Nothing Special   »   [go: up one dir, main page]

WO2023185921A1 - 信息指示方法、指示获取方法、装置、设备和存储介质 - Google Patents

信息指示方法、指示获取方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2023185921A1
WO2023185921A1 PCT/CN2023/084673 CN2023084673W WO2023185921A1 WO 2023185921 A1 WO2023185921 A1 WO 2023185921A1 CN 2023084673 W CN2023084673 W CN 2023084673W WO 2023185921 A1 WO2023185921 A1 WO 2023185921A1
Authority
WO
WIPO (PCT)
Prior art keywords
perceptual
measurement result
indication
validity
measurement results
Prior art date
Application number
PCT/CN2023/084673
Other languages
English (en)
French (fr)
Inventor
姚健
姜大洁
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023185921A1 publication Critical patent/WO2023185921A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to an information indication method, an indication acquisition method, a device, a device and a storage medium.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • Perception capability that is, one or more devices with perception capabilities can sense the orientation, distance and/or speed of target objects through the transmission and reception of wireless signals, or detect and detect target objects, events or environments, etc. Tracking, identification or imaging, etc.
  • those skilled in the art are still in the discussion stage on how to implement perceptual measurement technology. That is to say, how to implement perceptual measurement is still a technical problem to be solved.
  • Embodiments of the present application provide an information indication method, an indication acquisition method, an apparatus, a device, and a storage medium, which can solve the technical problem of how to implement perceptual measurement.
  • the first aspect provides an information indication method, including:
  • the first device indicates n perception measurement result validity indications to the second device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the second aspect provides a method for obtaining instructions, including:
  • the second device obtains n perceptual measurement result validity indications indicated by the first device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • an information indication device including:
  • An indication module configured to indicate n perceptual measurement result validity indications to the second device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • an instruction acquisition device including:
  • An acquisition module configured to acquire n perceptual measurement result validity indications indicated by the first device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor.
  • the processor is executed, the steps of the information indication method as described in the first aspect are implemented.
  • a communication device is provided.
  • the communication device is a first device and includes a processor and a communication interface, wherein the communication interface is used to indicate n perception measurement result validity indications to the second device, n is an integer greater than 1; wherein, the n perceptual measurement results corresponding to the validity indications of the n perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are used by the processor.
  • the steps of the instruction acquisition method described in the second aspect are implemented.
  • a communication device is provided.
  • the communication device is a second device and includes a processor and a communication interface, wherein the communication interface is used to obtain n perceptions indicated by the first device.
  • Measurement result validity indication n is an integer greater than 1; wherein, the n perception measurement results corresponding to the n perception measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • a ninth aspect provides an information indication system, including: a first device and a second device.
  • the first device can be used to perform the steps of the information indication method as described in the first aspect.
  • the second device can be used to Perform the steps of the instruction acquisition method as described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the information indicating method as described in the first aspect are implemented, or Implement the steps of the instruction acquisition method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. information indication method, or implement the indication acquisition method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the steps of the information indication method, or the computer program/program product is executed by at least one processor to implement the steps of the indication acquisition method as described in the second aspect.
  • the first device indicates n perceptual measurement result validity indications to the second device, where n is an integer greater than 1; wherein, the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are Measurement results of perceptual measurements on the target signal received by the first device.
  • the first device indicates n perceptual measurement result validity indications to the second device, so that perceptual measurement can be implemented.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of wireless sensing provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of another wireless sensing provided by an embodiment of the present application.
  • Figure 4 is a flow chart of an information indication method provided by an embodiment of the present application.
  • Figure 5 is a flow chart of an instruction acquisition method provided by an embodiment of the present application.
  • Figure 6 is a structural diagram of an information indication device provided by an embodiment of the present application.
  • Figure 7 is a structural diagram of an instruction acquisition device provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 10 is a structural diagram of another communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes terminals, network side equipment and core network equipment.
  • the terminal may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • palmtop computer a netbook
  • super computer a super computer.
  • Mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearable devices ( Wearable Device), vehicle user equipment (VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal Terminal devices such as computers (PCs), teller machines or self-service machines, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces , smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. It should be noted that the embodiments of this application do not limit the specific type of terminal.
  • the network side equipment may include access network equipment or core network equipment, where the access network equipment may also be called wireless access network equipment, radio access network (Radio Access Network, RAN), radio access network function or radio access network equipment.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Fidelity (WiFi) node, etc.
  • the base station may be called a Node B, an Evolved Node B (eNB), or an access point.
  • Base Transceiver Station BTS
  • radio base station BSS
  • radio transceiver BSS
  • Basic Service Set BSS
  • Extended Service Set ESS
  • home B-node home evolution Type B node
  • TRP Receiving Point
  • AP Access Point
  • Relay Intelligent Reflective Surface (Reconfigurable Intelligence Surface, RIS) or some other appropriate terminology in the field, as long as the same technical effect is achieved
  • the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used. This is introduced as an example and does not limit the specific type of base station.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • network-side devices and terminals have sensing capabilities and can sense the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect and track target objects, events or environments, etc. , recognition, imaging, etc.
  • the perception categories can be as shown in the following table:
  • embodiments of the present application can be applied to integrated communication and radar communication sensing fusion application scenarios.
  • the joint design in this scenario includes spectrum coexistence, that is, the two systems work independently, allowing information exchange to reduce mutual interference.
  • the transmitting end of the two systems sends their own signal waveforms.
  • the waveforms of the two systems need to be orthogonal so as not to affect their respective reception and detection; when the transmitting end is shared, the transmitting end transmits radar and Joint waveform for communication; when the transceiver and receiver are shared, the transceiver and receiver sides of the two systems share resources. It is also necessary to use a joint waveform or a waveform with an orthogonal relationship.
  • the above application scenario of integrated communication perception and fusion of communication and radar is an example of the application scenario of the embodiment of the present application, and the corresponding scenario is not limited in the embodiment of the present application.
  • the base station serves as the sender and receiver of the sensing signal
  • the terminal or other object serves as the sensing target
  • the base station serves as the sender and receiver of the sensing signal
  • the terminal or other object serves as the sensing target
  • the sender transmits the sensing signal
  • other receivers receive it And analyze and extract the sensing parameters.
  • base station 1 serves as the sensing signal transmitter
  • the terminal or base station 2 serves as the sensing signal receiving end.
  • the communication system can jointly transmit modulation symbols carrying information and pilot symbols used for channel estimation, focusing on decoding performance.
  • the channel estimation algorithm only needs to estimate a composite channel with limited unknown parameters, usually with Improve throughput and transmission reliability as optimization goals, focus on
  • the performance indicators are generally spectrum efficiency, channel capacity, signal-to-noise ratio (SNR), signal to interference plus noise ratio (SINR), bit error probability (Bit Error Ratio, BER), block error rate (Block Error Rate, BLER), bit error rate (Symbol Error Rate, SER), etc.
  • SNR signal-to-noise ratio
  • SINR signal to interference plus noise ratio
  • Bit Error Ratio Bit Error Ratio
  • BER block error rate
  • BLER bit error rate
  • Symbol Error Rate, SER bit error rate
  • the focus can be on the changes brought by the sensing target to the transmitted signal, that is, the response characteristics.
  • the optimization goal is usually to improve the accuracy of parameter estimation.
  • Performance measures may be fuzzy functions, Cramero’s ,lower bound, root mean square error, mutual information, ,rate-distortion function, radar estimation rate, Welch’s ,lower bound and some metrics related to the sensing ,scenario and requirements.
  • wireless communication signals and wireless sensing signals will be supported at the same time, and the integrated design of communication and sensing functions will be realized through communication and sensing integration means such as signal joint design and/or hardware sharing. While transmitting information, it has the ability to sense or provide sensing services. In this way, through the integration of synaesthesia (communication and perception), effects such as cost savings, equipment size reduction, equipment power consumption reduction, spectral efficiency improvement, mutual interference reduction between synaesthesia, and system performance improvement can be achieved.
  • synaesthesia communication and perception
  • effects such as cost savings, equipment size reduction, equipment power consumption reduction, spectral efficiency improvement, mutual interference reduction between synaesthesia, and system performance improvement can be achieved.
  • synaesthesia integration may include but is not limited to at least one of the following:
  • the same network provides communication services and sensing services
  • the same terminal provides communication services and perception services
  • the same spectrum provides communication services and sensing services
  • the integrated synaesthesia integration service is completed in the same radio transmission, that is, the joint design of communication signals and perception signals.
  • perceptual measurement can use dedicated perceptual signals, or multiplex communication signals, such as data and/or pilots.
  • the use of perceptual measurement signals can be determined by the sender. Instruct the receiver, such as the base station, to instruct the terminal which type of signal to use for sensing measurements.
  • Figure 4 is a flow chart of an information indication method provided by an embodiment of the present application. As shown in Figure 4, it includes the following steps, including:
  • Step 401 The first device indicates n perceptual measurement result validity indications to the second device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the above-mentioned first device may be a network-side device or terminal
  • the above-mentioned second device may be a sensing network function and/or sensing network element of the core network, or may be a network-side device or terminal.
  • the target signal may be a communication signal, such as a reference signal, a synchronization signal or a data signal, or the target signal may be a dedicated sensing signal, such as a radar pulse signal or a Frequency Modulated Continuous Wave (FMCW) signal.
  • a communication signal such as a reference signal, a synchronization signal or a data signal
  • the target signal may be a dedicated sensing signal, such as a radar pulse signal or a Frequency Modulated Continuous Wave (FMCW) signal.
  • FMCW Frequency Modulated Continuous Wave
  • the sending and receiving of target signals can include the following methods:
  • Network-side device A sends a target signal
  • network-side device B receives a target signal
  • network-side device B serves as the first device
  • network-side device A serves as the second device
  • at least one of network-side device A and network-side device B The item serves as the first device
  • the core network serves as the second device
  • the network side device sends the target signal and the terminal receives the target signal; wherein the terminal serves as the first device and the network side device serves as the second device, or at least one of the network side device and the terminal serves as the first device and the core network serves as the second device ;
  • the network side equipment collects itself spontaneously; among them, the network side equipment serves as the first device and the core network serves as the second device;
  • the terminal spontaneously receives and receives data; in which, the terminal serves as the first device and the network side device serves as the second device, or the terminal serves as the first device and the core network serves as the second device;
  • the terminal sends and the network side device receives; among them, the network side device serves as the first device and the core network serves as the second device;
  • Terminal A sends and terminal B receives; wherein, terminal B serves as the first device and terminal A serves as the second device, or terminal A or terminal B serves as the first device, and the access network side device of terminal A or terminal B serves as the second device.
  • Device, or terminal A or terminal B serves as the first device, and the core network serves as the second device.
  • target signal sending device in the embodiment of the present application may be multiple devices, and the target signal receiving device may be multiple devices.
  • the first device may explicitly or implicitly indicate n perception measurement result validity indications to the second device.
  • n perceptual measurement result validity indications may be n perceptual measurement result validity indications, each perceptual measurement result validity indication is used to indicate whether the corresponding perceptual measurement result is valid or invalid, and each perceptual measurement result or Each perception measurement validity indication is associated with one or more perception measurements, where a perception measurement may be a measurement based on one or more target signals.
  • the criteria for valid or invalid sensing measurement results may be configured by the network device and/or defined by the protocol, or the criteria for valid or invalid sensing measurement results may be determined by being associated with sensing measurement quantities or sensing requirements or sensing services.
  • the first device can indicate n number of validity indications of perceptual measurement results to the second device, so as to implement perceptual measurement and improve the working performance of the device. And since n is greater than 1, multiple feedback results can be indicated at one time to save transmission overhead.
  • the above-mentioned n perceptual measurement result validity indications also use a second device to further process the perceptual measurement results or adjust the signal configuration, thereby improving perceptual measurement performance.
  • the above n number of perception measurement result validity indications can assist the second device in further processing the perception measurement results, or adjust the configuration of the perception measurement signal, thereby obtaining better perception measurement performance.
  • the first device indicates n number of perception measurement result validity indications to the second device, including:
  • the first device sends first indication information to the second device, where the first indication information includes an indication bit, where the indication bit is at least one bit used to indicate the validity indication of the n perception measurement results.
  • the above indication bits may be jointly or independently coded to indicate n perceptual measurement result validity indications.
  • the indication bits are n bits, and the n bits respectively indicate validity indications of the n perceptual measurement results.
  • n bits may be used to represent the validity of n perceptual measurement results. For example, “0" in each bit indicates that the perceptual measurement result is invalid, and “1" indicates that the perceptual measurement result is valid.
  • n bits can accurately indicate the validity indication of n perceptual measurement results.
  • the indication bit is 1 bit, and the first value of the 1 bit indicates that at least one of the n perceptual measurement result validity indications is invalid; the second value of the 1 bit The value indicates that all of the n perceptual measurement result validity indications are valid, or the second value of the 1-bit bit indicates that at least x indications among the n perceptual measurement result validity indications are valid, and x is An integer less than n and greater than 1.
  • a 1-bit indication is used.
  • 1 bit is the logical AND result of n perceptual measurement result validity indications (n bits). "0" indicates that at least one perceptual measurement result is invalid, and "1" indicates that n perceptual measurement results are invalid. The perceptual measurement results are all valid; or, when more than x (x ⁇ n) of the n perceptual measurement results are valid, "1" is fed back, otherwise "0" is fed back.
  • This implementation can save signaling overhead through 1-bit indication.
  • the indication bits are n*m bits, where the n*m bits respectively indicate the validity level of the n perceptual measurement results, and m is an integer greater than 1.
  • the validity level of the above-mentioned perceptual measurement results can be, and different levels correspond to different signal qualities.
  • the signal quality can include: SNR, Reference Signal Received Power (RSRP), Received Signal Strength Indication (Received Signal Strength Indication, RSSI) and signal-to-noise ratio; or, the validity level of the above-mentioned perceptual measurement results can be, different levels correspond to different perceptual performance indicators; or, the validity level of the above-mentioned perceptual measurement results can be, different levels correspond to different measurements Result validity threshold, for example: suppose there are two thresholds, including three levels, one level means invalid, another level means valid against the first threshold but invalid according to the second threshold, and one level means valid according to the second threshold (Assuming the second threshold requirement is higher).
  • the validity of the perceptual measurement results can be divided into different levels, thereby improving the feedback effect of the validity of the perceptual measurement results.
  • the first indication information is also used to indicate at least one of the following:
  • the reason for the invalid sensing measurement result may be the configuration parameter of the target signal recommended or expected by the first device, and may be the invalid reason information for the sensing measurement result indicated as invalid among the n sensing measurement result validity indications.
  • the parameter configuration of the target signal suggested by the first device may be the parameter configuration of the target signal corresponding to the perceptual measurement result indicated as invalid in the n perceptual measurement result validity indications. This parameter configuration may be used to improve the target signal corresponding to the parameter configuration. Validity of perceived measurement results.
  • the second device that receives the first information can be used to further process the perceptual measurement results or adjust the signal configuration, thereby improving perceptual measurement performance.
  • at least one of the above invalid causes and parameter configurations can assist the party receiving the perception measurement results to further process the perception measurement results, or adjust the configuration of the perception measurement signals, thereby obtaining better perception measurement performance.
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the quality of the target signal detected by the first device does not reach the threshold requirement.
  • At least one of SNR, RSRP, RSSI and signal-to-noise ratio threshold of the target signal detected by the first device does not reach the threshold requirement.
  • the receiving end may first measure only at least one of SNR, RSRP, RSSI and signal-to-noise ratio, and then measure specific perceptual measurement quantities if the threshold is reached.
  • the perceptual measurement results obtained by the first device do not meet the perceptual requirements. This may be because the perceptual performance indicators corresponding to the perceptual measurement results calculated by the first device do not meet the requirements. For example, the perceptual SNR is lower than expected. Set threshold value.
  • the above-mentioned first device does not demodulate the data correctly.
  • it adopts the method of demodulating first and then estimating the sensing parameters. If the communication demodulation is wrong, the sensing measurement results will be affected and become unreliable, that is, the sensing The measurement result is invalid.
  • the failure of the first device to obtain the sensing measurement result when the feedback time point of the first indication information arrives may be that the receiving end fails to obtain the sensing measurement result when the feedback time point arrives, for example, the processing of the sensing measurement result times out.
  • the parameter configuration includes at least one of the following:
  • Waveform Waveform, subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi co-location (QCL) )relation.
  • QCL quasi co-location
  • the above waveforms may include: Orthogonal frequency division multiplex (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA) SC-FDMA, Orthogonal time-frequency space ( Orthogonal Time Frequency Space, OTFS), Frequency Modulated Continuous Wave (FMCW) or pulse signal, etc.
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OFDM Orthogonal frequency division multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OFDM Orthogonal time-frequency space
  • OTFS Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • the above-mentioned subcarrier spacing may be the subcarrier spacing of the OFDM system, such as 30KHz or 15KHz.
  • the above-mentioned guard interval can be the time interval from the time when the signal ends sending to the time when the latest echo signal of the signal is received; this parameter is proportional to the maximum sensing distance, for example, it can be calculated by 2dmax/c, dmax is the maximum Sensing distance (belonging to sensing requirements), for example, for spontaneous self-received sensing signals, dmax represents the maximum distance from the sensing signal transceiver point to the signal transmitting point; in some cases, OFDM signal cyclic prefix (CP) can play a role The role of the minimum guard interval; c is the speed of light.
  • CP OFDM signal cyclic prefix
  • the above bandwidth can be inversely proportional to the distance resolution, for example, it can be obtained by c/2/delta_d, where delta_d is the distance resolution (belonging to the perception requirements).
  • the above burst duration can be inversely proportional to the rate resolution (belonging to the sensing requirements).
  • This parameter is the time span of the sensing signal, mainly for calculating the Doppler frequency offset; this parameter can be passed c/2/delta_v/fc Calculated; among them, delta_v is the speed resolution; fc is the signal carrier frequency or the center frequency point of the signal.
  • the above time domain interval can be calculated by c/2/fc/v_range; where v_range is the maximum rate minus the minimum speed (belonging to the sensing requirements); this parameter is the time interval between two adjacent sensing signals.
  • the above-mentioned transmit signal power can take a value every 2dBm from -20dBm to 23dBm.
  • this is just an example and can be set according to actual needs.
  • the above signal formats can detect reference signals (Sounding Reference Signal, SRS), demodulation reference signals (Demodulation Reference Signal, DMRS), positioning reference signals (Positioning Reference Signal, PRS), etc., or other predefined signals, and related sequences format and other information.
  • reference signals Sounding Reference Signal, SRS
  • demodulation reference signals Demodulation Reference Signal, DMRS
  • positioning reference signals Positioning Reference Signal, PRS
  • PRS Positioning Reference Signal
  • the above-mentioned signal direction may be the direction of the sensing signal or beam information.
  • the above time resources may include the time slot index where the sensing signal is located or the symbol index of the time slot; among them, time resources are divided into two types, one is a one-time time resource, for example, one symbol transmits an omnidirectional target signal; It is a non-disposable time resource, such as multiple groups of periodic time resources or discontinuous time resources (can include start time and end time). Each group of periodic time resources sends sensing signals in the same direction, and different groups of periods The beam directions on the sexual time resources are different.
  • the above-mentioned frequency resources may include the center frequency point of the sensing signal, bandwidth, resource block (RB) or subcarrier, etc.
  • the above-mentioned QCL relationship may include: each resource among the multiple resources included in the sensing signal and a synchronization signal block (SSB) QCL, and the QCL includes type (Type) A, B, C or D.
  • SSB synchronization signal block
  • the second device can adjust the configuration of the perceptual measurement signal, thereby obtaining better perceptual measurement performance.
  • the first indication information is also used to indicate at least one of the following:
  • the identification information of the target signal associated with the perceptual measurement results may include: the identification information of the target signal associated with the perceptual measurement results respectively corresponding to the validity of the n perceptual measurement results.
  • the above-mentioned perceptual measurement identification information may include: perceptual measurement identification information respectively corresponding to the validity of n perceptual measurement results.
  • the above-mentioned perceptual measurement results may include: perceptual measurement results respectively corresponding to the validity of n perceptual measurement results.
  • the identification information of the target signal associated with the perceptual measurement result indicates which perceptual measurement result validity indication information indicates which target signal or target signals correspond to the perceptual measurement result validity. In this way, it is possible to indicate the specific target signal. Perceive the validity of measurement results for accurate instructions.
  • the above-mentioned perceptual measurement identification information can indicate which perceptual measurement result validity indication information indicates the validity of the perceptual measurement result corresponding to which perceptual measurement result.
  • the perceptual measurement result can be a measurement based on one or more target signals. In this way, Validation of perceptual measurement results indicating specific perceptual measurements is achieved to achieve precise indications.
  • Indicating the above-mentioned perceptual measurement results may indicate specific perceptual measurement results.
  • the feedback information of the first indication information may include at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the second device can accurately obtain the content indicated by the first indication information from the first indication information.
  • the first indication information indicates at least one of the following:
  • the first perceptual measurement result is one of the n perceptual measurement results
  • the first indication information does not include information related to the second perceptual measurement result
  • the second perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the third perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information does not include information related to the fourth perceptual measurement result
  • the fourth perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first instruction information indicates at least one of the following:
  • the first indication information indicates the sixth perception measurement result
  • the sixth perception measurement result validity indication is the One of the n perceptual measurement result validity indications.
  • the first indication information includes a perceptual measurement result valid indication and/or perceptual measurement result of the perceptual measurement result; when a certain perceptual measurement result is invalid, the first indication information Feedback information related to the sensing measurement results is not included, which can save signaling overhead.
  • the first indication information includes the perception measurement result invalid indication and/or the invalid reason and/or the recommended target signal parameter configuration of the perception measurement result; when a certain perception measurement result is valid, the first indication information is The indication information does not include feedback information related to the first sensing measurement result, which can save signaling overhead.
  • the first indication information includes the invalid reason corresponding to the perception measurement result and/or the recommended target signal parameter configuration, so that Save signaling overhead.
  • the first indication information contains the corresponding perception measurement result, which can save signaling overhead.
  • the method before the first device indicates n perceptual measurement result validity indications to the second device, the method further includes:
  • the first device receives second indication information sent by the second device, and the second indication information is used to indicate at least one of the following:
  • the above-mentioned whether the validity feedback of the perception measurement results is required may be to indicate whether validity feedback of all or part of the perception measurement results within a certain period of time (for example, from the current moment to the termination of the perception service) is required.
  • the above feedback configuration of the validity of the perception measurement results may indicate how to feedback the validity of the perception measurement results.
  • it may include at least one of the following:
  • the above-mentioned feedback timing may represent the time length between the feedback time point and the reference time point (such as the sending/ending time of the target signal or the control information of the target signal).
  • the above feedback resources may indicate the Physical Uplink Control Channel (PUCCH) and/or the Physical Uplink Shared Channel (PUSCH), which is equivalent to the specific time and frequency domain resources corresponding to the first indication information.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the above feedback methods may include:
  • Event-triggered feedback for example, the first indication information is only sent when the perceptual measurement result is invalid or valid as described in the previous embodiment
  • Periodically trigger feedback for example: the first device sends the first instruction information at a certain period;
  • Message triggers feedback for example: the first device sends the first instruction information according to the instruction message of the second device.
  • the above indication format is a format indicating validity indication of the above n perceptual measurement results.
  • the criteria for judging the validity of the above-mentioned perceptual measurement results may include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the criteria for judging the validity of the above-mentioned perceptual measurement results can be specifically referred to the corresponding descriptions of the previous embodiments, which will not be described in detail here.
  • the criteria may also include target signal quality threshold information and perceptual measurement result performance index requirement information.
  • At least one of the above-mentioned sensing measurement quantities, sensing requirements and sensing services can be used to indirectly indicate the criteria for judging the validity of the sensing measurement results of the first device.
  • the criteria for valid or invalid sensing measurement results can be associated with At least one of perceived measurement quantity, perceived demand and perceived business.
  • the method before the first device indicates n perceptual measurement result validity indications to the second device, the method further includes:
  • the first device receives third indication information sent by the second device, and the third indication information is used to indicate at least one of the following:
  • QoS Quality of service
  • the configuration information of the communication data signal for perceptual measurement may be communication data signal time domain resource configuration, frequency domain resource configuration, etc.
  • the accuracy of the first device's perception measurement can be improved through the above indication information of whether to allow perceptual measurement based on communication data symbols, and the accuracy of the first device's perceptual measurement can also be improved through the above configuration information of the communication data signal for perceptual measurement.
  • the above perceived QoS information may include at least one of the following:
  • Perception/synaesthesia integrated service priority perception resolution requirements, perception accuracy or perception error requirements, perception delay budget, maximum perception range requirements, continuous perception capability requirements, perception update frequency requirements, detection probability, False alarm probability, missed detection probability requirements, etc.
  • the first device can decide on its own whether to specifically use the sensing signal or data and which data symbol to use based on the QoS information, thereby improving the flexibility of sensing measurement.
  • the first device indicates n perceptual measurement result validity indications to the second device, where n is an integer greater than 1; wherein, the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are Measurement results of perceptual measurements on the target signal received by the first device.
  • the first device indicates n perceptual measurement result validity indications to the second device, so that perceptual measurement can be implemented.
  • Figure 5 is a flow chart of an instruction acquisition method provided by an embodiment of the present application. As shown in Figure 5, it includes the following steps:
  • Step 501 The second device obtains n perceptual measurement result validity indications indicated by the first device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the second device obtains n number of perception measurement result validity indications indicated by the first device, including:
  • the second device receives the first indication information sent by the first device, where the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity indication of the n perception measurement results.
  • the indication bits are n bits, and the n bits respectively indicate the validity indication of the n perceptual measurement results; or,
  • the indication bit is 1 bit, and the first value of the 1 bit indicates that at least one of the n perception measurement result validity indications is invalid; the second value of the 1 bit indicates that the n perception measurement results are invalid. All the measurement result validity indications are valid, or the second value of the 1-bit bit indicates that at least x of the n perception measurement result validity indications are valid, and x is an integer less than n and greater than 1. ;
  • the indication bits are nxm bits, where the nxm bits respectively indicate the n sensing measurements.
  • the level of effectiveness of quantitative results, m is an integer greater than 1.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates at least one of the following:
  • the first perceptual measurement result is one of the n perceptual measurement results
  • the first indication information does not include information related to the second perceptual measurement result
  • the second perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the third perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information does not include information related to the fourth perceptual measurement result
  • the fourth perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the first indication information indicates the sixth perception measurement result
  • the sixth perception measurement result validity indication is the One of the n perceptual measurement result validity indications.
  • the method further includes:
  • the second device sends second indication information to the first device, and the second indication information is used to indicate at least one of the following:
  • the feedback configuration for perceiving the validity of measurement results includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the method further includes:
  • the second device sends third indication information to the first device, where the third indication information is used to indicate at least one of the following:
  • this embodiment is an implementation of the second device corresponding to the embodiment shown in Figure 4.
  • the relevant description of the embodiment shown in Figure 4 please refer to the relevant description of the embodiment shown in Figure 4 to avoid repeated description. No further details will be given in this embodiment.
  • This embodiment mainly describes the format of n perceptual measurement result validity indications, which may be as follows:
  • validity indications of n (n>1) perceptual measurement results are fed back each time, where each perceptual measurement result (or each perceptual measurement result validity indication) is associated with one or more perceptual measurements.
  • the one sensing measurement may be a measurement based on one or more target signals.
  • the format of the n perceptual measurement result validity indication may include the following methods:
  • Method 1 Feedback measurement results are valid or feedback measurement results are invalid;
  • n bits can be fed back, corresponding to the validity of n perceptual measurement results. For example, "0" in each bit indicates that the perceptual measurement result is invalid, and "1" indicates that the perceptual measurement result is valid;
  • 1 bit can be fed back, for example:
  • nxm bits can be fed back, corresponding to the validity of n perceptual measurement results.
  • the validity of each perceptual measurement result is represented by m bits.
  • m ceil(log2 (x)) bit representation; for example, the validity of the measurement results is divided into different levels, that is, the target signal quality (SNR, RSRP, RSSI, signal-to-noise ratio, etc.) or perceptual performance indicators corresponding to the measurement results are different, or used for
  • Method 2 The feedback measurement result is valid + the perception measurement result or the feedback measurement result is invalid.
  • the details can be as follows:
  • the format can be as follows:
  • the number of bits of each perception measurement result may be fixed, may be agreed upon by both the sending and receiving parties (or specified in the protocol), or the number of bits of the perception measurement result may be indicated by the first device number/number of bits of the first feedback information.
  • the n-bit validity indication comes first and the perception result follows.
  • the validity indication and the perception result can be encoded separately, and the second device first detects the previous With the n-bit validity indication, the number of subsequent sensing results is known. At this time, the second device only needs to know the number of bits of each sensing measurement result to correctly decode.
  • the following feedback on the reasons for invalid perception measurement results and recommended target signal parameter configuration are the same.
  • Method 3 Feedback that the measurement result is valid + perceived measurement result or feedback measurement result is invalid + the reason for the invalidity, the details can be as follows:
  • the format may include the following:
  • the number of invalid reasons fed back can be less than the number of invalid perception measurement results, because the same invalid reason can be fed back only once or only select the invalid reasons for part of the invalid perception measurement results.
  • Feedback can save feedback overhead compared to sequential feedback of sensing measurement results and invalid reasons.
  • the number of feedback information bits is uncertain at this time, it is necessary to indicate the total number of feedback bits or the number of invalid reasons for feedback, otherwise The receiving end may not be able to correctly decode the first feedback information.
  • Method 4 The feedback measurement result is valid + the perception measurement result or the feedback measurement result is invalid + the target signal parameter configuration is recommended.
  • the details can be as follows:
  • the format may include the following:
  • the number of feedback suggested parameter configurations can be less than the number of invalid perception measurement results, because the same recommended parameter configuration can be fed back only once or only part of the recommended parameters can be selected.
  • Configuration for feedback for example, the recommended parameter configuration 1 is 100MHz bandwidth, and the recommended parameter configuration 2 is 120MHz bandwidth, then select only the recommended parameter configuration 2 to feedback.
  • feedback overhead can be saved.
  • the number of feedback information bits is uncertain at this time, it is necessary to indicate the total number of feedback bits or the number of feedback recommended target signal parameter configurations. Otherwise, The receiving end may not be able to correctly decode the first feedback information.
  • the following feedback related to the recommended target signal parameter configuration is the same.
  • Method 5 Feedback measurement result is valid + perception measurement result or feedback measurement result is invalid + invalid reason + recommended target signal parameter configuration, the details can be as follows:
  • the format can be:
  • the format can be feedback of 1-bit validity or invalid indication ("0" or "1") + perception measurement result + invalid reason + recommended parameter configuration.
  • the specific format is the same as the above method 5.
  • the difference between the 4 formats in the third case is that the previous n-bit validity indication becomes a 1-bit validity indication.
  • the reasons for invalid sensing measurement results and recommended parameter configuration can also be listed first, followed by the sensing measurement results.
  • the specific format is the same as above and will not be listed again.
  • the format may include:
  • Method 7 The feedback measurement results are valid or the feedback measurement results are invalid + it is recommended to configure the target signal parameters, the details can be as follows:
  • the format may include:
  • Method 8 The feedback measurement result is valid or the feedback measurement result is invalid + invalid reason + recommended target signal parameter configuration, the details can be as follows:
  • the format may include:
  • the format can be feedback of 1-bit validity indication or feedback of 1-bit invalidity indication + invalid reason + recommended parameter configuration.
  • the specific invalid format is the same as the 4 types in 8) b) and c) Format, the difference is that the previous n-bit validity indication becomes a 1-bit invalid indication (1 bit "0").
  • the valid indication is as shown in Table 39:
  • Method 9 Only when the first perceptual measurement result is valid, the first feedback information includes a valid indication of the perceptual measurement result of the first perceptual measurement result and/or the perceptual measurement result; when the first perceptual measurement result is invalid, the first feedback information does not include the first perceptual measurement result. Results related feedback information, the first perceptual measurement result is one of n perceptual measurement results.
  • the receiving end may not be able to correctly decode the first feedback information.
  • Method 10 Only when the first perception measurement result is invalid, the first feedback information includes the perception measurement result invalid indication and/or the reason for the invalidity and/or the suggested target signal parameter configuration of the first perception measurement result; the first perception measurement result is valid. does not include feedback information related to the first perceptual measurement result, the The first perceptual measurement result is 1 of n perceptual measurement results.
  • the receiving end may not be able to correctly decode the first feedback information.
  • the sensing measurement results, sensing requirements and sensing services can be defined as follows:
  • the above-mentioned perceptual measurement results are the measurement results associated with the perceptual measurement quantity, that is, the value of the measurement quantity. Specifically, they may include at least one of the following:
  • Original channel information compressed quantized information of channel matrix H or H, channel state information (Channel State Information, CSI), such as the amplitude of the frequency domain channel response, or the square sum/or phase of the frequency domain channel response amplitude, or the frequency
  • CSI Channel State Information
  • the I and Q signal characteristics of the domain channel response such as the amplitude or the square of the amplitude of the I and/or Q signals;
  • Spectral information channel power-delay profile (PDP), Doppler power spectrum, power azimuth spectrum (PAS), pseudo-spectrum information (such as Multiple Signal Classification (MUSIC) spectrum ), time delay-Doppler two-dimensional spectrum, time delay-Doppler-angle three-dimensional spectrum;
  • PDP channel power-delay profile
  • PAS power azimuth spectrum
  • MUSIC pseudo-spectrum information
  • Multipath information power, phase, delay, and angle information of each path in the multipath channel (including at least the first reach path, line of sight (LOS) path, first-order reflection path, and multi-order reflection path);
  • Angle information arrival angle, departure angle (including terminal side angle information, base station side angle information and reflection point angle information);
  • the projection operation can be I*cos(theta)+Q*sin(theta), where theta is a certain angle value, different theta corresponds to different projections, I represents the I-channel data, and Q represents the Q-channel data), the amplitude ratio or amplitude difference of the received signals of the first antenna and the second antenna, the phase difference of the signals of the first antenna and the second antenna, The delay difference between the first antenna and the second antenna signal;
  • Target parameter information determined based on original channel information Doppler spread, Doppler frequency shift, maximum delay spread, angle spread, coherence bandwidth, and coherence time.
  • the above-mentioned measured quantities it also includes new measured quantities generated by operations based on two or more of the above-mentioned measured quantities.
  • the above perceived demand information may include at least one of the following:
  • Perception business types such as intrusion detection, trajectory tracking, environment reconstruction, breathing detection, action recognition, etc.
  • Sensing area for example, sensing area geographical coordinates, sensing area length, width, height, distance, angle range, etc.
  • the type of sensing target such as cars, motorcycles, pedestrians, etc., indicates the moving speed range of the sensing target and the reflected power level of wireless signals;
  • Sensing/synaesthesia integrated QoS for example, sensing/synaesthesia integrated service priority, sensing resolution requirements, sensing accuracy or sensing error requirements, sensing delay budget, maximum sensing range requirements, continuous sensing capability requirements , Perception update frequency requirements, detection probability, false alarm probability, missed detection probability requirements, etc.;
  • Communication QoS for synesthesia integrated services, such as communication delay budget, false alarm rate, etc.
  • Sensing target density within the sensing area is Sensing target density within the sensing area.
  • the above sensing services may be but are not limited to at least one of the following:
  • Object feature detection Information that can reflect the attributes or status of the target object, which can be at least one of the following: the existence of the target object, the position of the target object, the speed of the target object, the acceleration of the target object, the material of the target object, the target The shape of the object, the category of the target object, the radar cross section (RCS) of the target object, polarization scattering characteristics, etc.;
  • Event detection Information related to the target event, that is, information that can be detected/perceived when the target event occurs, can be: fall detection, intrusion detection, quantity statistics, indoor positioning, gesture recognition, lip recognition, gait recognition, Expression recognition, breathing monitoring, heart rate monitoring, sound source discrimination, etc.;
  • Environmental detection humidity, brightness, temperature and humidity, atmospheric pressure, air quality, weather conditions, topography, building/vegetation distribution, people statistics, crowd density, vehicle density, etc.
  • the criteria for judging whether the perceptual measurement results are valid may include at least one of the following:
  • the target signal quality detected by the receiving end (including at least one of SNR, RSRP, RSSI, and signal-to-noise ratio) meets the threshold requirements;
  • the perceptual performance indicators can be at least one of the following:
  • Perception accuracy/perception error sensing resolution, sensing range, sensing delay, detection probability, false alarm probability, number of targets detected simultaneously, signal to clutter ratio, signal side lobe characteristics (signal main lobe side lobe ratio), peak average Ratio PAPR, variance, standard deviation, the ratio of the target sensing signal component to other sensing signal components.
  • the amplitude corresponding to the sample point with the largest Doppler domain amplitude is regarded as the target sensing component, that is, the sample with the largest amplitude is considered
  • the value points are sample points corresponding to the respiratory frequency; the amplitudes corresponding to other sample points except the sample point with the largest amplitude are used as other sensory signal components.
  • the receiving end demodulates the data correctly and performs sensing based on the communication data, adopts the method of demodulating first and then estimating the sensing parameters. If the communication demodulation is wrong, the sensing measurement results will be affected and become unreliable;
  • the receiving end successfully obtains the sensing measurement results when the feedback time point arrives, for example, whether the processing of the sensing measurement results times out.
  • the perceptual measurement result When the perceptual measurement result satisfies at least one of the above items, the perceptual measurement result is considered valid; otherwise, it is considered invalid. For example, if it satisfies the first and second items, that is, when the target signal quality reaches the threshold requirement and the perceptual measurement result meets the perceptual requirements, it is considered valid. Perceptual measurements are valid.
  • the first device performs perceptual measurement according to the instruction information related to perceptual measurement signal configuration, provides feedback on the validity of the perceptual measurement result, and evaluates the perceptual measurement result, the reason why the perceptual measurement result is invalid, and the validity of the perceptual measurement result.
  • Feedback information such as the recommended perceptual measurement signal configuration. Determining the feedback format based on the validity of the perception measurement results can reduce overhead and assist the party receiving the perception measurement results to further process the perception measurement results or adjust the perception Configuration of measurement signals resulting in better perceptual measurement performance.
  • Figure 6 is a structural diagram of an information indicating device provided by an embodiment of the present application. As shown in Figure 6, it includes:
  • Instruction module 601 is configured to indicate n perceptual measurement result validity indications to the second device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first device indicates n perceptual measurement result validity indications to the second device, including:
  • the first device sends first indication information to the second device, where the first indication information includes an indication bit, where the indication bit is at least one bit used to indicate the validity indication of the n perception measurement results.
  • the indication bits are n bits, and the n bits respectively indicate the validity indication of the n perceptual measurement results; or,
  • the indication bit is 1 bit, and the first value of the 1 bit indicates that at least one of the n perception measurement result validity indications is invalid; the second value of the 1 bit indicates that the n perception measurement results are invalid. All the measurement result validity indications are valid, or the second value of the 1-bit bit indicates that at least x of the n perception measurement result validity indications are valid, and x is an integer less than n and greater than 1. ;
  • the indication bits are nxm bits, where the nxm bits respectively indicate the validity levels of the n perceptual measurement results, and m is an integer greater than 1.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates at least one of the following:
  • the first perceptual measurement result is one of the n perceptual measurement results
  • the first indication information does not include information related to the second perceptual measurement result
  • the second perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the third perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information does not include information related to the fourth perceptual measurement result
  • the fourth perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the sixth perceptual measurement result validity indicated by the sixth perceptual measurement result validity indication is that there is If valid, the first indication information indicates a sixth perceptual measurement result, and the sixth perceptual measurement result validity indication is one of the n perceptual measurement result validity indications.
  • the device also includes:
  • a first receiving module configured to receive second indication information sent by the second device, where the second indication information is used to indicate at least one of the following:
  • the feedback configuration for perceiving the validity of measurement results includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the device also includes:
  • the second receiving module is configured to receive third indication information sent by the second device, where the third indication information is used to indicate at least one of the following:
  • the above information indicating device can realize perceptual measurement.
  • the information indication device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • the terminal may include but is not limited to the types of terminals listed in the embodiments of this application, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application.
  • NAS Network Attached Storage
  • the information indication device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 4 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 7 is a structural diagram of an instruction acquisition device provided by an embodiment of the present application. As shown in Figure 7, it includes:
  • the acquisition module 701 is used to obtain n perceptual measurement result validity indications indicated by the first device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the second device obtains n number of perception measurement result validity indications indicated by the first device, including:
  • the second device receives the first indication information sent by the first device, where the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity indication of the n perception measurement results.
  • the indication bits are n bits, and the n bits respectively indicate the validity indication of the n perceptual measurement results; or,
  • the indication bit is 1 bit, and the first value of the 1 bit indicates that at least one of the n perception measurement result validity indications is invalid; the second value of the 1 bit indicates that the n perception measurement results are invalid.
  • the measurement result validity indication is all valid, or the second value of the 1-bit bit Indicate that at least x of the n perceptual measurement result validity indications are valid, and x is an integer less than n and greater than 1;
  • the indication bits are nxm bits, where the nxm bits respectively indicate the validity levels of the n perceptual measurement results, and m is an integer greater than 1.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates at least one of the following:
  • the first perceptual measurement result is one of the n perceptual measurement results
  • the first indication information does not include information related to the second perceptual measurement result
  • the second perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the third perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information does not include the fourth Information about perceptual measurement results
  • the fourth perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the first indication information indicates the sixth perception measurement result
  • the sixth perception measurement result validity indication is the One of the n perceptual measurement result validity indications.
  • the device also includes:
  • a first sending module configured to send second indication information to the first device, where the second indication information is used to indicate at least one of the following:
  • the feedback configuration for perceiving the validity of measurement results includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the device also includes:
  • the second sending module is configured to send third indication information to the first device, where the third indication information is used to indicate at least one of the following:
  • the above indication acquisition device can implement perceptual measurement.
  • the instruction acquisition device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a network-side device, or may be other devices besides the network-side device.
  • network-side devices may include but are not limited to the types of network-side devices listed in the embodiments of this application.
  • Other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiments of this application. .
  • the instruction acquisition device provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 800, which includes a processor 801 and a memory 802.
  • the memory 802 stores programs or instructions that can be run on the processor 801, such as , when the communication device 800 is the first device, when the program or instruction is executed by the processor 801, each step of the above information indication method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 800 is a second device, when the program or instruction is executed by the processor 801, each step of the above instruction acquisition method embodiment is implemented, and the same technical effect can be achieved.
  • I won’t go into details here.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a first device and includes a processor and a communication interface.
  • the communication interface is used to indicate n perception measurement result validity indications to the second device, where n is greater than 1. an integer; wherein, the n perceptual measurement results corresponding to the validity indications of the n perceptual measurement results are the measurement results of perceptual measurement of the target signal received by the first device.
  • This first device embodiment corresponds to the above-mentioned first device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first device embodiment, and can achieve the same technical effect.
  • FIG. 9 is a schematic diagram of the hardware structure of a communication device that implements an embodiment of the present application.
  • the communication device 900 is a first device, including but not limited to: radio frequency unit 901, network module 902, audio output unit 903, input unit 904, sensor 905, display unit 906, user input unit 907, interface unit 908, memory 909 and At least some components of processor 910 and the like.
  • the communication device 900 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 910 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • the input unit 904 may include a graphics processing unit (Graphics Processing Unit, GPU) 9041 and a microphone 9042.
  • the graphics processing unit 9041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and at least one of other input devices 9072 .
  • Touch panel 9071 also known as touch screen.
  • the touch panel 9071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 9072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 901 after receiving the downlink data from the network side device, the radio frequency unit 901 can to transmit to the processor 910 for processing; in addition, the radio frequency unit 901 can send uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 909 may include volatile memory or nonvolatile memory, or memory 909 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 910 may include one or more processing units; optionally, the processor 910 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 910.
  • the radio frequency unit 901 is used to indicate n perceptual measurement result validity indications to the second device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the first device indicates n perceptual measurement result validity indications to the second device, including:
  • the first device sends first indication information to the second device, where the first indication information includes an indication bit, where the indication bit is at least one bit used to indicate the validity indication of the n perception measurement results.
  • the indication bits are n bits, and the n bits respectively indicate the validity indication of the n perceptual measurement results; or,
  • the indication bit is 1 bit, and the first value of the 1 bit indicates that at least one of the n perception measurement result validity indications is invalid; the second value of the 1 bit indicates that the n perception measurement results are invalid. All the measurement result validity indications are valid, or the second value of the 1-bit bit indicates that at least x of the n perception measurement result validity indications are valid, and x is an integer less than n and greater than 1. ;
  • the indication bits are nxm bits, where the nxm bits respectively indicate the validity levels of the n perceptual measurement results, and m is an integer greater than 1.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform, subcarrier interval, guard interval, bandwidth, burst duration, time domain interval Transmit signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates at least one of the following:
  • the first perceptual measurement result is one of the n perceptual measurement results
  • the first indication information does not include information related to the second perceptual measurement result
  • the second perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the third perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information does not include information related to the fourth perceptual measurement result
  • the fourth perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the first indication information indicates the sixth perception measurement result
  • the sixth perception measurement result validity indication is the One of the n perceptual measurement result validity indications.
  • the radio frequency unit 901 is also configured to:
  • the feedback configuration for perceiving the validity of measurement results includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the radio frequency unit 901 is also configured to:
  • the first device is used as a terminal for illustration.
  • the above-mentioned first device can implement perceptual measurement.
  • An embodiment of the present application also provides a communication device, where the communication device is a second device, including processor and communication interface, wherein the communication interface is used to obtain n perceptual measurement result validity indications indicated by the first device, n is an integer greater than 1; wherein the n perceptual measurement result validity indications correspond to The n perceptual measurement results are the measurement results of perceptual measurements on the target signal received by the first device.
  • This second equipment embodiment corresponds to the above-mentioned second equipment method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this second equipment embodiment, and can achieve the same technical effect.
  • the communication device 1000 includes: an antenna 1001, a radio frequency device 1002, a baseband device 1003, a processor 1004 and a memory 1005.
  • Antenna 1001 is connected to radio frequency device 1002.
  • the radio frequency device 1002 receives information through the antenna 1001 and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002.
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001.
  • the method performed by the communication device in the above embodiment can be implemented in the baseband device 1003, which includes a baseband processor.
  • the baseband device 1003 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the communication device may also include a network interface 1006, such as a common public radio interface (CPRI).
  • a network interface 1006 such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the communication device 1000 in the embodiment of the present invention also includes: instructions or programs stored in the memory 1005 and executable on the processor 1004.
  • the processor 1004 calls the instructions or programs in the memory 1005 to execute the modules shown in Figure 4 The implementation method and achieve the same technical effect will not be repeated here to avoid repetition.
  • the radio frequency device 1002 is used to obtain n perceptual measurement result validity indications indicated by the first device, where n is an integer greater than 1;
  • the n perceptual measurement results corresponding to the n perceptual measurement result validity indications are the measurement results of perceptual measurement of the target signal received by the first device.
  • the second device obtains n number of perception measurement result validity indications indicated by the first device, including:
  • the second device receives the first indication information sent by the first device, where the first indication information includes an indication bit, and the indication bit is at least one bit used to indicate the validity indication of the n perception measurement results.
  • the indication bits are n bits, and the n bits respectively indicate the validity indication of the n perceptual measurement results; or,
  • the indication bit is 1 bit, and the first value of the 1 bit indicates that at least one of the n perception measurement result validity indications is invalid; the second value of the 1 bit indicates that the n perception measurement results are invalid. All the measurement result validity indications are valid, or the second value of the 1-bit bit indicates that at least x of the n perception measurement result validity indications are valid, and x is an integer less than n and greater than 1. ;
  • the indication bits are nxm bits, where the nxm bits respectively indicate the validity levels of the n perceptual measurement results, and m is an integer greater than 1.
  • the first indication information is also used to indicate at least one of the following:
  • the reason why the perceptual measurement result is invalid is at least one of the following:
  • the quality of the target signal detected by the first device does not reach the threshold requirement
  • the perception measurement results obtained by the first device do not meet the perception requirements
  • the first device does not demodulate the data correctly
  • the first device When the feedback time point of the first indication information arrives, the first device does not obtain the sensing measurement result.
  • the parameter configuration includes at least one of the following:
  • Waveform subcarrier interval, guard interval, bandwidth, burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency domain resources, quasi-co-located QCL relationship.
  • the first indication information is also used to indicate at least one of the following:
  • the feedback information of the first indication information includes at least one of the following:
  • the number of bits in the first indication information indicating the parameter configuration of the proposed target signal is the number of bits in the first indication information indicating the parameter configuration of the proposed target signal.
  • the first indication information indicates at least one of the following:
  • the first perceptual measurement result is one of the n perceptual measurement results
  • the first indication information does not include information related to the second perceptual measurement result
  • the second perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the third perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information does not include information related to the fourth perceptual measurement result
  • the fourth perceptual measurement result is one perceptual measurement result among the n perceptual measurement results
  • the first indication information indicates at least one of the following:
  • the first indication information indicates the sixth perception measurement result
  • the sixth perception measurement result validity indication is the One of the n perceptual measurement result validity indications.
  • the radio frequency device 1002 is further configured to:
  • the feedback configuration for perceiving the validity of measurement results includes at least one of the following:
  • the criteria for judging the validity of the perceptual measurement results include at least one of the following:
  • the target signal is a communication data signal, whether the first device demodulates the data correctly;
  • the radio frequency device 1002 is further configured to:
  • the second device is used as a network-side device for illustration.
  • the above-mentioned second device can implement perceptual measurement.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • a program or instructions stored on the readable storage medium.
  • each process of the above information indication method or instruction acquisition method embodiment is implemented. And can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above information indication method or instruction acquisition.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above information indicating method or instruction.
  • Each process of the method embodiment is obtained and can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide an information feedback system, including: a first device and a second device.
  • the terminal can be used to perform the steps of the above information indication method, and the network side device can be used to perform the above indication obtaining method. step.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息指示方法、指示获取方法、装置、设备和存储介质,属于通信技术领域,本申请实施例的信息指示方法包括:第一设备向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。

Description

信息指示方法、指示获取方法、装置、设备和存储介质
相关申请的交叉引用
本申请主张在2022年03月31日在中国提交的中国专利申请No.202210344711.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息指示方法、指示获取方法、装置、设备和存储介质。
背景技术
未来移动通信系统(例如超5代移动通信系统(5th Generation,5G)或第6代移动通信系统(6G))除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离和/或速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别或成像等。但目前本领域技术人员对于如何实现感知测量技术还处于讨论阶段,也就是说,如何实现感知测量还属于一个待解决的技术问题。
发明内容
本申请实施例提供一种信息指示方法、指示获取方法、装置、设备和存储介质,能够解决如何实现感知测量的技术问题。
第一方面,提供了一种信息指示方法,包括:
第一设备向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第二方面,提供了一种指示获取方法,包括:
第二设备获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第三方面,提供了一种信息指示装置,包括:
指示模块,用于向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第四方面,提供了一种指示获取装置,包括:
获取模块,用于获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第五方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的信息指示方法的步骤。
第六方面,提供了一种通信设备,所述通信设备为第一设备,包括处理器及通信接口,其中,所述通信接口用于向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第七方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的指示获取方法的步骤。
第八方面,提供了一种通信设备,所述通信设备为第二设备,包括处理器及通信接口,其中,所述通信接口用于获取第一设备指示的指示n个感知 测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
第九方面,提供了一种信息指示系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的信息指示方法的步骤,所述第二设备可用于执行如第二方面所述的指示获取方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的信息指示方法的步骤,或者实现如第二方面所述的指示获取方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的信息指示方法,或实现如第二方面所述的指示获取方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信息指示方法的步骤,或者所述计算机程序/程序产品被至少一个处理器执行以实现如第二方面所述的指示获取方法的步骤。
本申请实施例中,第一设备向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。这样第一设备向第二设备指示n个感知测量结果有效性指示,从而可以实现感知测量。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种无线感知的示意图;
图3是本申请实施例提供的另一种无线感知的示意图;
图4是本申请实施例提供的一种信息指示方法的流程图;
图5是本申请实施例提供的一种指示获取方法的流程图;
图6是本申请实施例提供的一种信息指示装置的结构图;
图7是本申请实施例提供的一种指示获取装置的结构图;
图8是本申请实施例提供的一种通信设备的结构图;
图9是本申请实施例提供的另一种通信设备的结构图;
图10是本申请实施例提供的另一种通信设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统 和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端、网络侧设备和核心网设备。
本申请实施例中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端的具体类型。
网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)、接入点(Access Point,AP)、中继(Relay)、智能反射表面(Reconfigurable Intelligence  Surface,RIS)或所述领域中其他某个合适的术语,只要到达相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
本申请实施例中,网络侧设备和终端具备感知能力,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。例如:在一些场景或者实施方式中,感知类别可以如下表所示:

需要说明的是,上表所示的感知类别仅是一个举例说明,本申请实施例中对感知测量的类别并不作限定。
另外,本申请实施例可以应用于通信与雷达的一体化的通信感知融合应用场景,在该场景的联合设计包括频谱共存,即两系统独立工作,可以允许信息交换以降低互相之间的干扰。在接收端共享的情况下,此时两系统发端发送各自的信号波形,两系统的波形需要具备正交性,从而不影响各自的接收检测;在发送端共享的情况下,发送端发射雷达与通信的联合波形;在收发端共享的情况下,两系统收发两侧进行资源共享,同样需要使用联合波形或者存在正交关系的波形。需要说明的是,上述通信与雷达的一体化的通信感知融合应用场景为本申请实施例应用场景的一个举例,本申请实施例中对对应场景不作限定。
本申请实施例中,在进行感知时,可以是基于单站模式的感知,即收发共址,发送端发射感知信号,然后自己接收回波信号并进行分析,提取感知参数,例如图2所示,基站作为感知信号的发送端与接收端,终端或其他物体作为感知目标;也可以是基于双站或者多站模式的感知,即收发不共址,发送端发射感知信号,其他接收端进行接收并分析,提取感知参数,例如如图3所示,基站1作为感知信号发送端,终端或者基站2作为感知信号接收端。
本申请实施例中,通信系统可以将承载信息的调制符号与用于信道估计的导频符号联合发送,重点关注译码性能,其信道估计算法仅需估计具有有限未知参数的复合信道,通常以提高吞吐量和传输可靠性为优化目标,关注 的性能指标一般是频谱效率、信道容量、信噪比(Signal-to-noise ratio,SNR)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、比特出错概率(Bit Error Ratio,BER)、误块率(Block Error Rate,BLER)、误码率(Symbol Error Rate,SER)等。而感知系统信号发送过程中无需考虑信息承载问题,通常使用优化或未经调制的发射信号,可以重点关注感知目标对发射信号带来的改变,即响应特性,通常以提高参数估计精度为优化目标,性能衡量指标可能是模糊函数、克拉美罗下界、均方根误差、互信息、率失真函数、雷达估计速率、韦尔奇下界以及一些与感知场景和需求相关联的指标。
本申请实施例中,在一些场景或者实施方式中,将同时支持无线通信信号和无线感知信号,通过信号联合设计和/或硬件共享等通信感知一体化手段,实现通信和感知功能一体化设计,在进行信息传递的同时,具备感知能力或者提供感知服务。这样通过通感(通信和感知)一体化可以到达节约成本、减小设备尺寸、降低设备功耗、提升频谱效率、减小通感间的互干扰和提升系统性能等效果。
另外,通感一体化可以包括但不限于如下至少一种:
同一网络提供通信服务和感知服务;
同一终端提供通信服务和感知服务;
同一频谱提供通信服务和感知服务;
同一次无线电发射中完成集成的通感一体化服务,即通信信号和感知信号的联合设计。
本申请实施例中,对于通感融合或通感一体化场景,感知测量可以使用专用感知信号,也可以复用通信信号,例如数据和/或导频,关于感知测量信号的使用可以由发送方指示接收方,例如基站指示终端使用那种类型的信号进行感知测量。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种信息指示方法、获取方法、装置、设备和存储介质进行详细地说明。
请参见图4,图4是本申请实施例提供的一种信息指示方法的流程图, 如图4所示,包括以下步骤,包括:
步骤401、第一设备向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
上述第一设备可以是网络侧设备或终端,上述第二设备可以是核心网的感知网络功能和/或感知网元,也可以是网络侧设备或终端。
本申请实施例中,目标信号可以是通信信号,例如参考信号、同步信号或数据信号,目标信号也可以是专用感知信号,例如雷达脉冲信号或调频连续波(Frequency Modulated Continuous Wave,FMCW)信号。
其中,目标信号的收发可以包括下几种方式:
网络侧设备A发目标信号,网络侧设备B收目标信号;其中,网络侧设备B作为第一设备,网络侧设备A作为第二设备,或者网络侧设备A和网络侧设备B中的至少一项作为第一设备,核心网作为第二设备;
网络侧设备发目标信号,终端收目标信号;其中,终端作为第一设备,网络侧设备作为第二设备,或者网络侧设备和终端中的至少一项作为第一设备,核心网作为第二设备;
网络侧设备自发自收;其中,网络侧设备作为第一设备,核心网作为第二设备;
终端自发自收;其中,终端作为第一设备,网络侧设备作为第二设备,或者,终端作为第一设备,核心网作为第二设备;
终端发,网络侧设备收;其中,网络侧设备作为第一设备,核心网作为第二设备;
终端A发,终端B收;其中,终端B作为第一设备,终端A作为第二设备,或者,终端A或者终端B作为第一设备,终端A或者终端B的接入网络侧设备作为第二设备,或者,终端A或者终端B作为第一设备,核心网作为第二设备。
需要说明的是,本申请实施例中的目标信号发送设备可以是多个设备,目标信号接收设备可以是多个设备。
所述第一设备可以显式或者隐式向第二设备指示n个感知测量结果有效性指示。
上述n个感知测量结果有效性指示可以是,n个感知测量结果的有效性指示,每个感知测量结果有效性指示用于表示对应的感知测量结果的有效或者无效,且每个感知测量结果或每个感知测量结果有效性指示与一次或多次感知测量相关联,其中,一次感知测量可以是基于一个或多个目标信号的测量。
另外,感知测量结果有效或无效的准则可以是网络设备配置的和/或协议定义的,或者感知测量结果有效或无效的准则由关联到感知测量量或感知需求或感知业务确定。
本申请实施例中,通过上述步骤可以实现第一设备向第二设备指示n个感知测量结果有效性指示,以实现感知测量,提升了设备的工作性能。且由于n大于1这样可以实现一次指示多个反馈结果,以节约传输开销。
另外,本申请实施例中,上述n个感知测量结果有效性指示还有利用第二设备对感知测量结果进行进一步处理或调整信号配置,从而提升感知测量性能。或者,上述n个感知测量结果有效性指示可以辅助第二设备对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
作为一种可选的实施方式,所述第一设备向第二设备指示n个感知测量结果有效性指示,包括:
所述第一设备向第二设备发送第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
上述指示比特可以采用联合或者独立编码的方式指示n个感知测量结果有效性指示。
在一种实现方式中,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示。
该实现方式中,可以采用n比特表示n个感知测量结果的有效性,例如,其中每1比特中的“0”表示感知测量结果无效,“1”表示感知测量结果有效。
这样通过n比特可以准确是指示n个感知测量结果有效性指示。
在一种实现方式中,所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数。
该实现方式中,采用1比特指示,例如:1比特为n个感知测量结果有效性指示(n个比特)的逻辑与结果,“0”表示至少一个感知测量结果无效,“1”表示n个感知测量结果均有效;或者,当n个感知测量结果中超过x(x<n)个有效时反馈“1”,否则反馈“0”。
该实现方式通过1比特指示可以节约信令开销。
在一种实现方式中,所述指示比特为n*m比特,其中,n*m比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
其中,上述感知测量结果有效性等级可以是,不同等级对应不同信号质量,该信号质量可以包括:SNR、参考信号接收功率(Reference Signal Received Power,RSRP)、接收信号强度指示(Received Signal Strength Indication,RSSI)和信号杂波比等中至少一项;或者,上述感知测量结果有效性等级可以是,不同等级对应不同感知性能指标;或者,上述感知测量结果有效性等级可以是,不同等级对应不同测量结果有效性阈值,例如:假设有两个阈值,其中,包括三个等级,一个等级表示无效,另一个等级表示针对第一阈值有效但按照第二阈值无效,还有一个等级表示第二阈值有效(假设第二阈值要求更高)。
该实施方式中,可以实现将感知测量结果的有效性分为不同的等级,从而可以提高感知测量结果有效性的反馈效果。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
其中,上述感知测量结果无效原因可以是,第一设备建议或者期望的目标信号的配置参数,且可以是上述n个感知测量结果有效性指示中表示为无效的感知测量结果无效的原因信息。
上述第一设备建议的目标信号的参数配置可以是,上述n个感知测量结果有效性指示中表示为无效的感知测量结果对应的目标信号的参数配置,该参数配置可以用于提高目标信号对应的感知测量结果的有效性。
该实施方式,通过反馈上述无效原因和参数配置中的至少一项,可以有利用接收第一信息的第二设备对感知测量结果进行进一步处理或调整信号配置,从而提升感知测量性能。或者,上述无效原因和参数配置中的至少一项可以辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知测量信号的配置,从而获得更好的感知测量性能。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
上述第一设备检测的所述目标信号的质量未到达门限要求可以是,第一设备检测的目标信号的SNR、RSRP、RSSI和信号杂波比门限中的至少一项未到达门限要求。另外,在测量过程中可以是接收端可以先只测量SNR、RSRP、RSSI和信号杂波比中的至少一项,如果到达门限再测量具体的感知测量量。
上述第一设备获得的感知测量结果不满足感知要求可以是,第一设备计算出的感知测量结果对应的感知性能指标不满足要求,例如感知SNR低于预 设门限值。
上述第一设备未正确解调数据可以是,在基于通信数据做感知时,采用先解调再估计感知参数的方式,若通信解调错误,感知测量结果受到影响,变得不可靠,即感知测量结果无效。
上述在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果可以是,反馈时间点到达时接收端未能获取感知测量结果,例如感知测量结果处理超时。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发(burst)持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址(Quasi co-location,QCL)关系。
上述波形可以包括:正交频分复用(Orthogonal frequency division multiplex,OFDM)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)SC-FDMA,正交时频空间(Orthogonal Time Frequency Space,OTFS)、调频连续波(Frequency Modulated Continuous Wave,FMCW)或者脉冲信号等。
上述子载波间隔可以是OFDM系统的子载波间隔30KHz或者15KHz等。
上述保护间隔可以是从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔;该参数正比于最大感知距离,例如,可以通过2dmax/c计算得到,dmax是最大感知距离(属于感知需求),如对于自发自收的感知信号,dmax代表感知信号收发点到信号发射点的最大距离;在某些情况下,OFDM信号循环前缀(Cyclic prefix,CP)可以起到最小保护间隔的作用;c是光速。
上述带宽可以反比于距离分辨率,例如:可以通过c/2/delta_d得到,其中delta_d是距离分辨率(属于感知需求)。
上述burst持续时间可以反比于速率分辨率(属于感知需求),该参数是感知信号的时间跨度,主要为了计算多普勒频偏;该参数可通过c/2/delta_v/fc 计算得到;其中,delta_v是速度分辨率;fc是信号载频或者信号的中心频点。
上述时域间隔可通过c/2/fc/v_range计算得到;其中,v_range是最大速率减去最小速度(属于感知需求);该参数是相邻的两个感知信号之间的时间间隔。
上述发送信号功率可以是从-20dBm到23dBm每隔2dBm取一个值,当然,这里仅是一种举例,具体可以根据实际需求设定。
上述信号格式可以探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS),定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息。
上述信号方向可以是感知信号的方向或者波束信息。
上述时间资源可以包括感知信号所在的时隙索引或者时隙的符号索引;其中,时间资源分为两种,一种是一次性的时间资源,例如一个符号发送一个全向的目标信号;一种是非一次性的时间资源,例如多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同。
上述频率资源可以包括感知信号的中心频点,带宽,资源块(Resource block,RB)或者子载波等。
上述QCL关系可以包括:感知信号包括的多个资源中每个资源与一个同步信号块(Synchronization Signal Block,SSB)QCL,QCL包括类型(Type)A,B,C或者D。
该实施方式中,通过上述参数配置可以使得第二设备调整感知测量信号的配置,从而获得更好的感知测量性能。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
上述与感知测量结果关联的目标信号的标识信息可以包括:分别与n个感知测量结果有效性对应的感知测量结果关联的目标信号的标识信息。
上述感知测量标识信息可以包括:分别与n个感知测量结果有效性对应的感知测量标识信息。
上述感知测量结果可以包括:分别与n个感知测量结果有效性对应的感知测量结果。
通过上述与感知测量结果关联的目标信号的标识信息指示该感知测量结果有效性指示信息指示的是哪一个或哪几个目标信号对应的感知测量结果有效性,这样可以实现指示具体的目标信号的感知测量结果有效性,以实现精确的指示。
通过上述感知测量标识信息可以指示该感知测量结果有效性指示信息指示的是哪一次感知测量对应的感知测量结果的有效性,所述感知测量可以是基于一个或多个目标信号的测量,这样可以实现指示具体的感知测量的感知测量结果有效性,以实现精确的指示。
指示上述感知测量结果可以实现指示具体的感知测量结果。
其中,所述第一指示信息的反馈信息可以包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
通过上述反馈信息可以让第二设备准确地第一指示信息获取第一指示信息所指示的内容。
可选地,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第一感知测量结果的感知测量结果有效性指示:
所述第一感知测量结果;
所述第一感知测量结果为所述n个感知测量结果中的一个;
和/或,
在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第三感知测量结果的感知测量结果有效性指示:
所述第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四感知测量结果的相关信息;
其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况 下,所述第一指示信息指示如下至少一项:
所述第五感知测量结果的无效原因的指示信息;
目标信号的参数配置;
和/或,
在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
该实施方式中,可以实现仅在某感知测量结果有效时,第一指示信息中包含该感知测量结果的感知测量结果有效指示和/或感知测量结果;当某知测量结果无效时第一指示信息不包含该感知测量结果相关反馈信息,这样可以节约信令开销。
以及可以实现仅在某感知测量结果无效时,第一指示信息中包含该感知测量结果的感知测量结果无效指示和/或无效原因和/或建议目标信号参数配置;某感知测量结果有效时第一指示信息不包含第一感知测量结果相关反馈信息,这样可以节约信令开销。
以及可以实现仅当第一指示信息中某感知测量结果有效性指示在指示感知测量结果无效时,第一指示信息中包含该感知测量结果对应的无效原因和/或建议目标信号参数配置,这样可以节约信令开销。
以及可以实现仅当第一指示信息中某感知测量结果有效性指示在指示感知测量结果有效时,第一指示信息中包含对应的感知测量结果,这样可以节约信令开销。
作为一种可选地实施方式,所述第一设备向第二设备指示n个感知测量结果有效性指示之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
上述是否需要感知测量结果有效性反馈可以是,指示某段时间内(例如从当前时刻到感知业务终止)全部或部分感知测量结果是否需要进行有效性反馈。
其中,上述感知测量结果有效性的反馈配置可以表示如何反馈感知测量结果有效性,例如:可以包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
指示格式。
其中,上述反馈定时可以表示反馈的时间点到参考时间点(例如目标信号或者目标信号的控制信息的发送/结束时间)之间的时间长度。
上述反馈资源可以指示物理上行控制信道(Physical Uplink Control Channel,PUCCH)和/或物理上行共享信道(Physical Uplink Shared Channel,PUSCH),相当于第一指示信息对应的具体时频域资源。
上述反馈方式可以包括:
事件触发反馈,例如前面实施方式描述的仅在感知测量结果无效或有效时发送第一指示信息;
周期性触发反馈,例如:第一设备按一定周期发送第一指示信息;
消息触发反馈,例如:第一设备根据第二设备的指示消息发送第一指示信息。
上述指示格式为指示上述n个感知测量结果有效性指示的格式。
上述感知测量结果有效性判断的准则可以包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
上述感知测量结果有效性判断的准则可以具体参见前面实施方式的相应说明,此处不作赘述,以及还可以包括目标信号质量门限信息和感知测量结果性能指标要求信息。
上述感知测量量、感知需求和感知业务中的至少一项可以用于间接指示第一设备感知测量结果有效性判断的准则,如前面实施方式所述的感知测量结果有效或无效的准则可以关联到感知测量量、感知需求和感知业务中的至少一项。
作为一种可选地实施方式,所述第一设备向第二设备指示n个感知测量结果有效性指示之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知服务质量(Quality of Service,QoS)信息。
其中,上述感知测量的通信数据信号的配置信息可以是,通信数据信号时域资源配置、频域资源配置等。
通过上述是否允许基于通信数据符号进行感知测量的指示信息可以提高第一设备感知测量的准确性,通过上述感知测量的通信数据信号的配置信息也可以提高第一设备感知测量的准确性。
上述感知QoS信息可以包括如下至少一项:
感知/通感一体化业务优先级、感知分辨率的要求、感知精度或感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求、检测概率、虚警概率、漏检概率要求等。
这样第一设备可以根据该QoS信息自行决定具体使用感知信号或数据,以及使用哪个数据符号,从而提高感知测量的灵活性。
本申请实施例中,第一设备向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。这样第一设备向第二设备指示n个感知测量结果有效性指示,从而可以实现感知测量。
请参见图5,图5是本申请实施例提供的一种指示获取方法的流程图,如图5所示,包括以下步骤:
步骤501、第二设备获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示,包括:
所述第二设备接收第一设备发送的第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
可选地,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示;或者,
所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
或者,
所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测 量结果有效性的等级,m为大于1的整数。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第一感知测量结果的感知测量结果有效性指示:
所述第一感知测量结果;
所述第一感知测量结果为所述n个感知测量结果中的一个;
和/或,
在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第三感知测量结果的感知测量结果有效性指示:
所述第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四感知测量结果的相关信息;
其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第五感知测量结果的无效原因的指示信息;
目标信号的参数配置;
和/或,
在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
可选地,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示之前,所述方法还包括:
所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
指示格式;
和/或,
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示之前,所述方法还包括:
所述第二设备向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知服务质量QoS信息。
需要说明的是,本实施例作为与图4所示的实施例中对应的第二设备的实施方式,其具体的实施方式可以参见图4所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。
下面通过多个实施例对本申请实施例提供的方法进行举例说明:
实施例一:
该实施例主要描述n个感知测量结果有效性指示的格式,具体可以如下:
该实施例中,每次反馈n(n>1)个感知测量结果的有效性指示,其中,每个感知测量结果(或每个感知测量结果有效性指示)与一次或多次感知测量相关联,所述一次感知测量可以是基于一个或多个目标信号的测量。
n个感知测量结果有效性指示的格式可以包括如下方式:
方式一、反馈测量结果有效或者反馈测量结果无效;
在方式一中,可以反馈n比特,对应n个感知测量结果的有效性,例如,其中每1比特中的“0”表示感知测量结果无效,“1”表示感知测量结果有效;
在方式一中,可以反馈1比特,例如:
n个感知测量结果有效性(n个比特)的逻辑与结果,“0”表示至少一个感知测量结果无效,“1”表示n个感知测量结果均有效;或者
当n个感知测量结果中超过x(x<=n,当x=n时,效果等同逻辑与)个 有效时反馈“1”,否则反馈“0”;
在方式一中,可以反馈nⅹm比特,对应n个感知测量结果的有效性,每个感知测量结果的有效性采用m比特表示,对应于有效性相关的x个状态,则需要m=ceil(log2(x))比特表示;例如将测量结果的有效性分为不同的等级,即测量结果对应的目标信号质量(SNR、RSRP、RSSI、信号杂波比等)或感知性能指标不同,或者用于判断测量结果有效性的阈值有多个,(假设有两个阈值)那就可以分为无效,第一阈值有效但按照第二阈值无效,第二阈值有效(假设第二阈值要求更高)三个状态。
方式二、反馈测量结果有效+感知测量结果或者反馈测量结果无效,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果;当感知测量结果无效时,反馈“0”表示感知结果无效,具体的,格式可以如下所示:
每次反馈有效性指示时反馈感知测量结果,例如:表1所示:
表1:
或者先反馈n比特有效性指示,然后反馈感知测量结果,例如:表2所示:
表2:
特别的,对于反馈1比特的有效性指示的情况,格式可以是反馈1比特有效指示+感知测量结果或反馈1比特无效指示,其中有效的情况为n个感知测量结果中x(x<=n)个有效,此时反馈x个感知测量结果,例如:表3和表4所示:
表3:
表4:
需要说明的是,在反馈感知测量结果时,每个感知测量结果的比特数可以是固定的,可以是收发双方约定好的(或者协议规定的),或者由第一设备指示感知测量结果的比特数/第一反馈信息的比特数。特别的,对于先反馈n比特有效性指示,然后反馈感知测量结果的情况,n比特有效性指示在前,感知结果在后,有效性指示和感知结果可以分开编码,第二设备先检测前面的n比特有效性指示,就知道后面的感知结果个数了,此时第二设备只需要知道每个感知测量结果的比特数即可正确解码。另外,以下对于感知测量结果无效原因和建议目标信号参数配置的反馈同理。
方式三、反馈测量结果有效+感知测量结果或者反馈测量结果无效+无效原因,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因。具体的,格式可以包括如下:
每次反馈有效性指示时反馈感知测量结果或无效原因,例如:表5所示:
表5:
或者先反馈n比特有效性指示,然后按顺序反馈感知测量结果和无效原因,例如:表6所示:
表6:
还可以将感知测量结果有效时的感知测量结果和感知测量结果无效时的无效原因分别反馈,假设有效的感知测量结果为x个,无效的感知测量结果为y个,则反馈x个感知测量结果和p(p<=y)个无效原因,例如:表7所示:
表7:
或如表8所示:
表8:
需要说明的是,可以将重要性高或时延要求高的信息放在前面,例如感知测量结果重要性更高,则将感知测量结果放在前,还可以选择将感知测量结果独立编码。另外,以下涉及到感知测量结果、无效原因、建议目标信号参数配置先后顺序的情况同理。
特别的,对于反馈1比特有效性指示的情况,格式可以是反馈1比特有效指示+感知测量结果或反馈1比特无效指示+无效原因,其中有效的情况为n个感知测量结果中x(x<=n)个有效,无效的情况为n个感知测量结果中y(y<=n)个无效,此时反馈p(p<=y)个无效原因,例如:表9和表10所示:
表9:
表10:
注:对于方式三中反馈无效原因的情况下,反馈的无效原因个数可以少于无效的感知测量结果个数,因为相同的无效原因可以只反馈一次或者只选择部分无效感知测量结果的无效原因进行反馈,相比于按顺序反馈感知测量结果和无效原因的方式可以节省反馈开销,但是由于此时反馈信息比特数不确定,需要指示出反馈的总比特数或反馈的无效原因个数,否则接收端可能无法对第一反馈信息正确解码。
方式四、反馈测量结果有效+感知测量结果或者反馈测量结果无效+建议目标信号参数配置,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈建议目标信号参数配置(建议目标信号参数配置如发明方案5.中所述)。具体的,格式可以包括如下:
每次反馈有效性指示时反馈感知测量结果或建议参数配置,例如:表11 所示:
表11:
或者先反馈n比特有效性指示,然后按顺序反馈感知测量结果和建议参数配置,例如:表12所示:
表12:
还可以将感知测量结果有效时的感知测量结果和感知测量结果无效时的无效原因分别反馈,假设有效的感知测量结果为x个,无效的感知测量结果为y个,则反馈x个感知测量结果和q(q<=y)个建议目标信号参数配置,例如:表13所示:
表13:
或如表14所示:
表14:
特别的,对于反馈1比特有效性指示的情况,格式可以是反馈1比特有效指示+感知测量结果或反馈1比特无效指示+建议参数配置,其中有效的情况为n个感知测量结果中x(x<=n)个有效,无效的情况为n个感知测量结果中y(y<=n)个无效,此时反馈p(p<=y)个无效原因,例如:表15和表16所示:
表15:
表16:
需要说明的是,对于方式四反馈无效原因的方式,反馈的建议参数配置个数可以少于无效的感知测量结果个数,因为可以将相同的建议参数配置可以只反馈一次或者只选择部分建议参数配置进行反馈,例如建议参数配置1为100MHz带宽,建议参数配置2为120MHz带宽,则选择只反馈建议参数配置2。相比于按顺序反馈感知测量结果和建议参数配置的方式可以节省反馈开销,但是由于此时反馈信息比特数不确定,需要指示出反馈的总比特数或反馈的建议目标信号参数配置个数否则接收端可能无法对第一反馈信息正确解码。另外,以下涉及到建议目标信号参数配置的反馈同理。
方式五、反馈测量结果有效+感知测量结果或者反馈测量结果无效+无效原因+建议目标信号参数配置,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效,并反馈感知测量结果;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因以及建议目标信号参数配置,具体的,格式可以是:
每次反馈有效性指示时反馈感知测量结果或无效原因+建议参数配置,例如:表17或表18所示:
表17:
表18:
或者先反馈n比特有效性指示,然后按顺序反馈感知测量结果+无效原因+建议参数配置,例如:表19或表20所示:
表19:
表20:
还可以将感知测量结果有效时的感知测量结果和感知测量结果无效时的无效原因和建议参数配置分别反馈,假设有效的感知测量结果为x(x<=n) 个,无效的感知测量结果为y(y<=n)个,则反馈x个感知测量结果和p(p<=y)个无效原因和q(q<=y)个建议参数配置,例如:表21、表22、表23或表24所示:
表21:
表22:
表23:
表24:
特别的,对于反馈1比特有效性指示的情况,格式可以是反馈1比特有效或无效指示(“0”或“1”)+感知测量结果+无效原因+建议参数配置,具体格式同上述方式五中第三种情况中的4种格式,区别在于前面的n比特有效性指示变为1比特有效性指示。
另外,反馈格式中,也可以是感知测量结果无效时的原因和建议参数配置在前,感知测量结果在后,具体格式同上,不再重复列举。
方式六、反馈测量结果有效或者反馈测量结果无效+无效原因:当感知测量结果有效时,反馈“1”表示感知结果有效,具体可以如下:
当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因,具体的,格式可以包括:
每次反馈有效性指示时反馈无效原因,例如:表25所示:
表25:
或者先反馈n比特有效性指示,然后按顺序反馈无效原因,假设有效的感知测量结果为x个,无效的感知测量结果为y个,则反馈p(p<=y)个无效原因,例如:表26所示:
表26:
特别的,对于反馈1比特有效性指示的情况,格式可以是反馈1比特有效指示或反馈1比特无效指示+无效原因,其中有效的情况为n个感知测量结果中x(x<=n)个有效,无效的情况为n个感知测量结果中y(y<=n)个无效,此时反馈p(p<=y)个无效原因,例如:表27和表28所示:
表27:
表28:
方式七、反馈测量结果有效或者反馈测量结果无效+建议目标信号参数配置,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈建议目标信号参数配置。具体的,格式可以包括:
每次反馈有效性指示时反馈建议参数配置,例如:表29所示:
表29:
或者先反馈n比特有效性指示,然后按顺序反馈无效原因,假设有效的感知测量结果为x个,无效的感知测量结果为y个,则反馈q(q<=y)个无效原因,例如:表30所示:
表30:
特别的,对于反馈1比特有效性指示的情况,格式可以是反馈1比特有效指示或反馈1比特无效指示+无效原因,其中有效的情况为n个感知测量结果中x(x<=n)个有效,无效的情况为n个感知测量结果中y(y<=n)个无效,此时反馈q(q<=y)个建议参数配置,例如:表31和表32所示:
表31:
表32:
方式八、反馈测量结果有效或者反馈测量结果无效+无效原因+建议目标信号参数配置,具体可以如下:
当感知测量结果有效时,反馈“1”表示感知结果有效;当感知测量结果无效时,反馈“0”表示感知结果无效,并反馈感知测量结果无效原因以及建议目标信号参数配置。具体的,格式可以包括:
每次反馈有效性指示时反馈感知测量结果或无效原因+建议参数配置,表33或表34所示:
表33:
表34:
或者先反馈n比特有效性指示,然后反馈无效原因+建议参数配置,假设有效的感知测量结果为x个,无效的感知测量结果为y个,则反馈x个感知测量结果和p(p<=y)个无效原因和q(q<=y)个建议参数配置,例如:表35或表36所示:
表35:
表36:
还可以将感知测量结果无效时的无效原因和建议参数配置分别反馈,例如:表37或表38所示:
表37:
表38:
特别的,对于反馈1比特有效性指示的情况,格式可以是反馈1比特有效指示或反馈1比特无效指示+无效原因+建议参数配置,无效具体格式同8)b)和c)中的4种格式,区别在于前面的n比特有效性指示变为1比特无效指示(1比特“0”),有效时的指示如表39所示:
表39:
方式九、仅在第一感知测量结果有效时,第一反馈信息中包含第一感知测量结果的感知测量结果有效指示和/或感知测量结果;第一感知测量结果无效时不包含第一感知测量结果相关反馈信息,所述第一感知测量结果是n个感知测量结果中的1个。
由于此时反馈信息比特数不确定,需要指示出反馈的总比特数或有效的测量结果个数,否则接收端可能无法对第一反馈信息正确解码。
方式十、仅在第一感知测量结果无效时,第一反馈信息中包含第一感知测量结果的感知测量结果无效指示和/或无效原因和/或建议目标信号参数配置;第一感知测量结果有效时不包含第一感知测量结果相关反馈信息,所述 第一感知测量结果是n个感知测量结果中的1个。
由于此时反馈信息比特数不确定,需要指示出反馈的总比特数或无效的测量结果个数,否则接收端可能无法对第一反馈信息正确解码。
另外,本申请实施例中,感知测量结果、感知需求和感知业务可以定义如下:
上述感知测量结果是与感知测量量关联的测量结果,即测量量的值,具体的可以包括如下至少一项:
原始信道信息:信道矩阵H或H的压缩量化信息、信道状态信息(Channel State Information,CSI),例如频域信道响应的幅度,或者频域信道响应的幅度的平方和/或相位,或者是频域信道响应的I路与Q路信号特征,例如I路和/或Q路信号的幅度或者幅度的平方;
信号强度信息:RSRP、RSSI;
谱信息:信道功率时延谱(Power-delay profile,PDP)、多普勒功率谱、功率角度谱(power azimuth spectrum,PAS)、伪谱信息(例如多重信号分类(Multiple Signal Classification,MUSIC)谱)、时延-多普勒二维谱、时延-多普勒-角度三维谱;
多径信息:多径信道中各条径(至少包括首达径、直射(line of sight,LOS)径、一阶反射径、多阶反射径)的功率、相位、时延、角度信息;
角度信息:到达角、离开角(包括终端侧角度信息、基站侧角度信息与反射点角度信息);
不同天线对应信号的差别信息:第一天线与第二天线的频域信道响应的商或共轭乘(或第一天线与第二天线的频域信道响应的商或共轭乘的幅度或相位,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路,或第一天线与第二天线的频域信道响应的商或共轭乘的I路或Q路的投影运算,投影运算可以是I*cos(theta)+Q*sin(theta),其中theta为某一角度值,不同的theta对应不同的投影,I代表I路数据,Q代表Q路数据)、第一天线与第二天线的接收信号的幅度比或幅度差、第一天线与第二天线信号的相位差、 第一天线与第二天线信号的时延差;
基于原始信道信息确定的目标参数信息:多普勒扩展、多普勒频移、最大时延扩展、角度扩展、相干带宽、相干时间。
除上述测量量外,还包括基于上述测量量中的两个或两个以上进行运算生成的新的测量量。
上述感知需求信息可以包括以下至少一项:
感知业务类型,例如,入侵检测、轨迹追踪、环境重构、呼吸检测、动作识别等;
感知区域,例如,感知区域地理坐标、感知区域长、宽、高、距离、角度范围等;
感知目标类型,例如汽车、摩托车、行人等等,侧面指示了感知目标移动速度范围、对无线信号反射功率等级;
感知/通感一体化QoS,例如,感知/通感一体化业务优先级、感知分辨率的要求、感知精度或感知误差的要求、感知延时预算、最大感知范围的要求、连续感知能力的要求、感知更新频率的要求、检测概率、虚警概率、漏检概率要求等;
通信QoS(针对通感一体化业务),例如通信延时预算、误报率等;
感知区域内感知目标数量;
感知区域内感知目标密度。
上述感知业务可以是但不限于以下至少一项:
物体特征检测:能够反映目标物体的属性或所处状态的信息,可以为以下至少一项:目标物体的存在、目标物体的位置、目标物体的速度、目标物体的加速度、目标物体的材料、目标物体的形状、目标物体的类别、目标物体的雷达散射截面积(Radar Cross Section,RCS),极化散射特性等;
事件检测:与目标事件有关的信息,即在目标事件发生时能够检测/感知到的信息,可以为:跌倒检测、入侵检测、数量统计、室内定位、手势识别、唇语识别、步态识别、表情识别、呼吸监测、心率监测、声源分辨等;
环境检测:湿度、亮度、温度湿度、大气压强、空气质量、天气情况、地形地貌、建筑/植被分布、人数统计、人群密度、车辆密度等。
本申请实施例中,判断感知测量结果是否有效的准则可以包括如下至少一项:
接收端检测的目标信号质量(至少包括SNR,RSRP,RSSI,信号杂波比中的一项)是否达到门限要求;
接收端获得的感知测量结果是否满足感知需求,即计算出的感知测量结果对应的感知性能指标是否满足要求,其中,所述感知性能指标可以是至少以下一项:
感知精度/感知误差,感知分辨率,感知范围,感知时延,检测概率,虚警概率,同时检测目标个数,信号杂波比,信号旁瓣特征(信号主瓣旁瓣比),峰均比PAPR,方差,标准差,目标感知信号分量与其他感知信号分量之比,例如呼吸检测中多普勒域幅度最大的样值点对应的幅度作为目标感知分量,即认为,该幅度最大的样值点为呼吸频率对应的样值点;除所述幅度最大的样值点外的其他样值点对应的幅度作为其他感知信号分量。
接收端是否正确解调数据,基于通信数据做感知,采用先解调再估计感知参数的方式,若通信解调错误,感知测量结果受到影响,变得不可靠;
反馈时间点到达时接收端是否成功获取感知测量结果,例如感知测量结果处理是否超时。
当所述感知测量结果至少满足以上一项时,认为感知测量结果有效,否则认为无效,例如满足第一项和第二项,即当目标信号质量达到门限要求且感知测量结果满足感知需求时认为感知测量结果有效。
本申请实施例中,第一设备根据感知测量信号配置相关的指示信息进行感知测量,对感知测量结果有效性进行反馈,并根据感知测量结果有效性对感知测量结果、感知测量结果无效的原因以及建议的感知测量信号配置等信息进行反馈。根据感知测量结果的有效性确定反馈格式,可以减小开销,辅助接收感知测量结果的一方对感知测量结果进行进一步处理,或者调整感知 测量信号的配置,从而获得更好的感知测量性能。
请参见图6,图6是本申请实施例提供的一种信息指示装置的结构图,如图6所示,包括:
指示模块601,用于向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一设备向第二设备指示n个感知测量结果有效性指示,包括:
所述第一设备向第二设备发送第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
可选地,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示;或者,
所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
或者,
所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第一感知测量结果的感知测量结果有效性指示:
所述第一感知测量结果;
所述第一感知测量结果为所述n个感知测量结果中的一个;
和/或,
在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第三感知测量结果的感知测量结果有效性指示:
所述第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四感知测量结果的相关信息;
其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第五感知测量结果的无效原因的指示信息;
目标信号的参数配置;
和/或,
在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有 效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
可选地,所述装置还包括:
第一接收模块,用于接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
指示格式;
和/或,
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述装置还包括:
第二接收模块,用于接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知服务质量QoS信息。
上述信息指示装置可以实现感知测量。
本申请实施例中的信息指示装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于本申请实施例所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息指示装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
请参见图7,图7是本申请实施例提供的一种指示获取装置的结构图,如图7所示,包括:
获取模块701,用于获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示,包括:
所述第二设备接收第一设备发送的第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
可选地,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示;或者,
所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值 指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
或者,
所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第一感知测量结果的感知测量结果有效性指示:
所述第一感知测量结果;
所述第一感知测量结果为所述n个感知测量结果中的一个;
和/或,
在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第三感知测量结果的感知测量结果有效性指示:
所述第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四 感知测量结果的相关信息;
其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第五感知测量结果的无效原因的指示信息;
目标信号的参数配置;
和/或,
在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
可选地,所述装置还包括:
第一发送模块,用于向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
指示格式;
和/或,
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,所述装置还包括:
第二发送模块,用于向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知服务质量QoS信息。
上述指示获取装置可以实现感知测量。
本申请实施例中的指示获取装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。例如:该电子设备可以是网络侧设备,也可以为除网络侧设备之外的其他设备。示例性的,网络侧设备可以包括但不限于本申请实施例所列举的网络侧设备的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的指示获取装置能够实现图5所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,例如,该通信设备800为第一设备时,该程序或指令被处理器801执行时实现上述信息指示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备800为第二设备时,该程序或指令被处理器801执行时实现上述指示获取方法实施例的各个步骤,且能达到相同的技术效果,为避免 重复,这里不再赘述。
本申请实施例还提供一种通信设备,该通信设备为第一设备,包括处理器和通信接口,所述通信接口用于向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一设备实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种通信设备的硬件结构示意图。
该通信设备900为第一设备,包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909以及处理器910等中的至少部分部件。
本领域技术人员可以理解,通信设备900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理单元(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理单元9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072中的至少一种。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901接收来自网络侧设备的下行数据后,可 以传输给处理器910进行处理;另外,射频单元901可以向网络侧设备发送上行数据。通常,射频单元901包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括易失性存储器或非易失性存储器,或者,存储器909可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器909包括但不限于这些和任意其它适合类型的存储器。
处理器910可包括一个或多个处理单元;可选地,处理器910集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,射频单元901,用于向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第一设备向第二设备指示n个感知测量结果有效性指示,包括:
所述第一设备向第二设备发送第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
可选地,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示;或者,
所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
或者,
所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、 发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第一感知测量结果的感知测量结果有效性指示:
所述第一感知测量结果;
所述第一感知测量结果为所述n个感知测量结果中的一个;
和/或,
在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第三感知测量结果的感知测量结果有效性指示:
所述第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四感知测量结果的相关信息;
其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第五感知测量结果的无效原因的指示信息;
目标信号的参数配置;
和/或,
在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
可选地,在向第二设备指示n个感知测量结果有效性指示之前,射频单元901还用于:
接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
指示格式;
和/或,
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,在向第二设备指示n个感知测量结果有效性指示之前,射频单元901还用于:
接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知服务质量QoS信息。
需要说明的是,本实施例是以第一设备为终端进行举例说明。
上述第一设备可以实现感知测量。
本申请实施例还提供一种通信设备,所述通信设备为第二设备,包括处 理器及通信接口,其中,所述通信接口用于获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。该第二设备实施例与上述第二设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种通信设备,该通信设备为第二设备。如图10所示,该通信设备1000包括:天线1001、射频装置1002、基带装置1003、处理器1004和存储器1005。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
以上实施例中通信设备执行的方法可以在基带装置1003中实现,该基带装置1003包括基带处理器。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该通信设备还可以包括网络接口1006,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的通信设备1000还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,射频装置1002用于获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
可选地,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示,包括:
所述第二设备接收第一设备发送的第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
可选地,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示;或者,
所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
或者,
所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
可选地,所述第一指示信息还用于指示如下至少一项:
感知测量结果无效原因;
目标信号的参数配置。
可选地,所述感知测量结果无效原因如下至少一项:
所述第一设备检测的所述目标信号的质量未到达门限要求;
所述第一设备获得的感知测量结果不满足感知要求;
在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
可选地,所述参数配置包括如下至少一项:
波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
可选地,所述第一指示信息还用于指示如下至少一项:
与感知测量结果关联的目标信号的标识信息;
感知测量标识信息;
感知测量结果;
所述第一指示信息的反馈信息。
可选地,所述第一指示信息的反馈信息包括如下至少一项:
所述第一指示信息的总比特数;
所述第一指示信息对应的有效感知测量结果的个数;
所述第一指示信息对应的无效感知测量结果的个数;
所述第一指示信息中指示的感知测量结果的个数;
所述第一指示信息中指示的无效原因的个数;
所述第一指示信息中指示的建议的目标信号的参数配置的个数;
所述第一指示信息中指示感知测量结果的比特数;
所述第一指示信息中指示无效原因的比特数;
所述第一指示信息中指示建议的目标信号的参数配置的比特数。
可选地,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
所述第一感知测量结果的感知测量结果有效性指示:
所述第一感知测量结果;
所述第一感知测量结果为所述n个感知测量结果中的一个;
和/或,
在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第三感知测量结果的感知测量结果有效性指示:
所述第三感知测量结果的无效原因的指示信息;
目标信号的参数配置;
其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四感知测量结果的相关信息;
其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
和/或,
在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
所述第五感知测量结果的无效原因的指示信息;
目标信号的参数配置;
和/或,
在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
可选地,在获取第一设备指示的指示n个感知测量结果有效性指示之前,射频装置1002还用于:
向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至 少一项:
是否需要感知测量结果有效性反馈;
感知测量结果有效性的反馈配置;
感知测量结果有效性判断的准则;
感知测量量;
感知需求;
感知业务。
可选地,所述感知测量结果有效性的反馈配置包括如下至少一项:
反馈定时;
反馈资源;
反馈方式;
指示格式;
和/或,
所述感知测量结果有效性判断的准则包括如下至少一项:
所述第一设备检测到的所述目标信号的质量是否到达门限要求;
所述第一设备获得的感知测量结果是否满足感知需求;
在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
可选地,在获取第一设备指示的指示n个感知测量结果有效性指示之前,射频装置1002还用于:
向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
是否允许基于通信数据符号进行感知测量的指示信息;
感知服务质量QoS信息。
需要说明的是,本实施例是以第二设备为网络侧设备进行举例说明。
上述第二设备可以实现感知测量。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息指示方法或者指示获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息指示方法或者指示获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息指示方法或者指示获取方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息反馈系统,包括:第一设备及第二设备,所述终端可用于执行上述信息指示方法的步骤,所述网络侧设备可用于执行如上述指示获取方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申 请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种信息指示方法,包括:
    第一设备向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
    其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
  2. 如权利要求1所述的方法,其中,所述第一设备向第二设备指示n个感知测量结果有效性指示,包括:
    所述第一设备向第二设备发送第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
  3. 如权利要求2所述的方法,其中,所述指示比特为n比特,所述n比特分别指示所述n个感知测量结果有效性指示;或者,
    所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
    或者,
    所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
  4. 如权利要求2至3中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    感知测量结果无效原因;
    目标信号的参数配置。
  5. 如权利要求4所述的方法,其中,所述感知测量结果无效原因如下至 少一项:
    所述第一设备检测的所述目标信号的质量未到达门限要求;
    所述第一设备获得的感知测量结果不满足感知要求;
    在所述目标信号为通信数据信号的情况下,所述第一设备未正确解调数据;
    在所述第一指示信息的反馈时间点到达时,所述第一设备未获取到感知测量结果。
  6. 如权利要求4所述的方法,其中,所述参数配置包括如下至少一项:
    波形、子载波间隔、保护间隔、带宽、突发burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频域资源、准共址QCL关系。
  7. 如权利要求2至3中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    与感知测量结果关联的目标信号的标识信息;
    感知测量标识信息;
    感知测量结果;
    所述第一指示信息的反馈信息。
  8. 如权利要求7所述的方法,其中,所述第一指示信息的反馈信息包括如下至少一项:
    所述第一指示信息的总比特数;
    所述第一指示信息对应的有效感知测量结果的个数;
    所述第一指示信息对应的无效感知测量结果的个数;
    所述第一指示信息中指示的感知测量结果的个数;
    所述第一指示信息中指示的无效原因的个数;
    所述第一指示信息中指示的目标信号的参数配置的个数;
    所述第一指示信息中指示感知测量结果的比特数;
    所述第一指示信息中指示无效原因的比特数;
    所述第一指示信息中指示的目标信号的参数配置的比特数。
  9. 如权利要求2至3中任一项所述的方法,其中,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
    所述第一感知测量结果的感知测量结果有效性指示:
    所述第一感知测量结果;
    所述第一感知测量结果为所述n个感知测量结果中的一个;
    和/或,
    在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
    其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
    和/或,
    在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
    所述第三感知测量结果的感知测量结果有效性指示:
    所述第三感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
    和/或,
    在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四感知测量结果的相关信息;
    其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
    和/或,
    在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
    所述第五感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    和/或,
    在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
  10. 如权利要求1至3中任一项所述的方法,其中,所述第一设备向第二设备指示n个感知测量结果有效性指示之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第二指示信息,所述第二指示信息用于指示如下至少一项:
    是否需要感知测量结果有效性反馈;
    感知测量结果有效性的反馈配置;
    感知测量结果有效性判断的准则;
    感知测量量;
    感知需求;
    感知业务。
  11. 如权利要求10所述的方法,其中,所述感知测量结果有效性的反馈配置包括如下至少一项:
    反馈定时;
    反馈资源;
    反馈方式;
    指示格式;
    和/或,
    所述感知测量结果有效性判断的准则包括如下至少一项:
    所述第一设备检测到的所述目标信号的质量是否到达门限要求;
    所述第一设备获得的感知测量结果是否满足感知需求;
    在所述目标信号为通信数据信号的情况下,所述第一设备是否正确解调数据;
    在所述n个感知测量结果有效性指示的反馈时间点到达时,所述第一设备是否获取到感知测量结果。
  12. 如权利要求1至3中任一项所述的方法,其中,所述第一设备向第二设备指示n个感知测量结果有效性指示之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第三指示信息,所述第三指示信息用于指示如下至少一项:
    是否允许基于通信数据符号进行感知测量的指示信息;
    感知服务质量QoS信息。
  13. 一种指示获取方法,包括:
    第二设备获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
    其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
  14. 如权利要求13所述的方法,其中,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示,包括:
    所述第二设备接收第一设备发送的第一指示信息,所述第一指示信息包括指示比特,所述指示比特为至少一个比特,用于指示所述n个感知测量结果有效性指示。
  15. 如权利要求14所述的方法,其中,所述指示比特n比特,n比特分别指示所述n个感知测量结果有效性指示;或者,
    所述指示比特为1比特,所述1比特的第一取值指示所述n个感知测量结果有效性指示中至少一个为无效;所述1比特比特的第二取值指示所述n个感知测量结果有效性指示全部为有效,或者,所述1比特比特的第二取值指示所述n个感知测量结果有效性指示中至少有x个指示为有效,x为小于n且大于1的整数;
    或者,
    所述指示比特为nⅹm比特,其中,nⅹm比特分别指示所述n个感知测量结果有效性的等级,m为大于1的整数。
  16. 如权利要求14至15中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    感知测量结果无效原因;
    目标信号的参数配置。
  17. 如权利要求14至15中任一项所述的方法,其中,所述第一指示信息还用于指示如下至少一项:
    与感知测量结果关联的目标信号的标识信息;
    感知测量标识信息;
    感知测量结果;
    所述第一指示信息的反馈信息。
  18. 如权利要求14至15中任一项所述的方法,其中,在第一感知测量结果有效的情况下,所述第一指示信息指示如下至少一项:
    所述第一感知测量结果的感知测量结果有效性指示:
    所述第一感知测量结果;
    所述第一感知测量结果为所述n个感知测量结果中的一个;
    和/或,
    在第二感知测量结果无效的情况下,所述第一指示信息不包含所述第二感知测量结果的相关信息;
    其中,所述第二感知测量结果为所述n个感知测量结果中的一个感知测量结果;
    和/或,
    在第三感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
    所述第三感知测量结果的感知测量结果有效性指示:
    所述第三感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    其中,所述第三感知测量结果为所述n个感知测量结果中的一个感知测量结果;
    和/或,
    在第四感知测量结果有效的情况下,所述第一指示信息不包含所述第四 感知测量结果的相关信息;
    其中,所述第四感知测量结果为所述n个感知测量结果中的一个感知测量结果;
    和/或,
    在第五感知测量结果有效性指示所指示的第五感知测量结果无效的情况下,所述第一指示信息指示如下至少一项:
    所述第五感知测量结果的无效原因的指示信息;
    目标信号的参数配置;
    和/或,
    在第六感知测量结果有效性指示所指示的第六感知测量结果有效性为有效的情况下,所述第一指示信息指示第六感知测量结果,所述第六感知测量结果有效性指示为所述n个感知测量结果有效性指示中的一个。
  19. 如权利要求13至15中任一项所述的方法,其中,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示之前,所述方法还包括:
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示如下至少一项:
    是否需要感知测量结果有效性反馈;
    感知测量结果有效性的反馈配置;
    感知测量结果有效性判断的准则;
    感知测量量;
    感知需求;
    感知业务。
  20. 如权利要求13至15中任一项所述的方法,其中,所述第二设备获取第一设备指示的指示n个感知测量结果有效性指示之前,所述方法还包括:
    所述第二设备向所述第一设备发送第三指示信息,所述第三指示信息用于指示如下至少一项:
    是否允许基于通信数据符号进行感知测量的指示信息;
    感知服务质量QoS信息。
  21. 一种信息指示装置,包括:
    指示模块,用于向第二设备指示n个感知测量结果有效性指示,n为大于1的整数;
    其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对第一设备接收的目标信号进行感知测量的测量结果。
  22. 一种指示获取装置,包括:
    获取模块,用于获取第一设备指示的指示n个感知测量结果有效性指示,n为大于1的整数;
    其中,所述n个感知测量结果有效性指示对应的n个感知测量结果为对所述第一设备接收的目标信号进行感知测量的测量结果。
  23. 一种通信设备,所述通信设备为第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的信息指示方法的步骤。
  24. 一种通信设备,所述通信设备为第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求13至20任一项所述的指示获取方法的步骤。
  25. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的信息指示方法的步骤,或者实现如权利要求13至20任一项所述的指示获取方法的步骤。
PCT/CN2023/084673 2022-03-31 2023-03-29 信息指示方法、指示获取方法、装置、设备和存储介质 WO2023185921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210344711.5 2022-03-31
CN202210344711.5A CN116939683A (zh) 2022-03-31 2022-03-31 信息指示方法、指示获取方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023185921A1 true WO2023185921A1 (zh) 2023-10-05

Family

ID=88199308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084673 WO2023185921A1 (zh) 2022-03-31 2023-03-29 信息指示方法、指示获取方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN116939683A (zh)
WO (1) WO2023185921A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124991A2 (en) * 2011-03-15 2012-09-20 Pantech Co., Ltd. Apparatus and method for performing handover in multiple component carrier system
CN110740470A (zh) * 2018-07-20 2020-01-31 维沃移动通信有限公司 一种测量指示方法、装置及系统
WO2021027521A1 (zh) * 2019-08-12 2021-02-18 华为技术有限公司 一种通信方法及设备
WO2021118157A1 (ko) * 2019-12-10 2021-06-17 주식회사 이노스코리아 센싱 데이터의 유효 여부를 확인하는 전자 장치 및 그 동작 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124991A2 (en) * 2011-03-15 2012-09-20 Pantech Co., Ltd. Apparatus and method for performing handover in multiple component carrier system
CN110740470A (zh) * 2018-07-20 2020-01-31 维沃移动通信有限公司 一种测量指示方法、装置及系统
WO2021027521A1 (zh) * 2019-08-12 2021-02-18 华为技术有限公司 一种通信方法及设备
WO2021118157A1 (ko) * 2019-12-10 2021-06-17 주식회사 이노스코리아 센싱 데이터의 유효 여부를 확인하는 전자 장치 및 그 동작 방법

Also Published As

Publication number Publication date
CN116939683A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
EP4376469A1 (en) Sensing signal measurement method and apparatus, network device, and terminal
WO2023274029A1 (zh) 通信感知方法、装置及网络设备
WO2023093646A1 (zh) 无线感知方法、装置、网络侧设备和终端
WO2023093645A1 (zh) 无线感知方法、装置和网络侧设备
WO2023185926A1 (zh) 信息反馈方法、接收方法、装置、设备和存储介质
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023185921A1 (zh) 信息指示方法、指示获取方法、装置、设备和存储介质
WO2023231840A1 (zh) 测量处理方法、装置、通信设备及可读存储介质
WO2023093644A1 (zh) 无线感知方法、装置、网络侧设备和终端
WO2023185919A1 (zh) 指示信息发送方法、接收方法、装置、设备和存储介质
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质
WO2024099125A1 (zh) 测量信息反馈方法、接收方法及通信设备
WO2024099126A1 (zh) 测量信息发送方法、接收方法及通信设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2024208205A1 (zh) 感知能力的上报方法、接收方法、装置、通信设备及介质
WO2023169544A1 (zh) 质量信息确定方法、装置、终端及存储介质
WO2023231844A1 (zh) 感知测量方法、装置、设备、终端和存储介质
WO2024051619A1 (zh) 切换处理方法、装置及设备
WO2023231868A1 (zh) 感知方式切换方法、装置、通信设备及存储介质
WO2024061065A1 (zh) 前导码发送方法、终端及存储介质
WO2023186098A1 (zh) 感知信号处理方法、设备及可读存储介质
WO2023231846A1 (zh) 感知方式切换处理方法、装置、通信设备及可读存储介质
WO2024140763A1 (zh) 加扰处理方法、传输处理方法、装置及设备
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备
WO2023186123A1 (zh) 感知信号处理方法、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778286

Country of ref document: EP

Kind code of ref document: A1