Nothing Special   »   [go: up one dir, main page]

WO2023184590A1 - 天波大规模mimo波束结构预编码传输方法与系统 - Google Patents

天波大规模mimo波束结构预编码传输方法与系统 Download PDF

Info

Publication number
WO2023184590A1
WO2023184590A1 PCT/CN2022/086916 CN2022086916W WO2023184590A1 WO 2023184590 A1 WO2023184590 A1 WO 2023184590A1 CN 2022086916 W CN2022086916 W CN 2022086916W WO 2023184590 A1 WO2023184590 A1 WO 2023184590A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
precoder
domain
beam domain
massive mimo
Prior art date
Application number
PCT/CN2022/086916
Other languages
English (en)
French (fr)
Inventor
高西奇
于祥龙
卢安安
张劲林
吴和兵
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023184590A1 publication Critical patent/WO2023184590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of sky wave communications, and in particular to a sky wave massive MIMO beam structure precoding transmission method and system.
  • Skywave communication usually uses the shortwave band of 1.6 to 30MHz to achieve long-distance signal transmission of thousands of kilometers through ionospheric reflection. Due to the extremely complex ionospheric channel propagation characteristics, traditional single-input single-output skywave communication systems often only have very low system data rates. Massive MIMO technology can greatly improve system capacity and reliability by configuring a large number of antennas on the base station side to serve a large number of users on the same time and frequency resources.
  • the purpose of the present invention is to provide a sky-wave massive MIMO beam structure precoding transmission method and system, which uses a spatial domain precoder with a beam structure to flexibly select a beam set to perform corresponding low-dimensional beam domain Precoder design can greatly improve the spectrum efficiency of skywave communication, thereby greatly increasing the transmission rate and transmission distance, and significantly reducing the complexity of spatial domain precoder design.
  • the beam structure precoding transmission method includes: Skywave massive MIMO communication base station uses a precoder with a beam structure to generate a transmission signal to achieve downlink precoding transmission with a group of users;
  • the beam structure precoder consists of a low-dimensional beam domain precoder for each user, a beam mapping module for each user, and a beam modulation module.
  • the low-dimensional beam domain precoder for each user is a precoder on each user's beam set.
  • the mapping maps the low-dimensional beam domain precoding signal of each user into a complete beam domain transmission signal.
  • the beam modulation is the beam matrix multiplied by the beam domain transmission signal vector.
  • the beam domain transmission signal vector is the sum of the beam domain transmission signal vectors of each user;
  • the base station designs a low-dimensional beam domain precoder for each user based on the beam base channel representation and beam domain channel information of each user.
  • the beam matrix is a matrix composed of array direction vectors corresponding to a selected group of spatial angle sampling grid points, and each array direction vector is called a beam.
  • each user beam set is a set of beams corresponding to non-zero elements of the beam domain channel in the base channel representation of each user beam or a selected set including the beam set.
  • the beam base channel is expressed as a beam matrix multiplied by a beam domain channel vector; the beam domain channel information includes the estimated value of the beam domain channel vector and the variance of the estimation error.
  • the design of the beam domain precoder includes: the optimization goal is a design that maximizes the system sum rate, a design that maximizes the system traversal sum rate, and a design that maximizes the system traversal sum rate upper bound, in,
  • the optimization goal is to maximize the design of the system and rate.
  • the beam matrix, beam mapping matrix of each user, beam domain precoder of each user and channel estimate value of each user are used to update the system and rate expression.
  • the encoder design problem is transformed into a beam domain precoder design problem, and the iterative design of the beam domain precoder includes the following steps:
  • the optimization goal is to maximize the traversal sum rate design, using the beam matrix, each user beam mapping matrix, each user beam domain precoder, each user beam domain channel and each user beam domain statistical channel information to update the system traversal and rate expression, the spatial domain precoder design problem is transformed into a beam domain precoder design problem, and the iterative design of the beam domain precoder includes the following steps:
  • the optimization goal is to maximize the design of the system traversal and rate upper bounds.
  • the system traversal and rate upper bounds are obtained by using Jensen's inequality for the system traversal and rate.
  • the expressions include the beam matrix, the beam mapping matrix of each user, and the beam domain.
  • the precoder and the beam domain statistics of each user channel information transform the spatial domain precoder design problem into the beam domain precoder design problem, and the iterative design of the beam domain precoder includes the following steps:
  • the beam domain precoder generated according to the design implements downlink signal transmission with the user, including the following steps:
  • step (4) is effectively implemented using Chirp-z transformation.
  • the sky-wave massive MIMO communication base station includes a large-scale antenna array, and the operating carrier frequency is a shortwave band of 1.6 to 30 MHz.
  • the base station transmits signals with users through ionospheric reflection.
  • a sky-wave massive MIMO beam structure precoding transmission system includes a base station and multiple users, and is characterized in that the base station implements the sky-wave massive MIMO beam structure precoding transmission method according to any one of claims 1 to 7.
  • the present invention can greatly improve the spectrum efficiency of sky-wave massive MIMO communication in various typical communication scenarios, thereby greatly improving the transmission rate and transmission distance; the design of the base station side precoder only involves the design of the low-dimensional beam domain precoder of each user.
  • the design complexity can be greatly reduced, and the formed beam structure precoding can significantly reduce the implementation complexity of base station side precoding.
  • the present invention makes full use of the sparse characteristics of the beam domain of the sky-wave communication channel to carry out the optimal design of the low-dimensional beam domain precoder, significantly reduces the complexity of the spatial domain precoder design, and has near-optimal (ergodic) and rate performance. .
  • This solution can flexibly adjust the beam mapping matrix as needed to design and generate user precoders.
  • Figure 1 is a block diagram of the beam structure precoding system
  • Figure 2 is a schematic flow chart of a sky-wave massive MIMO beam structure precoding transmission method provided in Embodiment 1;
  • Figure 3 is a comparison diagram of the traversal and rate results between a sky-wave massive MIMO beam structure precoding transmission method and a MMSE (minimum mean-squared error) precoder-based transmission method provided in Embodiment 1.
  • MMSE minimum mean-squared error
  • this embodiment provides a sky-wave massive MIMO beam structure precoding transmission method.
  • This method is mainly suitable for sky-wave massive MIMO communication systems in which base stations are equipped with large-scale antenna arrays to simultaneously serve a large number of single-antenna users.
  • This method specifically includes:
  • Skywave massive MIMO communication base station uses a precoder with a beam structure to generate transmission signals to achieve downlink precoding transmission with a group of users.
  • the beam structure precoder consists of a low-dimensional beam domain precoder for each user, a beam mapping module for each user, and a beam modulation module.
  • the low-dimensional beam domain precoder for each user is a precoder on each user's beam set.
  • Each user's beam The mapping maps the low-dimensional beam domain precoding signal of each user into a complete beam domain transmission signal.
  • the beam modulation is the beam matrix multiplied by the beam domain transmission signal vector.
  • the beam domain transmission signal vector is the sum of the beam domain transmission signal vectors of each user.
  • the base station designs a low-dimensional beam domain precoder for each user based on the beam base channel representation and beam domain channel information of each user.
  • the specific implementation process of the sky-wave massive MIMO beam structure precoding transmission method is described in detail through a specific communication system example. It should be noted that this method is not only applicable to the specific communication systems cited in this embodiment. The system model is also applicable to system models of other configurations.
  • the base station is equipped with a large-scale antenna array, which is a uniform linear array with M antennas and an antenna spacing of d, serving U single-antenna users.
  • the system carrier frequency is f c and is located in the shortwave band of 1.6 ⁇ 30MHz.
  • the base station transmits signals with users through ionospheric reflection.
  • Each signal frame of the sky-wave massive MIMO-OFDM communication system contains L OFDM symbols and is divided into uplink data symbols, 1 uplink training symbol and downlink data symbols.
  • N c , N c and T s represent the number of subcarriers, cyclic prefix length and system sampling interval respectively. Use Indicates the signal on subcarrier k symbol l sent to user u. The signal on demodulated subcarrier k symbol l at user u is expressed as
  • ⁇ u,p (t) and ⁇ u,p respectively represent the complex gain and direction cosine of path p
  • ⁇ u,p is the delay of path p from the first antenna of the base station to user u.
  • ⁇ u,p,q , ⁇ u,p,q and ⁇ u,p,q respectively represent the gain, initial phase and Doppler frequency shift of sub-path q.
  • ⁇ u,p,q is uniformly distributed in the interval [0,2 ⁇ )
  • Q p tends to infinity
  • ⁇ u,p (t) is a zero-mean complex Gaussian random process.
  • the channel frequency response of user u on subcarrier k symbol l can be expressed as
  • ⁇ u,p (lT s (N c +N g )) is a zero-mean complex Gaussian random variable
  • the superscript T represents the transpose of a matrix or vector.
  • v( ⁇ n ,k) is the sampling direction cosine, which corresponds to a physical space beam, and has
  • represents the intersection of sets.
  • Equation (8) can be rewritten as
  • ⁇ u,l is the training symbol and the time correlation coefficient between symbol l.
  • ⁇ u,l is related to the channel Doppler spread, and the corresponding channel uncertainty can be described by selecting an appropriate ⁇ u,l .
  • the beam base channel given by equation (14) is expressed as the beam matrix multiplied by the beam domain channel vector.
  • the beam domain channel information includes the estimated value of the beam domain channel vector and the variance of the estimation error.
  • the beam domain channel in sky-wave massive MIMO communication is generally spatially sparse, which shows that most elements of the beam domain channel are close to 0.
  • use Represents a reduced-dimensional beam matrix. Equation (14) can be rewritten as
  • p u is the precoder of user u and s u is the data symbol sent to user u with zero mean and unit variance.
  • Interference + noise at user u is regarded as Gaussian noise, and its covariance is When user u can obtain this variance, its traversal rate can be expressed as
  • q 1 ,..., q U can be considered as precoders under beam domain channels.
  • q 1 ,...,q U can be determined by the spatial domain precoder p 1 ,...,p U through the beam matrix converted. Therefore, q 1 ,..., q U are called beam domain precoders.
  • Equation (22) gives the optimal spatial domain precoding structure.
  • the optimal spatial domain precoder is given in Equation (22).
  • the dimension of problem (23) may still be quite large, and its solution process is computationally complex. It is further assumed that the number of users is limited, and the direction cosine of the user is discrete and finite. When M tends to infinity, there is There are further and At this time, the optimal solution (22) becomes
  • Equation (24) the asymptotically optimal spatial domain precoder is expressed as Equation (24).
  • the spatial domain precoder structure of Equation (22) becomes a simple beam structure precoder as shown in Equation (24).
  • the beam structure precoder design is asymptotically optimal.
  • the beam structure precoder (24) becomes
  • w u is the low-dimensional beam domain precoder corresponding to the non-zero elements of q u
  • ⁇ u is the beam mapping matrix used to map the non-zero beams of user u.
  • using the designed and generated beam domain precoder to implement downlink signal transmission with users includes the following steps:
  • Step 1 w u s u uses the beam domain precoder of user u to multiply its transmitted data symbols to generate a low-dimensional beam domain transmitted signal;
  • Step 2 ⁇ u w u s u represents the beam domain transmission signal of user u obtained by multiplying the beam mapping matrix ⁇ u and the low-dimensional beam domain transmission signal;
  • Step 3 Superpose the beam domain transmission signals of each user to obtain the beam domain transmission signal including all users.
  • Step 4 Send signals using the beam matrix V and the beam domains of all users The multiplication generates the spatial domain transmission signal x, which is the beam modulation process.
  • step 4 can be efficiently implemented using Chirp-z transformation.
  • the ergodic rate expression (32) includes the beam matrix, user beam mapping matrix, user beam domain precoder and user channel estimation value.
  • the spatial domain precoder design problem (19) is transformed into a beam domain precoder design problem (33).
  • the dimension of the beam domain precoder design problem (33) is very small.
  • problem (33) and problem (25) are the same.
  • the beam matrix V can be considered as a CZT matrix, expressed as the product of three matrices: diagonal matrices respectively Toplitz matrix and another diagonal array Right now
  • FFT Fast Fourier Transform
  • inverse FFT inverse FFT
  • the beam domain precoder design problem (33) is non-convex, and its global optimal solution is difficult to obtain. Based on the MM algorithm framework, an iterative local optimal solution will be derived. In the dth iteration, use Represents w u , defines function to minimize when
  • equations (42) and (43) show that
  • Conditions (44) and (45) can ensure that the generated sequence can converge to the local optimal solution.
  • This problem is a concave quadratic optimization problem, and its optimal solution can be solved by the Lagrange multiplier method.
  • the Lagrangian function of optimization problem (52) can be expressed as
  • the specific process of beam domain robust precoding design is given below:
  • Step 2 Use the MM algorithm framework to obtain the convex substitution function of the system traversal and rate under the current iteration, that is, calculated according to equations (48), (49), (50) and (51) respectively.
  • the ergodic rate given by Equation (32) does not have a closed-form expression, and complex Monte Carlo averaging is often required to calculate the corresponding expected value.
  • the design of low-complexity beam domain robust precoder based on ergodic and rate upper bounds is further studied.
  • the upper bound of the system ergodic rate is the system ergodic rate r u , which is obtained by using Jensen’s inequality
  • the rate upper bound is very tight for single-antenna users and the expression includes the beam matrix, user beam mapping matrix, beam domain precoder and user beam domain statistical channel information.
  • ⁇ op is the optimal Lagrange multiplier
  • Step 2 Use the MM algorithm framework to obtain the convex substitution function of the system traversal and rate upper bound under the current iteration, that is, calculated according to equations (58) and (60) respectively and
  • this embodiment compares the method and the MMSE precoding downlink based on instantaneous channel state information. The transmission method was simulated and compared.
  • Figure 3 shows the spatial domain precoder design that maximizes traversal sum rate, the beam domain precoder design that maximizes traversal sum rate, and the upper bound of maximizing traversal sum rate under different total transmit powers. Comparison of traversal and rate results for beam domain precoder (low complexity beam domain precoder) design. As can be seen from Figure 3, the system traversal and rate results increase as the total transmit power increases. Compared with the spatial domain precoder transmission method, the sky-wave massive MIMO communication beam structure precoding transmission method in this embodiment can achieve near-optimal system traversal and rate performance with fairly low complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种天波大规模MIMO波束结构预编码传输方法与系统。天波大规模MIMO通信基站利用波束结构预编码器生成发送信号,实现下行预编码传输。波束结构预编码器由各用户低维波束域预编码器、各用户波束映射模块、波束调制模块构成,各用户低维波束域预编码器为各用户波束集合上的预编码器,各用户波束映射将各用户低维波束域预编码信号映射成完整的波束域发送信号,波束调制为波束矩阵乘以波束域发送信号矢量,该波束域发送信号矢量为各用户波束域发送信号矢量之和。本发明可以解决天波大规模MIMO下行预编码传输的设计和实现复杂度问题,能够显著提升天波通信的频谱与功率效率、以及传输速率和传输距离。

Description

天波大规模MIMO波束结构预编码传输方法与系统 技术领域
本发明涉及天波通信领域,特别是一种涉及天波大规模MIMO波束结构预编码传输方法与系统。
背景技术
天波通信通常利用1.6~30MHz的短波波段,通过电离层反射的方式实现长达几千公里的远距离信号传输。由于电离层信道传播特性异常复杂,传统的单入单出天波通信系统往往仅具有很低的系统数据率。大规模MIMO技术通过在基站侧配置大量天线,在同一时频资源上服务大量用户,可以极大提升系统容量和可靠性。
现有地面蜂窝通信系统一般采用在空间域设计用户预编码器,其维度等于基站天线数。在大规模MIMO系统中,这个维度是相当大的,因此求解高维的空间域预编码设计问题的计算量非常可观。另一方面,天波大规模MIMO信道的角度扩展典型的非常小,也就是说波束域信道是稀疏的,发射端发送的无线信号仅通过有限的方向到达接收端,所以可以选择在部分波束方向上发送信号,并可取得近乎最优的和速率性能。
发明内容
鉴于此,本发明的目的在于提供一种天波大规模MIMO波束结构预编码传输方法与系统,该方法利用具有波束结构的空间域预编码器,通过灵活选择波束集合,进行相应的低维波束域预编码器设计,可以大幅提升天波通信的频谱效率,进而大幅提高传输速率和传输距离,并显著降低空间域预编码器设计的复杂度。
为了实现上述目的,本发明采用如下技术方案:
天波大规模MIMO波束结构预编码传输方法,所述波束结构预编码传输方法包括:天波大规模MIMO通信基站利用具有波束结构的预编码器生成发送信号,实现与一组用户的下行预编码传输;波束结构预编码器由各用户低维波束域预编码器、各用户波束映射模块、波束调制模块构成,各用户低维波束域预编码器为各用户波束集合上的预编码器,各用户波束映射将各用户低维波束域预编码信号映射成完整的波束域发送信号,波束调制为波束矩阵乘以波束域发送信号矢量,该波束域发送信号矢量为各用户波束域发送信号矢量之和;基站依据各用户波束基信道表示及波束域信道信息,设计各用户低维波束域预编码器。
作为本发明的一种改进,所述波束矩阵为选定的一组空间角度采样格点所对应的阵列方向矢量构成的矩阵,每个阵列方向矢量称为一个波束。
作为本发明的一种改进,所述各用户波束集合为各用户波束基信道表示中波束域信道非零元素所对应波束的集合或包含该波束集合的选定集合。
作为本发明的一种改进,所述波束基信道表示为波束矩阵乘以波束域信道矢量;所述波束域信道信息包括波束域信道矢量的估计值及估计误差的方差。
作为本发明的一种改进,所述波束域预编码器的设计包括:优化目标为最大化系统和速率的设计、最大化系统遍历和速率的设计及最大化系统遍历和速率上界的设计,其中,
(1)所述优化目标为最大化系统和速率的设计,利用波束矩阵、各用户波束映射矩阵、各用户波束域预编码器和各用户信道估计值更新系统和速率表达式,将空间域预编码器设计问题转化为波束域预编码器设计问题,且波束域预编码器的迭代设计包括如下步骤:
①初始化各用户波束域预编码器,使其满足功率约束;
②利用MM算法框架得到系统和速率在当前迭代下的凸替代函数;
③使用拉格朗日乘子法求解当前迭代的凸问题;
重复步骤②-③直到达到预设迭代次数或预编码收敛,得到各用户最优波束域预编码器。
(2)所述优化目标为最大化遍历和速率的设计,利用波束矩阵、各用户波束映射矩阵、各用户波束域预编码器、各用户波束域信道和各用户波束域统计信道信息更新系统遍历和速率表达式,将空间域预编码器设计问题转化为波束域预编码器设计问题,且波束域预编码器的迭代设计包括如下步骤:
①初始化各用户波束域预编码器,使其满足功率约束;
②利用MM算法框架得到系统遍历和速率在当前迭代下的凸替代函数;
③使用拉格朗日乘子法求解当前迭代的凸问题;
重复步骤②-③直到达到预设迭代次数或预编码收敛,得到各用户最优波束域预编码器。
(3)所述优化目标为最大化系统遍历和速率上界的设计,系统遍历和速率上界为系统遍历和速率利用詹森不等式得到,表达式包括波束矩阵、各用户波束映射矩阵、波束域预编码器和各用户波束域统计信道信息,将空间域预编码器设计问题转化为波束域预编码器设计问题,且波束域预编码器的迭代设计包括如下步骤:
①初始化各用户波束域预编码器,使其满足功率约束;
②利用MM算法框架得到系统遍历和速率上界在当前迭代下的凸替代函数;
③使用拉格朗日乘子法求解当前迭代的凸问题;
重复步骤②-③直到达到预设迭代次数或预编码收敛,得到各用户最优波束域预编码器。
作为本发明的一种改进,所述根据设计生成的波束域预编码器实施与用户的下行信号传输包括如下步骤:
(1)利用用户波束域预编码器与其发送数据符号相乘生成低维波束域发送信号;
(2)利用波束映射矩阵和低维波束域发送信号相乘得到用户波束域发送信号;
(3)将各用户波束域发送信号进行叠加,得到包含所有用户的波束域发送信号;
(4)利用波束矩阵和所有用户的波束域发送信号相乘生成空间域发送信号。
其中,所述步骤(4)利用Chirp-z变换进行有效实现。
作为本发明的一种改进,所述天波大规模MIMO通信基站包含大规模天线阵列,工作载频为1.6~30MHz的短波波段,基站通过电离层反射的方式与用户进行信号传输。
天波大规模MIMO波束结构预编码传输系统,包括基站和多个用户,其特征在于,所述基站实现根据权利要求1-7任一项所述的天波大规模MIMO波束结构预编码传输方法。
本发明的有益效果是:
本发明能够大幅提升天波大规模MIMO通信在各种典型通信场景下的频谱效率,进而大幅提高传输速率和传输距离;基站侧预编码器的设计仅涉及各用户低维波束域预编码器设计,设计复杂度可以大幅度降低,而所形成的波束结构预编码则能够显著降低基站侧预编码实现复杂度。本发明充分利用天波通信信道波束域稀疏特性,进行低维的波束域预编码器的最优设计,显著降低空间域预编码器设计的复杂度,且具有近乎最优的(遍历)和速率性能。该方案可以根据需要灵活调整波束映射矩阵来设计生成用户预编码器。
附图说明
图1为波束结构预编码系统框图;
图2为实施例1中提供的一种天波大规模MIMO波束结构预编码传输方法的流程示意图;
图3为实施例1中提供的一种天波大规模MIMO波束结构预编码传输方法与基于MMSE(minimum mean-squared error)预编码器传输方法的遍历和速率结果比较图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
参见图1-图3,本实施例提供一种天波大规模MIMO波束结构预编码传输方法,该方法主要适用于基站配备大规模天线阵列以同时服务大量单天线用户的天波大规模MIMO通信系统。该方法具体包括:
天波大规模MIMO通信基站利用具有波束结构的预编码器生成发送信号,实现与一组用户的下行预编码传输。
波束结构预编码器由各用户低维波束域预编码器、各用户波束映射模块、波束调制模块构成,各用户低维波束域预编码器为各用户波束集合上的预编码器,各用户波束映射将各用户低维波束域预编码信号映射成完整的波束域发送信号,波束调制为波束矩阵乘以波束域发送信号矢量,该波束域发送信号矢量为各用户波束域发送信号矢量之和。
基站依据各用户波束基信道表示及波束域信道信息,设计各用户低维波束域预编码器。
在本实施例中通过具体的通信系统实例对该一种天波大规模MIMO波束结构预编码传输方 法的具体实现过程作详细说明,需要说明的是该方法不仅适用于本实施例中所举的具体系统模型,也同样适用于其它配置的系统模型。
1、系统模型
1.1、系统设置和信号模型
考虑一个天波大规模MIMO通信系统,考虑OFDM调制且工作在时分双工TDD模式。基站配备大规模天线阵列,为M天线、天线间距为d的均匀线阵,服务U个单天线用户。系统载频为f c且位于1.6~30MHz的短波波段。基站通过电离层反射的方式与用户进行信号传输。天波大规模MIMO-OFDM通信系统每个信号帧包含L个OFDM符号且分为
Figure PCTCN2022086916-appb-000001
个上行数据符号、1个上行训练符号及
Figure PCTCN2022086916-appb-000002
个下行数据符号。
Figure PCTCN2022086916-appb-000003
表示发给用户u的模拟基带信号。用户u接收到的模拟基带信号表示为
Figure PCTCN2022086916-appb-000004
其中
Figure PCTCN2022086916-appb-000005
表示用户 u的下行信道冲激响应,z u(t)表示复白高斯噪声过程。
记N c、N c和T s分别表示子载波数目、循环前缀长度和系统采样间隔。用
Figure PCTCN2022086916-appb-000006
表示发给用户u的子载波k符号l上的信号。用户u处解调的子载波k符号l上的信号表示为
Figure PCTCN2022086916-appb-000007
其中,
Figure PCTCN2022086916-appb-000008
表示用户u的下行信道频率响应,
h u,k,l=g u(lT s(N c+N g),kΔf)     (3)
其中,g u(t,f)是h u(t,τ)的傅里叶变换,Δf=1/T c为子载波间隔,z u,k,l是循环对称复高斯噪声且均值为零、方差为
Figure PCTCN2022086916-appb-000009
1.2、波束基信道模型
假设基站和用户u之间有P u条可分辨的传播路径。用τ u,p表示基站到用户u的路径p的传播时延。记Δτ=d/c,其中c表示光速。基站第m根天线到用户u的信道冲激响应为
Figure PCTCN2022086916-appb-000010
其中,α u,p(t)和Ω u,p分别表示路径p的复值增益和方向余弦,τ u,p为基站第1根天线到用户u的路径p的时延。
假设路径p包含Q p条子径,且α u,p(t)可以被建模为
Figure PCTCN2022086916-appb-000011
其中,β u,p,q、φ u,p,q和υ u,p,q分别表示子径q的增益、初始相位和多普勒频移。假设φ u,p,q在区间[0,2π)上均匀分布,当Q p趋于无穷大时,α u,p(t)是一个零均值复高斯随机过程。
根据式(3),子载波k符号l上的用户u的信道频率响应可以表示为
Figure PCTCN2022086916-appb-000012
其中,α u,p(lT s(N c+N g))是一个零均值复高斯随机变量且
Figure PCTCN2022086916-appb-000013
表示子载波k上对应方向余弦Ω的阵列方向矢量。上标T表示矩阵或矢量的转置。
对方向余弦Ω进行均匀采样。记
Figure PCTCN2022086916-appb-000014
1≤n≤N,其中N≥M表示采样数目。集合
Figure PCTCN2022086916-appb-000015
中的路径方向余弦被近似为ξ n=(2n-1)/N-1。记集合
Figure PCTCN2022086916-appb-000016
可以得到波束基信道模型为
Figure PCTCN2022086916-appb-000017
其中,v(ξ n,k)是采样的方向余弦,其对应一个物理的空间波束,且有
Figure PCTCN2022086916-appb-000018
是独立的零均值复高斯分布波束域信道元素。∩表示集合的交集。
Figure PCTCN2022086916-appb-000019
为尺度化的用户u在子载波k符号l上的波束域信道,定义子载波k上的波束矩阵为
Figure PCTCN2022086916-appb-000020
可以看出,式(10)给出的波束矩阵为选定的一组空间角度采样格点所对应的阵列方向矢量构成的矩阵,每个阵列方向矢量称为一个波束。可以改写式(8)为
Figure PCTCN2022086916-appb-000021
其可以被认为是信道估计前的先验信道模型。
定义用户u的波束域信道功率矢量为
Figure PCTCN2022086916-appb-000022
其中
Figure PCTCN2022086916-appb-000023
其独立于符号与子载波。可以简记ω u=ω u,k,l。上标*表示矩阵或矢量的共轭,
Figure PCTCN2022086916-appb-000024
表示求数学期望,
Figure PCTCN2022086916-appb-000025
表示哈达玛积,|□|表示求模值运算。
1.3、波束基后验信道模型
Figure PCTCN2022086916-appb-000026
表示用户u在子载波k训练符号
Figure PCTCN2022086916-appb-000027
上的估计信道,其中
Figure PCTCN2022086916-appb-000028
表示估计的波束域信道。由于信道老化的影响,通过用一阶高斯马尔可夫过程描述信道时变特性,可以建模子载波k符号l上的波束基信道为
Figure PCTCN2022086916-appb-000029
其可以被认为是后验信道模型并可描述不同移动场景下的不完美信道状态信息。θ u,l是训练符号
Figure PCTCN2022086916-appb-000030
和符号l之间的时间相关系数。一般来说,θ u,l和信道多普勒扩展有关,可以通过选择合适的θ u,l来描述相应的信道不确定性。特别地,当θ u,l非常接近于1时,信道可以被认为是准静态的,当θ u,l接近0时,信道变化非常剧烈。式(14)给出的波束基信道表示为波束矩阵乘以波束域信道矢量。波束域信道信息包括波束域信道矢量的估计值及估计误差的方差。
天波大规模MIMO通信中波束域信道一般是空间稀疏的,这表明了波束域信道的大部分元素接近0。记波束域信道非零元素所对应波束的集合为
Figure PCTCN2022086916-appb-000031
且有
Figure PCTCN2022086916-appb-000032
定义集合
Figure PCTCN2022086916-appb-000033
且有
Figure PCTCN2022086916-appb-000034
其中∪表示集合的并集。用
Figure PCTCN2022086916-appb-000035
表示降维波束矩阵。可以改写式(14)为
Figure PCTCN2022086916-appb-000036
其中
Figure PCTCN2022086916-appb-000037
Figure PCTCN2022086916-appb-000038
个波束就可以得到信道频率响应的完整表示。
2、鲁棒预编码
2.1、问题形成
考虑子载波k符号l上的下行传输。为了表示简洁,后续省略符号下标k和l。考虑线性预编码,式(2)给出的信号模型可以改写为
Figure PCTCN2022086916-appb-000039
其中,p u是用户u的预编码器,s u是发送给用户u的数据符号且具有零均值和单位方差。
用户u处的干扰+噪声
Figure PCTCN2022086916-appb-000040
被当作高斯噪声,其协方差为
Figure PCTCN2022086916-appb-000041
当用户u可以获得该方差时,其遍历速率可以表示为
Figure PCTCN2022086916-appb-000042
最大化遍历和速率的鲁棒预编码设计问题表述为
Figure PCTCN2022086916-appb-000043
Figure PCTCN2022086916-appb-000044
其中P为总的发送功率约束。由于大规模MIMO通信的基站天线数是非常多的,所以上述优化问题是大维的,其最优解的求取需要复杂的计算。
2.2、波束结构鲁棒预编码
定义矢量
Figure PCTCN2022086916-appb-000045
u=1,…,U。可以改写遍历速率r u
Figure PCTCN2022086916-appb-000046
其中包含波束域信道
Figure PCTCN2022086916-appb-000047
而不是空间域信道h 1,…,h U。因此,q 1,…,q U可以被认为是波束域信道下的预编码器。另一方面,q 1,…,q U可以由空间域预编码器p 1,…,p U通过波束矩阵
Figure PCTCN2022086916-appb-000048
转换得到。因此,称q 1,…,q U为波束域预编码器。
简记
Figure PCTCN2022086916-appb-000049
Figure PCTCN2022086916-appb-000050
其中上标
Figure PCTCN2022086916-appb-000051
表示伪逆运算符。接下来,考虑优化矢量q 1,…,q U来最大化遍历和速率。可以证明对于任意的矢量
Figure PCTCN2022086916-appb-000052
使得
Figure PCTCN2022086916-appb-000053
成立且
Figure PCTCN2022086916-appb-000054
的充分必要条件为
Aa=0     (21)
由此可得,如果q u满足Aq u=0,空间域预编码器p u根据关系式
Figure PCTCN2022086916-appb-000055
总是存在的。可以得到优化问题(19)的最优解为
Figure PCTCN2022086916-appb-000056
当u=1,…,U     (22)
其中
Figure PCTCN2022086916-appb-000057
Figure PCTCN2022086916-appb-000058
Aq u=0,当u=1,…,U
式(22)给出了最优的空间域预编码结构。当求解优化问题(23)得到最优解后,最优的空间域预编码器在式(22)中给出。可是问题(23)的维度可能依然相当大,其求解过程是计算复杂的。进一步假设用户数是有限的,且用户的方向余弦是离散且有限的。当M趋于无穷大时,有
Figure PCTCN2022086916-appb-000059
进一步有
Figure PCTCN2022086916-appb-000060
Figure PCTCN2022086916-appb-000061
此时最优解(22)变为
Figure PCTCN2022086916-appb-000062
当u=1,…,U     (24)
其中
Figure PCTCN2022086916-appb-000063
Figure PCTCN2022086916-appb-000064
得到波束域优化问题(25)的最优解后,渐近最优空间域预编码器表达为式(24)。特别地,观察到(22)式的空间域预编码器结构变为一个如式(24)所示的简单波束结构预编码器。换句话说,当基站侧具有足够多的天线数时,波束结构预编码器设计是渐近最优的。进一步得到问题(25)的最优解满足
Figure PCTCN2022086916-appb-000065
Figure PCTCN2022086916-appb-000066
上式揭示了当M足够大时,波束域预编码器q u的非零波束集合外的元素都为0。基于此结论,可以仅关注q 1,…,q U的非零元素,其维度是相当小的。
定义矩阵
Figure PCTCN2022086916-appb-000067
Figure PCTCN2022086916-appb-000068
此时波束结构预编码器(24)变为
p u=VΦ uw u       (28)
其中w u是对应q u的非零元素的低维波束域预编码器,Φ u是波束映射矩阵用来映射用户u的非 零波束。
根据式(28),发送信号矢量x可以被改写为
Figure PCTCN2022086916-appb-000069
根据式(29),利用设计生成的波束域预编码器实施与用户的下行信号传输包括如下步骤:
步骤1:w us u为利用用户u的波束域预编码器与其发送数据符号相乘生成低维波束域发送信号;
步骤2:Φ uw us u表示利用波束映射矩阵Φ u和低维波束域发送信号相乘得到用户u的波束域发送信号;
步骤3:将各用户波束域发送信号进行叠加,得到包含所有用户的波束域发送信号
Figure PCTCN2022086916-appb-000070
步骤4:利用波束矩阵V和所有用户的波束域发送信号
Figure PCTCN2022086916-appb-000071
相乘生成空间域发送信号x,即为波束调制过程。
特别地,步骤4可以利用Chirp-z变换进行有效实现。
简记
Figure PCTCN2022086916-appb-000072
Figure PCTCN2022086916-appb-000073
此时有
Figure PCTCN2022086916-appb-000074
定义
Figure PCTCN2022086916-appb-000075
Figure PCTCN2022086916-appb-000076
式(18)给出的用户u的遍历速率表达式变为
Figure PCTCN2022086916-appb-000077
遍历速率表达式(32)包含了波束矩阵、用户波束映射矩阵、用户波束域预编码器和用户信道估计值。
接下来考虑优化波束域预编码器w 1,…,w U来最大化遍历和速率,问题表述为
Figure PCTCN2022086916-appb-000078
Figure PCTCN2022086916-appb-000079
这样空间域预编码器设计问题(19)转化为波束域预编码器设计问题(33)。和空间域预编码器设计问题(19)式相比,波束域预编码器设计问题(33)的维度是非常小的。特别地,当M足够大且用户的非零波束变得正交时,问题(33)和问题(25)是相同的。
2.3、基于Chirp-z变换的波束调制
式(29)给出的波束调制可以改写为
x=Vs     (34)
其中
Figure PCTCN2022086916-appb-000080
在式(34)中,注意到波束矩阵V可以被认为是CZT矩阵,表示为三个矩阵的乘积:分别为对角阵
Figure PCTCN2022086916-appb-000081
托普利兹矩阵
Figure PCTCN2022086916-appb-000082
和另一个对角阵
Figure PCTCN2022086916-appb-000083
V=ΓTΛ      (36)
其中
Figure PCTCN2022086916-appb-000084
Figure PCTCN2022086916-appb-000085
Figure PCTCN2022086916-appb-000086
其中
Figure PCTCN2022086916-appb-000087
进一步表示托普利兹矩阵T为
Figure PCTCN2022086916-appb-000088
其中S≥M+N-1,Π是一个对角阵,F S×M表示一个矩阵包含S点DFT矩阵的前M列。将式(40)和(36)代入式(34),可以得到
Figure PCTCN2022086916-appb-000089
其可通过快速傅里叶变换(FFT)和逆FFT来有效实现。
3、波束域鲁棒预编码器设计
3.1、基于MM算法框架的波束域预编码器设计
波束域预编码器设计问题(33)是非凸的,其全局最优解很难获得。基于MM算法框架,将推导一个迭代的局部最优解。在第d次迭代中,用
Figure PCTCN2022086916-appb-000090
表示w u,定义函数
Figure PCTCN2022086916-appb-000091
来最小化
Figure PCTCN2022086916-appb-000092
Figure PCTCN2022086916-appb-000093
Figure PCTCN2022086916-appb-000094
进一步地,式(42)和(43)表明
Figure PCTCN2022086916-appb-000095
当u=1,…,U      (44)
接下来寻找替代函数f其在任意点上最小化
Figure PCTCN2022086916-appb-000096
然后最大化f来得到原问题的迭代解。特别地,记
Figure PCTCN2022086916-appb-000097
为最大化f的解,根据式(42)和(43)可以得到
Figure PCTCN2022086916-appb-000098
条件(44)和(45)可以确保生成序列可以收敛到局部最优解。
简记ρ u
Figure PCTCN2022086916-appb-000099
可以得到下面的关于
Figure PCTCN2022086916-appb-000100
的一个替代函数为
Figure PCTCN2022086916-appb-000101
其中
Figure PCTCN2022086916-appb-000102
为常数且
Figure PCTCN2022086916-appb-000103
Figure PCTCN2022086916-appb-000104
Figure PCTCN2022086916-appb-000105
Figure PCTCN2022086916-appb-000106
基于替代函数f,第(d+1)次迭代的最优解可以通过求解下面的优化问题得到
Figure PCTCN2022086916-appb-000107
Figure PCTCN2022086916-appb-000108
该问题是一个凹二次型优化问题,其最优解可通过拉格朗日乘子法求解。
优化问题(52)的拉格朗日函数可以表示为
Figure PCTCN2022086916-appb-000109
其中μ≥0表示拉格朗日乘子。根据一阶最优条件,问题(52)的最优解为
Figure PCTCN2022086916-appb-000110
其中μ op是最优拉格朗日乘子。注意到
Figure PCTCN2022086916-appb-000111
是μ的单调递减函数。因此,如果μ op=0且
Figure PCTCN2022086916-appb-000112
最优解变为
Figure PCTCN2022086916-appb-000113
否则的话,可以利用二分法来求取最优μ op。下面给出了波束域鲁棒预编码设计的具体过程:
步骤1:初始化各用户波束域预编码器
Figure PCTCN2022086916-appb-000114
使其满足功率约束
Figure PCTCN2022086916-appb-000115
设置d=0;
步骤2:利用MM算法框架得到系统遍历和速率在当前迭代下的凸替代函数,即分别根据式(48)、(49)、(50)和(51)计算
Figure PCTCN2022086916-appb-000116
Figure PCTCN2022086916-appb-000117
步骤3:使用拉格朗日乘子法求解当前迭代的凸问题,即根据式(54)更新
Figure PCTCN2022086916-appb-000118
并设置d=d+1。重复步骤2和步骤3直到达到预设迭代次数或预编码收敛;
得到各用户最优波束域预编码器
Figure PCTCN2022086916-appb-000119
当u=1,…,U。
3.2、低复杂度波束域预编码器设计
一般来说,式(32)给出的遍历速率没有闭式表达式,往往需要复杂的蒙特卡洛平均来计算相应的期望值。进一步研究了基于遍历和速率上界的低复杂度波束域鲁棒预编码器设计。系统遍历速率上界为系统遍历速率r u利用詹森不等式得到
Figure PCTCN2022086916-appb-000120
该速率上界对单天线用户是非常紧致的且表达式包括波束矩阵、用户波束映射矩阵、波束域预编码器和用户波束域统计信道信息。
考虑一个新的波束域预编码器设计问题来最大化遍历和速率上界,表述为
Figure PCTCN2022086916-appb-000121
Figure PCTCN2022086916-appb-000122
其目标函数不包含期望运算。但是,问题(56)仍然是非凸的,其全局最优解很难获得。
观察到问题(56)和(33)的不同在于目标函数。在(56)中存在
Figure PCTCN2022086916-appb-000123
而不是(33)中的
Figure PCTCN2022086916-appb-000124
且不包含任何期望运算。基于MM算法框架,类似地可以推导得到问题(56)的迭代局部最优解。在第(d+1)次迭代时,最优解可以表示为
Figure PCTCN2022086916-appb-000125
其中μ op是最优拉格朗日乘子,
Figure PCTCN2022086916-appb-000126
Figure PCTCN2022086916-appb-000127
Figure PCTCN2022086916-appb-000128
通过替代定理3中
Figure PCTCN2022086916-appb-000129
Figure PCTCN2022086916-appb-000130
中的
Figure PCTCN2022086916-appb-000131
Figure PCTCN2022086916-appb-000132
且略去相应的期望运算操作。注意到
Figure PCTCN2022086916-appb-000133
进一步得到
Figure PCTCN2022086916-appb-000134
下面给出低复杂度波束域鲁棒预编码器设计过程:
步骤1:初始化各用户波束域预编码器
Figure PCTCN2022086916-appb-000135
使其满足功率约束
Figure PCTCN2022086916-appb-000136
设置d=0;
步骤2:利用MM算法框架得到系统遍历和速率上界在当前迭代下的凸替代函数,即分别根据式(58)和(60)计算
Figure PCTCN2022086916-appb-000137
Figure PCTCN2022086916-appb-000138
步骤3:使用拉格朗日乘子法求解当前迭代的凸问题,即根据式(61)更新
Figure PCTCN2022086916-appb-000139
并设置 d=d+1。重复步骤2和步骤3直至收敛;
得到各用户最优波束域预编码器
Figure PCTCN2022086916-appb-000140
当u=1,…,U。
为了验证本实施例提供的一种利用不完美信道状态信息的天波大规模MIMO波束结构预编码传输方法的先进性和优越性,本实施例对该方法以及基于瞬时信道状态信息的MMSE预编码下行传输方法进行了仿真对比试验。
具体的说,考虑天波大规模MIMO-OFDM通信系统,系统参数配置如下:载频f c=25MHz,天波通信基站天线阵列间距d=5.8m,系统带宽B=192kHz,系统采样间隔T s=3.9μs,子载波间隔Δf=125Hz,子载波个数N c=2048,CP点数N g=512。设置天波大规模MIMO通信基站天线数M=256,采样波束个数N=512,用户数U=64。定义总发送功率为64个用户在系统带宽B=192kHz上的发送功率之和,遍历和速率为所有有效子载波上的遍历和速率的平均。
图3给出了本实施例方法在处于不同总发送功率下的最大化遍历和速率的空间域预编码器设计、最大化遍历和速率的波束域预编码器设计及最大化遍历和速率上界的波束域预编码器(低复杂度波束域预编码器)设计的遍历和速率结果比较。从图3中可以看出,系统遍历和速率结果随总发送功率的增加而增大。与空间域预编码器传输方法相比,本实施例中天波大规模MIMO通信波束结构预编码传输方法能够取得近乎最优的系统遍历和速率性能且具有相当低的复杂度。
本发明未详述之处,均为本领域技术人员的公知技术。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 天波大规模MIMO波束结构预编码传输方法,其特征在于:所述方法包括以下步骤:
    天波大规模MIMO通信基站利用具有波束结构的预编码器生成发送信号,实现与一组用户的下行预编码传输;
    波束结构预编码器由各用户低维波束域预编码器、各用户波束映射模块、波束调制模块构成,各用户低维波束域预编码器为各用户波束集合上的预编码器,各用户波束映射将各用户低维波束域预编码信号映射成完整的波束域发送信号,波束调制为波束矩阵乘以波束域发送信号矢量,该波束域发送信号矢量为各用户波束域发送信号矢量之和;
    基站依据各用户波束基(Beam based)信道表示及波束域信道信息,设计各用户低维波束域预编码器。
  2. 根据权利要求1所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,所述波束矩阵为选定的一组空间角度采样格点所对应的阵列方向矢量构成的矩阵,每个阵列方向矢量称为一个波束。
  3. 根据权利要求1所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,所述各用户波束集合为各用户波束基信道表示中波束域信道非零元素所对应波束的集合或包含该波束集合的选定集合。
  4. 根据权利要求3所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,所述波束基信道表示为波束矩阵乘以波束域信道矢量;所述波束域信道信息包括波束域信道矢量的估计值及估计误差的方差。
  5. 根据权利要求1所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,所述波束域预编码器的设计包括:优化目标为最大化系统和速率的设计、最大化系统遍历和速率的设计及最大化系统遍历和速率上界的设计。
  6. 根据权利要求1所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,
    其中,
    (1)所述优化目标为最大化系统和速率的设计,利用波束矩阵、各用户波束映射矩阵、各用户波束域预编码器和各用户信道估计值更新系统和速率表达式,将空间域预编码器设计问题转化为波束域预编码器设计问题,且波束域预编码器的迭代设计包括如下步骤:
    ①初始化各用户波束域预编码器,使其满足功率约束;
    ②利用MM算法框架得到系统和速率在当前迭代下的凸替代函数;
    ③使用拉格朗日乘子法求解当前迭代的凸问题;
    重复步骤②-③直到达到预设迭代次数或预编码收敛,得到各用户最优波束域预编码器。
    (2)所述优化目标为最大化遍历和速率的设计,利用波束矩阵、各用户波束映射矩阵、各 用户波束域预编码器、各用户波束域信道和各用户波束域统计信道信息更新系统遍历和速率表达式,将空间域预编码器设计问题转化为波束域预编码器设计问题,且波束域预编码器的迭代设计包括如下步骤:
    ①初始化各用户波束域预编码器,使其满足功率约束;
    ②利用MM算法框架得到系统遍历和速率在当前迭代下的凸替代函数;
    ③使用拉格朗日乘子法求解当前迭代的凸问题;
    重复步骤②-③直到达到预设迭代次数或预编码收敛,得到各用户最优波束域预编码器。
    (3)所述优化目标为最大化系统遍历和速率上界的设计,系统遍历和速率上界为系统遍历和速率利用詹森不等式得到,表达式包括波束矩阵、各用户波束映射矩阵、波束域预编码器和各用户波束域统计信道信息,将空间域预编码器设计问题转化为波束域预编码器设计问题,且波束域预编码器的迭代设计包括如下步骤:
    ①初始化各用户波束域预编码器,使其满足功率约束;
    ②利用MM算法框架得到系统遍历和速率上界在当前迭代下的凸替代函数;
    ③使用拉格朗日乘子法求解当前迭代的凸问题;
    重复步骤②-③直到达到预设迭代次数或预编码收敛,得到各用户最优波束域预编码器。
  7. 根据权利要求1所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,所述根据设计生成的波束域预编码器实施与用户的下行信号传输包括如下步骤:
    (1)利用用户波束域预编码器与其发送数据符号相乘生成低维波束域发送信号;
    (2)利用波束映射矩阵和低维波束域发送信号相乘得到用户波束域发送信号;
    (3)将各用户波束域发送信号进行叠加,得到包含所有用户的波束域发送信号;
    (4)利用波束矩阵和所有用户的波束域发送信号相乘生成空间域发送信号。
  8. 根据权利要求6所述的天波大规模MIMO波束结构预编码传输方法,其特征在于,所述步骤(4)利用Chirp-z变换进行有效实现。
  9. 天波大规模MIMO波束结构预编码传输系统,包括天波大规模MIMO通信基站和多个用户,其特征在于,所述天波大规模MIMO通信基站包含大规模天线阵列,工作载频为1.6~30MHz的短波波段,基站通过电离层反射的方式与用户进行信号传输。
  10. 天波大规模MIMO波束结构预编码传输系统,包括基站和多个用户,其特征在于,所述基站实现根据权利要求1-7任一项所述的天波大规模MIMO波束结构预编码传输方法。
PCT/CN2022/086916 2022-03-29 2022-04-14 天波大规模mimo波束结构预编码传输方法与系统 WO2023184590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210317238.1 2022-03-29
CN202210317238.1A CN114866117B (zh) 2022-03-29 2022-03-29 天波大规模mimo波束结构预编码传输方法与系统

Publications (1)

Publication Number Publication Date
WO2023184590A1 true WO2023184590A1 (zh) 2023-10-05

Family

ID=82628968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086916 WO2023184590A1 (zh) 2022-03-29 2022-04-14 天波大规模mimo波束结构预编码传输方法与系统

Country Status (2)

Country Link
CN (1) CN114866117B (zh)
WO (1) WO2023184590A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024197559A1 (en) * 2023-03-28 2024-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for channel aging estimation
CN116599555B (zh) * 2023-06-15 2024-10-29 东南大学 一种天波大规模mimo鲁棒预编码传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888249A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种波束域参考信号发送的方法及装置
CN211554155U (zh) * 2019-12-04 2020-09-22 深圳有力科技有限公司 一种短波天线增益测量系统
CN112511201A (zh) * 2020-11-19 2021-03-16 东南大学 天波大规模mimo通信方法及模型和系统
CN114172549A (zh) * 2021-12-07 2022-03-11 东南大学 天波大规模mimo通信下行传输方法
US20220094403A1 (en) * 2004-04-02 2022-03-24 Rearden, Llc System and method for distributed antenna wireless communications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385454B2 (en) * 2009-09-09 2013-02-26 Nec Laboratories America, Inc. Robust linear precoder designs for multi-cell downlink transmission
US10763933B1 (en) * 2019-06-26 2020-09-01 Realtek Semiconductor Corp. Precoding method, base station and computing circuit
CN111917447B (zh) * 2020-08-12 2021-12-10 电子科技大学 基于波束选择的低频辅助混合预编码设计方法
CN112737647B (zh) * 2020-12-25 2022-07-08 杭州电子科技大学 一种基于混合连接的毫米波大规模mimo预编码方法
CN113225112B (zh) * 2021-04-30 2023-04-18 内蒙古大学 一种毫米波联合波束选择和功率分配优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220094403A1 (en) * 2004-04-02 2022-03-24 Rearden, Llc System and method for distributed antenna wireless communications
CN107888249A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种波束域参考信号发送的方法及装置
CN211554155U (zh) * 2019-12-04 2020-09-22 深圳有力科技有限公司 一种短波天线增益测量系统
CN112511201A (zh) * 2020-11-19 2021-03-16 东南大学 天波大规模mimo通信方法及模型和系统
CN114172549A (zh) * 2021-12-07 2022-03-11 东南大学 天波大规模mimo通信下行传输方法

Also Published As

Publication number Publication date
CN114866117B (zh) 2024-08-13
CN114866117A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US11296919B2 (en) Precoding in wireless systems using orthogonal time frequency space multiplexing
CN107483088B (zh) 大规模mimo鲁棒预编码传输方法
CN1716810B (zh) 不断变化的干扰环境中形成波束的设备和方法
US8451926B2 (en) Method and device for pre-coding in multiple input multiple output system
US7385617B2 (en) Methods for multi-user broadband wireless channel estimation
CN112511201B (zh) 天波大规模mimo通信方法及模型和系统
WO2023184590A1 (zh) 天波大规模mimo波束结构预编码传输方法与系统
CN107465636B (zh) 一种毫米波大规模阵列空频双宽带系统的信道估计方法
CN107276646A (zh) 大规模mimo‑ofdm上行链路迭代检测方法
US10785060B2 (en) Efficient channel estimation and symbol detection for massive MIMO-OFDM
Raeesi et al. Estimation and mitigation of channel non-reciprocity in massive MIMO
CN105075206A (zh) Ofdm系统中的非线性时域信道估计
An et al. Reconfigurable intelligent surface-enhanced OFDM communications via delay adjustable metasurface
CN110034916B (zh) 基于终端反馈的天线相位同步与信道互易性校准的方法
Uwaechia et al. Compressed channel estimation for massive MIMO-OFDM systems over doubly selective channels
Zappone et al. Achievable rate analysis and max-min SINR optimization in intelligent reflecting surface assisted cell-free MIMO uplink
CN117749241A (zh) 一种基于改进gomp的低轨卫星系统的信道估计方法
CN115022146B (zh) 一种可重构智能表面辅助的通信与定位一体化全双工系统
López-Lanuza et al. Deep Learning-Based Optimization for Reconfigurable Intelligent Surface-Assisted Communications
CN109361435A (zh) 大规模多输入多输出波束域多播传输方法
CN114301508A (zh) 基于过时csi的可重构智能表面辅助mimo传输中的双时间尺度优化方法
Liu et al. An enhanced beamspace channel estimation algorithm for wideband millimeter-wave massive MIMO systems
Fedosov et al. Transmitting Image in 3D Wireless Channel using Adaptive Algorithm Processing with MMSE based on MIMO principles
Tang et al. Low complexity channel estimation for hybrid beamforming systems
Liao Channel estimation for massive MIMO systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934416

Country of ref document: EP

Kind code of ref document: A1