗)を含む。
 出力素子1aおよび電流モニタ素子1bは、例えば、IGBT、IGBTとFWD(Free Wheeling Diode)を1チップ化したRC(Reverse Conducting)-IGBTである。または、SiC(Silicon carbide:シリコンカーバイド)デバイスを使用してもよい。SiCデバイスには、SiC-MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等がある。なお、以降の説明では、出力素子をメインIGBT、電流モニタ素子をセンスIGBTと呼ぶ。
 メインIGBT1aのコレクタおよびセンスIGBT1bのコレクタは、端子Cを介して電源電圧Vccに接続される。メインIGBT1aのエミッタは、端子Eを介して負荷3に接続される。
 メインIGBT1aのゲートは、端子Gおよび抵抗Rdiv1の一端に接続される。抵抗Rdiv1の他端は、センスIGBT1bのゲートおよび抵抗Rdiv2の一端に接続される。抵抗Rdiv2の他端は、センスIGBT1bのセンスエミッタおよび端子SEに接続される。
 メインIGBT1aは、駆動信号s0にもとづきスイッチングして負荷3を作動する。この場合、駆動信号s0によるメインIGBT1aのターンオンの指示があった場合、メインIGBT1aはターンオンして、メインIGBT1aは、コレクタからエミッタに向けて電流を流す。また、センスIGBT1bは、メインIGBT1aの電流モニタを行う素子であり、駆動信号s0によるメインIGBT1aのターンオンの指示があった場合、メインIGBT1aを流れる電流に比例するセンス電流をコレクタからセンスエミッタに向けて流す。
 さらに、分圧回路1cは、メインIGBT1aのゲートとセンスIGBT1bのセンスエミッタとの間に接続され、メインIGBT1aのゲートに印加される駆動信号s0の電圧を分圧してセンスIGBT1bのゲートに印加する。
 半導体装置1に含まれるメインIGBT1aおよびセンスIGBT1bは、同一の半導体基板上に形成され、抵抗Rdiv1、Rdiv2は、例えば、メインIGBT1aおよびセンスIGBT1bが形成される半導体基板上にポリシリコンによって形成される。また、半導体装置1はこれらの構成素子を含んで1チップ化される。
 ここで、端子Gから入力される駆動信号s0の電圧は、メインIGBT1aのゲート端子に直接供給され、センスIGBT1bのゲート端子には、ゲート電圧を抵抗Rdiv1、Rdiv2で分圧した電圧が供給される。
 このように、センスIGBT1bのゲートに印加される電圧を、メインIGBT1aのゲートに印加される電圧よりも低く設定したことにより、センスIGBT1bの電流の立ち上がりがメインIGBT1aの電流の立ち上がりより遅れるようになる。これにより、センスIGBT1bの電流が先に立ち上がってセンスIGBT1bに電流集中が生じるといったことがなく、過渡的なセンス電流が抑制されることになる。
 また、センスIGBT1bの電流の立ち上がりの遅れは、抵抗Rdiv1、Rdiv2の抵抗値によって決まる分圧比により設定される。抵抗Rdiv1、Rdiv2の抵抗値は、例えば、センスIGBT1bの電流の立ち上がりがメインIGBT1aの電流の立ち上がりに一致するように調整される。そのような分圧比の調整は、抵抗Rdiv1または抵抗Rdiv2またはその両方をレーザトリミングなどのトリミング手法を用いることによって実施することができる。
 さらに、図6で上述した半導体装置2では、抵抗Rdiv12の他端がメインIGBT101のエミッタに接続されることに対して、本発明の半導体装置1では、抵抗Rdiv2の他端がセンスIGBT1bのセンスエミッタに接続されている。このような構成により、ゲートドライバから出力されるゲート電流の分圧抵抗側への流れを半導体装置2の構成に比べて抑制することができる。このため、メインIGBT1aおよびセンスIGBT1bのゲートを適正な電圧で充電することが可能になり、メインIGBT1aおよびセンスIGBT1bのゲートの適正充電に対しても半導体装置1の構成によって改善することができる。
 図2は過電流保護回路を含む半導体装置の構成の一例を示す図である。半導体装置1-1は、メインIGBT1a、センスIGBT1b、分圧回路1cおよび過電流保護回路10を備える。過電流保護回路10は、抵抗Rs(電流検出用抵抗)および過電流検出回路11を含む。
 抵抗Rsの一端は、センスIGBT1bのセンスエミッタ、抵抗Rdiv2の他端および過電流検出回路11の入力端に接続され、抵抗Rsの他端は、メインIGBT1aのエミッタおよび負荷3に接続される。
 抵抗Rsの一端からは、センスIGBT1bから出力されるセンス電流が電圧に変換されたセンス電流検出信号Vsenseが出力される。また、過電流検出回路11は、センス電流検出信号Vsenseと基準電圧との比較により、メインIGBT1aの過電流状態を検出する。
 上記のような半導体装置1-1では、メインIGBT1aのゲートとセンスIGBT1bのセンスエミッタとの間に接続されて、メインIGBT1aのゲートに印加される駆動信号s0の電圧を分圧してセンスIGBT1bのゲートに印加する分圧回路1cを有している。これにより、メインIGBT1aおよびセンスIGBT1bのゲートを適正な電圧で充電することが可能になるので、精度よくメインIGBT1aおよびセンスIGBT1bを駆動することができ、過電流誤検出の防止が可能になる。
 また、抵抗Rsは、一般的にディスクリート部品が用いられるので、定数設定の自由度が高く、さらにIGBTチップ内部に実装する場合の面積の制約が小さい。半導体装置1-1では、抵抗Rdiv2の他端の接続先をセンスIGBT1bのセンスエミッタにしているので、抵抗Rdiv1、Rdiv2の抵抗値を抵抗Rsの抵抗値に合算することができる。このため、IGBTチップ内に所定の合成抵抗値以上の抵抗Rdiv1、Rdiv2を設ける面積がない場合にも、抵抗Rdiv1、Rdiv2に代わって抵抗Rsを利用することができる。
 さらに、抵抗Rdiv1、Rdiv2の分圧比を調整することで、メインIGBT1aおよびセンスIGBT1bの電流が立ち上がるタイミングを調整することができ、センスIGBT1bによるメインIGBT1aの過電流の検出は、遅滞なくリアルタイムに実施することができる。
 <分圧抵抗の合成抵抗値>
 半導体装置1では、上述のように、抵抗Rdiv2の他端がセンスIGBT1bのセンスエミッタに接続される構成にして、ゲートドライバから出力されるゲート電流の分圧抵抗側への流れを抑制している。これに加えて、抵抗Rdiv1、Rdiv2の合成抵抗値を所定値以上にして、さらに、ゲートドライバから出力されるゲート電流の分圧抵抗側への流れを抑制することもできる。この場合の抵抗Rdiv1、Rdiv2の合成抵抗値は、例えば、10Ω以上である。
 <シミュレーション結果>
 次に本発明の半導体装置1と従来の半導体装置2とを比較したシミュレーション結果について、図3、図4を用いて説明する。
 図3はシミュレーション波形の一例を示す図である。図6に示した半導体装置2に対するコレクタ電流Icおよびゲート電圧Vgeのシミュレーション波形を示している。左縦軸はメインIGBT101のコレクタ電流Ic(A)、右縦軸はメインIGBT101のゲート電圧Vge(V)および横軸は時間(s)である。なお、半導体装置2の抵抗Rdiv11と抵抗Rdiv12の合成抵抗値は10Ω未満の設定である。
 〔波形k11〕メインIGBT101のゲート電圧Vgeである。時刻t1でIGBT101のターンオンが開始され、時刻t2でIGBT101のターンオフが開始されている。
 〔波形k12〕メインIGBT101のコレクタ電流Icである。時刻t1でIGBT101がターンオンするのでコレクタ電流Icが流れ、一定値が維持された後、時刻t2でIGBT101がターンオフすることによりコレクタ電流Icが低下する。
 図4はシミュレーション波形の一例を示す図である。図1に示した本発明の半導体装置1に対するコレクタ電流Icおよびゲート電圧Vgeのシミュレーション波形を示している。左縦軸はメインIGBT1aのコレクタ電流Ic(A)、右縦軸はメインIGBT1aのゲート電圧Vge(V)および横軸は時間(s)である。なお、半導体装置1の抵抗Rdiv1と抵抗Rdiv2の合成抵抗値は10Ω以上の設定である。
 〔波形k1〕メインIGBT1aのゲート電圧Vgeである。時刻t1でIGBT1aのターンオンが開始され、時刻t2でIGBT1aのターンオフが開始されている。
 〔波形k2〕メインIGBT1aのコレクタ電流Icである。時刻t1でIGBT1aがターンオンするのでコレクタ電流Icが流れ、一定値が維持された後、時刻t2でIGBT1aがターンオフすることによりコレクタ電流Icが低下する。
 ここで、メインIGBTへのゲート電圧の印加レベルの適正値が15Vとする。従来の半導体装置2では、ゲートドライバから出力されるゲート電流が分圧抵抗側へ流れてゲートに適正な電圧が印加されないため、図3のシミュレーション波形に示されるようにゲート電圧が15Vに達していない。
 これに対して、本発明の半導体装置1では、ゲートドライバから出力されるゲート電流の分圧抵抗側への流れが抑制されているため、ゲートに適正な電圧が印加されており、図4のシミュレーション波形に示されるようにゲート電圧が15Vに達している。
 <過電流保護装置>
 次に本発明の半導体装置1が適用される過電流保護装置について説明する。図5は過電流保護装置の構成の一例を示す図である。過電流保護装置10-1は、入力端子IN、出力端子OUT、電源端子VTおよび接地端子GNDを備える。
 入力端子INには、マイコン等から出力されるパルス状の制御信号が入力される。出力端子OUTには負荷3が接続される。電源端子VTには電源電圧Vccが接続され、接地端子GNDにはグランド(GND)が接続される。
 また、過電流保護装置10-1は、メインIGBT1a、センスIGBT1b、分圧回路1c、抵抗Rs(電流検出用抵抗)、過電流検出回路11および制御回路12を備える。制御回路12は、論理回路12aおよびゲートドライバ12bを含む。
 論理回路12aは、入力端子INを通じて入力された制御信号を受信してメインIGBT1aをオンまたはオフさせる論理信号を生成する。ゲートドライバ12bは、論理回路12aから出力された論理信号にもとづいて、メインIGBT1aをオンまたはオフする駆動信号s0を生成してメインIGBT1aのゲートに印加する。
 抵抗Rsは、センスIGBT1bのセンスエミッタおよびメインIGBT1aのエミッタの間に接続され、センスエミッタから流れ出るセンス電流が抵抗Rsを流れることで生じる電位を検出する。それにより、センス電流がセンス電流検出信号Vsenseとして検出される。
 過電流検出回路11は、センス電流検出信号Vsenseと基準電圧との比較によりメインIGBT1aが過電流状態であるか否かを検出し、過電流状態を検出した場合には過電流検出信号s1を出力する。論理回路12aは、過電流検出信号s1を検出すると、メインIGBT1aをオフさせる。
 このように、図1の半導体装置1の構成を有する過電流保護装置10-1は、メインIGBT1aのゲートとセンスIGBT1bのセンスエミッタとの間に接続されて、メインIGBT1aのゲートに印加される駆動信号s0の電圧を分圧してセンスIGBT1bのゲートに印加する分圧回路1cを有している。
 これにより、メインIGBT1aおよびセンスIGBT1bのゲートを適正な電圧で充電することが可能になるので、精度よくメインIGBT1aおよびセンスIGBT1bを駆動することができ、過電流誤検出の防止が可能になる。
 以上説明したように、本発明によれば、分圧回路1cは、メインIGBT1aのゲートとセンスIGBT1bのセンスエミッタとの間に接続され、メインIGBT1aのゲートに印加される駆動信号s0の電圧を分圧してセンスIGBT1bのゲートに印加する。
 これにより、センスIGBT1bへの電流集中抑制を保持したまま、さらにゲート電流の分圧抵抗側への流れを抑制することができるので、メインIGBT1aおよびセンスIGBT1bのゲートを適正な電圧で充電することが可能になり、ゲート電圧の適正充電についても改善することができる。
 以上、実施の形態を例示したが、実施の形態で示した各部の構成は同様の機能を有する他のものに置換することができる。また、他の任意の構成物や工程が付加されてもよい。さらに、前述した実施の形態のうちの任意の2以上の構成(特徴)を組み合わせたものであってもよい。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 半導体装置
 1a 出力素子(メインIGBT)
 1b 電流モニタ素子(センスIGBT)
 1c 分圧回路
 Rdiv1 第1の抵抗
 Rdiv2 第2の抵抗
 3 負荷
 s0 駆動信号
 G 出力素子のゲートに接続される端子
 C 出力素子および電流モニタ素子のコレクタに接続される端子
 E 出力素子のエミッタに接続される端子
 SE 電流モニタ素子のセンスエミッタに接続される端子

Claims (8)

  1.  駆動信号にもとづきスイッチングして負荷を作動する出力素子と、
     前記出力素子に流れる電流をモニタする電流モニタ素子と、
     前記出力素子のゲートと前記電流モニタ素子のセンスエミッタとの間に接続され、前記出力素子のゲートに印加される前記駆動信号の電圧を分圧して前記電流モニタ素子のゲートに印加する分圧回路と、
     を有する半導体装置。
  2.  前記分圧回路は、直列接続された第1の抵抗および第2の抵抗を備え、
     前記第1の抵抗の一端は前記出力素子のゲートに接続され、前記第1の抵抗の他端は前記電流モニタ素子のゲートおよび前記第2の抵抗の一端に接続され、前記第2の抵抗の他端は前記電流モニタ素子のセンスエミッタに接続される、
     請求項1記載の半導体装置。
  3.  前記出力素子および前記電流モニタ素子は、パワー半導体素子であり、IGBT(Insulated Gate Bipolar Transistor)、RC(Reverse Conducting)-IGBT、SiC(Silicon carbide)デバイスのうちの1つである、
     請求項1記載の半導体装置。
  4.  前記第1の抵抗と前記第2の抵抗の合成抵抗値は、10Ω以上である、
     請求項2記載の半導体装置。
  5.  前記電流モニタ素子から出力されるセンス電流を電圧のセンス電流検出信号として出力する電流検出用抵抗と、前記センス電流検出信号と基準電圧との比較により、前記出力素子の過電流状態を検出する過電流検出回路とをさらに有する、
     請求項2記載の半導体装置。
  6.  前記電流モニタ素子のセンスエミッタは、前記電流検出用抵抗の一端および前記過電流検出回路の入力端に接続され、
     前記出力素子のコレクタは、前記電流モニタ素子のコレクタおよび電源電圧に接続され、
     前記出力素子のエミッタは、前記電流検出用抵抗の他端および前記負荷に接続される、
     請求項5記載の半導体装置。
  7.  電源端子を介して電源電圧に接続し、出力端子を介して負荷に接続して、駆動信号にもとづきスイッチングして前記負荷を作動する出力素子と、
     前記出力素子に流れる電流をモニタする電流モニタ素子と、
     前記出力素子のゲートと前記電流モニタ素子のセンスエミッタとの間に接続され、前記出力素子のゲートに印加される前記駆動信号の電圧を分圧して前記電流モニタ素子のゲートに印加する分圧回路と、
     前記駆動信号を出力して前記出力素子のスイッチングを制御する制御回路と、
     前記電流モニタ素子から出力されるセンス電流を電圧のセンス電流検出信号として出力する電流検出用抵抗と、
     前記センス電流検出信号と基準電圧との比較により、前記出力素子の過電流状態を検出する過電流検出回路と、
     を有する過電流保護装置。
  8.  前記分圧回路は、直列接続された第1の抵抗および第2の抵抗を備え、
     前記第1の抵抗の一端は、前記出力素子のゲートおよび前記制御回路の出力端に接続され、前記第1の抵抗の他端は、前記電流モニタ素子のゲートおよび前記第2の抵抗の一端に接続され、前記第2の抵抗の他端は、前記電流モニタ素子のセンスエミッタ、前記電流検出用抵抗の一端および前記過電流検出回路の入力端に接続され、前記出力素子のコレクタは、前記電流モニタ素子のコレクタおよび電源電圧に接続され、前記出力素子のエミッタは、前記電流検出用抵抗の他端および前記負荷に接続される、
     請求項7記載の過電流保護装置。
PCT/JP2023/014095 2022-04-08 2023-04-05 半導体装置および過電流保護装置 WO2023195487A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112023000181.2T DE112023000181T5 (de) 2022-04-08 2023-04-05 Halbleitervorrichtung und Überstromschutzvorrichtung
JP2024514291A JPWO2023195487A1 (ja) 2022-04-08 2023-04-05
CN202380013539.8A CN117981224A (zh) 2022-04-08 2023-04-05 半导体装置及过电流保护装置
US18/602,638 US20240219449A1 (en) 2022-04-08 2024-03-12 Semiconductor device and overcurrent protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022064513 2022-04-08
JP2022-064513 2022-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/602,638 Continuation US20240219449A1 (en) 2022-04-08 2024-03-12 Semiconductor device and overcurrent protection device

Publications (1)

Publication Number Publication Date
WO2023195487A1 true WO2023195487A1 (ja) 2023-10-12

Family

ID=88243109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014095 WO2023195487A1 (ja) 2022-04-08 2023-04-05 半導体装置および過電流保護装置

Country Status (5)

Country Link
US (1) US20240219449A1 (ja)
JP (1) JPWO2023195487A1 (ja)
CN (1) CN117981224A (ja)
DE (1) DE112023000181T5 (ja)
WO (1) WO2023195487A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084625A (ja) * 2010-10-08 2012-04-26 Denso Corp 半導体装置
JP2015119521A (ja) * 2013-12-17 2015-06-25 サンケン電気株式会社 半導体装置及びスイッチング回路
JP2017152923A (ja) * 2016-02-24 2017-08-31 株式会社デンソー 負荷駆動装置
JP2020014103A (ja) * 2018-07-18 2020-01-23 富士電機株式会社 半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097739A1 (ja) 2012-12-17 2014-06-26 富士電機株式会社 半導体装置およびその半導体装置を用いた電流検出回路
CN109983679B (zh) 2017-05-16 2021-08-24 富士电机株式会社 控制装置以及半导体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084625A (ja) * 2010-10-08 2012-04-26 Denso Corp 半導体装置
JP2015119521A (ja) * 2013-12-17 2015-06-25 サンケン電気株式会社 半導体装置及びスイッチング回路
JP2017152923A (ja) * 2016-02-24 2017-08-31 株式会社デンソー 負荷駆動装置
JP2020014103A (ja) * 2018-07-18 2020-01-23 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
DE112023000181T5 (de) 2024-04-25
US20240219449A1 (en) 2024-07-04
JPWO2023195487A1 (ja) 2023-10-12
CN117981224A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
JP2837054B2 (ja) 絶縁ゲート型半導体装置
US9203393B2 (en) Semiconductor apparatus
JP4432215B2 (ja) 半導体スイッチング素子のゲート駆動回路
US9094005B2 (en) Semiconductor element module and gate drive circuit
JP2000253646A (ja) 絶縁ゲート型半導体素子のゲート回路
US20120126858A1 (en) Load driving apparatus
JP2777307B2 (ja) 短絡保護回路
WO2015064222A1 (ja) 半導体装置
RU2645729C1 (ru) Переключающая схема
US11290102B2 (en) Protection of a field-effect transistor, which is operated in a switching mode, against an overload current
JP2015149508A (ja) 電力用半導体装置
US11218083B2 (en) Semiconductor device and method for driving the same
JP2017079534A (ja) ゲート制御回路
JP2019110431A (ja) 半導体装置およびパワーモジュール
JPH04322123A (ja) 半導体デバイスの過負荷保護回路装置
JP7205091B2 (ja) 半導体装置
JPH07106934A (ja) 半導体デバイスの過電流時のターンオフ回路装置
WO2023195487A1 (ja) 半導体装置および過電流保護装置
CN110581654B (zh) 电力用半导体装置
KR102026929B1 (ko) 전력 스위치용 게이트 구동회로
WO2022255009A1 (ja) ゲート駆動装置
JP3660186B2 (ja) 半導体装置
WO2023195275A1 (ja) 半導体装置および過電流保護装置
JP3759499B2 (ja) 過電流を全く生じることなく電流をターン・オンおよびターン・オフさせるための回路構造
WO2023199840A1 (ja) 半導体装置および過電流保護装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013539.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112023000181

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2024514291

Country of ref document: JP