WO2023188235A1 - Mcf接続システム及びmcf接続方法 - Google Patents
Mcf接続システム及びmcf接続方法 Download PDFInfo
- Publication number
- WO2023188235A1 WO2023188235A1 PCT/JP2022/016418 JP2022016418W WO2023188235A1 WO 2023188235 A1 WO2023188235 A1 WO 2023188235A1 JP 2022016418 W JP2022016418 W JP 2022016418W WO 2023188235 A1 WO2023188235 A1 WO 2023188235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mcf
- fifo
- optical
- core
- optical power
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 91
- 230000003287 optical effect Effects 0.000 claims abstract description 309
- 230000005540 biological transmission Effects 0.000 claims abstract description 130
- 238000007689 inspection Methods 0.000 claims abstract description 73
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000012360 testing method Methods 0.000 claims description 107
- 239000000835 fiber Substances 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 230000000644 propagated effect Effects 0.000 description 5
- 238000007526 fusion splicing Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
Definitions
- the present invention relates to an MCF connection system and the like for connecting multi-core fibers used in an optical fiber transmission system.
- MCF multi-core fiber
- Fan-in/Fan-in/ Fan-out (Fan-In/Fan-Out, FIFO) is used.
- Common optical equipment is, for example, an optical repeater or an optical component.
- the FIFO is an optical component having a plurality of SCFs at one end and an MCF at the other end, and inside the FIFO, the cores of these SCFs and each core of the MCF are connected. Therefore, the FIFO can connect the MCF to an optical device using the SCF as an interface.
- Patent Document 1 describes a method for aligning the axis of a coupled multi-core optical fiber. Furthermore, Patent Document 2 describes an MCF that includes markers for aligning cores.
- each core of the FIFO and each core of the MCF be connected with low loss. Furthermore, it is also preferable that variations in connection loss between each core of the FIFO and each core within the MCF be small.
- a general procedure for connecting a FIFO and an MCF a plurality of lights distributed from a single light source are input to one end of the MCF via the FIFO. Optical axis adjustment is performed between one end of the FIFO and one end of the MCF so that the sum of optical powers output from all the cores at the other end of the MCF is maximized.
- steps (b) to (d) are required to connect the first FIFO and MCF, then disconnect the connection, and adjust the optical axis using inspection light in the opposite direction. For this reason, it has been difficult to connect the MCF and FIFO easily and with high quality using general procedures.
- An object of the present invention is to provide a technology for easily and high-quality connection between an MCF and a FIFO.
- the MCF connection system of the present invention includes: MCF (Multi Core Fiber) transmission line with N cores, A first FIFO (Fan-In/Fan-Out), a light source that outputs N inspection lights having different characteristics to one end of the first FIFO; connection means for optically connecting a first end forming one end of the MCF transmission path and the other end of the first FIFO; Identification means for identifying characteristics of the inspection light output from a second end forming the other end of the MCF transmission path; Measuring means for measuring, for each core of the MCF transmission line, a first optical power indicating the optical power for each core of the test light output from the second end in correspondence with the characteristic; Equipped with N is an integer of 2 or more,
- the light source inputs the inspection light to each of the plurality of cores at one end of the first FIFO,
- the connecting means adjusts the optical axis between the other end of the first FIFO and the first end for each core so that each value of the first optical power falls within a predetermined
- the MCF connection method of the present invention is as follows: An MCF connection method including a first procedure for optically connecting an MCF transmission line having N cores and a first FIFO, N is an integer of 2 or more,
- the first step is Inputting inspection light having different characteristics into each of the plurality of cores at one end of the first FIFO, optically connecting the other end of the first FIFO and a first end forming one end of the MCF transmission path for each core; identifying characteristics of the test light output from a second end forming the other end of the MCF transmission path;
- a first optical power indicating the optical power for each core of the test light output from the second end is measured for each core of the MCF transmission line in correspondence with the characteristic, adjusting the optical axis between the other end of the first FIFO and the first end so that each value of the first optical power is within a predetermined range; fixing the connection between the other end of the first FIFO and the first end; Contains instructions.
- the present invention allows FIFO and MCF to be connected easily and with high quality.
- FIG. 2 is a diagram illustrating an MCF connection system. It is a figure explaining optical axis adjustment of MCF. This is an example of a flowchart of the first procedure.
- FIG. 2 is a diagram illustrating an MCF connection system. It is an example of a flowchart of the second procedure.
- FIG. 2 is a diagram illustrating an MCF connection system.
- FIG. 2 is a diagram illustrating an MCF connection system.
- FIG. 2 is a block diagram showing a configuration example of a light source.
- FIG. 1 is a diagram illustrating an MCF connection system 1 according to a first embodiment of the present invention.
- the MCF transmission line 10 is an optical transmission line composed of MCF.
- the MCF transmission line 10 a plurality of cores are formed inside one optical fiber.
- the MCF transmission line 10 is a non-coupled MCF in which each core can independently transmit light.
- the FIFO 100 is a fan-in/fan-out (FIFO) for connecting the MCF transmission line 10 to a plurality of SCFs.
- MCF101 MCF
- SCF111-114 SCF
- each core of the MCF 101 and the cores of the SCFs 111-114 are connected on a one-to-one basis.
- the FIFO 100 can connect an optical device having an MCF interface and an optical device having a plurality of SCF interfaces.
- optical equipment for example, an optical repeater and an optical component included in the optical repeater
- the MCF transmission line 10 can be connected.
- the MCF connection method described in this embodiment is hereinafter referred to as the first procedure.
- the FIFO 100 is connected to the MCF transmission line 10.
- the MCF transmission line 10 is a four-core MCF (MCF having four cores 11-14).
- the MCF 101 at one end of the FIFO 100 is also a four-core MCF, and the SCFs 111-114 are SCFs.
- the following procedure can also be applied when the MCF transmission line 10 is an N-core MCF.
- N is a natural number of 2 or more.
- the MCF connection system 1 includes an MCF transmission line 10, a FIFO 100, a light source 500, an optical switch 600, an optical wavelength meter 610, an optical power meter 620, and a connection device 800. Furthermore, the MCF connection system 1 may include a control device 900. Control device 900 controls light source 500, optical switch 600, optical wavelength meter 610, and optical power meter 620 in order to execute the first procedure. Control device 900 is one form of control means.
- the light source 500 can output any one of four test lights that have different characteristics. In this embodiment, a case will be described in which the characteristic is the wavelength of the inspection light. That is, the light source 500 outputs four test lights having different wavelengths. The number of wavelengths is the number of cores of the MCF transmission line 10.
- the light source 500 includes laser diodes (LDs) 501-504.
- the LDs 501-504 are, for example, semiconductor laser diodes.
- the inspection light of wavelength ⁇ 1 outputted from the LD 501 is input to the SCF 111 of the FIFO 100.
- the inspection lights of wavelengths ⁇ 2, ⁇ 3, and ⁇ 4 outputted by the LDs 502, 503, and 504 are input to the SCFs 112, 113, and 114, respectively.
- the light source 500 of this embodiment outputs only one test light out of four test lights with wavelengths ⁇ 1 to ⁇ 4 at a time. That is, the light source 500 outputs inspection light to any one of the SCFs 111-114.
- the FIFO 100 and the MCF transmission line 10 are optically connected so that the test light having a wavelength ⁇ 1 is input to the core 11 of the MCF transmission line 10, a wavelength ⁇ 2 is input to the core 12, a wavelength ⁇ 3 is input to the core 13, and a wavelength ⁇ 4 is input to the core 14. connected to.
- the connecting device 800 has a function of adjusting the positional relationship between the two MCFs and fixing the connection between them by fusion. Specifically, the connection device 800 adjusts the optical axis between the MCF 101 and the MCF transmission line 10 so that their cores are optically coupled to each other. The core of the MCF 101 and the core of the MCF transmission line 10 are connected by a butt joint during optical axis adjustment, and are fusion-connected after the optical axis adjustment is completed. As the connection device 800, a general fusion splicer for fusion splicing two MCFs may be used.
- FIG. 1 a case where only the LD 501 emits light is illustrated.
- the wavelength of the inspection light is ⁇ 1
- the LDs 502-504 do not participate in optical axis adjustment, so these blocks are shown with broken lines.
- the MCF 101 of the FIFO 100 and the first end (end 21) forming one end of the MCF transmission line 10 are optically connected for each of the four cores 11-14. Then, at the end portion 21, test lights having different wavelengths are input from the light source 500 to each of the cores 11-14. Thereby, the cores 11-14 of the MCF transmission line 10 transmit test lights of different wavelengths. The four test lights are output from the cores 11-14 at the end 22 forming the other end of the MCF transmission line 10.
- the inspection light output from the cores 11-14 at the end portion 22 is input to the optical switch 600.
- the optical switch 600 outputs the input test light to an optical wavelength meter 610 or an optical power meter 620.
- the optical switch 600 is a 1 ⁇ 2 optical switch that can output light input from the bare fiber of the MCF transmission line 10 to either of the two SCFs.
- the optical wavelength meter 610 measures the wavelength of the test light input from the optical switch 600 and outputs the measurement result.
- An optical spectrum analyzer may be used instead of the optical wavelength meter 610.
- Optical power meter 620 measures the power of the light input from optical switch 600 and outputs the measurement result.
- an optical coupler may be used instead of the optical switch 600.
- An optical coupler that replaces the optical switch 600 distributes the test light output from the end portion 22 to an optical wavelength meter 610 and an optical power meter 620. By using such an optical coupler, the wavelength and optical power of the input test light can be measured simultaneously.
- the optical wavelength meter 610 and the optical power meter 620 measure the wavelength and optical power of the test light of one wavelength output from the light source 500. Any method can be used to output the measurement results of wavelength and optical power. These measurement results may be displayed on a display or may be transmitted as data to another device (eg, control device 900).
- Optical switch 600 outputs light input from end 22 to optical wavelength meter 610 or optical power meter 620. By controlling the optical switch 600 while switching the wavelength of the test light in the light source 500, the wavelength and optical power of the test light propagating through the MCF transmission line 10 can be measured for each core of the MCF transmission line 10.
- the optical axis is adjusted for each core between the FIFO 100 and the MCF transmission line 10 so that the value of the optical power of each of the four cores measured by the optical power meter 620 is within a predetermined range. be adjusted.
- the optical wavelength meter 610 can detect that the wavelength of the test light is ⁇ 1. This shows that the test light output from the LD 501 propagates through the core 11 of the MCF transmission line 10 via the SCF 111 and MCF 101 of the FIFO 100. That is, the SCF 111 and the core 11 are associated with each other.
- the optical switch 600 then switches the output destination of the test light from the optical wavelength meter 610 to the optical power meter 620.
- the optical power meter 620 can measure the optical power of the test light having the wavelength ⁇ 1 that has propagated through the core 11.
- the loss in the path from the SCF 111 to the end portion 22 via the core 11 can be determined from the power of the inspection light output from the light source 500.
- the cores of the MCF transmission line 10 through which the test light propagates also change to core 12, core 13, and core 14, respectively.
- the output destination of the test light is switched from the optical wavelength meter 610 to the optical power meter 620.
- the optical power of each test light output from the core 12-14 and the loss of the path passing through the core 12-14 can be measured by the optical power meter 620 using the same procedure as in the case of the core 11.
- the inspection light with the wavelength ⁇ 2 is output from the second core of the end portion 22. Therefore, when the optical wavelength meter 610 detects the test light of wavelength ⁇ 2, the wavelength of the test light output from the light source 500 is switched to ⁇ 2, and as a result, the test light propagated through the core 12 connected to the SCF 112 is It can be determined that optical power etc. can be measured.
- FIG. 2 is a diagram illustrating optical axis adjustment of the MCF in the connection device 800.
- the connection device 800 can independently hold the MCF 101 and the MCF transmission line 10.
- the connection device 800 brings the end of the MCF 101 and the end 21 of the MCF transmission line 10 close to each other. Then, the connection device 800 adjusts the optical axis by adjusting the relative positions of the X-axis, Y-axis, Z-axis, and each rotation ⁇ around the central axis of the MCF 101 and the MCF transmission line 10.
- the FIFO 100 and the MCF transmission line 10 can be adjusted to reduce the variation between cores. It is possible to optically connect with low loss while suppressing the loss. If the optical power of the test light output from the MCF 101 of the FIFO 100 can be considered equal, the difference in optical power between the wavelengths of the test light in the optical power meter 620 is the loss between the cores from the SCF 111-114 to the end 22. Show the difference. It is preferable that these differences be small. Further, it is preferable that the connection loss between the FIFO 100 and the MCF transmission line 10 is also small.
- the optical axis be adjusted so that the optical power of the test light of each wavelength measured by the optical power meter 620 is increased.
- the optical power of the test light of each wavelength output from the MCF 101 and the loss at each wavelength of the cores 11-14 of the MCF transmission line 10 are known, these known values can be used.
- the above-mentioned optical axis adjustment may be performed using the above-mentioned optical axis.
- the light source 500 is caused to output test light with a wavelength ⁇ 1. Then, the optical axis between the MCF 101 and the core 11 is adjusted at the end portion 21 so that the optical power of the inspection light becomes larger. Thereafter, the wavelength of the test light output by the light source 500 is switched, and optical axis adjustment is performed for the MCF 101 and the core 12-14 for each of the test lights of wavelengths ⁇ 2, ⁇ 3, and ⁇ 4.
- the positional relationship of each core is adjusted between the cross section of the MCF 101 and the cross section of the end portion 21. In the optical axis adjustment, the rotation angles of the MCF 101 and the MCF transmission line 10 around the central axis may be adjusted.
- the above optical axis adjustment is performed for the test lights with wavelengths ⁇ 1 to ⁇ 4 so as to suppress variations in optical power between the test lights with wavelengths ⁇ 1 to ⁇ 4 measured by the optical power meter 620.
- variations in connection loss between the cores between the MCF 101 and the end portion 21 can be suppressed. That is, the first procedure described in this embodiment has the effect that the FIFO 100 and the MCF transmission line 10 can be connected easily and with high quality. The reason for this is that in this procedure, the optical power of the test light is measured for each core 11-14 of the MCF transmission line 10 in correspondence with the characteristics of the test light.
- the first procedure is performed after the first optical axis adjustment between the FIFO 100 and the end portion 21 without disconnecting the connection and performing the second optical axis adjustment (i.e., without performing the second optical axis adjustment). This can be completed by adjusting the optical axis twice).
- a lower limit value (first threshold value) of the optical power of the inspection light is defined for each of the wavelengths ⁇ 1- ⁇ 4 (that is, each core), and the optical power equal to or higher than the first threshold value is measured for all cores.
- first threshold value a lower limit value of the optical power of the inspection light
- second threshold value an upper limit value of optical power
- the FIFO 100 and the MCF transmission line 10 are fusion-connected using the connection device 800.
- the connection device 800 By fusion-splicing the FIFO 100 and the MCF transmission line 10, the FIFO 100 and the MCF transmission line 10 can be integrated. This makes it possible to increase the reliability of the part where the FIFO 100 and the MCF transmission line 10 are connected.
- a method other than fusion bonding may be applied to connect these two MCFs.
- the connection between the MCF 101 and the MCF transmission line 10 can be fixed with an adhesive using an ultraviolet curing resin after the optical axis adjustment is completed.
- the FIFO 100 and the MCF transmission line 10 can be connected so as to satisfy the predetermined loss condition with only one optical axis adjustment. That is, the MCF connection system 1 of this embodiment can easily connect the FIFO and the MCF with high quality. Further, during this connection, the optical power of the test light is measured while identifying the cores 11-14 of the MCF connected to the FIFO 100, and the loss of the MCF transmission line 10 can be determined.
- the MCF connection system (1) includes an MCF transmission line (10) having N cores (N is an integer of 2 or more), a first FIFO (100), a light source (500), and a connection means ( 800), identification means (610), and measurement means (620).
- the light source (500) outputs N test lights having different characteristics to one end (SCF111-114) of the first FIFO (100).
- the connecting means (800) optically connects a first end (21) forming one end of the MCF transmission line (10) and the other end (101) of the first FIFO (100).
- the identification means (610) identifies the characteristics (wavelength in the first embodiment) of the inspection light output from the second end (22).
- the measuring means (620) matches the first optical power, which is the optical power of the test light outputted from the second end (22), with the characteristics of the test light, and measures the core (10) of the MCF transmission line (10). 11-14).
- the light source (500) inputs inspection light to each of the plurality of cores (SCF111-114) at one end of the first FIFO (100).
- the connection means (800) connects the other end of the first FIFO (MCF101) and the first end (21) so that each value of the first optical power is within a predetermined range. Adjust the axis for each core.
- FIG. 3 is an example of a flowchart of the first procedure in the above expression.
- first inspection light is input to each of a plurality of cores at one end of the first FIFO (S01 in FIG. 3). Each inspection light has different characteristics. Then, the other end of the first FIFO and the first end are optically connected for each core (S02). The characteristics of the test light output from the second end are identified (S03), and the first optical power is measured in correspondence with the characteristics (S04). Further, the optical axis between one end of the first FIFO and the first end is adjusted so that each value of the first optical power falls within a predetermined range (S05). Finally, one end of the first FIFO and the first end are fusion-connected (S06).
- the MCF connection system 1 and the MCF connection method used therein as described above also have the effect of being able to connect the FIFO and MCF easily and with high quality.
- FIG. 4 is a diagram illustrating the MCF connection system 2 of the second embodiment.
- the other end (end portion 22) of the MCF transmission line 10 and the MCF 201 of the FIFO 200 are optically connected for each core.
- the MCF transmission line 10 is a four-core MCF.
- the number of cores in the MCF transmission line 10 is not limited to four cores.
- the FIFO 200 is a fan-in/fan-out for connecting the MCF and four SCFs.
- One end of the FIFO 200 is the MCF 201, and the other end is the SCF 211-214.
- each core of the MCF 201 and each core of the SCF 211214 are connected on a one-to-one basis. That is, the FIFO 200 can connect an optical device having an MCF interface and an optical device having a plurality of SCF interfaces.
- the optical axis adjustment between the FIFO 100 and the MCF transmission line 10 has been completed.
- the procedure described in the first embodiment can be applied to this optical axis adjustment.
- the MCF connection method described in this embodiment is hereinafter referred to as a second procedure.
- the optical axis of the end portion 22 and the MCF 201 is adjusted by the connecting device 801 so that the cores of both end portions 22 and the MCF 201 are optically coupled to each other in their cross sections.
- the four cores of the MCF 201 and the four cores 11-14 of the MCF transmission line 10 are optically connected at the end 22 by a butt joint.
- the functions of the connection device 801 are similar to those of the connection device 800 described in FIG. 2.
- connection device 801 can adjust the optical axis between the MCF 201 and the MCF transmission line 10 so that their cores are optically coupled to each other, and can also fuse the connection between them after the optical axis adjustment is completed. It can be fixed by wearing it.
- the SCFs 211-214 of the FIFO 200 are input to optical power meters (OPM) 621-624 via optical band pass filters (OBPF) 631-634, respectively.
- OBPF optical band pass filters
- Optical bandpass filters 631, 632, 633, and 634 are optical filters that transmit only light having wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively.
- Optical power meters 621-624 measure the optical power of the light transmitted through optical bandpass filters 631-634, respectively.
- the MCF connection system 2 uses optical power meters 621 to 624 to measure the optical power of each of the test lights of wavelengths ⁇ 1 to ⁇ 4 without using the optical switch 600. can be measured.
- the light source 500 outputs test light having one wavelength among the wavelengths ⁇ 1- ⁇ 4.
- FIG. 4 a case is illustrated in which only the LD 501 emits light and the power of the test light having the wavelength ⁇ 1 is measured by the optical power meter 621.
- the wavelength of the test light is ⁇ 1
- the LDs 502-504, optical bandpass filters 632-634, and optical power meters 622-624 do not participate in optical axis adjustment, and therefore these blocks are shown with broken lines.
- the optical axis between the end portion 22 and the SCF 211-214 is set so that the value of each optical power output from the core 11-14, measured by the optical power meter 621-624, is within a predetermined range. is adjusted.
- each core of the MCF 201 and the cores 11-14 of the MCF transmission line 10 are optically connected with low loss while suppressing variations in connection loss between the cores.
- the cores 11-14 and the MCF 201 can be The optical axis between can be adjusted for each core.
- the optical axis adjustment procedure between the MCF 101 and the end 21 can be applied mutatis mutandis to the optical axis adjustment between the MCF 201 and the end 22. That is, the light source 500 is caused to output test light of wavelength ⁇ 1. Then, the optical axis between the core 11 and the MCF 201 is adjusted at the end portion 22 so that the optical power of the inspection light becomes larger. Thereafter, the wavelength of the test light output by the light source 500 is switched, and optical axis adjustment is performed for the MCF 201 and the core 12-14 for each of the test lights of wavelengths ⁇ 2, ⁇ 3, and ⁇ 4.
- the positional relationship of each core is adjusted between the cross section of the MCF 201 and the cross section of the end portion 22.
- the rotation angles of the MCF 201 and the MCF transmission line 10 around the central axis may be adjusted.
- a lower limit value (third threshold value) of the optical power of the inspection light is defined for each core, and when the optical power of the third threshold value or more is measured for all cores, the connection between the MCF 201 and the end portion 22 is determined.
- the optical axis adjustment between the two may be completed.
- the upper limit value (fourth threshold value) of the optical power is further defined for each core, and when the optical power of the third threshold value or more and the fourth threshold value or less is measured for all cores, the MCF 201 and the end portion 22 may be completed.
- each core of the FIFO 200 and each core of the MCF transmission line 10 can be connected so as to satisfy a predetermined loss condition.
- This connection can be performed by identifying the cores of the FIFO 100 and the MCF transmission line 10. This is because when adjusting the optical axis between the end portion 22 and the MCF 201, the cores to be connected can be managed based on the wavelength of the inspection light. For example, by setting the transmission wavelength of the optical bandpass filter 631 connected to the SCF 211 to the wavelength ⁇ 1, the path passing through the SCF 111 and the core 11 can be connected to the SCF 211.
- connection between the MCF 201 and the MCF transmission line 10 After adjusting the coupling between the MCF 201 and the MCF transmission line 10, the connection between them is fixed using the connection device 801.
- the FIFO 200 and the MCF transmission line 10 can be integrated while substantially maintaining the loss during optical axis adjustment. Therefore, it is possible to increase the reliability of the connection portion.
- the FIFO 100, the MCF transmission line 10, and the FIFO 200 can be integrated. Thereby, optical equipment using the SCF as an interface can be easily connected to both ends of the MCF transmission line 10.
- a method other than fusion bonding may be applied to connect these two MCFs.
- the connection between the MCF 201 and the MCF transmission line 10 can be fixed with an adhesive using an ultraviolet curing resin after the optical axis adjustment is completed.
- the MCF connection systems 1 and 2 and the first and second procedures applicable thereto described in the first embodiment and the second embodiment can easily connect FIFOs to both ends of the MCF with high quality. This effect is achieved.
- the reason for this is that the wavelength of the test light differs for each core, so when connecting one end (end 21) of the MCF transmission line 10 to the FIFO 100, and when connecting the other end (end 22) of the MCF transmission line 10 to the FIFO 200, This is because when connecting, the optical axis can be adjusted while checking the connection loss for each core.
- the connection between the FIFO 100 and the end portion 21 and the connection between the end portion 22 and the FIFO 200 can be completed by one optical axis adjustment, without cutting the connection after the optical axis adjustment.
- an MCF that includes a marker that serves as a reference for the position of the core when fusing the MCFs together
- the markers are used to identify the positions of the plurality of cores included in the MCF at both ends of the MCF.
- a special fusion machine equipped with a camera to visually check the markers is required, and if the MCF has a large number of cores, it is difficult to use markers.
- each core is identified at both ends (ends 21 and 22) of the MCF transmission line 10 by the wavelength of the inspection light, and the MCF connection system is connected to the FIFO 100 and the MCF transmission The optical axis between the optical path 10 and the optical path 10 is adjusted and the two are connected. Therefore, the MCF transmission line 10 does not require a marker. Further, the connecting devices 800 and 801 do not require any special function for visually recognizing the marker of the MCF transmission path.
- FIG. 5 is an example of a flowchart of the second procedure.
- the second procedure described above is also described as in FIG. Reference numerals from FIG. 4 are placed in parentheses.
- the second procedure is an MCF connection method that is executed after the first procedure.
- inspection light is input to each of the plurality of cores (SCFs 111-114) at one end of the first FIFO (100) (S11 in FIG. 5).
- Each inspection light has different characteristics.
- one end (MCF 201) of the second FIFO (200) and the second end (22) are optically connected for each core (S12).
- the characteristics of the inspection light output from the other end (SCF 211-214) of the second FIFO (200) are identified (S13).
- the second optical power which is the optical power of the test light output from the other end of the second FIFO (SCF211-214), is adjusted for each core of the MCF transmission line (10) in accordance with the characteristics of the test light. (S14). In this way, the optical axis between the second end (22) and one end of the second FIFO (MCF 201) is adjusted so that each value of the second optical power is within a predetermined range. (S15). After the optical axis adjustment is completed, the second end (22) and one end of the second FIFO (MCF 201) are fusion-connected (S16).
- FIG. 6 is a block diagram showing a configuration example of the MCF connection system 2A.
- a light source 500A is used in place of the light source 500 of the MCF connection system 2.
- the light source 500A includes an LD 510, an optical coupler 511, and optical bandpass filters 512-515.
- the LD510 is a general wavelength tunable laser diode whose oscillation wavelength is variable.
- the LD 510 outputs light with wavelengths ⁇ 1 to ⁇ 4 as inspection light under external control. That is, the light source 500A can output test light having any one wavelength among the wavelengths ⁇ 1 to ⁇ 4.
- the optical coupler 511 distributes the test light output from the LD 510 to each core of the FIFO 100.
- the optical coupler 511 is, for example, a 1 ⁇ 4 coupler, and when the number of cores is N, the optical coupler 511 is, for example, a 1 ⁇ N coupler.
- Optical bandpass filters 512, 513, 514, and 515 transmit only light of wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively.
- test lights of different wavelengths are input to the SCFs 111 to 114 of the FIFO 100, respectively. Therefore, even when the light source 500A is used, the wavelengths of the test lights output from each core of the MCF 101 of the FIFO 100 are all different. Even when using the light source 500A having such a configuration, it is possible to perform the connection procedure between the FIFO 100 and the MCF transmission line 10 and the connection procedure between the MCF transmission line 10 and the FIFO 200, which were explained in FIGS. 1 to 5.
- FIG. 6 a case is illustrated in which the LD 510 emits light with a wavelength ⁇ 1 and the power of the test light with the wavelength ⁇ 1 is measured by an optical power meter 631.
- the wavelength of the inspection light is ⁇ 1
- the optical bandpass filters 513-515, optical bandpass filters 632-634, and optical power meters 622-624 are not involved in optical axis adjustment, so these blocks are indicated by broken lines. ing.
- FIG. 7 is a diagram illustrating the MCF connection system 3 according to the third embodiment of the present invention.
- a procedure for connecting the end 22 of the MCF transmission line 10 and the FIFO 200 after the end 21 of the MCF transmission line 10 and the FIFO 100 are connected will be described.
- the procedure of this embodiment may be implemented in place of the procedure described in the second embodiment.
- the procedure of the first embodiment may be used to connect the MCF transmission line 10 and the FIFO 100.
- the MCF transmission line 10 has four cores, as in the previous embodiments.
- the following procedure and configuration can also be applied when the MCF has N cores.
- the MCF connection system 3 includes a light source 550, an optical switch 601, an optical coupler 651, an optical spectrum analyzer (OSA) 611, and an optical power meter 620 in addition to the MCF transmission line 10, FIFOs 100 and 200. Be prepared.
- the light source 550 includes LDs 501-504.
- the LDs 501-504 are, for example, semiconductor laser diodes.
- LDs 501, 502, 503, and 504 output test lights of wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively.
- the wavelengths ⁇ 1- ⁇ 4 are different from each other. That is, the light source 550 can simultaneously output test lights of wavelengths ⁇ 1- ⁇ 4. However, the light source 550 may output test light having three or less wavelengths among the wavelengths ⁇ 1 to ⁇ 4. Therefore, the light source 550 may be used in place of the light sources 500 and 500A described in the first and second embodiments.
- the MCF 101 of the FIFO 100 and the end portion 21 of the MCF transmission line 10 are optically connected for every four cores.
- test lights having different wavelengths are input from the light source 500 to each of the four cores 11-14 of the MCF transmission line 10.
- test lights of different wavelengths propagate simultaneously in the cores 11-14 of the MCF transmission line 10.
- the four test lights are output from the cores 11-14 at the end 22 forming the other end of the MCF transmission line 10.
- the core of the MCF 201 and the cores 11-14 of the MCF transmission line 10 are optically connected by a butt joint.
- Light output from the four SCFs 211 to 214 of the FIFO 200 is input to an optical spectrum analyzer 611 and an optical power meter 620 via an optical switch 601 and an optical coupler 651.
- the optical switch 601 is a 4 ⁇ 1 optical switch, and connects one SCF selected from the SCFs 211 to 214 to the optical coupler 651.
- the optical coupler 651 is a 1 ⁇ 2 optical coupler, and distributes the light input from the optical switch 601 to the optical spectrum analyzer 611 and the optical power meter 620.
- the optical spectrum analyzer 611 measures the wavelength of the test light of the core selected by the optical switch 601. That is, the optical switch 601 selects a core for measuring the wavelength and optical power of the test light.
- the optical power meter 620 measures the optical power of the test light of the core selected by the optical switch 601.
- one of the test lights output from the four SCFs 211-214 of the FIFO 200 is input to the optical spectrum analyzer 611 and the optical power meter 620 via the optical switch 601 and the optical coupler 651.
- the procedure of the second embodiment can be applied to the optical axis adjustment between the end 22 of the MCF transmission line 10 and the MCF 201 of the FIFO 200. That is, optical axis adjustment is performed between the end portion 22 and the MCF 201 so that the value of the optical power measured by the optical power meter 620 is within a predetermined range for each of the wavelengths ⁇ 1 to ⁇ 4.
- the wavelength and optical power of the test lights with wavelengths ⁇ 1- ⁇ 4 can be easily determined using the optical spectrum analyzer 611 and optical power meter 620. Can be measured repeatedly.
- the wavelength of the inspection light is switched only by switching the optical switch 601.
- the optical axis of each core between the FIFO 200 and the MCF transmission line 10 for the cores 11-14 can be suitably adjusted.
- the connection loss between the cores 11-14 of the MCF transmission line 10 and each core of the MCF 201 is suppressed while suppressing variations in connection loss between the cores. , can be optically connected with low loss.
- FIG. 8 is a block diagram showing a configuration example of a light source 550A that can be used in place of the light source 550 of the MCF connection system 3.
- the light source 550A includes an ASE (Amplified Spontaneous Emission) light source 520, an optical coupler 521, and optical bandpass filters 522-525.
- the ASE light source 520 outputs broadband light (ASE light) with a substantially flat spectrum.
- ASE light can be generated by injecting excitation light into an optical amplification medium.
- the wavelength band of the ASE light includes the wavelengths ⁇ 1 to ⁇ 4 of the inspection light.
- the optical coupler 521 distributes the ASE light output from the ASE light source 520 to each core of the FIFO 100.
- the optical coupler 521 is a 1 ⁇ 4 coupler, and when the number of cores is N, the optical coupler 521 is a 1 ⁇ N coupler.
- Optical bandpass filters 522, 523, 524, and 525 transmit only light with wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively. As a result, inspection lights of wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 are simultaneously generated from the ASE light.
- test lights of wavelengths ⁇ 1- ⁇ 4 are input to the SCFs 111-114, respectively.
- An optical attenuator may be connected in series with the optical bandpass filters 522-525. The amount of attenuation of the optical attenuator may be set so that the optical power of the test light of each wavelength output from the light source 550 is equal.
- the light source 550A generates inspection light using the ASE generated by the ASE light source 520 and optical bandpass filters 522-525. Therefore, when changing the wavelength of the inspection light, it is only necessary to change the transmission bands of the optical bandpass filters 522, 523, 524, and 525, and there is no need to change expensive parts such as laser diodes.
- the wavelengths of the test lights output from each core of the MCF 101 of the FIFO 100 are all different. Even by using the light source 500A having such a configuration, the first procedure and the second procedure described in the above embodiment can be performed.
- the core of the MCF transmission line 10 through which the test light propagates can be identified based on the difference in the wavelength of the test light.
- the characteristics of the inspection light used for core identification are not limited to wavelength.
- the four test lights input to the SCFs 111-114 of the FIFO 100 may be pulse width modulated with different widths.
- the inspection light input to the four cores 11-14 of the MCF transmission line 10 is modulated to have different pulse widths W1-W4, and the optical wavelength meter 610 and the optical spectrum analyzer 611 are replaced with optical signals.
- An optical receiver that can identify the pulse width of the pulse is used.
- the optical receiver can identify the core through which the test light has propagated. That is, even when the characteristic of the inspection light is the pulse width of the inspection light, the core can be identified in the same way as when the characteristic of the inspection light is the wavelength.
- the inspection light may be pulsed light, and the sending interval of the pulsed light may be changed for each core.
- the test light is a pulse train, and the test lights with different pulse intervals T1 to T4 propagate through each core.
- an optical receiver capable of identifying the reception interval of optical pulses is used in place of the optical wavelength meter and optical spectrum analyzer.
- Such an optical receiver can identify the core through which the test light has propagated by determining whether the reception interval of the test light pulses is T1-T4. That is, even when the characteristic of the inspection light is the pulse interval of the inspection light, the core can be identified in the same way as when the characteristic of the inspection light is the wavelength or pulse width.
- the modulation method of the inspection light is not limited to the pulse width or pulse interval.
- the pulsed light may be amplitude-modulated with a low frequency signal of 10 kHz or more and 1 MHz or less.
- the core through which the test light propagated may be identified by changing the modulation frequency for each core and detecting the frequency of the low frequency signal with an optical receiver.
- test light when the test light is pulsed light, it is preferable to modulate the test light so that the duty ratio of each test light propagating through the cores 11-14 is the same. This makes it possible to prevent the difference in the optical power of the test light between the cores 11-14 from being affected by the duty ratio when measuring the optical power.
- MCF Multi Core Fiber
- a first FIFO Fluorescence-In/Fan-Out
- connection means for optically connecting a first end forming one end of the MCF transmission path and the other end of the first FIFO
- Identification means for identifying characteristics of the inspection light output from a second end forming the other end of the MCF transmission path
- Measuring means for measuring, for each core of the MCF transmission line, a first optical power indicating the optical power of the test light outputted from the second end for each of the N cores, in correspondence with the characteristic.
- An MCF connection system comprising: N is an integer of 2 or more,
- the light source inputs the inspection light to each of the plurality of cores at one end of the first FIFO,
- the connecting means adjusts the optical axis between the other end of the first FIFO and the first end for each core so that each value of the first optical power falls within a predetermined range. and fixing the connection between the other end of the first FIFO and the first end after adjusting the optical axis between the other end of the first FIFO and the first end.
- One end of the first FIFO is a plurality of SCFs (Single Core Fibers) included in the first FIFO, The other end of the first FIFO is an MCF included in the first FIFO.
- SCFs Single Core Fibers
- MCF connection system described in Appendix 1.
- the connecting means optically connects the second end and one end of the second FIFO
- the measuring means measures second optical power, which is the optical power of the plurality of test lights outputted from the other end of the second FIFO, for each core of the MCF transmission line in correspondence with the characteristic.
- the connecting means adjusts the optical axis between the second end and one end of the second FIFO so that each value of the second optical power is within a predetermined range. MCF connection system described in Appendix 2.
- One end of the second FIFO is an MCF included in the second FIFO, The other end of the second FIFO is a plurality of SCFs included in the second FIFO, MCF connection system described in Appendix 3.
- Appendix 7 The MCF connection system according to any one of appendices 1 to 5, wherein the characteristic is a pulse width of the inspection light.
- An MCF connection method including a first procedure for optically connecting an MCF transmission line having N cores and a first FIFO, N is an integer of 2 or more,
- the first step is Inputting inspection light having different characteristics into each of the plurality of cores at one end of the first FIFO, optically connecting the other end of the first FIFO and a first end forming one end of the MCF transmission path for each core; identifying characteristics of the test light output from a second end forming the other end of the MCF transmission path; measuring a first optical power indicating the optical power for each of the N cores of the test light output from the second end in correspondence with the characteristic for each core of the MCF transmission line; adjusting the optical axis between the other end of the first FIFO and the first end so that each value of the first optical power is within a predetermined range; fixing the connection between the other end of the first FIFO and the first end; MCF connection method.
- One end of the first FIFO is a plurality of SCFs (Single Core Fibers) included in the first FIFO, The other end of the first FIFO is an MCF included in the first FIFO. MCF connection method described in Appendix 10.
- An MCF connection method comprising a second procedure executed after the first procedure, The second step is optically connecting one end of the second FIFO and the second end for each core; identifying the characteristics of the inspection light output from the other end of the second FIFO; measuring second optical power, which is the optical power of the test light output from the other end of the second FIFO, for each core of the MCF transmission line in correspondence with the characteristics; adjusting the optical axis between the second end and one end of the second FIFO so that each value of the second optical power is within a predetermined range; fixing the connection between the second end and one end of the second FIFO;
- the MCF connection method described in appendix 9 or 10 including:
- One end of the second FIFO is an MCF included in the second FIFO, The other end of the second FIFO is a plurality of SCFs included in the second FIFO, MCF connection method described in Appendix 11.
- Appendix 13 The MCF connection method according to appendix 11 or 12, wherein at least one of the first procedure and the second procedure is controlled by a control means.
- the MCF connection system of each embodiment may include a computer that executes this program.
- a computer may implement some or all of the functions of the MCF connection system of each embodiment by executing a program.
- a computer is, for example, a logic device, a central processing unit, or a digital signal processing device.
- the control device 900 described in the embodiment may include a computer. At least one of the first procedure and the second procedure may be controlled by the control unit 900.
- the program may be recorded on a computer-readable, fixed, non-transitory recording medium.
- the recording medium is, for example, a flexible disk, a fixed magnetic disk, or a nonvolatile semiconductor memory.
- the program may be distributed via a network.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optical Communication System (AREA)
Abstract
MCF接続システムは、N本のコア(11)-(14)を持つMCF伝送路(10)と、第1のFIFO(100)と、互いに特性が異なるN個の検査光を第1のFIFOの一端へ出力する光源(500)と、MCF伝送路の一端を成す第1の端部と第1のFIFOの他端とを光学的に接続する接続装置(800)と、MCF伝送路の他端を成す第2の端部から出力される検査光の特性を識別する識別装置(610)と、第2の端部から出力される検査光の光パワーである第1の光パワーを、特性と対応させてMCF伝送路のコア毎に測定する測定装置(620)と、を備え、光源は、第1のFIFOの一端の複数のコアのそれぞれに検査光を入力し、接続装置(800)は、第1の光パワーのそれぞれの値が所定の範囲内となるように第1のFIFOの他端と第1の端部との間の光軸をコア毎に調整し、第1のFIFOの他端と第1の端部との間の光軸の調整後、第1のFIFOの他端と第1の端部との接続を固定する。
Description
本発明は、光ファイバ伝送システムで用いられるマルチコアファイバ間を接続するための、MCF接続システム等に関する。
近年、国際的なデータ通信の需要拡大に伴い、大容量かつ高速通信が可能である、海底ケーブルシステムの重要性が高まっている。海底ケーブルの外径を変えずに伝送容量を拡大する手段の一つとして、マルチコアファイバ(Multi-Core Fiber、MCF)の研究開発が進められている。MCFは、1本の光ファイバに複数のコアを持つ光ファイバである。
1本の光ファイバに1本のコアを持つシングルコアファイバ(Single-Core Fiber、SCF)のインタフェースを持つ一般的な光機器と、MCFを含む光伝送路とを接続するために、ファンイン/ファンアウト(Fan-In/Fan-Out、FIFO)が用いられる。一般的な光機器は、例えば光中継器や光部品である。FIFOは一端が複数のSCFであり他端がMCFである光部品であり、FIFOの内部ではこれらのSCFのコアとMCFの各コアとが接続されている。従って、FIFOは、SCFをインタフェースとする光機器とMCFとを接続できる。
本発明に関連して、特許文献1には、結合型マルチコア光ファイバの軸合わせ方法が記載されている。また、特許文献2には、コア同士の位置合わせを行うためのマーカを備えるMCFが記載されている。
FIFOとMCFとを接続する際には、FIFOのそれぞれのコアとMCFのそれぞれのコアとの間が低損失で接続されることが好ましい。さらに、FIFOの各コアとMCF内の各コアとの接続損失のばらつきが小さいことも好ましい。一方、FIFOとMCFとを接続する一般的な手順では、単一の光源から分配された複数の光がFIFOを介してMCFの一端に入力される。そして、MCFの他端の全てのコアから出力される光パワーの総和が最大となるようにFIFOの一端とMCFの一端との間で光軸調整が行われていた。
しかしながら、このような手順には、MCFのそれぞれのコアが低損失でFIFOと接続できているかどうかを容易に知ることができないという課題がある。その理由は、FIFOの一端とMCFの一端との接続点において、コア毎の接続状態を知ることができないからである。このため、コア毎の接続損失のばらつきを抑制しつつ、MCFとFIFO(以下の「第1のFIFO」)とを接続するためには、以下の(a)から(d)の手順が必要となる。
(a)MCFの一端にFIFO(第1のFIFO)を接続する(1回目の光軸調整)。
(b)第1のFIFOの接続の最適化のために、第1のFIFOから検査光を入力してMCFの他端に他のFIFO(第2のFIFO)を接続する。
(c)第2のFIFOからコア毎に検査光を入力する。
(d)第1のFIFOとMCFの一端との間の接続を切断し、第1のFIFOとMCFの一端との間で、コア毎の接続損失のばらつきを低減するように2回目の光軸調整を行う。
(a)MCFの一端にFIFO(第1のFIFO)を接続する(1回目の光軸調整)。
(b)第1のFIFOの接続の最適化のために、第1のFIFOから検査光を入力してMCFの他端に他のFIFO(第2のFIFO)を接続する。
(c)第2のFIFOからコア毎に検査光を入力する。
(d)第1のFIFOとMCFの一端との間の接続を切断し、第1のFIFOとMCFの一端との間で、コア毎の接続損失のばらつきを低減するように2回目の光軸調整を行う。
すなわち、一般的な手順では、第1のFIFOとMCFとの接続後にその接続を切断して、逆方向の検査光による光軸調整を行う手順(b)-(d)が必要となる。このため、一般的な手順では、MCFとFIFOとを簡単かつ高品質に接続することは困難であった。
(発明の目的)
本発明は、MCFとFIFOとを簡単かつ高品質に接続するための技術を提供することを目的とする。
本発明は、MCFとFIFOとを簡単かつ高品質に接続するための技術を提供することを目的とする。
本発明のMCF接続システムは、
N本のコアを持つMCF(Multi Core Fiber)伝送路と、
第1のFIFO(Fan-In/Fan-Out)と、
互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
前記第2の端部から出力される前記検査光のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備え、
Nは2以上の整数であり、
前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する。
N本のコアを持つMCF(Multi Core Fiber)伝送路と、
第1のFIFO(Fan-In/Fan-Out)と、
互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
前記第2の端部から出力される前記検査光のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備え、
Nは2以上の整数であり、
前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する。
本発明のMCF接続方法は、
N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
Nは2以上の整数であり、
前記第1の手順は、
前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
前記第2の端部から出力される前記検査光のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
前記第1のFIFOの他端と前記第1の端部との接続を固定する、
手順を含む。
N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
Nは2以上の整数であり、
前記第1の手順は、
前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
前記第2の端部から出力される前記検査光のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
前記第1のFIFOの他端と前記第1の端部との接続を固定する、
手順を含む。
本発明は、FIFOとMCFとを簡単かつ高品質に接続できる。
本発明の実施形態について以下に説明する。各図面内の矢印は実施形態における信号の方向を説明するために例として付したものであり、方向の限定を意味しない。また、線の交点は、特記しない限り、方向の異なる信号等の結合を意味しない。既出の要素には同一の名称及び参照符号を付すとともに、各実施形態において重複する説明は省略する。
(第1の実施形態)
本実施形態では、MCF伝送路10の一端にFIFO100を接続するためのMCF接続システム及びMCF接続方法について説明する。図1は、本発明の第1の実施形態のMCF接続システム1を説明する図である。
本実施形態では、MCF伝送路10の一端にFIFO100を接続するためのMCF接続システム及びMCF接続方法について説明する。図1は、本発明の第1の実施形態のMCF接続システム1を説明する図である。
MCF伝送路10はMCFで構成された光伝送路である。MCF伝送路10では、複数のコアが1本の光ファイバの内部に形成されている。MCF伝送路10は、それぞれのコアが独立に光を伝送できる非結合型MCFである。FIFO100は、MCF伝送路10を複数のSCFと接続するためのファンイン・ファンアウト(FIFO)である。FIFO100の一端はMCF(MCF101)であり、他端はSCF(SCF111-114)である。FIFO100において、MCF101のそれぞれのコアとSCF111-114のコアとは1対1で接続されている。すなわち、FIFO100は、MCFインタフェースを持つ光機器と複数のSCFインタフェースを持つ光機器とを接続できる。MCF伝送路10の一端にFIFO100を接続することで、MCF伝送路10を光伝送路とする光伝送システムにおいて、SCFをインタフェースとする光機器(例えば、光中継器及び光中継器が備える光部品)とMCF伝送路10とを接続できる。
本実施形態で説明するMCF接続方法を、以下では第1の手順と称する。第1の手順では、MCF伝送路10にFIFO100が接続される。本実施形態では、MCF伝送路10が4コアMCF(4本のコア11-14を持つMCF)である場合を例に説明する。そして、FIFO100の一端のMCF101も4コアのMCFであり、SCF111-114はSCFである。ただし、以下の手順は、MCF伝送路10がNコアMCFである場合にも適用できる。ここで、Nは2以上の自然数である。
図1において、MCF接続システム1は、MCF伝送路10、FIFO100、光源500、光スイッチ600、光波長計610、光パワーメータ620、及び、接続装置800を備える。また、MCF接続システム1は、制御装置900を備えてもよい。制御装置900は、第1の手順を実行するために、光源500、光スイッチ600、光波長計610及び光パワーメータ620を制御する。制御装置900は、制御手段の一形態である。
光源500は、互いに特性が異なる4個の検査光のいずれか1個を出力できる。本実施形態では、当該特性が検査光の波長である場合について説明する。すなわち、光源500は、波長が互いに異なる4個の検査光を出力する。波長の数はMCF伝送路10のコア数である。光源500は、レーザダイオード(Laser Diode、LD)501-504を備える。LD501-504は、例えば半導体レーザダイオードである。LD501が出力した波長λ1の検査光はFIFO100のSCF111に入力される。同様に、LD502、503、504が出力した波長λ2、λ3、λ4の検査光は、それぞれ、SCF112、113、114に入力される。FIFO100のSCF111-114に入力される検査光の波長λ1-λ4は互いに異なるため、FIFO100のMCF101の各コアから出力される検査光の波長もすべて異なる。本実施形態の光源500は、波長λ1-λ4の4個の検査光のうち、同時には1個の検査光のみを出力する。すなわち、光源500は、SCF111-114のいずれか1つに対して検査光を出力する。そして、MCF伝送路10のコア11に波長λ1、コア12に波長λ2、コア13に波長λ3、コア14に波長λ4の検査光が入力されるように、FIFO100とMCF伝送路10とが光学的に接続される。
接続装置800は、2本のMCFの間の位置関係を調整し、これらの間の接続を融着によって固定する機能を備える。具体的には、接続装置800は、MCF101とMCF伝送路10との間で、両者のコア同士が光学的に結合するように光軸を調整する。MCF101のコアとMCF伝送路10のコアとは、光軸調整中にはバットジョイント(Butt Joint)によって接続され、光軸調整の終了後に融着接続される。接続装置800として、2本のMCFを融着接続するための一般的な融着機が用いられてもよい。
図1では、LD501のみが発光する場合が例示されている。検査光の波長がλ1である場合にはLD502-504は光軸調整に関与しないため、これらのブロックは破線で示されている。
本実施形態の手順では、FIFO100のMCF101と、MCF伝送路10の一端を成す第1の端部(端部21)とが、4本のコア11-14毎に光学的に接続される。そして、端部21において、コア11-14のそれぞれに、相異なる波長を持つ検査光が光源500から入力される。これにより、MCF伝送路10のコア11-14は、それぞれ異なる波長の検査光を伝送する。4個の検査光はMCF伝送路10の他端を成す端部22において、コア11-14から出力される。
端部22においてコア11-14から出力された検査光は、光スイッチ600に入力される。光スイッチ600は、入力された検査光を光波長計610又は光パワーメータ620へ出力する。光スイッチ600は、MCF伝送路10の素線(ベアファイバ)から入力された光を、2本のSCFのいずれかに出力可能な1×2光スイッチである。
光波長計610は、光スイッチ600から入力された検査光の波長を測定し、測定結果を出力する。光波長計610に代えて、光スペクトルアナライザを用いてもよい。光パワーメータ620は、光スイッチ600から入力された光のパワーを測定し、測定結果を出力する。なお、光スイッチ600に代えて、光カプラが用いられてもよい。光スイッチ600に代わる光カプラは、端部22から出力される検査光を光波長計610及び光パワーメータ620に分配する。このような光カプラを用いることで、入力された検査光の波長と光パワーとを同時に測定できる。
光源500はSCF111-114のいずれか1個に対して検査光を出力するため、光波長計610及び光パワーメータ620には、同時には1個の波長の検査光のみが入力される。従って、光波長計610及び光パワーメータ620は、光源500が出力する1個の波長の検査光の波長及び光パワーを測定する。波長及び光パワーの測定結果を出力する方法は任意である。これらの測定結果はディスプレイに表示されてもよく、データとして他の装置(例えば、制御装置900)に送信されてもよい。光スイッチ600は、端部22から入力された光を光波長計610又は光パワーメータ620へ出力する。光源500において検査光の波長を切り替えながら光スイッチ600を制御することで、MCF伝送路10を伝搬する検査光の波長及び光パワーを、MCF伝送路10のコア毎に測定できる。
ここで、光パワーメータ620において測定された、4本のコアの光パワーのそれぞれの値が所定の範囲内となるように、FIFO100とMCF伝送路10との間で、コア毎に光軸が調整される。例えば、光源500においてLD501のみが発光し、MCF伝送路10のコア11に波長λ1の検査光が入力されている場合、光波長計610は、検査光の波長がλ1であることを検出できる。これにより、LD501から出力された検査光は、FIFO100のSCF111及びMCF101を介してMCF伝送路10のコア11を伝搬していることがわかる。すなわち、SCF111とコア11とが対応付けられる。そして、光スイッチ600は、検査光の出力先を光波長計610から光パワーメータ620に切り替える。これによって、光パワーメータ620は、コア11を伝搬した波長λ1の検査光の光パワーを測定することができる。また、光源500が出力する検査光のパワーから、SCF111からコア11を経由した端部22までの経路の損失を求めることもできる。
光源500において検査光を出力するLDをLD501からLD502、LD503、LD504と変化させると、検査光が伝搬するMCF伝送路10のコアも、それぞれ、コア12、コア13、コア14と変化する。そして、光波長計610において検査光の波長を特定した後に、検査光の出力先を光波長計610から光パワーメータ620に切り替える。その結果、コア12-14から出力された検査光のそれぞれの光パワーやコア12-14を経由する経路の損失を、コア11の場合と同様の手順により光パワーメータ620で測定できる。例えば、検査光の光源をLD501からLD502に切り替えた場合には、端部22の第2のコアから、波長λ2の検査光が出力される。従って、光波長計610において波長λ2の検査光が検出された場合には、光源500が出力する検査光の波長がλ2に切り替えられた結果、SCF112と接続されたコア12を伝搬した検査光の光パワー等が測定可能となったと判断できる。
図2は、接続装置800におけるMCFの光軸調整を説明する図である。接続装置800は、MCF101とMCF伝送路10とを独立して保持できる。接続装置800は、MCF101の端部とMCF伝送路10の端部21とを近接させる。そして、接続装置800は、X軸、Y軸、Z軸及びMCF101及びMCF伝送路10の中心軸の周りの回転各θの相対的な位置を調整することで、光軸調整を行う。光パワーメータ620において測定される検査光の光パワーに応じてMCF101とMCF伝送路10との間の光軸調整をコア毎に行うことで、FIFO100とMCF伝送路10とを、コア間のばらつきを抑制しつつ、低損失で光学的に接続できる。FIFO100のMCF101から出力される検査光の光パワーが等しいとみなせる場合には、光パワーメータ620における検査光の波長間の光パワーの差は、SCF111-114から端部22までのコア間の損失差を示す。これらの差は、小さいことが好ましい。また、FIFO100とMCF伝送路10との間の接続損失も小さいことが好ましい。すなわち、光パワーメータ620において測定されるそれぞれの波長の検査光の光パワーが大きくなるように光軸調整が行われることが好ましい。また、MCF101から出力されるそれぞれの波長の検査光の光パワー、及び、MCF伝送路10のコア11-14のそれぞれの波長における損失がいずれも既知である場合には、これらの既知の値を用いて、上述の光軸調整が行われてもよい。
例えば、まず、光源500に、波長λ1の検査光を出力させる。そして、その検査光の光パワーがより大きくなるように、端部21において、MCF101とコア11との間の光軸調整を行う。その後、光源500が出力する検査光の波長を切り替え、波長λ2、λ3、λ4のそれぞれの検査光について、MCF101とコア12-14について光軸調整を行う。光軸調整では、例えば、MCF101の断面と端部21の断面との間で、それぞれのコアの位置関係が調整される。光軸調整では、MCF101とMCF伝送路10の中心軸の周りの回転角度が調整されてもよい。
光パワーメータ620で測定された波長λ1-λ4の検査光の間の光パワーのばらつきを抑制するように、波長λ1からλ4の検査光について上記の光軸調整が行われる。その結果、MCF101と端部21との間の、コア間の接続損失のばらつきを抑制できる。すなわち、本実施形態で説明した第1の手順は、FIFO100とMCF伝送路10とを簡単かつ高品質に接続できるという効果を奏する。その理由は、本手順では、MCF伝送路10のコア11-14毎に、検査光の光パワーを検査光の特性と対応させて測定するからである。これにより、第1の手順は、一般的な手順とは異なり、FIFO100と端部21との1回目の光軸調整後に、この接続の切断及び2回目の光軸調整を行うことなく(すなわち1回の光軸調整で)完了できる。
この場合、波長λ1-λ4のそれぞれ(すなわち、各コア)について、検査光の光パワーの下限値(第1の閾値)を規定し、全てのコアについて第1の閾値以上の光パワーが測定された時点でMCF101と端部21との間の光軸調整を終了してもよい。あるいは、さらに、コア毎に光パワーの上限値(第2の閾値)を規定し、全てのコアについて第1の閾値以上かつ第2の閾値以下の光パワーが測定された時点でMCF101と端部21との間の光軸調整を終了してもよい。
そして、光軸調整の後に、FIFO100とMCF伝送路10との間は、接続装置800を用いて融着接続される。FIFO100とMCF伝送路10との間を融着接続することにより、FIFO100とMCF伝送路10とを一体化できる。これにより、FIFO100とMCF伝送路10とが接続された部分の高信頼化が可能となる。なお、これらの2本のMCF間の接続には、融着以外の方法が適用されてもよい。例えば、MCF101とMCF伝送路10との間は、光軸調整の終了後、紫外線硬化樹脂を用いた接着剤によっても固定できる。
以上の手順により、FIFO100とMCF伝送路10とを、1回の光軸調整のみで所定の損失の条件を満たすように接続できる。すなわち、本実施形態のMCF接続システム1は、FIFOとMCFとを、簡単かつ高品質に接続できる。また、この接続の際には、FIFO100と接続されるMCFのコア11-14を識別しながら検査光の光パワーを測定し、MCF伝送路10の損失を求めることができる。
(第1の実施形態の他の表現)
上述したMCF接続システム1の効果は、以下の構成によっても得られる。図1の参照符号を括弧内に付す。すなわち、MCF接続システム(1)は、N本(Nは2以上の整数)のコアを持つMCF伝送路(10)と、第1のFIFO(100)と、光源(500)と、接続手段(800)と、識別手段(610)と、測定手段(620)と、を備える。
上述したMCF接続システム1の効果は、以下の構成によっても得られる。図1の参照符号を括弧内に付す。すなわち、MCF接続システム(1)は、N本(Nは2以上の整数)のコアを持つMCF伝送路(10)と、第1のFIFO(100)と、光源(500)と、接続手段(800)と、識別手段(610)と、測定手段(620)と、を備える。
光源(500)は、互いに特性が異なるN個の検査光を前記第1のFIFO(100)の一端(SCF111-114)へ出力する。接続手段(800)は、MCF伝送路(10)の一端を成す第1の端部(21)と第1のFIFO(100)の他端(101)とを光学的に接続する。識別手段(610)は、第2の端部(22)から出力される検査光の特性(第1の実施形態における波長)を識別する。測定手段(620)は、第2の端部(22)から出力される検査光の光パワーである第1の光パワーを、検査光の特性と対応させてMCF伝送路(10)のコア(11-14)毎に測定する。
また、光源(500)は、第1のFIFO(100)の一端の複数のコア(SCF111-114)のそれぞれに検査光を入力する。接続手段(800)は、第1の光パワーのそれぞれの値が所定の範囲内となるように第1のFIFOの他端(MCF101)と、第1の端部(21)との間の光軸をコア毎に調整する。
図3は、上述の表現における第1の手順のフローチャートの例である。第1の手順では、まず、第1のFIFOの一端の複数のコアのそれぞれに検査光が入力される(図3のS01)。それぞれの検査光は、相異なる特性を持つ。そして、第1のFIFOの他端と第1の端部とがコア毎に光学的に接続される(S02)。第2の端部から出力される検査光の特性が識別され(S03)、第1の光パワーが特性と対応させて測定される(S04)。さらに、第1の光パワーのそれぞれの値が所定の範囲内となるように第1のFIFOの一端と第1の端部との間の光軸が調整される(S05)。最後に、第1のFIFOの一端と第1の端部との間が融着接続される(S06)。
このように記載されたMCF接続システム1及びそれに用いられるMCF接続方法も、FIFOとMCFとを、簡単かつ高品質に接続できるという効果を奏する。
(第2の実施形態)
図4は、第2の実施形態のMCF接続システム2を説明する図である。第2の実施形態では、MCF伝送路10の他端(端部22)とFIFO200のMCF201とがコア毎に光学的に接続される。第2の実施形態においても、MCF伝送路10が4コアMCFである場合について説明する。しかし、MCF伝送路10のコア数は4コアに限定されない。
図4は、第2の実施形態のMCF接続システム2を説明する図である。第2の実施形態では、MCF伝送路10の他端(端部22)とFIFO200のMCF201とがコア毎に光学的に接続される。第2の実施形態においても、MCF伝送路10が4コアMCFである場合について説明する。しかし、MCF伝送路10のコア数は4コアに限定されない。
FIFO200は、MCFと4本のSCFとを接続するためのファンイン・ファンアウトである。FIFO200の一端はMCF201、他端はSCF211-214である。FIFO200において、MCF201のそれぞれのコアとSCF211214のそれぞれのコアとは1対1で接続されている。すなわち、FIFO200は、MCFインタフェースを持つ光機器と複数のSCFインタフェースを持つ光機器とを接続できる。
図4において、FIFO100とMCF伝送路10との間の光軸調整は終了している。この光軸調整には、第1の実施形態で説明した手順を適用できる。本実施形態で説明するMCF接続方法を、以下では第2の手順と称する。第2の手順では、端部22と、MCF201とが、両者の断面において両者のコア同士が光学的に結合するように、接続装置801によって光軸が調整される。例えば、MCF201の4本のコアとMCF伝送路10の4本のコア11-14は、端部22においてバットジョイントによって光学的に接続される。接続装置801の機能は、図2で説明した接続装置800の機能に準ずる。すなわち、接続装置801は、MCF201とMCF伝送路10との間で、両者のコア同士が光学的に結合するように光軸を調整できるとともに、光軸調整の終了後にこれらの間の接続を融着により固定できる。
FIFO200のSCF211-214は、それぞれ、光バンドパスフィルタ(Optical Band Pass Filter、OBPF)631-634を介して光パワーメータ(Optical Power Meter、OPM)621-624に入力される。光バンドパスフィルタ631、632、633及び634は、それぞれ、波長λ1、λ2、λ3及びλ4の波長の光のみを透過する光フィルタである。光パワーメータ621-624は、それぞれ、光バンドパスフィルタ631-634を透過した光の光パワーを測定する。このような構成により、MCF接続システム2では、第1の実施形態とは異なり、光スイッチ600を用いることなく、光パワーメータ621-624を用いて波長λ1-λ4のそれぞれの検査光の光パワーを測定できる。
第1の実施形態と同様に、光源500は波長λ1-λ4のうち1個の波長の検査光を出力する。図4では、LD501のみが発光し、波長λ1の検査光のパワーが光パワーメータ621で測定される場合が例示されている。検査光の波長がλ1である場合にはLD502-504、光バンドパスフィルタ632-634、光パワーメータ622-624は光軸調整に関与しないため、これらのブロックは破線で示されている。そして、光パワーメータ621-624において測定される、コア11-14から出力されるそれぞれの光パワーの値が所定の範囲内となるように、端部22とSCF211-214との間の光軸が調整される。すなわち、光パワーメータ621-624において測定される検査光の光パワーに応じてMCF201と端部22との間のコア毎の光軸が調整される。これにより、MCF201の各コアとMCF伝送路10のコア11-14との間を、コア間の接続損失のばらつきを抑制しつつ、低損失で光学的に接続する。例えば、検査光の波長を変えながら光パワーメータ621-624の測定値を観察し、MCF201と端部22との間の光軸調整をコア毎に繰り返し行うことで、コア11-14とMCF201との間の光軸をコア毎に調整できる。MCF201と端部22との間の光軸調整には、MCF101と端部21との間の光軸調整手順を準用できる。すなわち、光源500に、波長λ1の検査光を出力させる。そして、その検査光の光パワーがより大きくなるように、端部22において、コア11とMCF201との間の光軸調整を行う。その後、光源500が出力する検査光の波長を切り替え、波長λ2、λ3、λ4のそれぞれの検査光について、MCF201とコア12-14について光軸調整を行う。光軸調整では、例えば、MCF201の断面と端部22の断面との間で、それぞれのコアの位置関係が調整される。光軸調整では、MCF201とMCF伝送路10の中心軸の周りの回転角度が調整されてもよい。
波長λ1-λ4のそれぞれについて、MCF伝送路10とMCF201との間で光軸調整を実施することで、コア毎の接続損失のばらつきを抑制できる。この場合、各コアについて、検査光の光パワーの下限値(第3の閾値)を規定し、全てのコアについて第3の閾値以上の光パワーが測定された時点でMCF201と端部22との間の光軸調整を終了してもよい。あるいは、さらに、コア毎に光パワーの上限値(第4の閾値)を規定し、全てのコアについて第3の閾値以上かつ第4の閾値以下の光パワーが測定された時点でMCF201と端部22との間の光軸調整を終了してもよい。
以上の手順により、FIFO200の各コアとMCF伝送路10の各コアとを、所定の損失の条件を満たすように接続できる。そして、この接続は、FIFO100及びMCF伝送路10のコアを識別して実施できる。その理由は、端部22とMCF201との光軸調整の際に、検査光の波長に基づいて、接続されるコアを管理できるからである。例えば、SCF211に接続された光バンドパスフィルタ631の透過波長を波長λ1とすることで、SCF111及びコア11を通過する経路とSCF211とを接続できる。
MCF201とMCF伝送路10との結合の調整の後、接続装置801を用いてこれらの間の接続が固定される。MCF201とMCF伝送路10との間を融着接続することにより、光軸調整時の損失をほぼ維持したままFIFO200とMCF伝送路10とを一体化できる。従って、接続部分の高信頼化が可能となる。さらに、第1の実施形態の手順に続いて第2の実施形態の手順を実行することで、FIFO100、MCF伝送路10及びFIFO200を一体化できる。これにより、MCF伝送路10の両端に、SCFをインタフェースとする光機器を容易に接続できる。なお、これらの2本のMCF間の接続には、融着以外の方法が適用されてもよい。例えば、MCF201とMCF伝送路10との間は、光軸調整の終了後、紫外線硬化樹脂を用いた接着剤によっても固定できる。
第1の実施形態及び第2の実施形態で説明したMCF接続システム1、2及びそれらに適用可能な第1の手順及び第2の手順は、MCFの両端にFIFOを簡単かつ高品質で接続できるという効果を奏する。その理由は、検査光の波長がコア毎に異なるため、MCF伝送路10の一端(端部21)とFIFO100との接続時、及び、MCF伝送路10の他端(端部22)とFIFO200との接続時に、接続損失をコア毎に確認しながら光軸を調整できるからである。これにより、FIFO100と端部21との接続、及び、端部22とFIFO200との接続を、光軸調整後に接続を切断することなく、それぞれ1回の光軸調整で完了できる。
なお、MCF同士を融着する際に、コアの位置の基準となるマーカを備えるMCFも知られている(例えば、特許文献2)。マーカは、MCFが備える複数のコアの位置をMCFの両端で識別するために用いられる。しかし、このようなMCFとFIFOとを接続するためには、マーカを視認するためのカメラを備えた特殊な融着機が必要である上に、MCFのコア数が多い場合にはマーカを利用してもコアの識別が難しい場合があるという課題もあった。しかし、第1及び第2の実施形態で説明したMCF接続システム1及び2は、検査光の波長によってMCF伝送路10の両端(端部21及び22)において各コアを識別しながらFIFO100とMCF伝送路10との間の光軸調整を行い、両者を接続する。このため、MCF伝送路10にはマーカが不要である。また、接続装置800及び801にはMCF伝送路のマーカを視認するための特殊な機能も不要である。
(第2の手順の他の表現)
図5は、第2の手順のフローチャートの例である。上述した第2の手順は、図5のようにも記載される。図4の参照符号を括弧内に付す。
図5は、第2の手順のフローチャートの例である。上述した第2の手順は、図5のようにも記載される。図4の参照符号を括弧内に付す。
第2の手順は、第1の手順の後に実行されるMCF接続方法である。第2の手順では、まず、第1の手順と同様に、第1のFIFO(100)の一端の複数のコア(SCF111-114)のそれぞれに検査光が入力される(図5のS11)。それぞれの検査光は、相異なる特性を持つ。次に、第2のFIFO(200)の一端(MCF201)と第2の端部(22)とがコア毎に光学的に接続される(S12)。そして、第2のFIFO(200)の他端(SCF211-214)から出力される検査光の特性が識別される(S13)。加えて、第2のFIFOの他端(SCF211-214)から出力される検査光の光パワーである第2の光パワーが、検査光の特性と対応させてMCF伝送路(10)のコア毎に測定される(S14)。このようにして、第2の光パワーのそれぞれの値が所定の範囲内となるように第2の端部(22)と第2のFIFOの一端(MCF201)との間の光軸が調整される(S15)。光軸調整の終了後に、第2の端部(22)と第2のFIFOの一端(MCF201)との間が融着接続される(S16)。
(第2の実施形態の変形例)
上述したMCF接続システム2の変形例について説明する。図6は、MCF接続システム2Aの構成例を示すブロック図である。MCF接続システム2Aでは、MCF接続システム2の光源500に代えて光源500Aが用いられる。
上述したMCF接続システム2の変形例について説明する。図6は、MCF接続システム2Aの構成例を示すブロック図である。MCF接続システム2Aでは、MCF接続システム2の光源500に代えて光源500Aが用いられる。
光源500Aは、LD510、光カプラ511及び光バンドパスフィルタ512-515を備える。LD510は発振波長が可変である一般的な波長可変レーザダイオードである。LD510は、外部からの制御により、波長λ1-λ4のいずれかの光を検査光として出力する。すなわち、光源500Aは、波長λ1-λ4のうち、いずれか1個の波長の検査光を出力できる。光カプラ511は、LD510が出力した検査光を、FIFO100の各コアに分配する。FIFO100及びMCF伝送路10のコアが4本の場合には、光カプラ511は例えば1×4カプラであり、コアがN本の場合には、光カプラ511は例えば1×Nカプラである。光バンドパスフィルタ512、513、514、515は、それぞれ、波長λ1、λ2、λ3、λ4の光のみを透過する。これにより、FIFO100のSCF111-114にはそれぞれ異なる波長の検査光が入力される。従って、光源500Aを用いた場合も、FIFO100のMCF101の各コアから出力される検査光の波長はすべて異なる。このような構成を備える光源500Aを用いても、図1乃至図5で説明した、FIFO100とMCF伝送路10との接続手順及びMCF伝送路10とFIFO200との接続手順を実行できる。
図6では、LD510が波長λ1で発光し、波長λ1の検査光のパワーが光パワーメータ631で測定される場合が例示されている。検査光の波長がλ1である場合には光バンドパスフィルタ513-515、光バンドパスフィルタ632-634、光パワーメータ622-624は光軸調整に関与しないため、これらのブロックは破線で示されている。
(第3の実施形態)
図7は、本発明の第3の実施形態のMCF接続システム3を説明する図である。本実施形態では、MCF伝送路10の端部21とFIFO100とが接続された後に、MCF伝送路10の端部22とFIFO200とを接続する手順について説明する。本実施形態の手順は、第2の実施形態で説明した手順に代えて実施されてもよい。また、MCF伝送路10とFIFO100との接続には、第1の実施形態の手順が用いられてもよい。
図7は、本発明の第3の実施形態のMCF接続システム3を説明する図である。本実施形態では、MCF伝送路10の端部21とFIFO100とが接続された後に、MCF伝送路10の端部22とFIFO200とを接続する手順について説明する。本実施形態の手順は、第2の実施形態で説明した手順に代えて実施されてもよい。また、MCF伝送路10とFIFO100との接続には、第1の実施形態の手順が用いられてもよい。
以下の説明では、これまでの実施形態と同様に、MCF伝送路10が4本のコアを持つ場合について説明する。ただし、以下の手順の及び構成は、MCFがN本のコアを持つ場合にも適用できる。
図7において、MCF接続システム3は、MCF伝送路10、FIFO100及び200に加えて、光源550、光スイッチ601、光カプラ651、光スペクトルアナライザ(Optical Spectrum Analyzer、OSA)611及び光パワーメータ620を備える。
光源550は、LD501-504を備える。LD501-504は、例えば、半導体レーザダイオードである。LD501、502、503、504は、それぞれ、波長λ1、λ2、λ3、λ4の検査光を出力する。波長λ1-λ4は互いに異なる。すなわち、光源550は、波長λ1-λ4の検査光を同時に出力できる。ただし、光源550は、波長λ1-λ4のうち3個以下の波長の検査光を出力してもよい。従って、光源550は、第1及び第2の実施形態で説明した光源500及び500Aに代えて用いられてもよい。
本実施形態の手順に先立って、FIFO100のMCF101と、MCF伝送路10の端部21とは、4本のコア毎に光学的に接続されている。その結果、端部21において、MCF伝送路10の4本のコア11-14のそれぞれには、相異なる波長を持つ検査光が光源500から入力される。これにより、MCF伝送路10のコア11-14では、互いに異なる波長の検査光が同時に伝搬する。4個の検査光はMCF伝送路10の他端を成す端部22において、コア11-14から出力される。
MCF201のコアとMCF伝送路10のコア11-14とは、バットジョイントによって光学的に接続される。FIFO200の4本のSCF211-214から出力された光は、光スイッチ601及び光カプラ651を介して光スペクトルアナライザ611及び光パワーメータ620に入力される。光スイッチ601は4×1光スイッチであり、SCF211-214から選択された1本のSCFを光カプラ651と接続する。光カプラ651は1×2光カプラであり、光スイッチ601から入力された光を光スペクトルアナライザ611及び光パワーメータ620に分配する。光スペクトルアナライザ611は、光スイッチ601によって選択されたコアの検査光の波長を測定する。すなわち、光スイッチ601は、検査光の波長及び光パワーを測定するコアを選択する。光パワーメータ620は、光スイッチ601によって選択されたコアの検査光の光パワーを測定する。
このような構成により、FIFO200の4本のSCF211-214から出力された検査光のうち1個が、光スイッチ601及び光カプラ651を介して光スペクトルアナライザ611及び光パワーメータ620に入力される。
MCF伝送路10の端部22とFIFO200のMCF201との間の光軸調整には、第2の実施形態の手順が適用できる。すなわち、光パワーメータ620において測定された光パワーの値が、波長λ1-λ4のそれぞれにおいて所定の範囲内となるように、端部22とMCF201との間で光軸調整が行われる。波長λ1-λ4の検査光を同時に出力するように光源550を設定することにより、光スペクトルアナライザ611及び光パワーメータ620を用いて、波長λ1-λ4の検査光の波長及び光パワーを、容易に繰り返し測定できる。ここで、検査光の波長の切り替えは光スイッチ601の切り替えのみで行われる。そして、MCF201と端部22との間の光軸調整をコア毎に繰り返し行うことで、コア11-14についてFIFO200とMCF伝送路10とのコア毎の光軸を好適に調整できる。このような本実施形態の手順においても、第2の実施形態と同様に、MCF伝送路10のコア11-14とMCF201の各コアとの間を、コア間の接続損失のばらつきを抑制しつつ、低損失で光学的に接続できる。
(第3の実施形態の変形例)
上述したMCF接続システム3の変形例について説明する。図8は、MCF接続システム3の光源550に代えて利用可能な光源550Aの構成例を示すブロック図である。
上述したMCF接続システム3の変形例について説明する。図8は、MCF接続システム3の光源550に代えて利用可能な光源550Aの構成例を示すブロック図である。
光源550Aは、ASE(Amplified Spontaneous Emission)光源520、光カプラ521及び光バンドパスフィルタ522-525を備える。ASE光源520は、スペクトルがほぼ平坦な広帯域の光(ASE光)を出力する。ASE光は、光増幅媒体に励起光を注入することで生成することができる。ASE光の波長帯域には、検査光の波長λ1-λ4が含まれる。
光カプラ521は、ASE光源520が出力したASE光を、FIFO100の各コアに分配する。FIFO100及びMCF伝送路10のコアが4本の場合には、光カプラ521は1×4カプラであり、コアがN本の場合には、光カプラ521は1×Nカプラである。光バンドパスフィルタ522、523、524、525は、それぞれ、波長λ1、λ2、λ3、λ4の光のみを透過する。これにより、ASE光から、波長λ1、λ2、λ3、λ4の検査光が同時に生成される。光源550AにFIFO100のSCF111-114を接続すると、SCF111-114には、それぞれ、波長λ1-λ4の検査光が入力される。光バンドパスフィルタ522-525と直列に光減衰器が接続されてもよい。光減衰器の減衰量は、光源550から出力されるそれぞれの波長の検査光の光パワーが等しくなるように設定されてもよい。
光源550Aは、ASE光源520で生成されたASEと光バンドパスフィルタ522-525を用いて検査光を生成する。このため、検査光の波長を変更する際には光バンドパスフィルタ522、523、524、525の透過帯域を変更すればよく、レーザダイオード等の高価な部品を変更する必要がない。
光源550Aを用いた場合も、FIFO100のMCF101の各コアから出力される検査光の波長はすべて異なる。このような構成を備える光源500Aを用いても、上述の実施形態で説明した第1の手順及び第2の手順を実行できる。
(第4の実施形態)
第1乃至第3の実施形態では、検査光の波長の違いによって、検査光が伝搬するMCF伝送路10のコアの識別が可能であった。しかし、コアの識別に用いられる検査光の特性は、波長に限定されない。例えば、FIFO100のSCF111-114に入力される4個の検査光に、それぞれ異なる幅でパルス幅変調を行ってもよい。例えば、MCF伝送路10の4本のコア11-14に入力する検査光を、それぞれ異なるパルス幅W1-W4を持つように変調するとともに、光波長計610及び光スペクトルアナライザ611に代えて光信号のパルス幅を識別可能な光受信器を用いる。そして、光受信器は、受信している検査光のパルス幅がW1-W4のいずれであるかを判別することで、当該検査光が伝搬したコアを特定できる。すなわち、検査光の特性を検査光のパルス幅とした場合においても、検査光の特性を波長とした場合と同様に、コアを特定できる。
第1乃至第3の実施形態では、検査光の波長の違いによって、検査光が伝搬するMCF伝送路10のコアの識別が可能であった。しかし、コアの識別に用いられる検査光の特性は、波長に限定されない。例えば、FIFO100のSCF111-114に入力される4個の検査光に、それぞれ異なる幅でパルス幅変調を行ってもよい。例えば、MCF伝送路10の4本のコア11-14に入力する検査光を、それぞれ異なるパルス幅W1-W4を持つように変調するとともに、光波長計610及び光スペクトルアナライザ611に代えて光信号のパルス幅を識別可能な光受信器を用いる。そして、光受信器は、受信している検査光のパルス幅がW1-W4のいずれであるかを判別することで、当該検査光が伝搬したコアを特定できる。すなわち、検査光の特性を検査光のパルス幅とした場合においても、検査光の特性を波長とした場合と同様に、コアを特定できる。
また、検査光をパルス光とし、パルス光の送出間隔をコア毎に変えてもよい。例えば、検査光をパルス列とし、互いに異なるパルス間隔T1-T4の検査光が、それぞれのコアを伝搬するようにする。この場合、光波長計及び光スペクトルアナライザに代えて光パルスの受信間隔を識別可能な光受信器が用いられる。このような光受信器は、受信している検査光のパルスの受信間隔がT1-T4のいずれであるかを判別することで、当該検査光が伝搬したコアを特定できる。すなわち、検査光の特性を検査光のパルス間隔とした場合においても、検査光の特性を波長やパルス幅とした場合と同様に、コアを特定できる。
検査光の変調方式はパルス幅やパルス間隔に限定されない。例えば、パルス光を10kHz以上1MHz以下の低周波信号で振幅変調してもよい。コア毎に変調周波数を変え、光受信器で低周波信号の周波数を検出することで、当該検査光が伝搬したコアを特定してもよい。
なお、検査光をパルス光とする場合には、コア11-14を伝搬するそれぞれの検査光のデューティ比が同一となるように検査光を変調することが好ましい。これにより、光パワーの測定時に、コア11-14の間の検査光の光パワーの差がデューティ比の影響を受けることを回避できる。
なお、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
N本のコアを持つMCF(Multi Core Fiber)伝送路と、
第1のFIFO(Fan-In/Fan-Out)と、
互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備えるMCF接続システムであって、
Nは2以上の整数であり、
前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続システム。
N本のコアを持つMCF(Multi Core Fiber)伝送路と、
第1のFIFO(Fan-In/Fan-Out)と、
互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備えるMCF接続システムであって、
Nは2以上の整数であり、
前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続システム。
(付記2)
前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
付記1に記載されたMCF接続システム。
前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
付記1に記載されたMCF接続システム。
(付記3)
第2のFIFOをさらに備え、
前記接続手段は、前記第2の端部と前記第2のFIFOの一端とを光学的に接続し、
前記測定手段は、前記第2のFIFOの他端から出力される前記複数の検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記接続手段は、前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整する、
付記2に記載されたMCF接続システム。
第2のFIFOをさらに備え、
前記接続手段は、前記第2の端部と前記第2のFIFOの一端とを光学的に接続し、
前記測定手段は、前記第2のFIFOの他端から出力される前記複数の検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記接続手段は、前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整する、
付記2に記載されたMCF接続システム。
(付記4)
前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
付記3に記載されたMCF接続システム。
前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
付記3に記載されたMCF接続システム。
(付記5)
前記光源、前記接続手段、前記識別手段及び前記測定手段を制御する制御手段をさらに備える、付記1乃至4のいずれか1項に記載されたMCF接続システム。
前記光源、前記接続手段、前記識別手段及び前記測定手段を制御する制御手段をさらに備える、付記1乃至4のいずれか1項に記載されたMCF接続システム。
(付記6)
前記特性は、前記検査光の波長である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
前記特性は、前記検査光の波長である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
(付記7)
前記特性は、前記検査光のパルス幅である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
前記特性は、前記検査光のパルス幅である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
(付記8)
前記特性は、前記検査光のパルスのデューティ比である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
前記特性は、前記検査光のパルスのデューティ比である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
(付記9)
N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
Nは2以上の整数であり、
前記第1の手順は、
前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続方法。
N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
Nは2以上の整数であり、
前記第1の手順は、
前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続方法。
(付記10)
前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
付記10に記載されたMCF接続方法。
前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
付記10に記載されたMCF接続方法。
(付記11)
前記第1の手順の後に実行される第2の手順を含むMCF接続方法であって、
前記第2の手順は、
第2のFIFOの一端と前記第2の端部とをコア毎に光学的に接続し、
前記第2のFIFOの他端から出力される前記検査光の前記特性を識別し、
前記第2のFIFOの他端から出力される前記検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、
前記第2の端部と前記第2のFIFOの一端との接続を固定する、
ことを含む、付記9又は10に記載されたMCF接続方法。
前記第1の手順の後に実行される第2の手順を含むMCF接続方法であって、
前記第2の手順は、
第2のFIFOの一端と前記第2の端部とをコア毎に光学的に接続し、
前記第2のFIFOの他端から出力される前記検査光の前記特性を識別し、
前記第2のFIFOの他端から出力される前記検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、
前記第2の端部と前記第2のFIFOの一端との接続を固定する、
ことを含む、付記9又は10に記載されたMCF接続方法。
(付記12)
前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
付記11に記載されたMCF接続方法。
前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
付記11に記載されたMCF接続方法。
(付記13)
前記第1の手順及び前記第2の手順の少なくとも一方が制御手段によって制御される、付記11又は12に記載されたMCF接続方法。
前記第1の手順及び前記第2の手順の少なくとも一方が制御手段によって制御される、付記11又は12に記載されたMCF接続方法。
(付記14)
前記特性は、前記検査光の波長である、付記9乃至13のいずれか1項に記載されたMCF接続方法。
前記特性は、前記検査光の波長である、付記9乃至13のいずれか1項に記載されたMCF接続方法。
(付記15)
前記特性は、前記検査光のパルス幅である、付記9乃至13のいずれか1項に記載されたMCF接続方法。
前記特性は、前記検査光のパルス幅である、付記9乃至13のいずれか1項に記載されたMCF接続方法。
(付記16)
前記特性は、前記検査光のパルスのデューティ比である、付記乃至13のいずれか1項に記載されたMCF接続方法。
前記特性は、前記検査光のパルスのデューティ比である、付記乃至13のいずれか1項に記載されたMCF接続方法。
以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
例えば、各実施形態のMCF接続システムの動作の一部または全部はプログラム化されてもよい。そして、各実施形態のMCF接続システムは、このプラグラムを実行するコンピュータを備えてもよい。コンピュータはプログラムを実行することで、各実施形態のMCF接続システムの機能の一部または全部を実現してもよい。コンピュータは、例えば、論理デバイスや中央処理装置、デジタル信号処理装置である。実施形態で説明した制御装置900がコンピュータを備えてもよい。第1の手順及び第2の手順の少なくとも一方が制御部900によって制御されてもよい。また、プログラムは、コンピュータ読取可能な、固定された非一時的な記録媒体に記録されてもよい。記録媒体は、例えば、フレキシブルディスク、固定磁気ディスク、不揮発性半導体メモリである。プログラムは、ネットワークを介して配信されてもよい。
また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
1、2、2A、3 MCF接続システム
10 MCF伝送路
11-14 コア
21、22 端部
100、200 FIFO
101、201 MCF
500、500A、550、550A 光源
501-504 レーザダイオード(LD)
511、521 光カプラ
512-515、522-525 光バンドパスフィルタ(OBPF)
520 ASE光源
600、601 光スイッチ
610 光波長計
611 光スペクトルアナライザ(OSA)
620-624 光パワーメータ(OPM)
631-634 光バンドパスフィルタ
651 光カプラ
800、801 接続装置
900 制御装置
10 MCF伝送路
11-14 コア
21、22 端部
100、200 FIFO
101、201 MCF
500、500A、550、550A 光源
501-504 レーザダイオード(LD)
511、521 光カプラ
512-515、522-525 光バンドパスフィルタ(OBPF)
520 ASE光源
600、601 光スイッチ
610 光波長計
611 光スペクトルアナライザ(OSA)
620-624 光パワーメータ(OPM)
631-634 光バンドパスフィルタ
651 光カプラ
800、801 接続装置
900 制御装置
Claims (16)
- N本のコアを持つMCF(Multi Core Fiber)伝送路と、
第1のFIFO(Fan-In/Fan-Out)と、
互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備えるMCF接続システムであって、
Nは2以上の整数であり、
前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続システム。 - 前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
請求項1に記載されたMCF接続システム。 - 第2のFIFOをさらに備え、
前記接続手段は、前記第2の端部と前記第2のFIFOの一端とを光学的に接続し、
前記測定手段は、前記第2のFIFOの他端から出力される前記複数の検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記接続手段は、前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、前記第2の端部と前記第2のFIFOの一端との間の光軸の調整後、前記第2の端部と前記第2のFIFOの一端との接続を固定する、
請求項2に記載されたMCF接続システム。 - 前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
請求項3に記載されたMCF接続システム。 - 前記光源、前記接続手段、前記識別手段及び前記測定手段を制御する制御手段をさらに備える、請求項1乃至4のいずれか1項に記載されたMCF接続システム。
- 前記特性は、前記検査光の波長である、請求項1乃至5のいずれか1項に記載されたMCF接続システム。
- 前記特性は、前記検査光のパルス幅である、請求項1乃至5のいずれか1項に記載されたMCF接続システム。
- 前記特性は、前記検査光のパルスのデューティ比である、請求項1乃至5のいずれか1項に記載されたMCF接続システム。
- N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
Nは2以上の整数であり、
前記第1の手順は、
前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続方法。 - 前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
請求項9に記載されたMCF接続方法。 - 前記第1の手順の後に実行される第2の手順を含むMCF接続方法であって、
前記第2の手順は、
第2のFIFOの一端と前記第2の端部とをコア毎に光学的に接続し、
前記第2のFIFOの他端から出力される前記検査光の前記特性を識別し、
前記第2のFIFOの他端から出力される前記検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、
前記第2の端部と前記第2のFIFOの一端との接続を固定する、
ことを含む、請求項9又は10に記載されたMCF接続方法。 - 前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
請求項11に記載されたMCF接続方法。 - 前記第1の手順及び前記第2の手順の少なくとも一方が制御手段によって制御される、請求項11又は12に記載されたMCF接続方法。
- 前記特性は、前記検査光の波長である、請求項9乃至13のいずれか1項に記載されたMCF接続方法。
- 前記特性は、前記検査光のパルス幅である、請求項9乃至13のいずれか1項に記載されたMCF接続方法。
- 前記特性は、前記検査光のパルスのデューティ比である、請求項9乃至13のいずれか1項に記載されたMCF接続方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024510998A JPWO2023188235A1 (ja) | 2022-03-31 | 2022-03-31 | |
PCT/JP2022/016418 WO2023188235A1 (ja) | 2022-03-31 | 2022-03-31 | Mcf接続システム及びmcf接続方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/016418 WO2023188235A1 (ja) | 2022-03-31 | 2022-03-31 | Mcf接続システム及びmcf接続方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023188235A1 true WO2023188235A1 (ja) | 2023-10-05 |
Family
ID=88199882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/016418 WO2023188235A1 (ja) | 2022-03-31 | 2022-03-31 | Mcf接続システム及びmcf接続方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023188235A1 (ja) |
WO (1) | WO2023188235A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157245A1 (ja) * | 2012-04-20 | 2013-10-24 | 日本電気株式会社 | 多重光伝送路、光伝送システムおよび光伝送方法 |
JP2014207539A (ja) * | 2013-04-12 | 2014-10-30 | 三菱レイヨン株式会社 | 多重信号伝送システム、送信装置、受信装置、および多重信号伝送方法 |
JP2018524174A (ja) * | 2015-06-09 | 2018-08-30 | コアレイズ オーワイ | レーザー加工装置および方法ならびにその光学部品 |
JP2019012096A (ja) * | 2017-06-29 | 2019-01-24 | 株式会社フジクラ | 光デバイスの製造方法 |
KR102127897B1 (ko) * | 2019-01-21 | 2020-06-29 | 한국광기술원 | 멀티코어 광섬유를 포함하는 전류 센싱 시스템 및 그의 센싱 방법 |
WO2021145358A1 (ja) * | 2020-01-15 | 2021-07-22 | パナソニックIpマネジメント株式会社 | レーザ加工装置 |
JP2021162624A (ja) * | 2020-03-30 | 2021-10-11 | 古河電気工業株式会社 | ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法 |
-
2022
- 2022-03-31 JP JP2024510998A patent/JPWO2023188235A1/ja active Pending
- 2022-03-31 WO PCT/JP2022/016418 patent/WO2023188235A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157245A1 (ja) * | 2012-04-20 | 2013-10-24 | 日本電気株式会社 | 多重光伝送路、光伝送システムおよび光伝送方法 |
JP2014207539A (ja) * | 2013-04-12 | 2014-10-30 | 三菱レイヨン株式会社 | 多重信号伝送システム、送信装置、受信装置、および多重信号伝送方法 |
JP2018524174A (ja) * | 2015-06-09 | 2018-08-30 | コアレイズ オーワイ | レーザー加工装置および方法ならびにその光学部品 |
JP2019012096A (ja) * | 2017-06-29 | 2019-01-24 | 株式会社フジクラ | 光デバイスの製造方法 |
KR102127897B1 (ko) * | 2019-01-21 | 2020-06-29 | 한국광기술원 | 멀티코어 광섬유를 포함하는 전류 센싱 시스템 및 그의 센싱 방법 |
WO2021145358A1 (ja) * | 2020-01-15 | 2021-07-22 | パナソニックIpマネジメント株式会社 | レーザ加工装置 |
JP2021162624A (ja) * | 2020-03-30 | 2021-10-11 | 古河電気工業株式会社 | ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023188235A1 (ja) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9479286B2 (en) | Optically interconnected chip, method of testing the same, and optical receiver | |
CN106940247B (zh) | 用于对多光纤阵列设备进行otdr测量的多模发射系统 | |
JP4769120B2 (ja) | 光通信システムおよびそれを備えたアクセスネットワーク | |
US20110200324A1 (en) | Method and system for optical connection validation | |
ITMI960467A1 (it) | Metodo di compensazione selettiva della dispersione cromatica di segnali ottici | |
US11368216B2 (en) | Use of band-pass filters in supervisory signal paths of an optical transport system | |
JPH08265272A (ja) | 2方向性光増幅器を含む2方向性光通信システム | |
CA1315341C (en) | Optical communication circuit with mode scrambler | |
EP3404852A1 (en) | Supervisory signal paths for an optical transport system | |
US8619246B2 (en) | Optical node apparatus, method for checking connection in node apparatus and program thereof | |
US8634718B2 (en) | Polarization control in a photonic integrated circuit | |
WO2023188235A1 (ja) | Mcf接続システム及びmcf接続方法 | |
CZ279226B6 (cs) | Zesilovač pro telekomunikační zařízení | |
US5382275A (en) | Method for fusion-forming an optical signal attenuator | |
CN114200576A (zh) | 光子集成电路芯片 | |
JPH03269522A (ja) | 波長多重光伝送路増幅装置 | |
JP2009509199A (ja) | マルチモードファイバによる高ビットレート伝送 | |
US20230105328A1 (en) | Fiber connectors for mode division multiplexing using multimode optical fibers | |
CN114616500B (zh) | 多芯光纤和扇出组件 | |
US6751375B1 (en) | Self-referencing tunable add-drop filters | |
US20240267123A1 (en) | Optical repeater, optical transmission system, and connection method of optical repeater | |
Wakayama et al. | Pure-silica single-core to multi-core fiber coupler with side-polishing approach | |
JPS63124633A (ja) | 特に加入者区域の広帯域光通信システム | |
US6795610B1 (en) | Tunable add-drop filters using two independent optical paths | |
EP0619657B1 (en) | Optical circuit for measuring the reflection sensitivity of an optical transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22935380 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024510998 Country of ref document: JP Kind code of ref document: A |