Nothing Special   »   [go: up one dir, main page]

WO2023186269A1 - Cross-linkable compositions on the basis of organosilicon compounds - Google Patents

Cross-linkable compositions on the basis of organosilicon compounds Download PDF

Info

Publication number
WO2023186269A1
WO2023186269A1 PCT/EP2022/058266 EP2022058266W WO2023186269A1 WO 2023186269 A1 WO2023186269 A1 WO 2023186269A1 EP 2022058266 W EP2022058266 W EP 2022058266W WO 2023186269 A1 WO2023186269 A1 WO 2023186269A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally
formula
compositions according
radicals
siloxanes
Prior art date
Application number
PCT/EP2022/058266
Other languages
German (de)
French (fr)
Inventor
Marko Prasse
Stephan Rensing
Peter Schoeley
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to PCT/EP2022/058266 priority Critical patent/WO2023186269A1/en
Publication of WO2023186269A1 publication Critical patent/WO2023186269A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups

Definitions

  • Wa12208-S/Bu Crosslinkable compositions based on organosilicon compounds The invention relates to crosslinkable compositions based on organosilicon compounds, processes for their production and their use.
  • One-component sealing compounds that can be stored in the absence of water and harden to form elastomers when water is added at room temperature with the release of acetic acid are already known. These products are used in large quantities, for example in the construction industry. The basis of these mixtures are polymers that are terminated by silyl groups that carry reactive substituents such as OH groups or hydrolyzable groups such as acetoxy groups.
  • these sealing compounds can contain fillers, plasticizers, crosslinkers, catalysts and various additives.
  • DE-A 102004046179 describes crosslinkable masses based on organosilicon compounds with a controllable modulus using monohydroxy-functional organosilicon compounds. However, these connections can only be created in a targeted manner with great effort.
  • DE-A1102004014216 describes oligomeric siloxanes which were produced from methyltrimethoxysilane or methyltriethoxysilane. However, these compounds cannot be used in crosslinkable masses that release acetic acid through a condensation reaction, since the masses are no longer stable in storage. The production of oligomeric siloxanes containing acetoxy groups is not described.
  • Wa12208-S/Bu 2 The production of oligomeric siloxanes containing acetoxy groups is already known and described many times.
  • EP-A10003285 methyltrichlorosilane, octamethyltetracyclosiloxane and excess acetic acid are reacted in the presence of perfluorobutanesulfonic acid. This creates gaseous HCl.
  • EP-A1 3611215 claims a process for producing siloxanes bearing acetoxy groups from alkoxy-containing siloxanes, acetic anhydride, acetic acid and trifluoromethanesulfonic acid with the elimination of an alcohol.
  • One subject of the invention are crosslinkable compositions that can be produced using (A) organosilicon compounds with at least two OH groups and (B) siloxanes of the formula (II) Wa12208-S/Bu 3 where R can be the same or different and means monovalent, optionally substituted hydrocarbon radicals, R 1 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms, R 2 can be the same or different and Acyl radicals means that x can be the same or different and is 0 or an integer from 1 to 9 and z is 1 or 2, with the proviso that the sum of all x in formula (II) is greater than 0.
  • R can be the same or different and means monovalent, optionally substituted hydrocarbon radicals
  • R 1 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms
  • R 2 can be the same or different and Acyl radicals means that x can be the same or different and is 0 or an integer from 1 to 9 and z is
  • radicals R are alkyl radicals, such as methyl, ethyl, n-propyl, iso-propyl, 1-n-butyl, 2-n-butyl, iso-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-pentyl radical; Hexyl radicals, such as the n-hexyl radical; Heptyl radicals, such as the n-heptyl radical; Octyl radicals, such as the n-octyl radical and iso-octyl radicals, such as the 2,2,4-trimethylpentyl radical; Nonyl radicals, such as the n-nonyl radical; decyl radicals, such as the n-decyl radical; dodecyl radicals, such as the n-dodecyl radical; Octadecyl radicals, such as
  • radicals R and R 3 are preferably monovalent hydrocarbon radicals with 1 to 18 carbon atoms, particularly preferably the methyl radical, the vinyl or the phenyl radical, in particular the methyl radical.
  • radicals R 1 are the hydrocarbon radicals given for R with 1 to 16 carbon atoms.
  • the radicals R 1 are preferably monovalent hydrocarbon radicals with 1 to 16 carbon atoms, particularly preferably straight-chain, branched or cyclic hydrocarbon radicals with 1 to 8 hydrocarbon atoms, in particular the methyl radical, the vinyl, the ethyl radical. , the propyl or the phenyl radical.
  • the organosilicon compounds (A) used according to the invention can be all organosilicon compounds with at least two OH groups, which have also previously been used in masses that can be crosslinked by a condensation reaction.
  • the organosilicon compounds (A) used according to the invention are preferably essentially linear, OH-terminated organopolysiloxanes, particularly preferably organopolysiloxanes of the formula HO(SiR 3 2O)nH (I), where Wa12208-S/Bu 5 R 3 can be the same or different and means monovalent, optionally substituted hydrocarbon radicals, and n is an integer from 30 to 2000.
  • radicals R 3 are the examples given for radical R.
  • the radical R 3 independently of one another, is preferably a monovalent hydrocarbon radical with 1 to 18 carbon atoms, particularly preferably the methyl radical, the vinyl or the phenyl radical, in particular the methyl radical.
  • organosilicon compounds (A) are (HO)Me 2 SiO[SiMe 2 O] 30-2000 SiMe 2 (OH) with Me equal to methyl radical.
  • the organosilicon compounds (A) used according to the invention have a viscosity of preferably 50 to 10 6 mPas, particularly preferably 1,000 to 350,000 mPas, in each case at 25 ° C.
  • the organopolysiloxanes (A) are commercially available products or can be produced using methods common in silicon chemistry.
  • the siloxanes (B) used according to the invention are preferably AcO(SiMe2O)1-5SiR 1 (OAc)2, (AcO(SiMe2O)1-5)2SiR 1 (OAc) or AcO(SiMe 2 O) 1-5 SiR 1 (OAc)O(SiMe 2 O) 1-5 SiR 1 (OAc) 2 Wa12208-S/Bu 6 with Me equal to methyl radical, Ac equal to acetyl radical and R 1 equal to straight-chain, branched or cyclic hydrocarbon radicals with 1 to 8 hydrocarbon atoms, the radicals R 1 within the individual compounds having an identical meaning, particularly preferred around AcO(SiMe2O)1-5SiMe(OAc)2, (AcO(SiMe2O)1-5)2SiMe(OAc), AcO(SiMe2O)1-5SiMe(OAc)O(SiMe2O)1-5SiMe(OA
  • the siloxanes (B) used according to the invention have a viscosity of preferably 1 to 100 mPas, particularly preferably 3 to 50 mPas, in each case at 25 ° C.
  • the compositions according to the invention contain component (B) in amounts of preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 8 parts by weight, in particular Wa12208-S/Bu 7 0.3 to 5 parts by weight, each based on 100 parts by weight of component (A).
  • the siloxanes (B) can be prepared using methods common in silicon chemistry, such as equilibration or ring opening of D3.
  • the siloxanes (B) used according to the invention are preferably prepared by equilibration of polydiorganylsiloxanes with triacyloxysilanes under acidic catalysis with halogenated sulfonic acids or from triacyloxysilanes with hexaorganylcyclotrisiloxanes and catalysts such as basic ammonium compounds.
  • a further subject of the invention is a process (process 1) for producing the siloxanes (B) used according to the invention by equilibrating (i) cyclic and/or linear polydiorganylsiloxanes with (ii) triacyloxysilanes under acidic catalysis with (iii ) halogenated sulfonic acids.
  • the siloxanes (i) used according to the invention are preferably cyclic diorganylsiloxanes with 3 to 8 silicon atoms per molecule and/or linear polydiorganylsiloxanes which are terminated with hydroxyl groups, preferably ⁇ , ⁇ -OH, polydiorganylsiloxanes, methyl groups, preferably ⁇ , ⁇ -triorganylsiloxy-terminated polydiorganylsiloxanes, vinyl groups, preferably ⁇ , ⁇ -diorganylvinylsiloxy-terminated polydiorganylsiloxanes, hydrogen atoms, preferably ⁇ , ⁇ -hydrogendiorganylsiloxy-terminated polydiorganylsiloxanes, or acyloxy groups, preferably ⁇ , ⁇ -organyldiacetoxysiloxy group-terminated polydiorganylsiloxanes, terminated are, particularly preferably cyclic dimethylsiloxanes with 3 to 8
  • silanes (ii) used according to the invention are preferably organotriacetoxysilanes.
  • the sulfonic acids (iii) used according to the invention are preferably chlorinated or fluorinated sulfonic acids, such as trichloromethanesulfonic acid, trifluoromethanesulfonic acid or perfluorobutanesulfonic acid, particularly preferably trifluoromethanesulfonic acid.
  • sulfonic acids (iii) are preferably added in amounts of 50 ppm by weight to 2000 ppm by weight, based on the total weight of the reaction mixture.
  • further components such as solvents, can be used in process (1) according to the invention, but this is not preferred.
  • the components used can be mixed with one another in any order.
  • the siloxane (i) is preferably first mixed with the silane (ii) and then sulfonic acid (iii) is added.
  • Wa12208-S/Bu 9 The mixing according to the invention is preferably carried out at the pressure of the surrounding atmosphere, i.e. approximately 900 to 1100 hPa.
  • the process (1) according to the invention is preferably carried out at temperatures in the range from 20 to 120 ° C.
  • the reaction time is preferably 5 minutes to 5 hours.
  • the amount of catalyst, reaction time and reaction temperature are preferably adjusted so that a conversion of 20% to 80% of the equilibration equilibrium is achieved.
  • the equilibration equilibrium is reached when all acyloxy groups are randomly distributed, i.e. preferably continuing the reaction no longer leads to a change in the distribution of the acyloxy groups in the 29 Si NMR.
  • the acidic catalyst (iii) can be neutralized or removed using customary methods. Basic compounds of sodium or potassium are preferably used for neutralization.
  • Process (1) Weakly or strongly basic ion exchangers are preferably used for separation, such as those available under the trade names Purolite A103, Amberlyst A21 or Amberlyst A26.
  • the products obtained by process (1) according to the invention can, if desired, be filtered and/or devolatilized.
  • Another subject of the invention is a process (process 2) for producing the ones used according to the invention Wa12208-S/Bu 10 Siloxanes (B) by ring opening of (iv) hexaorganylcyclotrisiloxanes with (ii) triacyloxysilanes in the presence of (v) basic catalysts.
  • the hexaorganylcyclotrisiloxanes (iv) used according to the invention are preferably hexamethylcyclotrisiloxane.
  • the basic catalysts (v) used according to the invention are preferably ammonium bases, such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, hexadecyltrimethylammonium hydroxide or benzyltrimethylammonium hydroxide, strongly basic ion exchange resins with ammonium hydroxide groups, such as those commercially available under the trade name Amberlyst® A26 from Merck, D-Darmstadt, or phosphonium bases, such as tetrabutylphosphonium hydroxide.
  • basic catalysts (v) are preferably added in amounts of 500 ppm by weight to 10,000 ppm by weight, based on the total weight of the reaction mixture.
  • further components such as solvents, can be used in process (2) according to the invention, but this is not preferred.
  • solvents are preferably aprotic solvents, such as paraffins, olefins, halogenated hydrocarbons, aromatics, esters, ethers or acetals.
  • the components used can be mixed with one another in any order.
  • the mixing according to the invention is preferably carried out at the pressure of the surrounding atmosphere, i.e. approximately 900 to 1100 hPa.
  • the process (2) according to the invention is preferably carried out at temperatures in the range from 50 to 150 ° C.
  • the reaction time is preferably 1 hour to 8 hours.
  • the amount of catalyst, reaction time and reaction temperature are preferably adjusted so that no more crystals precipitate after removal of any solvent used and/or cooling to room temperature.
  • the basic catalyst can be neutralized or removed using customary methods.
  • sulfonic acids such as methanesulfonic acid
  • chlorine compounds which can split off hydrogen chloride during hydrolysis, such as chlorosilanes or acid chlorides.
  • Ion exchangers with sulfonic acid groups are preferably used for separation, such as those available under the trade names Purolite CT269 or Amberlyst 15 or Amberlyst 16.
  • Purolite CT269 or Amberlyst 15 or Amberlyst 16.
  • compositions according to the invention can contain silanes (C) of the formula (R 8 O)4-bSiR 9 b (III) and/or their partial hydrolysates, where b is 0, 1 or 2 , preferably 1, is, Wa12208-S/Bu 12 R 8 can be the same or different and means acyl radicals and R 9 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms.
  • Examples and preferred radicals for radical R 8 are the examples and preferred radicals given above for R 2 .
  • examples and preferred radicals for radical R 9 are the examples and preferred radicals given above for R 1 .
  • the radicals R 8 within component (C) have an identical meaning, which particularly preferably corresponds to the meaning of R 2 in component (B).
  • the partial hydrolysates (C) which may be used can be partial homohydrolysates, ie partial hydrolysates of one type of silane of the formula (III), as well as partial cohydrolysates, ie partial hydrolysates of at least two different types of silanes of the formula (III ).
  • the term partial hydrolysates means products that are formed by hydrolysis and/or condensation. If the component (C) used in the compositions according to the invention is partial hydrolysates of silanes of the formula (III), then those with up to 10 silicon atoms are preferred.
  • component (C) optionally used according to the invention are methyltriacetoxysilane, ethyltriacetoxysilane, n-propyltriacetoxysilane, iso-octyltriacetoxysilane, vinyltriacetoxysilane and phenyltriacetoxysilane, their partial homohydrolysates Wa12208-S/Bu 13 or partial cohydrolysates and mixtures thereof, with methyltriacetoxysilane, ethyltriacetoxysilane and vinyltriacetoxysilane, their partial homohydrolysates or partial cohydrolysates and mixtures thereof being preferred.
  • Component (C) is a commercially available product or can be produced using methods commonly used in silicon chemistry. If the compositions according to the invention contain component (C), these are amounts of preferably 1 to 20 parts by weight, particularly preferably 2 to 16 parts by weight, in particular 3 to 12 parts by weight, in each case based on 100 parts by weight of component (A).
  • the compositions according to the invention preferably contain component (C).
  • the compositions according to the invention can now contain all substances that have previously been used in compositions that can be crosslinked by a condensation reaction, such as, for example, hardening accelerators (D), plasticizers ( E), fillers (F), adhesion promoters (G) and additives (H).
  • hardening accelerators that have previously been used in masses that can be crosslinked by a condensation reaction can be used as hardening accelerators (D).
  • hardening accelerators (D) are titanium compounds, such as tetrabutyl or tetraisopropyl titanate, or titanium chelates, such as bis(ethylacetoacetato)diisobutoxytitanium, or organic tin compounds, such as di-n-butyltin dilaurate and di-n-butyltin diacetate , di-n-butyltin oxide, dimethyltin diacetate, dimethyltin dilaurate, dimethyltin dineodecanoate, dimethyltin oxide, di-n-octyltin diacetate, di-n-octyltin dilaurate, di-n-oc- Wa12208-S/Bu 14 tyltin oxide and reaction products of these compounds with alkoxysilanes
  • compositions according to the invention contain curing accelerators (D), these are amounts of preferably 0.001 to 2 parts by weight, particularly preferably 0.01 to 1 part by weight, based in each case on 100 parts by weight of component (A).
  • the compositions according to the invention preferably contain curing accelerators (D).
  • plasticizers (E) which may be used are polydimethylsiloxanes which are liquid at room temperature and end-blocked by trimethylsiloxy groups, in particular with viscosities at 25° C. in the range between 5 and 1000 mPas, as well as high-boiling hydrocarbons, such as paraffin oils or mineral oils from naphthenic and paraffinic units.
  • compositions according to the invention contain component (E), these are amounts of preferably 1 to 50 parts by weight, preferably 1 to 30 parts by weight, based in each case on 100 parts by weight of siloxanes (A).
  • the compositions according to the invention preferably contain plasticizers (E).
  • fillers (F) that may be used are non-reinforcing fillers (F), i.e.
  • fillers with a Wa12208-S/Bu 15 BET surface area of up to 20 m 2 /g such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, zeolites, metal oxide powder, such as aluminum, titanium, iron or zinc oxides or their mixed oxides, barium sulfate, calcium carbonate , gypsum, silicon nitride, silicon carbide, boron nitride, glass and plastic powder, such as polyacrylonitrile powder; reinforcing fillers, i.e.
  • the component (F) optionally used according to the invention is preferably non-reinforcing silicate fillers (F), such as quartz, diatomaceous earth or calcium silicate and/or reinforcing silicate fillers, such as fumed silica or precipitated silica , with fumed silicas being particularly preferred.
  • compositions according to the invention contain fillers (F), these are amounts of preferably 10 to 150 parts by weight, particularly preferably 10 to 130 parts by weight, in particular 10 to 100 parts by weight, in each case based on 100 parts by weight of organopolysiloxanes (A).
  • the compositions according to the invention preferably contain filler (F).
  • the adhesion promoters (G) optionally used in the compositions according to the invention are silanes and organopolysiloxanes with functional groups, such as those with glycidoxypropyl, aminopropyl, aminoethylaminepropyl, ureidopropyl, tert-butoxy or methacryloxypropyl radicals .
  • adhesion promoter (G) can be used. Wa12208-S/Bu 16 can be omitted.
  • the component (G) optionally used according to the invention is preferably di-tert-butoxydiacetoxysilane, (3-glycidoxypropyl)trimethoxysilane or (3-glycidoxypropyl)triethoxysilane, their partial homohydrolysates or partial cohydrolysates and mixtures thereof , with di-tert-butoxydiacetoxysilane being particularly preferred.
  • Component (G) is a commercially available product or can be produced using methods common in silicon chemistry.
  • compositions according to the invention contain component (G), these are amounts of preferably 0.1 to 3 parts by weight, preferably 0.2 to 2 parts by weight, based in each case on 100 parts by weight of organopolysiloxanes (A).
  • the compositions according to the invention preferably contain component (G).
  • additives (H) are pigments, dyes, fragrances, oxidation inhibitors, agents for influencing the electrical properties, such as conductive soot, flame-repellent agents, light stabilizers, biocides such as fungicides, bactericides and acaricides, cell-producing agents, for example azodicar- bonamide, heat stabilizers, co-catalysts, such as Lewis and Brönsted acids, for example sulfonic acids, phosphoric acids, phosphoric acid esters, phosphonic acids and phosphonic acid esters, thixotropic agents, such as polyethylene glycol terminated with OH on one or both sides, agents for further regulating the modulus such as polydimethylsiloxanes an OH end group, as well as any siloxanes that are different from components (A), (B), (C) and (G).
  • additives (H) are pigments, dyes, fragrances, oxidation inhibitors, agents for influencing the electrical properties, such as conductive soot
  • compositions according to the invention contain additives (H), these are amounts of preferably 0.1 to 20 parts by weight, particularly preferably 0.1 to 15 parts by weight, in particular 0.1 to 10 parts by weight, in each case based on 100 parts by weight of organopolysiloxanes (A).
  • additives H
  • the compositions according to the invention preferably contain component (H).
  • the individual components of the compositions according to the invention can each be one type of such component or a mixture of at least two different types of such components.
  • compositions according to the invention are preferably those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II), optionally (C) silanes of the formula (III) and/or their Partial hydrolysates, optionally (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and optionally (H) additives.
  • compositions according to the invention are particularly preferably those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II), (C) silanes of the formula (III) and/or their partial hydrolysates, optionally (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and Wa12208-S/Bu 18 optionally (H) additives.
  • compositions according to the invention are those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II) with R 2 equal to acetyl radical, (C) silanes of the formula (III) and/or their partial hydrolysates, (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and optionally (H) additives.
  • compositions according to the invention are those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II) with R 2 equal to an acetyl radical, (C) silanes of the formula ( III) and/or their partial hydrolysates, (D) hardening accelerators, optionally (E) plasticizers, (F) fillers, optionally (G) adhesion promoters and optionally (H) additives.
  • the compositions according to the invention are those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II) with R 2 equal to acetyl, (C) silanes of Formula (III) and/or their partial hydrolysates, (D) hardening accelerators, (E) plasticizers, Wa12208-S/Bu 19 (F) fillers, optionally (G) adhesion promoters and optionally (H) additives.
  • the compositions according to the invention preferably contain no other components apart from components (A) to (H).
  • the compositions according to the invention are preferably viscous to pasty masses.
  • compositions according to the invention can be mixed together in any order.
  • This mixing can take place at room temperature and the pressure of the surrounding atmosphere, i.e. around 900 to 1100 hPa. If desired, this mixing can also take place at higher temperatures, for example at temperatures in the range from 35 to 135 ° C. Furthermore, it is possible to mix temporarily or continuously under reduced pressure, such as at 30 to 500 hPa absolute pressure, in order to remove volatile compounds or air.
  • the mixing according to the invention preferably takes place with the greatest possible exclusion of water, ie using raw materials which have a water content of preferably less than 10,000 mg/kg, preferably less than 5,000 mg/kg, in particular less than 1,000 mg/kg. kg.
  • the pastes are filled into commercially available moisture-tight containers, such as cartridges, tubular bags, buckets and barrels. Wa12208-S/Bu 20
  • the components (A), (B), optionally (C) and (E) are first mixed together, then optionally fillers (F) are added and finally, if necessary, further components ( D), (G) and (H) are added, with the temperature before bottling not exceeding 60°C.
  • a further subject of the invention is a process for producing the compositions according to the invention by mixing the individual components.
  • the process according to the invention can be carried out continuously, discontinuously or semi-continuously according to known processes and using known apparatus.
  • the compositions according to the invention or produced according to the invention can be stored in the absence of moisture and can be crosslinked if moisture enters.
  • the usual water content of the air is sufficient for crosslinking the compositions according to the invention.
  • Crosslinking of the compositions according to the invention preferably takes place at room temperature. If desired, it can also be carried out at temperatures higher or lower than room temperature, for example at -5° to 15°C or at 30°C to 50°C and/or using concentrations of water that exceed the normal water content of the air.
  • the crosslinking is preferably carried out at a pressure of 100 to 1100 hPa, in particular at the pressure of the surrounding atmosphere, i.e. approximately 900 to 1100 hPa.
  • Another subject of the present invention are Wa12208-S/Bu 21 shaped bodies, produced by crosslinking the compositions according to the invention.
  • the shaped bodies according to the invention have a tension at 100% elongation of preferably less than 0.4 MPa.
  • the compositions according to the invention can be used for all purposes for which masses which can be stored in the absence of water and which crosslink to resins or elastomers when water is added at room temperature can be used.
  • compositions according to the invention are therefore excellently suitable, for example, as sealing compounds for joints, including vertical joints and similar empty spaces of, for example, 10 to 40 mm clear width, for example of buildings, land, water and aircraft, or as adhesives or cementing compounds, e.g. in window construction or in the production of showcases, as well as, for example, for the production of protective coatings, including those for surfaces that are constantly exposed to fresh or sea water or coatings that prevent sliding or of rubber-elastic molded bodies.
  • the compositions according to the invention have the advantage that they are easy to prepare and are characterized by very high storage stability. Furthermore, the compositions according to the invention have the advantage that they are very easy to handle in use and have excellent processing properties in a variety of applications.
  • the crosslinkable compositions according to the invention have the advantage that the modulus can be specifically adjusted by the proportion of component (B) without influencing the rheology of the masses.
  • the crosslinkable compositions according to the invention have the advantage that they remain homogeneous during storage, especially at temperatures below 0 ° C, and no components crystallize out.
  • the crosslinkable compositions according to the invention have the advantage that they adhere very well to a variety of substrates.
  • the compositions according to the invention have the advantage that in the cured state they achieve high tear resistance of the cured vulcanizates.
  • the compositions according to the invention have the advantage that in the hardened state, moldings according to ISO 8340 reliably pass the tests according to ISO 11600 in class 25.
  • the crosslinkable compositions according to the invention have the advantage that they are very economical in terms of the materials used.
  • all viscosity information relates to a temperature of 25 ° C. Unless otherwise stated, the examples below are carried out at a pressure of the surrounding atmosphere, i.e. approximately 1000 hPa, and at room temperature, i.e. approximately 23° C., or at a temperature that occurs when the reactants are combined at room temperature. temperature without additional heating or cooling, as well Wa12208-S/Bu 23 was carried out at a relative humidity of around 50%. Furthermore, unless otherwise stated, all parts and percentages refer to weight.
  • the tensile strength, elongation at break and stress at 100% elongation are determined according to ISO 8339 (Method A).
  • the hardness is determined in accordance with ISO 868. Abbreviations are used below: Me for methyl radical, Et for ethyl radical and iOct for 2,2,4-trimethylpentyl radical.
  • Acetoxy crosslinker V1 consists of 3% di-tert-butoxydiacetoxysilane and 97% of an oligomer produced by total hydrolysis and condensation of a mixture of methyltriacetoxysilane and ethyltriacetoxysilane with a molar ratio of methyl to ethyl groups of 3 to 7 and a content of SiO2 of 28.7% by weight.
  • MeSi(OAc)3 methyltriacetoxysilane
  • the composition of the mixture was determined using 29-Si-NMR spectroscopy.
  • the mixture contained 2.0% by weight of Me2Si(OAc)2 and 98% by weight of an oligomer mixture with the average composition of [MeSi(OAc)2O1/2]0.02MeSi(OAc)O2/2]0.14[ MeSiO3/2]0.10 [Me2SiO2/2]0.39[Me2Si(OAc)O1/2]0.35.
  • EtSi(OAc)3 ethyltriacetoxysilane
  • the composition of the mixture was determined using 29-Si-NMR spectroscopy.
  • the mixture contained 7% by weight of (Me2SiO)3 and 93% by weight of an oligomer mixture with the average composition of [EtSi(OAc)2O1/2]0.13EtSi(OAc)O2/2]0.15[Me2SiO2/2 ]0.44- [Me 2 Si(OAc)O 1/2 ] 0.28 .
  • the mixture contained 1.5% by weight of (Me 2 SiO) 4 , 0.5% by weight of Me 2 Si(OAc) 2 and 98% by weight of an oligomer mixture with the average composition of [Me2SiO2/2]0, 76[Me2Si(OAc)O1/2]0.24.
  • V2 Production of an oligomer mixture B5 110 g (1.5 mol D units) of a double-sided hydroxy-terminated polydimethylsiloxane with a visco
  • Comparative Example 3 1400 g of a linear polydimethylsiloxane with hydroxydimethylsilyl end groups and a viscosity of 80,000 mPa s, 600 g of a trimethylsilyl-terminated linear polydimethylsiloxane on both sides with a viscosity of 1000 mPa s were mixed with 104 g of acetoxy crosslinker V1 mixed together in a planetary mixer and stirred for 5 minutes.
  • the approach is then homogeneously mixed in with 240 g of pyrogenic hydrophilic silica with a specific surface area of 150 m2/g, 1.3 g of a tin catalyst, which is prepared by mixing 0.26 kg of di-n-butyltin diacetate with 32 kg of a trimethylsilyl-terminated linear polydimethylsiloxane on both sides with a viscosity of 100 mPa s, and 5 g of 3-glycidoxypropyltrimethoxysilane and stirred for a further 5 minutes under a reduced pressure of 200 mbar. The resulting mixture was then filled into moisture-tight containers.
  • a tin catalyst which is prepared by mixing 0.26 kg of di-n-butyltin diacetate with 32 kg of a trimethylsilyl-terminated linear polydimethylsiloxane on both sides with a viscosity of 100 mPa s, and 5 g of 3-glycidoxypropyltri
  • Comparative Example 4 (V4) The procedure described in Comparative Example 3 was repeated with the modification that 20 g of oligomer mixture B4 was added together with the acetoxy crosslinker V120. The resulting mixture was processed as described in Comparative Example 3. The results can be found in Table 1. Table 1:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

The invention relates to cross-linkable compositions on the basis of organosilicon compounds producible by using (A) organosilicon compounds having at least two OH groups and (B) siloxanes of formula (II), the radicals and indices having the meanings indicated in claim 1. The invention also relates to a method for the production thereof, and to their use.

Description

Wa12208-S/Bu Vernetzbare Zusammensetzungen auf der Basis von Organosilicium- verbindungen Die Erfindung betrifft vernetzbare Zusammensetzungen auf der Basis von Organosiliciumverbindungen, Verfahren zu deren Her- stellung sowie deren Verwendung. Unter Ausschluss von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur unter Abspaltung von Essigsäure zu Elastome- ren aushärtende Einkomponenten-Dichtmassen sind bereits be- kannt. Diese Produkte werden in großen Mengen z.B. in der Bau- industrie eingesetzt. Die Basis dieser Mischungen sind Polyme- re, die durch Silylgruppen terminiert sind, die reaktive Sub- stituenten, wie OH-Gruppen oder hydrolysierbare Gruppen, wie z.B. Acetoxygruppen, tragen. Des Weiteren können diese Dicht- massen Füllstoffe, Weichmacher, Vernetzer, Katalysatoren sowie verschiedene Additive enthalten. Um als Dichtmassen verwendbar zu sein, müssen die ausgehärteten Formkörper einen niedrigen Modul aufweisen. DE-A 102004046179 beschreibt vernetzbare Massen auf Basis von Organosiliciumverbindungen mit regelbarem Modul unter Verwen- dung von monohydroxyfunktionellen Organosiliciumverbindungen. Diese Verbindungen lassen sich aber nur aufwändig gezielt herstellen. In DE-A1102004014216 sind oligomere Siloxane beschrieben, die aus Methyltrimethoxysilan oder Methyltriethoxysilan hergestellt wurden. Diese Verbindungen sind aber in durch Kondensationsre- aktion Essigsäure abspaltenden vernetzbaren Massen nicht ver- wendbar, da die Massen nicht mehr lagerstabil sind. Eine Her- stellung von Acetoxygruppen enthaltenen oligomeren Siloxanen wird nicht beschrieben. Wa12208-S/Bu 2 Die Herstellung von Acetoxygruppen enthaltenden oligomeren Si- loxanen ist bereits bekannt und vielfach beschrieben. So werden in EP-A10003285 Methyltrichlorsilan, Octamethyltetracyclosilo- xan und Essigsäureüberschuss in Anwesenheit von Perfluorbutan- sulfonsäure umgesetzt. Dabei entsteht gasförmige HCl. EP-A1 3611215 beansprucht ein Verfahren zur Herstellung Acetoxygrup- pen-tragenden Siloxanen aus alkoxyhaltigen Siloxanen, Essigsäu- reanhydrid, Essigsäure und Trifluormethansulfonsäure unter Ab- spaltung von einem Alkohol. Ähnlich wird in EP-A1 3744754 oder EP-A1 3744755 vorgegangen, wobei bei letzterem die Siloxane auch Q-Einheiten enthalten können. Ein Gegenstand der Erfindung sind vernetzbare Zusammensetzungen herstellbar unter Verwendung von (A) Organosiliciumverbindungen mit mindestens zwei OH-Gruppen und (B) Siloxane der Formel (II)
Figure imgf000003_0001
Wa12208-S/Bu 3 wobei R gleich oder verschieden sein kann und einwertige, gegebenen- falls substituierte Kohlenwasserstoffreste bedeutet, R1 gleich oder verschieden sein kann und einwertige Kohlenwas- serstoffreste mit 1 bis 16 Kohlenstoffatomen bedeutet, R2 gleich oder verschieden sein kann und Acylreste bedeutet, x gleich oder verschieden sein kann und 0 oder eine ganze Zahl von 1 bis 9 ist und z 1 oder 2 ist, mit der Maßgabe, dass die Summe aller x in Formel (II) größer 0 ist. Beispiele für Reste R sind Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, 1-n-Butyl-, 2-n-Butyl-, iso-Butyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pen- tylrest; Hexylreste, wie der n-Hexylrest; Heptylreste, wie der n-Heptylrest; Octylreste, wie der n-Octylrest und iso-Octylres- te, wie der 2,2,4-Trimethylpentylrest; Nonylreste, wie der n- Nonylrest; Decylreste, wie der n-Decylrest; Dodecylreste, wie der n-Dodecylrest; Octadecylreste, wie der n-Octadecylrest; Cy- cloalkylreste, wie der Cyclopentyl-, Cyclohexyl-, Cycloheptyl- rest und Methylcyclohexylreste; Alkenylreste, wie der Vinyl-, 1-Propenyl- und der 2-Propenylrest; Arylreste, wie der Phenyl-, Naphthyl-, Anthryl- und Phenanthrylrest; Alkarylreste, wie o-, m-, p-Tolylreste; Xylylreste und Ethylphenylreste; und Aralkyl- reste, wie der Benzylrest, der der ^- und der ^-Phenylethyl- rest. Bevorzugt handelt es sich bei den Resten R und R3 unabhängig voneinander um einwertige Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um den Methylrest, den Vinyl- oder den Phenylrest, insbesondere um den Methylrest. Wa12208-S/Bu 4 Beispiele für Reste R1 sind die für R angegebenen Kohlenwasser- stoffreste mit 1 bis 16 Kohlenstoffatomen. Bevorzugt handelt es sich bei Resten R1 um einwertige Kohlen- wasserstoffreste mit 1 bis 16 Kohlenstoffatomen, besonders be- vorzugt um geradkettige, verzweigte oder cyclische Kohlenwas- serstoffreste mit 1 bis 8 Kohlenwasserstoffatomen, insbesondere um den Methylrest, den Vinyl-, den Ethyl-, den Propyl- oder den Phenylrest. Vorzugsweise handelt es sich bei den Resten R2 um Gruppen der Formel R`-(C=O)-, wobei R` Organylrest oder Wasserstoffatom be- deutet, bevorzugt Organylrest. Bevorzugt handelt es sich bei den Resten R2 um Acylreste mit 1 bis 12 Kohlenstoffatomen, besonders bevorzugt um Acylreste mit 1 bis 8 Kohlenstoffatomen, insbesondere um den Acetylrest CH3- (C=O)-. Bei den erfindungsgemäß eingesetzten Organosiliciumverbindungen (A) kann es sich um alle Organosiliciumverbindungen mit mindes- tens zwei OH-Gruppen handeln, die auch bisher in durch Konden- sationsreaktion vernetzbaren Massen eingesetzt worden sind. Bevorzugt handelt es sich bei den erfindungsgemäß eingesetzten Organosiliciumverbindungen (A) um im Wesentlichen lineare, OH- terminierte Organopolysiloxane, besonders bevorzugt um Organo- polysiloxane der Formel HO(SiR32O)nH (I), wobei Wa12208-S/Bu 5 R3 gleich oder verschieden sein kann und einwertige, gegebenen- falls substituierte Kohlenwasserstoffreste bedeutet, und n eine ganze Zahl von 30 bis 2000 ist. Beispiele für Reste R3 sind die für Rest R angegebenen Bei- spiele. Bevorzugt handelt es sich bei Rest R3 unabhängig voneinander um einwertige Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffato- men, besonders bevorzugt um den Methylrest, den Vinyl- oder den Phenylrest, insbesondere um den Methylrest. Wenngleich durch Formel (I) nicht ausgedrückt, können bis zu 0,1 % der Einheiten der Formel (I) durch Einheiten SiR3O3/2 oder SiO4/2 mit R3 gleich der obengenannten Bedeutung ersetzt sein. Bevorzugte Beispiele für Organosiliciumverbindungen (A) sind (HO)Me2SiO[SiMe2O]30-2000SiMe2(OH) mit Me gleich Methylrest. Die erfindungsgemäß eingesetzten Organosiliciumverbindungen (A) haben eine Viskosität von bevorzugt 50 bis 106 mPas, besonders bevorzugt von 1000 bis 350000 mPas, jeweils bei 25°C. Bei den Organopolysiloxanen (A) handelt es sich um handelsübli- che Produkte bzw. können nach in der Siliciumchemie gängigen Methoden hergestellt werden. Bevorzugt handelt es sich bei den erfindungsgemäß eingesetzten Siloxanen (B) um AcO(SiMe2O)1-5SiR1(OAc)2, (AcO(SiMe2O)1-5)2SiR1(OAc) oder AcO(SiMe2O)1-5SiR1(OAc)O(SiMe2O)1-5SiR1(OAc)2 Wa12208-S/Bu 6 mit Me gleich Methylrest, Ac gleich Acetylrest und R1 gleich geradkettige, verzweigte oder cyclische Kohlenwasserstoffreste mit 1 bis 8 Kohlenwasserstoffatomen, wobei die Reste R1 inner- halb der einzelnen Verbindungen eine identische Bedeutung ha- ben, besonders bevorzugt um AcO(SiMe2O)1-5SiMe(OAc)2, (AcO(SiMe2O)1-5)2SiMe(OAc), AcO(SiMe2O)1-5SiMe(OAc)O(SiMe2O)1-5SiMe(OAc)2, AcO(SiMe2O)1-5SiVi(OAc)2, (AcO(SiMe2O)1-5)2SiVi(OAc), AcO(SiMe2O)1-5SiVi(OAc)O(SiMe2O)1-5SiVi(OAc)2, AcO(SiMe2O)1-5SiEt(OAc)2, (AcO(SiMe2O)1-5)2SiEt(OAc), AcO(SiMe2O)1-5SiEt(OAc)O(SiMe2O)1-5SiEt(OAc)2, AcO(SiMe2O)1-5SiPr(OAc)2, (AcO(SiMe2O)1-5)2SiPr(OAc), AcO(SiMe2O)1-5SiPr(OAc)O(SiMe2O)1-5SiPr(OAc)2, AcO(SiMe2O)1-5SiPh(OAc)2, (AcO(SiMe2O)3)1-5SiPh(OAc) oder AcO(SiMe2O)1-5SiPh(OAc)O(SiMe2O)1-5SiPh(OAc)2, insbesondere um AcO(SiMe2O)3SiMe(OAc)2, (AcO(SiMe2O)3)2SiMe(OAc), AcO(SiMe2O)3SiMe(OAc)O(SiMe2O)3SiMe(OAc)2, AcO(SiMe2O)3SiVi(OAc)2, (AcO(SiMe2O)3)2SiVi(OAc), AcO(SiMe2O)3SiVi(OAc)O(SiMe2O)3SiVi(OAc)2, AcO(SiMe2O)3SiEt(OAc)2, (AcO(SiMe2O)3)2SiEt(OAc)oder AcO(SiMe2O)3SiEt(OAc)O(SiMe2O)3SiEt(OAc)2, mit Me gleich Methylrest, Et gleich Ethylrest, Vi gleich Vinyl- rest, Pr gleich n-Propylrest und Ph gleich Phenylrest. Die erfindungsgemäß eingesetzten Siloxanen (B) haben eine Vis- kosität von bevorzugt 1 bis 100 mPas, besonders bevorzugt von 3 bis 50 mPas, jeweils bei 25°C. Die erfindungsgemäßen Zusammensetzungen enthalten Komponente (B) in Mengen von bevorzugt 0,1 bis 10 Gewichtsteilen, beson- ders bevorzugt von 0,2 bis 8 Gewichtsteilen, insbesondere von Wa12208-S/Bu 7 0,3 bis 5 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A). Die Siloxane (B) können nach in der Siliciumchemie gängigen Me- thoden hergestellt werden, wie z.B. durch Äquilibrierung oder Ringöffnung von D3. Die erfindungsgemäß eingesetzten Siloxane (B) werden bevorzugt durch Äquilibrierung von Polydiorganylsiloxanen mit Triacyloxy- silanen unter saurer Katalyse mit halogenierten Sulfonsäuren oder aus Triacyloxysilanen mit Hexaorganylcyclotrisiloxanen und Katalysatoren, wie basischen Ammoniumverbindungen, hergestellt. Ein weiterer Gegenstand der Erfindung ist ein Verfahren (Ver- fahren 1) zur Herstellung der erfindungsgemäß eingesetzten Si- loxane (B) durch Äquilibrierung von (i) cyclischen und/oder li- nearen Polydiorganylsiloxanen mit (ii) Triacyloxysilanen unter saurer Katalyse mit (iii) halogenierten Sulfonsäuren. Bei den erfindungsgemäß eingesetzten Siloxanen (i) handelt es sich bevorzugt um cyclische Diorganylsiloxane mit 3 bis 8 Sili- ciumatomen je Molekül und/oder lineare Polydiorganylsiloxane, die mit Hydroxylgruppen, bevorzugt α,ω-OH-terminierte Polydior- ganylsiloxane, Methylgruppen, bevorzugt α,ω-Triorganylsiloxy- terminierte Polydiorganylsiloxane, Vinylgruppen, bevorzugt α,ω- Diorganylvinylsiloxy-terminierte Polydiorganylsiloxane, Wasser- stoffatomen, bevorzugt α,ω-Hydrogendiorganylsiloxy-terminierte Polydiorganylsiloxane, oder Acyloxygruppen, bevorzugt α,ω-Or- ganyldiacetoxysiloxygruppen-terminierte Polydiorganylsiloxane, terminiert sind, besonders bevorzugt um cyclische Dimethylsilo- xane mit 3 bis 8 Siliciumatomen je Molekül und/oder lineare Po- lydimethylsiloxane, die mit Hydroxylgruppen oder Methylgruppen terminiert sind, insbesondere cyclische Dimethylsiloxane mit 3 Wa12208-S/Bu 8 bis 6 Siliciumatomen, α,ω-OH-terminierte Polydimethylsiloxane oder α,ω-Trimethylsiloxy-terminierte Polydimethylsiloxane. Bei den erfindungsgemäß eingesetzten Silanen (ii) handelt es sich bevorzugt um Organotriacetoxysilane. Bei dem erfindungsgemäßen Verfahren 1 werden Siloxane (i) und Silane (ii) in einer Menge eingesetzt, dass das molare Verhält- nis von Silicium in den D-Einheiten (=SiO2/2) der Siloxane (i) zu Silicium in Silanen (ii) bevorzugt 1 bis 10, besonders be- vorzugt 2 bis 8, beträgt. Bei den erfindungsgemäß eingesetzten Sulfonsäuren (iii) handelt es sich bevorzugt um chlorierte oder fluorierte Sulfonsäuren, wie Trichlormethansulfonsäure, Trifluormethansulfonsäure oder Perfluorbutansulfonsäure, besonders bevorzugt um Trifluorme- thansulfonsäure. Bei dem erfindungsgemäßen Verfahren (1) werden Sulfonsäuren (iii) bevorzugt in Mengen von 50 Gew.-ppm bis 2000 Gew.-ppm, bezogen auf das Gesamtgewicht der Reaktionsmischung, zugesetzt. Zusätzlich zu den Komponenten (i), (ii) und (iii) können bei dem erfindungsgemäßen Verfahren (1) weitere Komponenten, wie z.B. Lösungsmittel, eingesetzt werden, was jedoch nicht bevor- zugt ist. Bei dem erfindungsgemäßen Verfahren (1) können die eingesetzten Komponenten in beliebiger Reihenfolge miteinander vermischt werden. Beim Einsatz von OH-terminierten linearen Siloxanen als Komponente (i) wird bevorzugt zuerst das Siloxan (i) mit dem Silan (ii) vermischt und anschließend Sulfonsäure (iii) zugege- ben. Wa12208-S/Bu 9 Das erfindungsgemäße Vermischen erfolgt bevorzugt bei dem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa. Das erfindungsgemäße Verfahren (1) wird bevorzugt bei Tempera- turen im Bereich von 20 bis 120 ^C durchgeführt. Die Reaktions- zeit beträgt bevorzugt 5 Minuten bis 5 Stunden. Katalysator- menge, Reaktionszeit und Reaktionstemperatur werden bevorzugt so abgestimmt, dass ein Umsatz von 20 % bis 80 % vom Equilib- riergleichgewicht erreicht wird. Das Equilibriergleichgewicht ist erreicht, wenn alle Acyloxygruppen statistisch verteilt sind, also vorzugsweise ein Fortsetzen der Reaktion zu keiner Änderung der Verteilung der Acyloxygruppen im 29Si-NMR mehr führt. Beispielsweise wäre bei einem molaren Einsatzverhältnis von Silicium in den D-Einheiten (=SiO2/2) der Siloxane (i) zu Silicium in Silanen (ii) von 3 im Equilibriergleichgewicht 2/3 der Acyloxygruppen an den D-Einheiten und 1/3 der Acyloxgruppen an Silicium in den Silanen gebunden. Bei dem erfindungsgemäßen Verfahren (1) kann nach Beendigung der Reaktion der saure Katalysator (iii) mit üblichen Methoden neutralisiert oder entfernt werden. Bevorzugt werden zur Neut- ralisation basische Verbindungen von Natrium oder Kalium ver- wendet. Bevorzugt werden zur Abtrennung schwach oder stark ba- sische Ionenaustauscher eingesetzt, wie z.B. solche, die unter den Handelsnamen Purolite A103, Amberlyst A21 oder Amberlyst A26 erhältlich sind. Die nach dem erfindungsgemäßen Verfahren (1) erhaltenen Pro- dukte können, falls gewünscht, filtriert und/oder entflüchtigt werden. Ein weiterer Gegenstand der Erfindung ist ein Verfahren (Ver- fahren 2) zur Herstellung der erfindungsgemäß eingesetzten Wa12208-S/Bu 10 Siloxane (B) durch Ringöffnung von (iv) Hexaorganylcyclotrisi- loxanen mit (ii) Triacyloxysilanen in Anwesenheit von (v) basi- schen Katalysatoren. Bei den erfindungsgemäß eingesetzten Hexaorganylcyclotrisiloxa- nen (iv) handelt es sich bevorzugt um Hexamethylcyclotrisilo- xan. Bei den erfindungsgemäß eingesetzten basischen Katalysatoren (v) handelt es sich bevorzugt um Ammoniumbasen, wie Tetrame- thylammoniumhydroxid, Tetrabutylammoniumhydroxid, Hexadecyltri- methylammoniumhydroxid oder Benzyltrimethylammoniumhydroxid, stark basische Ionentauscherharze mit Ammoniumhydroxidgruppen, wie solche käuflich erhältlich unter dem Handelsnamen Am- berlyst® A26 bei Merck, D-Darmstadt, oder Phosphoniumbasen, wie Tetrabutylphosphoniumhydroxid. Bei dem erfindungsgemäßen Verfahren (2) werden basischen Kata- lysatoren (v) bevorzugt in Mengen von 500 Gew.-ppm bis 10000 Gew.-ppm, bezogen auf das Gesamtgewicht der Reaktionsmischung, zugesetzt. Zusätzlich zu den Komponenten (iv), (ii) und (v) können bei dem erfindungsgemäßen Verfahren (2) weitere Komponenten, wie z.B. Lösungsmittel, eingesetzt werden, was jedoch nicht bevorzugt ist. Falls jedoch der Einsatz von Lösungsmittel erwünscht ist, handelt es sich bevorzugt um aprotische Lösungsmittel, wie Pa- raffine, Olefine, halogenierte Kohlenwasserstoffe, Aromaten, Ester, Ether oder Acetale. Bei dem erfindungsgemäßen Verfahren (2) können die eingesetzten Komponenten in beliebiger Reihenfolge miteinander vermischt werden. Wa12208-S/Bu 11 Das erfindungsgemäße Vermischen erfolgt bevorzugt bei dem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa. Das erfindungsgemäße Verfahren (2) wird bevorzugt bei Tempera- turen im Bereich von 50 bis 150 ^C durchgeführt. Die Reaktions- zeit beträgt bevorzugt 1 Stunde bis 8 Stunden. Katalysator- menge, Reaktionszeit und Reaktionstemperatur werden bevorzugt so abgestimmt, dass nach dem Entfernen des gegebenenfalls ein- gesetzten Lösungsmittels und/oder Abkühlen auf Raumtemperatur keine Kristalle mehr ausfallen. Bei dem erfindungsgemäßen Verfahren (2) kann nach Beendigung der Reaktion der basische Katalysator mit üblichen Methoden neutralisiert oder entfernt werden. Bevorzugt werden zur Neut- ralisation Sulfonsäuren, wie Methansulfonsäure, oder Chlorver- bindungen eingesetzt, die bei Hydrolyse Chlorwasserstoff ab- spalten können, wie Chlorsilane oder Säurechloride. Bevorzugt werden zur Abtrennung Ionenaustauscher mit Sulfonsäuregruppen eingesetzt, wie z.B. solche, die unter den Handelsnamen Puro- lite CT269 oder Amberlyst 15 oder Amberlyst 16 erhältlich sind. Die nach dem erfindungsgemäßen Verfahren (2) erhaltenen Pro- dukte können, falls gewünscht, filtriert und/oder entflüchtigt werden. Die erfindungsgemäßen Zusammensetzungen können neben den Kompo- nenten (A) und (B) Silane (C) der Formel (R8O)4-bSiR9b (III) und/oder deren Teilhydrolysate enthalten, wobei b gleich 0, 1 oder 2, bevorzugt 1, ist, Wa12208-S/Bu 12 R8 gleich oder verschieden sein kann und Acylreste bedeutet und R9 gleich oder verschieden sein kann und einwertige Kohlenwas- serstoffreste mit 1 bis 16 Kohlenstoffatomen bedeutet. Beispiele und bevorzugte Reste für Rest R8 sind die oben für R2 angegebenen Beispiele und bevorzugte Reste. Beispiele und bevorzugte Reste für Rest R9 sind die oben für R1 angegebenen Beispiele und bevorzugte Reste. Besonders bevorzugt haben die Reste R8 innerhalb der Komponente (C) eine identische Bedeutung, die besonders bevorzugt mit der Bedeutung von R2 in Komponente (B) übereinstimmt. Bei den gegebenenfalls eingesetzten Teilhydrolysaten (C) kann es sich um Teilhomohydrolysate handeln, d.h. Teilhydrolysate von einer Art von Silanen der Formel (III), wie auch um Teil- cohydrolysate, d.h. Teilhydrolysate von mindestens zwei ver- schiedenen Arten von Silanen der Formel (III). Unter dem Begriff Teilhydrolysate sind im Sinne der Erfindung Produkte zu verstehen, die durch Hydrolyse und/oder Kondensa- tion entstanden sind. Handelt es sich bei der in den erfindungsgemäßen Zusammenset- zungen eingesetzten Komponente (C) um Teilhydrolysate von Sila- nen der Formel (III), so sind solche mit bis zu 10 Siliciumato- men bevorzugt. Beispiele für erfindungsgemäß gegebenenfalls eingesetzte Kompo- nente (C) sind Methyltriacetoxysilan, Ethyltriacetoxysilan, n- Propyltriacetoxysilan, iso-Octyltriacetoxysilan, Vinyltriace- toxysilan und Phenyltriacetoxysilan, deren Teilhomohydrolysate Wa12208-S/Bu 13 oder Teilcohydrolysate sowie deren Mischungen, wobei Methyltri- acetoxysilan, Ethyltriacetoxysilan und Vinyltriacetoxysilan, deren Teilhomohydrolysate oder Teilcohydrolysate sowie deren Mischungen bevorzugt sind. Bei Komponente (C) handelt es sich um handelsübliche Produkte bzw. können nach in der Siliciumchemie gängigen Methoden herge- stellt werden. Falls die erfindungsgemäßen Zusammensetzungen Komponente (C) enthalten, handelt es sich um Mengen von bevorzugt 1 bis 20 Ge- wichtsteilen, besonders bevorzugt von 2 bis 16 Gewichtsteilen, insbesondere von 3 bis 12 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A). Die erfindungsgemäßen Zusam- mensetzungen enthalten bevorzugt Komponente (C). Zusätzlich zu den Komponenten (A), (B) und gegebenenfalls (C) können die erfindungsgemäßen Zusammensetzungen nun alle Stoffe enthalten, die auch bisher in durch Kondensationsreaktion ver- netzbaren Massen eingesetzt worden sind, wie z.B. Härtungsbe- schleuniger (D), Weichmacher (E), Füllstoffe (F), Haftvermitt- ler (G) und Additive (H). Als Härtungsbeschleuniger (D) können alle Härtungsbeschleuni- ger, die auch bisher in durch Kondensationsreaktion vernetzbare Massen eingesetzt werden, verwendet werden. Beispiele für Här- tungsbeschleuniger (D) sind Titanverbindungen, wie beispiels- weise Tetrabutyl- oder Tetraisopropyltitanat, oder Titanche- late, wie Bis(ethylacetoacetato)diisobutoxytitanium, oder orga- nische Zinnverbindungen, wie Di-n-butylzinndilaurat und Di-n- butylzinndiacetat, Di-n-butylzinnoxid, Dimethylzinndiacetat, Dimethylzinndilaurat, Dimethylzinndineodecanoate, Dimethylzin- noxid, Di-n-octylzinndiacetat, Di-n-octylzinndilaurat, Di-n-oc- Wa12208-S/Bu 14 tylzinnoxid sowie Umsetzungsprodukte dieser Verbindungen mit Alkoxysilanen, wie Tetraethoxysilan, Di-n-butylzinndiacetat, das Umsetzungsprodukt von Di-n-butylzinndiacetat mit Tetra- ethoxysilan, Zinkverbindungen, wie Zinkoctanoat, Säuren, wie n- Octansäure oder n-Octylphosphonsäure, wobei Di-n-octylzinndi- acetat, Di-n-octylzinndilaurat, Umsetzungsprodukte des Di-n- octylzinnoxids mit Tetraethoxysilan, Tetrabutyltitanat, Tetra- isopropyltitanat oder Bis(ethylacetoacetato)diisobutoxytitanium bevorzugt sind. Falls die erfindungsgemäßen Zusammensetzungen Härtungsbeschleu- niger (D) enthalten, handelt es sich um Mengen von vorzugsweise 0,001 bis 2 Gewichtsteilen, besonders bevorzugt 0,01 bis 1 Ge- wichtteilen, jeweils bezogen auf 100 Gewichtsteile Bestandteil (A). Die erfindungsgemäßen Zusammensetzungen enthalten bevor- zugt Härtungsbeschleuniger (D). Beispiele für gegebenenfalls eingesetzte Weichmacher (E) sind bei Raumtemperatur flüssige, durch Trimethylsiloxygruppen end- blockierte Polydimethylsiloxane, insbesondere mit Viskositäten bei 25°C im Bereich zwischen 5 und 1000 mPas, sowie hochsie- dende Kohlenwasserstoffe, wie zum Beispiel Paraffinöle oder Mi- neralöle bestehend aus naphthenischen und paraffinischen Ein- heiten. Falls die erfindungsgemäßen Zusammensetzungen Komponente (E) enthalten, handelt es sich um Mengen von vorzugsweise 1 bis 50 Gewichtsteilen, bevorzugt 1 bis 30 Gewichtsteilen, jeweils be- zogen auf 100 Gewichtsteile Siloxane (A). Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Weichmacher (E). Beispiele für gegebenenfalls eingesetzte Füllstoffe (F) sind nicht verstärkende Füllstoffe (F), also Füllstoffe mit einer Wa12208-S/Bu 15 BET-Oberfläche von bis zu 20 m2/g, wie Quarz, Diatomeenerde, Calciumsilikat, Zirkoniumsilikat, Zeolithe, Metalloxidpulver, wie Aluminium-, Titan-, Eisen- oder Zinkoxide bzw. deren Mischoxide, Bariumsulfat, Calciumcarbonat, Gips, Siliciumni- trid, Siliciumcarbid, Bornitrid, Glas- und Kunststoffpulver, wie Polyacrylnitrilpulver; verstärkende Füllstoffe, also Füll- stoffe mit einer BET-Oberfläche von mehr als 20 m2/g, wie pyro- gene Kieselsäure, gefällte Kieselsäure, gefällte Kreide und Ruß, wie Furnace- und Acetylenruß; faserförmige Füllstoffe, wie Asbest sowie Kunststofffasern. Bevorzugt handelt es sich bei der erfindungsgemäß gegebenen- falls eingesetzten Komponente (F) um nicht verstärkende silika- tische Füllstoffe (F), wie Quarz, Diatomeenerde oder Calciumsi- likat und/oder um verstärkende silikatische Füllstoffe, wie py- rogene Kieselsäure oder gefällte Kieselsäure, wobei pyrogene Kieselsäuren besonders bevorzugt sind. Falls die erfindungsgemäßen Zusammensetzungen Füllstoffe (F) enthalten, handelt es sich um Mengen von vorzugsweise 10 bis 150 Gewichtsteilen, besonders bevorzugt 10 bis 130 Gewichtstei- len, insbesondere 10 bis 100 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Organopolysiloxane (A). Die erfindungsge- mäßen Zusammensetzungen enthalten bevorzugt Füllstoff (F). Beispiele für die in den erfindungsgemäßen Zusammensetzungen gegebenenfalls eingesetzten Haftvermittler (G) sind Silane und Organopolysiloxane mit funktionellen Gruppen, wie beispiels- weise solche mit Glycidoxypropyl-, Aminopropyl-, Aminoethyla- minpropyl-, Ureidopropyl-, tert.-Butoxy- oder Methacryloxypro- pylresten. Falls jedoch bereits eine andere Komponente, wie etwa Komponenten (A), (B) oder (C), die genannten funktionellen Gruppen aufweist, kann auf einen Zusatz von Haftvermittler (G) Wa12208-S/Bu 16 verzichtet werden. Bevorzugt handelt es sich bei der erfindungsgemäß gegebenen- falls eingesetzte Komponente (G) um Di-tert.-butoxydiacetoxy- silan, (3-Glycidoxypropyl)trimethoxysilan oder (3-Glycidoxypro- pyl)triethoxysilan, deren Teilhomohydrolysate oder Teilcohydro- lysate sowie deren Mischungen, wobei Di-tert.-butoxydiacetoxy- silan besonders bevorzugt ist. Bei Komponente (G) handelt es sich um handelsübliche Produkte bzw. können diese nach in der Siliciumchemie gängigen Methoden hergestellt werden. Falls die erfindungsgemäßen Zusammensetzungen Komponente (G) enthalten, handelt es sich um Mengen von vorzugsweise 0,1 bis 3 Gewichtsteilen, bevorzugt 0,2 bis 2 Gewichtsteilen, jeweils be- zogen auf 100 Gewichtsteile Organopolysiloxane (A). Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Komponente (G). Beispiele für Additive (H) sind Pigmente, Farbstoffe, Riech- stoffe, Oxidationsinhibitoren, Mittel zur Beeinflussung der elektrischen Eigenschaften, wie leitfähiger Ruß, flammabweisend machende Mittel, Lichtschutzmittel, Biozide wie Fungizide, Bac- tericide und Acarizide, zellenerzeugende Mittel, z.B. Azodicar- bonamid, Hitzestabilisatoren, Cokatalysatoren, wie Lewis- und Brönstedsäuren, z.B. Sulfonsäuren, Phosphorsäuren, Phoshorsäu- reester, Phosphonsäuren und Phosphonsäureester, Thixotropier- mittel, wie beispielsweise einseitig oder beidseitig OH-endter- miniertes Polyethylenglykol, Mittel zur weiteren Regulierung des Moduls wie Polydimethylsiloxane mit einer OH-Endgruppe, so- wie beliebige Siloxane, die unterschiedlich zu Komponenten (A), (B), (C) und (G) sind. Wa12208-S/Bu 17 Falls die erfindungsgemäßen Zusammensetzungen Additive (H) ent- halten, handelt es sich um Mengen von vorzugsweise 0,1 bis 20 Gewichtsteilen, besonders bevorzugt 0,1 bis 15 Gewichtsteilen, insbesondere 0,1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Organopolysiloxane (A). Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Komponente (H). Bei den einzelnen Bestandteilen der erfindungsgemäßen Zusammen- setzungen kann es sich jeweils um eine Art eines solchen Be- standteils wie auch um ein Gemisch aus mindestens zwei ver- schiedenen Arten derartiger Bestandteile handeln. Bevorzugt handelt es sich bei den erfindungsgemäßen Zusammen- setzungen um solche herstellbar unter Verwendung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II), gegebenenfalls (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, gegebenenfalls (D) Härtungsbeschleunigern, gegebenenfalls (E) Weichmachern, gegebenenfalls (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und gegebenenfalls (H) Additiven. Besonders bevorzugt handelt es sich bei den erfindungsgemäßen Zusammensetzungen um solche herstellbar unter Verwendung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II), (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, gegebenenfalls (D) Härtungsbeschleunigern, gegebenenfalls (E) Weichmachern, gegebenenfalls (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und Wa12208-S/Bu 18 gegebenenfalls (H) Additiven. Insbesondere handelt es sich bei den erfindungsgemäßen Zusam- mensetzungen um solche herstellbar unter Verwendung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II) mit R2 gleich Acetylrest, (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, (D) Härtungsbeschleunigern, gegebenenfalls (E) Weichmachern, gegebenenfalls (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und gegebenenfalls (H) Additiven. Ganz besonders bevorzugt handelt es sich bei den erfindungsge- mäßen Zusammensetzungen um solche herstellbar unter Verwendung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II) mit R2 gleich Acetylrest, (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, (D) Härtungsbeschleunigern, gegebenenfalls (E) Weichmachern, (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und gegebenenfalls (H) Additiven. Ganz insbesondere bevorzugt handelt es sich bei den erfindungs- gemäßen Zusammensetzungen um solche herstellbar unter Verwen- dung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II) mit R2 gleich Acetylrest, (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, (D) Härtungsbeschleunigern, (E) Weichmachern, Wa12208-S/Bu 19 (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und gegebenenfalls (H) Additiven. Die erfindungsgemäßen Zusammensetzungen enthalten außer die Komponenten (A) bis (H) bevorzugt keine weiteren Bestandteile. Bei den erfindungsgemäßen Zusammensetzungen handelt es sich be- vorzugt um zähflüssige bis pastöse Massen. Zur Bereitung der erfindungsgemäßen Zusammensetzungen können alle Bestandteile in beliebiger Reihenfolge miteinander ver- mischt werden. Dieses Vermischen kann bei Raumtemperatur und dem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa, erfolgen. Falls erwünscht, kann dieses Vermischen aber auch bei höheren Temperaturen erfolgen, z.B. bei Tempera- turen im Bereich von 35 bis 135 ^C. Weiterhin ist es möglich, zeitweilig oder ständig unter vermindertem Druck zu mischen, wie z.B. bei 30 bis 500 hPa Absolutdruck, um flüchtige Verbin- dungen oder Luft zu entfernen. Das erfindungsgemäße Vermischen findet bevorzugt unter weitest- gehendem Ausschluss von Wasser statt, d.h. unter Einsatz von Rohstoffen, welche einen Wassergehalt von vorzugsweise weniger als 10000 mg/kg, bevorzugt von weniger als 5000 mg/kg, insbe- sondere von weniger als 1000 mg/kg aufweisen. Während des Mischprozesses wird bevorzugt mit trockener Luft oder Schutzgas wie Stickstoff beschleiert, wobei das jeweilige Gas einen Feuchtegehalt von vorzugsweise weniger als 10000 mg/kg, bevor- zugt von weniger als 1000 mg/kg, insbesondere von weniger als 500 mg/kg, aufweist. Die Pasten werden nach dem Herstellen in handelsübliche feuchtigkeitsdichte Gebinde gefüllt, wie Kartu- schen, Schlauchbeutel, Eimer und Fässer. Wa12208-S/Bu 20 In einer bevorzugten Verfahrensweise werden zunächst die Kompo- nenten (A), (B), gegebenenfalls (C) und (E) miteinander ver- mischt, danach gegebenenfalls Füllstoffe (F) zugegeben und schließlich gegebenenfalls weitere Bestandteile (D), (G) und (H) zugegeben, wobei die Temperatur vor dem Abfüllen 60°C nicht übersteigt. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Zusammensetzungen durch Ver- mischen der einzelnen Bestandteile. Das erfindungsgemäße Verfahren kann kontinuierlich, diskontinu- ierlich oder semikontinuierlich nach bekannten Verfahren und unter Verwendung von bekannten Apparaturen erfolgen. Die erfindungsgemäßen bzw. erfindungsgemäß hergestellten Zusam- mensetzungen sind unter Ausschluss von Feuchtigkeit lagerfähig und bei Zutritt von Feuchtigkeit vernetzbar. Für die Vernetzung der erfindungsgemäßen Zusammensetzungen reicht der übliche Wassergehalt der Luft aus. Die Vernetzung der erfindungsgemäßen Zusammensetzungen erfolgt vorzugsweise bei Raumtemperatur. Sie kann, falls erwünscht, auch bei höheren oder niedrigeren Temperaturen als Raumtemperatur, z.B. bei -5° bis 15°C oder bei 30°C bis 50°C und/oder mittels den normalen Wassergehalt der Luft übersteigenden Konzentrationen von Wasser durchgeführt werden. Vorzugsweise wird die Vernetzung bei einem Druck von 100 bis 1100 hPa, insbesondere beim Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa, durchgeführt. Ein weiterer Gegenstand der vorliegenden Erfindung sind Wa12208-S/Bu 21 Formkörper, hergestellt durch Vernetzung der erfindungsgemäßen Zusammensetzungen. Die erfindungsgemäßen Formkörper haben eine Spannung bei 100% Dehnung von bevorzugt kleiner 0,4 MPa. Die erfindungsgemäßen Zusammensetzungen können für alle Verwen- dungszwecke eingesetzt werden, für die unter Ausschluss von Wasser lagerfähige, bei Zutritt von Wasser bei Raumtemperatur zu Harzen oder Elastomeren vernetzende Massen eingesetzt werden können. Die erfindungsgemäßen Zusammensetzungen eignen sich somit aus- gezeichnet beispielsweise als Abdichtmassen für Fugen, ein- schließlich senkrecht verlaufender Fugen und ähnlichen Leerräu- men von z.B. 10 bis 40 mm lichter Weite, z.B. von Gebäuden, Land-, Wasser- und Luftfahrzeugen, oder als Klebstoffe oder Verkittungsmassen, z.B. im Fensterbau oder bei der Herstellung von Vitrinen, sowie beispielsweise zur Herstellung von Schutz- überzügen, einschließlich solcher für der ständigen Einwirkung von Süß- oder Meerwasser ausgesetzten Oberflächen oder das Gleiten verhindernden Überzügen oder von gummielastischen Form- körpern. Die erfindungsgemäßen Zusammensetzungen haben den Vorteil, dass sie leicht herzustellen sind und sich durch eine sehr hohe La- gerstabilität auszeichnen. Des Weiteren haben die erfindungsgemäßen Massen den Vorteil, dass sie eine sehr gute Handhabbarkeit bei der Anwendung zeigen und bei einer Vielzahl von Applikation ausgezeichnete Verarbei- tungseigenschaften aufweisen. Wa12208-S/Bu 22 Die erfindungsgemäßen vernetzbaren Zusammensetzungen haben den Vorteil, dass der Modul durch den Anteil von Komponente (B) gezielt eingestellt werden kann, ohne die Rheologie der Massen zu beeinflussen. Die erfindungsgemäßen vernetzbaren Zusammensetzungen haben den Vorteil, dass sie bei Lagerung, insbesondere bei Temperaturen unter 0°C, homogen bleiben und keine Bestandteile auskristalli- sieren. Die erfindungsgemäßen vernetzbaren Zusammensetzungen haben den Vorteil, dass sie auf einer Vielzahl von Untergründen sehr gut haften. Ferner haben die erfindungsgemäßen Massen den Vorteil, dass sie im ausgehärteten Zustand hohe Weiterreißfestigkeiten der ausge- härteten Vulkanisate erreichen. Ferner haben die erfindungsgemäßen Massen den Vorteil, dass im ausgehärteten Zustand Formkörper nach ISO 8340 die Prüfungen gemäß ISO 11600 in der Klasse 25 sicher bestehen. Die erfindungsgemäßen vernetzbaren Massen haben den Vorteil, dass sie hinsichtlich der eingesetzten Stoffe sehr wirtschaft- lich sind. In den nachstehend beschriebenen Beispielen beziehen sich alle Viskositätsangaben auf eine Temperatur von 25°C. Sofern nicht anders angegeben, werden die nachstehenden Beispiele bei einem Druck der umgebenden Atmosphäre, also etwa bei 1000 hPa, und bei Raumtemperatur, also bei etwa 23°C, bzw. bei einer Tempe- ratur, die sich beim Zusammengeben der Reaktanden bei Raumtem- peratur ohne zusätzliche Heizung oder Kühlung einstellt, sowie Wa12208-S/Bu 23 bei einer relativen Luftfeuchtigkeit von etwa 50 % durchge- führt. Des weiteren beziehen sich alle Angaben von Teilen und Prozentsätzen, soweit nichts anderes angegeben ist, auf das Gewicht. Die Zugfestigkeit, die Reißdehnung und die Spannung bei 100 % Dehnung werden entsprechend der ISO 8339 (Verfahren A) bestimmt. Die Härte wird entsprechned der ISO 868 bestimmt. Im Folgenden werden Abkürzungen benutzt: Me für Methylrest, Et für Ethylrest und iOct für 2,2,4-Trimethylpentylrest. Acetoxyvernetzer V1: besteht aus 3 % Di-tert.-Butoxydiacetoxy- silan und 97% eines Oligomers hergestellt durch Totalhydrolyse und Kondensation eines Gemischs aus Methyltriacetoxysilan und Ethyltriacetoxysilan mit einem molaren Verhältnis von Me- thyl- zu Ethylgruppen von 3 zu 7 und einem Gehalt an SiO2 von 28,7 Gew.-%. Beispiel 1 Herstellung eines Oligomerengemischs B1 110 g (1,5 mol D-Einheiten) eines beidseitig hydroxyterminier- ten Polydimethylsiloxans mit einer Viskosität von 70 mPa·s und 116 g (0,5 mol) Vinyltriacetoxysilan (= ViSi(OAc)3), erhältlich bei der Wacker Chemie AG, D-München unter der Bezeichnung GENIOSIL® GF 62, werden 10 min bei Raumtemperatur vermischt, dann 0,20 g Trifluormethansulfonsäure, käuflich erhältlich bei Merck KGaA, D-Darmstadt, zugemischt und 4 Stunden auf 100°C er- hitzt und anschließend mit 1,09 g einer Lösung von Natriumace- tat in Methanol (10%ig) neutralisiert. Wa12208-S/Bu 24 Nach dem Abkühlen auf Raumtemperatur wird eine homogene Flüs- sigkeit erhalten. Die Zusammensetzung des Gemischs wurde mit- tels 29-Si-NMR Spektroskopie ermittelt. Das Gemisch enthielt 1,7 Gew.-% Me2Si(OAc)2 und 98,3 Gew.-% eines Oligomerengemischs der mittleren Zusammensetzung von [ViSi(OAc)2O1/2]0,01[ViSi(OAc)O2/2]0,16[ViSiO3/2]0,09 [Me2SiO2/2]0,38[Me2Si(OAc)O1/2]0,36. Beispiel 2 Herstellung eines Oligomerengemischs B2 110 g (1,5 mol D-Einheiten) eines beidseitig hydroxyterminier- ten Polydimethylsiloxans mit einer Viskosität von 70 mPa·s und 110 g (0,5 mol) Methyltriacetoxysilan (= MeSi(OAc)3), erhält- lich bei der Wacker Chemie AG, D-München unter der Bezeichnung „Vernetzer ES 15“, werden 10 min bei Raumtemperatur vermischt, dann 0,13 g Trifluormethansulfonsäure, käuflich erhältlich bei Merck KGaA, D-Darmstadt, zugemischt und 3 Stunden auf 90°C er- hitzt und anschließend mit 0,71 g einer Lösung von Natriu- macetat in Methanol (10%ig) neutralisiert. Nach dem Abkühlen auf Raumtemperatur wird eine homogene Flüs- sigkeit erhalten. Die Zusammensetzung des Gemischs wurde mit- tels 29-Si-NMR Spektroskopie ermittelt. Das Gemisch enthielt 2,0 Gew.-% Me2Si(OAc)2 und 98 Gew.-% eines Oligomerengemischs der mittleren Zusammensetzung von [MeSi(OAc)2O1/2]0,02MeSi(OAc)O2/2]0,14[MeSiO3/2]0,10 [Me2SiO2/2]0,39[Me2Si(OAc)O1/2]0,35. Beispiel 3 Herstellung eines Oligomerengemischs B3 22,3 g (0,3 mol D-Einheiten) Hexamethylcyclotrisiloxan, 23,4 g (0,1 mol) Ethyltriacetoxysilan (= EtSi(OAc)3), erhältlich bei der Wacker Chemie AG, D-München unter der Bezeichnung „Vernet- zer ES 23“ und 0,5 g Benzyl-trimethyl-ammoniumhydroxid-Lösung Wa12208-S/Bu 25 (40%ig in Methanol, käuflich erhältlich bei Merck KgaA, D-Darm- stadt) werden 5 Stunden auf 100°C erhitzt und anschließend mit 0,77 g einer Lösung von Dichlordimethylsilan in Heptan (10%ig) neutralisiert. Nach dem Abkühlen auf Raumtemperatur wird eine homogene Flüs- sigkeit erhalten. Die Zusammensetzung des Gemischs wurde mit- tels 29-Si-NMR Spektroskopie ermittelt. Das Gemisch enthielt 7 Gew.-% (Me2SiO)3 und 93 Gew.-% eines Oligomerengemischs der mittleren Zusammensetzung von [EtSi(OAc)2O1/2]0,13EtSi(OAc)O2/2]0,15[Me2SiO2/2]0,44- [Me2Si(OAc)O1/2]0,28. Vergleichsbeispiel 1 (V1) Herstellung eines Oligomerengemischs B4 25 g Essigsäureanhydrid und 0,07 g Trifluormethansulfonsäure werden vorgelegt und unter Rühren 110 g (1,5 mol D-Einheiten) eines beidseitig hydroxyterminierten Polydimethylsiloxans mit einer Viskosität von 70 mPa·s, langsam zugeben, dann 2 Stunden bei 120°C gerührt und mit 0,38 g einer Lösung von Natriumacetat in Methanol (10%ig) neutralisieren. Nach dem Abkühlen auf Raumtemperatur wird eine homogene Flüs- sigkeit erhalten. Die Zusammensetzung des Gemischs wurde mit- tels 29-Si-NMR Spektroskopie ermittelt. Das Gemisch enthielt 1,5 Gew.-% (Me2SiO)4, 0,5 Gew.-% Me2Si(OAc)2 und 98 Gew.-% eines Oligomerengemischs der mittleren Zusammensetzung von [Me2SiO2/2]0,76[Me2Si(OAc)O1/2]0,24. Vergleichsbeispiel 2 (V2) Herstellung eines Oligomerengemischs B5 110 g (1,5 mol D-Einheiten) eines beidseitig hydroxyterminier- ten Polydimethylsiloxans mit einer Viskosität von 70 mPa·s, 116 g (0,5 mol) Vinyltriacetoxysilan (= ViSi(OAc)3), erhältlich bei der Wacker Chemie AG, D-München unter der Bezeichnung GENIOSIL® Wa12208-S/Bu 26 GF 62 werden 10 min bei Raumtemperatur vermischt, dann 0,20 g Methansulfonsäure, käuflich erhältlich bei Merck KGaA, D-Darm- stadt, zugemischt und 4 Stunden auf 150°C erhitzt und mit 1,70 g einer Lösung von Natriumacetat in Methanol (10%ig) neutrali- siert. Nach dem Abkühlen auf Raumtemperatur wird eine inhomogene Flüs- sigkeit erhalten, die sich bei Raumtemperatur nach 24 Stunden stehenlassen in zwei Phasen auftrennt. Vergleichsbeispiel 3 (V3) 1400 g eines linearen Polydimethylsiloxans mit Hydroxydimethyl- silyl-Endgruppen und einer Viskosität von 80000 mPa·s, 600 g eines beidseitig Trimethylsilyl-terminierten linearen Polydime- thylsiloxans mit einer Viskosität von 1000 mPa·s wurden mit 104 g Acetoxyvernetzer V1 in einem Planetenmischer miteinander gemischt und 5 Minuten gerührt. Anschließend wird der Ansatz durch homogenes Einmischen von 240 g pyrogener hydrophiler Kie- selsäure mit einer spezifischen Oberfläche von 150 m²/g, 1,3 g eines Zinnkatalysators, der hergestellt wird durch Mischen von 0,26 kg Di-n-butylzinndiacetat mit 32 kg eines beidseitig Tri- methylsilyl-terminierten linearen Polydimethylsiloxans mit ei- ner Viskosität von 100 mPa·s, und 5 g 3-Glycidoxypropyl-trime- thoxysilan vervollständigt und weitere 5 Minuten unter einem verminderten Druck von 200 mbar gerührt. Die so erhaltene Mischung wurde anschließend in feuchtigkeits- dichte Gebinde abgefüllt. 24h nach der Herstellung der Mischung wurde aus dieser Mischung 2 mm dicke Platten ausgezogen und da- raus nach 7 Tagen Aushärtung bei 23°C und 50% relativer Luft- feuchte hantelförmige Prüfkörper des Typs 2 gemäß ISO 37, 6. Ausgabe 2017-11, hergestellt. Die mechanischen Eigenschaften, die an diesen Prüfkörpern gemessen wurden, können Tabelle 1 entnommen werden. Wa12208-S/Bu 27 Beispiele 4-6 Die in Vergleichsbeispiel 3 beschriebene Arbeitsweise wurde wiederholt mit der Abänderung, dass zusammen mit dem Ace- toxyvernetzer V1 jeweils 20 g der in Tabelle 1 angegebenen Oli- gomerengemische B1 bis B3 zugegeben werden. Mit den jeweils so erhaltenen Mischungen wurde wie in Vergleichsbeispiel 3 be- schrieben verfahren. Die Ergebnisse finden sich in Tabelle 1. Vergleichsbeispiel 4 (V4) Die in Vergleichsbeispiel 3 beschriebene Arbeitsweise wurde wiederholt mit der Abänderung, dass zusammen mit dem Ace- toxyvernetzer V120 g Oligomerengemisch B4 zugegeben wird. Mit der so erhaltenen Mischung wurde wie in Vergleichsbeispiel 3 beschrieben verfahren. Die Ergebnisse finden sich in Tabelle 1. Tabelle 1:
Figure imgf000028_0001
Wa12208-S/Bu Crosslinkable compositions based on organosilicon compounds The invention relates to crosslinkable compositions based on organosilicon compounds, processes for their production and their use. One-component sealing compounds that can be stored in the absence of water and harden to form elastomers when water is added at room temperature with the release of acetic acid are already known. These products are used in large quantities, for example in the construction industry. The basis of these mixtures are polymers that are terminated by silyl groups that carry reactive substituents such as OH groups or hydrolyzable groups such as acetoxy groups. Furthermore, these sealing compounds can contain fillers, plasticizers, crosslinkers, catalysts and various additives. In order to be usable as sealants, the cured moldings must have a low modulus. DE-A 102004046179 describes crosslinkable masses based on organosilicon compounds with a controllable modulus using monohydroxy-functional organosilicon compounds. However, these connections can only be created in a targeted manner with great effort. DE-A1102004014216 describes oligomeric siloxanes which were produced from methyltrimethoxysilane or methyltriethoxysilane. However, these compounds cannot be used in crosslinkable masses that release acetic acid through a condensation reaction, since the masses are no longer stable in storage. The production of oligomeric siloxanes containing acetoxy groups is not described. Wa12208-S/Bu 2 The production of oligomeric siloxanes containing acetoxy groups is already known and described many times. In EP-A10003285, methyltrichlorosilane, octamethyltetracyclosiloxane and excess acetic acid are reacted in the presence of perfluorobutanesulfonic acid. This creates gaseous HCl. EP-A1 3611215 claims a process for producing siloxanes bearing acetoxy groups from alkoxy-containing siloxanes, acetic anhydride, acetic acid and trifluoromethanesulfonic acid with the elimination of an alcohol. A similar procedure is followed in EP-A1 3744754 or EP-A1 3744755, in which case the siloxanes can also contain Q units. One subject of the invention are crosslinkable compositions that can be produced using (A) organosilicon compounds with at least two OH groups and (B) siloxanes of the formula (II)
Figure imgf000003_0001
Wa12208-S/Bu 3 where R can be the same or different and means monovalent, optionally substituted hydrocarbon radicals, R 1 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms, R 2 can be the same or different and Acyl radicals means that x can be the same or different and is 0 or an integer from 1 to 9 and z is 1 or 2, with the proviso that the sum of all x in formula (II) is greater than 0. Examples of radicals R are alkyl radicals, such as methyl, ethyl, n-propyl, iso-propyl, 1-n-butyl, 2-n-butyl, iso-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-pentyl radical; Hexyl radicals, such as the n-hexyl radical; Heptyl radicals, such as the n-heptyl radical; Octyl radicals, such as the n-octyl radical and iso-octyl radicals, such as the 2,2,4-trimethylpentyl radical; Nonyl radicals, such as the n-nonyl radical; decyl radicals, such as the n-decyl radical; dodecyl radicals, such as the n-dodecyl radical; Octadecyl radicals, such as the n-octadecyl radical; Cycloalkyl radicals, such as the cyclopentyl, cyclohexyl, cycloheptyl radical and methylcyclohexyl radicals; Alkenyl radicals, such as vinyl, 1-propenyl and 2-propenyl; Aryl radicals such as phenyl, naphthyl, anthryl and phenanthryl; Alkaryl radicals, such as o-, m-, p-tolyl radicals; xylyl radicals and ethylphenyl radicals; and aralkyl radicals, such as the benzyl radical, the ^- and the ^-phenylethyl radical. The radicals R and R 3 , independently of one another, are preferably monovalent hydrocarbon radicals with 1 to 18 carbon atoms, particularly preferably the methyl radical, the vinyl or the phenyl radical, in particular the methyl radical. Wa12208-S/Bu 4 Examples of radicals R 1 are the hydrocarbon radicals given for R with 1 to 16 carbon atoms. The radicals R 1 are preferably monovalent hydrocarbon radicals with 1 to 16 carbon atoms, particularly preferably straight-chain, branched or cyclic hydrocarbon radicals with 1 to 8 hydrocarbon atoms, in particular the methyl radical, the vinyl, the ethyl radical. , the propyl or the phenyl radical. The radicals R 2 are preferably groups of the formula R`-(C=O)-, where R` means organyl radical or hydrogen atom, preferably organyl radical. The radicals R 2 are preferably acyl radicals with 1 to 12 carbon atoms, particularly preferably acyl radicals with 1 to 8 carbon atoms, in particular the acetyl radical CH 3 - (C = O) -. The organosilicon compounds (A) used according to the invention can be all organosilicon compounds with at least two OH groups, which have also previously been used in masses that can be crosslinked by a condensation reaction. The organosilicon compounds (A) used according to the invention are preferably essentially linear, OH-terminated organopolysiloxanes, particularly preferably organopolysiloxanes of the formula HO(SiR 3 2O)nH (I), where Wa12208-S/Bu 5 R 3 can be the same or different and means monovalent, optionally substituted hydrocarbon radicals, and n is an integer from 30 to 2000. Examples of radicals R 3 are the examples given for radical R. The radical R 3 , independently of one another, is preferably a monovalent hydrocarbon radical with 1 to 18 carbon atoms, particularly preferably the methyl radical, the vinyl or the phenyl radical, in particular the methyl radical. Although not expressed by formula (I), up to 0.1% of the units of formula (I) can be replaced by units SiR 3 O3/2 or SiO 4/2 with R 3 equal to the meaning given above. Preferred examples of organosilicon compounds (A) are (HO)Me 2 SiO[SiMe 2 O] 30-2000 SiMe 2 (OH) with Me equal to methyl radical. The organosilicon compounds (A) used according to the invention have a viscosity of preferably 50 to 10 6 mPas, particularly preferably 1,000 to 350,000 mPas, in each case at 25 ° C. The organopolysiloxanes (A) are commercially available products or can be produced using methods common in silicon chemistry. The siloxanes (B) used according to the invention are preferably AcO(SiMe2O)1-5SiR 1 (OAc)2, (AcO(SiMe2O)1-5)2SiR 1 (OAc) or AcO(SiMe 2 O) 1-5 SiR 1 (OAc)O(SiMe 2 O) 1-5 SiR 1 (OAc) 2 Wa12208-S/Bu 6 with Me equal to methyl radical, Ac equal to acetyl radical and R 1 equal to straight-chain, branched or cyclic hydrocarbon radicals with 1 to 8 hydrocarbon atoms, the radicals R 1 within the individual compounds having an identical meaning, particularly preferred around AcO(SiMe2O)1-5SiMe(OAc)2, (AcO(SiMe2O)1-5)2SiMe(OAc), AcO(SiMe2O)1-5SiMe(OAc)O(SiMe2O)1-5SiMe(OAc)2, AcO (SiMe 2 O) 1-5 SiVi(OAc) 2 , (AcO(SiMe 2 O) 1-5 ) 2 SiVi(OAc), AcO(SiMe2O)1-5SiVi(OAc)O(SiMe2O)1-5SiVi(OAc )2, AcO(SiMe 2 O) 1-5 SiEt(OAc) 2 , (AcO(SiMe 2 O) 1-5 ) 2 SiEt(OAc), AcO(SiMe 2 O) 1-5 SiEt(OAc)O( SiMe 2 O) 1-5 SiEt(OAc) 2 , AcO(SiMe2O)1-5SiPr(OAc)2, (AcO(SiMe2O)1-5)2SiPr(OAc), AcO(SiMe 2 O) 1-5 SiPr( OAc)O(SiMe 2 O) 1-5 SiPr(OAc) 2 , AcO(SiMe2O)1-5SiPh(OAc)2, (AcO(SiMe2O)3)1-5SiPh(OAc) or AcO(SiMe 2 O) 1 -5 SiPh(OAc)O(SiMe 2 O) 1-5 SiPh(OAc) 2 , especially around AcO(SiMe2O)3SiMe(OAc)2, (AcO(SiMe2O)3)2SiMe(OAc), AcO(SiMe 2 O ) 3 SiMe(OAc)O(SiMe 2 O) 3 SiMe(OAc) 2 , AcO(SiMe2O)3SiVi(OAc)2, (AcO(SiMe2O)3)2SiVi(OAc), AcO(SiMe 2 O) 3 SiVi( OAc)O(SiMe 2 O) 3 SiVi(OAc) 2 , AcO(SiMe 2 O) 3 SiEt(OAc) 2 , (AcO(SiMe 2 O) 3 ) 2 SiEt(OAc) or AcO(SiMe2O)3SiEt(OAc )O(SiMe2O)3SiEt(OAc)2, with Me = methyl radical, Et = ethyl radical, Vi = vinyl radical, Pr = n-propyl radical and Ph = phenyl radical. The siloxanes (B) used according to the invention have a viscosity of preferably 1 to 100 mPas, particularly preferably 3 to 50 mPas, in each case at 25 ° C. The compositions according to the invention contain component (B) in amounts of preferably 0.1 to 10 parts by weight, particularly preferably 0.2 to 8 parts by weight, in particular Wa12208-S/Bu 7 0.3 to 5 parts by weight, each based on 100 parts by weight of component (A). The siloxanes (B) can be prepared using methods common in silicon chemistry, such as equilibration or ring opening of D3. The siloxanes (B) used according to the invention are preferably prepared by equilibration of polydiorganylsiloxanes with triacyloxysilanes under acidic catalysis with halogenated sulfonic acids or from triacyloxysilanes with hexaorganylcyclotrisiloxanes and catalysts such as basic ammonium compounds. A further subject of the invention is a process (process 1) for producing the siloxanes (B) used according to the invention by equilibrating (i) cyclic and/or linear polydiorganylsiloxanes with (ii) triacyloxysilanes under acidic catalysis with (iii ) halogenated sulfonic acids. The siloxanes (i) used according to the invention are preferably cyclic diorganylsiloxanes with 3 to 8 silicon atoms per molecule and/or linear polydiorganylsiloxanes which are terminated with hydroxyl groups, preferably α,ω-OH, polydiorganylsiloxanes, methyl groups, preferably α ,ω-triorganylsiloxy-terminated polydiorganylsiloxanes, vinyl groups, preferably α,ω-diorganylvinylsiloxy-terminated polydiorganylsiloxanes, hydrogen atoms, preferably α,ω-hydrogendiorganylsiloxy-terminated polydiorganylsiloxanes, or acyloxy groups, preferably α,ω-organyldiacetoxysiloxy group-terminated polydiorganylsiloxanes, terminated are, particularly preferably cyclic dimethylsiloxanes with 3 to 8 silicon atoms per molecule and/or linear polydimethylsiloxanes which are terminated with hydroxyl groups or methyl groups, in particular cyclic dimethylsiloxanes with 3 Wa12208-S/Bu 8 to 6 silicon atoms, α,ω-OH-terminated polydimethylsiloxanes or α,ω-trimethylsiloxy-terminated polydimethylsiloxanes. The silanes (ii) used according to the invention are preferably organotriacetoxysilanes. In process 1 according to the invention, siloxanes (i) and silanes (ii) are used in an amount such that the molar ratio of silicon in the D units (=SiO 2/2 ) of the siloxanes (i) to silicon in silanes ( ii) preferably 1 to 10, particularly preferably 2 to 8. The sulfonic acids (iii) used according to the invention are preferably chlorinated or fluorinated sulfonic acids, such as trichloromethanesulfonic acid, trifluoromethanesulfonic acid or perfluorobutanesulfonic acid, particularly preferably trifluoromethanesulfonic acid. In process (1) according to the invention, sulfonic acids (iii) are preferably added in amounts of 50 ppm by weight to 2000 ppm by weight, based on the total weight of the reaction mixture. In addition to components (i), (ii) and (iii), further components, such as solvents, can be used in process (1) according to the invention, but this is not preferred. In the process (1) according to the invention, the components used can be mixed with one another in any order. When using OH-terminated linear siloxanes as component (i), the siloxane (i) is preferably first mixed with the silane (ii) and then sulfonic acid (iii) is added. Wa12208-S/Bu 9 The mixing according to the invention is preferably carried out at the pressure of the surrounding atmosphere, i.e. approximately 900 to 1100 hPa. The process (1) according to the invention is preferably carried out at temperatures in the range from 20 to 120 ° C. The reaction time is preferably 5 minutes to 5 hours. The amount of catalyst, reaction time and reaction temperature are preferably adjusted so that a conversion of 20% to 80% of the equilibration equilibrium is achieved. The equilibration equilibrium is reached when all acyloxy groups are randomly distributed, i.e. preferably continuing the reaction no longer leads to a change in the distribution of the acyloxy groups in the 29 Si NMR. For example, with a molar use ratio of silicon in the D units (=SiO2/2) of the siloxanes (i) to silicon in silanes (ii) of 3, in the equilibration equilibrium there would be 2/3 of the acyloxy groups on the D units and 1/3 of the Acylox groups bound to silicon in the silanes. In process (1) according to the invention, after the reaction has ended, the acidic catalyst (iii) can be neutralized or removed using customary methods. Basic compounds of sodium or potassium are preferably used for neutralization. Weakly or strongly basic ion exchangers are preferably used for separation, such as those available under the trade names Purolite A103, Amberlyst A21 or Amberlyst A26. The products obtained by process (1) according to the invention can, if desired, be filtered and/or devolatilized. Another subject of the invention is a process (process 2) for producing the ones used according to the invention Wa12208-S/Bu 10 Siloxanes (B) by ring opening of (iv) hexaorganylcyclotrisiloxanes with (ii) triacyloxysilanes in the presence of (v) basic catalysts. The hexaorganylcyclotrisiloxanes (iv) used according to the invention are preferably hexamethylcyclotrisiloxane. The basic catalysts (v) used according to the invention are preferably ammonium bases, such as tetramethylammonium hydroxide, tetrabutylammonium hydroxide, hexadecyltrimethylammonium hydroxide or benzyltrimethylammonium hydroxide, strongly basic ion exchange resins with ammonium hydroxide groups, such as those commercially available under the trade name Amberlyst® A26 from Merck, D-Darmstadt, or phosphonium bases, such as tetrabutylphosphonium hydroxide. In process (2) according to the invention, basic catalysts (v) are preferably added in amounts of 500 ppm by weight to 10,000 ppm by weight, based on the total weight of the reaction mixture. In addition to components (iv), (ii) and (v), further components, such as solvents, can be used in process (2) according to the invention, but this is not preferred. However, if the use of solvents is desired, they are preferably aprotic solvents, such as paraffins, olefins, halogenated hydrocarbons, aromatics, esters, ethers or acetals. In process (2) according to the invention, the components used can be mixed with one another in any order. Wa12208-S/Bu 11 The mixing according to the invention is preferably carried out at the pressure of the surrounding atmosphere, i.e. approximately 900 to 1100 hPa. The process (2) according to the invention is preferably carried out at temperatures in the range from 50 to 150 ° C. The reaction time is preferably 1 hour to 8 hours. The amount of catalyst, reaction time and reaction temperature are preferably adjusted so that no more crystals precipitate after removal of any solvent used and/or cooling to room temperature. In process (2) according to the invention, after the reaction has ended, the basic catalyst can be neutralized or removed using customary methods. For neutralization, preference is given to using sulfonic acids, such as methanesulfonic acid, or chlorine compounds which can split off hydrogen chloride during hydrolysis, such as chlorosilanes or acid chlorides. Ion exchangers with sulfonic acid groups are preferably used for separation, such as those available under the trade names Purolite CT269 or Amberlyst 15 or Amberlyst 16. The products obtained by process (2) according to the invention can, if desired, be filtered and/or devolatilized. In addition to components (A) and (B), the compositions according to the invention can contain silanes (C) of the formula (R 8 O)4-bSiR 9 b (III) and/or their partial hydrolysates, where b is 0, 1 or 2 , preferably 1, is, Wa12208-S/Bu 12 R 8 can be the same or different and means acyl radicals and R 9 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms. Examples and preferred radicals for radical R 8 are the examples and preferred radicals given above for R 2 . Examples and preferred radicals for radical R 9 are the examples and preferred radicals given above for R 1 . Particularly preferably, the radicals R 8 within component (C) have an identical meaning, which particularly preferably corresponds to the meaning of R 2 in component (B). The partial hydrolysates (C) which may be used can be partial homohydrolysates, ie partial hydrolysates of one type of silane of the formula (III), as well as partial cohydrolysates, ie partial hydrolysates of at least two different types of silanes of the formula (III ). For the purposes of the invention, the term partial hydrolysates means products that are formed by hydrolysis and/or condensation. If the component (C) used in the compositions according to the invention is partial hydrolysates of silanes of the formula (III), then those with up to 10 silicon atoms are preferred. Examples of component (C) optionally used according to the invention are methyltriacetoxysilane, ethyltriacetoxysilane, n-propyltriacetoxysilane, iso-octyltriacetoxysilane, vinyltriacetoxysilane and phenyltriacetoxysilane, their partial homohydrolysates Wa12208-S/Bu 13 or partial cohydrolysates and mixtures thereof, with methyltriacetoxysilane, ethyltriacetoxysilane and vinyltriacetoxysilane, their partial homohydrolysates or partial cohydrolysates and mixtures thereof being preferred. Component (C) is a commercially available product or can be produced using methods commonly used in silicon chemistry. If the compositions according to the invention contain component (C), these are amounts of preferably 1 to 20 parts by weight, particularly preferably 2 to 16 parts by weight, in particular 3 to 12 parts by weight, in each case based on 100 parts by weight of component (A). The compositions according to the invention preferably contain component (C). In addition to components (A), (B) and optionally (C), the compositions according to the invention can now contain all substances that have previously been used in compositions that can be crosslinked by a condensation reaction, such as, for example, hardening accelerators (D), plasticizers ( E), fillers (F), adhesion promoters (G) and additives (H). All hardening accelerators that have previously been used in masses that can be crosslinked by a condensation reaction can be used as hardening accelerators (D). Examples of hardening accelerators (D) are titanium compounds, such as tetrabutyl or tetraisopropyl titanate, or titanium chelates, such as bis(ethylacetoacetato)diisobutoxytitanium, or organic tin compounds, such as di-n-butyltin dilaurate and di-n-butyltin diacetate , di-n-butyltin oxide, dimethyltin diacetate, dimethyltin dilaurate, dimethyltin dineodecanoate, dimethyltin oxide, di-n-octyltin diacetate, di-n-octyltin dilaurate, di-n-oc- Wa12208-S/Bu 14 tyltin oxide and reaction products of these compounds with alkoxysilanes, such as tetraethoxysilane, di-n-butyltin diacetate, the reaction product of di-n-butyltin diacetate with tetraethoxysilane, zinc compounds, such as zinc octanoate, acids, such as n-octanoic acid or n- Octylphosphonic acid, di-n-octyltin diacetate, di-n-octyltin dilaurate, reaction products of di-n-octyltin oxide with tetraethoxysilane, tetrabutyl titanate, tetraisopropyl titanate or bis(ethylacetoacetato)diisobutoxytitanium being preferred. If the compositions according to the invention contain curing accelerators (D), these are amounts of preferably 0.001 to 2 parts by weight, particularly preferably 0.01 to 1 part by weight, based in each case on 100 parts by weight of component (A). The compositions according to the invention preferably contain curing accelerators (D). Examples of plasticizers (E) which may be used are polydimethylsiloxanes which are liquid at room temperature and end-blocked by trimethylsiloxy groups, in particular with viscosities at 25° C. in the range between 5 and 1000 mPas, as well as high-boiling hydrocarbons, such as paraffin oils or mineral oils from naphthenic and paraffinic units. If the compositions according to the invention contain component (E), these are amounts of preferably 1 to 50 parts by weight, preferably 1 to 30 parts by weight, based in each case on 100 parts by weight of siloxanes (A). The compositions according to the invention preferably contain plasticizers (E). Examples of fillers (F) that may be used are non-reinforcing fillers (F), i.e. fillers with a Wa12208-S/Bu 15 BET surface area of up to 20 m 2 /g, such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, zeolites, metal oxide powder, such as aluminum, titanium, iron or zinc oxides or their mixed oxides, barium sulfate, calcium carbonate , gypsum, silicon nitride, silicon carbide, boron nitride, glass and plastic powder, such as polyacrylonitrile powder; reinforcing fillers, i.e. fillers with a BET surface area of more than 20 m 2 /g, such as fumed silica, precipitated silica, precipitated chalk and soot, such as furnace black and acetylene black; fibrous fillers, such as asbestos and plastic fibers. The component (F) optionally used according to the invention is preferably non-reinforcing silicate fillers (F), such as quartz, diatomaceous earth or calcium silicate and/or reinforcing silicate fillers, such as fumed silica or precipitated silica , with fumed silicas being particularly preferred. If the compositions according to the invention contain fillers (F), these are amounts of preferably 10 to 150 parts by weight, particularly preferably 10 to 130 parts by weight, in particular 10 to 100 parts by weight, in each case based on 100 parts by weight of organopolysiloxanes (A). The compositions according to the invention preferably contain filler (F). Examples of the adhesion promoters (G) optionally used in the compositions according to the invention are silanes and organopolysiloxanes with functional groups, such as those with glycidoxypropyl, aminopropyl, aminoethylaminepropyl, ureidopropyl, tert-butoxy or methacryloxypropyl radicals . However, if another component, such as components (A), (B) or (C), already has the functional groups mentioned, an addition of adhesion promoter (G) can be used. Wa12208-S/Bu 16 can be omitted. The component (G) optionally used according to the invention is preferably di-tert-butoxydiacetoxysilane, (3-glycidoxypropyl)trimethoxysilane or (3-glycidoxypropyl)triethoxysilane, their partial homohydrolysates or partial cohydrolysates and mixtures thereof , with di-tert-butoxydiacetoxysilane being particularly preferred. Component (G) is a commercially available product or can be produced using methods common in silicon chemistry. If the compositions according to the invention contain component (G), these are amounts of preferably 0.1 to 3 parts by weight, preferably 0.2 to 2 parts by weight, based in each case on 100 parts by weight of organopolysiloxanes (A). The compositions according to the invention preferably contain component (G). Examples of additives (H) are pigments, dyes, fragrances, oxidation inhibitors, agents for influencing the electrical properties, such as conductive soot, flame-repellent agents, light stabilizers, biocides such as fungicides, bactericides and acaricides, cell-producing agents, for example azodicar- bonamide, heat stabilizers, co-catalysts, such as Lewis and Brönsted acids, for example sulfonic acids, phosphoric acids, phosphoric acid esters, phosphonic acids and phosphonic acid esters, thixotropic agents, such as polyethylene glycol terminated with OH on one or both sides, agents for further regulating the modulus such as polydimethylsiloxanes an OH end group, as well as any siloxanes that are different from components (A), (B), (C) and (G). Wa12208-S/Bu 17 If the compositions according to the invention contain additives (H), these are amounts of preferably 0.1 to 20 parts by weight, particularly preferably 0.1 to 15 parts by weight, in particular 0.1 to 10 parts by weight, in each case based on 100 parts by weight of organopolysiloxanes (A). The compositions according to the invention preferably contain component (H). The individual components of the compositions according to the invention can each be one type of such component or a mixture of at least two different types of such components. The compositions according to the invention are preferably those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II), optionally (C) silanes of the formula (III) and/or their Partial hydrolysates, optionally (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and optionally (H) additives. The compositions according to the invention are particularly preferably those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II), (C) silanes of the formula (III) and/or their partial hydrolysates, optionally (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and Wa12208-S/Bu 18 optionally (H) additives. In particular, the compositions according to the invention are those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II) with R 2 equal to acetyl radical, (C) silanes of the formula (III) and/or their partial hydrolysates, (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and optionally (H) additives. Very particularly preferably, the compositions according to the invention are those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II) with R 2 equal to an acetyl radical, (C) silanes of the formula ( III) and/or their partial hydrolysates, (D) hardening accelerators, optionally (E) plasticizers, (F) fillers, optionally (G) adhesion promoters and optionally (H) additives. Very particularly preferably, the compositions according to the invention are those which can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II) with R 2 equal to acetyl, (C) silanes of Formula (III) and/or their partial hydrolysates, (D) hardening accelerators, (E) plasticizers, Wa12208-S/Bu 19 (F) fillers, optionally (G) adhesion promoters and optionally (H) additives. The compositions according to the invention preferably contain no other components apart from components (A) to (H). The compositions according to the invention are preferably viscous to pasty masses. To prepare the compositions according to the invention, all components can be mixed together in any order. This mixing can take place at room temperature and the pressure of the surrounding atmosphere, i.e. around 900 to 1100 hPa. If desired, this mixing can also take place at higher temperatures, for example at temperatures in the range from 35 to 135 ° C. Furthermore, it is possible to mix temporarily or continuously under reduced pressure, such as at 30 to 500 hPa absolute pressure, in order to remove volatile compounds or air. The mixing according to the invention preferably takes place with the greatest possible exclusion of water, ie using raw materials which have a water content of preferably less than 10,000 mg/kg, preferably less than 5,000 mg/kg, in particular less than 1,000 mg/kg. kg. During the mixing process, dry air or protective gas such as nitrogen is preferably blanketed, the respective gas having a moisture content of preferably less than 10,000 mg/kg, preferably less than 1,000 mg/kg, in particular less than 500 mg/kg . After production, the pastes are filled into commercially available moisture-tight containers, such as cartridges, tubular bags, buckets and barrels. Wa12208-S/Bu 20 In a preferred procedure, the components (A), (B), optionally (C) and (E) are first mixed together, then optionally fillers (F) are added and finally, if necessary, further components ( D), (G) and (H) are added, with the temperature before bottling not exceeding 60°C. A further subject of the invention is a process for producing the compositions according to the invention by mixing the individual components. The process according to the invention can be carried out continuously, discontinuously or semi-continuously according to known processes and using known apparatus. The compositions according to the invention or produced according to the invention can be stored in the absence of moisture and can be crosslinked if moisture enters. The usual water content of the air is sufficient for crosslinking the compositions according to the invention. Crosslinking of the compositions according to the invention preferably takes place at room temperature. If desired, it can also be carried out at temperatures higher or lower than room temperature, for example at -5° to 15°C or at 30°C to 50°C and/or using concentrations of water that exceed the normal water content of the air. The crosslinking is preferably carried out at a pressure of 100 to 1100 hPa, in particular at the pressure of the surrounding atmosphere, i.e. approximately 900 to 1100 hPa. Another subject of the present invention are Wa12208-S/Bu 21 shaped bodies, produced by crosslinking the compositions according to the invention. The shaped bodies according to the invention have a tension at 100% elongation of preferably less than 0.4 MPa. The compositions according to the invention can be used for all purposes for which masses which can be stored in the absence of water and which crosslink to resins or elastomers when water is added at room temperature can be used. The compositions according to the invention are therefore excellently suitable, for example, as sealing compounds for joints, including vertical joints and similar empty spaces of, for example, 10 to 40 mm clear width, for example of buildings, land, water and aircraft, or as adhesives or cementing compounds, e.g. in window construction or in the production of showcases, as well as, for example, for the production of protective coatings, including those for surfaces that are constantly exposed to fresh or sea water or coatings that prevent sliding or of rubber-elastic molded bodies. The compositions according to the invention have the advantage that they are easy to prepare and are characterized by very high storage stability. Furthermore, the compositions according to the invention have the advantage that they are very easy to handle in use and have excellent processing properties in a variety of applications. Wa12208-S/Bu 22 The crosslinkable compositions according to the invention have the advantage that the modulus can be specifically adjusted by the proportion of component (B) without influencing the rheology of the masses. The crosslinkable compositions according to the invention have the advantage that they remain homogeneous during storage, especially at temperatures below 0 ° C, and no components crystallize out. The crosslinkable compositions according to the invention have the advantage that they adhere very well to a variety of substrates. Furthermore, the compositions according to the invention have the advantage that in the cured state they achieve high tear resistance of the cured vulcanizates. Furthermore, the compositions according to the invention have the advantage that in the hardened state, moldings according to ISO 8340 reliably pass the tests according to ISO 11600 in class 25. The crosslinkable compositions according to the invention have the advantage that they are very economical in terms of the materials used. In the examples described below, all viscosity information relates to a temperature of 25 ° C. Unless otherwise stated, the examples below are carried out at a pressure of the surrounding atmosphere, i.e. approximately 1000 hPa, and at room temperature, i.e. approximately 23° C., or at a temperature that occurs when the reactants are combined at room temperature. temperature without additional heating or cooling, as well Wa12208-S/Bu 23 was carried out at a relative humidity of around 50%. Furthermore, unless otherwise stated, all parts and percentages refer to weight. The tensile strength, elongation at break and stress at 100% elongation are determined according to ISO 8339 (Method A). The hardness is determined in accordance with ISO 868. Abbreviations are used below: Me for methyl radical, Et for ethyl radical and iOct for 2,2,4-trimethylpentyl radical. Acetoxy crosslinker V1: consists of 3% di-tert-butoxydiacetoxysilane and 97% of an oligomer produced by total hydrolysis and condensation of a mixture of methyltriacetoxysilane and ethyltriacetoxysilane with a molar ratio of methyl to ethyl groups of 3 to 7 and a content of SiO2 of 28.7% by weight. Example 1 Production of an oligomer mixture B1 110 g (1.5 mol D units) of a double-hydroxy-terminated polydimethylsiloxane with a viscosity of 70 mPa s and 116 g (0.5 mol) vinyltriacetoxysilane (=ViSi(OAc) 3 ). available from Wacker Chemie AG, D-Munich under the name GENIOSIL® GF 62, are mixed for 10 minutes at room temperature, then 0.20 g of trifluoromethanesulfonic acid, commercially available from Merck KGaA, D-Darmstadt, are mixed in and heated to 100° C. for 4 hours heated and then neutralized with 1.09 g of a solution of sodium acetate in methanol (10%). Wa12208-S/Bu 24 After cooling to room temperature, a homogeneous liquid is obtained. The composition of the mixture was determined using 29-Si-NMR spectroscopy. The mixture contained 1.7% by weight of Me 2 Si(OAc) 2 and 98.3% by weight of an oligomer mixture with the average composition of [ViSi(OAc) 2 O 1/2 ] 0.01 [ViSi(OAc) O 2/2 ] 0.16 [ViSiO 3/2 ] 0.09 [Me2SiO2/2]0.38[Me2Si(OAc)O1/2]0.36. Example 2 Production of an oligomer mixture B2 110 g (1.5 mol D units) of a double-hydroxy-terminated polydimethylsiloxane with a viscosity of 70 mPa s and 110 g (0.5 mol) methyltriacetoxysilane (=MeSi(OAc)3), available from Wacker Chemie AG, D-Munich under the name “Vernetzer ES 15”, are mixed for 10 minutes at room temperature, then 0.13 g of trifluoromethanesulfonic acid, commercially available from Merck KGaA, D-Darmstadt, are mixed in and left to stand for 3 hours Heated to 90°C and then neutralized with 0.71 g of a solution of sodium acetate in methanol (10%). After cooling to room temperature, a homogeneous liquid is obtained. The composition of the mixture was determined using 29-Si-NMR spectroscopy. The mixture contained 2.0% by weight of Me2Si(OAc)2 and 98% by weight of an oligomer mixture with the average composition of [MeSi(OAc)2O1/2]0.02MeSi(OAc)O2/2]0.14[ MeSiO3/2]0.10 [Me2SiO2/2]0.39[Me2Si(OAc)O1/2]0.35. Example 3 Preparation of an oligomer mixture B3 22.3 g (0.3 mol D units) hexamethylcyclotrisiloxane, 23.4 g (0.1 mol) ethyltriacetoxysilane (=EtSi(OAc)3), available from Wacker Chemie AG, D- Munich under the name “Vernetzer ES 23” and 0.5 g of benzyl-trimethyl-ammonium hydroxide solution Wa12208-S/Bu 25 (40% in methanol, commercially available from Merck KgaA, D-Darmstadt) is heated to 100° C. for 5 hours and then mixed with 0.77 g of a solution of dichlorodimethylsilane in heptane (10% ) neutralized. After cooling to room temperature, a homogeneous liquid is obtained. The composition of the mixture was determined using 29-Si-NMR spectroscopy. The mixture contained 7% by weight of (Me2SiO)3 and 93% by weight of an oligomer mixture with the average composition of [EtSi(OAc)2O1/2]0.13EtSi(OAc)O2/2]0.15[Me2SiO2/2 ]0.44- [Me 2 Si(OAc)O 1/2 ] 0.28 . Comparative Example 1 (V1) Preparation of an Oligomer Mixture B4 25 g of acetic anhydride and 0.07 g of trifluoromethanesulfonic acid are introduced and, while stirring, slowly add 110 g (1.5 mol D units) of a polydimethylsiloxane terminated with hydroxy on both sides and having a viscosity of 70 mPa s. then stirred at 120 ° C for 2 hours and neutralized with 0.38 g of a solution of sodium acetate in methanol (10%). After cooling to room temperature, a homogeneous liquid is obtained. The composition of the mixture was determined using 29-Si-NMR spectroscopy. The mixture contained 1.5% by weight of (Me 2 SiO) 4 , 0.5% by weight of Me 2 Si(OAc) 2 and 98% by weight of an oligomer mixture with the average composition of [Me2SiO2/2]0, 76[Me2Si(OAc)O1/2]0.24. Comparative example 2 (V2) Production of an oligomer mixture B5 110 g (1.5 mol D units) of a double-sided hydroxy-terminated polydimethylsiloxane with a viscosity of 70 mPa s, 116 g (0.5 mol) vinyltriacetoxysilane (=ViSi(OAc) 3 ), available from Wacker Chemie AG, D-Munich under the name GENIOSIL® Wa12208-S/Bu 26 GF 62 are mixed for 10 minutes at room temperature, then 0.20 g of methanesulfonic acid, commercially available from Merck KGaA, D-Darmstadt, is mixed in and heated to 150 ° C for 4 hours and mixed with 1.70 g of one Neutralized with a solution of sodium acetate in methanol (10%). After cooling to room temperature, an inhomogeneous liquid is obtained, which separates into two phases after 24 hours at room temperature. Comparative Example 3 (V3) 1400 g of a linear polydimethylsiloxane with hydroxydimethylsilyl end groups and a viscosity of 80,000 mPa s, 600 g of a trimethylsilyl-terminated linear polydimethylsiloxane on both sides with a viscosity of 1000 mPa s were mixed with 104 g of acetoxy crosslinker V1 mixed together in a planetary mixer and stirred for 5 minutes. The approach is then homogeneously mixed in with 240 g of pyrogenic hydrophilic silica with a specific surface area of 150 m²/g, 1.3 g of a tin catalyst, which is prepared by mixing 0.26 kg of di-n-butyltin diacetate with 32 kg of a trimethylsilyl-terminated linear polydimethylsiloxane on both sides with a viscosity of 100 mPa s, and 5 g of 3-glycidoxypropyltrimethoxysilane and stirred for a further 5 minutes under a reduced pressure of 200 mbar. The resulting mixture was then filled into moisture-tight containers. 24 hours after the mixture was produced, 2 mm thick plates were pulled out of this mixture and, after 7 days of curing at 23 ° C and 50% relative humidity, dumbbell-shaped test specimens of type 2 according to ISO 37, 6th edition 2017-11, manufactured. The mechanical properties that were measured on these test specimens can be found in Table 1. Wa12208-S/Bu 27 Examples 4-6 The procedure described in Comparative Example 3 was repeated with the modification that 20 g of the oligomer mixtures B1 to B3 listed in Table 1 were added together with the acetoxy crosslinker V1. The mixtures thus obtained were treated as described in Comparative Example 3. The results can be found in Table 1. Comparative Example 4 (V4) The procedure described in Comparative Example 3 was repeated with the modification that 20 g of oligomer mixture B4 was added together with the acetoxy crosslinker V120. The resulting mixture was processed as described in Comparative Example 3. The results can be found in Table 1. Table 1:
Figure imgf000028_0001

Claims

Wa12208-S/Bu 28 Patentansprüche 1. Vernetzbare Zusammensetzungen herstellbar unter Verwendung von (A) Organosiliciumverbindungen mit mindestens zwei OH-Gruppen und (B) Siloxane der Formel (II)
Figure imgf000029_0001
wobei R gleich oder verschieden sein kann und einwertige, gegebenen- falls substituierte Kohlenwasserstoffreste bedeutet, R1 gleich oder verschieden sein kann und einwertige Kohlenwas- serstoffreste mit 1 bis 16 Kohlenstoffatomen bedeutet, R2 gleich oder verschieden sein kann und Acylreste bedeutet, x gleich oder verschieden sein kann und 0 oder eine ganze Zahl von 1 bis 9 ist und z 1 oder 2 ist, mit der Maßgabe, dass die Summe aller x in Formel (II) größer 0 ist. Wa12208-S/Bu 29 2. Zusammensetzungen gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Organosiliciumverbindungen (A) um Organo- polysiloxane der Formel HO(SiR32O)nH (I) handelt, wobei R3 gleich oder verschieden sein kann und einwertige, gegebenen- falls substituierte Kohlenwasserstoffreste bedeutet, und n eine ganze Zahl von 30 bis 2000 ist. 3. Zusammensetzungen gemäß Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass es sich bei Rest R2 um Acetylreste handelt. 4. Zusammensetzungen gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie Komponente (B) in Men- gen von 0,1 bis 10 Gewichtsteilen, bezogen auf 100 Gewicht- steile Komponente (A), enthalten. 5. Zusammensetzungen gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie Silane (C) der Formel (R8O)4-bSiR9 b (III) und/oder deren Teilhydrolysate enthalten, wobei b gleich 0, 1 oder 2 ist, R8 gleich oder verschieden sein kann und Acylreste bedeutet und R9 gleich oder verschieden sein kann und einwertige Kohlenwas- serstoffreste mit 1 bis 16 Kohlenstoffatomen bedeutet. 6. Zusammensetzungen gemäß einem oder mehreren der Ansprüche 1 Wa12208-S/Bu 30 bis 5, dadurch gekennzeichnet, dass es sich um solche handelt herstellbar unter Verwendung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II), gegebenenfalls (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, gegebenenfalls (D) Härtungsbeschleunigern, gegebenenfalls (E) Weichmachern, gegebenenfalls (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und gegebenenfalls (H) Additiven. 7. Zusammensetzungen gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich um solche handelt herstellbar unter Verwendung von (A) Organopolysiloxanen der Formel (I), (B) Siloxanen der Formel (II), (C) Silanen der Formel (III) und/oder deren Teilhydrolysate, gegebenenfalls (D) Härtungsbeschleunigern, gegebenenfalls (E) Weichmachern, gegebenenfalls (F) Füllstoffen, gegebenenfalls (G) Haftvermittlern und gegebenenfalls (H) Additiven. 8. Verfahren zur Herstellung der Zusammensetzungen gemäß einem oder mehreren der Ansprüche 1 bis 7 durch Vermischen der ein- zelnen Bestandteile. 9. Formkörper, hergestellt durch Vernetzung der Zusammensetzun- gen gemäß einem oder mehreren der Ansprüche 1 bis 7 oder herge- stellt nach Anspruch 8. Wa12208-S/Bu 31 10. Verfahren (Verfahren 1) zur Herstellung der erfindungsgemäß eingesetzten Siloxane (B) durch Äquilibrierung von (i) cycli- schen und/oder linearen Polydiorganylsiloxanen mit (ii) Triacy- loxysilanen unter saurer Katalyse mit (iii) halogenierten Sul- fonsäuren. 11. Verfahren (Verfahren 2) zur Herstellung der erfindungsgemäß eingesetzten Siloxane (B) durch Ringöffnung von (iv) Hexaor- ganylcyclotrisiloxanen mit (ii) Triacyloxysilanen in Anwesen- heit von (v) basischen Katalysatoren.
Wa12208-S/Bu 28 Claims 1. Crosslinkable compositions can be produced using (A) organosilicon compounds with at least two OH groups and (B) siloxanes of the formula (II)
Figure imgf000029_0001
where R can be the same or different and means monovalent, optionally substituted hydrocarbon radicals, R 1 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms, R 2 can be the same or different and means acyl radicals, x is the same or can be different and is 0 or an integer from 1 to 9 and z is 1 or 2, with the proviso that the sum of all x in formula (II) is greater than 0. Wa12208-S/Bu 29 2. Compositions according to claim 1, characterized in that the organosilicon compounds (A) are organo-polysiloxanes of the formula HO(SiR 3 2O)nH (I), where R 3 can be the same or different can and means monovalent, optionally substituted hydrocarbon radicals, and n is an integer from 30 to 2000. 3. Compositions according to claim 1 or 2, characterized in that the radical R 2 is acetyl radicals. 4. Compositions according to one or more of claims 1 to 3, characterized in that they contain component (B) in amounts of 0.1 to 10 parts by weight, based on 100 parts by weight of component (A). 5. Compositions according to one or more of claims 1 to 4, characterized in that they contain silanes (C) of the formula (R 8 O) 4-b SiR 9 b (III) and / or their partial hydrolysates, where b is 0, is 1 or 2, R 8 can be the same or different and means acyl radicals and R 9 can be the same or different and means monovalent hydrocarbon radicals with 1 to 16 carbon atoms. 6. Compositions according to one or more of claims 1 Wa12208-S/Bu 30 to 5, characterized in that they can be produced using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II), optionally (C) silanes of the formula ( III) and/or their partial hydrolysates, optionally (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and optionally (H) additives. 7. Compositions according to one or more of claims 1 to 6, characterized in that they can be prepared using (A) organopolysiloxanes of the formula (I), (B) siloxanes of the formula (II), (C) silanes of the formula (III) and/or their partial hydrolysates, optionally (D) hardening accelerators, optionally (E) plasticizers, optionally (F) fillers, optionally (G) adhesion promoters and optionally (H) additives. 8. Process for producing the compositions according to one or more of claims 1 to 7 by mixing the individual components. 9. Shaped body produced by crosslinking the compositions according to one or more of claims 1 to 7 or produced according to claim 8. Wa12208-S/Bu 31 10. Process (Process 1) for producing the siloxanes (B) used according to the invention by equilibrating (i) cyclic and/or linear polydiorganylsiloxanes with (ii) triacyloxysilanes under acidic catalysis with (iii) halogenated sulfonic acids. 11. Process (Process 2) for producing the siloxanes (B) used according to the invention by ring opening of (iv) hexaorganylcyclotrisiloxanes with (ii) triacyloxysilanes in the presence of (v) basic catalysts.
PCT/EP2022/058266 2022-03-29 2022-03-29 Cross-linkable compositions on the basis of organosilicon compounds WO2023186269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2022/058266 WO2023186269A1 (en) 2022-03-29 2022-03-29 Cross-linkable compositions on the basis of organosilicon compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2022/058266 WO2023186269A1 (en) 2022-03-29 2022-03-29 Cross-linkable compositions on the basis of organosilicon compounds

Publications (1)

Publication Number Publication Date
WO2023186269A1 true WO2023186269A1 (en) 2023-10-05

Family

ID=81392683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/058266 WO2023186269A1 (en) 2022-03-29 2022-03-29 Cross-linkable compositions on the basis of organosilicon compounds

Country Status (1)

Country Link
WO (1) WO2023186269A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1218446B (en) * 1963-08-07 1966-06-08 Union Carbide Corp Process for the preparation of organosiloxanes with terminal acyloxy groups
DE102004014216A1 (en) 2004-03-23 2005-10-13 Wacker-Chemie Gmbh Crosslinkable compositions based on organosilicon compounds
EP1640416A1 (en) * 2004-09-23 2006-03-29 Wacker Chemie AG Crosslinkable masses on the basis of organosilicon compounds
DE102012203273A1 (en) * 2012-03-01 2013-09-05 Wacker Chemie Ag Crosslinkable compositions based on organosilicon compounds
WO2016120106A1 (en) * 2015-01-28 2016-08-04 Wacker Chemie Ag Organopolysiloxane compositions which can be crosslinked by means of a condensation reaction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1218446B (en) * 1963-08-07 1966-06-08 Union Carbide Corp Process for the preparation of organosiloxanes with terminal acyloxy groups
DE102004014216A1 (en) 2004-03-23 2005-10-13 Wacker-Chemie Gmbh Crosslinkable compositions based on organosilicon compounds
EP1640416A1 (en) * 2004-09-23 2006-03-29 Wacker Chemie AG Crosslinkable masses on the basis of organosilicon compounds
DE102004046179A1 (en) 2004-09-23 2006-03-30 Wacker Chemie Ag Crosslinkable compositions based on organosilicon compounds
DE102012203273A1 (en) * 2012-03-01 2013-09-05 Wacker Chemie Ag Crosslinkable compositions based on organosilicon compounds
WO2016120106A1 (en) * 2015-01-28 2016-08-04 Wacker Chemie Ag Organopolysiloxane compositions which can be crosslinked by means of a condensation reaction

Similar Documents

Publication Publication Date Title
EP0002745B1 (en) Curable organopolysiloxane compositions containing titanium esters
EP1580224B1 (en) Organosilicon compounds containing curable compositions.
EP3215570B1 (en) Crosslinkable organopolysiloxane compositions
EP2820025A1 (en) Cross-linkable compositions based on organosilicon compounds
WO1991016371A1 (en) Organo(poly)siloxanes with siloxane units at the end of the chain having organyloxy and hydrogen groups
EP0776935A1 (en) Low molecular weight silicon compounds, process for their preparation and their use in crosslinkable organopolysiloxane compositions
DE10319303A1 (en) Process for the preparation of crosslinkable compositions based on organosilicon compounds
EP1640416B1 (en) Crosslinkable masses on the basis of organosilicon compounds
EP0672702B1 (en) Process for the preparation of organyloxy groups containing organopolysiloxanes
EP1104780A1 (en) Crosslinkable silicone compositions
WO2023186269A1 (en) Cross-linkable compositions on the basis of organosilicon compounds
EP1694773A2 (en) Cross-linkable products based on organosilicon compounds
EP2029661B1 (en) Process for the production of high-molecular-weight organopolysiloxanes
EP4010404B1 (en) Crosslinkable compositions based on organosilicon compounds
EP1436351B1 (en) Cross-linkable materials based on organosilicon compounds
EP0948501B1 (en) Organosilicon compounds having urea groups, method for producing same and their utilization
EP4208509B1 (en) Cross-linkable compositions based on organosilicon compounds
EP1544252B1 (en) Storage stable compositions of organo silicon compounds
EP4301822B1 (en) Siloxane-functionalized silica
EP1419197B1 (en) Crosslinkable compounds on the basis of organosilic compounds
DE4029481A1 (en) New organo-poly:siloxane prods. with terminal siloxane units
WO2022179691A1 (en) Mixtures containing phosphorus compounds and use thereof
EP1108752A1 (en) Curable Organopolysiloxane compositions
EP4157943A1 (en) Cross-linkable masses based on organosilicon compounds
DE10064071A1 (en) Organopolysiloxane mass, useful e.g. as water-hardening sealant, includes an organosilicon compound containing reactive epoxy groups as adhesion promoter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22719528

Country of ref document: EP

Kind code of ref document: A1