WO2023189794A1 - Metal-clad laminated board and method for producing same - Google Patents
Metal-clad laminated board and method for producing same Download PDFInfo
- Publication number
- WO2023189794A1 WO2023189794A1 PCT/JP2023/010803 JP2023010803W WO2023189794A1 WO 2023189794 A1 WO2023189794 A1 WO 2023189794A1 JP 2023010803 W JP2023010803 W JP 2023010803W WO 2023189794 A1 WO2023189794 A1 WO 2023189794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- adhesive layer
- metal
- inorganic filler
- clad laminate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000010410 layer Substances 0.000 claims abstract description 203
- 239000012790 adhesive layer Substances 0.000 claims abstract description 138
- 239000011256 inorganic filler Substances 0.000 claims abstract description 118
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 118
- 229910052751 metal Inorganic materials 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 61
- 238000002844 melting Methods 0.000 claims abstract description 57
- 230000008018 melting Effects 0.000 claims abstract description 57
- 229920005989 resin Polymers 0.000 claims abstract description 54
- 239000011347 resin Substances 0.000 claims abstract description 54
- 238000003860 storage Methods 0.000 claims abstract description 19
- 229920006038 crystalline resin Polymers 0.000 claims abstract description 14
- 229920006127 amorphous resin Polymers 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims description 69
- 239000006185 dispersion Substances 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 55
- 239000011889 copper foil Substances 0.000 description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- 238000010438 heat treatment Methods 0.000 description 21
- 238000011156 evaluation Methods 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 19
- 239000002270 dispersing agent Substances 0.000 description 18
- 238000001035 drying Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 18
- 239000000843 powder Substances 0.000 description 16
- 239000000377 silicon dioxide Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- 239000011888 foil Substances 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 11
- 239000000945 filler Substances 0.000 description 11
- 238000003825 pressing Methods 0.000 description 11
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 10
- 238000005530 etching Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 229920005575 poly(amic acid) Polymers 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229920006259 thermoplastic polyimide Polymers 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- -1 fluororesin Polymers 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004962 Polyamide-imide Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 229920002312 polyamide-imide Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 229920006345 thermoplastic polyamide Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XUSNPFGLKGCWGN-UHFFFAOYSA-N 3-[4-(3-aminopropyl)piperazin-1-yl]propan-1-amine Chemical compound NCCCN1CCN(CCCN)CC1 XUSNPFGLKGCWGN-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229920006358 Fluon Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- AHYFYQKMYMKPKD-UHFFFAOYSA-N 3-ethoxysilylpropan-1-amine Chemical compound CCO[SiH2]CCCN AHYFYQKMYMKPKD-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- QYIMZXITLDTULQ-UHFFFAOYSA-N 4-(4-amino-2-methylphenyl)-3-methylaniline Chemical group CC1=CC(N)=CC=C1C1=CC=C(N)C=C1C QYIMZXITLDTULQ-UHFFFAOYSA-N 0.000 description 1
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- KMLTUQLZFGALMK-UHFFFAOYSA-N CCO[SiH2]CCCOC(=O)C(C)=C Chemical compound CCO[SiH2]CCCOC(=O)C(C)=C KMLTUQLZFGALMK-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/082—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
Definitions
- the present invention relates to a method for manufacturing a metal-clad laminate useful as, for example, a circuit board material.
- FPCs flexible printed circuit boards
- demand for circuits is increasing.
- FPCs can be mounted three-dimensionally and with high density even in limited spaces, so their use is expanding, for example, for wiring of electronic devices such as HDDs, DVDs, and smartphones, as well as parts such as cables and connectors. .
- FPC is manufactured by etching the metal layer of a metal clad laminate such as a copper clad laminate (CCL) to form wiring.
- a metal clad laminate such as a copper clad laminate (CCL)
- CCL copper clad laminate
- metal-clad laminates in which highly heat-resistant polyimide is used for the insulating resin layer in contact with the metal foil are commonly used.
- circuit board materials are also becoming more suitable for millimeter wave radar boards, antenna boards, etc. that can support high-speed communication standards. Materials are currently being considered. Among such materials, fluororesins are attracting attention because they have a low dielectric loss tangent and are expected to reduce signal transmission loss.
- Patent Document 1 in the process of manufacturing a composite material layer containing an inorganic filler in a fluororesin matrix, a casting process is performed in which a dispersion composition containing a fluororesin and an inorganic filler is applied to a base material and dried. ing.
- a composite material containing an inorganic filler is formed in a casting process in this way, voids are generated in the coating film.
- Patent Document 1 does not provide a layer that is clearly positioned as an adhesive layer adjacent to the metal layer, and therefore does not consider suppressing the flow of the adhesive layer.
- the present invention aims to eliminate voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil, while preventing the adhesive layer from flowing out and uneven thickness during thermocompression bonding. purpose.
- the above problem can be solved by focusing on the melting point of the inorganic filler-containing fluororesin layer and considering the relationship between this melting point and the melting point or storage modulus of the adhesive layer. They discovered this and completed the present invention.
- the metal-clad laminate of the present invention is a metal layer; an adhesive layer in direct contact with the metal layer; an inorganic filler-containing fluororesin layer containing an inorganic filler in the fluororesin, which is laminated directly or indirectly on the adhesive layer; It is equipped with
- the adhesive layer and the inorganic filler-containing fluororesin layer are a) or b) as follows: a) When the main resin constituting the adhesive layer is a crystalline resin, the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer; b) When the main resin constituting the adhesive layer is an amorphous resin, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more; The inorganic filler-containing fluororesin layer has a coefficient of thermal expansion (CTE) of 60
- the metal-clad laminate of the present invention was measured using a split cylinder resonator (SCR resonator) after controlling the humidity of the inorganic filler-containing fluororesin layer for 24 hours under constant temperature and humidity conditions of 23° C. and 50% RH.
- the dielectric loss tangent at 60 GHz may be less than 0.0025.
- the metal-clad laminate of the present invention may have a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer are laminated in this order.
- the ratio of the thickness of the adhesive layer to the total thickness of the adhesive layer and the inorganic filler-containing fluororesin layer may be within a range of 1 to 25%.
- the method for manufacturing a metal-clad laminate of the present invention is a method for manufacturing the metal-clad laminate described above, comprising: preparing a first laminate in which an adhesive layer is laminated on a metal layer; A second laminate in which the adhesive layer and the dispersion composition layer are laminated on the metal layer is formed by applying a dispersion composition containing an inorganic filler and a fluororesin on the adhesive layer and heat-treating the adhesive layer.
- a step of forming By using two of the second laminates and thermocompression bonding with the dispersion composition layers facing each other, or by using the first laminate and the second laminate, the adhesive layer and the By thermocompression bonding the dispersion composition layers facing each other, a metal-clad laminate having a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer is laminated in this order is formed.
- the process of Contains By using two of the second laminates and thermocompression bonding with the dispersion composition layers facing each other, or by using the first laminate and the second laminate, the adhesive layer and the By thermocompression bonding the dispersion composition layers facing each other, a metal-clad laminate having a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer is laminated in this order is formed.
- the melting point Tm1 or storage modulus E' of the adhesive layer is taken into consideration in relation to the melting point Tm2 of the inorganic filler-containing fluororesin layer, so the adhesive layer flows out during thermocompression bonding.
- This attempt is made to both eliminate voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the occurrence of thickness unevenness. Therefore, the metal-clad laminate of the present invention is useful as a circuit board material compatible with high-speed communication standards.
- FIG. 1 is a schematic cross-sectional view showing the layer structure of a metal-clad laminate according to a preferred embodiment of the present invention.
- FIG. 2 is an explanatory diagram of the manufacturing process of the metal-clad laminate shown in FIG. 1.
- FIG. 2 is an explanatory diagram of another manufacturing process of the metal-clad laminate shown in FIG. 1.
- FIG. FIG. 2 is an explanatory diagram of still another manufacturing process of the metal-clad laminate of FIG. 1.
- FIG. FIG. 2 is an explanatory diagram of still another manufacturing process of the metal-clad laminate of FIG. 1.
- FIG. 1 is a schematic cross-sectional view showing the layer structure of a metal-clad laminate according to a preferred embodiment of the present invention.
- FIG. 2 is an explanatory diagram of the manufacturing process of the metal-clad laminate shown in FIG. 1.
- FIG. 2 is an explanatory diagram of another manufacturing process of the metal-clad laminate shown in FIG. 1.
- FIG. 2 is an explanatory diagram of still another manufacturing process
- the metal-clad laminate of the present invention includes a metal foil, an adhesive layer in direct contact with the metal foil, and an inorganic filler containing an inorganic filler in a fluororesin that is laminated directly or indirectly on the adhesive layer.
- a fluororesin layer may be any layer other than the above.
- the metal-clad laminate of the present invention satisfies either of the following conditions a) or b).
- the term "main resin” refers to a resin that is contained in an amount exceeding 50% by weight based on all the resin components constituting the adhesive layer (the same applies hereinafter).
- the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer. Because the melting point Tm1 is higher than the melting point Tm2 (Tm1>Tm2), flow out occurs in the adhesive layer when thermocompression bonding is performed at a temperature exceeding the melting point Tm2 in order to eliminate voids in the inorganic filler-containing fluororesin layer. It is possible to effectively prevent the occurrence of uneven thickness.
- the metal-clad laminate it is possible to reduce the voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the adhesive layer from flowing out or causing thickness unevenness.
- the melting point Tm1 is the same as or lower than the melting point Tm2 (Tm1 ⁇ Tm2), flow may occur in the adhesive layer or thickness unevenness may occur during thermocompression bonding at a temperature exceeding the melting point Tm2.
- the melting point Tm1 of the adhesive layer is preferably +5°C or more higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer, and more preferably within the range of +10°C to +50°C.
- the reason why it is defined as the "melting point of the fluororesin layer containing inorganic filler" rather than the “melting point of the fluororesin” is that even if the same fluororesin is used, it is compared to the state without the inorganic filler. This is because when an inorganic filler is contained, the melting point increases due to the influence of the inorganic filler. Therefore, the melting point is not the melting point of the resin alone, but of the "layer” containing the inorganic filler.
- the melting point Tm2 also changes depending on the content of the inorganic filler, and as the amount of the inorganic filler increases, the melting point Tm2 also increases. Therefore, the melting point Tm2 is a physical property value determined depending on the content of the inorganic filler.
- Preferred combinations of resins in which the melting point Tm1 of the crystalline resin constituting the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer include, for example: -
- a combination that is a layer of ETFE; Tm2 270-315°C); ⁇
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- ETFE ethylene-tetrafluoroethylene copolymer
- PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 ⁇ 10 6 Pa or more. Since the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is 1 x 10 6 Pa or more, in order to eliminate voids in the inorganic filler-containing fluororesin layer, when thermocompression bonding is performed at a temperature exceeding the melting point Tm2. In addition, it is possible to effectively prevent the adhesive layer from flowing out or becoming uneven in thickness.
- the metal-clad laminate it is possible to reduce the voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the adhesive layer from flowing out or causing thickness unevenness.
- the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is less than 1 x 10 6 Pa, flow may occur in the adhesive layer or thickness unevenness may occur during thermocompression bonding at a temperature exceeding the melting point Tm2. There is a possibility that this may occur.
- the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is preferably 1 ⁇ 10 7 Pa or more.
- Preferred combinations of amorphous resins in which the storage modulus E' at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more include, for example: -
- the material of the metal layer is not particularly limited, but examples include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and these. Examples include alloys of Among these, copper or copper alloy is particularly preferred. Note that the material of the wiring layer in the circuit board of this embodiment, which will be described later, is also the same as that of the metal layer.
- the thickness of the metal layer is not particularly limited, but if a metal foil such as copper foil is used, it is preferably 35 ⁇ m or less, more preferably within the range of 5 to 25 ⁇ m. From the viewpoint of production stability and handling properties, the lower limit of the thickness of the metal foil is preferably 5 ⁇ m.
- a metal foil such as copper foil
- the lower limit of the thickness of the metal foil is preferably 5 ⁇ m.
- rolled copper foil or electrolytic copper foil may be used.
- commercially available copper foil can be used as the copper foil.
- the surface roughness of the metal layer is not particularly limited, but from the viewpoint of ensuring both adhesion with the adhesive layer and conductor loss, the ten-point average roughness (Rzjis) is 0.3 to 1.5. It is preferred to have a roughened surface within the range of . Note that the lower the surface roughness of the metal layer, the greater the effect of providing the adhesive layer, so the ten-point average roughness (Rzjis) is more preferably within the range of 0.3 to 1.0. Further, the metal foil may be subjected to a surface treatment using, for example, siding, aluminum alcoholate, aluminum chelate, a silane coupling agent, etc., for the purpose of antirust treatment or improvement of adhesive strength.
- the resin constituting the adhesive layer is not particularly limited, but for example, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyamide, fluororesin, liquid crystal polymer, etc. are preferable.
- the fluororesin the same fluororesin as used in the inorganic filler-containing fluororesin layer described below can be used, provided that condition a or b is satisfied.
- the inorganic filler-containing fluororesin layer contains a fluororesin as a matrix resin and an inorganic filler dispersed in the matrix resin.
- the fluororesin constituting the inorganic filler-containing fluororesin layer is a polymer containing fluorine atoms, and its type is not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether, etc.
- a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group are preferable.
- fluororesins those showing low dielectric loss tangent include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer ( FEP) is more preferred.
- PTFE polytetrafluoroethylene
- PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- the type of inorganic filler is not particularly limited, but from the viewpoint of reducing the thermal expansion coefficient of the inorganic filler-containing fluororesin layer, for example, silicon dioxide (silica), aluminum oxide (alumina), magnesium oxide (magnesia), beryllium oxide, Niobium oxide, titanium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, magnesium fluoride, potassium silicofluoride, talc, glass, barium titanate, and the like are preferred. These may be used in combination of two or more types. Among these, silicon dioxide (silica), aluminum oxide, boron nitride, glass, etc. are more preferable as they have a low coefficient of thermal expansion.
- the average particle diameter (D 50 ) of the inorganic filler is not particularly limited, but it should be taken into consideration the ratio to the thickness of the insulating resin layer when used in a circuit board, and from the viewpoint of ensuring the punchability of the insulating resin layer.
- D 50 The average particle diameter of the inorganic filler is not particularly limited, but it should be taken into consideration the ratio to the thickness of the insulating resin layer when used in a circuit board, and from the viewpoint of ensuring the punchability of the insulating resin layer.
- it is within the range of 0.05 to 50 ⁇ m, preferably within the range of 0.1 to 20 ⁇ m.
- the specific surface area is not particularly limited, but from the viewpoint of suppressing deterioration of the dielectric loss tangent, it is preferably within the range of 0.1 to 20 m 2 /g, preferably within the range of 0.1 to 10 m 2 /g.
- the average particle diameter of the inorganic filler can be determined by measuring the particle size distribution of the powder particles using, for example, a laser diffraction/scattering method, calculating a cumulative curve with the total volume of the powder particles as 100%, and determining the cumulative volume on the cumulative curve of 50%. % by measuring the particle diameter, and the specific surface area can be measured by the BET method.
- the shape of the inorganic filler is not particularly limited, but from the viewpoint of reducing the difference in coefficient of thermal expansion in the thickness direction and in the surface direction, for example, spherical shape, crushed spherical shape, etc. are preferable. Further, the inorganic filler may be hollow.
- the inorganic filler is surface-treated with a coupling agent or the like.
- coupling agents used for surface treatment include 3-aminopropylethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylethoxysilane, Examples include 3-isocyanatepropylethoxysilane and hexamethyldisilazane.
- the dispersion composition used to form the inorganic filler-containing fluororesin layer preferably contains a dispersant.
- the type of dispersant is not particularly limited, but from the viewpoint of dispersing the fluororesin well, for example, a fluorine surfactant is preferable.
- a fluorine surfactant is preferable.
- the fluorine-based surfactant for example, a nonionic fluorine-based surfactant having a perfluoroalkenyl structure having a double bond in the molecule is more preferable.
- the weight ratio of the fluororesin in the inorganic filler-containing fluororesin layer is 15 parts by weight per 100 parts by weight of the total solid content of the inorganic filler-containing fluororesin layer, from the viewpoint of lowering the dielectric loss tangent and supporting high-frequency signal transmission. It is preferably within the range of ⁇ 40 parts by weight, and more preferably within the range of 20-35 parts by weight.
- the weight ratio of the inorganic filler is determined based on 100 parts by weight of the total solid content of the fluororesin layer containing the inorganic filler, from the viewpoint of lowering the coefficient of thermal expansion (CTE) and ensuring dimensional stability when applied to a circuit board.
- CTE coefficient of thermal expansion
- the content ratio of the inorganic filler in the fluororesin layer containing inorganic filler is determined by the total solid content of the fluororesin layer containing inorganic filler. For example, it is preferably within the range of 55 to 75 volume %, more preferably 60 to 70 volume %.
- the inorganic filler at a high concentration of 60% by volume or more, voids are likely to occur in the coating film, so that the effects of the invention are more likely to be exhibited.
- the content of the dispersant in the dispersion composition used to form the inorganic filler-containing fluororesin layer is, for example, 10 parts by weight as the dispersant active ingredient, based on 100 parts by weight of the total solid content of the inorganic filler-containing fluororesin layer. It is preferably within the range of 0.5 to 5 parts by weight, and more preferably within the range of 0.5 to 5 parts by weight.
- the coefficient of thermal expansion (CTE) of the fluororesin layer containing an inorganic filler is preferably 60 ppm/K or less, and more preferably within the range of 10 ppm/K or more and 30 ppm/K or less. If the coefficient of thermal expansion (CTE) of the fluororesin layer containing inorganic filler exceeds 60 ppm/K, the dimensional stability of the metal-clad laminate cannot be guaranteed, and problems such as misalignment of wiring positions may occur after circuit processing. There are cases.
- the inorganic filler-containing fluororesin layer has a dielectric loss tangent of 0 at 60 GHz as measured by a split cylinder resonator (SCR resonator) after 24 hours of humidity control under constant temperature and humidity conditions of 23°C and 50% RH. It is preferably less than .0025, more preferably less than 0.0020. Further, the dielectric constant measured under the same conditions is preferably 4.0 or less, more preferably 3.5 or less, and still more preferably 3.0 or less.
- dielectric loss tangent and relative permittivity exceed the above values, when applied to a circuit board, it will lead to an increase in dielectric loss and cause electrical signal loss on the transmission path of high-frequency signals in the GHz band (for example, 1 to 80 GHz). Such inconveniences are likely to occur.
- FIG. 1 shows a cross-sectional configuration of a metal-clad laminate 100 according to a preferred embodiment of the present invention.
- the metal-clad laminate 100 has a structure in which metal layer 10A/adhesive layer 20A/inorganic filler-containing fluororesin layer 30/adhesive layer 20B/metal layer 10B are laminated in this order.
- the metal layer 10A and the metal layer 10B are located at the outermost sides, and the adhesive layer 20A and the adhesive layer 20B are arranged inside them, and between the adhesive layer 20A and the adhesive layer 20B, a fluororesin containing an inorganic filler is arranged.
- a layer 30 is interposed.
- the metal-clad laminate is not limited to the layer configuration shown in FIG. 1, and may have any layers, for example.
- the metal clad laminate 100 includes: a) When the main resin constituting the adhesive layer 20A and the adhesive layer 20B is a crystalline resin, the melting point Tm1 of the adhesive layer 20A and the adhesive layer 20B is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer 30; b) When the main resin constituting the adhesive layer 20A and the adhesive layer 20B is an amorphous resin, the storage elastic modulus E' of the adhesive layer 20A and the adhesive layer 20B at the melting point Tm2 of the inorganic filler-containing fluororesin layer 30 is 1. ⁇ 10 6 Pa or more; meets any of the following conditions.
- the adhesive layer 20A and the adhesive layer 20B may have the same configuration or different configurations, but preferably have the same configuration. Note that when the adhesive layer 20A and the adhesive layer 20B have different configurations, it is preferable that each of them satisfy the above conditions a) or b).
- the thickness of the adhesive layer 20A and the adhesive layer 20B is preferably within the range of 1 to 20 ⁇ m, and more preferably within the range of 2 to 10 ⁇ m. If the thickness is less than 1 ⁇ m, sufficient adhesion to the metal layers 10A and 10B may not be obtained, and if it exceeds 20 ⁇ m, the dimensional stability of the entire metal-clad laminate 100 may be impaired and the dielectric properties may deteriorate. there is a possibility. Note that the thicknesses of the adhesive layer 20A and the adhesive layer 20B may be the same or different, but are preferably the same.
- the thickness of the inorganic filler-containing fluororesin layer 30 is preferably within the range of 60 to 150 ⁇ m, more preferably within the range of 80 to 130 ⁇ m. If the thickness is less than 60 ⁇ m, it may be difficult to suppress transmission loss when the metal-clad laminate 100 is used as a circuit board, making it difficult to support high-frequency signal transmission. Handling may be difficult.
- the total thickness T AD of the adhesive layers relative to the total thickness T of the adhesive layers 20A and 20B and the inorganic filler-containing fluororesin layer 30 (that is, the total thickness of the adhesive layers 20A and 20B)
- the ratio [(T AD /T) ⁇ 100] is preferably within the range of 1 to 25%, more preferably within the range of 2 to 20%.
- the ratio [(T AD /T) x 100] is less than 1%, sufficient adhesion to the metal layers 10A and 10B may not be obtained, and when it exceeds 25%, the dimensional stability of the entire metal-clad laminate 100 may be impaired. properties and dielectric properties may deteriorate.
- the metal-clad laminate 100 can be manufactured, for example, by Method 1 or Method 2 below.
- Method 1 First, as shown in FIG. 2, a laminate in which a metal layer 10A and an adhesive layer 20A are laminated, and a laminate in which a metal layer 10B and an adhesive layer 20B are laminated are respectively prepared. These will be referred to as a first laminate 40.
- a dispersion composition that will become the inorganic filler-containing fluororesin layer 30 is applied to the adhesive layer 20A and the adhesive layer 20B of the first laminate 40 to a predetermined thickness, and after drying, the fluororesin is melted.
- a dispersed composition layer 31 is formed as shown in FIG. 3, and two second laminates 50 are produced.
- the dispersed composition layer 31 of the second laminate 50 includes voids.
- the two second laminates 50 are bonded together by thermocompression so that the dispersed composition layers 31 face each other.
- the fluororesin layer 31 is cooled and solidified to eliminate voids and form the fluororesin layer 30 containing an inorganic filler.
- the thermocompression bonding temperature may be at least the melting point Tm2 of the inorganic filler-containing fluororesin layer 30, and the upper limit can be set as appropriate depending on the resin type, but for example, within the range of 10 to 80 °C below the melting point Tm2.
- the temperature is high.
- the pressure during thermocompression bonding can be determined as appropriate depending on the type of resin, but is preferably within the range of 2 to 12 MPa, for example.
- metal layer 10A/adhesive layer 20A/inorganic filler-containing fluororesin layer 30 (however, a layer in which two dispersed composition layers 31 are bonded together)/adhesive layer 20B/ A metal-clad laminate 100 having a layered structure in which the metal layers 10B are laminated in this order can be manufactured.
- Method 2 First, a laminate in which the metal layer 10A and the adhesive layer 20A are laminated, and a laminate in which the metal layer 10B and the adhesive layer 20B are laminated are respectively prepared, and these are referred to as the first laminate 40 (FIG. 2 ).
- a dispersion composition that will become the inorganic filler-containing fluororesin layer 30 is applied to a predetermined thickness on the adhesive layer 20A of the first laminate, and after drying, the fluororesin is heated to a temperature higher than its melting temperature and dispersed.
- a composition layer 31 is formed to form a second laminate 50 (see FIG. 3).
- the thickness of the dispersed composition layer 31 is made approximately twice as thick as in method 1.
- the dispersed composition layer 31 of the second laminate 50 includes voids.
- the second laminate 50 and the first laminate are placed so that the dispersed composition layer 31 of the second laminate 50 and the adhesive layer 20B of the first laminate 40 face each other.
- the laminate 40 is bonded by thermocompression. After the fluororesin in the dispersion composition layer 31 is melted by thermocompression bonding, the fluororesin in the dispersed composition layer 31 is cooled and solidified to eliminate voids and become the inorganic filler-containing fluororesin layer 30.
- the conditions for thermocompression bonding can be the same as in Method 1.
- metal-clad laminate 100 having a layer structure in which metal layer 10A/adhesive layer 20A/inorganic filler-containing fluororesin layer 30/adhesive layer 20B/metal layer 10B are laminated in this order can be manufactured. .
- the dispersion composition used in Methods 1 and 2 preferably contains a fluororesin powder and an inorganic filler, and further contains a dispersant, an organic solvent, etc., if necessary.
- the weight proportion of the fluororesin powder in the dispersion composition is determined based on 100 parts by weight of the total solid content in the dispersion composition, from the viewpoint of lowering the dielectric loss tangent when formed into a film and making it compatible with high-frequency signal transmission. It is preferably within the range of 15 to 40 parts by weight, and more preferably within the range of 20 to 35 parts by weight.
- the weight ratio of the inorganic filler in the dispersion composition is determined from the viewpoint of lowering the coefficient of thermal expansion (CTE) when formed into a film and ensuring dimensional stability when applied to a circuit board. It is preferably within the range of 55 to 75 parts by weight, and more preferably within the range of 60 to 70 parts by weight, based on 100 parts by weight of solid content. Furthermore, when a dispersant is included, the content is preferably 10 parts by weight or less, for example, 0.5 to 5 parts by weight, as an active ingredient of the dispersant, based on 100 parts by weight of the total solid content of the dispersion composition. It is more preferable to set it within the range of 1.
- the total amount of fluororesin powder and inorganic filler should be within the range of 50 to 80% by weight of the entire composition. It is preferable that the content be within the range of 60 to 70% by weight, and more preferably within the range of 60 to 70% by weight.
- the solid content in the dispersion composition means the total of the components excluding the solvent.
- the viscosity of the dispersion composition is not particularly limited, but for example, when the purpose is to coat a thick film of 30 ⁇ m or more, it is preferably within the range of 500 to 50,000 cP, and more preferably within the range of 500 to 30,000 cP.
- the viscosity of the dispersion composition can be measured at a temperature of 25° C. using an E-type viscometer.
- the first laminate 40 used in Methods 1 and 2 can be manufactured, for example, by applying and drying a solution of the adhesive composition onto the metal foil that will become the metal layers 10A and 10B.
- the method of applying the solution of the dispersion composition or adhesive composition onto the metal foil or the adhesive layers 20A, 20B is not particularly limited, and for example, it may be applied using a comma, die, knife, lip, etc. coater. Is possible.
- the metal-clad laminate 100 of the present embodiment obtained as described above can be used as a single-sided circuit board or a double-sided circuit board by processing the wiring circuit by etching the metal layer 10A and/or the metal layer 10B. Circuit boards can be manufactured.
- the metal-clad laminate 100 of this embodiment is mainly useful as a material for circuit boards such as FPCs, rigid-flex circuit boards, and rigid boards.
- circuit boards such as FPCs, rigid-flex circuit boards, and rigid boards.
- one or both of the two metal layers 10A and 10B of the metal-clad laminate 100 shown in FIG. 1 is processed into a pattern by a conventional method to form a wiring layer. It is possible to manufacture circuit boards such as certain FPCs.
- a circuit was processed on only one copper foil side of the double-sided copper-clad laminate to a width of 1 mm in the resin coating direction at 10 mm intervals, and the circuit was cut into 8 cm width x 4 cm length to prepare a measurement sample. Peel strength was measured using a Tensilon tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name: Strograph VE-1D). The copper foil was peeled off in a 180° direction at a rate of 50 mm/min, and the median strength was determined when 10 mm was peeled off.
- the ratio of the voids to the entire image was calculated, and the average value of the ratios of the voids in the five images was taken as the porosity.
- the porosity calculated from the image is an area ratio, it was treated as equivalent to a volume ratio by calculating the average value of a plurality of images.
- CTE coefficient of thermal expansion
- the dielectric loss tangent (Df) of the film at 60 GHz was measured using a network analyzer (manufactured by Keysight Technologies, trade name: PNA N5227B) and a split cylinder resonator (SCR resonator). Note that Df during humidity control was measured after the film used for measurement was left for 24 hours under conditions of temperature: 22 to 24° C. and humidity: 45 to 55%.
- the surface roughness of the copper foil was measured using AFM (manufactured by Bruker AXS, trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS, trade name: TESPA (NCHV), tip radius of curvature 10 nm, Using a spring constant of 42 N/m), measurement was performed in a tapping mode in an area of 80 ⁇ m x 80 ⁇ m on the surface of the copper foil, and the ten-point average roughness (Rzjis) was determined.
- AFM manufactured by Bruker AXS, trade name: Dimension Icon type SPM
- probe manufactured by Bruker AXS, trade name: TESPA (NCHV)
- tip radius of curvature 10 nm Using a spring constant of 42 N/m), measurement was performed in a tapping mode in an area of 80 ⁇ m x 80 ⁇ m on the surface of the copper foil, and the ten-point average roughness (Rzjis) was determined.
- Fluorine resin powder (1) Fluon+ (Fluon is a registered trademark) EA-2000PW 10, AGC fluorine resin powder, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, average particle size: 2 to 3 ⁇ m
- Dispersion Composition 1-1 was judged to be a "solid" because it had no fluidity and its viscosity could not be measured.
- dispersion composition 1-1 was diluted and stirred in stages with DMAc so that the total proportion of fluororesin powder (1) and silica filler (1) was 70% by weight based on the total amount, and the mixture was stirred at 100 rpm.
- a dispersion composition 1-2 having a viscosity of 1080 cP as measured was obtained.
- Dispersant composition preparation example 2 In a 310 ml polypropylene container, 100.0 g of fluororesin dispersion (1) (FEP 25.0 g), 59.7 g of silica filler (1), and 6.0 g of dispersant (1) (dispersant active ingredient 3) .0g) were added. Next, the two samples were set in a rotation-revolution stirrer [SK-350G manufactured by Photo Kagaku Co., Ltd.] and stirred for 4 minutes at a revolution speed of 1060 rpm and an autorotation speed of 1060 rpm. I got it.
- SK-350G manufactured by Photo Kagaku Co., Ltd.
- Dispersion Composition 3-1 was judged to be a "solid" because it had no fluidity and its viscosity could not be measured.
- dispersion composition 3-1 was diluted stepwise with DMAc and stirred so that the total proportion of fluororesin powder (1) and silica filler (1) was 65% by weight based on the total amount, and the mixture was stirred at 100 rpm.
- a dispersion composition 3-2 having a viscosity of 1480 cP was obtained when measured.
- Dispersant composition preparation example 4 Two samples were prepared by adding 100.0 g of fluororesin powder (1), 10.0 g of dispersant (1) (5.0 g of dispersant active ingredient), and 90 g of DMAc in a 310 ml polypropylene container. Next, the two samples were set in a rotation-revolution stirrer [SK-350G manufactured by Photo Kagaku Co., Ltd.] and stirred for 4 minutes under the conditions of revolution of 1060 rpm and rotation of 1060 rpm.Dispersion Composition 4 with a viscosity of 130 cP when measured at 100 rpm I got it.
- SK-350G manufactured by Photo Kagaku Co., Ltd.
- the copper foil of the double-sided copper-clad laminate 1 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 1.
- the CTE of the fluororesin film 1 was 23 ppm/K, and the melting point (Tm) was 350°C.
- the copper foil of the double-sided copper-clad laminate 2 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 2.
- the CTE of the fluororesin film 2 was 23 ppm/K, and the melting point (Tm) was 303°C.
- the copper foil of the double-sided copper-clad laminate 3 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 3.
- the CTE of the fluororesin film 3 was 52 ppm/K, and the melting point (Tm) was 325°C.
- the copper foil of the double-sided copper-clad laminate 4 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 4.
- the CTE of the fluororesin film 4 was 240 ppm/K, and the melting point (Tm) was 305°C.
- the copper foil of the double-sided copper-clad laminate 5 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 5.
- the CTE of the fluororesin film 5 was 180 ppm/K, and the melting point (Tm) was 260°C.
- Polyamic acid solution A was evenly applied onto a copper foil (electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m) so that the thickness after curing was approximately 25 ⁇ m. After that, heat drying was performed at 120° C. for 2 minutes to remove the solvent. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 10 minutes to complete imidization and obtain a single-sided copper-clad laminate 6.
- Polyimide film A had a CTE of 51 ppm/K, a glass transition temperature of 227°C, a storage modulus of 2.7 x 10 7 Pa at 300°C, and a storage modulus of 1.1 x 10 7 Pa at 350°C. This confirmed that it was a thermoplastic polyimide and had a storage modulus of 1 ⁇ 10 6 Pa or more at 325°C.
- Polyamic acid solution B was evenly applied onto a copper foil (electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m) so that the thickness after curing was approximately 25 ⁇ m. After that, heat drying was performed at 120° C. for 2 minutes to remove the solvent. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 10 minutes to complete imidization and obtain a single-sided copper-clad laminate 7.
- a copper foil electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m
- Polyimide film B has a CTE of 55 ppm/K, a glass transition temperature of 332°C, a storage modulus of 1.0 x 10 9 Pa at 300°C, and a storage modulus of 5.6 x 10 7 Pa at 350°C. It was a thermoplastic polyimide.
- Example 1> After applying polyamic acid solution A as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m), it was heated at 120°C for 1 minute. The solvent was removed by heating and drying. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 5 minutes to complete imidization.
- a copper foil electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m
- drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven.
- heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 8.
- ⁇ Peel strength 0.7 kN/m or more was rated as ⁇ (good), and less than 0.7 kN/m was rated as ⁇ (unsatisfactory).
- ⁇ Resin flow A case where the maximum amount of resin flowing out from the edge of the double-sided copper-clad laminate was less than 1 mm was rated as ⁇ (good), and a case where the maximum amount of resin flowing out from the edge of the double-sided copper-clad laminate was 1 mm or more was rated as ⁇ (unsatisfactory).
- ⁇ Void A cross-sectional observation using SEM revealed that the void was 5 vol. % is ⁇ (good), and the void is 5 vol.
- ⁇ CTE 30 ppm/K or less was rated ⁇ (excellent), more than 30 ppm/K and less than 60 ppm/K was rated ⁇ (good), and more than 60 ppm/K was rated ⁇ (unsatisfactory).
- ⁇ Dielectric loss tangent Those less than 0.0020 were rated ⁇ (excellent), those greater than 0.0020 and less than 0.0025 were rated ⁇ (good), and those greater than 0.0025 were rated ⁇ (unsatisfactory).
- Example 2 A single-sided copper-clad laminate 9 was produced in the same manner as in Example 1, except that polyamic acid solution B was applied as an adhesive layer, and then a double-sided copper-clad laminate 7 was produced by pressing. A fluororesin film 7 was obtained by removing the copper foil of the plate 7. The obtained double-sided copper-clad laminate 7 and fluororesin film 7 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
- Example 3 After producing a single-sided copper-clad laminate 10 in the same manner as in Example 2 except for changing the thickness of the adhesive layer and the inorganic filler-containing fluororesin layer, pressing was performed to produce a double-sided copper-clad laminate 8, A fluororesin film 8 was obtained by removing the copper foil from the double-sided copper-clad laminate 8. The obtained double-sided copper-clad laminate 8 and fluororesin film 8 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
- Example 4> After applying the dispersion composition 4 as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m), at 80° C. for 1 minute, The solvent was removed by heating and drying at 120° C. for 3 minutes. Furthermore, heat treatment was performed at 280°C for 1.5 minutes and at 340°C for 3 minutes.
- a copper foil electrolytic copper foil, thickness: 12 ⁇ m, ten-point average roughness Rzjis on the resin layer side: 0.6 ⁇ m
- Dispersion Composition 2 After coating Dispersion Composition 2 on the adhesive layer as an inorganic filler-containing fluororesin layer, drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven. Next, heat treatment was performed at 240° C. for 3 minutes and at 300° C. for 6 minutes to obtain a single-sided copper-clad laminate 11.
- Example 5> After producing the single-sided copper-clad laminate 12 in the same manner as in Example 1, except that the dispersion composition 3-2 was applied as the inorganic filler-containing fluororesin layer and the pressing temperature was 335° C., pressing was performed. A double-sided copper-clad laminate 10 was prepared, and the copper foil of the double-sided copper-clad laminate 10 was removed to obtain a fluororesin film 10. The obtained double-sided copper-clad laminate 10 and fluororesin film 10 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
- drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven.
- heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 13.
- Dispersion Composition 2 After coating Dispersion Composition 2 on the adhesive layer as an inorganic filler-containing fluororesin layer, drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven. Next, heat treatment was performed at 240° C. for 3 minutes and at 300° C. for 6 minutes to obtain a single-sided copper-clad laminate 15.
- 10A, 10B ...metal layer, 20A, 20B...adhesive layer, 30...inorganic filler-containing fluororesin layer, 31...dispersed composition layer, 40...first laminate, 50...second laminate, 100...metal tension laminate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
Abstract
This metal-clad laminated board 100 has a structure that (a metal layer 10A)/(an adhesive layer 20A)/(an inorganic filler-containing fluororesin layer 30)/(an adhesive layer 20B)/(a metal layer 10B) are laminated in this order. The metal-clad laminated board 100 satisfies either one of the requirements (a) and (b): (a) when a main resin constituting the adhesive layer 20A, 20B is a crystalline resin, the melting point Tm1 of the adhesive layer 20A, 20B is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer 30; and (b) when the main resin constituting the adhesive layer 20A, 20B is an amorphous resin, the storage modulus E' of the adhesive layer 20A, 20B at the melting point Tm2 of the inorganic filler-containing fluororesin layer 30 is 1×106Pa or more. In the metal-clad laminated board 100, the thermal expansion coefficient of the inorganic filler-containing fluororesin layer is 60 ppm/K or less.
Description
本発明は、例えば、回路基板材料として有用な金属張積層板の製造方法に関する。
The present invention relates to a method for manufacturing a metal-clad laminate useful as, for example, a circuit board material.
近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、スマートフォン等の電子機器の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。
In recent years, as electronic devices have become smaller, lighter, and space-saving, flexible printed circuit boards (FPCs) have become thinner, lighter, more flexible, and have excellent durability even after repeated bending. Demand for circuits is increasing. FPCs can be mounted three-dimensionally and with high density even in limited spaces, so their use is expanding, for example, for wiring of electronic devices such as HDDs, DVDs, and smartphones, as well as parts such as cables and connectors. .
FPCは、材料となる銅張積層板(CCL)などの金属張積層板の金属層をエッチングして配線加工することによって製造される。現在は、金属張積層板として、金属箔と接する絶縁樹脂層に耐熱性の高いポリイミドを用いたものが汎用されている。しかし、近年の通信機器の高速化に伴い、5G通信、更には6G通信の開発が進んでおり、回路基板材料についても、高速通信規格に対応可能なミリ波レーダー用基板、アンテナ基板などに向けて材料の検討が行われている。そのような材料の中で、フッ素系樹脂は、低い誘電正接を有し、信号の伝送損失の低減が期待できることから注目を浴びている。
FPC is manufactured by etching the metal layer of a metal clad laminate such as a copper clad laminate (CCL) to form wiring. Currently, metal-clad laminates in which highly heat-resistant polyimide is used for the insulating resin layer in contact with the metal foil are commonly used. However, as the speed of communication equipment has increased in recent years, the development of 5G communication and even 6G communication is progressing, and circuit board materials are also becoming more suitable for millimeter wave radar boards, antenna boards, etc. that can support high-speed communication standards. Materials are currently being considered. Among such materials, fluororesins are attracting attention because they have a low dielectric loss tangent and are expected to reduce signal transmission loss.
フッ素系樹脂は熱膨張係数が大きいため、低誘電正接という特性を活かしながら回路基板用の絶縁材料としての要求特性である低熱膨張化を図るため、無機フィラーを配合する検討が行われている。しかし、無機フィラーを高充填すると低粗化銅箔との密着性が低下する、という問題がある(例えば、特許文献1)。
Since fluororesins have a large coefficient of thermal expansion, studies are being conducted to incorporate inorganic fillers in order to take advantage of the property of low dielectric loss tangent and achieve low thermal expansion, which is a required property as an insulating material for circuit boards. However, there is a problem in that when the inorganic filler is highly filled, the adhesion with the low roughening copper foil decreases (for example, Patent Document 1).
特許文献1では、フッ素系樹脂のマトリックス中に無機フィラーを含む複合材料層を製造する過程で、フッ素系樹脂と無機フィラーを含む分散組成物を基材に塗布し、乾燥するキャスト工程を実施している。このように無機フィラーを含む複合材料をキャスト工程で形成すると、塗布膜中に空隙が発生する。空隙を解消するためには、熱圧着により複合材料の流動温度以上の熱をかけながら加熱する必要がある。しかしながら、金属箔上に予め接着層を形成しておき、その上に塗布膜を形成する場合には、接着層の流動抑制と複合材料層の空隙解消の双方を考慮する必要がある。すなわち、接着層を設ける場合には、空隙の解消と、接着層の流れ出しや厚みムラの抑制との両立が困難であることが懸念される。この点に関し、特許文献1では、金属層に隣接して明確に接着層と位置付けられるものを設けていないことから、接着層の流動抑制について考慮されていない。
In Patent Document 1, in the process of manufacturing a composite material layer containing an inorganic filler in a fluororesin matrix, a casting process is performed in which a dispersion composition containing a fluororesin and an inorganic filler is applied to a base material and dried. ing. When a composite material containing an inorganic filler is formed in a casting process in this way, voids are generated in the coating film. In order to eliminate voids, it is necessary to heat the composite material by applying heat to a temperature higher than the flow temperature of the composite material by thermocompression bonding. However, when an adhesive layer is previously formed on the metal foil and a coating film is formed thereon, it is necessary to consider both the suppression of flow of the adhesive layer and the elimination of voids in the composite material layer. That is, when an adhesive layer is provided, there is a concern that it is difficult to simultaneously eliminate voids and suppress flow of the adhesive layer and thickness unevenness. Regarding this point, Patent Document 1 does not provide a layer that is clearly positioned as an adhesive layer adjacent to the metal layer, and therefore does not consider suppressing the flow of the adhesive layer.
したがって、本発明は、熱圧着時の接着層の流れ出しや厚みムラの発生を予防しながら、無機フィラー含有フッ素系樹脂層における空隙の解消と、金属箔との密着性担保の両立を図ることを目的とする。
Therefore, the present invention aims to eliminate voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil, while preventing the adhesive layer from flowing out and uneven thickness during thermocompression bonding. purpose.
上記実情に鑑み、鋭意検討を行った結果、無機フィラー含有フッ素系樹脂層の融点に着目し、この融点と、接着層の融点又は貯蔵弾性率の関係を考慮することによって、上記課題を解決できることを見出し、本発明を完成するに至った。
In view of the above circumstances, as a result of intensive studies, the above problem can be solved by focusing on the melting point of the inorganic filler-containing fluororesin layer and considering the relationship between this melting point and the melting point or storage modulus of the adhesive layer. They discovered this and completed the present invention.
すなわち、本発明の金属張積層板は、
金属層と、
前記金属層に直接接する接着層と、
前記接着層に直接又は間接的に積層されている、フッ素系樹脂中に無機フィラーを含有する無機フィラー含有フッ素系樹脂層と、
を備えている。
そして、本発明の金属張積層板は、前記接着層と前記無機フィラー含有フッ素系樹脂層が、以下のa)又はb)、
a)接着層を構成する主たる樹脂が結晶性樹脂であるとき、接着層の融点Tm1が無機フィラー含有フッ素系樹脂層の融点Tm2より高いこと;
b)接着層を構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層の融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であること;
のいずれかの条件を満たし、前記無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)が60ppm/K以下である。 That is, the metal-clad laminate of the present invention is
a metal layer;
an adhesive layer in direct contact with the metal layer;
an inorganic filler-containing fluororesin layer containing an inorganic filler in the fluororesin, which is laminated directly or indirectly on the adhesive layer;
It is equipped with
In the metal-clad laminate of the present invention, the adhesive layer and the inorganic filler-containing fluororesin layer are a) or b) as follows:
a) When the main resin constituting the adhesive layer is a crystalline resin, the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer;
b) When the main resin constituting the adhesive layer is an amorphous resin, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more;
The inorganic filler-containing fluororesin layer has a coefficient of thermal expansion (CTE) of 60 ppm/K or less.
金属層と、
前記金属層に直接接する接着層と、
前記接着層に直接又は間接的に積層されている、フッ素系樹脂中に無機フィラーを含有する無機フィラー含有フッ素系樹脂層と、
を備えている。
そして、本発明の金属張積層板は、前記接着層と前記無機フィラー含有フッ素系樹脂層が、以下のa)又はb)、
a)接着層を構成する主たる樹脂が結晶性樹脂であるとき、接着層の融点Tm1が無機フィラー含有フッ素系樹脂層の融点Tm2より高いこと;
b)接着層を構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層の融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であること;
のいずれかの条件を満たし、前記無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)が60ppm/K以下である。 That is, the metal-clad laminate of the present invention is
a metal layer;
an adhesive layer in direct contact with the metal layer;
an inorganic filler-containing fluororesin layer containing an inorganic filler in the fluororesin, which is laminated directly or indirectly on the adhesive layer;
It is equipped with
In the metal-clad laminate of the present invention, the adhesive layer and the inorganic filler-containing fluororesin layer are a) or b) as follows:
a) When the main resin constituting the adhesive layer is a crystalline resin, the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer;
b) When the main resin constituting the adhesive layer is an amorphous resin, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more;
The inorganic filler-containing fluororesin layer has a coefficient of thermal expansion (CTE) of 60 ppm/K or less.
本発明の金属張積層板は、前記無機フィラー含有フッ素系樹脂層の23℃、50%RHの恒温恒湿条件のもと24時間調湿後に、スプリットシリンダ共振器(SCR共振器)により測定される60GHzにおける誘電正接が0.0025未満であってもよい。
The metal-clad laminate of the present invention was measured using a split cylinder resonator (SCR resonator) after controlling the humidity of the inorganic filler-containing fluororesin layer for 24 hours under constant temperature and humidity conditions of 23° C. and 50% RH. The dielectric loss tangent at 60 GHz may be less than 0.0025.
本発明の金属張積層板は、金属層/接着層/無機フィラー含有フッ素系樹脂層/接着層/金属層がこの順に積層された層構成を有するものであってもよい。
The metal-clad laminate of the present invention may have a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer are laminated in this order.
本発明の金属張積層板は、前記接着層と前記無機フィラー含有フッ素系樹脂層の合計厚みに対する前記接着層の厚みの比率が1~25%の範囲内であってもよい。
In the metal-clad laminate of the present invention, the ratio of the thickness of the adhesive layer to the total thickness of the adhesive layer and the inorganic filler-containing fluororesin layer may be within a range of 1 to 25%.
本発明の金属張積層板の製造方法は、上記金属張積層板を製造する方法であって、
金属層上に接着層が積層された第1の積層体を準備する工程と、
前記接着層上に、無機フィラー及びフッ素系樹脂を含有する分散組成物を塗布し、熱処理することによって、前記金属層上に前記接着層及び分散組成物層が積層された第2の積層体を形成する工程と、
2つの前記第2の積層体を用い、前記分散組成物層を向い合せにして熱圧着することによって、又は、前記第1の積層体と前記第2の積層体を用い、前記接着層と前記分散組成物層を向い合せにして熱圧着することによって、金属層/接着層/無機フィラー含有フッ素系樹脂層/接着層/金属層がこの順に積層された層構成を有する金属張積層板を形成する工程と、
を含んでいる。 The method for manufacturing a metal-clad laminate of the present invention is a method for manufacturing the metal-clad laminate described above, comprising:
preparing a first laminate in which an adhesive layer is laminated on a metal layer;
A second laminate in which the adhesive layer and the dispersion composition layer are laminated on the metal layer is formed by applying a dispersion composition containing an inorganic filler and a fluororesin on the adhesive layer and heat-treating the adhesive layer. a step of forming;
By using two of the second laminates and thermocompression bonding with the dispersion composition layers facing each other, or by using the first laminate and the second laminate, the adhesive layer and the By thermocompression bonding the dispersion composition layers facing each other, a metal-clad laminate having a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer is laminated in this order is formed. The process of
Contains.
金属層上に接着層が積層された第1の積層体を準備する工程と、
前記接着層上に、無機フィラー及びフッ素系樹脂を含有する分散組成物を塗布し、熱処理することによって、前記金属層上に前記接着層及び分散組成物層が積層された第2の積層体を形成する工程と、
2つの前記第2の積層体を用い、前記分散組成物層を向い合せにして熱圧着することによって、又は、前記第1の積層体と前記第2の積層体を用い、前記接着層と前記分散組成物層を向い合せにして熱圧着することによって、金属層/接着層/無機フィラー含有フッ素系樹脂層/接着層/金属層がこの順に積層された層構成を有する金属張積層板を形成する工程と、
を含んでいる。 The method for manufacturing a metal-clad laminate of the present invention is a method for manufacturing the metal-clad laminate described above, comprising:
preparing a first laminate in which an adhesive layer is laminated on a metal layer;
A second laminate in which the adhesive layer and the dispersion composition layer are laminated on the metal layer is formed by applying a dispersion composition containing an inorganic filler and a fluororesin on the adhesive layer and heat-treating the adhesive layer. a step of forming;
By using two of the second laminates and thermocompression bonding with the dispersion composition layers facing each other, or by using the first laminate and the second laminate, the adhesive layer and the By thermocompression bonding the dispersion composition layers facing each other, a metal-clad laminate having a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer is laminated in this order is formed. The process of
Contains.
本発明の金属張積層板は、無機フィラー含有フッ素系樹脂層の融点Tm2との関係で、接着層の融点Tm1又は貯蔵弾性率E’が考慮されているので、熱圧着時の接着層の流れ出しや厚みムラの発生を予防しながら、無機フィラー含有フッ素系樹脂層における空隙の解消と、金属箔との密着性担保の両立が図られている。したがって、本発明の金属張積層板は、高速通信規格に対応可能な回路基板材料として有用である。
In the metal-clad laminate of the present invention, the melting point Tm1 or storage modulus E' of the adhesive layer is taken into consideration in relation to the melting point Tm2 of the inorganic filler-containing fluororesin layer, so the adhesive layer flows out during thermocompression bonding. This attempt is made to both eliminate voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the occurrence of thickness unevenness. Therefore, the metal-clad laminate of the present invention is useful as a circuit board material compatible with high-speed communication standards.
本発明の実施の形態について、適宜図面を参照しながら説明する。
Embodiments of the present invention will be described with reference to the drawings as appropriate.
[金属張積層板]
本発明の金属張積層板は、金属箔と、この金属箔に直接接する接着層と、この接着層に直接又は間接的に積層されている、フッ素系樹脂中に無機フィラーを含有する無機フィラー含有フッ素系樹脂層と、を備えている。なお、本発明の金属張積層板は、上記以外の任意の層を有していてもよい。 [Metal-clad laminate]
The metal-clad laminate of the present invention includes a metal foil, an adhesive layer in direct contact with the metal foil, and an inorganic filler containing an inorganic filler in a fluororesin that is laminated directly or indirectly on the adhesive layer. A fluororesin layer. In addition, the metal-clad laminate of the present invention may have any layer other than the above.
本発明の金属張積層板は、金属箔と、この金属箔に直接接する接着層と、この接着層に直接又は間接的に積層されている、フッ素系樹脂中に無機フィラーを含有する無機フィラー含有フッ素系樹脂層と、を備えている。なお、本発明の金属張積層板は、上記以外の任意の層を有していてもよい。 [Metal-clad laminate]
The metal-clad laminate of the present invention includes a metal foil, an adhesive layer in direct contact with the metal foil, and an inorganic filler containing an inorganic filler in a fluororesin that is laminated directly or indirectly on the adhesive layer. A fluororesin layer. In addition, the metal-clad laminate of the present invention may have any layer other than the above.
本発明の金属張積層板は、以下のa)又はb)のいずれかの条件を満たすものである。なお、本発明において「主たる樹脂」とは、接着層を構成する全樹脂成分に対して、50重量%を超えて含まれる樹脂を意味する(以下、同様である)。
The metal-clad laminate of the present invention satisfies either of the following conditions a) or b). In the present invention, the term "main resin" refers to a resin that is contained in an amount exceeding 50% by weight based on all the resin components constituting the adhesive layer (the same applies hereinafter).
条件a)
接着層を構成する主たる樹脂が結晶性樹脂であるとき、接着層の融点Tm1が無機フィラー含有フッ素系樹脂層の融点Tm2より高いこと。
融点Tm1が融点Tm2より高いこと(Tm1>Tm2)によって、無機フィラー含有フッ素系樹脂層中の空隙を解消するために、融点Tm2を超える温度で熱圧着をする際に、接着層に流れ出しが発生したり、厚みムラが発生したりすることを効果的に防止できる。したがって、金属張積層板において、接着層の流れ出しや厚みムラの発生を予防しながら、無機フィラー含有フッ素系樹脂層における空隙の低減と、金属箔との密着性担保の両立を図ることができる。それに対して、融点Tm1が融点Tm2と同じか、それ以下である場合(Tm1≦Tm2)には、融点Tm2を超える温度での熱圧着時に接着層に流れ出しが発生したり、厚みムラが発生したりするおそれがある。以上の観点から、接着層の融点Tm1は、無機フィラー含有フッ素系樹脂層の融点Tm2より+5℃以上高いことが好ましく、+10℃~+50℃の範囲内で高いことがより好ましい。 Condition a)
When the main resin constituting the adhesive layer is a crystalline resin, the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer.
Because the melting point Tm1 is higher than the melting point Tm2 (Tm1>Tm2), flow out occurs in the adhesive layer when thermocompression bonding is performed at a temperature exceeding the melting point Tm2 in order to eliminate voids in the inorganic filler-containing fluororesin layer. It is possible to effectively prevent the occurrence of uneven thickness. Therefore, in the metal-clad laminate, it is possible to reduce the voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the adhesive layer from flowing out or causing thickness unevenness. On the other hand, if the melting point Tm1 is the same as or lower than the melting point Tm2 (Tm1≦Tm2), flow may occur in the adhesive layer or thickness unevenness may occur during thermocompression bonding at a temperature exceeding the melting point Tm2. There is a risk of From the above viewpoint, the melting point Tm1 of the adhesive layer is preferably +5°C or more higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer, and more preferably within the range of +10°C to +50°C.
接着層を構成する主たる樹脂が結晶性樹脂であるとき、接着層の融点Tm1が無機フィラー含有フッ素系樹脂層の融点Tm2より高いこと。
融点Tm1が融点Tm2より高いこと(Tm1>Tm2)によって、無機フィラー含有フッ素系樹脂層中の空隙を解消するために、融点Tm2を超える温度で熱圧着をする際に、接着層に流れ出しが発生したり、厚みムラが発生したりすることを効果的に防止できる。したがって、金属張積層板において、接着層の流れ出しや厚みムラの発生を予防しながら、無機フィラー含有フッ素系樹脂層における空隙の低減と、金属箔との密着性担保の両立を図ることができる。それに対して、融点Tm1が融点Tm2と同じか、それ以下である場合(Tm1≦Tm2)には、融点Tm2を超える温度での熱圧着時に接着層に流れ出しが発生したり、厚みムラが発生したりするおそれがある。以上の観点から、接着層の融点Tm1は、無機フィラー含有フッ素系樹脂層の融点Tm2より+5℃以上高いことが好ましく、+10℃~+50℃の範囲内で高いことがより好ましい。 Condition a)
When the main resin constituting the adhesive layer is a crystalline resin, the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer.
Because the melting point Tm1 is higher than the melting point Tm2 (Tm1>Tm2), flow out occurs in the adhesive layer when thermocompression bonding is performed at a temperature exceeding the melting point Tm2 in order to eliminate voids in the inorganic filler-containing fluororesin layer. It is possible to effectively prevent the occurrence of uneven thickness. Therefore, in the metal-clad laminate, it is possible to reduce the voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the adhesive layer from flowing out or causing thickness unevenness. On the other hand, if the melting point Tm1 is the same as or lower than the melting point Tm2 (Tm1≦Tm2), flow may occur in the adhesive layer or thickness unevenness may occur during thermocompression bonding at a temperature exceeding the melting point Tm2. There is a risk of From the above viewpoint, the melting point Tm1 of the adhesive layer is preferably +5°C or more higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer, and more preferably within the range of +10°C to +50°C.
融点Tm2に関し、「フッ素系樹脂の融点」とせずに、「無機フィラー含有フッ素系樹脂層の融点」としているのは、同じフッ素系樹脂であっても、無機フィラーを含有していない状態に比べて、無機フィラーを含有している状態では、無機フィラーの影響により融点が高くなるためである。そこで、樹脂単体ではなく、無機フィラーを含む「層」の融点としたものである。また、無機フィラーの含有量によっても融点Tm2は変化し、無機フィラー量が増えると融点Tm2も高くなる。したがって、融点Tm2は無機フィラーの含有量に応じて決まる物性値である。
Regarding the melting point Tm2, the reason why it is defined as the "melting point of the fluororesin layer containing inorganic filler" rather than the "melting point of the fluororesin" is that even if the same fluororesin is used, it is compared to the state without the inorganic filler. This is because when an inorganic filler is contained, the melting point increases due to the influence of the inorganic filler. Therefore, the melting point is not the melting point of the resin alone, but of the "layer" containing the inorganic filler. The melting point Tm2 also changes depending on the content of the inorganic filler, and as the amount of the inorganic filler increases, the melting point Tm2 also increases. Therefore, the melting point Tm2 is a physical property value determined depending on the content of the inorganic filler.
接着層を構成する結晶性樹脂の融点Tm1が無機フィラー含有フッ素系樹脂層の融点Tm2より高くなる樹脂の好ましい組み合わせとしては、例えば、
・接着層を構成する結晶性樹脂が、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA;Tm1=305℃)であり、無機フィラー含有フッ素系樹脂層がエチレン-テトラフルオロエチレン共重合体(ETFE;Tm2=270~315℃)の層である組み合わせ;
・接着層を構成する結晶性樹脂が、エチレン-テトラフルオロエチレン共重合体(ETFE;Tm1=270℃)であり、無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP;Tm2=260~305℃)の層である組み合わせ;
・接着層を構成する結晶性樹脂が、液晶ポリマー(Tm1=280~400℃)であり、無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP;Tm2=260~305℃)、エチレン-テトラフルオロエチレン共重合体(ETFE;Tm2=270~315℃)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA;Tm2=305~350℃)から選ばれる1種以上の層である組み合わせ;
などを挙げることができる。 Preferred combinations of resins in which the melting point Tm1 of the crystalline resin constituting the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer include, for example:
- The crystalline resin constituting the adhesive layer is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA; Tm1 = 305°C), and the inorganic filler-containing fluororesin layer is an ethylene-tetrafluoroethylene copolymer (PFA; Tm1 = 305°C). A combination that is a layer of ETFE; Tm2 = 270-315°C);
・The crystalline resin constituting the adhesive layer is an ethylene-tetrafluoroethylene copolymer (ETFE; Tm1=270°C), and the inorganic filler-containing fluororesin layer is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP). ;Tm2=260~305°C);
- The crystalline resin constituting the adhesive layer is a liquid crystal polymer (Tm1 = 280 to 400°C), and the inorganic filler-containing fluororesin layer is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP; Tm2 = 260 to 305 °C), ethylene-tetrafluoroethylene copolymer (ETFE; Tm2 = 270 to 315 °C), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA; Tm2 = 305 to 350 °C). A combination that is a layer;
etc. can be mentioned.
・接着層を構成する結晶性樹脂が、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA;Tm1=305℃)であり、無機フィラー含有フッ素系樹脂層がエチレン-テトラフルオロエチレン共重合体(ETFE;Tm2=270~315℃)の層である組み合わせ;
・接着層を構成する結晶性樹脂が、エチレン-テトラフルオロエチレン共重合体(ETFE;Tm1=270℃)であり、無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP;Tm2=260~305℃)の層である組み合わせ;
・接着層を構成する結晶性樹脂が、液晶ポリマー(Tm1=280~400℃)であり、無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP;Tm2=260~305℃)、エチレン-テトラフルオロエチレン共重合体(ETFE;Tm2=270~315℃)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA;Tm2=305~350℃)から選ばれる1種以上の層である組み合わせ;
などを挙げることができる。 Preferred combinations of resins in which the melting point Tm1 of the crystalline resin constituting the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer include, for example:
- The crystalline resin constituting the adhesive layer is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA; Tm1 = 305°C), and the inorganic filler-containing fluororesin layer is an ethylene-tetrafluoroethylene copolymer (PFA; Tm1 = 305°C). A combination that is a layer of ETFE; Tm2 = 270-315°C);
・The crystalline resin constituting the adhesive layer is an ethylene-tetrafluoroethylene copolymer (ETFE; Tm1=270°C), and the inorganic filler-containing fluororesin layer is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP). ;Tm2=260~305°C);
- The crystalline resin constituting the adhesive layer is a liquid crystal polymer (Tm1 = 280 to 400°C), and the inorganic filler-containing fluororesin layer is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP; Tm2 = 260 to 305 °C), ethylene-tetrafluoroethylene copolymer (ETFE; Tm2 = 270 to 315 °C), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA; Tm2 = 305 to 350 °C). A combination that is a layer;
etc. can be mentioned.
条件b):
接着層を構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層の融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であること。
融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であることによって、無機フィラー含有フッ素系樹脂層中の空隙を解消するために、融点Tm2を超える温度で熱圧着をする際に、接着層に流れ出しが発生したり、厚みムラが発生したりすることを効果的に防止できる。したがって、金属張積層板において、接着層の流れ出しや厚みムラの発生を予防しながら、無機フィラー含有フッ素系樹脂層における空隙の低減と、金属箔との密着性担保の両立を図ることができる。それに対して、融点Tm2における接着層の貯蔵弾性率E’が1×106Pa未満である場合には、融点Tm2を超える温度での熱圧着時に接着層に流れ出しが発生したり、厚みムラが発生したりするおそれがある。以上の観点から、融点Tm2における接着層の貯蔵弾性率E’は1×107Pa以上が好ましい。 Condition b):
When the main resin constituting the adhesive layer is an amorphous resin, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1×10 6 Pa or more.
Since the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is 1 x 10 6 Pa or more, in order to eliminate voids in the inorganic filler-containing fluororesin layer, when thermocompression bonding is performed at a temperature exceeding the melting point Tm2. In addition, it is possible to effectively prevent the adhesive layer from flowing out or becoming uneven in thickness. Therefore, in the metal-clad laminate, it is possible to reduce the voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the adhesive layer from flowing out or causing thickness unevenness. On the other hand, if the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is less than 1 x 10 6 Pa, flow may occur in the adhesive layer or thickness unevenness may occur during thermocompression bonding at a temperature exceeding the melting point Tm2. There is a possibility that this may occur. From the above viewpoint, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is preferably 1×10 7 Pa or more.
接着層を構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層の融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であること。
融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であることによって、無機フィラー含有フッ素系樹脂層中の空隙を解消するために、融点Tm2を超える温度で熱圧着をする際に、接着層に流れ出しが発生したり、厚みムラが発生したりすることを効果的に防止できる。したがって、金属張積層板において、接着層の流れ出しや厚みムラの発生を予防しながら、無機フィラー含有フッ素系樹脂層における空隙の低減と、金属箔との密着性担保の両立を図ることができる。それに対して、融点Tm2における接着層の貯蔵弾性率E’が1×106Pa未満である場合には、融点Tm2を超える温度での熱圧着時に接着層に流れ出しが発生したり、厚みムラが発生したりするおそれがある。以上の観点から、融点Tm2における接着層の貯蔵弾性率E’は1×107Pa以上が好ましい。 Condition b):
When the main resin constituting the adhesive layer is an amorphous resin, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1×10 6 Pa or more.
Since the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is 1 x 10 6 Pa or more, in order to eliminate voids in the inorganic filler-containing fluororesin layer, when thermocompression bonding is performed at a temperature exceeding the melting point Tm2. In addition, it is possible to effectively prevent the adhesive layer from flowing out or becoming uneven in thickness. Therefore, in the metal-clad laminate, it is possible to reduce the voids in the inorganic filler-containing fluororesin layer and ensure adhesion to the metal foil while preventing the adhesive layer from flowing out or causing thickness unevenness. On the other hand, if the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is less than 1 x 10 6 Pa, flow may occur in the adhesive layer or thickness unevenness may occur during thermocompression bonding at a temperature exceeding the melting point Tm2. There is a possibility that this may occur. From the above viewpoint, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 is preferably 1×10 7 Pa or more.
無機フィラー含有フッ素系樹脂層の融点Tm2における貯蔵弾性率E’が1×106Pa以上である非晶性樹脂の好ましい組み合わせとしては、例えば、
・無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体の層(PFA;Tm2=305~350℃)であり、接着層を構成する非晶性樹脂が、Tm2におけるE’が1×106Pa以上である熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミドから選ばれる1種以上である組み合わせ;
・無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体の層(FEP;Tm2=260~305℃)であり、接着層を構成する非晶性樹脂が、Tm2におけるE’が1×106Pa以上である熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミドから選ばれる1種以上である組み合わせ;
・無機フィラー含有フッ素系樹脂層がエチレン-テトラフルオロエチレン共重合体(ETFE;Tm2=270~315℃)の層であり、接着層を構成する非晶性樹脂が、Tm2におけるE’が1×106Pa以上である熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミドから選ばれる1種以上である組み合わせ;
などを挙げることができる。 Preferred combinations of amorphous resins in which the storage modulus E' at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more include, for example:
- The inorganic filler-containing fluororesin layer is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer layer (PFA; Tm2 = 305 to 350°C), and the amorphous resin constituting the adhesive layer has an E' at Tm2. a combination of one or more selected from thermoplastic polyimide, thermoplastic polyamide, and thermoplastic polyamide-imide having a pressure of 1×10 6 Pa or more;
- The inorganic filler-containing fluororesin layer is a tetrafluoroethylene-hexafluoropropylene copolymer layer (FEP; Tm2 = 260 to 305°C), and the amorphous resin constituting the adhesive layer has an E' at Tm2 of A combination of one or more selected from thermoplastic polyimide, thermoplastic polyamide, and thermoplastic polyamideimide having a pressure of 1×10 6 Pa or more;
- The inorganic filler-containing fluororesin layer is a layer of ethylene-tetrafluoroethylene copolymer (ETFE; Tm2 = 270 to 315°C), and the amorphous resin constituting the adhesive layer has an E' at Tm2 of 1× A combination of one or more selected from thermoplastic polyimide, thermoplastic polyamide, and thermoplastic polyamide-imide having a pressure of 10 6 Pa or more;
etc. can be mentioned.
・無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体の層(PFA;Tm2=305~350℃)であり、接着層を構成する非晶性樹脂が、Tm2におけるE’が1×106Pa以上である熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミドから選ばれる1種以上である組み合わせ;
・無機フィラー含有フッ素系樹脂層がテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体の層(FEP;Tm2=260~305℃)であり、接着層を構成する非晶性樹脂が、Tm2におけるE’が1×106Pa以上である熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミドから選ばれる1種以上である組み合わせ;
・無機フィラー含有フッ素系樹脂層がエチレン-テトラフルオロエチレン共重合体(ETFE;Tm2=270~315℃)の層であり、接着層を構成する非晶性樹脂が、Tm2におけるE’が1×106Pa以上である熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミドから選ばれる1種以上である組み合わせ;
などを挙げることができる。 Preferred combinations of amorphous resins in which the storage modulus E' at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more include, for example:
- The inorganic filler-containing fluororesin layer is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer layer (PFA; Tm2 = 305 to 350°C), and the amorphous resin constituting the adhesive layer has an E' at Tm2. a combination of one or more selected from thermoplastic polyimide, thermoplastic polyamide, and thermoplastic polyamide-imide having a pressure of 1×10 6 Pa or more;
- The inorganic filler-containing fluororesin layer is a tetrafluoroethylene-hexafluoropropylene copolymer layer (FEP; Tm2 = 260 to 305°C), and the amorphous resin constituting the adhesive layer has an E' at Tm2 of A combination of one or more selected from thermoplastic polyimide, thermoplastic polyamide, and thermoplastic polyamideimide having a pressure of 1×10 6 Pa or more;
- The inorganic filler-containing fluororesin layer is a layer of ethylene-tetrafluoroethylene copolymer (ETFE; Tm2 = 270 to 315°C), and the amorphous resin constituting the adhesive layer has an E' at Tm2 of 1× A combination of one or more selected from thermoplastic polyimide, thermoplastic polyamide, and thermoplastic polyamide-imide having a pressure of 10 6 Pa or more;
etc. can be mentioned.
次に、本発明の金属張積層板を構成する各層について説明する。
Next, each layer constituting the metal-clad laminate of the present invention will be explained.
(金属層)
金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。これらの中でも、特に銅又は銅合金が好ましい。なお、後述する本実施の形態の回路基板における配線層の材質も金属層と同様である。 (metal layer)
The material of the metal layer is not particularly limited, but examples include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and these. Examples include alloys of Among these, copper or copper alloy is particularly preferred. Note that the material of the wiring layer in the circuit board of this embodiment, which will be described later, is also the same as that of the metal layer.
金属層の材質としては、特に制限はないが、例えば、銅、ステンレス、鉄、ニッケル、ベリリウム、アルミニウム、亜鉛、インジウム、銀、金、スズ、ジルコニウム、タンタル、チタン、鉛、マグネシウム、マンガン及びこれらの合金等が挙げられる。これらの中でも、特に銅又は銅合金が好ましい。なお、後述する本実施の形態の回路基板における配線層の材質も金属層と同様である。 (metal layer)
The material of the metal layer is not particularly limited, but examples include copper, stainless steel, iron, nickel, beryllium, aluminum, zinc, indium, silver, gold, tin, zirconium, tantalum, titanium, lead, magnesium, manganese, and these. Examples include alloys of Among these, copper or copper alloy is particularly preferred. Note that the material of the wiring layer in the circuit board of this embodiment, which will be described later, is also the same as that of the metal layer.
金属層の厚みは特に限定されるものではないが、例えば銅箔等の金属箔を用いる場合、好ましくは35μm以下であり、より好ましくは5~25μmの範囲内がよい。生産安定性及びハンドリング性の観点から金属箔の厚みの下限値は5μmとすることが好ましい。なお、銅箔を用いる場合は、圧延銅箔でも電解銅箔でもよい。また、銅箔としては、市販されている銅箔を用いることができる。
The thickness of the metal layer is not particularly limited, but if a metal foil such as copper foil is used, it is preferably 35 μm or less, more preferably within the range of 5 to 25 μm. From the viewpoint of production stability and handling properties, the lower limit of the thickness of the metal foil is preferably 5 μm. In addition, when using copper foil, rolled copper foil or electrolytic copper foil may be used. Moreover, as the copper foil, commercially available copper foil can be used.
金属層の表面粗度は、特に限定されるものではないが、接着層との密着性を担保と導体損失を両立させる観点から、十点平均粗さ(Rzjis)が0.3~1.5の範囲内である粗化表面を有することが好ましい。なお、金属層の表面が低粗度であるほど、接着層を設ける効果が大きくなるので、十点平均粗さ(Rzjis)は0.3~1.0の範囲内であることがより好ましい。
また、金属箔は、例えば、防錆処理や、接着力の向上を目的として、例えばサイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施してもよい。 The surface roughness of the metal layer is not particularly limited, but from the viewpoint of ensuring both adhesion with the adhesive layer and conductor loss, the ten-point average roughness (Rzjis) is 0.3 to 1.5. It is preferred to have a roughened surface within the range of . Note that the lower the surface roughness of the metal layer, the greater the effect of providing the adhesive layer, so the ten-point average roughness (Rzjis) is more preferably within the range of 0.3 to 1.0.
Further, the metal foil may be subjected to a surface treatment using, for example, siding, aluminum alcoholate, aluminum chelate, a silane coupling agent, etc., for the purpose of antirust treatment or improvement of adhesive strength.
また、金属箔は、例えば、防錆処理や、接着力の向上を目的として、例えばサイディング、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による表面処理を施してもよい。 The surface roughness of the metal layer is not particularly limited, but from the viewpoint of ensuring both adhesion with the adhesive layer and conductor loss, the ten-point average roughness (Rzjis) is 0.3 to 1.5. It is preferred to have a roughened surface within the range of . Note that the lower the surface roughness of the metal layer, the greater the effect of providing the adhesive layer, so the ten-point average roughness (Rzjis) is more preferably within the range of 0.3 to 1.0.
Further, the metal foil may be subjected to a surface treatment using, for example, siding, aluminum alcoholate, aluminum chelate, a silane coupling agent, etc., for the purpose of antirust treatment or improvement of adhesive strength.
(接着層)
接着層を構成する樹脂としては、特に制限はないが、例えば、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリアミド、フッ素系樹脂、液晶ポリマー等が好ましい。フッ素系樹脂としては、条件a又はbを満たすことを前提に、後述する無機フィラー含有フッ素系樹脂層に用いるフッ素系樹脂と同様のものを用いることができる。 (Adhesive layer)
The resin constituting the adhesive layer is not particularly limited, but for example, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyamide, fluororesin, liquid crystal polymer, etc. are preferable. As the fluororesin, the same fluororesin as used in the inorganic filler-containing fluororesin layer described below can be used, provided that condition a or b is satisfied.
接着層を構成する樹脂としては、特に制限はないが、例えば、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリアミド、フッ素系樹脂、液晶ポリマー等が好ましい。フッ素系樹脂としては、条件a又はbを満たすことを前提に、後述する無機フィラー含有フッ素系樹脂層に用いるフッ素系樹脂と同様のものを用いることができる。 (Adhesive layer)
The resin constituting the adhesive layer is not particularly limited, but for example, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyamide, fluororesin, liquid crystal polymer, etc. are preferable. As the fluororesin, the same fluororesin as used in the inorganic filler-containing fluororesin layer described below can be used, provided that condition a or b is satisfied.
(無機フィラー含有フッ素系樹脂層)
無機フィラー含有フッ素系樹脂層は、マトリックス樹脂としてのフッ素系樹脂と、該マトリックス樹脂中に分散している無機フィラーを含有している。
無機フィラー含有フッ素系樹脂層を構成するフッ素系樹脂は、フッ素原子を含むポリマーであり、その種類は特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(EFEP)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらは、2種以上を組み合わせて用いてもよく、また、フッ素系樹脂の一部に官能基を有するパーフルオロオレフィンに基づくモノマー単位を含んでいてもよい。官能基としては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基が好ましい。これらのフッ素系樹脂の中でも、低い誘電正接を示すものとして、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)がより好ましい。 (Fluororesin layer containing inorganic filler)
The inorganic filler-containing fluororesin layer contains a fluororesin as a matrix resin and an inorganic filler dispersed in the matrix resin.
The fluororesin constituting the inorganic filler-containing fluororesin layer is a polymer containing fluorine atoms, and its type is not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether, etc. Polymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-tetrafluoroethylene-hexafluoropropylene copolymer (EFEP), polyfluoride Examples include vinyl (PVF) and polyvinylidene fluoride (PVDF). These may be used in combination of two or more types, and a portion of the fluororesin may contain a monomer unit based on a perfluoroolefin having a functional group. As the functional group, a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group are preferable. Among these fluororesins, those showing low dielectric loss tangent include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer ( FEP) is more preferred.
無機フィラー含有フッ素系樹脂層は、マトリックス樹脂としてのフッ素系樹脂と、該マトリックス樹脂中に分散している無機フィラーを含有している。
無機フィラー含有フッ素系樹脂層を構成するフッ素系樹脂は、フッ素原子を含むポリマーであり、その種類は特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、エチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(EFEP)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)等が挙げられる。これらは、2種以上を組み合わせて用いてもよく、また、フッ素系樹脂の一部に官能基を有するパーフルオロオレフィンに基づくモノマー単位を含んでいてもよい。官能基としては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基が好ましい。これらのフッ素系樹脂の中でも、低い誘電正接を示すものとして、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)がより好ましい。 (Fluororesin layer containing inorganic filler)
The inorganic filler-containing fluororesin layer contains a fluororesin as a matrix resin and an inorganic filler dispersed in the matrix resin.
The fluororesin constituting the inorganic filler-containing fluororesin layer is a polymer containing fluorine atoms, and its type is not particularly limited, but examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether, etc. Polymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-tetrafluoroethylene-hexafluoropropylene copolymer (EFEP), polyfluoride Examples include vinyl (PVF) and polyvinylidene fluoride (PVDF). These may be used in combination of two or more types, and a portion of the fluororesin may contain a monomer unit based on a perfluoroolefin having a functional group. As the functional group, a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group are preferable. Among these fluororesins, those showing low dielectric loss tangent include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer ( FEP) is more preferred.
無機フィラーの種類は特に限定されないが、無機フィラー含有フッ素系樹脂層の熱膨張係数を低下させる観点から、例えば、二酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化ベリリウム、酸化ニオブ、酸化チタン、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム、フッ化マグネシウム、ケイフッ化カリウム、タルク、ガラス、チタン酸バリウム等が好ましい。これらは、2種以上を組み合わせて用いてもよい。これらの中でも、熱膨張係数が低いものとして、二酸化ケイ素(シリカ)、酸化アルミニウム、窒化ホウ素、ガラス等がより好ましい。
The type of inorganic filler is not particularly limited, but from the viewpoint of reducing the thermal expansion coefficient of the inorganic filler-containing fluororesin layer, for example, silicon dioxide (silica), aluminum oxide (alumina), magnesium oxide (magnesia), beryllium oxide, Niobium oxide, titanium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, calcium fluoride, magnesium fluoride, potassium silicofluoride, talc, glass, barium titanate, and the like are preferred. These may be used in combination of two or more types. Among these, silicon dioxide (silica), aluminum oxide, boron nitride, glass, etc. are more preferable as they have a low coefficient of thermal expansion.
無機フィラーの平均粒子径(D50)は、特に制限はないが、回路基板で使用される場合の絶縁樹脂層の厚みとの比率を考慮するとともに、絶縁樹脂層の穴あけ加工性を担保する観点から、例えば、0.05~50μmの範囲内、好ましくは0.1~20μmの範囲内がよい。また、比表面積は、特に制限はないが、誘電正接悪化抑制の観点から0.1~20m2/gの範囲内、好ましくは0.1~10m2/gの範囲内がよい。なお、無機フィラーの平均粒子径は、例えばレーザー回折・散乱法によって粉粒の粒度分布を測定し、その粉粒の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径測定することで求めることが可能であり、比表面積についてはBET法によって測定することが可能である。
The average particle diameter (D 50 ) of the inorganic filler is not particularly limited, but it should be taken into consideration the ratio to the thickness of the insulating resin layer when used in a circuit board, and from the viewpoint of ensuring the punchability of the insulating resin layer. For example, it is within the range of 0.05 to 50 μm, preferably within the range of 0.1 to 20 μm. Further, the specific surface area is not particularly limited, but from the viewpoint of suppressing deterioration of the dielectric loss tangent, it is preferably within the range of 0.1 to 20 m 2 /g, preferably within the range of 0.1 to 10 m 2 /g. The average particle diameter of the inorganic filler can be determined by measuring the particle size distribution of the powder particles using, for example, a laser diffraction/scattering method, calculating a cumulative curve with the total volume of the powder particles as 100%, and determining the cumulative volume on the cumulative curve of 50%. % by measuring the particle diameter, and the specific surface area can be measured by the BET method.
無機フィラーの形状は、特に制限はないが、厚み方向と面方向の熱膨張係数の差を低減する観点から、例えば、球状、破砕球状等が好ましい。また、無機フィラーは中空状であってもよい。
The shape of the inorganic filler is not particularly limited, but from the viewpoint of reducing the difference in coefficient of thermal expansion in the thickness direction and in the surface direction, for example, spherical shape, crushed spherical shape, etc. are preferable. Further, the inorganic filler may be hollow.
無機フィラーは、カップリング剤等により表面処理することが好ましい。表面処理に用いるカップリング剤としては、例えば3-アミノプロピルエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルエトキシシラン、3-イソシアネートプロピルエトキシシランまたはヘキサメチルジシラザン等が挙げられる。
It is preferable that the inorganic filler is surface-treated with a coupling agent or the like. Examples of coupling agents used for surface treatment include 3-aminopropylethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylethoxysilane, Examples include 3-isocyanatepropylethoxysilane and hexamethyldisilazane.
無機フィラー含有フッ素系樹脂層を形成するために用いる分散組成物には、分散剤を含有することが好ましい。分散剤の種類は、特に限定されないが、フッ素系樹脂を良好に分散させる観点から、例えば、フッ素系界面活性剤が好ましい。フッ素系界面活性剤としては、例えば、分子内に二重結合を有するパーフルオロアルケニル構造のノニオン系のフッ素系界面活性剤がより好ましい。
The dispersion composition used to form the inorganic filler-containing fluororesin layer preferably contains a dispersant. The type of dispersant is not particularly limited, but from the viewpoint of dispersing the fluororesin well, for example, a fluorine surfactant is preferable. As the fluorine-based surfactant, for example, a nonionic fluorine-based surfactant having a perfluoroalkenyl structure having a double bond in the molecule is more preferable.
無機フィラー含有フッ素系樹脂層におけるフッ素系樹脂の重量割合は、誘電正接を下げ、高周波信号伝送への対応を図る観点から、無機フィラー含有フッ素系樹脂層の全固形分量100重量部に対し、15~40重量部の範囲内であることが好ましく、20~35重量部の範囲内であることがより好ましい。
また、無機フィラーの重量割合は、熱膨張係数(CTE)を下げ、回路基板へ適用したときの寸法安定性を担保する観点から、無機フィラー含有フッ素系樹脂層の全固形分量100重量部に対し、55~75重量部の範囲内であることが好ましく、60~70重量部の範囲内であることがより好ましい。また、別の観点において、無機フィラー含有フッ素系樹脂層における無機フィラーの含有比率は、無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)を抑えるため、無機フィラー含有フッ素系樹脂層の全固形分に対して、例えば55~75体積%の範囲内とすることが好ましく、60~70体積%の範囲内がより好ましい。特に無機フィラーを60体積%以上の高濃度で含有することによって、塗布膜中に空隙が発生しやすくなることから、発明の効果が発揮されやすくなる。無機フィラー含有フッ素系樹脂層を形成するために用いる分散組成物における分散剤の含有量は、無機フィラー含有フッ素系樹脂層の全固形分量100重量部に対して、分散剤有効成分として、例えば10重量部以下とすることが好ましく、0.5~5重量部の範囲内とすることがより好ましい。 The weight ratio of the fluororesin in the inorganic filler-containing fluororesin layer is 15 parts by weight per 100 parts by weight of the total solid content of the inorganic filler-containing fluororesin layer, from the viewpoint of lowering the dielectric loss tangent and supporting high-frequency signal transmission. It is preferably within the range of ~40 parts by weight, and more preferably within the range of 20-35 parts by weight.
In addition, the weight ratio of the inorganic filler is determined based on 100 parts by weight of the total solid content of the fluororesin layer containing the inorganic filler, from the viewpoint of lowering the coefficient of thermal expansion (CTE) and ensuring dimensional stability when applied to a circuit board. , preferably within the range of 55 to 75 parts by weight, and more preferably within the range of 60 to 70 parts by weight. In addition, from another perspective, in order to suppress the coefficient of thermal expansion (CTE) of the fluororesin layer containing inorganic filler, the content ratio of the inorganic filler in the fluororesin layer containing inorganic filler is determined by the total solid content of the fluororesin layer containing inorganic filler. For example, it is preferably within the range of 55 to 75 volume %, more preferably 60 to 70 volume %. In particular, by containing the inorganic filler at a high concentration of 60% by volume or more, voids are likely to occur in the coating film, so that the effects of the invention are more likely to be exhibited. The content of the dispersant in the dispersion composition used to form the inorganic filler-containing fluororesin layer is, for example, 10 parts by weight as the dispersant active ingredient, based on 100 parts by weight of the total solid content of the inorganic filler-containing fluororesin layer. It is preferably within the range of 0.5 to 5 parts by weight, and more preferably within the range of 0.5 to 5 parts by weight.
また、無機フィラーの重量割合は、熱膨張係数(CTE)を下げ、回路基板へ適用したときの寸法安定性を担保する観点から、無機フィラー含有フッ素系樹脂層の全固形分量100重量部に対し、55~75重量部の範囲内であることが好ましく、60~70重量部の範囲内であることがより好ましい。また、別の観点において、無機フィラー含有フッ素系樹脂層における無機フィラーの含有比率は、無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)を抑えるため、無機フィラー含有フッ素系樹脂層の全固形分に対して、例えば55~75体積%の範囲内とすることが好ましく、60~70体積%の範囲内がより好ましい。特に無機フィラーを60体積%以上の高濃度で含有することによって、塗布膜中に空隙が発生しやすくなることから、発明の効果が発揮されやすくなる。無機フィラー含有フッ素系樹脂層を形成するために用いる分散組成物における分散剤の含有量は、無機フィラー含有フッ素系樹脂層の全固形分量100重量部に対して、分散剤有効成分として、例えば10重量部以下とすることが好ましく、0.5~5重量部の範囲内とすることがより好ましい。 The weight ratio of the fluororesin in the inorganic filler-containing fluororesin layer is 15 parts by weight per 100 parts by weight of the total solid content of the inorganic filler-containing fluororesin layer, from the viewpoint of lowering the dielectric loss tangent and supporting high-frequency signal transmission. It is preferably within the range of ~40 parts by weight, and more preferably within the range of 20-35 parts by weight.
In addition, the weight ratio of the inorganic filler is determined based on 100 parts by weight of the total solid content of the fluororesin layer containing the inorganic filler, from the viewpoint of lowering the coefficient of thermal expansion (CTE) and ensuring dimensional stability when applied to a circuit board. , preferably within the range of 55 to 75 parts by weight, and more preferably within the range of 60 to 70 parts by weight. In addition, from another perspective, in order to suppress the coefficient of thermal expansion (CTE) of the fluororesin layer containing inorganic filler, the content ratio of the inorganic filler in the fluororesin layer containing inorganic filler is determined by the total solid content of the fluororesin layer containing inorganic filler. For example, it is preferably within the range of 55 to 75 volume %, more preferably 60 to 70 volume %. In particular, by containing the inorganic filler at a high concentration of 60% by volume or more, voids are likely to occur in the coating film, so that the effects of the invention are more likely to be exhibited. The content of the dispersant in the dispersion composition used to form the inorganic filler-containing fluororesin layer is, for example, 10 parts by weight as the dispersant active ingredient, based on 100 parts by weight of the total solid content of the inorganic filler-containing fluororesin layer. It is preferably within the range of 0.5 to 5 parts by weight, and more preferably within the range of 0.5 to 5 parts by weight.
無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)は、60ppm/K以下であることが好ましく、10ppm/K以上30ppm/K以下の範囲内であることがより好ましい。無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)が60ppm/Kを超える場合は、金属張積層板の寸法安定性が担保されず、回路加工した後で配線位置のずれなどの不都合が生じる場合がある。
The coefficient of thermal expansion (CTE) of the fluororesin layer containing an inorganic filler is preferably 60 ppm/K or less, and more preferably within the range of 10 ppm/K or more and 30 ppm/K or less. If the coefficient of thermal expansion (CTE) of the fluororesin layer containing inorganic filler exceeds 60 ppm/K, the dimensional stability of the metal-clad laminate cannot be guaranteed, and problems such as misalignment of wiring positions may occur after circuit processing. There are cases.
また、無機フィラー含有フッ素系樹脂層は、23℃、50%RHの恒温恒湿条件のもと24時間調湿後に、スプリットシリンダ共振器(SCR共振器)により測定される60GHzにおける誘電正接が0.0025未満であることが好ましく、0.0020未満であることがより好ましい。また、同条件で測定される比誘電率が好ましくは4.0以下、より好ましくは3.5以下、更に好ましくは3.0以下であることがよい。
誘電正接及び比誘電率が上記数値を超えると、回路基板に適用した際に、誘電損失の増大に繋がり、周波数がGHz帯域(例えば1~80GHz)の高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。 In addition, the inorganic filler-containing fluororesin layer has a dielectric loss tangent of 0 at 60 GHz as measured by a split cylinder resonator (SCR resonator) after 24 hours of humidity control under constant temperature and humidity conditions of 23°C and 50% RH. It is preferably less than .0025, more preferably less than 0.0020. Further, the dielectric constant measured under the same conditions is preferably 4.0 or less, more preferably 3.5 or less, and still more preferably 3.0 or less.
If the dielectric loss tangent and relative permittivity exceed the above values, when applied to a circuit board, it will lead to an increase in dielectric loss and cause electrical signal loss on the transmission path of high-frequency signals in the GHz band (for example, 1 to 80 GHz). Such inconveniences are likely to occur.
誘電正接及び比誘電率が上記数値を超えると、回路基板に適用した際に、誘電損失の増大に繋がり、周波数がGHz帯域(例えば1~80GHz)の高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。 In addition, the inorganic filler-containing fluororesin layer has a dielectric loss tangent of 0 at 60 GHz as measured by a split cylinder resonator (SCR resonator) after 24 hours of humidity control under constant temperature and humidity conditions of 23°C and 50% RH. It is preferably less than .0025, more preferably less than 0.0020. Further, the dielectric constant measured under the same conditions is preferably 4.0 or less, more preferably 3.5 or less, and still more preferably 3.0 or less.
If the dielectric loss tangent and relative permittivity exceed the above values, when applied to a circuit board, it will lead to an increase in dielectric loss and cause electrical signal loss on the transmission path of high-frequency signals in the GHz band (for example, 1 to 80 GHz). Such inconveniences are likely to occur.
図1は、本発明の好ましい実施の形態にかかる金属張積層板100の断面構成を示している。金属張積層板100は、金属層10A/接着層20A/無機フィラー含有フッ素系樹脂層30/接着層20B/金属層10Bがこの順に積層された構造を有する。金属層10Aと金属層10Bは、それぞれ最も外側に位置し、それらの内側に接着層20A及び接着層20Bが配置され、さらに接着層20Aと接着層20Bの間には、無機フィラー含有フッ素系樹脂層30が介在配置されている。なお、金属張積層板は図1に示す層構成に限らず、例えば、任意の層を有していてもよい。
FIG. 1 shows a cross-sectional configuration of a metal-clad laminate 100 according to a preferred embodiment of the present invention. The metal-clad laminate 100 has a structure in which metal layer 10A/adhesive layer 20A/inorganic filler-containing fluororesin layer 30/adhesive layer 20B/metal layer 10B are laminated in this order. The metal layer 10A and the metal layer 10B are located at the outermost sides, and the adhesive layer 20A and the adhesive layer 20B are arranged inside them, and between the adhesive layer 20A and the adhesive layer 20B, a fluororesin containing an inorganic filler is arranged. A layer 30 is interposed. Note that the metal-clad laminate is not limited to the layer configuration shown in FIG. 1, and may have any layers, for example.
金属張積層板100は、上記のとおり、
a)接着層20A及び接着層20Bを構成する主たる樹脂が結晶性樹脂であるとき、接着層20A及び接着層20Bの融点Tm1が無機フィラー含有フッ素系樹脂層30の融点Tm2より高いこと;
b)接着層20A及び接着層20Bを構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層30の融点Tm2における接着層20A及び接着層20Bの貯蔵弾性率E’が1×106Pa以上であること;
のいずれかの条件を満たしている。 As described above, the metal cladlaminate 100 includes:
a) When the main resin constituting theadhesive layer 20A and the adhesive layer 20B is a crystalline resin, the melting point Tm1 of the adhesive layer 20A and the adhesive layer 20B is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer 30;
b) When the main resin constituting theadhesive layer 20A and the adhesive layer 20B is an amorphous resin, the storage elastic modulus E' of the adhesive layer 20A and the adhesive layer 20B at the melting point Tm2 of the inorganic filler-containing fluororesin layer 30 is 1. ×10 6 Pa or more;
meets any of the following conditions.
a)接着層20A及び接着層20Bを構成する主たる樹脂が結晶性樹脂であるとき、接着層20A及び接着層20Bの融点Tm1が無機フィラー含有フッ素系樹脂層30の融点Tm2より高いこと;
b)接着層20A及び接着層20Bを構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層30の融点Tm2における接着層20A及び接着層20Bの貯蔵弾性率E’が1×106Pa以上であること;
のいずれかの条件を満たしている。 As described above, the metal clad
a) When the main resin constituting the
b) When the main resin constituting the
meets any of the following conditions.
金属張積層板100において、接着層20Aと接着層20Bは、同一の構成でも異なる構成でもよいが、同一の構成であることが好ましい。なお、接着層20Aと接着層20Bの構成が異なる場合は、それぞれが、上記条件a)又はb)を満たすことが好ましい。
In the metal-clad laminate 100, the adhesive layer 20A and the adhesive layer 20B may have the same configuration or different configurations, but preferably have the same configuration. Note that when the adhesive layer 20A and the adhesive layer 20B have different configurations, it is preferable that each of them satisfy the above conditions a) or b).
金属張積層板100において、接着層20A及び接着層20Bの厚みは、それぞれ、1~20μmの範囲内であることが好ましく、2~10μmの範囲内であることがより好ましい。厚みが1μm未満では、金属層10A,10Bに対する十分な密着性が得られない場合があり、20μmを超えると、金属張積層板100全体の寸法安定性が損なわれる可能性や誘電特性が悪化する可能性がある。なお、接着層20Aと接着層20Bの厚みは、同一でも異なっていてもよいが、同一であることが好ましい。
In the metal-clad laminate 100, the thickness of the adhesive layer 20A and the adhesive layer 20B is preferably within the range of 1 to 20 μm, and more preferably within the range of 2 to 10 μm. If the thickness is less than 1 μm, sufficient adhesion to the metal layers 10A and 10B may not be obtained, and if it exceeds 20 μm, the dimensional stability of the entire metal-clad laminate 100 may be impaired and the dielectric properties may deteriorate. there is a possibility. Note that the thicknesses of the adhesive layer 20A and the adhesive layer 20B may be the same or different, but are preferably the same.
金属張積層板100において、無機フィラー含有フッ素系樹脂層30の厚みは、60~150μmの範囲内であることが好ましく、80~130μmの範囲内であることがより好ましい。厚みが60μm未満では、金属張積層板100を回路基板とした際の伝送損失の抑制が困難となることで、高周波信号伝送への対応が難しくなるおそれがあり、150μmを超えると、製造時のハンドリングが困難となる可能性がある。
In the metal-clad laminate 100, the thickness of the inorganic filler-containing fluororesin layer 30 is preferably within the range of 60 to 150 μm, more preferably within the range of 80 to 130 μm. If the thickness is less than 60 μm, it may be difficult to suppress transmission loss when the metal-clad laminate 100 is used as a circuit board, making it difficult to support high-frequency signal transmission. Handling may be difficult.
金属張積層板100において、接着層20A及び接着層20Bと、無機フィラー含有フッ素系樹脂層30の合計厚みTに対する接着層の合計厚みTAD(つまり、接着層20A及び接着層20Bの合計厚み)の比率[(TAD/T)×100]が1~25%の範囲内であることが好ましく、2~20%の範囲内であることがより好ましい。比率[(TAD/T)×100]が1%未満では、金属層10A,10Bに対する十分な密着性が得られない場合があり、25%を超えると、金属張積層板100全体の寸法安定性が損なわれる可能性や誘電特性が悪化する可能性がある。
In the metal-clad laminate 100, the total thickness T AD of the adhesive layers relative to the total thickness T of the adhesive layers 20A and 20B and the inorganic filler-containing fluororesin layer 30 (that is, the total thickness of the adhesive layers 20A and 20B) The ratio [(T AD /T)×100] is preferably within the range of 1 to 25%, more preferably within the range of 2 to 20%. When the ratio [(T AD /T) x 100] is less than 1%, sufficient adhesion to the metal layers 10A and 10B may not be obtained, and when it exceeds 25%, the dimensional stability of the entire metal-clad laminate 100 may be impaired. properties and dielectric properties may deteriorate.
[金属張積層板の製造方法]
金属張積層板100は、例えば以下の方法1又は方法2で製造できる。 [Method for manufacturing metal-clad laminates]
The metal-cladlaminate 100 can be manufactured, for example, by Method 1 or Method 2 below.
金属張積層板100は、例えば以下の方法1又は方法2で製造できる。 [Method for manufacturing metal-clad laminates]
The metal-clad
(方法1)
まず、図2に示すように、金属層10Aと接着層20Aとが積層された積層体と、金属層10Bと接着層20Bとが積層された積層体をそれぞれ準備する。これらを第1の積層体40とする。 (Method 1)
First, as shown in FIG. 2, a laminate in which ametal layer 10A and an adhesive layer 20A are laminated, and a laminate in which a metal layer 10B and an adhesive layer 20B are laminated are respectively prepared. These will be referred to as a first laminate 40.
まず、図2に示すように、金属層10Aと接着層20Aとが積層された積層体と、金属層10Bと接着層20Bとが積層された積層体をそれぞれ準備する。これらを第1の積層体40とする。 (Method 1)
First, as shown in FIG. 2, a laminate in which a
次に、無機フィラー含有フッ素系樹脂層30となる分散組成物を第1の積層体40の接着層20A上及び接着層20B上に、それぞれ所定の厚みで塗布し、乾燥後にフッ素系樹脂を溶融温度以上まで加熱させることによって、図3に示すように分散組成物層31を形成して第2の積層体50を2つ作製する。この段階で、第2の積層体50の分散組成物層31は空隙を含んでいる。
Next, a dispersion composition that will become the inorganic filler-containing fluororesin layer 30 is applied to the adhesive layer 20A and the adhesive layer 20B of the first laminate 40 to a predetermined thickness, and after drying, the fluororesin is melted. By heating to a temperature higher than that temperature, a dispersed composition layer 31 is formed as shown in FIG. 3, and two second laminates 50 are produced. At this stage, the dispersed composition layer 31 of the second laminate 50 includes voids.
次に、図4に示すように、2つの第2の積層体50の分散組成物層31どうしが向い合せになるように貼り合わせて熱圧着させる。熱圧着によって、分散組成物層31中のフッ素系樹脂を溶融させた後、冷却して固化させることによって空隙が解消され無機フィラー含有フッ素系樹脂層30となる。熱圧着温度としては、無機フィラー含有フッ素系樹脂層30の融点Tm2以上であればよく、上限は樹脂種に応じて適宜定めることができるが、例えば融点Tm2より10℃~80℃の範囲内で高い温度とすることが好ましい。熱圧着の際の圧力としては、樹脂種に応じて適宜定めることができるが、例えば2~12MPaの範囲内とすることが好ましい。このようにして、図1に示すように、金属層10A/接着層20A/無機フィラー含有フッ素系樹脂層30(ただし、2層の分散組成物層31を貼り合わせた層)/接着層20B/金属層10Bがこの順に積層された層構成を有する金属張積層板100を製造することができる。
Next, as shown in FIG. 4, the two second laminates 50 are bonded together by thermocompression so that the dispersed composition layers 31 face each other. After the fluororesin in the dispersed composition layer 31 is melted by thermocompression bonding, the fluororesin layer 31 is cooled and solidified to eliminate voids and form the fluororesin layer 30 containing an inorganic filler. The thermocompression bonding temperature may be at least the melting point Tm2 of the inorganic filler-containing fluororesin layer 30, and the upper limit can be set as appropriate depending on the resin type, but for example, within the range of 10 to 80 °C below the melting point Tm2. Preferably, the temperature is high. The pressure during thermocompression bonding can be determined as appropriate depending on the type of resin, but is preferably within the range of 2 to 12 MPa, for example. In this way, as shown in FIG. 1, metal layer 10A/adhesive layer 20A/inorganic filler-containing fluororesin layer 30 (however, a layer in which two dispersed composition layers 31 are bonded together)/adhesive layer 20B/ A metal-clad laminate 100 having a layered structure in which the metal layers 10B are laminated in this order can be manufactured.
(方法2)
まず、金属層10Aと接着層20Aとが積層された積層体と、金属層10Bと接着層20Bとが積層された積層体をそれぞれ準備し、これらを第1の積層体40とする(図2を参照)。 (Method 2)
First, a laminate in which themetal layer 10A and the adhesive layer 20A are laminated, and a laminate in which the metal layer 10B and the adhesive layer 20B are laminated are respectively prepared, and these are referred to as the first laminate 40 (FIG. 2 ).
まず、金属層10Aと接着層20Aとが積層された積層体と、金属層10Bと接着層20Bとが積層された積層体をそれぞれ準備し、これらを第1の積層体40とする(図2を参照)。 (Method 2)
First, a laminate in which the
次に、無機フィラー含有フッ素系樹脂層30となる分散組成物を、第1の積層体の接着層20A上に所定の厚みで塗布し、乾燥後にフッ素系樹脂を溶融温度以上まで加熱させて分散組成物層31を形成して第2の積層体50を形成する(図3を参照)。ただし、方法2では、分散組成物層31の厚みを方法1よりも2倍程度大きくしておく。この段階で、第2の積層体50の分散組成物層31は空隙を含んでいる。
Next, a dispersion composition that will become the inorganic filler-containing fluororesin layer 30 is applied to a predetermined thickness on the adhesive layer 20A of the first laminate, and after drying, the fluororesin is heated to a temperature higher than its melting temperature and dispersed. A composition layer 31 is formed to form a second laminate 50 (see FIG. 3). However, in method 2, the thickness of the dispersed composition layer 31 is made approximately twice as thick as in method 1. At this stage, the dispersed composition layer 31 of the second laminate 50 includes voids.
次に、図5に示すように、第2の積層体50の分散組成物層31と第1の積層体40の接着層20Bとが向い合せになるように第2の積層体50と第1の積層体40とを熱圧着させる。熱圧着によって、分散組成物層31中のフッ素系樹脂を溶融させた後、冷却して固化させることによって空隙が解消され、無機フィラー含有フッ素系樹脂層30となる。熱圧着の条件は方法1と同様とすることができる。このようにして、金属層10A/接着層20A/無機フィラー含有フッ素系樹脂層30/接着層20B/金属層10Bがこの順に積層された層構成を有する金属張積層板100を製造することができる。
Next, as shown in FIG. 5, the second laminate 50 and the first laminate are placed so that the dispersed composition layer 31 of the second laminate 50 and the adhesive layer 20B of the first laminate 40 face each other. The laminate 40 is bonded by thermocompression. After the fluororesin in the dispersion composition layer 31 is melted by thermocompression bonding, the fluororesin in the dispersed composition layer 31 is cooled and solidified to eliminate voids and become the inorganic filler-containing fluororesin layer 30. The conditions for thermocompression bonding can be the same as in Method 1. In this way, a metal-clad laminate 100 having a layer structure in which metal layer 10A/adhesive layer 20A/inorganic filler-containing fluororesin layer 30/adhesive layer 20B/metal layer 10B are laminated in this order can be manufactured. .
方法1,2で用いる分散組成物は、フッ素系樹脂のパウダーと無機フィラーとを含有し、さらに必要に応じて、分散剤、有機溶媒等を含有することが好ましい。分散組成物中のフッ素系樹脂のパウダーの重量割合は、フィルム化したときの誘電正接を下げ、高周波信号伝送への対応を図る観点から、分散組成物中の全固形分量100重量部に対し、15~40重量部の範囲内であることが好ましく、20~35重量部の範囲内であることがより好ましい。
また、分散組成物中の無機フィラーの重量割合は、フィルム化したときの熱膨張係数(CTE)を下げ、回路基板へ適用したときの寸法安定性を担保する観点から、分散組成物中の全固形分量100重量部に対し、55~75重量部の範囲内であることが好ましく、60~70重量部の範囲内であることがより好ましい。
さらに、分散剤を含有する場合の含有量は、分散組成物の全固形分量100重量部に対して、分散剤有効成分として、例えば10重量部以下とすることが好ましく、0.5~5重量部の範囲内とすることがより好ましい。また、有機溶媒を含有する場合は、良好な分散性や良好な塗工性を得るために、フッ素系樹脂のパウダーと無機フィラーの合計量が、組成物全体の50~80重量%の範囲内となるようにすることが好ましく、60~70重量%の範囲内となるようにすることがより好ましい。なお、分散組成物中の固形分とは、溶媒を除いた成分の合計を意味する。
また、分散組成物の粘度は特に限定されないが、例えば30μm以上の厚膜塗工を目的とする場合は、500~50000cPの範囲内であることが好ましく、500~30000cPの範囲内がより好ましい。粘度が500cP未満では、分散組成物をキャストするときに、流動性が高くなりすぎるため、厚膜での塗膜形成が困難となる。特に、高周波伝送用途向けに30~150μmの範囲内の比較的厚い塗膜の形成が不可能となる。また、粘度が500cP未満では、固形分の沈降や凝集が生じることがある。一方、分散組成物の粘度が50000cPを超える場合は、粘性が高すぎてキャストによる塗膜形成が困難となる。
なお、分散組成物の粘度は、E型粘度計を用い、温度25℃で測定することができる。 The dispersion composition used in Methods 1 and 2 preferably contains a fluororesin powder and an inorganic filler, and further contains a dispersant, an organic solvent, etc., if necessary. The weight proportion of the fluororesin powder in the dispersion composition is determined based on 100 parts by weight of the total solid content in the dispersion composition, from the viewpoint of lowering the dielectric loss tangent when formed into a film and making it compatible with high-frequency signal transmission. It is preferably within the range of 15 to 40 parts by weight, and more preferably within the range of 20 to 35 parts by weight.
In addition, the weight ratio of the inorganic filler in the dispersion composition is determined from the viewpoint of lowering the coefficient of thermal expansion (CTE) when formed into a film and ensuring dimensional stability when applied to a circuit board. It is preferably within the range of 55 to 75 parts by weight, and more preferably within the range of 60 to 70 parts by weight, based on 100 parts by weight of solid content.
Furthermore, when a dispersant is included, the content is preferably 10 parts by weight or less, for example, 0.5 to 5 parts by weight, as an active ingredient of the dispersant, based on 100 parts by weight of the total solid content of the dispersion composition. It is more preferable to set it within the range of 1. In addition, when containing an organic solvent, in order to obtain good dispersibility and good coating properties, the total amount of fluororesin powder and inorganic filler should be within the range of 50 to 80% by weight of the entire composition. It is preferable that the content be within the range of 60 to 70% by weight, and more preferably within the range of 60 to 70% by weight. Note that the solid content in the dispersion composition means the total of the components excluding the solvent.
Further, the viscosity of the dispersion composition is not particularly limited, but for example, when the purpose is to coat a thick film of 30 μm or more, it is preferably within the range of 500 to 50,000 cP, and more preferably within the range of 500 to 30,000 cP. If the viscosity is less than 500 cP, the fluidity becomes too high when the dispersion composition is cast, making it difficult to form a thick coating. In particular, it becomes impossible to form a relatively thick coating film in the range of 30 to 150 μm for high frequency transmission applications. Further, if the viscosity is less than 500 cP, sedimentation or aggregation of solid content may occur. On the other hand, if the viscosity of the dispersion composition exceeds 50,000 cP, the viscosity is too high and it becomes difficult to form a coating film by casting.
Note that the viscosity of the dispersion composition can be measured at a temperature of 25° C. using an E-type viscometer.
また、分散組成物中の無機フィラーの重量割合は、フィルム化したときの熱膨張係数(CTE)を下げ、回路基板へ適用したときの寸法安定性を担保する観点から、分散組成物中の全固形分量100重量部に対し、55~75重量部の範囲内であることが好ましく、60~70重量部の範囲内であることがより好ましい。
さらに、分散剤を含有する場合の含有量は、分散組成物の全固形分量100重量部に対して、分散剤有効成分として、例えば10重量部以下とすることが好ましく、0.5~5重量部の範囲内とすることがより好ましい。また、有機溶媒を含有する場合は、良好な分散性や良好な塗工性を得るために、フッ素系樹脂のパウダーと無機フィラーの合計量が、組成物全体の50~80重量%の範囲内となるようにすることが好ましく、60~70重量%の範囲内となるようにすることがより好ましい。なお、分散組成物中の固形分とは、溶媒を除いた成分の合計を意味する。
また、分散組成物の粘度は特に限定されないが、例えば30μm以上の厚膜塗工を目的とする場合は、500~50000cPの範囲内であることが好ましく、500~30000cPの範囲内がより好ましい。粘度が500cP未満では、分散組成物をキャストするときに、流動性が高くなりすぎるため、厚膜での塗膜形成が困難となる。特に、高周波伝送用途向けに30~150μmの範囲内の比較的厚い塗膜の形成が不可能となる。また、粘度が500cP未満では、固形分の沈降や凝集が生じることがある。一方、分散組成物の粘度が50000cPを超える場合は、粘性が高すぎてキャストによる塗膜形成が困難となる。
なお、分散組成物の粘度は、E型粘度計を用い、温度25℃で測定することができる。 The dispersion composition used in Methods 1 and 2 preferably contains a fluororesin powder and an inorganic filler, and further contains a dispersant, an organic solvent, etc., if necessary. The weight proportion of the fluororesin powder in the dispersion composition is determined based on 100 parts by weight of the total solid content in the dispersion composition, from the viewpoint of lowering the dielectric loss tangent when formed into a film and making it compatible with high-frequency signal transmission. It is preferably within the range of 15 to 40 parts by weight, and more preferably within the range of 20 to 35 parts by weight.
In addition, the weight ratio of the inorganic filler in the dispersion composition is determined from the viewpoint of lowering the coefficient of thermal expansion (CTE) when formed into a film and ensuring dimensional stability when applied to a circuit board. It is preferably within the range of 55 to 75 parts by weight, and more preferably within the range of 60 to 70 parts by weight, based on 100 parts by weight of solid content.
Furthermore, when a dispersant is included, the content is preferably 10 parts by weight or less, for example, 0.5 to 5 parts by weight, as an active ingredient of the dispersant, based on 100 parts by weight of the total solid content of the dispersion composition. It is more preferable to set it within the range of 1. In addition, when containing an organic solvent, in order to obtain good dispersibility and good coating properties, the total amount of fluororesin powder and inorganic filler should be within the range of 50 to 80% by weight of the entire composition. It is preferable that the content be within the range of 60 to 70% by weight, and more preferably within the range of 60 to 70% by weight. Note that the solid content in the dispersion composition means the total of the components excluding the solvent.
Further, the viscosity of the dispersion composition is not particularly limited, but for example, when the purpose is to coat a thick film of 30 μm or more, it is preferably within the range of 500 to 50,000 cP, and more preferably within the range of 500 to 30,000 cP. If the viscosity is less than 500 cP, the fluidity becomes too high when the dispersion composition is cast, making it difficult to form a thick coating. In particular, it becomes impossible to form a relatively thick coating film in the range of 30 to 150 μm for high frequency transmission applications. Further, if the viscosity is less than 500 cP, sedimentation or aggregation of solid content may occur. On the other hand, if the viscosity of the dispersion composition exceeds 50,000 cP, the viscosity is too high and it becomes difficult to form a coating film by casting.
Note that the viscosity of the dispersion composition can be measured at a temperature of 25° C. using an E-type viscometer.
方法1,2で用いる第1の積層体40は、例えば、金属層10A,10Bとなる金属箔上に、接着剤組成物の溶液を塗布・乾燥することによって製造できる。
The first laminate 40 used in Methods 1 and 2 can be manufactured, for example, by applying and drying a solution of the adhesive composition onto the metal foil that will become the metal layers 10A and 10B.
上記において、分散組成物や接着剤組成物の溶液を金属箔や接着層20A,20B上に塗布する方法としては、特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。
In the above, the method of applying the solution of the dispersion composition or adhesive composition onto the metal foil or the adhesive layers 20A, 20B is not particularly limited, and for example, it may be applied using a comma, die, knife, lip, etc. coater. Is possible.
以上のようにして得られる本実施の形態の金属張積層板100は、金属層10A及び/又は金属層10Bをエッチングするなどして配線回路加工することによって、片面回路基板又は両面回路基板などの回路基板を製造することができる。
The metal-clad laminate 100 of the present embodiment obtained as described above can be used as a single-sided circuit board or a double-sided circuit board by processing the wiring circuit by etching the metal layer 10A and/or the metal layer 10B. Circuit boards can be manufactured.
[回路基板]
本実施の形態の金属張積層板100は、主にFPC、リジッド・フレックス回路基板、リジッド基板などの回路基板材料として有用である。例えば、図1に示す金属張積層板100の2つの金属層10A,10Bの片方又は両方を、常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPCなどの回路基板を製造できる。 [Circuit board]
The metal-cladlaminate 100 of this embodiment is mainly useful as a material for circuit boards such as FPCs, rigid-flex circuit boards, and rigid boards. For example, in one embodiment of the present invention, one or both of the two metal layers 10A and 10B of the metal-clad laminate 100 shown in FIG. 1 is processed into a pattern by a conventional method to form a wiring layer. It is possible to manufacture circuit boards such as certain FPCs.
本実施の形態の金属張積層板100は、主にFPC、リジッド・フレックス回路基板、リジッド基板などの回路基板材料として有用である。例えば、図1に示す金属張積層板100の2つの金属層10A,10Bの片方又は両方を、常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPCなどの回路基板を製造できる。 [Circuit board]
The metal-clad
以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。
Examples are shown below to explain the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples. In addition, in the following examples, various measurements and evaluations are as follows unless otherwise specified.
[粘度の測定]
E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。 [Measurement of viscosity]
The viscosity at 25° C. was measured using an E-type viscometer (manufactured by Brookfield, trade name: DV-II+Pro).
E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。 [Measurement of viscosity]
The viscosity at 25° C. was measured using an E-type viscometer (manufactured by Brookfield, trade name: DV-II+Pro).
[ピール強度の測定]
両面銅張積層板の一方の銅箔面のみに10mm間隔で樹脂の塗工方向に幅1mmに回路加工し、幅;8cm×長さ;4cmに切断し、測定サンプルを調製した。ピール強度は、テンシロンテスター(東洋精機製作所社製、商品名;ストログラフVE-1D)を用いて、切断した測定サンプルの未加工銅箔面を両面テープによりアルミ板に固定し、回路加工された銅箔を180°方向に50mm/分の速度で剥離していき、10mm剥離したときの中央値強度を求めた。 [Measurement of peel strength]
A circuit was processed on only one copper foil side of the double-sided copper-clad laminate to a width of 1 mm in the resin coating direction at 10 mm intervals, and the circuit was cut into 8 cm width x 4 cm length to prepare a measurement sample. Peel strength was measured using a Tensilon tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name: Strograph VE-1D). The copper foil was peeled off in a 180° direction at a rate of 50 mm/min, and the median strength was determined when 10 mm was peeled off.
両面銅張積層板の一方の銅箔面のみに10mm間隔で樹脂の塗工方向に幅1mmに回路加工し、幅;8cm×長さ;4cmに切断し、測定サンプルを調製した。ピール強度は、テンシロンテスター(東洋精機製作所社製、商品名;ストログラフVE-1D)を用いて、切断した測定サンプルの未加工銅箔面を両面テープによりアルミ板に固定し、回路加工された銅箔を180°方向に50mm/分の速度で剥離していき、10mm剥離したときの中央値強度を求めた。 [Measurement of peel strength]
A circuit was processed on only one copper foil side of the double-sided copper-clad laminate to a width of 1 mm in the resin coating direction at 10 mm intervals, and the circuit was cut into 8 cm width x 4 cm length to prepare a measurement sample. Peel strength was measured using a Tensilon tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name: Strograph VE-1D). The copper foil was peeled off in a 180° direction at a rate of 50 mm/min, and the median strength was determined when 10 mm was peeled off.
[樹脂の流れ出し量測定]
作製した両面銅張積層板の端部について、樹脂の流れ出しがあるかを目視にて確認し、流れ出しが確認された場合のみ流れ出し量の多い部分について光学顕微鏡での測長を実施し、樹脂の流れ出し量の算出を行った。 [Measurement of amount of resin flowing out]
Visually check the edges of the fabricated double-sided copper-clad laminate to see if there is any resin flowing out, and only if flowing out is confirmed, measure the length of the area with a large amount of flowing out using an optical microscope. The amount of outflow was calculated.
作製した両面銅張積層板の端部について、樹脂の流れ出しがあるかを目視にて確認し、流れ出しが確認された場合のみ流れ出し量の多い部分について光学顕微鏡での測長を実施し、樹脂の流れ出し量の算出を行った。 [Measurement of amount of resin flowing out]
Visually check the edges of the fabricated double-sided copper-clad laminate to see if there is any resin flowing out, and only if flowing out is confirmed, measure the length of the area with a large amount of flowing out using an optical microscope. The amount of outflow was calculated.
[樹脂層厚みの測定]
作製した両面銅張積層板について、クロスセクションポリッシャーを用いて、両面銅張積層板に対して垂直方向の精密な研磨断面を出し、この断面について走査型電子顕微鏡(SEM)を用いて各樹脂層の厚みの測定を実施した。 [Measurement of resin layer thickness]
For the produced double-sided copper-clad laminate, a cross-section polisher was used to create a precisely polished cross-section in the direction perpendicular to the double-sided copper-clad laminate, and each resin layer was examined using a scanning electron microscope (SEM) on this cross-section. The thickness was measured.
作製した両面銅張積層板について、クロスセクションポリッシャーを用いて、両面銅張積層板に対して垂直方向の精密な研磨断面を出し、この断面について走査型電子顕微鏡(SEM)を用いて各樹脂層の厚みの測定を実施した。 [Measurement of resin layer thickness]
For the produced double-sided copper-clad laminate, a cross-section polisher was used to create a precisely polished cross-section in the direction perpendicular to the double-sided copper-clad laminate, and each resin layer was examined using a scanning electron microscope (SEM) on this cross-section. The thickness was measured.
[空隙評価]
作製した両面銅張積層板について、クロスセクションポリッシャーを用いて、両面銅張積層板に対して垂直方向の精密な研磨断面を出し、この断面について走査型電子顕微鏡(SEM)を用いて倍率2000倍の無機フィラー含有フッ素系樹脂層の反射画像をランダムに5点取得した。次に得られた全ての画像について、画像解析ソフト(伯東株式会社製、商品名;Image‐Pro10)を用いて画像解析を行い、空隙の割合を算出した。
具体的には、SEMで取得した画像のスケールバーを基準にして画像サイズを決定した。次に輝度分布より画像中の空隙部のみが含まれる輝度範囲を設定後、画像全体に対する前記空隙部の割合を算出し、5点の画像の空隙部の割合の平均値を空隙率とした。
なお、画像より算出される空隙率は面積割合であるが、複数の画像の平均値を求めることで、体積割合と同等のものとして取り扱った。 [Void evaluation]
For the produced double-sided copper-clad laminate, a cross-section polisher was used to create a precisely polished cross-section in the direction perpendicular to the double-sided copper-clad laminate, and this cross-section was examined using a scanning electron microscope (SEM) at a magnification of 2000x. Five reflection images of the inorganic filler-containing fluororesin layer were randomly acquired. Next, all of the obtained images were analyzed using image analysis software (trade name: Image-Pro10, manufactured by Hakuto Co., Ltd.), and the percentage of voids was calculated.
Specifically, the image size was determined based on the scale bar of the image obtained by SEM. Next, after setting a brightness range that included only the voids in the image from the brightness distribution, the ratio of the voids to the entire image was calculated, and the average value of the ratios of the voids in the five images was taken as the porosity.
Although the porosity calculated from the image is an area ratio, it was treated as equivalent to a volume ratio by calculating the average value of a plurality of images.
作製した両面銅張積層板について、クロスセクションポリッシャーを用いて、両面銅張積層板に対して垂直方向の精密な研磨断面を出し、この断面について走査型電子顕微鏡(SEM)を用いて倍率2000倍の無機フィラー含有フッ素系樹脂層の反射画像をランダムに5点取得した。次に得られた全ての画像について、画像解析ソフト(伯東株式会社製、商品名;Image‐Pro10)を用いて画像解析を行い、空隙の割合を算出した。
具体的には、SEMで取得した画像のスケールバーを基準にして画像サイズを決定した。次に輝度分布より画像中の空隙部のみが含まれる輝度範囲を設定後、画像全体に対する前記空隙部の割合を算出し、5点の画像の空隙部の割合の平均値を空隙率とした。
なお、画像より算出される空隙率は面積割合であるが、複数の画像の平均値を求めることで、体積割合と同等のものとして取り扱った。 [Void evaluation]
For the produced double-sided copper-clad laminate, a cross-section polisher was used to create a precisely polished cross-section in the direction perpendicular to the double-sided copper-clad laminate, and this cross-section was examined using a scanning electron microscope (SEM) at a magnification of 2000x. Five reflection images of the inorganic filler-containing fluororesin layer were randomly acquired. Next, all of the obtained images were analyzed using image analysis software (trade name: Image-Pro10, manufactured by Hakuto Co., Ltd.), and the percentage of voids was calculated.
Specifically, the image size was determined based on the scale bar of the image obtained by SEM. Next, after setting a brightness range that included only the voids in the image from the brightness distribution, the ratio of the voids to the entire image was calculated, and the average value of the ratios of the voids in the five images was taken as the porosity.
Although the porosity calculated from the image is an area ratio, it was treated as equivalent to a volume ratio by calculating the average value of a plurality of images.
[熱膨張係数(CTE)の測定]
塗工幅方向に3mm、塗工方向に20mmのサイズにカットしたフッ素系樹脂フィルムを、サーモメカニカルアナライザー(日立ハイテクテクノロジー社、商品名;TMA/SS7100)にセットした。この際、装置治具間の距離(測定有効長さ)は15mmとした。次に5.0gの荷重を加えながら一定の昇温速度で30℃から260℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。 [Measurement of coefficient of thermal expansion (CTE)]
A fluororesin film cut into a size of 3 mm in the coating width direction and 20 mm in the coating direction was set in a thermomechanical analyzer (Hitachi High-Technology, trade name: TMA/SS7100). At this time, the distance between the device jigs (measurement effective length) was 15 mm. Next, the temperature was raised from 30°C to 260°C at a constant temperature increase rate while applying a load of 5.0g, and after holding at that temperature for 10 minutes, it was cooled at a rate of 5°C/min, and from 250°C to 100°C. The average coefficient of thermal expansion (coefficient of thermal expansion) up to ℃ was determined.
塗工幅方向に3mm、塗工方向に20mmのサイズにカットしたフッ素系樹脂フィルムを、サーモメカニカルアナライザー(日立ハイテクテクノロジー社、商品名;TMA/SS7100)にセットした。この際、装置治具間の距離(測定有効長さ)は15mmとした。次に5.0gの荷重を加えながら一定の昇温速度で30℃から260℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。 [Measurement of coefficient of thermal expansion (CTE)]
A fluororesin film cut into a size of 3 mm in the coating width direction and 20 mm in the coating direction was set in a thermomechanical analyzer (Hitachi High-Technology, trade name: TMA/SS7100). At this time, the distance between the device jigs (measurement effective length) was 15 mm. Next, the temperature was raised from 30°C to 260°C at a constant temperature increase rate while applying a load of 5.0g, and after holding at that temperature for 10 minutes, it was cooled at a rate of 5°C/min, and from 250°C to 100°C. The average coefficient of thermal expansion (coefficient of thermal expansion) up to ℃ was determined.
[誘電正接の測定]
ネットワークアナライザー(キーサイト・テクノロジー社製、商品名;PNA N5227B)及びスプリットシリンダ共振器(SCR共振器)を用いて60GHzにおけるフィルムの誘電正接(Df)を測定した。
なお、調湿時のDfは、測定に使用したフィルムを温度;22~24℃、湿度;45~55%の条件下で、24時間放置した後に測定したものである。 [Measurement of dielectric loss tangent]
The dielectric loss tangent (Df) of the film at 60 GHz was measured using a network analyzer (manufactured by Keysight Technologies, trade name: PNA N5227B) and a split cylinder resonator (SCR resonator).
Note that Df during humidity control was measured after the film used for measurement was left for 24 hours under conditions of temperature: 22 to 24° C. and humidity: 45 to 55%.
ネットワークアナライザー(キーサイト・テクノロジー社製、商品名;PNA N5227B)及びスプリットシリンダ共振器(SCR共振器)を用いて60GHzにおけるフィルムの誘電正接(Df)を測定した。
なお、調湿時のDfは、測定に使用したフィルムを温度;22~24℃、湿度;45~55%の条件下で、24時間放置した後に測定したものである。 [Measurement of dielectric loss tangent]
The dielectric loss tangent (Df) of the film at 60 GHz was measured using a network analyzer (manufactured by Keysight Technologies, trade name: PNA N5227B) and a split cylinder resonator (SCR resonator).
Note that Df during humidity control was measured after the film used for measurement was left for 24 hours under conditions of temperature: 22 to 24° C. and humidity: 45 to 55%.
[銅箔の表面粗度の測定]
銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名;Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名;TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m)を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲で測定し、十点平均粗さ(Rzjis)を求めた。 [Measurement of surface roughness of copper foil]
The surface roughness of the copper foil was measured using AFM (manufactured by Bruker AXS, trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS, trade name: TESPA (NCHV), tip radius of curvature 10 nm, Using a spring constant of 42 N/m), measurement was performed in a tapping mode in an area of 80 μm x 80 μm on the surface of the copper foil, and the ten-point average roughness (Rzjis) was determined.
銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名;Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名;TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m)を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲で測定し、十点平均粗さ(Rzjis)を求めた。 [Measurement of surface roughness of copper foil]
The surface roughness of the copper foil was measured using AFM (manufactured by Bruker AXS, trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS, trade name: TESPA (NCHV), tip radius of curvature 10 nm, Using a spring constant of 42 N/m), measurement was performed in a tapping mode in an area of 80 μm x 80 μm on the surface of the copper foil, and the ten-point average roughness (Rzjis) was determined.
[無機フィラー含有フッ素系樹脂層、結晶性樹脂の融点及び非晶性樹脂の300℃、350℃の貯蔵弾性率の測定]
無機フィラー含有フッ素系樹脂層及び結晶性樹脂の融点は、5mm×70mmのサイズのフィルムを、動的粘弾性測定装置(DMA:TAインスツルメント社製、商品名;RSA G2)を用いて、30℃から400℃まで昇温速度4℃/分、周波数10Hzで測定を行い、弾性率変化(tanδ)が最大となる温度とした。
また非晶性樹脂の300℃、350℃の貯蔵弾性率は、結晶性樹脂の融点と同様な方法により動的粘弾性測定装置での測定を行い、各温度の貯蔵弾性率を確認した。
なお、結晶性樹脂であるか非晶性樹脂であるかの判断は、示差走査熱量計を用いてフィルムの測定を行った際に、動的粘弾性測定により得られたtanδの最大となる温度付近で、溶融に伴う明確な吸熱ピークがあった場合を結晶性樹脂、ガラス転移によるベースラインシフトであった場合を非晶性樹脂と定義した。 [Measurement of inorganic filler-containing fluororesin layer, melting point of crystalline resin, and storage modulus of amorphous resin at 300°C and 350°C]
The melting points of the inorganic filler-containing fluororesin layer and the crystalline resin were measured using a dynamic viscoelasticity measuring device (DMA: manufactured by TA Instruments, trade name: RSA G2) using a film with a size of 5 mm x 70 mm. Measurements were performed from 30° C. to 400° C. at a heating rate of 4° C./min and a frequency of 10 Hz, and the temperature was set at which the change in elastic modulus (tan δ) was maximum.
The storage modulus of the amorphous resin at 300° C. and 350° C. was measured using a dynamic viscoelasticity measuring device in the same manner as the melting point of the crystalline resin, and the storage modulus at each temperature was confirmed.
Note that the determination of whether it is a crystalline resin or an amorphous resin is determined by the temperature at which the maximum tan δ obtained by dynamic viscoelasticity measurement is obtained when the film is measured using a differential scanning calorimeter. A case where there was a clear endothermic peak associated with melting in the vicinity was defined as a crystalline resin, and a case where there was a baseline shift due to glass transition was defined as an amorphous resin.
無機フィラー含有フッ素系樹脂層及び結晶性樹脂の融点は、5mm×70mmのサイズのフィルムを、動的粘弾性測定装置(DMA:TAインスツルメント社製、商品名;RSA G2)を用いて、30℃から400℃まで昇温速度4℃/分、周波数10Hzで測定を行い、弾性率変化(tanδ)が最大となる温度とした。
また非晶性樹脂の300℃、350℃の貯蔵弾性率は、結晶性樹脂の融点と同様な方法により動的粘弾性測定装置での測定を行い、各温度の貯蔵弾性率を確認した。
なお、結晶性樹脂であるか非晶性樹脂であるかの判断は、示差走査熱量計を用いてフィルムの測定を行った際に、動的粘弾性測定により得られたtanδの最大となる温度付近で、溶融に伴う明確な吸熱ピークがあった場合を結晶性樹脂、ガラス転移によるベースラインシフトであった場合を非晶性樹脂と定義した。 [Measurement of inorganic filler-containing fluororesin layer, melting point of crystalline resin, and storage modulus of amorphous resin at 300°C and 350°C]
The melting points of the inorganic filler-containing fluororesin layer and the crystalline resin were measured using a dynamic viscoelasticity measuring device (DMA: manufactured by TA Instruments, trade name: RSA G2) using a film with a size of 5 mm x 70 mm. Measurements were performed from 30° C. to 400° C. at a heating rate of 4° C./min and a frequency of 10 Hz, and the temperature was set at which the change in elastic modulus (tan δ) was maximum.
The storage modulus of the amorphous resin at 300° C. and 350° C. was measured using a dynamic viscoelasticity measuring device in the same manner as the melting point of the crystalline resin, and the storage modulus at each temperature was confirmed.
Note that the determination of whether it is a crystalline resin or an amorphous resin is determined by the temperature at which the maximum tan δ obtained by dynamic viscoelasticity measurement is obtained when the film is measured using a differential scanning calorimeter. A case where there was a clear endothermic peak associated with melting in the vicinity was defined as a crystalline resin, and a case where there was a baseline shift due to glass transition was defined as an amorphous resin.
合成例及び分散組成物作製例に用いた化合物以下を示す。
フッ素系樹脂パウダー(1):Fluon+(Fluonは登録商標) EA-2000PW 10、AGC製フッ素系樹脂パウダー、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、平均粒子径;2~3μm
フッ素系樹脂分散液(1):ネオフロンFEP ND-2R、ダイキン工業製FEP分散液、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体
シリカフィラー(1):SC70-2:日鉄ケミカル&マテリアル製非晶質シリカフィラー、平均粒子径(D50);11.7μm、比表面積1.1m2/gに対して、シリカ重量の0.12重量%のヘキサメチルジシラザン処理を行ったもの
分散剤(1):フタージェント710FL:ネオス製ノニオン系フッ素含有分散剤(分散剤有効成分50重量%、酢酸エチル50重量%)
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
m‐TB:2,2’‐ジメチル‐4,4'‐ジアミノビフェニル
TPE-R:1,3-ビス(4‐アミノフェノキシ)ベンゼン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
DMAc:N,N‐ジメチルアセトアミド The compounds used in the synthesis examples and dispersion composition preparation examples are shown below.
Fluorine resin powder (1): Fluon+ (Fluon is a registered trademark) EA-2000PW 10, AGC fluorine resin powder, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, average particle size: 2 to 3 μm
Fluorine resin dispersion (1): NEOFLON FEP ND-2R, FEP dispersion manufactured by Daikin Industries, tetrafluoroethylene-hexafluoropropylene copolymer silica filler (1): SC70-2: Amorphous manufactured by Nippon Steel Chemical & Materials Quality silica filler, average particle diameter (D 50 ): 11.7 μm, specific surface area 1.1 m 2 /g, treated with 0.12% by weight of silica by hexamethyldisilazane dispersant (1 ): Ftergent 710FL: Nonionic fluorine-containing dispersant manufactured by Neos (dispersantactive ingredient 50% by weight, ethyl acetate 50% by weight)
BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride PMDA: Pyromellitic dianhydride m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1 ,3-bis(4-aminophenoxy)benzene BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propaneDMAc: N,N-dimethylacetamide
フッ素系樹脂パウダー(1):Fluon+(Fluonは登録商標) EA-2000PW 10、AGC製フッ素系樹脂パウダー、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、平均粒子径;2~3μm
フッ素系樹脂分散液(1):ネオフロンFEP ND-2R、ダイキン工業製FEP分散液、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体
シリカフィラー(1):SC70-2:日鉄ケミカル&マテリアル製非晶質シリカフィラー、平均粒子径(D50);11.7μm、比表面積1.1m2/gに対して、シリカ重量の0.12重量%のヘキサメチルジシラザン処理を行ったもの
分散剤(1):フタージェント710FL:ネオス製ノニオン系フッ素含有分散剤(分散剤有効成分50重量%、酢酸エチル50重量%)
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
m‐TB:2,2’‐ジメチル‐4,4'‐ジアミノビフェニル
TPE-R:1,3-ビス(4‐アミノフェノキシ)ベンゼン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
DMAc:N,N‐ジメチルアセトアミド The compounds used in the synthesis examples and dispersion composition preparation examples are shown below.
Fluorine resin powder (1): Fluon+ (Fluon is a registered trademark) EA-2000PW 10, AGC fluorine resin powder, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, average particle size: 2 to 3 μm
Fluorine resin dispersion (1): NEOFLON FEP ND-2R, FEP dispersion manufactured by Daikin Industries, tetrafluoroethylene-hexafluoropropylene copolymer silica filler (1): SC70-2: Amorphous manufactured by Nippon Steel Chemical & Materials Quality silica filler, average particle diameter (D 50 ): 11.7 μm, specific surface area 1.1 m 2 /g, treated with 0.12% by weight of silica by hexamethyldisilazane dispersant (1 ): Ftergent 710FL: Nonionic fluorine-containing dispersant manufactured by Neos (dispersant
BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride PMDA: Pyromellitic dianhydride m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1 ,3-bis(4-aminophenoxy)benzene BAPP: 2,2-bis[4-(4-aminophenoxy)phenyl]propaneDMAc: N,N-dimethylacetamide
(分散組成物作製例1)
プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(1)を169.6g、分散剤(1)を24g(分散剤有効成分12g)及びDMAcを26.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。 (Dispersion composition preparation example 1)
T. of Primix Co., Ltd. (former company name: Tokushu Kika Kogyo Co., Ltd.) K. In a container of HIVIS MIX (model 2P-03), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (1), 24 g of dispersant (1) (12 g of dispersant active ingredient), and 26.7 g of DMAc was added and stirred at 20 rpm for 5 minutes. Thereafter, the apparatus was stopped, and the stirring blades and the side wall of the container were scraped off with the kneaded material. After the above-mentioned stirring and the apparatus was stopped, scraping of the kneaded material from the stirring blade and the side wall of the container was carried out three times.
プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を70.4g、シリカフィラー(1)を169.6g、分散剤(1)を24g(分散剤有効成分12g)及びDMAcを26.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。 (Dispersion composition preparation example 1)
T. of Primix Co., Ltd. (former company name: Tokushu Kika Kogyo Co., Ltd.) K. In a container of HIVIS MIX (model 2P-03), 70.4 g of fluororesin powder (1), 169.6 g of silica filler (1), 24 g of dispersant (1) (12 g of dispersant active ingredient), and 26.7 g of DMAc was added and stirred at 20 rpm for 5 minutes. Thereafter, the apparatus was stopped, and the stirring blades and the side wall of the container were scraped off with the kneaded material. After the above-mentioned stirring and the apparatus was stopped, scraping of the kneaded material from the stirring blade and the side wall of the container was carried out three times.
次に、フッ素系樹脂パウダー(1)とシリカフィラー(1)の全量に対する割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(1)の合計割合が全量に対して81重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物1-1を得た。分散組成物1-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。
Next, in order to finely adjust the ratio of the fluororesin powder (1) and silica filler (1) to the total amount, a small amount of DMAc was added to the kneaded product, and the mixture was stirred at 30 rpm for 5 minutes, and the state of the kneaded product was checked. . This operation was repeated until the kneaded material was in the form of a lump with no powdery parts. In this study, when the total proportion of fluororesin powder (1) and silica filler (1) reached 81% by weight based on the total amount, it became lumpy, and powdery parts were also observed inside the kneaded lump. It wasn't done. From the lumpy state, kneading was started at 30 rpm, stopped at 15 minute intervals, and the kneaded material was scraped off from the stirring blade and the side wall of the container. This operation was repeated four times in total for a total of 60 minutes to obtain a dispersion composition 1-1. Dispersion Composition 1-1 was judged to be a "solid" because it had no fluidity and its viscosity could not be measured.
その後、分散組成物1-1について、フッ素系樹脂パウダー(1)とシリカフィラー(1)の合計割合が全量に対して70重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度1080cPの分散組成物1-2を得た。
Thereafter, dispersion composition 1-1 was diluted and stirred in stages with DMAc so that the total proportion of fluororesin powder (1) and silica filler (1) was 70% by weight based on the total amount, and the mixture was stirred at 100 rpm. A dispersion composition 1-2 having a viscosity of 1080 cP as measured was obtained.
(分散組成物作製例2)
310mlのポリプロピレン容器内に、フッ素系樹脂分散液(1)を100.0g(FEP25.0g)、シリカフィラー(1)を59.7g及び分散剤(1)を6.0g(分散剤有効成分3.0g)加えたサンプルを2つ作製した。次に前記サンプル2つを自公転撹拌機[写真化学(株)SK-350G]にセットし、公転1060rpm、自転1060rpmの条件で4分間撹拌し、100rpmで測定時の粘度530cPの分散組成物2を得た。 (Dispersion composition preparation example 2)
In a 310 ml polypropylene container, 100.0 g of fluororesin dispersion (1) (FEP 25.0 g), 59.7 g of silica filler (1), and 6.0 g of dispersant (1) (dispersant active ingredient 3) .0g) were added. Next, the two samples were set in a rotation-revolution stirrer [SK-350G manufactured by Photo Kagaku Co., Ltd.] and stirred for 4 minutes at a revolution speed of 1060 rpm and an autorotation speed of 1060 rpm. I got it.
310mlのポリプロピレン容器内に、フッ素系樹脂分散液(1)を100.0g(FEP25.0g)、シリカフィラー(1)を59.7g及び分散剤(1)を6.0g(分散剤有効成分3.0g)加えたサンプルを2つ作製した。次に前記サンプル2つを自公転撹拌機[写真化学(株)SK-350G]にセットし、公転1060rpm、自転1060rpmの条件で4分間撹拌し、100rpmで測定時の粘度530cPの分散組成物2を得た。 (Dispersion composition preparation example 2)
In a 310 ml polypropylene container, 100.0 g of fluororesin dispersion (1) (FEP 25.0 g), 59.7 g of silica filler (1), and 6.0 g of dispersant (1) (dispersant active ingredient 3) .0g) were added. Next, the two samples were set in a rotation-revolution stirrer [SK-350G manufactured by Photo Kagaku Co., Ltd.] and stirred for 4 minutes at a revolution speed of 1060 rpm and an autorotation speed of 1060 rpm. I got it.
(分散組成物作製例3)
プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を94.2g、シリカフィラー(1)を145.9g、分散剤(1)を24g(分散剤有効成分12g)及びDMAcを26.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。 (Dispersion composition preparation example 3)
T. of Primix Co., Ltd. (former company name: Tokushu Kika Kogyo Co., Ltd.) K. In a container of HIVIS MIX (model 2P-03), 94.2 g of fluororesin powder (1), 145.9 g of silica filler (1), 24 g of dispersant (1) (12 g of dispersant active ingredient), and 26.7 g of DMAc was added and stirred at 20 rpm for 5 minutes. Thereafter, the apparatus was stopped, and the stirring blades and the side wall of the container were scraped off with the kneaded material. After the above-mentioned stirring and the apparatus was stopped, scraping of the kneaded material from the stirring blade and the side wall of the container was carried out three times.
プライミクス株式会社(旧社名:特殊機化工業株式会社)のT.K.HIVIS MIX(型式2P-03)の容器内に、フッ素系樹脂パウダー(1)を94.2g、シリカフィラー(1)を145.9g、分散剤(1)を24g(分散剤有効成分12g)及びDMAcを26.7g加え、20rpmで5分間撹拌した。その後装置を停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。前記の撹拌と装置停止後の撹拌翼及び容器側壁の混練物のかき取りを3回実施した。 (Dispersion composition preparation example 3)
T. of Primix Co., Ltd. (former company name: Tokushu Kika Kogyo Co., Ltd.) K. In a container of HIVIS MIX (model 2P-03), 94.2 g of fluororesin powder (1), 145.9 g of silica filler (1), 24 g of dispersant (1) (12 g of dispersant active ingredient), and 26.7 g of DMAc was added and stirred at 20 rpm for 5 minutes. Thereafter, the apparatus was stopped, and the stirring blades and the side wall of the container were scraped off with the kneaded material. After the above-mentioned stirring and the apparatus was stopped, scraping of the kneaded material from the stirring blade and the side wall of the container was carried out three times.
次に、フッ素系樹脂パウダー(1)とシリカフィラー(1)の全量に対する割合を微調整するため、DMAcを混練物に少量加え、30rpmで5分間撹拌し、混錬物の状態確認を行った。この作業を混練物に粉状部分がない塊状になるまで繰り返し実施した。なお本検討では、フッ素系樹脂パウダー(1)とシリカフィラー(1)の合計割合が全量に対して79重量%となった際に塊状となり、混錬物の塊内部にも粉状部分は観察されなかった。前記塊状になった状態から30rpmでの固練りを開始し、15分間隔で停止し、撹拌翼及び容器側壁の混練物のかき取りを実施した。この作業を計4回、合計60分間の固練りを行い、分散組成物3-1を得た。分散組成物3-1は、流動性がなく粘度の測定ができないため、「固体」と判断した。
Next, in order to finely adjust the ratio of the fluororesin powder (1) and silica filler (1) to the total amount, a small amount of DMAc was added to the kneaded product, and the mixture was stirred at 30 rpm for 5 minutes, and the state of the kneaded product was checked. . This operation was repeated until the kneaded material was in the form of a lump with no powdery parts. In this study, when the total proportion of fluororesin powder (1) and silica filler (1) reached 79% by weight based on the total amount, it became lumpy, and powdery parts were also observed inside the kneaded lump. It wasn't done. From the lumpy state, kneading was started at 30 rpm, stopped at 15 minute intervals, and the kneaded material was scraped off from the stirring blade and the side wall of the container. This operation was repeated four times in total for a total of 60 minutes to obtain a dispersion composition 3-1. Dispersion Composition 3-1 was judged to be a "solid" because it had no fluidity and its viscosity could not be measured.
その後、分散組成物3-1について、フッ素系樹脂パウダー(1)とシリカフィラー(1)の合計割合が全量に対して65重量%となるようにDMAcで段階的な希釈及び撹拌を行い、100rpmで測定時の粘度1480cPの分散組成物3-2を得た。
Thereafter, dispersion composition 3-1 was diluted stepwise with DMAc and stirred so that the total proportion of fluororesin powder (1) and silica filler (1) was 65% by weight based on the total amount, and the mixture was stirred at 100 rpm. A dispersion composition 3-2 having a viscosity of 1480 cP was obtained when measured.
(分散組成物作製例4)
310mlのポリプロピレン容器内に、フッ素系樹脂パウダー(1)を100.0g、分散剤(1)を10.0g(分散剤有効成分5.0g)及びDMAc90gを加えたサンプルを2つ作製した。次に前記サンプル2つを自公転撹拌機[写真化学(株)SK-350G]にセットし、公転1060rpm、自転1060rpmの条件で4分間撹拌し、100rpmで測定時の粘度130cPの分散組成物4を得た。 (Dispersion composition preparation example 4)
Two samples were prepared by adding 100.0 g of fluororesin powder (1), 10.0 g of dispersant (1) (5.0 g of dispersant active ingredient), and 90 g of DMAc in a 310 ml polypropylene container. Next, the two samples were set in a rotation-revolution stirrer [SK-350G manufactured by Photo Kagaku Co., Ltd.] and stirred for 4 minutes under the conditions of revolution of 1060 rpm and rotation of 1060 rpm.Dispersion Composition 4 with a viscosity of 130 cP when measured at 100 rpm I got it.
310mlのポリプロピレン容器内に、フッ素系樹脂パウダー(1)を100.0g、分散剤(1)を10.0g(分散剤有効成分5.0g)及びDMAc90gを加えたサンプルを2つ作製した。次に前記サンプル2つを自公転撹拌機[写真化学(株)SK-350G]にセットし、公転1060rpm、自転1060rpmの条件で4分間撹拌し、100rpmで測定時の粘度130cPの分散組成物4を得た。 (Dispersion composition preparation example 4)
Two samples were prepared by adding 100.0 g of fluororesin powder (1), 10.0 g of dispersant (1) (5.0 g of dispersant active ingredient), and 90 g of DMAc in a 310 ml polypropylene container. Next, the two samples were set in a rotation-revolution stirrer [SK-350G manufactured by Photo Kagaku Co., Ltd.] and stirred for 4 minutes under the conditions of revolution of 1060 rpm and rotation of 1060 rpm.Dispersion Composition 4 with a viscosity of 130 cP when measured at 100 rpm I got it.
(合成例1)
窒素気流下で、500mlのセパラブルフラスコに、2.7701gのm-TB(0.01305モル)及び15.2580gのTPE-R(0.05219モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、13.6386gのBPDA(0.04636モル)及び4.3333gのPMDA(0.01987モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液Aを得た。ポリアミド酸溶液Aの溶液粘度は1600cPであった。 (Synthesis example 1)
Under a nitrogen stream, 2.7701 g of m-TB (0.01305 mol) and 15.2580 g of TPE-R (0.05219 mol) and a solid content concentration after polymerization of 12% by weight were placed in a 500 ml separable flask. An amount of DMAc was added and dissolved by stirring at room temperature. Next, after adding 13.6386 g of BPDA (0.04636 mol) and 4.3333 g of PMDA (0.01987 mol), a polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain polyamic acid solution A. Ta. The solution viscosity of polyamic acid solution A was 1600 cP.
窒素気流下で、500mlのセパラブルフラスコに、2.7701gのm-TB(0.01305モル)及び15.2580gのTPE-R(0.05219モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、13.6386gのBPDA(0.04636モル)及び4.3333gのPMDA(0.01987モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液Aを得た。ポリアミド酸溶液Aの溶液粘度は1600cPであった。 (Synthesis example 1)
Under a nitrogen stream, 2.7701 g of m-TB (0.01305 mol) and 15.2580 g of TPE-R (0.05219 mol) and a solid content concentration after polymerization of 12% by weight were placed in a 500 ml separable flask. An amount of DMAc was added and dissolved by stirring at room temperature. Next, after adding 13.6386 g of BPDA (0.04636 mol) and 4.3333 g of PMDA (0.01987 mol), a polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain polyamic acid solution A. Ta. The solution viscosity of polyamic acid solution A was 1600 cP.
(合成例2)
窒素気流下で、500mlのセパラブルフラスコに、23.3871gのBAPP(0.05697モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に12.6129gのPMDA(0.05783モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液Bを得た。ポリアミド酸溶液Bの溶液粘度は2130cPであった。 (Synthesis example 2)
Under a nitrogen stream, 23.3871 g of BAPP (0.05697 mol) and DMAc in an amount such that the solid content concentration after polymerization is 12% by weight were placed in a 500 ml separable flask, and dissolved by stirring at room temperature. Ta. Next, after adding 12.6129 g of PMDA (0.05783 mol), stirring was continued for 3 hours at room temperature to carry out a polymerization reaction to obtain polyamic acid solution B. The solution viscosity of polyamic acid solution B was 2130 cP.
窒素気流下で、500mlのセパラブルフラスコに、23.3871gのBAPP(0.05697モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に12.6129gのPMDA(0.05783モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液Bを得た。ポリアミド酸溶液Bの溶液粘度は2130cPであった。 (Synthesis example 2)
Under a nitrogen stream, 23.3871 g of BAPP (0.05697 mol) and DMAc in an amount such that the solid content concentration after polymerization is 12% by weight were placed in a 500 ml separable flask, and dissolved by stirring at room temperature. Ta. Next, after adding 12.6129 g of PMDA (0.05783 mol), stirring was continued for 3 hours at room temperature to carry out a polymerization reaction to obtain polyamic acid solution B. The solution viscosity of polyamic acid solution B was 2130 cP.
(製造例1)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物1-2を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で6分の熱処理を行い、片面銅張積層板1を得た。 (Manufacturing example 1)
After coating the dispersion composition 1-2 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. using a hot air oven. Drying treatment was performed for 1 minute and at 120° C. for 3 minutes. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 1.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物1-2を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で6分の熱処理を行い、片面銅張積層板1を得た。 (Manufacturing example 1)
After coating the dispersion composition 1-2 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. using a hot air oven. Drying treatment was performed for 1 minute and at 120° C. for 3 minutes. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 1.
次に片面銅張積層板1を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で40℃から360℃まで60分かけて加熱し、360℃に到達と同時に、8MPaの圧力で加圧を行った。その後、360℃で5分間保持を行った後、40℃まで60分間かけて冷却を実施し、40℃に到達と同時に加圧を解放することで誘電体層の厚みが100μmの両面銅張積層板1を得た。
Next, prepare two single-sided copper-clad laminates 1, put the resin sides together and put them into a batch press machine, then heat them under vacuum from 40°C to 360°C over 60 minutes until the temperature reaches 360°C. At the same time, pressurization was performed at a pressure of 8 MPa. After that, after holding at 360℃ for 5 minutes, cooling to 40℃ for 60 minutes, and as soon as the temperature reached 40℃, the pressure was released to form a double-sided copper-clad laminate with a dielectric layer thickness of 100μm. Board 1 was obtained.
続いて、塩化第二鉄水溶液を用いて両面銅張積層板1の銅箔をエッチング除去して、フッ素系樹脂フィルム1を調製した。
フッ素系樹脂フィルム1のCTEは23ppm/K、融点(Tm)は350℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 1 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 1.
The CTE of the fluororesin film 1 was 23 ppm/K, and the melting point (Tm) was 350°C.
フッ素系樹脂フィルム1のCTEは23ppm/K、融点(Tm)は350℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 1 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 1.
The CTE of the fluororesin film 1 was 23 ppm/K, and the melting point (Tm) was 350°C.
(製造例2)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物2を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に220℃で3分、300℃で6分の熱処理を行い、片面銅張積層板2を得た。 (Manufacturing example 2)
After coating the dispersion composition 2 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. for 1 minute using a hot air oven. , a drying process was performed at 120° C. for 3 minutes. Next, heat treatment was performed at 220° C. for 3 minutes and at 300° C. for 6 minutes to obtain a single-sided copper-clad laminate 2.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物2を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に220℃で3分、300℃で6分の熱処理を行い、片面銅張積層板2を得た。 (Manufacturing example 2)
After coating the dispersion composition 2 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. for 1 minute using a hot air oven. , a drying process was performed at 120° C. for 3 minutes. Next, heat treatment was performed at 220° C. for 3 minutes and at 300° C. for 6 minutes to obtain a single-sided copper-clad laminate 2.
次に片面銅張積層板2を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で40℃から310℃まで50分かけて加熱し、310℃に到達と同時に、8MPaの圧力で加圧を行った。その後、310℃で5分間保持を行った後、40℃まで50分間かけて冷却を実施し、40℃に到達と同時に加圧を解放することで誘電体層の厚みが100μmの両面銅張積層板2を得た。
Next, prepare two single-sided copper-clad laminates 2, put their resin sides together and put them into a batch press machine, then heat them under vacuum from 40°C to 310°C over 50 minutes until the temperature reaches 310°C. At the same time, pressurization was performed at a pressure of 8 MPa. After that, after holding at 310℃ for 5 minutes, cooling to 40℃ for 50 minutes, and as soon as the temperature reached 40℃, the pressure was released to form a double-sided copper clad laminate with a dielectric layer thickness of 100μm. Board 2 was obtained.
続いて、塩化第二鉄水溶液を用いて両面銅張積層板2の銅箔をエッチング除去して、フッ素系樹脂フィルム2を調製した。
フッ素系樹脂フィルム2のCTEは23ppm/K、融点(Tm)は303℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 2 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 2.
The CTE of the fluororesin film 2 was 23 ppm/K, and the melting point (Tm) was 303°C.
フッ素系樹脂フィルム2のCTEは23ppm/K、融点(Tm)は303℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 2 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 2.
The CTE of the fluororesin film 2 was 23 ppm/K, and the melting point (Tm) was 303°C.
(製造例3)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物3-2を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で6分の熱処理を行い、片面銅張積層板3を得た。 (Manufacturing example 3)
After coating the dispersion composition 3-2 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. using a hot air oven. Drying treatment was performed for 1 minute and at 120° C. for 3 minutes. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 3.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物3-2を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で6分の熱処理を行い、片面銅張積層板3を得た。 (Manufacturing example 3)
After coating the dispersion composition 3-2 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. using a hot air oven. Drying treatment was performed for 1 minute and at 120° C. for 3 minutes. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 3.
次に片面銅張積層板3を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で40℃から360℃まで60分かけて加熱し、360℃に到達と同時に、8MPaの圧力で加圧を行った。その後、360℃で5分間保持を行った後、40℃まで60分間かけて冷却を実施し、40℃に到達と同時に加圧を解放することで誘電体層の厚みが100μmの両面銅張積層板3を得た。
Next, prepare two single-sided copper-clad laminates 3, put their resin sides together and put them into a batch press machine, then heat them under vacuum from 40°C to 360°C over 60 minutes until the temperature reaches 360°C. At the same time, pressurization was performed at a pressure of 8 MPa. After that, after holding at 360℃ for 5 minutes, cooling to 40℃ for 60 minutes, and as soon as the temperature reached 40℃, the pressure was released to form a double-sided copper-clad laminate with a dielectric layer thickness of 100μm. Board 3 was obtained.
続いて、塩化第二鉄水溶液を用いて両面銅張積層板3の銅箔をエッチング除去して、フッ素系樹脂フィルム3を調製した。
フッ素系樹脂フィルム3のCTEは52ppm/K、融点(Tm)は325℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 3 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 3.
The CTE of the fluororesin film 3 was 52 ppm/K, and the melting point (Tm) was 325°C.
フッ素系樹脂フィルム3のCTEは52ppm/K、融点(Tm)は325℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 3 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 3.
The CTE of the fluororesin film 3 was 52 ppm/K, and the melting point (Tm) was 325°C.
(製造例4)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物4を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で3分の熱処理を行い、片面銅張積層板4を得た。 (Manufacturing example 4)
After coating the dispersion composition 4 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. for 1 minute using a hot air oven. , a drying process was performed at 120° C. for 3 minutes. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 3 minutes to obtain a single-sided copper-clad laminate 4.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、分散組成物4を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で3分の熱処理を行い、片面銅張積層板4を得た。 (Manufacturing example 4)
After coating the dispersion composition 4 on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 80° C. for 1 minute using a hot air oven. , a drying process was performed at 120° C. for 3 minutes. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 3 minutes to obtain a single-sided copper-clad laminate 4.
次に片面銅張積層板4を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で40℃から320℃まで50分かけて加熱し、320℃に到達と同時に、2MPaの圧力で加圧を行った。その後、320℃で5分間保持を行った後、40℃まで50分間かけて冷却を実施し、40℃に到達と同時に加圧を解放することで誘電体層の厚みが100μmの両面銅張積層板4を得た。
Next, prepare two single-sided copper-clad laminates 4, put their resin sides together, put them into a batch press, and heat them under vacuum from 40°C to 320°C over 50 minutes until the temperature reaches 320°C. At the same time, pressurization was performed at a pressure of 2 MPa. After that, after holding at 320℃ for 5 minutes, cooling to 40℃ for 50 minutes, and as soon as the temperature reached 40℃, the pressure was released to form a double-sided copper clad laminate with a dielectric layer thickness of 100μm. Plate 4 was obtained.
続いて、塩化第二鉄水溶液を用いて両面銅張積層板4の銅箔をエッチング除去して、フッ素系樹脂フィルム4を調製した。
フッ素系樹脂フィルム4のCTEは240ppm/K、融点(Tm)は305℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 4 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 4.
The CTE of the fluororesin film 4 was 240 ppm/K, and the melting point (Tm) was 305°C.
フッ素系樹脂フィルム4のCTEは240ppm/K、融点(Tm)は305℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 4 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 4.
The CTE of the fluororesin film 4 was 240 ppm/K, and the melting point (Tm) was 305°C.
(製造例5)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、フッ素系樹脂分散液(1)を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に240℃で3分、300℃で3分の熱処理を行い、片面銅張積層板5を得た。 (Manufacturing example 5)
After coating the fluororesin dispersion (1) on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated for 80 minutes using a hot air oven. Drying treatment was performed at 120°C for 1 minute and 3 minutes at 120°C. Next, heat treatment was performed at 240° C. for 3 minutes and at 300° C. for 3 minutes to obtain a single-sided copper-clad laminate 5.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、フッ素系樹脂分散液(1)を塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に240℃で3分、300℃で3分の熱処理を行い、片面銅張積層板5を得た。 (Manufacturing example 5)
After coating the fluororesin dispersion (1) on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated for 80 minutes using a hot air oven. Drying treatment was performed at 120°C for 1 minute and 3 minutes at 120°C. Next, heat treatment was performed at 240° C. for 3 minutes and at 300° C. for 3 minutes to obtain a single-sided copper-clad laminate 5.
次に片面銅張積層板5を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で40℃から30℃まで45分かけて加熱し、290℃に到達と同時に、2MPaの圧力で加圧を行った。その後、290℃で5分間保持を行った後、40℃まで45分間かけて冷却を実施し、40℃に到達と同時に加圧を解放することで誘電体層の厚みが100μmの両面銅張積層板5を得た。
Next, prepare two single-sided copper-clad laminates 5, put their resin sides together and put them into a batch press, and heat them under vacuum from 40°C to 30°C over 45 minutes until the temperature reaches 290°C. At the same time, pressurization was performed at a pressure of 2 MPa. After that, after holding at 290℃ for 5 minutes, cooling to 40℃ for 45 minutes, and as soon as the temperature reached 40℃, the pressure was released to form a double-sided copper-clad laminate with a dielectric layer thickness of 100μm. Plate 5 was obtained.
続いて、塩化第二鉄水溶液を用いて両面銅張積層板5の銅箔をエッチング除去して、フッ素系樹脂フィルム5を調製した。
フッ素系樹脂フィルム5のCTEは180ppm/K、融点(Tm)は260℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 5 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 5.
The CTE of the fluororesin film 5 was 180 ppm/K, and the melting point (Tm) was 260°C.
フッ素系樹脂フィルム5のCTEは180ppm/K、融点(Tm)は260℃であった。 Subsequently, the copper foil of the double-sided copper-clad laminate 5 was removed by etching using a ferric chloride aqueous solution to prepare a fluororesin film 5.
The CTE of the fluororesin film 5 was 180 ppm/K, and the melting point (Tm) was 260°C.
(製造例6)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、ポリアミド酸溶液Aを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃、2分間の加熱乾燥を行い、溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を10分間で行い、イミド化を完結し、片面銅張積層板6を得た。 (Manufacturing example 6)
Polyamic acid solution A was evenly applied onto a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm) so that the thickness after curing was approximately 25 μm. After that, heat drying was performed at 120° C. for 2 minutes to remove the solvent. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 10 minutes to complete imidization and obtain a single-sided copper-clad laminate 6.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、ポリアミド酸溶液Aを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃、2分間の加熱乾燥を行い、溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を10分間で行い、イミド化を完結し、片面銅張積層板6を得た。 (Manufacturing example 6)
Polyamic acid solution A was evenly applied onto a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm) so that the thickness after curing was approximately 25 μm. After that, heat drying was performed at 120° C. for 2 minutes to remove the solvent. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 10 minutes to complete imidization and obtain a single-sided copper-clad laminate 6.
続いて、塩化第二鉄水溶液を用いて片面銅張積層板6の銅箔をエッチング除去して、ポリイミドフィルムAを調製した。ポリイミドフィルムAのCTEは51ppm/K、ガラス転移温度227℃、300℃での貯蔵弾性率は2.7×107Pa、350℃での貯蔵弾性率は1.1×107Paであったことから、熱可塑性ポリイミドであり、325℃での貯蔵弾性率は1×106Pa以上であることが確認された。
Subsequently, the copper foil of the single-sided copper-clad laminate 6 was removed by etching using a ferric chloride aqueous solution to prepare a polyimide film A. Polyimide film A had a CTE of 51 ppm/K, a glass transition temperature of 227°C, a storage modulus of 2.7 x 10 7 Pa at 300°C, and a storage modulus of 1.1 x 10 7 Pa at 350°C. This confirmed that it was a thermoplastic polyimide and had a storage modulus of 1×10 6 Pa or more at 325°C.
(製造例7)
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、ポリアミド酸溶液Bを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃、2分間の加熱乾燥を行い、溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を10分間で行い、イミド化を完結し、片面銅張積層板7を得た。 (Manufacturing example 7)
Polyamic acid solution B was evenly applied onto a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm) so that the thickness after curing was approximately 25 μm. After that, heat drying was performed at 120° C. for 2 minutes to remove the solvent. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 10 minutes to complete imidization and obtain a single-sided copper-clad laminate 7.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、ポリアミド酸溶液Bを硬化後の厚みが約25μmとなるように均一に塗布した後、120℃、2分間の加熱乾燥を行い、溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を10分間で行い、イミド化を完結し、片面銅張積層板7を得た。 (Manufacturing example 7)
Polyamic acid solution B was evenly applied onto a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm) so that the thickness after curing was approximately 25 μm. After that, heat drying was performed at 120° C. for 2 minutes to remove the solvent. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 10 minutes to complete imidization and obtain a single-sided copper-clad laminate 7.
続いて、塩化第二鉄水溶液を用いて片面銅張積層板7の銅箔をエッチング除去して、ポリイミドフィルムBを調製した。
ポリイミドフィルムBのCTEは55ppm/K、ガラス転移温度332℃、300℃での貯蔵弾性率は1.0×109Pa、350℃での貯蔵弾性率は5.6×107Paであり、熱可塑性ポリイミドであった。 Subsequently, the copper foil of the single-sided copper-clad laminate 7 was removed by etching using a ferric chloride aqueous solution to prepare a polyimide film B.
Polyimide film B has a CTE of 55 ppm/K, a glass transition temperature of 332°C, a storage modulus of 1.0 x 10 9 Pa at 300°C, and a storage modulus of 5.6 x 10 7 Pa at 350°C. It was a thermoplastic polyimide.
ポリイミドフィルムBのCTEは55ppm/K、ガラス転移温度332℃、300℃での貯蔵弾性率は1.0×109Pa、350℃での貯蔵弾性率は5.6×107Paであり、熱可塑性ポリイミドであった。 Subsequently, the copper foil of the single-sided copper-clad laminate 7 was removed by etching using a ferric chloride aqueous solution to prepare a polyimide film B.
Polyimide film B has a CTE of 55 ppm/K, a glass transition temperature of 332°C, a storage modulus of 1.0 x 10 9 Pa at 300°C, and a storage modulus of 5.6 x 10 7 Pa at 350°C. It was a thermoplastic polyimide.
<実施例1>
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、ポリアミド酸溶液Aを塗布した後、120℃、1分間の加熱乾燥を行い、溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を5分間で行い、イミド化を完結した。 <Example 1>
After applying polyamic acid solution A as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 120°C for 1 minute. The solvent was removed by heating and drying. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 5 minutes to complete imidization.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、ポリアミド酸溶液Aを塗布した後、120℃、1分間の加熱乾燥を行い、溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を5分間で行い、イミド化を完結した。 <Example 1>
After applying polyamic acid solution A as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), it was heated at 120°C for 1 minute. The solvent was removed by heating and drying. Furthermore, stepwise heat treatment was performed from 120° C. to 360° C. for 5 minutes to complete imidization.
次に無機フィラー含有フッ素系樹脂層として、分散組成物1-2を接着層上に塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で6分の熱処理を行い、片面銅張積層板8を得た。
Next, after coating the dispersion composition 1-2 on the adhesive layer as a fluororesin layer containing an inorganic filler, drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 8.
得られた片面銅張積層板8を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で360℃まで加熱し、360℃に到達後、5分間、8MPaの圧力でプレスを実施することで、誘電体層の厚みが100μmの両面銅張積層板6を得た。
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板6の端部において接着層の流れ出しは見られなかった。
得られた両面銅張積層板6及び銅箔を除去したフッ素系樹脂フィルム6について下記のとおり、評価を行った。評価結果を表1に示す。 Two of the obtained single-sided copper-clad laminates 8 were prepared, and the resin surfaces overlapped and put into a batch press machine, heated to 360°C under vacuum, and after reaching 360°C, heated to 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 6 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. Furthermore, no flow of the adhesive layer was observed at the ends of the double-sided copper-clad laminate 6.
The obtained double-sided copper-clad laminate 6 and the fluororesin film 6 from which the copper foil was removed were evaluated as follows. The evaluation results are shown in Table 1.
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板6の端部において接着層の流れ出しは見られなかった。
得られた両面銅張積層板6及び銅箔を除去したフッ素系樹脂フィルム6について下記のとおり、評価を行った。評価結果を表1に示す。 Two of the obtained single-sided copper-clad laminates 8 were prepared, and the resin surfaces overlapped and put into a batch press machine, heated to 360°C under vacuum, and after reaching 360°C, heated to 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 6 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. Furthermore, no flow of the adhesive layer was observed at the ends of the double-sided copper-clad laminate 6.
The obtained double-sided copper-clad laminate 6 and the fluororesin film 6 from which the copper foil was removed were evaluated as follows. The evaluation results are shown in Table 1.
なお、評価結果の判定については以下に記載する通りである。
・ピール強度:
0.7kN/m以上を○(良)、0.7kN/m未満を×(不可)とした。
・樹脂の流れ出し:
両面銅張積層板の端部から樹脂の流れ出しの最大量が1mm未満のものを○(良)、1mm以上のものを×(不可)とした。
・空隙:
SEMによる断面観察で空隙が5vol.%未満のものを○(良)、空隙が5vol.%以上のものを×(不可)とした。
・CTE:
30ppm/K以下のものを◎(優)、30ppm/Kより大きく60ppm/K以下のものを○(良)、60ppm/Kより大きいものを×(不可)とした。
・誘電正接:
0.0020未満のものを◎(優)、0.0020より大きく0.0025未満のものを〇(良)、0.0025以上のものを×(不可)とした。 Note that the determination of the evaluation results is as described below.
・Peel strength:
0.7 kN/m or more was rated as ○ (good), and less than 0.7 kN/m was rated as × (unsatisfactory).
・Resin flow:
A case where the maximum amount of resin flowing out from the edge of the double-sided copper-clad laminate was less than 1 mm was rated as ○ (good), and a case where the maximum amount of resin flowing out from the edge of the double-sided copper-clad laminate was 1 mm or more was rated as × (unsatisfactory).
・Void:
A cross-sectional observation using SEM revealed that the void was 5 vol. % is ○ (good), and the void is 5 vol. % or more was marked as × (impossible).
・CTE:
30 ppm/K or less was rated ◎ (excellent), more than 30 ppm/K and less than 60 ppm/K was rated ○ (good), and more than 60 ppm/K was rated × (unsatisfactory).
・Dielectric loss tangent:
Those less than 0.0020 were rated ◎ (excellent), those greater than 0.0020 and less than 0.0025 were rated ○ (good), and those greater than 0.0025 were rated × (unsatisfactory).
・ピール強度:
0.7kN/m以上を○(良)、0.7kN/m未満を×(不可)とした。
・樹脂の流れ出し:
両面銅張積層板の端部から樹脂の流れ出しの最大量が1mm未満のものを○(良)、1mm以上のものを×(不可)とした。
・空隙:
SEMによる断面観察で空隙が5vol.%未満のものを○(良)、空隙が5vol.%以上のものを×(不可)とした。
・CTE:
30ppm/K以下のものを◎(優)、30ppm/Kより大きく60ppm/K以下のものを○(良)、60ppm/Kより大きいものを×(不可)とした。
・誘電正接:
0.0020未満のものを◎(優)、0.0020より大きく0.0025未満のものを〇(良)、0.0025以上のものを×(不可)とした。 Note that the determination of the evaluation results is as described below.
・Peel strength:
0.7 kN/m or more was rated as ○ (good), and less than 0.7 kN/m was rated as × (unsatisfactory).
・Resin flow:
A case where the maximum amount of resin flowing out from the edge of the double-sided copper-clad laminate was less than 1 mm was rated as ○ (good), and a case where the maximum amount of resin flowing out from the edge of the double-sided copper-clad laminate was 1 mm or more was rated as × (unsatisfactory).
・Void:
A cross-sectional observation using SEM revealed that the void was 5 vol. % is ○ (good), and the void is 5 vol. % or more was marked as × (impossible).
・CTE:
30 ppm/K or less was rated ◎ (excellent), more than 30 ppm/K and less than 60 ppm/K was rated ○ (good), and more than 60 ppm/K was rated × (unsatisfactory).
・Dielectric loss tangent:
Those less than 0.0020 were rated ◎ (excellent), those greater than 0.0020 and less than 0.0025 were rated ○ (good), and those greater than 0.0025 were rated × (unsatisfactory).
<実施例2>
接着層としてポリアミド酸溶液Bを塗布したこと以外は実施例1と同様にして、片面銅張積層板9を作製後、プレスを実施し両面銅張積層板7を作製し、前記両面銅張積層板7の銅箔を除去することでフッ素系樹脂フィルム7を得た。得られた両面銅張積層板7ならびにフッ素系樹脂フィルム7について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Example 2>
A single-sided copper-clad laminate 9 was produced in the same manner as in Example 1, except that polyamic acid solution B was applied as an adhesive layer, and then a double-sided copper-clad laminate 7 was produced by pressing. A fluororesin film 7 was obtained by removing the copper foil of the plate 7. The obtained double-sided copper-clad laminate 7 and fluororesin film 7 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
接着層としてポリアミド酸溶液Bを塗布したこと以外は実施例1と同様にして、片面銅張積層板9を作製後、プレスを実施し両面銅張積層板7を作製し、前記両面銅張積層板7の銅箔を除去することでフッ素系樹脂フィルム7を得た。得られた両面銅張積層板7ならびにフッ素系樹脂フィルム7について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Example 2>
A single-sided copper-clad laminate 9 was produced in the same manner as in Example 1, except that polyamic acid solution B was applied as an adhesive layer, and then a double-sided copper-clad laminate 7 was produced by pressing. A fluororesin film 7 was obtained by removing the copper foil of the plate 7. The obtained double-sided copper-clad laminate 7 and fluororesin film 7 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
<実施例3>
接着層及び無機フィラー含有フッ素系樹脂層の厚みを変更したこと以外は実施例2と同様にして、片面銅張積層板10を作製後、プレスを実施し両面銅張積層板8を作製し、前記両面銅張積層板8の銅箔を除去することでフッ素系樹脂フィルム8を得た。得られた両面銅張積層板8ならびにフッ素系樹脂フィルム8について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Example 3>
After producing a single-sided copper-clad laminate 10 in the same manner as in Example 2 except for changing the thickness of the adhesive layer and the inorganic filler-containing fluororesin layer, pressing was performed to produce a double-sided copper-clad laminate 8, A fluororesin film 8 was obtained by removing the copper foil from the double-sided copper-clad laminate 8. The obtained double-sided copper-clad laminate 8 and fluororesin film 8 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
接着層及び無機フィラー含有フッ素系樹脂層の厚みを変更したこと以外は実施例2と同様にして、片面銅張積層板10を作製後、プレスを実施し両面銅張積層板8を作製し、前記両面銅張積層板8の銅箔を除去することでフッ素系樹脂フィルム8を得た。得られた両面銅張積層板8ならびにフッ素系樹脂フィルム8について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Example 3>
After producing a single-sided copper-clad laminate 10 in the same manner as in Example 2 except for changing the thickness of the adhesive layer and the inorganic filler-containing fluororesin layer, pressing was performed to produce a double-sided copper-clad laminate 8, A fluororesin film 8 was obtained by removing the copper foil from the double-sided copper-clad laminate 8. The obtained double-sided copper-clad laminate 8 and fluororesin film 8 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
<実施例4>
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、分散組成物4を塗布した後、80℃で1分間、120℃で3分間の加熱乾燥を行い、溶媒を除去した。更に、280℃で1.5分間、340℃で3分間の熱処理を行った。 <Example 4>
After applying the dispersion composition 4 as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), at 80° C. for 1 minute, The solvent was removed by heating and drying at 120° C. for 3 minutes. Furthermore, heat treatment was performed at 280°C for 1.5 minutes and at 340°C for 3 minutes.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、分散組成物4を塗布した後、80℃で1分間、120℃で3分間の加熱乾燥を行い、溶媒を除去した。更に、280℃で1.5分間、340℃で3分間の熱処理を行った。 <Example 4>
After applying the dispersion composition 4 as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten-point average roughness Rzjis on the resin layer side: 0.6 μm), at 80° C. for 1 minute, The solvent was removed by heating and drying at 120° C. for 3 minutes. Furthermore, heat treatment was performed at 280°C for 1.5 minutes and at 340°C for 3 minutes.
次に無機フィラー含有フッ素系樹脂層として、分散組成物2を接着層上に塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に240℃で3分、300℃で6分の熱処理を行い、片面銅張積層板11を得た。
Next, after coating Dispersion Composition 2 on the adhesive layer as an inorganic filler-containing fluororesin layer, drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven. Next, heat treatment was performed at 240° C. for 3 minutes and at 300° C. for 6 minutes to obtain a single-sided copper-clad laminate 11.
得られた片面銅張積層板11を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で315℃まで加熱し、315℃に到達後、5分間、8MPaの圧力でプレスを実施することで、誘電体層の厚みが100μmの両面銅張積層板9を得た。
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板9の端部において接着層の流れ出しは見られなかった。
得られた両面銅張積層板9及び銅箔を除去したフッ素系樹脂フィルム9について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 Two of the obtained single-sided copper-clad laminates 11 were prepared, and the resin surfaces were put into a batch press machine, heated to 315°C under vacuum, and after reaching 315°C, heated at 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 9 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. Furthermore, no flow of the adhesive layer was observed at the edges of the double-sided copper-clad laminate 9.
The obtained double-sided copper-clad laminate 9 and the fluororesin film 9 from which the copper foil was removed were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板9の端部において接着層の流れ出しは見られなかった。
得られた両面銅張積層板9及び銅箔を除去したフッ素系樹脂フィルム9について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 Two of the obtained single-sided copper-clad laminates 11 were prepared, and the resin surfaces were put into a batch press machine, heated to 315°C under vacuum, and after reaching 315°C, heated at 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 9 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. Furthermore, no flow of the adhesive layer was observed at the edges of the double-sided copper-clad laminate 9.
The obtained double-sided copper-clad laminate 9 and the fluororesin film 9 from which the copper foil was removed were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
<実施例5>
無機フィラー含有フッ素系樹脂層として分散組成物3-2を塗布したこと、プレス温度を335℃としたこと以外は実施例1と同様にして、片面銅張積層板12を作製後、プレスを実施し両面銅張積層板10を作製し、前記両面銅張積層板10の銅箔を除去することでフッ素系樹脂フィルム10を得た。得られた両面銅張積層板10ならびにフッ素系樹脂フィルム10について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Example 5>
After producing the single-sided copper-clad laminate 12 in the same manner as in Example 1, except that the dispersion composition 3-2 was applied as the inorganic filler-containing fluororesin layer and the pressing temperature was 335° C., pressing was performed. A double-sided copper-clad laminate 10 was prepared, and the copper foil of the double-sided copper-clad laminate 10 was removed to obtain a fluororesin film 10. The obtained double-sided copper-clad laminate 10 and fluororesin film 10 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
無機フィラー含有フッ素系樹脂層として分散組成物3-2を塗布したこと、プレス温度を335℃としたこと以外は実施例1と同様にして、片面銅張積層板12を作製後、プレスを実施し両面銅張積層板10を作製し、前記両面銅張積層板10の銅箔を除去することでフッ素系樹脂フィルム10を得た。得られた両面銅張積層板10ならびにフッ素系樹脂フィルム10について評価を行った。評価結果を表1に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Example 5>
After producing the single-sided copper-clad laminate 12 in the same manner as in Example 1, except that the dispersion composition 3-2 was applied as the inorganic filler-containing fluororesin layer and the pressing temperature was 335° C., pressing was performed. A double-sided copper-clad laminate 10 was prepared, and the copper foil of the double-sided copper-clad laminate 10 was removed to obtain a fluororesin film 10. The obtained double-sided copper-clad laminate 10 and fluororesin film 10 were evaluated. The evaluation results are shown in Table 1. Note that the evaluation results were determined in the same manner as in Example 1.
<比較例1>
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、フッ素系樹脂分散液(1)を塗布した後、80℃で1分間、120℃で3分間の加熱乾燥を行い、溶媒を除去した。更に、240℃で1.5分間、300℃で3分間の熱処理を行った。 <Comparative example 1>
After applying the fluororesin dispersion (1) as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten point average roughness Rzjis on the resin layer side: 0.6 μm), the temperature was 80°C. The solvent was removed by heating and drying at 120°C for 1 minute and 3 minutes at 120°C. Furthermore, heat treatment was performed at 240°C for 1.5 minutes and at 300°C for 3 minutes.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、フッ素系樹脂分散液(1)を塗布した後、80℃で1分間、120℃で3分間の加熱乾燥を行い、溶媒を除去した。更に、240℃で1.5分間、300℃で3分間の熱処理を行った。 <Comparative example 1>
After applying the fluororesin dispersion (1) as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten point average roughness Rzjis on the resin layer side: 0.6 μm), the temperature was 80°C. The solvent was removed by heating and drying at 120°C for 1 minute and 3 minutes at 120°C. Furthermore, heat treatment was performed at 240°C for 1.5 minutes and at 300°C for 3 minutes.
次に無機フィラー含有フッ素系樹脂層として、分散組成物1-2を接着層上に塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に280℃で3分、340℃で6分の熱処理を行い、片面銅張積層板13を得た。
Next, after coating the dispersion composition 1-2 on the adhesive layer as a fluororesin layer containing an inorganic filler, drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven. Next, heat treatment was performed at 280° C. for 3 minutes and at 340° C. for 6 minutes to obtain a single-sided copper-clad laminate 13.
得られた片面銅張積層板13を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で360℃まで加熱し、360℃に到達後、5分間、8MPaの圧力でプレスを実施することで、誘電体層の厚みが100μmの両面銅張積層板11を得た。
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板11の端部において接着層の流れ出しが見られた。
得られた両面銅張積層板11及び銅箔を除去したフッ素系樹脂フィルム11について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 Two of the obtained single-sided copper-clad laminates 13 were prepared, and the resin surfaces overlapped and put into a batch press, heated to 360°C under vacuum, and after reaching 360°C, heated to 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 11 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. In addition, flow of the adhesive layer was observed at the edges of the double-sided copper-clad laminate 11.
The obtained double-sided copper-clad laminate 11 and the fluororesin film 11 from which the copper foil was removed were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板11の端部において接着層の流れ出しが見られた。
得られた両面銅張積層板11及び銅箔を除去したフッ素系樹脂フィルム11について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 Two of the obtained single-sided copper-clad laminates 13 were prepared, and the resin surfaces overlapped and put into a batch press, heated to 360°C under vacuum, and after reaching 360°C, heated to 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 11 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. In addition, flow of the adhesive layer was observed at the edges of the double-sided copper-clad laminate 11.
The obtained double-sided copper-clad laminate 11 and the fluororesin film 11 from which the copper foil was removed were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
<比較例2>
プレス温度を290℃としたこと以外は比較例1と同様にして、片面銅張積層板14を作製後、プレスを実施し両面銅張積層板12を作製し、前記両面銅張積層板12の銅箔を除去することでフッ素系樹脂フィルム12を得た。得られた両面銅張積層板12ならびにフッ素系樹脂フィルム12について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Comparative example 2>
A single-sided copper-clad laminate 14 was produced in the same manner as in Comparative Example 1, except that the pressing temperature was 290°C, and then pressing was performed to produce a double-sided copper-clad laminate 12. A fluororesin film 12 was obtained by removing the copper foil. The obtained double-sided copper-clad laminate 12 and fluororesin film 12 were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
プレス温度を290℃としたこと以外は比較例1と同様にして、片面銅張積層板14を作製後、プレスを実施し両面銅張積層板12を作製し、前記両面銅張積層板12の銅箔を除去することでフッ素系樹脂フィルム12を得た。得られた両面銅張積層板12ならびにフッ素系樹脂フィルム12について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Comparative example 2>
A single-sided copper-clad laminate 14 was produced in the same manner as in Comparative Example 1, except that the pressing temperature was 290°C, and then pressing was performed to produce a double-sided copper-clad laminate 12. A fluororesin film 12 was obtained by removing the copper foil. The obtained double-sided copper-clad laminate 12 and fluororesin film 12 were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
<比較例3>
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、フッ素系樹脂分散液(1)を塗布した後、80℃で1分間、120℃で3分間の加熱乾燥を行い、溶媒を除去した。更に、240℃で1.5分間、300℃で3分間の熱処理を行った。 <Comparative example 3>
After applying the fluororesin dispersion (1) as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten point average roughness Rzjis on the resin layer side: 0.6 μm), the temperature was 80°C. The solvent was removed by heating and drying at 120°C for 1 minute and 3 minutes at 120°C. Furthermore, heat treatment was performed at 240°C for 1.5 minutes and at 300°C for 3 minutes.
銅箔(電解銅箔、厚さ;12μm、樹脂層側の十点平均粗さRzjis;0.6μm)の上に、接着層として、フッ素系樹脂分散液(1)を塗布した後、80℃で1分間、120℃で3分間の加熱乾燥を行い、溶媒を除去した。更に、240℃で1.5分間、300℃で3分間の熱処理を行った。 <Comparative example 3>
After applying the fluororesin dispersion (1) as an adhesive layer on a copper foil (electrolytic copper foil, thickness: 12 μm, ten point average roughness Rzjis on the resin layer side: 0.6 μm), the temperature was 80°C. The solvent was removed by heating and drying at 120°C for 1 minute and 3 minutes at 120°C. Furthermore, heat treatment was performed at 240°C for 1.5 minutes and at 300°C for 3 minutes.
次に無機フィラー含有フッ素系樹脂層として、分散組成物2を接着層上に塗工後、熱風オーブンを用いて80℃で1分、120℃で3分の乾燥処理を行った。次に240℃で3分、300℃で6分の熱処理を行い、片面銅張積層板15を得た。
Next, after coating Dispersion Composition 2 on the adhesive layer as an inorganic filler-containing fluororesin layer, drying treatment was performed at 80° C. for 1 minute and at 120° C. for 3 minutes using a hot air oven. Next, heat treatment was performed at 240° C. for 3 minutes and at 300° C. for 6 minutes to obtain a single-sided copper-clad laminate 15.
得られた片面銅張積層板15を2枚準備し、樹脂面同士を重ね合わせたものをバッチプレス機に投入後、真空下で315℃まで加熱し、315℃に到達後、5分間、8MPaの圧力でプレスを実施することで、誘電体層の厚みが100μmの両面銅張積層板13を得た。
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板13の端部において接着層の流れ出しが見られた。
得られた両面銅張積層板13及び銅箔を除去したフッ素系樹脂フィルム13について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 Two of the obtained single-sided copper-clad laminates 15 were prepared, and the resin surfaces overlapped and put into a batch press, heated to 315°C under vacuum, and after reaching 315°C, heated to 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 13 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. In addition, flow of the adhesive layer was observed at the edges of the double-sided copper-clad laminate 13.
The obtained double-sided copper-clad laminate 13 and the fluororesin film 13 from which the copper foil was removed were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
この際、接着層の厚みはそれぞれ4μm、無機フィラー含有フッ素系樹脂層の厚みは92μmであり、誘電体層の総厚みは100μmであった。また、両面銅張積層板13の端部において接着層の流れ出しが見られた。
得られた両面銅張積層板13及び銅箔を除去したフッ素系樹脂フィルム13について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 Two of the obtained single-sided copper-clad laminates 15 were prepared, and the resin surfaces overlapped and put into a batch press, heated to 315°C under vacuum, and after reaching 315°C, heated to 8 MPa for 5 minutes. By pressing at a pressure of 100 μm, a double-sided copper-clad laminate 13 with a dielectric layer thickness of 100 μm was obtained.
At this time, the thickness of each adhesive layer was 4 μm, the thickness of the inorganic filler-containing fluororesin layer was 92 μm, and the total thickness of the dielectric layer was 100 μm. In addition, flow of the adhesive layer was observed at the edges of the double-sided copper-clad laminate 13.
The obtained double-sided copper-clad laminate 13 and the fluororesin film 13 from which the copper foil was removed were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
<比較例4>
接着層及び無機フィラー含有フッ素系樹脂層の厚みを変更したこと以外は実施例2と同様にして、片面銅張積層板16を作製後、プレスを実施し両面銅張積層板14を作製し、前記両面銅張積層板14の銅箔を除去することでフッ素系樹脂フィルム14を得た。得られた両面銅張積層板14ならびにフッ素系樹脂フィルム14について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Comparative example 4>
After producing a single-sided copper-clad laminate 16 in the same manner as in Example 2 except for changing the thickness of the adhesive layer and the inorganic filler-containing fluororesin layer, pressing was performed to produce a double-sided copper-clad laminate 14, A fluororesin film 14 was obtained by removing the copper foil from the double-sided copper-clad laminate 14. The obtained double-sided copper-clad laminate 14 and fluororesin film 14 were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
接着層及び無機フィラー含有フッ素系樹脂層の厚みを変更したこと以外は実施例2と同様にして、片面銅張積層板16を作製後、プレスを実施し両面銅張積層板14を作製し、前記両面銅張積層板14の銅箔を除去することでフッ素系樹脂フィルム14を得た。得られた両面銅張積層板14ならびにフッ素系樹脂フィルム14について評価を行った。評価結果を表2に示す。なお、評価結果の判定は実施例1と同様な方法で行った。 <Comparative example 4>
After producing a single-sided copper-clad laminate 16 in the same manner as in Example 2 except for changing the thickness of the adhesive layer and the inorganic filler-containing fluororesin layer, pressing was performed to produce a double-sided copper-clad laminate 14, A fluororesin film 14 was obtained by removing the copper foil from the double-sided copper-clad laminate 14. The obtained double-sided copper-clad laminate 14 and fluororesin film 14 were evaluated. The evaluation results are shown in Table 2. Note that the evaluation results were determined in the same manner as in Example 1.
以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。
Although the embodiments of the present invention have been described above in detail for the purpose of illustration, the present invention is not limited to the above embodiments and can be modified in various ways.
本出願は、2022年3月31日に日本国で出願された特願2022-060071号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。
This application claims priority based on Japanese Patent Application No. 2022-060071 filed in Japan on March 31, 2022, and the entire contents of the application are incorporated herein.
10A,10B…金属層、20A,20B…接着層、30…無機フィラー含有フッ素系樹脂層、31…分散組成物層、40…第1の積層体、50…第2の積層体、100…金属張積層板
10A, 10B...metal layer, 20A, 20B...adhesive layer, 30...inorganic filler-containing fluororesin layer, 31...dispersed composition layer, 40...first laminate, 50...second laminate, 100...metal tension laminate
10A, 10B...metal layer, 20A, 20B...adhesive layer, 30...inorganic filler-containing fluororesin layer, 31...dispersed composition layer, 40...first laminate, 50...second laminate, 100...metal tension laminate
Claims (5)
- 金属層と、
前記金属層に直接接する接着層と、
前記接着層に直接又は間接的に積層されている、フッ素系樹脂中に無機フィラーを含有する無機フィラー含有フッ素系樹脂層と、
を備え、
前記接着層と前記無機フィラー含有フッ素系樹脂層が、以下のa)又はb)、
a)接着層を構成する主たる樹脂が結晶性樹脂であるとき、接着層の融点Tm1が無機フィラー含有フッ素系樹脂層の融点Tm2より高いこと;
b)接着層を構成する主たる樹脂が非晶性樹脂であるとき、無機フィラー含有フッ素系樹脂層の融点Tm2における接着層の貯蔵弾性率E’が1×106Pa以上であること;
のいずれかの条件を満たし、前記無機フィラー含有フッ素系樹脂層の熱膨張係数(CTE)が60ppm/K以下である金属張積層板。 a metal layer;
an adhesive layer in direct contact with the metal layer;
an inorganic filler-containing fluororesin layer containing an inorganic filler in the fluororesin, which is laminated directly or indirectly on the adhesive layer;
Equipped with
The adhesive layer and the inorganic filler-containing fluororesin layer have the following a) or b),
a) When the main resin constituting the adhesive layer is a crystalline resin, the melting point Tm1 of the adhesive layer is higher than the melting point Tm2 of the inorganic filler-containing fluororesin layer;
b) When the main resin constituting the adhesive layer is an amorphous resin, the storage elastic modulus E' of the adhesive layer at the melting point Tm2 of the inorganic filler-containing fluororesin layer is 1 x 10 6 Pa or more;
A metal-clad laminate that satisfies any of the following conditions and has a coefficient of thermal expansion (CTE) of the inorganic filler-containing fluororesin layer of 60 ppm/K or less. - 前記無機フィラー含有フッ素系樹脂層の23℃、50%RHの恒温恒湿条件のもと24時間調湿後に、スプリットシリンダ共振器(SCR共振器)により測定される60GHzにおける誘電正接が0.0025未満である請求項1に記載の金属張積層板。 The inorganic filler-containing fluororesin layer has a dielectric loss tangent of 0.0025 at 60 GHz as measured by a split cylinder resonator (SCR resonator) after 24 hours of humidity control under constant temperature and humidity conditions of 23° C. and 50% RH. The metal-clad laminate according to claim 1, wherein the metal-clad laminate is less than 1.
- 金属層/接着層/無機フィラー含有フッ素系樹脂層/接着層/金属層がこの順に積層された層構成を有する請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, which has a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer are laminated in this order.
- 前記接着層と前記無機フィラー含有フッ素系樹脂層の合計厚みに対する前記接着層の厚みの比率が1~25%の範囲内である請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, wherein the ratio of the thickness of the adhesive layer to the total thickness of the adhesive layer and the inorganic filler-containing fluororesin layer is within the range of 1 to 25%.
- 請求項1~4のいずれか1項に記載の金属張積層板を製造する方法であって、
金属層上に接着層が積層された第1の積層体を準備する工程と、
前記接着層上に、無機フィラー及びフッ素系樹脂を含有する分散組成物を塗布し、熱処理することによって、前記金属層上に前記接着層及び分散組成物層が積層された第2の積層体を形成する工程と、
2つの前記第2の積層体を用い、前記分散組成物層を向い合せにして熱圧着することによって、又は、前記第1の積層体と前記第2の積層体を用い、前記接着層と前記分散組成物層を向い合せにして熱圧着することによって、金属層/接着層/無機フィラー含有フッ素系樹脂層/接着層/金属層がこの順に積層された層構成を有する金属張積層板を形成する工程と、
を含む金属張積層板の製造方法。
A method for manufacturing a metal-clad laminate according to any one of claims 1 to 4, comprising:
preparing a first laminate in which an adhesive layer is laminated on a metal layer;
A second laminate in which the adhesive layer and the dispersion composition layer are laminated on the metal layer is formed by applying a dispersion composition containing an inorganic filler and a fluororesin on the adhesive layer and heat-treating the adhesive layer. a step of forming;
By using two of the second laminates and thermocompression bonding with the dispersion composition layers facing each other, or by using the first laminate and the second laminate, the adhesive layer and the By thermocompression bonding the dispersion composition layers facing each other, a metal-clad laminate having a layer structure in which metal layer/adhesive layer/inorganic filler-containing fluororesin layer/adhesive layer/metal layer is laminated in this order is formed. The process of
A method for manufacturing a metal-clad laminate including.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-060071 | 2022-03-31 | ||
JP2022060071 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023189794A1 true WO2023189794A1 (en) | 2023-10-05 |
Family
ID=88201054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010803 WO2023189794A1 (en) | 2022-03-31 | 2023-03-20 | Metal-clad laminated board and method for producing same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202404808A (en) |
WO (1) | WO2023189794A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011137126A (en) * | 2009-12-02 | 2011-07-14 | Toagosei Co Ltd | Adhesive composition, coverlay film using the same, and flexible copper-clad laminate |
JP2017024265A (en) * | 2015-07-22 | 2017-02-02 | 株式会社カネカ | Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate |
JP2021070160A (en) * | 2019-10-29 | 2021-05-06 | 昭和電工マテリアルズ株式会社 | Fluorine resin substrate laminate |
-
2023
- 2023-03-20 WO PCT/JP2023/010803 patent/WO2023189794A1/en unknown
- 2023-03-25 TW TW112111327A patent/TW202404808A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011137126A (en) * | 2009-12-02 | 2011-07-14 | Toagosei Co Ltd | Adhesive composition, coverlay film using the same, and flexible copper-clad laminate |
JP2017024265A (en) * | 2015-07-22 | 2017-02-02 | 株式会社カネカ | Insulating film, method for manufacturing insulating film, and method for manufacturing metal-clad laminate |
JP2021070160A (en) * | 2019-10-29 | 2021-05-06 | 昭和電工マテリアルズ株式会社 | Fluorine resin substrate laminate |
Also Published As
Publication number | Publication date |
---|---|
TW202404808A (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10377110B2 (en) | Copper clad laminate | |
JP7559767B2 (en) | Nonaqueous dispersion, method for producing laminate, and molded product | |
KR100823403B1 (en) | Polyaryl ketone resin film and laminates thereof with metal | |
JP7371681B2 (en) | Liquid composition, powder, and method for producing powder | |
JP6491947B2 (en) | Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and production method thereof | |
JP7093608B2 (en) | Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and a method for producing them. | |
JP7283208B2 (en) | Powder dispersion, method for producing laminate, method for producing laminate and printed circuit board | |
JP7141446B2 (en) | Multilayer films and metal laminates | |
KR20220113354A (en) | Dispersions, methods for preparing dispersions and moldings | |
WO2021075504A1 (en) | Non-aqueous dispersion liquid, and method for producing laminate | |
JP7230932B2 (en) | Laminate and its manufacturing method, composite laminate manufacturing method, and polymer film manufacturing method | |
WO2023189794A1 (en) | Metal-clad laminated board and method for producing same | |
WO2021200630A1 (en) | Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board | |
JP2021075030A (en) | Laminate, method for producing laminate, sheet and printed circuit board | |
JP2007245525A (en) | Flexible laminate | |
JP7519745B2 (en) | Laminate and manufacturing method thereof | |
JP7344789B2 (en) | High frequency circuit board and its manufacturing method | |
JP7468520B2 (en) | Liquid Composition | |
TW202317697A (en) | Sheet manufacturing method, laminate sheet manufacturing method and sheet | |
JP2022150086A (en) | Resin film, method of manufacturing the same, metal-clad laminated plate, and circuit substrate | |
JP2024142753A (en) | Manufacturing method for double-sided metal-clad laminate | |
TW202413555A (en) | Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same | |
WO2023189795A1 (en) | Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same | |
WO2024070495A1 (en) | Resin composition, fluororesin film using same, and fluororesin metal-clad laminate | |
JP7511117B2 (en) | Composite particles, method for producing composite particles, liquid composition, method for producing laminate, and method for producing film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23779810 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024511860 Country of ref document: JP Kind code of ref document: A |