Nothing Special   »   [go: up one dir, main page]

WO2023176802A1 - 内包磁石型モータおよびそのロータ - Google Patents

内包磁石型モータおよびそのロータ Download PDF

Info

Publication number
WO2023176802A1
WO2023176802A1 PCT/JP2023/009745 JP2023009745W WO2023176802A1 WO 2023176802 A1 WO2023176802 A1 WO 2023176802A1 JP 2023009745 W JP2023009745 W JP 2023009745W WO 2023176802 A1 WO2023176802 A1 WO 2023176802A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
rotor
magnetic region
slot
center
Prior art date
Application number
PCT/JP2023/009745
Other languages
English (en)
French (fr)
Inventor
典彦 濱田
和徳 伊東
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to CN202380027263.9A priority Critical patent/CN118805317A/zh
Publication of WO2023176802A1 publication Critical patent/WO2023176802A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a rotor for an internal magnet type motor, etc.
  • motors including generators.
  • inverter control and the spread of high-performance rare earth magnets, power-saving and highly efficient synchronous machines have come into widespread use.
  • a synchronous motor is equipped with a permanent magnet (field source) in the rotor, an armature winding (coil) in the stator, and supplies alternating current (AC) to the armature winding.
  • This is an AC motor that generates a rotating magnetic field in the stator to drive the rotor.
  • a synchronous machine has a surface permanent magnet synchronous motor (referred to as an "SPM motor”) in which a permanent magnet is placed on the surface of the rotor, and a surface permanent magnet placed inside the rotor.
  • SPM motor surface permanent magnet synchronous motor
  • IPM motor interior permanent magnet synchronous motor
  • IPM motors have become mainstream, as they not only provide high torque and power savings, but also improve reliability by preventing permanent magnets from scattering. Descriptions related to such an IPM motor can be found, for example, in the following patent documents.
  • Patent Documents 1 to 3 all propose providing a non-magnetic portion (area) at the outer peripheral end (bridge) of a magnet hole (slot) of a rotor core. This prevents the magnetic flux supplied from the permanent magnet from short-circuiting at the bridge, improving the performance of the motor.
  • the present invention was made in view of the above circumstances, and an object thereof is to provide a new rotor etc. that can improve the performance of an internal magnet type motor.
  • the present invention is a rotor for an internal magnet type motor in which a permanent magnet is contained in a slot of a rotor core made of a magnetic material, and the rotor core has a non-contact structure on the outside of a frame end in at least one of the one or more slots.
  • the rotor is a rotor for an internal magnet type motor that has a magnetic region, and the non-magnetic region is unevenly distributed on the side far from the center of the magnetic pole with respect to the center of the frame end of the slot.
  • the internal magnet type motor rotor (simply referred to as "rotor") of the present invention first has a non-magnetic region outside the frame end of the slot. This prevents a part of the magnetic flux supplied from the permanent magnet from being short-circuited through a portion/region outside the frame end (referred to as a "frame end” as appropriate). Next, the non-magnetic region is provided biased to the side far from the center of the magnetic pole (also referred to as "outside” as appropriate) with the center of the frame end of the slot as a reference.
  • the magnetic flux of the permanent magnet is guided to the stator through the magnetic area (other than the ⁇ non-magnetic area'') on the side closer to the center of the magnetic pole (also referred to as the ⁇ inner area''). be done. In this way, the flux linkage between the rotor and the stator is increased, and the performance of the IPM motor is thereby improved.
  • the invention can also be understood as an IPM motor.
  • the present invention may be an internal magnet type motor that includes the above-described rotor and a stator that constitutes an armature.
  • the non-magnetic region provided on the outer peripheral end side (near the bridge) of the slot (rotor core) is, for example, the circumferential length (minimum length in the circumferential direction) is the width of the gap formed between the rotor and the stator (usually air gap) is better.
  • the radial length (minimum radial length) of the non-magnetic region is also preferably larger than the gap width. This makes it easier for the magnetic flux supplied from the permanent magnet to be guided toward the stator at the outer peripheral end of the slot (rotor core).
  • non-magnetic region and “magnetic region (region other than the non-magnetic region)" as used herein are determined by the ease with which magnetic flux passes through them.
  • the non-magnetic region may have lower (initial) magnetic permeability, lower saturation magnetic flux density, or higher magnetic resistance than the magnetic region.
  • the magnetic permeability is adjusted, for example, by changing the material (composition, structure, etc.).
  • the saturation magnetization can be adjusted, for example, by changing the material as well as changing the shape (narrowing the width, creating a gap, etc.).
  • the "magnetic pole center” as used in this specification is a virtual point for each magnetic pole of the rotor, to which the magnetic flux supplied from the permanent magnets is directed.
  • the center of the magnetic poles is located near the outer peripheral edge line of the rotor on the center line (line of symmetry) of each magnetic pole (for example, point Pc or point Pp shown in FIG. 1).
  • the radial position of the magnetic pole center differs depending on the specifications of the rotor (electric motor), in this specification, for convenience of explanation, the intersection point between the center line (line of symmetry) of the magnetic pole and the outer peripheral edge line of the rotor (for example, in FIG.
  • the point Pc shown in is defined as the "magnetic pole center”.
  • the "center of the frame edge” is basically the intersection of the frame line that partitions the slot and the center line of the slot (for example, the point Ps shown in FIG. 1). However, if necessary for the division of the non-magnetic region, a line connecting the intersection and the point where the center line of the slot intersects the outer peripheral edge line of the rotor or the frame line of another slot (for example, point Pe shown in FIG. 1) The minute may be set to the "center of the edge of the frame.”
  • the center line of the slot is the locus of the midpoint between the intersections of the straight line drawn from the center of the magnetic pole and the frame line of the slot.
  • a locus (Tm) connecting the midpoints (Pm) of both intersections (Pi, Po) of the straight line extending from the magnetic pole center (Pc) and the frame line of the slot is the center line of the slot.
  • the slot is usually provided in an arc shape so as to surround the center of the magnetic pole.
  • a slot is divided by a rib etc. and multiple small slots are arranged in an arc shape, the inner and outer frame lines (frame lines near and far from the magnetic pole center) of each small slot are extended (extrapolated). ) and consider a hypothetical large slot (slots connected without ribs, etc.). The intersection (or line segment) between the center line of the large slot and the frame edge of the small slot is defined as the center of the frame edge.
  • the "circumferential direction” is a direction around the rotation center (axis) of the rotor
  • the "radial direction” is a direction extending radially from the rotation center of the rotor.
  • the direction of distance from the center of the magnetic pole may be any of the circumferential direction, the radial direction, a composite direction thereof, etc.
  • the "rotor” may be an inner rotor or an outer rotor.
  • the number of magnetic poles (number of slots provided in the rotor or stator, etc.) of the IPM motor may be two or more.
  • x to y as used herein includes a lower limit x and an upper limit y.
  • a new range such as “a to b" can be established by setting any numerical value included in the various numerical values or numerical ranges described herein as a new lower limit or upper limit.
  • FIG. 3 is a partial cross-sectional view illustrating one magnetic pole of a rotor and a stator. They are a schematic diagram and a contour diagram showing magnetic flux lines (first example) around the bridge of the rotor. They are a schematic diagram and a contour diagram showing magnetic flux lines (second example) around the bridge. They are a schematic diagram and a contour diagram showing magnetic flux lines (third example) around the bridge. It is a schematic diagram which shows the magnetic flux line (4th example) around the bridge. It is a schematic diagram which shows the magnetic flux line (1st modification) around the bridge. It is a schematic diagram which shows the magnetic flux line (2nd modification) around the bridge.
  • FIG. 3 is a schematic diagram showing magnetic flux lines around a bridge whose form has been changed. FIG. 3 is a contour diagram showing magnetic flux lines when non-magnetic regions are provided in bridges and ribs.
  • a component related to a method can also be a component related to an object (such as a rotor). Which embodiment is best depends on the object, required performance, etc.
  • the rotor core is made of a magnetic material, and includes at least one slot for each magnetic pole to enclose (embed) a permanent magnet.
  • a non-magnetic region is formed outside the frame end of the at least one slot. Further, the non-magnetic region may be provided only on one or both of the outer edges of the frame.
  • slot The shape, arrangement, number of layers, etc. of the slot vary depending on the specifications of the rotor (IPM motor).
  • the slots of each magnetic pole are typically provided symmetrically with respect to the magnetic pole center so as to surround the magnetic pole center.
  • the part/area outside the frame end of the slot is a bridge on the outer peripheral end of the rotor core, a rib that reinforces the roughly arc-shaped large slot and divides the large slot into small slots. etc.
  • the form of the bridge may vary depending on the form of the slot, the non-magnetic region, etc.
  • the bridge may have an arc shape with a substantially constant width in the radial direction, or a chevron shape with a varying width in the radial direction. If a bridge or a rib is to be defined, the area outside the frame end of the slot may be cut out by an extension line obtained by extrapolating the inner frame line and the outer frame line of the slot.
  • Non-magnetic area and magnetic area Since the non-magnetic area is provided biased to the outside of the frame edge (the side far from the magnetic pole center), if you look at it the other way, it is located inside the frame edge (closer to the magnetic pole center).
  • the magnetic region is formed unevenly. As long as such a magnetic region is formed on the center side of the magnetic pole, the range and form of the non-magnetic region are not limited.
  • the non-magnetic region may be provided outside the range of the bridges and ribs described above.
  • excessive crossing to the outside of the non-magnetic region causes a decrease in the reluctance torque of the IPM motor.
  • the outer edge of the non-magnetic region is preferably along (substantially coincident with) the outer edge of the frame end.
  • the non-magnetic region is formed by changing the material (composition, structure, etc.) of the magnetic material (magnetic steel sheet, etc.) that makes up the magnetic region (referred to as "non-magnetic modification” or simply “modification”). It may be of a different type, or it may be of a different form with respect to the magnetic region. As an example of the latter, at least a portion of the non-magnetic region may have a narrower width in the radial direction than the magnetic region. This makes it easier for the magnetic flux passing through the non-magnetic region to become saturated. Of course, both the material and the form of the magnetic region may be changed. Note that narrowing the non-magnetic region may also mean reducing the modified region.
  • the nonmagnetic modification is performed, for example, by the method described in Patent Document 3 (WO2022/004672) mentioned above.
  • a high-energy beam laser or the like
  • a minute area can be modified with high precision.
  • the narrower the non-magnetic region the more efficient the reforming and the suppression of distortion.
  • the permanent magnet contained in the slot may be a sintered magnet obtained by sintering a molded body of magnet particles, or a bonded magnet in which magnet particles are bound (fixed) with a binder resin. Bonded magnets have a large degree of freedom in shape and are suitable for slots with complex shapes. Note that the type, form (particle size, etc.), degree of anisotropy, etc. of the magnetic particles do not matter.
  • the permanent magnet is preferably magnetized in the slot toward the vicinity of the magnetic pole center (oriented diagonally from the radial direction). This can increase the magnetic flux passing through the inside of the frame end (magnetic region).
  • a permanent magnet is realized by forming and magnetizing in a magnetic field within a slot.
  • anisotropic (rare earth) magnet particles may simply be formed in slots of the rotor core in an orienting magnetic field. At this time, it is preferable that the non-magnetic region be formed in advance before forming the bonded magnet.
  • FIG. 1 shows a plan view of a base model M (simply referred to as "model M") used in the simulation.
  • Model M is one magnetic pole (1/8 model) of an IPM motor consisting of eight magnetic poles.
  • Model M includes a rotor core 1, a stator core 2, and a permanent magnet 3.
  • the rotor core 1 and the stator core 2 are made of a laminate of electromagnetic steel sheets punched into a desired shape.
  • the model M is axisymmetric with respect to the center of the magnetic pole (center line), and in the circumferential direction, the side closer to the magnetic pole center Pc is the inner side, and the side farther from the magnetic pole center Pc is the outer side. Further, the side farther from the rotation center of the rotor core 1 is called the expanded diameter side, and the side closer to the rotation center of the rotor core 1 is called the reduced diameter side.
  • the rotor core 1 has two layers of approximately U-shaped slots 12 and 16 symmetrically provided at the center of the magnetic pole.
  • the slot 12 on the outside of the rotor core 1 is divided into four parts by three ribs 13 (reinforcement parts) on the rotation center side.
  • a slot 16 inside the rotor core 1 is divided into two by one rib 17.
  • the frame sides at the outermost peripheral ends of the slots 12 and 16 become bridges 11 and 15 (frame ends).
  • the range of the bridge 11 is, for example, an area surrounded by an extension line obtained by extrapolating the inner frame line 12a and outer frame line 12b of the slot 12, the frame edge line 12c of the slot 12, and the outermost circumferential line 1a of the rotor core 1. (hatched part). This also applies to the range of the bridge 15. Note that the bridges 11 and 15 (frame ends) and the ribs 13 (reinforced portions) correspond to the outside of the frame ends of the slots 12 and 16.
  • Both slots 12 and 16 are filled with bonded magnets 3.
  • the portion other than the slots 12 and 16 is basically a magnetic region made of electromagnetic steel plate.
  • the stator core 2 has five teeth 21 and six slots 22 on both sides of each tooth 21 in the circumferential direction.
  • An armature winding (coil) is disposed in the slot 22 .
  • the portion other than the slot 22 is basically a magnetic region made of electromagnetic steel plate.
  • the permanent magnets 3 are, for example, bonded magnets that are formed within the slots 12 and 16 while an orienting magnetic field is applied from the outer circumferential side of the rotor core 1.
  • a bonded magnet is, for example, anisotropic rare earth magnet particles bound together with a binder resin.
  • the molding method may be injection molding or compression molding.
  • the bonded magnets formed in the slots 12 and 16 in an oriented magnetic field are magnetized approximately in the direction of the magnetic pole center, as shown in FIG. 2A, etc., which will be described later, and generate magnetic flux in that direction (that is, they are oriented).
  • the bonded magnet may be magnetized from the outer peripheral side of the rotor core 1 after its molding (after solidification of the binder resin).
  • the bridge 11 includes a non-magnetic region 110, a magnetic region 111 located inside the non-magnetic region 110, and a magnetic region 112 located outside the non-magnetic region 110.
  • the non-magnetic region 110 is arranged outside the frame end center Ps. As a result, the magnetic region 111 is longer than the magnetic region 112 in the circumferential direction.
  • the non-magnetic region 110 is formed, for example, by non-magnetic modification (such as making it stainless steel) by laser irradiation or the like.
  • the center of the non-magnetic region 110 is made to substantially coincide with the frame end center Ps.
  • the circumferential lengths of the magnetic region 111 and the magnetic region 112 are made substantially the same. Other than that, it was the same as model M1.
  • a non-magnetic region 110 and a magnetic region 112 outside the non-magnetic region 110 are set in the bridge 11. That is, the non-magnetic region 110 was arranged inside the frame end center Ps, and the magnetic region 111 was not provided inside it. Other than that, it was the same as model M1.
  • model M4 as shown in FIG. 2D, the non-magnetic region 110 is not provided, and the entire bridge 11 is made into a magnetic region.
  • the analysis conditions were set as follows.
  • the rotor core 1 and the stator core 2 are made of a laminate of non-oriented electrical steel sheets (50HXT780T).
  • the rotor core 1 had an outer diameter of ⁇ 80 mm and a center hole diameter of ⁇ 45 mm.
  • the circumferential length of the bridge 11 was 3 mm
  • the circumferential length of the non-magnetic region 110 was 1 mm
  • the width (radial length) of the non-magnetic region 110 was 0.5 mm (same as the width of the bridge 11).
  • the gap (air gap) between the rotor core 1 and the stator core 2 was set to 0.5 mm.
  • the circumferential length will be referred to as "length” and the radial length will be referred to as "width" as appropriate.
  • model M1 the length of the magnetic region 111 was 1.5 mm, and the length of the magnetic region 112 was 0.5 mm.
  • model M2 the length of the magnetic region 111 was 0.75 mm, and the length of the magnetic region 112 was 0.75 mm.
  • model M3 the length of the magnetic region 112 was set to 1.5 mm.
  • the magnetic flux supplied from the permanent magnets on the rotor side can be reduced. It was found that it was possible to more effectively guide the wire to the stator side without causing a short circuit within the bridge. In other words, it is preferable that the length of the inner magnetic region is 3/2 or more, 2 or more times, or even 3 times or more the length of the outer magnetic region.
  • the bridge 11 may include only the non-magnetic region 110 and the inner magnetic region 111 (or the outer magnetic region 112 may be omitted). Furthermore, as shown in FIG. 3B, the non-magnetic region 110 may extend outward beyond the bridge 11.
  • the non-magnetic region 110 may be a modified portion of magnetic material, or may be a narrow portion 113 that is narrower in the radial direction than the magnetic regions 111 and 112, as shown in FIG. 3C.
  • the narrow portion 113 may be further modified to be non-magnetic.
  • the non-magnetic region (modified region, etc.) may be provided not only in the bridge but also in the ribs between the slots.
  • the above simulation was performed using a model in which non-magnetic regions were provided in the bridge 11 and the ribs 13 and 17.
  • the results are summarized in FIG. 4.
  • Models M1 to M3 shown in FIG. 4 correspond to models M1 to M3 shown in FIGS. 2A to 2C. That is, in the model M1, the non-magnetic region is located outside the frame end center Ps (on the reduced diameter side). In model M2, the center of the non-magnetic region substantially coincides with the frame end center Ps. In model M3, the non-magnetic region is located inside the frame end center Ps (on the expanded diameter side).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

鎖交磁束の増加による性能向上が図れる内包磁石型モータ用ロータを提供する。本発明は、磁性材からなるロータコア(1)のスロット(12)に永久磁石(3)が内包された内包磁石型モータ用ロータである。ロータコアは、一以上のスロットの少なくとも一方にある枠端外側に非磁性域(110)を有する。この非磁性域は、スロットの枠端中央(Ps)を基準に、磁極中心(Pc)から遠い側に偏在している。非磁性域は、スロットの外周端側にあるブリッジに設けられても、スロットの隣接間にあるリブに設けられてもよい。非磁性域は、例えば、電磁鋼板の一部を非磁性改質して形成される。非磁性域の少なくとも一部は、ブリッジの径方向幅またはリブの隣接間隔が周囲よりも小さい狭幅部からなってもよい。

Description

内包磁石型モータおよびそのロータ
 本発明は、内包磁石型モータ用ロータ等に関する。
 電動機(発電機を含めて単に「モータ」という。)には種々のタイプがある。最近ではインバータ制御の発達と高性能な希土類磁石の普及に伴い、省電力で高効率な同期機が多用されている。
 同期機(Synchronous Motor)は、回転子(ロータ)に永久磁石(界磁源)を、固定子(ステータ)に電機子巻線(コイル)を備え、電機子巻線に交流(AC)を供給して固定子に回転磁界を生じさせ、回転子を駆動するACモータである。
 同期機には、永久磁石が回転子の表面に配設された表面磁石型モータ(Surface Permanent Magnet Synchronous Motor/「SPMモータ」という。)と、その永久磁石が回転子の内部に配設された内包(埋込)磁石型モータ(Interior Permanent Magnet Synchronous Motor/「IPMモータ」という。)とがある。現在では、高トルク化や省電力化のみならず、永久磁石の飛散防止による信頼性の向上も図れるIPMモータが主流となっている。このようなIPMモータに関連した記載が、例えば、下記の特許文献にある。
特開2013-247850 特開2015-201997 WO2022/004672
 特許文献1~3はいずれも、回転子鉄心(ロータコア)の磁石孔(スロット)の外周端部(ブリッジ)に非磁性部(域)を設けることを提案している。これにより永久磁石から供給される磁束が、ブリッジで短絡することが抑止され、モータの性能向上が図られる。
 もっとも、いずれの特許文献にも、ブリッジ内における非磁性部(域)の配置や形態等について何ら記載も示唆もない。
 本発明はこのような事情に鑑みて為されたものであり、内包磁石型モータの性能向上を図れる新たなロータ等を提供することを目的とする。
 本発明者は鋭意研究した結果、スロットの枠端外側に設ける非磁性域の配置を見直すことにより、ロータとステータの間に生じる鎖交磁束を増加させ得ることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。
《内包磁石型モータ用ロータ》
(1)本発明は、磁性材からなるロータコアのスロットに永久磁石が内包された内包磁石型モータ用ロータであって、該ロータコアは、一以上の該スロットの少なくとも一方にある枠端外側に非磁性域を有し、該非磁性域は、該スロットの枠端中央を基準に、磁極中心から遠い側に偏在している内包磁石型モータ用ロータである。
(2)本発明の内包磁石型モータ用ロータ(単に「ロータ」という。)は、先ず、スロットの枠端外側に非磁性域を有する。これにより、その枠端外側の部分・領域(適宜「枠端部」という。)を通じて永久磁石から供給される磁束の一部が短絡することが抑止される。次に、その非磁性域は、スロットの枠端中央を基準にして、磁極中心から遠い側(適宜「外側」ともいう。)に偏って設けられている。このため、その枠端外側の周辺域において、永久磁石の磁束は、磁極中心に近い側(適宜「内側」ともいう。)にある磁性域(「非磁性域」以外の部分)を通じてステータへ誘導される。こうしてロータとステータの間の鎖交磁束の増加、ひいてはIPMモータの性能向上が図られる。
《内包磁石型モータ》
 本発明は、IPMモータとしても把握される。例えば、本発明は、上述したロータと、電機子を構成するステータと、を備える内包磁石型モータでもよい。このとき、スロット(ロータコア)の外周端側(ブリッジ付近)に設ける非磁性域は、例えば、周方向長(周方向の最小長)がロータとステータの間に形成される空隙幅(通常、エアギャップ)より大きいとよい。さらに、非磁性域の径方向長(径方向の最小長)も、その空隙幅より大きいとよい。これにより、スロット(ロータコア)の外周端側において、永久磁石から供給される磁束がステータ側へより誘導され易くなる。
《その他》
(1)本明細書でいう「非磁性域」と「磁性域(非磁性域以外の領域)」は、磁束の通り易さにより定まる。例えば、非磁性域は磁性域よりも、低(初)透磁率、低飽和磁束密度または高磁気抵抗であるとよい。透磁率の調整は、例えば、材質(成分組成、組織等)の変化によりなされる。飽和磁化の調整は、例えば、材質変化の他、形態変化(狭幅化、空隙化等)によりなされ得る。
(2)本明細書でいう「磁極中心」は、ロータの磁極毎にあり、永久磁石から供給される磁束が向かう仮想的な点である。磁極中心は、各磁極の中心線(対称線)上で、ロータの外周端線付近にある(例えば、図1に示す点Pcまたは点Pp)。磁極中心の径方向上の位置はロータ(電動機)の仕様により異なるが、本明細書では、説明の便宜上、磁極の中心線(対称線)とロータの外周端線との交点(例えば、図1に示す点Pc)を「磁極中心」とする。
 「枠端中央」は、基本的に、スロットを区画する枠線とスロットの中央線との交点(例えば、図1に示す点Ps)とする。但し、非磁性域の区画に必要なら、その交点と、スロットの中央線がロータの外周端線または別なスロットの枠線と交差する点(例えば、図1に示す点Pe)とを結ぶ線分を、「枠端中央」としてもよい。
 スロットの中央線は、磁極中心から引いた直線とスロットの枠線とが交差してできる交点間の中点の軌跡とする。図1に基づいて例示するなら、磁極中心(Pc)から延びる直線とスロットの枠線との両交点(Pi、Po)の中点(Pm)を連ねた軌跡(Tm)がスロットの中央線となる。
 スロットは、通常、磁極中心を取り囲むように弧状に設けられる。スロットがリブ等で分割されて、複数の小スロットが弧状に配設されているとき、各小スロットの内・外枠線(磁極中心に近い枠線と遠い枠線)をそれぞれ延長(外挿)して、仮想的な大スロット(リブ等を排除して連結したスロット)を考える。その大スロットの中央線と小スロットの枠端との交点(若しくはは線分)を枠端中央とする。
 本明細書でいう「周方向」は、ロータの回転中心(軸)周りの方向であり、「径方向」はロータの回転中心から放射状に延びる方向である。磁極中心に対する遠近の方向は、周方向、径方向、それらの複合方向等のいずれでもよい。また「ロータ」は、インナーロータでもアウターロータでもよい。さらにIPMモータの磁極数(ロータやステータに設けるスロット数等)は2以上であればよい。
(3)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。
ロータとステータの一磁極分を例示する部分断面図である。 そのロータのブリッジ周辺の磁束線(第1例)を示す模式図とコンター図である。 そのブリッジ周辺の磁束線(第2例)を示す模式図とコンター図である。 そのブリッジ周辺の磁束線(第3例)を示す模式図とコンター図である。 そのブリッジ周辺の磁束線(第4例)を示す模式図である。 そのブリッジ周辺の磁束線(第1変形例)を示す模式図である。 そのブリッジ周辺の磁束線(第2変形例)を示す模式図である。 形態を変更したブリッジ周辺の磁束線を示す模式図である。 ブリッジとリブに非磁性域を設けたときの磁束線を示すコンター図である。
 本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を、上述した本発明の構成に付加し得る。方法に関する構成要素も物(ロータ等)に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《ロータコア》
 ロータコアは、磁性材からなり、永久磁石を内包(埋設)するスロットを、磁極毎に少なくとも一つ以上備える。その少なくとも一つのスロットの枠端外側に非磁性域が形成される。さらに非磁性域は、その枠端外側の一方のみに設けられても両方に設けられてもよい。
(1)スロット
 スロットの形状、配置、層数等は、ロータ(IPMモータ)の仕様により異なる。各磁極のスロットは、通常、磁極中心を囲むように、磁極中心に関して対称的に設けられる。
(2)枠端部
 スロットの枠端外側にある部分・領域(枠端部)は、ロータコアの外周端側にあるブリッジ、略弧状の大スロットを補強して大スロットを小スロットに分割するリブ等である。ブリッジは、通常、磁極毎に少なくとも二つ以上ある。磁極毎に二層構造のスロット(図1参照)を設ける場合なら、ブリッジは磁極毎に四つとなる。ブリッジの形態は、スロットや非磁性域の形態等に応じて変化し得る。例えば、ブリッジは、径方向の幅が略一定な円弧状でもよいし、径方向の幅が変化する山型状等でもよい。なお、敢えてブリッジやリブを区画するなら、スロットの枠端外側の領域が、スロットの内側枠線と外側枠線をそれぞれ外挿した延長線により切り取られる範囲とすればよい。
(3)非磁性域と磁性域
 非磁性域が枠端部の外側(磁極中心から遠い側)に偏って設けられるため、逆にみれば、枠端部の内側(磁極中心に近い側)に磁性域が偏って形成される。このような磁性域が磁極中心側に形成される限り、非磁性域を設ける範囲や形態は問わない。
 非磁性域は、例えば、上述したブリッジやリブの範囲を外側に越えて設けられてもよい。但し、非磁性域の外側への過度な越境は、IPMモータのリラクタンストルクの低下を招く。このため非磁性域の外縁は、枠端部の外縁に沿っている(略一致)しているとよい。
 非磁性域は、例えば、磁性域を構成する磁性材(電磁鋼板等)に対して、材質(成分組成や組織等)を変化(「非磁性改質」または単に「改質」という。)させたものでもよいし、磁性域に対して形態を変化させたものでもよい。後者の一例として、非磁性域の少なくとも一部を、磁性域に対して径方向の幅を狭くしてもよい。これにより非磁性域を通過する磁束が飽和し易くなる。勿論、磁性域に対して、材質と形態の両方を変化させてもよい。なお、非磁性域の狭小化は、改質域の縮小化ともなり得る。
 ちなみに、非磁性改質は、例えば、既述した特許文献3(WO2022/004672)等に記載された方法によりなされる。特に、高エネルギービーム(レーザ等)の照射を利用すれば、微小な領域を高精度に改質できる。その際、非磁性域が狭いほど、改質の効率化や歪みの抑制が図られる。
《永久磁石》
 スロットに内包される永久磁石は、磁石粒子の成形体を焼結した焼結磁石でも、磁石粒子をバインダ樹脂で結着(固定)したボンド磁石でもよい。ボンド磁石は形状自由度が大きく、複雑形状のスロットに適する。なお、磁石粒子は、その種類、形態(粒径等)、異方性の程度等を問わない。
 永久磁石は、スロット内において、磁極中心付近に向いて(半径方向から斜め方向に配向して)磁化しているとよい。これにより、枠端部の内側(磁性域)を通過する磁束が増加し得る。このような永久磁石は、スロット内での磁場中成形や着磁により実現される。ボンド磁石の場合なら、例えば、異方性(希土類)磁石粒子を用いて、ロータコアのスロット内で配向磁場中成形されるだけでもよい。このとき、ボンド磁石の成形前に非磁性域が予め形成されているとよい。
 IPMモータ用ロータに設ける非磁性域の配置や形態が、ロータとステータの間の鎖交磁束へ及ぼす影響をシミュレーションした。このような具体例に基づいて、本発明を以下に詳しく説明する。
《ベースモデル》
 シミュレーションに用いたベースモデルM(単に「モデルM」という。)の平面図を図1に示した。モデルMは、8磁極からなるIPMモータの1磁極分(1/8モデル)である。モデルMは、ロータコア1と、ステータコア2と、永久磁石3を備える。ロータコア1とステータコア2は、所望形状に打ち抜いた電磁鋼板の積層体からなる。図1に示すように、モデルMは磁極中央(中心線)に関して線対称であり、周方向に関して、磁極中心Pcに近い方を内側、磁極中心Pcから遠い方を外側とする。また、ロータコア1の回転中心から遠い方を拡径側、ロータコア1の回転中心に近い方を縮径側という。
 ロータコア1は、磁極中央に対称的に設けられた2層の略U字状のスロット12、16を有する。ロータコア1の外側にあるスロット12は、回転中心側にある3つのリブ13(補強部)により4分割されている。ロータコア1の内側にあるスロット16は、1つのリブ17により2分割されている。
 スロット12、16の最外周端側にある枠辺がブリッジ11、15(枠端部)となる。ブリッジ11の範囲は、例えば、スロット12の内側枠線12aと外側枠線12bをそれぞれ外挿した延長線と、スロット12の枠端線12cとロータコア1の最外周線1aとで囲まれた領域(ハッチング部分)となる。これはブリッジ15の範囲についても同様である。なお、ブリッジ11、15(枠端部)とリブ13(補強部)は、スロット12、16の枠端外側に相当する。
 スロット12、16内はいずれも、ボンド磁石3により充塞される。スロット12、16以外の部分は、基本的に電磁鋼板からなる磁性域である。
 ステータコア2は、5つのティース21と、各ティース21の周方向両側にある6つのスロット22を有する。スロット22には、電機子巻線(コイル)が配設される。スロット22以外の部分は、基本的に電磁鋼板からなる磁性域である。
 永久磁石3は、例えば、ロータコア1の外周側から配向磁場を印加した状態で、スロット12、16内において成形されるボンド磁石である。ボンド磁石は、例えば、異方性希土類磁石粒子がバインダ樹脂で結着されてなる。成形方法は、射出成形でも圧縮成形でもよい。スロット12、16内で配向磁場中成形したボンド磁石は、後述する図2A等に示すように、ほぼ磁極中心向きに磁化しており、その方向の磁束を生じる(つまり配向している)。なお、ボンド磁石は、その成形後(バインダ樹脂の固化後)に、ロータコア1の外周側から着磁されてもよい。
《シミュレーション》
(1)モデル
 ブリッジ11に設けた非磁性域が、ブリッジ11周辺の磁束に及ぼす影響を、次のようなモデルM1~M4を用いてシミュレーションにより評価した。
 モデルM1は、図2Aに示すように、非磁性域110と、その内側にある磁性域111と、その外側にある磁性域112をブリッジ11に設定した。非磁性域110を枠端中央Psよりも外側に配置した。これにより磁性域111が、磁性域112よりも周方向に長くなっている。非磁性域110は、例えば、レーザー照射等による非磁性改質(ステンレス鋼化等)により形成される。
 モデルM2は、図2Bに示すように、非磁性域110の中央を枠端中央Psに略一致させた。これにより磁性域111と磁性域112の周方向長を略同じにした。それ以外は、モデルM1と同じとした。
 モデルM3は、図2Cに示すように、非磁性域110と、その外側にある磁性域112とをブリッジ11に設定した。つまり、非磁性域110を枠端中央Psより内側に配置して、その内側に磁性域111を設けなかった。それ以外は、モデルM1と同じとした。
 モデルM4は、図2Dに示すように、非磁性域110を設けず、ブリッジ11全体を磁性域とした。
(2)条件
 解析条件は次のように設定した。ロータコア1およびステータコア2は無方向性電磁鋼板(50HXT780T)の積層体からなる。ロータコア1は、外径:φ80mm、中央穴径:φ45mmとした。ブリッジ11の周方向長:3mm、非磁性域110の周方向長:1mm、非磁性域110の幅(径方向長):0.5mm(ブリッジ11の幅と同じ)とした。ちなみに、ロータコア1とステータコア2の隙間(エアギャップ):0.5mmとした。なお、本実施例では、適宜、周方向長を「長さ」、径方向長を「幅」という。
 モデルM1では、磁性域111の長さ:1.5mm、磁性域112の長さ:0.5mmとした。モデルM2では、磁性域111の長さ:0.75mm、磁性域112の長さ:0.75mmとした。モデルM3では、磁性域112の長さ:1.5mmとした。
(3)結果
 モデルM1~M3に関する解析結果を、磁束線のコンター図に現して、図2A~図2Cの下方にそれぞれ併せて示した。また、コンター図に基づく磁束線の流れを、その上方にそれぞれ模式的に示した。モデルM4については、磁束線の流れを模式的に図2Dに示した。
《評価》
 図2A~図2Dから明らかなように、ブリッジに設ける非磁性域を外側寄りにする(換言すると、外側より内側へ磁性域を拡張する)ことにより、ロータ側の永久磁石から供給される磁束をブリッジ内で短絡させず、ステータ側へより有効に誘導できることがわかった。敢えていうと、内側の磁性域の長さを外側の磁性域の長さに対して、3/2倍以上、2倍以上さらには3倍以上とするとよい。
《補足》
(1)図3Aに示すように、ブリッジ11を非磁性域110と内側の磁性域111のみとしても(外側の磁性域112を無くしても)よい。さらに図3Bに示すように、非磁性域110を、ブリッジ11の範囲を越えて外側へ拡張してもよい。
 非磁性域110は、磁性材の改質部とする他、図3Cに示すように、磁性域111、112よりも径方向に狭い狭幅部113としてもよい。勿論、その狭幅部113をさらに非磁性改質してもよい。
(2)非磁性域(改質域等)は、ブリッジのみならず、スロット間のリブに設けてもよい。非磁性域をブリッジ11とリブ13、17に設けたモデルを用いて、上述したシミュレーションを行った。その結果を図4にまとめて示した。図4に示したモデルM1~M3は、図2A~図2Cに示したモデルM1~M3に対応している。つまり、モデルM1は、非磁性域が枠端中央Psの外側(縮径側)にある。モデルM2は、非磁性域の中央が枠端中央Psと略一致している。モデルM3は、非磁性域が枠端中央Psの内側(拡径側)にある。
 図4から明らかなように、ブリッジのみならずリブにおいても、非磁性域を外側に配置することにより、無駄に迂回する磁束を低減して、ロータからステータ側へ至る鎖交磁束を増加させ得ることがわかった。
 1   ロータコア
 2   ステータコア
 3   永久磁石
 11  ブリッジ
 110 非磁性域
 111 磁性域

Claims (6)

  1.  磁性材からなるロータコアのスロットに永久磁石が内包された内包磁石型モータ用ロータであって、
     該ロータコアは、一以上の該スロットの少なくとも一方にある枠端外側に非磁性域を有し、
     該非磁性域は、該スロットの枠端中央を基準に、磁極中心から遠い側に偏在している内包磁石型モータ用ロータ。
  2.  前記非磁性域は、前記スロットの外周端側にあるブリッジおよび/または該スロットの隣接間にあるリブに設けられる請求項1に記載の内包磁石型モータ用ロータ。
  3.  前記非磁性域は、電磁鋼板の一部が非磁性改質されてなる請求項1または2に記載の内包磁石型モータ用ロータ。
  4.  前記非磁性域の少なくとも一部は、前記ブリッジの径方向幅または前記リブの隣接間隔が周囲よりも小さい狭幅部からなる請求項2に記載の内包磁石型モータ用ロータ。
  5.  請求項1~4のいずれかに記載のロータと、
     電機子を構成するステータと、
     を備える内包磁石型モータ。
  6.  前記スロットの外周端側に設ける非磁性域は、周方向長が前記ロータと前記ステータの間に形成される空隙幅より大きい請求項5に記載の内包磁石型モータ。
PCT/JP2023/009745 2022-03-16 2023-03-14 内包磁石型モータおよびそのロータ WO2023176802A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380027263.9A CN118805317A (zh) 2022-03-16 2023-03-14 内置磁体型电机及其转子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041036A JP7538431B2 (ja) 2022-03-16 2022-03-16 内包磁石型モータおよびそのロータ
JP2022-041036 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176802A1 true WO2023176802A1 (ja) 2023-09-21

Family

ID=88023811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009745 WO2023176802A1 (ja) 2022-03-16 2023-03-14 内包磁石型モータおよびそのロータ

Country Status (3)

Country Link
JP (1) JP7538431B2 (ja)
CN (1) CN118805317A (ja)
WO (1) WO2023176802A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117309685A (zh) * 2023-11-30 2023-12-29 西安石油大学 一种超临界二氧化碳增稠剂性能检测装置及检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331784A (ja) * 1995-03-24 1996-12-13 Hitachi Metals Ltd 永久磁石界磁方式回転機
JP2000270503A (ja) * 1999-03-17 2000-09-29 Fujitsu General Ltd 永久磁石電動機
JP2013143791A (ja) * 2012-01-06 2013-07-22 Aichi Steel Works Ltd 内包磁石型同期機およびその回転子
JP2013247850A (ja) 2012-05-30 2013-12-09 Hitachi Appliances Inc 電動機及び洗濯乾燥機
JP2014093802A (ja) * 2012-11-01 2014-05-19 Jtekt Corp 回転機用ロータ
JP2015201997A (ja) 2014-04-09 2015-11-12 ダイキン工業株式会社 ロータコア、そのロータコアを使用したロータおよびロータコアの製造方法
WO2016021651A1 (ja) * 2014-08-06 2016-02-11 日本発條株式会社 モータ
WO2022004672A1 (ja) 2020-06-30 2022-01-06 愛知製鋼株式会社 ロータコアの製造方法、ロータコア、高強度鋼板及び高強度鋼板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008017633A (ja) 2006-07-06 2008-01-24 Yaskawa Electric Corp 回転子および埋込磁石型モータ
JP5447418B2 (ja) 2011-03-28 2014-03-19 株式会社豊田自動織機 回転電機の永久磁石埋設型回転子及び回転電機
JP2014183691A (ja) 2013-03-21 2014-09-29 Jtekt Corp 磁石埋込型ロータ及び磁石埋込型ロータの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331784A (ja) * 1995-03-24 1996-12-13 Hitachi Metals Ltd 永久磁石界磁方式回転機
JP2000270503A (ja) * 1999-03-17 2000-09-29 Fujitsu General Ltd 永久磁石電動機
JP2013143791A (ja) * 2012-01-06 2013-07-22 Aichi Steel Works Ltd 内包磁石型同期機およびその回転子
JP2013247850A (ja) 2012-05-30 2013-12-09 Hitachi Appliances Inc 電動機及び洗濯乾燥機
JP2014093802A (ja) * 2012-11-01 2014-05-19 Jtekt Corp 回転機用ロータ
JP2015201997A (ja) 2014-04-09 2015-11-12 ダイキン工業株式会社 ロータコア、そのロータコアを使用したロータおよびロータコアの製造方法
WO2016021651A1 (ja) * 2014-08-06 2016-02-11 日本発條株式会社 モータ
WO2022004672A1 (ja) 2020-06-30 2022-01-06 愛知製鋼株式会社 ロータコアの製造方法、ロータコア、高強度鋼板及び高強度鋼板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117309685A (zh) * 2023-11-30 2023-12-29 西安石油大学 一种超临界二氧化碳增稠剂性能检测装置及检测方法
CN117309685B (zh) * 2023-11-30 2024-03-08 西安石油大学 一种超临界二氧化碳增稠剂性能检测装置及检测方法

Also Published As

Publication number Publication date
JP7538431B2 (ja) 2024-08-22
CN118805317A (zh) 2024-10-18
JP2023135775A (ja) 2023-09-29

Similar Documents

Publication Publication Date Title
CN102593983B (zh) 旋转电机
JP4120208B2 (ja) 永久磁石型同期機
US7556082B2 (en) Interior permanent magnet rotors with multiple properties and methods of making same
JP3816727B2 (ja) 永久磁石式リラクタンス型回転電機
WO2013103118A1 (ja) 内包磁石型同期機およびその回転子
WO2008154358A1 (en) Conical magnets and rotor-stator structures for electrodynamic machines
WO2008023413A1 (fr) Moteur électrique de type à aimant permanent
KR20100134678A (ko) 자속 집중 극체를 구비한 영구 자석 회전자
JP3280896B2 (ja) 永久磁石式リラクタンス型回転電機
JP3602392B2 (ja) 永久磁石埋め込みモータ
EP1597812A2 (en) Trapezoidal shaped magnet flux intensifier motor pole arrangement for improved motor torque density
JP6539004B1 (ja) 回転子および回転電機
JP2002503078A (ja) 最適化したトルク密度を有するハイブリッドステッパモータ
JP2002112513A (ja) 回転電機
US20120228977A1 (en) Rotor-stator structures with an outer rotor for electrodynamic machines
JP3597821B2 (ja) 永久磁石式リラクタンス型回転電機
JPH11136890A (ja) 永久磁石式リラクタンス型回転電機
JP2018148597A (ja) 回転電気機械
WO2023176802A1 (ja) 内包磁石型モータおよびそのロータ
CN105914984A (zh) 一种变磁通-强磁型永磁同步电机
JP5490171B2 (ja) 回転子および同期電動機
JP6121914B2 (ja) 同期電動機
WO2019187205A1 (ja) 回転電機
Lindner et al. Design of an e-core flux-switching permanent magnet machine with large air-gap
CN206948062U (zh) 交替极永磁电机及其转子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401006033

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20247034176

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023770757

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023770757

Country of ref document: EP

Effective date: 20241016