Nothing Special   »   [go: up one dir, main page]

WO2023170150A1 - Faserverbundwerkstoff aus mindestens einem tape - Google Patents

Faserverbundwerkstoff aus mindestens einem tape Download PDF

Info

Publication number
WO2023170150A1
WO2023170150A1 PCT/EP2023/055896 EP2023055896W WO2023170150A1 WO 2023170150 A1 WO2023170150 A1 WO 2023170150A1 EP 2023055896 W EP2023055896 W EP 2023055896W WO 2023170150 A1 WO2023170150 A1 WO 2023170150A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reinforcing fibers
fiber composite
hybrid
tape
Prior art date
Application number
PCT/EP2023/055896
Other languages
English (en)
French (fr)
Inventor
Andreas Flachenecker
Christian Vieth
Arkadiusz MATYJA
Daniel HEHN
Original Assignee
Php Fibers Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Php Fibers Gmbh filed Critical Php Fibers Gmbh
Publication of WO2023170150A1 publication Critical patent/WO2023170150A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • C08J5/048Macromolecular compound to be reinforced also in fibrous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/523Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement in the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/528Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/10Cords, strands or rovings, e.g. oriented cords, strands or rovings
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form

Definitions

  • Fiber composite material made of at least one tape
  • the invention relates to a fiber composite material made from at least one tape made from at least two hybrid rovings.
  • the invention further relates to a method for producing the fiber composite material and a tape from hybrid rovings.
  • Hybrid rovings are already known. Such hybrid rovings are described, for example, in document EP 3638492. However, fiber composite materials made from these hybrid rovings often have mechanical properties that are not homogeneous within the fiber composite material. Furthermore, the production of the fiber composite materials from the known hybrid rovings is complex because a large number of hybrid rovings have to be unrolled and processed via creels for production.
  • Document DE 10 2014 019 220 D1 describes a method for producing a bath-shaped semi-finished product. Here, for example, matrix fiber bundles are spread out together with reinforcing fiber bundles and placed on top of each other. The width of the fiber bundles should be from 6 mm to a maximum of 16 mm and in a three-layer structure, adjacent fiber bundles overlap one another.
  • the object of the present invention was therefore to provide a fiber composite material made of at least one tape, whereby the at least a tape is formed from at least two hybrid rovings, which means that the fiber composite material is easier to produce and its mechanical properties are more homogeneous than in comparison to the prior art.
  • the fiber composite material has at least one tape, the tape being constructed from at least two hybrid rovings.
  • Each of the hybrid rovings consists of at least one layer of reinforcing fibers arranged directly between at least two layers of thermoplastic fibers.
  • the layer of reinforcing fibers and the layers of thermoplastic fibers of each hybrid roving have a width transverse to the main direction of propagation of the reinforcing fibers that is more than 15 mm.
  • At least two hybrid rovings are arranged next to each other and adjacent to each other without overlapping, transversely to the main direction of propagation of the reinforcing fibers, and thus form at least one tape.
  • the at least one tape has a width transverse to the main direction of propagation of the reinforcing fibers of at least 30 mm. At least the reinforcing fibers are present within the fiber composite material without twisting in the fiber composite material.
  • a hybrid roving is to be understood as meaning an at least three-layer structure made of fiber layers, with the different fiber layers within the hybrid roving arranged one on top of the other essentially perpendicular to the main direction of propagation of the fibers (reinforcing fibers).
  • At least two hybrid rovings are used to form a tape.
  • the hybrid rovings are arranged in the tape in such a way that the fiber layers are of the same type and the same layer of the different hybrid rovings next to each other, adjacent to each other ( Figure 4).
  • the reinforcing fibers of the first hybrid roving lying between the first and the second layer of thermoplastic fibers are also arranged next to each other without overlap, adjacent to the layer of reinforcing fibers of the second hybrid roving.
  • the second layers of thermoplastic fibers of the first and second hybrid rovings lie next to each other without overlapping, against each other.
  • the lack of overlap areas of the same fiber types advantageously avoids localized areas with a higher fiber concentration, which can influence the mechanical properties of the later fiber composite material.
  • the use of tapes for producing the fiber composite material with a width transverse to the main direction of propagation of the reinforcing fibers of at least 30 mm enables the fiber composite material to be produced from as few coils as possible (with tape material), which reduces the set-up time for production. For example, only 10 spools need to be filled with tape material to produce the fiber composite material, instead of 20 or more spools, even though the later fiber composite material should have the same dimensions.
  • the fiber composite material can be formed from a plurality of tapes, where each tape can be formed from a plurality of hybrid rovings.
  • the at least one tape is formed from two spread glass fiber rovings (reinforcing fibers) and four spread ones thermoplastic fiber rovings (which together form two hybrid rovings), each of the fiber layers having a width measured transversely to the main direction of propagation of the reinforcing fibers of approximately 15 mm.
  • the layer of reinforcing fibers and the layers of thermoplastic fibers then have a width of 30 mm measured transversely to the main direction of propagation of the reinforcing fibers.
  • an already produced tape is preferably unwound from rolls or spools and processed into the fiber composite material.
  • the tape can also be formed during the production of the fiber composite material in an upstream step by assembling hybrid rovings.
  • a plurality of hybrid rovings can be spread in a first process step and laid down accordingly to form a tape, with the at least one tape then being joined together in a pultrusion process to form the fiber composite material.
  • All three layers of each tape are preferably subjected to a pressure of at least 2 bar and heat during the production of the fiber composite material or before the production of the fiber composite material (for example during the production of the tape), so that the thermoplastic fibers melt into a thermoplastic material which forms the reinforcing fibers encloses.
  • the layer of enclosed reinforcing fibers is then cooled, preferably under pressure, until the thermoplastic material is no longer flowable. This makes it advantageously possible to produce the tape without overlapping areas and still obtain a manageable (layer-proof) tape.
  • all three layers of each hybrid roving are preferably made during the production of the fiber composite material or before Production of the fiber composite material (for example in the production of the tape) is subjected to a pressure of at least 2 bar and heat, so that the thermoplastic fibers melt into a thermoplastic material that encloses the reinforcing fibers. The layer of enclosed reinforcing fibers is then cooled, preferably under pressure, until the thermoplastic material is no longer flowable.
  • the layers made of reinforcing fibers or thermoplastic fibers are also referred to as fiber layers.
  • the at least one tape can also be referred to as tapes.
  • a fiber is an endless or length-limited structure whose width is negligibly small in relation to its length.
  • endless fibers continuous fibers
  • staple fibers or hollow fibers should be understood as fibers.
  • the fibers can be multifilament fibers or monofilament fibers.
  • the fiber can also be present as a core-sheath fiber.
  • the fibers can be present, for example, in the form of a chamois (for example multifilament yarn or ribbon yarn).
  • a width of the fiber layers in hybrid roving transverse to the main direction of propagation (or also called fiber orientation) of the reinforcing fibers means that the width is measured in one plane of the reinforcing fiber layer but at an angle of approximately 90° to the main extent of the fiber.
  • a width of the tape transverse to the main direction of propagation means that the width is measured in a plane of the reinforcing fiber layer, but at an angle of approximately 90° to the main extension of the fiber.
  • the at least one tape constructed from at least two hybrid rovings lying side by side without overlap, has a width that was previously not known for such tapes.
  • the fiber composite material can be produced from a smaller number of hybrid rovings and, according to the invention, at least the reinforcing fibers within the fiber composite material are present within the fiber composite material without twisting.
  • a uniform fiber alignment of the reinforcing fibers within the fiber composite material can be obtained and, as a result, homogeneous, high mechanical properties of the fiber composite material.
  • the production of a fiber composite material can be carried out by unwinding and joining (for example under pressure and heat) a plurality of hybrid rovings, with a large number of hybrid rovings - as previously known from the prior art - the hybrid rovings be twisted together when being put together.
  • a smaller number of hybrid rovings can advantageously be used than was previously usual.
  • the twisting of the reinforcing fibers during the production of the fiber composite material is also advantageously prevented.
  • the process for producing a fiber composite material is significantly simplified with the use of a few, wide tapes, since, for example, the assembly time and the set-up time in the manufacturing process can be shortened.
  • Hybrid roving is to be understood as meaning a material that is formed from at least two different starting materials, with the starting materials each being used as roving in hybrid roving.
  • a roving is a bundle, strand or multifilament yarn made of parallel filaments.
  • a fiber layer of the hybrid roving is formed from a fiber roving.
  • a tape has at least two hybrid rovings.
  • Each hybrid roving has splayed fiber rovings that form the layers of thermoplastic fibers and the layer of reinforcing fibers.
  • the hybrid roving can also have a plurality of thermoplastic fiber layers and layers of reinforcing fibers, which are then arranged one above the other in the hybrid roving ( Figure 2).
  • the at least one fiber layer of reinforcing fibers can be formed from a plurality of rovings made of reinforcing fibers, which lie next to each other (and also on top of each other).
  • each thermoplastic fiber layer can be formed from a plurality of thermoplastic fiber rovings.
  • the number of rovings used in the fiber layer made of reinforcing fibers can be the same or different to the number of rovings for the fiber layer made of thermoplastic fibers, depending on how the tape is to be constructed.
  • all hybrid rovings for constructing the tape are constructed the same and therefore have the same number of thermoplastic fiber layers and fiber layers made of reinforcing fibers.
  • the at least one tape has a width, measured transversely to the main direction of propagation of the reinforcing fibers, which is greater than its thickness, measured in the direction of the first fiber layer made of thermoplastic fibers to the second fiber layer made of thermoplastic fibers.
  • the width of the tape is 20 to 25 times larger perpendicular to the fiber orientation as the thickness of the tape, measured in the direction of the first fiber layer made of thermoplastic fibers to the second fiber layer made of thermoplastic fibers.
  • Each hybrid roving preferably also has a width, measured transversely to the main direction of propagation of the reinforcing fibers, which is larger (preferably 20 to 25 times) than its thickness, measured in the direction of the first fiber layer made of thermoplastic fibers to the second fiber layer made of thermoplastic fibers.
  • thermoplastic fibers in the hybrid rovings - or in at least one tape - melt and the reinforcing fibers are preferably completely surrounded by the thermoplastic material of the thermoplastic fibers, preferably without an edge region made only of thermoplastic material.
  • the fiber layer made of reinforcing fibers is preferably in direct contact with the two fiber layers made of thermoplastic fibers. Even in at least one tape, the fiber layer made of reinforcing fibers is preferably in direct contact with the two fiber layers made of thermoplastic fibers.
  • the direct arrangement of the at least one layer of reinforcing fibers between the two layers of thermoplastic fibers means that there is no longer any further layer made of a different material between the reinforcing fibers and the layers of thermoplastic fibers.
  • thermoplastic fibers can be present in the hybrid rovings, or in at least one tape, as filaments, staple fibers, multifilament fibers, games, monofilaments or ribbon games made of thermoplastic material. Any material whose melting range or melting point is not greater than 500°C, more preferably not greater than 350°C, is suitable as a thermoplastic material for the thermoplastic fibers.
  • thermoplastic fibers used are fibers made from aliphatic and partially aromatic polyamides, polyoxymethylene (POM), polyesters, PEEK, PEN, POK, PP, PE or PVC or mixtures thereof.
  • the thermoplastic fibers can have thixotropic additives.
  • Fumed silica, Luvotix HAT, Luvotix AB, Luvotix EAB, Luvotix P 100 -15, BYK-405, BYK-420 or BYK-425 are preferably used as thixotropic additives.
  • the hybrid roving or the at least one tape
  • glass fiber roving
  • carbon fiber titanium fiber
  • basalt fiber ceramic fiber
  • viscose fiber metal fiber
  • aramid fiber natural fiber or mixtures of the fibers mentioned
  • the at least one fiber layer consists of reinforcing fibers from approximately 60 to 100%, more preferably from 80 to 95%, of one of the fibers mentioned or a mixture of the fibers mentioned.
  • Glass fiber is particularly preferably used as the reinforcing fiber, the glass fiber preferably having a fineness of 1200 to 2400 tex.
  • a fiber layer made of thermoplastic fibers consists of at least one layer, preferably two layers, of thermoplastic multifilament yarns, which are arranged unidirectionally and one above the other in hybrid roving.
  • this also points at least one tape has two layers of thermoplastic multifilament yarns, which are arranged unidirectionally and one above the other.
  • the at least one fiber layer of reinforcing fibers in hybrid roving preferably consists of a layer of unidirectionally arranged reinforcing fibers.
  • the reinforcing fibers within the fiber layer made of reinforcing fibers in hybrid roving lie next to one another and against one another without overlap.
  • the width of the at least one fiber layer made of reinforcing fibers and the at least two fiber layers made of thermoplastic fibers in hybrid roving transverse to the main direction of propagation of the reinforcing fibers is more than 30 mm, more than 50 mm, more than 100 mm, more than 250 mm, more than 500 mm or more than 600 mm.
  • the at least one tape has at least one fiber layer made of reinforcing fibers and at least two fiber layers made of thermoplastic fibers.
  • the width of the at least one fiber layer made of reinforcing fibers and the at least two fiber layers made of thermoplastic fibers in at least one tape transverse to the main direction of propagation of the reinforcing fibers is more than 30 mm, more than 50 mm, more than 100 mm, more than 250 mm, more than 500 mm or more than 600 mm.
  • the fiber composite material is formed from hybrid rovings with a plurality of fiber layers made of reinforcing fibers, the reinforcing fibers being arranged one above the other in the hybrid roving without offset or with an offset at least in partial areas perpendicular to the main direction of propagation of the reinforcing fibers.
  • the fiber composite material is formed from at least two tapes, the tapes being arranged one above the other in the fiber composite material without offset or with an offset at least in partial areas perpendicular to the main direction of propagation of the reinforcing fibers.
  • the basis weight within the fiber layer of reinforcing fibers and/or within the fiber layers of thermoplastic fibers in each of the at least two hybrid rovings and/or in the at least one tape is constant. Constant means that the basis weight within the fiber layer varies by less than 5%.
  • each of the at least two hybrid rovings and/or the at least one tape has a temporary binder.
  • Thermoplastic dispersions such as polypropylene in water, are suitable as temporary binders, the proportion of binder to the fiber proportion of the hybrid rovings and/or the at least one tape being in the range from 0.3 to 10% by weight, preferably 3% by weight. is based on the total fiber content of the hybrid roving or the at least one tape.
  • the binder is a temporary binder if it is removed from the hybrid roving and/or the at least one tape during production or before the production of the fiber composite material or is later dissolved in a matrix material of the fiber composite material.
  • the binder can be evaporated using heat before the hybrid rovings are assembled to form the at least one tape.
  • the binder is only evaporated using heat during the production of the fiber composite material.
  • the temporary binding agent can advantageously reinforce a temporary bond of the different fiber layers within each hybrid roving, so that the hybrid rovings become easier to handle.
  • the temporary binder also temporarily binds the different fiber layers of the different hybrid rovings in at least one tape reinforced. This makes it even easier to form at least one tape without overlapping fiber layers from different hybrid rovings.
  • the temporary binder acts as an adhesion promoter in the later fiber composite material.
  • the binder in the hybrid roving preferably binds the different fiber layers together, so that the manageability of the hybrid roving is improved and then ensures better adhesion in the fiber composite material between the material of the hybrid roving and the additional matrix material that is used to produce the fiber composite material the hybrid rovings are used.
  • the binder preferably binds the different fiber layers together in the at least one tape, so that the handling of the at least one tape is improved and then ensures better adhesion in the fiber composite material between the material of the at least one tape and the additional matrix material that is additionally used to produce the fiber composite material becomes.
  • the temporary binder is a pressure-sensitive adhesive.
  • a pressure-sensitive adhesive is understood to mean materials that have a high tack strength (also known to those skilled in the art as “tack”), which means that they form adhesive bonds with objects that touch the material in question in a very short time.
  • Possible pressure-sensitive adhesives are polymers or copolymers based on acrylates, namely based on 2-ethylhexl acrylate, isoamyl acrylate, hydroxymethacrylate, isooctyl acrylate, acrylic acid, methyl methacrylate or butyl acrylate.
  • the polymers or copolymers used as pressure-sensitive adhesives can also contain styrene, natural rubber, polyterpene resin, polyisoprene, styrene-butadiene rubber, styrene-butadiene rubber, isobutene-isoprene rubber, acrylonitrile-butadiene rubber, chloroprene rubber, polyvinyl acetate or polydiphenyldisiloxane.
  • the pressure-sensitive adhesive contains swellable acrylate beads.
  • the pressure-sensitive adhesive contains a Solvent or swelling agent, such as water, an alcohol such as ethanol, methanol, 1-propanol or 2-propanol, a ketone such as acetone or methyl ethyl ketone or an alkane such as n-hexane, n-heptane or petroleum ether.
  • a Solvent or swelling agent such as water, an alcohol such as ethanol, methanol, 1-propanol or 2-propanol, a ketone such as acetone or methyl ethyl ketone or an alkane such as n-hexane, n-heptane or petroleum ether.
  • the component added as a pressure-sensitive adhesive retains its adhesive strength even after heat treatment of the hybrid roving at, for example, 180 ° C.
  • the pressure-sensitive adhesive is such that it loses its sticky properties over time, for example through the action of light, atmospheric oxygen or through the evaporation of a solvent or swelling agent.
  • the amount and type of pressure-sensitive adhesive are selected so that the resulting adhesive bond can be released again by applying a force of approximately 0.01 mN/tex.
  • approximately means an upward and downward deviation of 50% each.
  • Another subject of the present invention relates to the fiber composite material.
  • Comments on the hybrid rovings and the at least one tape apply (if appropriate) to the fiber composite material, which is to be produced from at least two hybrid rovings - in at least one tape.
  • the layer of reinforcing fibers of different hybrid rovings are adjacent to one another within the at least one tape transversely to the main direction of propagation of the reinforcing fibers without adhesion and without overlapping, lying next to one another.
  • the layers of thermoplastic fibers of different hybrid rovings within the at least one tape are adjacent to one another, adjoining one another, without adhesion and without overlap, transversely to the main direction of propagation of the reinforcing fibers.
  • the fiber composite material is formed from less than 400, preferably less than 300, preferably less than 250, preferably less than 100, preferably less than or equal to 10 hybrid rovings.
  • the fiber composite material is made of less than 400, preferably less than 300, preferably less than 200, preferably less than 250, preferably less than 150, preferably less than 125, preferably less than 100, preferably less than 50, preferably less or equal to 10, or less or equal to 5 tapes formed.
  • Each of these tapes preferably has three or more hybrid rovings.
  • the fiber composite material is preferably made exclusively from a type of hybrid roving, so that all hybrid rovings have the same structure and contain the same material.
  • the fiber composite material is preferably made exclusively from a type of tape, so that all tapes have the same structure and contain the same material.
  • the fiber composite material preferably has a homogeneous fiber distribution in the thickness and/or width direction.
  • a homogeneous fiber distribution means that the fiber distribution of the reinforcing fibers within the fiber composite material varies by less than 5%. This advantageously results in a fiber composite material which has no reinforcing fiber-free areas made only of matrix material. This advantageously makes the mechanical properties of the fiber composite material particularly easy to predict.
  • the fiber composite material is a pultrudate.
  • a pultrudate is to be understood as meaning a fiber composite material that was formed from at least one tape in a pultrusion process, the at least one tape being formed from at least two hybrid rovings.
  • the hybrid rovings are made of one via fiber guides multi-story coil storage is guided and spread and joined together to form at least one tape, whereby the fiber layers of the hybrid rovings are next to each other without overlap, lying against one another in the tape, transversely to the main direction of propagation of the reinforcing fibers.
  • At least one tape is fed into a hot pultrusion tool. In this tool, the thermoplastic fibers melt and form a matrix. The additional addition of matrix material to produce the pultrudate is not necessary when using hybrid rovings.
  • the fibers can pass through several preforming stations so that they are formed into the desired pultrudate shape.
  • the pultrudate has a rod shape, the rod shape being solid and having a diameter of at least 2 mm.
  • the surface of the pultrudate may have a structure with a predetermined thickness.
  • the pultrudate can have a surface similar to that of steel reinforcing bars in concrete construction.
  • the pultrudate has a flat profile shape (rectangular), which shape is solid and has a thickness of at least 0.2 mm and a width of at least 6 mm.
  • Another subject of the present invention relates to a method for producing the fiber composite material - as described above.
  • the statements made above also apply to the manufacturing process.
  • 10 hybrid roving ⁇ are unwound and assembled into at least one tape, with the at least one tape being processed into the fiber composite material.
  • Each of the hybrid rovings has a width of at least 15 mm across Fiber alignment of the hybrid roving and at least the reinforcing fibers are joined together without twisting to form the fiber composite material.
  • the hybrid rovings lie next to each other without overlapping, transverse to the main direction of propagation of the reinforcing fibers.
  • 10 or more than 10 tapes can also be unwound and processed into the fiber composite material.
  • 5, not more than 5 or more than 5 tapes can also be unwound and processed into the fiber composite material, with each tape being formed from at least two hybrid rovings.
  • each hybrid roving having a width transverse to the fiber orientation of more than 15 mm and / or the fiber composite material having a width transverse to the fiber orientation of more than 30 mm, preferably more than 50 mm.
  • the risk of fiber twisting during the production of the fiber composite material is significantly reduced. This increases the uniformity of the fiber composite material.
  • the friction and pressure fluctuations in the consolidation tool are reduced because only relatively few tapes have to be used for production. As already described above, this can advantageously improve the mechanical properties of the fiber composite material.
  • the hybrid rovings are first combined into a tape in a separate work step.
  • the rolls with the tape will be then rolled up and can be stored.
  • the rolls (or spools) with the tape are then unrolled and processed into the fiber composite material.
  • the at least one tape can also be produced as a temporary intermediate product after the hybrid rovings have been unrolled and before the fiber composite material is produced, without the at least one tape being wound up (stored and later processed).
  • the hybrid rovings are preferably joined together to form at least one tape so that the thermoplastic fibers of the hybrid rovings are also twist-free.
  • the thermoplastic fibers are completely melted, so that fiber orientation of the thermoplastic fibers can no longer be determined in the fiber composite material.
  • the thermoplastic fiber material encloses the reinforcing fibers and forms the matrix of the fiber composite material, or forms a connection with a supplied matrix material.
  • the fiber composite material is produced from a plurality of tapes, with all tapes having the same structure (same material, same number of fibers, same number of layers).
  • the fiber composite material is made from a plurality of tapes, with at least two types of tapes being used.
  • the at least two types of tapes differ from each other in the type of material used for the fibers, the number of fibers within the different layers, the fiber spread within a layer and/or the number of fiber layers within the tape.
  • Another subject of the present invention is a tape for producing a fiber composite material, as described above, the tape having a width transverse to the main orientation of the reinforcing fibers of at least 30 mm.
  • the tape is formed from at least two hybrid rovings, which have a width transverse to the main direction of propagation of the reinforcing fibers of at least 15 mm, and whose reinforcing fibers lie next to each other without overlapping within the tape and lie next to each other without overlapping, transversely to the main direction of propagation of the reinforcing fibers.
  • the tape has (at least) one fiber layer made of reinforcing fibers, which is formed from the fiber layers made of reinforcing fibers of at least two hybrid rovings, wherein the fiber layers made of reinforcing fibers of different hybrid rovings are provided next to each other, adjacent to one another, without overlap, within the tape (within the layer reinforcing fibers of the tape). Furthermore, the fiber layers made of thermoplastic fiber material of the tape are each formed from a plurality of fiber layers made of thermoplastic fibers of different hybrid rovings. Each layer of thermoplastic fiber material in the tape has at least two layers of thermoplastic fiber material of different hybrid rovings, which are provided within the thermoplastic fiber layer of the tape without overlap, next to one another, and lying against one another.
  • the tape can also be formed from more than two hybrid rovings, whereby this tape is then constructed in the same way as the tape just described (only with more non-overlapping, side-by-side, adjoining fiber layers).
  • the at least one tape can, for example, be formed from at least 3, at least 5 or at least 10 hybrid rovings, each layer of reinforcing fibers of the hybrid rovings having a width transverse to the main direction of propagation of the reinforcing fibers of at least 15 mm and the reinforcing fibers of different hybrid rovings. Rovings within the tape are adjacent to each other, transverse to the main direction of propagation of the reinforcing fibers, without overlapping (and thus form the layer of reinforcing fibers of the tape).
  • each hybrid roving can also have a first fiber layer made of thermoplastic fibers, which was formed from a different number of fibers and / or a different material type of fibers, like a second fiber layer made of thermoplastic fibers of the same hybrid roving.
  • Figure 1 shows schematically a possible method of producing a hybrid roving
  • Figure 2 shows schematically an embodiment of a hybrid roving
  • Figure 3 shows schematically the structure of a tape.
  • Figure 4 shows schematically the arrangement of a plurality of tapes for producing the composite material
  • Figure 5 shows schematically the structure with two tapes
  • Fiber composite material can be processed
  • a hybrid roving is made from three rolls of material as starting material.
  • the outer material webs are spread thermoplastic fibers, in the middle a web of spread reinforcing fibers (e.g. glass fibers) is fed.
  • the reinforcing fibers then lie between the sheets of thermoplastic fibers so that the thermoplastic fibers cover a top and a bottom of the reinforcing fibers.
  • an adhesive and/or a binder can be applied to one of the fiber layers or to a plurality of the fiber layers.
  • all layers of thermoplastic fibers and all layers of reinforcing fibers are first combined to form a hybrid roving and then an adhesive and/or a binder is applied to the hybrid roving.
  • the adhesive and/or the binder is preferably applied via a roller application, with one or more fiber webs or the hybrid roving being guided over a roller (roller) provided with the corresponding adhesive and/or binder.
  • the fiber layers are layered on top of each other and then assembled and dried, preferably under pressure. This creates a fixation of the fiber layers to one another, so that the individual fiber layers cannot then be separated from each other again without appropriate effort.
  • the fixation of the different fiber layers within the hybrid roving is so strong that the hybrid roving can be easily wound up after fixation and unwound again later without the different fiber layers becoming separated. Furthermore, the fixation is so strong that too When producing the fiber composite material from hybrid roving (in the form of at least one tape), it retains its fiber layer structure.
  • the hybrid roving consists of a spread glass fiber roving, which is arranged between two spread rovings made of thermoplastic fibers.
  • the glass fiber roving is spread so that it has a thickness (measured in the direction from one fiber layer of thermoplastic fibers to the further fiber layer of thermoplastic fibers) that is greater than the individual thicknesses of the fiber layers of thermoplastic fibers.
  • the hybrid roving has three fiber layers, with two fiber layers consisting of the same material (thermoplastic fibers) and one fiber layer consisting of reinforcing fibers.
  • the hybrid roving preferably has a width transverse to the main direction of propagation of the reinforcing fibers of more than 15 mm and at the same time also a thickness (measured in the direction from one fiber layer made of thermoplastic fibers to the further fiber layer made of thermoplastic fibers) which is between 0.2 and 0. is 4 mm.
  • the hybrid roving therefore preferably has a width that is significantly larger than its thickness.
  • the hybrid roving preferably has a width that is 20 to 25 times larger than its thickness.
  • a tape 1 is shown schematically in FIG.
  • the tape 1 is formed from two hybrid rovings 2, 2', the hybrid rovings 2, 2' being next to each other without overlap and lying against one another within the tape 1.
  • the first layer of thermoplastic fibers of the first and second hybrid rovings lies next to each other without overlap
  • the layers of reinforcing fibers 3 of the first hybrid roving and the second hybrid roving lie next to each other within the tape without overlap on and the second layers of thermoplastic fiber material of the first and second hybrid rovings lie next to each other without overlapping, against each other.
  • the position of reinforcing fibers 3 of one of the hybrid rovings 2 has only been sketched.
  • a first hybrid roving 2 has the same structure as a second hybrid roving 2 '.
  • the hybrid rovings 2, 2' are placed together and form the tape 1.
  • the same fiber layers of the different hybrid rovings lie next to each other without overlapping, against each other within the tape 1.
  • the different hybrid rovings 2, 2 ' can, for example, have a binder or a pressure-sensitive adhesive, which enables the different fiber layers of each hybrid roving 2, 2' to be held together even without the fiber layers overlapping.
  • the fiber layers of the hybrid rovings 2, 2' can also be connected by pressure and heat so that they form a tape 1 without overlap areas.
  • each tape 1 has two hybrid rovings 2.2' or 2", 2'".
  • the tapes 1 can, as in the example in FIG. 4, be arranged one above the other with an offset to one another, with these tapes lying within a horizontal layer of tapes 1 without any offset to one another.
  • the tapes 1 lie next to each other in a horizontal position without overlapping, against each other.
  • the tapes 1 of different (horizontal) layers can be constructed the same or different from one another.
  • the tapes 1 are preferably constructed in a horizontal layer in the same way as one another.
  • a layer of reinforcing fibers 3 of a hybrid roving 2' was shown in outline.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Die Erfindung betrifft einen Faserverbundwerkstoff, der aus mindestens einem Tape mit einer Breite von 30mm hergestellt ist. Das Tape weist mindestens zwei Hybrid-Rovings auf, wobei jeder Hybrid-Roving mindestens einer Lage aus Verstärkungsfasern und mindestens zwei Lagen aus thermoplastischen Fasern aufweist. Die mindestens zwei Hybrid-Rovings sind quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend im Tape angeordnet. Jeder Hybrid- Roving weist eine Breite quer zur Faserausrichtung von mindestens 15 mm auf und die Verstärkungsfasern des Hybrid-Rovings liegen im Faserverbundwerkstoff verdrehungsfrei vor. Weitere Gegenstände der Erfindung betreffen ein Verfahren zur Herstellung des Faserverbundwerkstoffes und das Tape selber.

Description

Faserverbundwerkstoff aus mindestens einem Tape
Beschreibung:
Die Erfindung betrifft einen Faserverbundwerkstoff hergestellt aus mindestens einem Tape aus mindestens zwei Hybrid-Rovings. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung des Faserverbundwerkstoffes und eines Tapes aus Hybrid-Rovings.
Hybrid-Rovings sind bereits bekannt. In der Schrift EP 3638492 werden bespielweise solche Hybrid-Rovings beschrieben. Faserverbundwerkstoffe, die aus diesen Hybrid-Rovings hergestellt wurden, haben jedoch oftmals mechanische Eigenschaften, die nicht homogen innerhalb des Faserverbundwerkstoffes vorliegen. Weiterhin ist die Herstellung der Faserverbundwerkstoffe aus den bekannten Hybrid-Rovings aufwändig, weil eine hohe Anzahl von Hybrid-Rovings über Spulengatter zur Herstellung abgerollt und verarbeitet werden müssen. In der Schrift DE 10 2014 019 220 D1 wird ein Verfahren zur Herstellung eines badförmigen Halbzeugs beschrieben. Hierbei werden beispielsweise Matrixfaserbündel zusammen mit Verstärkungsfaserbündel aufgespreizt und übereinander abgelegt. Die Breite der Faserbündel soll von 6 mm bis höchstens 16 mm betragen und in einem dreischichtigen Aufbau liegen benachbarte Faserbündel überlappend zueinander vor.
Die Aufgabe der vorliegenden Erfindung war daher die Bereitstellung eines Faserverbundwerkstoffes aus mindestens einem Tape, wobei das mindestens eine Tape aus mindestens zwei Hybrid-Rovings gebildet wird, wodurch der Faserverbundwerkstoff einfacher herstellbar ist und seine mechanischen Eigenschaften homogener sind als im Vergleich zum Stand der Technik.
Gelöst wird die Aufgabe mit einem Faserverbundwerkstoff nach Anspruch 1 .
Bei dem erfindungsgemäßen Faserverbundwerkstoff weist der Faserverbundwerkstoff mindestens ein Tape auf, wobei das Tape aus mindestens zwei Hybrid-Rovings aufgebaut ist. Jeder der Hybrid-Rovings besteht mindestens aus einer Lage aus Verstärkungsfasern, die direkt zwischen mindestens zwei Lagen aus thermoplastischen Fasern angeordnet sind. Die Lage aus Verstärkungsfasern und die Lagen aus thermoplastischen Fasern jedes Hybrid- Rovings haben eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern, die mehr als 15 mm beträgt. Mindestens zwei Hybrid-Rovings sind quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend angeordnet und bilden so das mindestens eine Tape. Das mindestens eine Tape weist eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 30 mm auf. Zumindest die Verstärkungsfasern liegen innerhalb des Faserverbundwerkstoffes verdrehungsfrei im Faserverbundwerkstoff vor.
Unter einem Hybrid-Roving soll ein mindestens dreischichtiger Aufbau aus Faserlagen verstanden werden, wobei die unterschiedlichen Faserlagen innerhalb des Hybrid-Rovings im Wesentlichen senkrecht zur Hauptausbreitungsrichtung der Fasern (Verstärkungsfasern) aufeinander angeordnet vorgesehen sind.
Zur Bildung eines Tapes werden mindestens zwei Hybrid-Rovings verwendet. Die Hybrid-Rovings werden dabei so im Tape angeordnet, dass die Faserlagen der gleichen Art und der gleichen Schicht der verschiedenen Hybrid-Rovings nebeneinander, aneinander anliegend sind (Figur 4). Das bedeutet beispielsweise, dass die erste Lage der thermoplastischen Fasern des ersten Hybrid-Rovings überlappungsfrei nebeneinander, aneinander anliegend zur ersten Lage der thermoplastischen Fasern des zweiten Hybrid-Rovings im Tape liegen. Die zwischen der ersten und der zweiten Lage aus thermoplastischen Fasern liegenden Verstärkungsfasern des ersten Hybrid-Rovings sind ebenso überlappungsfrei nebeneinander, aneinander anliegend zur Lage aus Verstärkungsfasern des zweiten Hybrid-Rovings angeordnet. Entsprechend liegen die zweiten Lagen aus thermoplastischen Fasern des ersten und des zweiten Hybrid-Rovings überlappungsfrei nebeneinander, aneinander an. Hierdurch wird ein Tape gebildet, dass eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 30 mm besitzt, bei dem aber die Faserverteilung sehr gleichmäßig ist. Durch das Fehlen von Überlappungsbereichen gleicher Faserarten werden vorteilhaft örtlich begrenzte Bereiche mit einer höheren Faserkonzentration vermieden, die im späteren Faserverbundwerkstoff die mechanischen Eigenschaften beeinflussen können. Weiterhin ermöglicht die Verwendung von Tapes zur Herstellung des Faserverbundwerkstoffes mit einer Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 30 mm die Herstellung des Faserverbundwerkstoffes aus möglichst wenig Spulen (mit Tapematerial), wodurch die Rüstzeit zur Herstellung verringert wird. Beispielsweise müssen nur 10 Spulen mit Tapematerial zur Herstellung des Faserverbundwerkstoffes bestückt werden, statt 20 und mehr Spulen, obwohl der spätere Faserverbundwerkstoff die gleichen Dimensionen haben soll.
Der Faserverbundwerkstoff kann aus einer Mehrzahl von Tapes gebildet werden, wobei jedes Tape aus einer Mehrzahl von Hybrid-Rovings gebildet werden kann.
Das mindestens eine Tape wird in einer Ausführungsform gebildet aus zwei gespreizten Glasfaser-Rovings (Verstärkungsfasern) und vier gespreizten thermoplastischen Faser-Rovings (die zusammen zwei Hybrid-Rovings bilden), wobei jede der Faserlagen eine Breite gemessen quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von etwa 15 mm hat. Im Tape hat die Lage aus Verstärkungsfasern und die Lagen aus thermoplastischen Fasern dann eine Breite von 30 mm gemessen quer zur Hauptausbreitungsrichtung der Verstärkungsfasern.
Bei der Herstellung des Faserverbundwerkstoffes wird vorzugsweise ein bereits hergestelltes Tape von Rollen oder Spulen abgewickelt und zum Faserverbundwerkstoff verarbeitet. In einer anderen Ausführungsform kann das Tape allerdings auch während der Herstellung des Faserverbundwerkstoffes in einem vorgelagerten Schritt durch die Zusammenfügung von Hybrid-Rovings erst gebildet werden. Beispielweise können eine Mehrzahl von Hybrid-Rovings in einem ersten Verfahrensschritt gespreizt und entsprechend zueinander abgelegt ein Tape bilden, wobei dann das mindestens eine Tape in einem Pultrusionsverfahren zum Faserverbundwerkstoff zusammengefügt wird.
Alle drei Lagen jedes Tapes werden vorzugsweise bei der Herstellung des Faserverbundwerkstoffes oder vor der Herstellung des Faserverbundwerkstoffes (beispielsweise bei der Herstellung des Tapes) mit einem Druck von mindestens 2 bar und Hitze beaufschlagt, sodass die thermoplastischen Fasern zu einem thermoplastischen Material schmelzen, das die Verstärkungsfasern umschließt. Anschließend wird die Lage aus umschlossenen Verstärkungsfasern vorzugsweise unter Druck abgekühlt, bis das thermoplastische Material nicht mehr fließfähig ist. Hierdurch ist es vorteilhaft möglich, das Tape auch ohne Überlappungsbereiche herzustellen und trotzdem ein handhabbares (lagenverschiebungssicheres) Tape zu erhalten.
In einer Ausführungsform werden alle drei Lagen jedes Hybrid-Rovings vorzugsweise bei der Herstellung des Faserverbundwerkstoffes oder vor der Herstellung des Faserverbundwerkstoffes (beispielsweise bei der Herstellung des Tapes) mit einem Druck von mindestens 2 bar und Hitze beaufschlagt, sodass die thermoplastischen Fasern zu einem thermoplastischen Material schmelzen, das die Verstärkungsfasern umschließt. Anschließend wird die Lage aus umschlossenen Verstärkungsfasern vorzugsweise unter Druck abgekühlt, bis das thermoplastische Material nicht mehr fließfähig ist.
In Folgenden werden die Lagen aus Verstärkungsfasern oder aus thermoplastischen Fasern auch als Faserlagen bezeichnet. Weiterhin kann das mindestens eine Tape auch als Tapes bezeichnet werden.
Eine Faser ist ein endloses oder längenbegrenztes Gebilde, dessen Breite im Verhältnis zu seiner Länge vernachlässigbar klein ist. Sowohl Endlosfasern (kontinuierliche Fasern) als auch Stapelfaser oder Hohlfaser sollen als Fasern verstanden werden. Die Fasern können Multifilamentfasern oder Monofilamentfasern sein. Die Faser kann auch als Kern-Mantel-Faser vorliegen. Weiterhin können die Fasern beispielweise in Form eines Gams (beispielweise Multifilamentgarn oder Bändchengarn) vorliegen.
Eine Breite der Faserlagen im Hybrid-Roving quer zur Hauptausbreitungsrichtung (oder auch Faserausrichtung genannt) der Verstärkungsfasern bedeutet, dass die Breite in einer Ebene der Verstärkungsfaserlage aber in einem Winkel von etwa 90° zur Haupterstreckung der Faser gemessen wird. Entsprechend bedeutet eine Breite des Tapes quer zur Hauptausbreitungsrichtung (oder auch Faserausrichtung genannt), dass die Breite in einer Ebene der Verstärkungsfaserlage, aber in einem Winkel von etwa 90° zur Haupterstreckung der Faser, gemessen wird. Das mindestens eine Tape, aufgebaut aus mindestens zwei überlappungsfrei nebeneinander, aneinander anliegenden Hybrid-Rovings, weist erfindungsgemäß eine Breite auf, die bisher für solche Tapes nicht bekannt war. Hierdurch kann der Faserverbundwerkstoff aus einer geringeren Anzahl von Hybrid-Rovings hergestellt werden und erfindungsgemäß liegen zumindest die Verstärkungsfasern innerhalb des Faserverbundwerkstoffes verdrehungsfrei innerhalb des Faserverbundwerkstoffes vor. Vorteilhaft kann so eine einheitliche Faserausrichtung der Verstärkungsfasern innerhalb des Faserverbundwerkstoffes erhalten werden und damit einhergehend homogene hohe mechanische Eigenschaften des Faserverbundwerkstoffes. Beispielweise kann die Herstellung eines Faserverbundwerkstoffs durch Abwicklung und Zusammenfügen (beispielsweise unter Druck und Hitze) von einer Mehrzahl von Hybrid-Rovings erfolgen, wobei bei einer großen Anzahl von Hybrid-Rovings - so wie bisher aus dem Stand der Technik bekannt - die Hybrid-Rovings beim Zusammenfügen zueinander verdreht werden. Je mehr Hybrid-Rovings für die Herstellung des Faserverbundwerkstoffes benötigt werden, umso größer wird die Anzahl der Hybrid-Rovings, die eine Verdrehung aufweisen. Bei der Herstellung des erfindungsgemäßen Faserverbundwerkstoffes kann vorteilhaft eine geringere Anzahl von Hybrid-Rovings verwendet werden als bisher üblich. Durch die Zusammenfassung von mindestens zwei Hybrid-Rovings zu mindestens einem Tape wird zudem vorteilhaft die Verdrehung der Verstärkungsfasern bei der Herstellung des Faserverbundwerkstoffes verhindert. Weiterhin wird der Prozess zur Herstellung eines Faserverbundwerkstoffes wesentlich vereinfacht mit der Verwendung von wenigen, breiten Tapes, da beispielweise die Bestückungszeit und die Rüstzeit im Herstellungsprozess verkürzt werden kann. Wird der Faserverbundwerkstoff beispielsweise durch die Abwicklung und das Zusammenfügen von Tape-Rollen bewirkt, müssen im Herstellungsprozess weniger Rollen zu Beginn bestückt und im späteren Prozess eventuell ausgetauscht werden. Vorteilhafterweise ist so das Herstellungsverfahren des Faserverbundwerkstoffes schneller und erfordert weniger oder keine Unterbrechungen bei der Herstellung. Unter einem Hybrid-Roving soll ein Material verstanden werden, das aus mindestens zwei unterschiedlichen Ausgangsmatenalien gebildet wird, wobei die Ausgangsmatenalien jeweils als Roving im Hybrid-Roving verwendet werden. Unter einem Roving soll ein Bündel, Strang oder ein Multifilamentgarn aus parallel angeordneten Filamenten verstanden werden. Eine Faserlage des Hybrid-Rovings ist aus einem Faser-Roving gebildet.
Ein Tape weist mindestens zwei Hybrid-Rovings auf. Jeder Hybrid-Roving weist gespreizte Faser-Rovings auf, die die Lagen aus thermoplastischen Fasern und die Lage aus Verstärkungsfasern bilden. Der Hybrid-Roving kann auch eine Mehrzahl von thermoplastischen Faserlagen und Lagen aus Verstärkungsfasern aufweisen, die dann im Hybrid-Roving übereinander angeordnet sind (Figur 2) In einem Tape kann die mindestens eine Faserlage aus Verstärkungsfasern aus einer Mehrzahl von Rovings aus Verstärkungsfasern gebildet werden, die nebeneinander (und auch übereinander) liegen. Ebenso kann jede Faserlage aus thermoplastischen Fasern aus einer Mehrzahl von Rovings aus thermoplastischen Fasern gebildet werden. Die Anzahl der verwendeten Rovings in der Faserlage aus Verstärkungsfasern kann gleich oder unterschiedlich sein zu der Anzahl an Rovings für die Faserlage aus thermoplastischen Fasern, je nachdem wie das Tape aufgebaut werden soll.
Vorzugsweise sind alle Hybrid-Rovings zum Aufbau des Tapes gleich aufgebaut und weisen folglich die gleiche Anzahl von thermoplastischen Faserlagen und Faserlagen aus Verstärkungsfasern auf.
In einer Ausführungsform weist das mindestens eine Tape eine Breite gemessen quer zur Hauptausbreitungsrichtung der Verstärkungsfasern auf, die größer ist als seine Dicke, gemessen in Richtung der ersten Faserlage aus thermoplastischen Fasern zur zweiten Faserlage aus thermoplastischen Fasern. Vorzugsweise ist die Breite des Tapes senkrecht zur Faserausrichtung um das 20 bis 25 fache größer als die Dicke des Tapes, gemessen in Richtung der ersten Faserlage aus thermoplastischen Fasern zur zweiten Faserlage aus thermoplastischen Fasern. Vorzugsweise weist auch jeder Hybrid-Roving eine Breite gemessen quer zur Hauptausbreitungsrichtung der Verstärkungsfasern auf, die größer (vorzugsweise um das 20 bis 25 fache) ist als seine Dicke, gemessen in Richtung der ersten Faserlage aus thermoplastischen Fasern zur zweiten Faserlage aus thermoplastischen Fasern.
In einer Ausführungsform schmelzen bei der Herstellung des Faserverbundwerkstoffes die thermoplastischen Fasern in den Hybrid-Rovings - beziehungsweise im mindestens einem Tape - und die Verstärkungsfasern werden vorzugsweise vollständig von dem thermoplastischen Material der thermoplastischen Fasern umgeben, ohne dass vorzugsweise ein Randbereich nur aus thermoplastischem Material vorliegt. Bezüglich des Aufbaus und der Herstellung des Hybrid-Rovings sei auf die Offenbarung zum bändchenförmigen Kompositwerkstoffs der Schrift EP 3638492 verwiesen, dessen Inhalt Teil dieser Offenbarung werden soll.
Im Hybrid-Roving steht die Faserlage aus Verstärkungsfasern bevorzugt in einem direkten Kontakt zu den zwei Faserlagen aus thermoplastischen Fasern. Auch im mindestens einem Tape steht die Faserlage aus Verstärkungsfasern bevorzugt in einem direkten Kontakt zu den zwei Faserlagen aus thermoplastischen Fasern. Die direkte Anordnung der mindestens einen Lage aus Verstärkungsfasern zwischen den zwei Lagen mit thermoplastischen Fasern bedeutet, dass keine weitere Lage aus einem anderen Material mehr zwischen den Verstärkungsfasern und den Lagen aus thermoplastischen Fasern liegt.
Die thermoplastischen Fasern können in den Hybrid-Rovings, beziehungsweise im mindestens einem Tape, als Filamente, Stapelfaser, Multifilamentfasern, Game, Monofilamente oder Bändchengame aus thermoplastischem Material vorliegen. Als thermoplastisches Material für die thermoplastischen Fasern ist jedes Material geeignet, dessen Schmelzbereich oder Schmelzpunkt nicht größer ist als 500 °C, bevorzugter nicht größer als 350 °C.
Vorzugsweise werden als thermoplastische Fasern, Fasern aus aliphatischen und teilaromatischen Polyamiden, Polyoxymethylen (POM), Polyestern, PEEK, PEN, POK, PP, PE oder PVC oder Gemischen hieraus verwendet. Die thermoplastischen Fasern können thixotropische Additive aufweisen.
Vorzugsweise werden als thixotropische Additive pyrogene Kieselsäure, Luvotix HAT, Luvotix AB, Luvotix EAB, Luvotix P 100 -15, BYK-405, BYK-420 oder BYK- 425 verwendet.
In einer Ausführungsform des Hybrid-Rovings (beziehungsweise des mindestens einen Tapes) werden als Verstärkungsfasern Glasfaser (Roving), Carbonfaser (Tow), Basaltfaser, Keramikfaser, Viskosefasern, Metallfasern, Aramidfasern oder Naturfaser oder Mischungen der genannten Fasern für die Faserlage aus Verstärkungsfasern verwendet. Vorzugsweise besteht die mindestens eine Faserlage aus Verstärkungsfasern aus etwa 60 bis 100%, bevorzugter aus 80 bis 95%, aus einer der genannten Fasern oder einer Mischung aus den genannten Fasern.
Besonders bevorzugt werden als Verstärkungsfaser Glasfaser verwendet, wobei die Glasfaser vorzugsweise eine Feinheit von 1200 bis 2400 tex hat.
Vorzugsweise besteht eine Faserlage aus thermoplastischen Fasern aus mindestens einer Schicht, vorzugsweise aus zwei Schichten aus thermoplastischen Multifilamentgarnen, die unidirektional und übereinander angeordnet sind im Hybrid-Roving. Vorzugsweise weist dann auch das mindestens eine Tape zwei Schichten aus thermoplastischen Multifilamentgarnen, die unidirektional und übereinander angeordnet sind, auf.
Bevorzugt besteht die mindestens eine Faserlage aus Verstärkungsfasern im Hybrid-Roving aus einer Schicht unidirektional angeordneter Verstärkungsfasern. Vorzugsweise liegen die Verstärkungsfasern innerhalb der Faserlage aus Verstärkungsfasern im Hybrid-Roving ohne Überlappung nebeneinander und aneinander an.
Bevorzugt beträgt die Breite der mindestens einen Faserlage aus Verstärkungsfasern und der mindestens zwei Faserlagen aus thermoplastischen Fasern im Hybrid-Roving quer zur Hauptausbreitungsrichtung der Verstärkungsfasern mehr als 30 mm, mehr als 50 mm, mehr als 100 mm, mehr als 250 mm, mehr als 500 mm oder mehr als 600 mm.
In einer Ausführungsform weist das mindestens eine Tape mindestens eine Faserlage aus Verstärkungsfasern und mindestens zwei Faserlagen aus thermoplastischen Fasern auf. Bevorzugt beträgt die Breite der mindestens einen Faserlage aus Verstärkungsfasern und der mindestens zwei Faserlagen aus thermoplastischen Fasern im mindestens einem Tape quer zur Hauptausbreitungsrichtung der Verstärkungsfasern mehr als 30 mm, mehr als 50 mm, mehr als 100 mm, mehr als 250 mm, mehr als 500 mm oder mehr als 600 mm.
In einer Ausführungsform wird der Faserverbundwerkstoff gebildet aus Hybrid- Rovings mit einer Mehrzahl von Faserlagen aus Verstärkungsfasern, wobei die Verstärkungsfasern zumindest in Teilbereichen senkrecht zur Hauptausbreitungsrichtung der Verstärkungsfasern versatzlos oder mit Versatz übereinander liegend im Hybrid-Roving angeordnet sind. In einer Ausführungsform wird der Faserverbundwerkstoff gebildet aus mindestens zwei Tapes, wobei die Tapes zumindest in Teilbereichen senkrecht zur Hauptausbreitungsrichtung der Verstärkungsfasern versatzlos oder mit Versatz übereinander liegend im Faserverbundwerkstoff angeordnet sind.
In einer Ausführungsform ist das Flächengewicht innerhalb der Faserlage aus Verstärkungsfasern und/oder innerhalb der Faserlagen aus thermoplastischen Fasern in jedem der mindestens zwei Hybrid-Rovings und/oder im mindestens einem Tape konstant. Konstant bedeutet hierbei, dass das Flächengewicht innerhalb der Faserlage um weniger als 5 % variiert.
Vorzugsweise weist jeder der mindestens zwei Hybrid-Rovings und/oder das mindestens eine Tape ein temporäres Bindemittel auf. Als temporäres Bindemittel kommen beispielsweise thermoplastische Dispersionen, wie Polypropylen in Wasser, in Betracht, wobei der Anteil an Bindemittel zum Faseranteil der Hybrid- Rovings und/oder des mindestens einen Tapes im Bereich von 0,3 bis 10 Gew%, vorzugsweise bei 3 Gew% liegt, bezogen auf den Gesamtfaseranteil des Hybrid- Rovings, beziehungsweise des mindestens einen Tapes. Das Bindemittel ist ein temporäres Bindemittel, sofern es bei der Herstellung oder bereits vor der Herstellung des Faserverbundwerkstoffes vom Hybrid-Roving und/oder dem mindestens einem Tape entfernt oder später in einem Matrixmaterial des Faserverbundwerkstoffes gelöst wird. Beispielweise kann das Bindemittel vor der Zusammenfügung der Hybrid-Rovings zu dem mindestens einem Tape mittels Hitze verdampft werden. In einer anderen Ausführungsform wird das Bindemittel erst bei der Herstellung des Faserverbundwerkstoffes mittels Hitze verdampft. Durch das temporäre Bindemittel kann vorteilhaft eine temporäre Bindung der verschiedenen Faserlagen innerhalb eines jeden Hybrid-Rovings verstärkt werden, sodass die Hybrid-Rovings besser handhabbar werden. Weiterhin wird durch das temporäre Bindemittel auch eine temporäre Bindung der verschiedenen Faserlagen der verschiedenen Hybrid-Rovings im mindestens einem Tape verstärkt. Hierdurch ist die Bildung des mindestens einen Tapes, ohne sich überlappende Faserlagen unterschiedlicher Hybrid-Rovings, noch besser möglich.
In einer Ausführungsform wirkt das temporäre Bindemittel als Haftverstärker im späteren Faserverbundwerkstoff. Vorzugsweise bindet das Bindemittel im Hybrid- Roving die verschiedenen Faserlagen aneinander, sodass die Handhabbarkeit des Hybrid-Rovings verbesset wird und sorgt dann im Faserverbundwerkstoff für eine bessere Haftung zwischen dem Material der Hybrid-Rovings und dem zusätzlichen Matrixmaterial, das zur Herstellung des Faserverbundwerkstoffes zusätzlich zu den Hybrid-Rovings verwendet wird. Vorzugsweise bindet das Bindemittel im mindestens einem Tape die verschiedenen Faserlagen aneinander, sodass die Handhabbarkeit des mindestens einen Tapes verbessert wird und sorgt dann im Faserverbundwerkstoff für eine bessere Haftung zwischen dem Material des mindestens einem Tapes und dem zusätzlichen Matrixmaterial, das zur Herstellung des Faserverbundwerkstoffes zusätzlich verwendet wird.
Vorzugsweise ist das temporäre Bindemittel ein Haftklebestoff. Unter einem Haftklebstoff werden in der vorliegenden Anmeldung Materialien verstanden, die eine hohe Anfassklebkraft (dem Fachmann auch unter der Bezeichnung „Tack“ bekannt) aufweisen, die also in sehr kurzer Zeit Klebeverbindungen mit Gegenständen eingehen, die das betreffende Material berühren. Mögliche Haftklebstoffe sind Polymere oder Copolymere auf Basis von Acrylaten, namentlich auf Basis von 2-Ethylhexlacrylat, Isoamylacrylat, Hydroxymethacrylat, Isooctylacrylat, Acrylsäure, Methylmethacrylat oder Butylacrylat. Die als Haftklebstoff verwendeten Polymere oder Copolymere können darüber hinaus auch Styrol, Naturkautschuk, Polyterpenharz, Polyisopren Styrol-Butadien- Kautschuk, Styrol-Butadien-Kautschuk, Isobuten-Isoprenkautschuk, Acrylnitril- Butadienkautschuk, Chloroprenkautschuk, Polyvinylacetat oder Polydiphenyldisiloxan enthalten. In einer Ausführungsform enthält der Haftklebstoff quellbare Acrylatkügelchen. In einer Ausführungsform enthält der Haftklebstoff ein Lösungs- oder Quellmittel, wie Wasser, einen Alkohol wie Ethanol, Methanol, 1- Propanol oder 2-Propanol, ein Keton wie Aceton oder Methylethylketon oder ein Alkan wie n-Hexan, n-Heptan oder Petrolether. In einer Ausführungsform behält die als Haftklebstoff zugesetzte Komponente auch nach einer Wärmebehandlung des Hybrid-Rovings bei beispielsweise 180°C ihre Klebkraft. In einer Ausführungsform ist der Haftklebstoff so beschaffen, dass er seine klebrige Eigenschaft im Laufe der Zeit, zum Beispiel durch die Einwirkung von Licht, Luftsauerstoff oder durch das Verdampfen eines Lösungs- oder Quellmittels wieder verliert.
In einer Ausführungsform werden Menge und Art des Haftklebstoffs so gewählt, dass sich die dadurch entstehende Klebeverbindung durch Einwirkung einer Kraft von circa 0,01 mN/tex wieder lösen lässt. Circa bedeutet in diesem Zusammenhang eine Abweichung nach oben und unten von je 50%.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft den Faserverbundwerkstoff. Ausführungen zu den Hybrid-Rovings und dem mindestens einem Tape gelten (soweit passend) für den Faserverbundwerkstoff, der aus mindestens zwei Hybrid-Rovings - in mindestens einem Tape - hergestellt werden soll. Die Lage aus Verstärkungsfasern unterschiedlicher Hybrid-Rovings sind innerhalb des mindestens einen Tapes quer zur Hauptausbreitungsrichtung der Verstärkungsfasern verklebungsfrei und überlappungsfrei nebeneinander, aneinander anliegend. Vorzugsweise sind auch die Lagen aus thermoplastischen Fasern unterschiedlicher Hybrid-Rovinge innerhalb des mindestens einen Tapes quer zur Hauptausbreitungsrichtung der Verstärkungsfasern verklebungsfrei und überlappungsfrei nebeneinander, aneinander anliegend.
Vorzugsweise wird der Faserverbundwerkstoff aus weniger als 400, vorzugsweise weniger als 300, vorzugsweise weniger als 250, vorzugsweise weniger als 100, vorzugsweise weniger oder gleich 10 Hybrid-Rovings gebildet. Vorzugsweise wird der Faserverbundwerkstoff aus weniger als 400, vorzugsweise weniger als 300, vorzugsweise weniger als 200, vorzugsweise weniger als 250, vorzugsweise weniger als 150, vorzugsweise weniger als 125, vorzugsweise weniger als 100, vorzugsweise weniger als 50, vorzugsweise weniger oder gleich 10, oder weniger oder gleich 5 Tapes gebildet. Vorzugsweise weist jedes dieser Tapes drei oder mehr Hybrid-Rovings auf.
Vorzugsweise wird der Faserverbundwerkstoff ausschließlich aus einer Art Hybrid- Roving hergestellt, sodass alle Hybrid-Rovings einen gleichen Aufbau aufweisen und das gleiche Material beinhalten.
Vorzugsweise wird der Faserverbundwerkstoff ausschließlich aus einer Art Tape hergestellt, sodass alle Tapes einen gleichen Aufbau aufweisen und das gleiche Material beinhalten.
Vorzugsweise weist der Faserverbundwerkstoff in Dicken- und/oder Breitenrichtung eine homogene Faserverteilung auf. Eine homogene Faserverteilung bedeutet hierbei, dass die Faserverteilung der Verstärkungsfasern innerhalb des Faserverbundwerkstoffes zueinander um weniger als 5% variiert. Vorteilhaft wird hierdurch ein Faserverbundwerkstoff erhalten, der keine verstärkungsfaserfreien Bereiche nur aus Matrixmaterial aufweist. Die mechanischen Eigenschaften des Faserverbundwerkstoffes werden hierdurch vorteilhaft besonders gut vorhersagbar.
In einer Ausführungsform ist der Faserverbundwerkstoff ein Pultrudat. Unter einem Pultrudat soll ein Faserverbundwerkstoff verstanden werden, der aus mindestens einem Tape in einem Pultrusionsverfahren gebildet wurde, wobei das mindestens eine Tape aus mindestens zwei Hybrid-Rovings gebildet ist. In einer Ausführungsform werden die Hybrid-Rovings über Faserführungen aus einem mehrstöckigen Spulenlager geführt und gespreizt und zu mindestens einem Tape zusammengefügt, wobei die Faserlagen der Hybrid-Rovings quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend im Tape sind. Das mindesten eine Tape wird in ein heißes Pultrusionswerkzeug geführt. In diesem Werkzeug schmelzen die thermoplastischen Fasern auf und bilden eine Matrix. Die zusätzliche Zugabe von Matrixmaterial zur Herstellung des Pultrudats ist bei der Verwendung der Hybrid-Rovings nicht notwendig. Die Fasern können mehrere Vorformstationen durchlaufen, sodass sie an die gewünschte Pultrudatform herangeführt werden.
Vorzugsweise hat das Pultrudat eine Stabform, wobei die Stabform massiv ist und einen Durchmesser von mindestens 2 mm hat.
In einem Ausführungsbeispiel kann die Oberfläche des Pultrudats eine Struktur mit vorgegebener Dicke aufweisen. Beispielweise kann das Pultrudat eine Oberfläche wie beim Stahlarmierungsstab im Betonbau aufweisen.
Vorzugsweise hat das Pultrudat eine Flachprofilform (rechteckig), wobei die Form massiv ist und eine Dicke von mindestens 0,2 mm hat und eine Breite von mindestens 6 mm.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung des Faserverbundwerkstoffes - wie oben beschrieben. Insofern gelten die oben gemachten Ausführungen auch für das Herstellungsverfahren.
Im Herstellungsverfahren werden 10, nicht mehr als 10 oder mehr als 10 Hybrid- Roving^) abgewickelt und zu mindestens einem Tape zusammengefügt, wobei das mindestens eine Tape zum Faserverbundwerkstoff verarbeitet wird. Jeder der Hybrid-Rovings weist eine Breite von mindestens 15 mm quer zur Faserausrichtung des Hybrid-Rovings auf und zumindest die Verstärkungsfasern sind zueinander verdrehungsfrei zum Faserverbundwerkstoff zusammengefügt. Innerhalb des mindestens einem Tape liegen die Hybrid-Rovings quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander an.
Im Herstellungsverfahren können auch 10, nicht mehr als 10 oder mehr als 10 Tapes abgewickelt und zum Faserverbundwerkstoff verarbeitet werden. Im Herstellungsverfahren können auch 5, nicht mehr als 5 oder mehr als 5 Tapes abgewickelt und zum Faserverbundwerkstoff verarbeitet werden, wobei jedes Tape aus mindestens zwei Hybrid-Rovings gebildet wurde.
Bevorzugt werden im Herstellungsverfahren des Faserverbundwerkstoffes nicht mehr als 300 Hybrid-Rovings zur Herstellung verwendet, wobei jeder Hybrid- Roving eine Breite quer zur Faserausrichtung von mehr als 15 mm hat und/oder der Faserverbundwerkstoff eine Breite quer zur Faserausrichtung von mehr als 30 mm, vorzugsweise mehr als 50 mm, hat.
Durch die Verwendung mindestens eines Tapes, indem mindestens zwei Hybrid- Rovings zusammengefügt sind, wird die Gefahr der Faserverdrehung bei der Herstellung des Faserverbundwerkstoffes deutlich geringer. Dies erhöht die Gleichmäßigkeit des Faserverbundwerkstoffes. Darüber hinaus reduziert sich die Reibung bzw. die Druckschwankungen im Konsolidierungswerkzeug, da nur relativ wenige Tapes zur Herstellung verwendet werden müssen. Wie bereits oben beschrieben, können dadurch vorteilhaft die mechanischen Eigenschaften des Faserverbundwerkstoffes verbessert werden.
In einer Ausführungsform werden die Hybrid-Rovings zunächst in einem separaten Arbeitsschritt zu einem Tape zusammengefasst. Die Rollen mit dem Tape werden dann aufgewickelt und können gelagert werden. Zur Herstellung des Faserverbundwerkstoffes werden dann die Rollen (oder Spulen) mit dem Tape abgerollt und zum Faserverbundwerkstoff verarbeitet. Das mindestens eine Tape kann jedoch auch als ein temporäres Zwischenprodukt nach dem Abrollen der Hybrid-Rovings und vor der Herstellung des Faserverbundwerkstoffes hergestellt werden, ohne dass das mindestens eine Tape aufgewickelt (gelagert und später verarbeitet) wird.
Vorzugsweise werden die Hybrid-Rovings so zum mindestens einem Tape zusammengefügt, dass auch die thermoplastischen Fasern der Hybrid-Rovings verdrehungsfrei vorliegen. Spätestens jedoch beim Herstellungsprozess des Faserverbundwerkstoffes werden die thermoplastischen Fasern vollständig aufgeschmolzen, sodass im Faserverbundwerkstoff eine Faserorientierung der thermoplastischen Fasern nicht mehr festgestellt werden kann. Hierbei umschließt das thermoplastische Fasermaterial die Verstärkungsfasern und bildet die Matrix des Faserverbundwerkstoffs, beziehungsweise geht eine Verbindung mit einem zugeführten Matrixmaterial ein.
In einer Ausführungsform wird der Faserverbundwerkstoff aus einer Mehrzahl von Tapes hergestellt, wobei alle Tapes einen gleichen Aufbau (gleiches Material, gleiche Faseranzahl, gleiche Lagenanzahl) besitzen
In einer anderen Ausführungsform wird der Faserverbundwerkstoff aus einer Mehrzahl von Tapes hergestellt, wobei mindestens zwei Arten von Tapes verwendet werden. Die mindestens zwei Arten von Tapes unterscheiden sich voneinander in der Art des verwendeten Materials für die Fasern, der Faseranzahl innerhalb der verschiedenen Lagen, der Faserspreizung innerhalb einer Lage und/oder der Anzahl der Faserschichten innerhalb des Tapes. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Tape zur Herstellung eines Faserverbundwerkstoffes, wie oben beschrieben, wobei das Tape eine Breite quer zur Hauptausrichtung der Verstärkungsfasern von mindestens 30 mm hat. Das Tape wird gebildet aus mindestens der zwei Hybrid-Rovings, die eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 15 mm haben, und deren Verstärkungsfasern innerhalb des Tapes verklebungsfrei und quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend sind. Für das Tape sollen alle obigen Ausführungen, die zum Faserverbundwerkstoff und zum Verfahren zu dessen Herstellung getätigt wurden, gleichermaßen gelten. Ebenso sollen alle nachfolgenden Erklärungen zum Tape sowohl für das Verfahren zur Herstellung des Faserverbundwerkstoffes als auch für den Faserverbundwerkstoff selber gelten.
Das Tape weist (mindestens) eine Faserlage aus Verstärkungsfasern auf, die aus den Faserlagen aus Verstärkungsfasern mindestens zwei Hybrid-Rovings gebildet ist, wobei die Faserlagen aus Verstärkungsfasern unterschiedlicher Hybrid- Rovings innerhalb des Tapes überlappungsfrei nebeneinander, aneinander anliegend vorgesehen sind (innerhalb der Lage aus Verstärkungsfasern des Tapes). Weiterhin werden die Faserlagen aus thermoplastischen Fasermaterial des Tapes jeweils aus einer Mehrzahl von Faserlagen aus thermoplastischen Fasern unterschiedlicher Hybrid-Rovings gebildet. Jede Lage aus thermoplastischen Fasermaterial im Tape weist dabei mindestens zwei Lagen aus thermoplastischen Fasermaterial unterschiedlicher Hybrid-Rovings auf, die innerhalb der thermoplastischen Faserlage des Tapes überlappungsfrei, nebeneinander, aneinander anliegend vorgesehen sind. Das Tape kann auch aus mehr als zwei Hybrid-Rovings gebildet werden, wobei dieses Tape dann entsprechend dem grade beschriebenen Tape (nur mit mehr überlappungsfrei, nebeneinander, aneinander anliegenden Faserlagen) aufgebaut ist. Das mindestens eine Tape kann beispielsweise aus mindestens 3, aus mindestens 5 oder aus mindestens 10 Hybrid-Rovings gebildet werden, wobei jede Lage aus Verstärkungsfasern der Hybrid-Rovings eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 15 mm hat und die Verstärkungsfasern unterschiedlicher Hybrid-Rovings innerhalb des Tapes quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend sind (und so die Lage aus Verstärkungsfasern des Tapes bilden).
Innerhalb eines Tapes kann jeder Hybrid-Roving auch eine erste Faserlage aus thermoplastischen Fasern aufweisen, die aus einer anderen Anzahl von Fasern und/oder einer anderen Materialart der Fasern gebildet wurde, wie eine zweite Faserlage aus thermoplastischen Fasern des gleichen Hybrid-Rovings.
Die Erfindung wird nachfolgend anhand von Figuren näher beschrieben, wobei die Figuren lediglich Ausführungsbeispiele der Erfindung darstellen und daher nicht einschränkend sind.
Figur 1 zeigt schematisch eine mögliche Herstellungsweise eines Hybrid- Rovings
Figure 2 zeigt schematisch eine Ausführungsform eines Hybrid-Rovings
Figur 3 zeigt schematisch den Aufbau eines Tapes.
Figur 4 zeigt schematisch die Anordnung einer Mehrzahl von Tapes zur Herstellung des Verbundwerkstoffs Figur 5 zeigt schematisch den Aufbau mit zwei Tapes die zum
Faserverbundwerkstoff verarbeitet werden können
In Figur 1 ist schematisch eine Möglichkeit zur Herstellung eines Hybrid-Rovings dargestellt. Gemäß diesem Beispiel wird ein Hybrid-Roving hergestellt aus drei Materialrollen als Ausgangsmaterial. Die äußeren Materialbahnen sind gespreizte thermoplastische Fasern, mittig wird eine Bahn gespreizter Verstärkungsfasern (beispielsweise Glasfasern) zugeführt. Die Verstärkungsfasern liegen dann zwischen den Bahnen aus thermoplastischen Fasern, sodass die thermoplastischen Fasern eine Oberseite und eine Unterseite der Verstärkungsfasern bedecken. In einer Ausführungsform kann vor der Zusammenführung aller Faserlagen zu dem Hybrid-Roving ein Kleber und/oder ein Bindemittel auf eine der Faserlagen oder auf einer Mehrzahl der Faserlagen aufgetragen werden. In einer anderen Ausführungsform zur Herstellung des Hybrid-Rovings werden zunächst alle Lagen thermoplastischer Fasern und alle Lagen Verstärkungsfasern zu einem Hybrid-Roving zusammengefasst und anschließend wird auf dem Hybrid-Roving ein Kleber und/oder ein Bindemittel aufgetragen. Vorzugsweise erfolgt der Auftrag des Klebemittels und/oder des Bindemittels über einen Walzenauftrag, wobei eine oder mehrere Faserbahnen oder der Hybrid-Roving über eine mit dem entsprechenden Klebe- und/oder Bindemittel versehene Walze (Rolle) geführt wird. Die Faserlagen werden übereinander geschichtet und dann vorzugsweise unter Druck zusammengefügt und getrocknet. Hierdurch entsteht eine Fixierung der Faserlagen untereinander, sodass die einzelnen Faserlagen anschließend nicht ohne entsprechenden Kraftaufwand wieder voneinander gelöst werden können. Vorzugsweise ist die Fixierung der verschiedenen Faserlagen innerhalb des Hybrid-Rovings so stark, dass der Hybrid-Roving nach der Fixierung problemlos aufgewickelt und später wieder abgewickelt werden kann, ohne dass es zu einer Trennung der verschiedenen Faserlagen kommt. Weiterhin ist die Fixierung so stark, dass auch bei der Herstellung des Faserverbundwerkstoffes aus dem Hybrid-Roving (in Form mindestens eines Tapes), dieser seinen Faserlagenaufbau beibehält.
In Figur 2 ist schematisch ein Ausführungsbeispiel eines Hybrid-Rovings dargestellt. Im Beispiel der Figur 2 besteht der Hybrid-Roving aus einem gespreizten Glasfaser-Roving, der zwischen zwei gespreizten Rovings aus thermoplastischen Fasern angeordnet ist. Vorzugsweise wird der Glasfaser- Roving so gespreizt, dass er eine Dicke (gemessen in Richtung von einer Faserlage aus thermoplastischen Fasern zur weiteren Faserlage aus thermoplastischen Fasern), aufweist, die größer ist, als die einzelnen Dicken der Faserlagen aus thermoplastischen Fasern. Der Hybrid-Roving weist vorliegend drei Faserlagen auf, wobei zwei Faserlagen aus dem gleichen Material bestehen (thermoplastische Fasern) und eine Faserlage aus Verstärkungsfasern besteht. Der Hybrid-Roving weist vorzugsweise eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mehr als 15 mm auf und gleichzeitig auch eine Dicke (gemessen in Richtung von einer Faserlage aus thermoplastischen Fasern zur weiteren Faserlage aus thermoplastischen Fasern), die zwischen 0,2 bis 0,4 mm beträgt. Der Hybrid-Roving weist folglich bevorzugt eine Breite auf, die wesentlich größer ist als seine Dicke. Vorzugsweise weist der Hybrid-Roving eine Breite auf, die um das 20 bis 25 fache größer ist als seine Dicke.
In Figur 3 ist schematisch ein Tape 1 dargestellt. Das Tape 1 wird im Ausführungsbeispiel der Figur 3 gebildet aus zwei Hybrid-Rovings 2, 2', wobei die Hybrid-Rovings 2,2'überlappungsfrei nebeneinander, aneinander anliegend innerhalb des Tapes 1 sind. Vorzugsweise liegt innerhalb des Tapes 1 die erste Lage aus thermoplastischen Fasern des ersten und des zweite Hybrid-Rovings überlappungsfrei nebeneinander, aneinander an, die Lagen aus Verstärkungsfasern 3 des ersten Hybrid-Rovings und des zweiten Hybrid-Rovings liegen innerhalb des Tapes überlappungsfrei nebeneinander, aneinander an und die zweiten Lagen aus thermoplastischen Fasermaterial des ersten und des zweiten Hybrid-Rovings liegen überlappungsfrei nebeneinander, aneinander an. In der Figur 3 ist nur skizzenhaft die Lage von Verstärkungsfasern 3 eines der Hybrid-Rovings 2 angedeutet worden.
In Figur 4 ist erneut schematisch der Aufbau des Tapes aus mindestens zwei Hybrid-Rovings 2,2'. Ein erster Hybrid-Roving 2 weist einen gleichen Aufbau auf wie ein zweiter Hybrid-Roving 2'. Die Hybrid-Rovings 2, 2' werden zusammengelegt und bilden das Tape 1. Wie auch in der Figur ersichtlich, liegen dabei gleiche Faserlagen der unterschiedlichen Hybrid-Rovings überlappungsfrei nebeneinander, aneinander an innerhalb des Tapes 1. Die unterschiedlichen Hybrid-Rovings 2,2'können beispielsweise ein Bindemittel oder ein Haftkleber aufweisen, durch den der Zusammenhalt der unterschiedlichen Faserlagen jedes Hybrid-Rovings 2, 2'auch ohne Überlappung der Faserlagen ermöglicht wird. Additional oder alternativ können die Faserlagen der Hybrid-Rovings 2, 2' auch durch Druck und Wärme so verbunden werden, dass sie ein Tape 1 ohne Überlappungsbereiche bilden.
In Figur 5 ist ein Aufbau mit zwei Tapes 1 dargestellt, die zum Faserverbundwerkstoff verarbeitet werden können. Jedes Tape 1 weist zwei Hybrid-Rovings 2,2' oder 2”, 2'” auf. Die Tapes 1 können dabei, wie im Beispiel der Figur 4, mit einem Versatz zueinander übereinander angeordnet werden, wobei innerhalb einer horizontalen Lage aus Tapes 1 , diese versatzlos zueinander liegen. Vorzugsweise liegen die Tapes 1 in einer horizontalen Lage überlappungsfrei nebeneinander, aneinander an. Die Tapes 1 unterschiedlicher (horizontaler) Lagen können gleich oder unterschiedlich zueinander aufgebaut sein. Vorzugsweise sind die Tapes 1 einer horizontalen Lage gleich zueinander aufgebaut. Eine Lage aus Verstärkungsfasern 3 eines Hybrid-Rovings 2'wurden andeutungsweise dargestellt.

Claims

Ansprüche:
1. Faserverbundwerkstoff, enthaltend mindestens zwei Hybrid-Rovings (2,2'), wobei jeder der mindestens zwei Hybrid-Rovings (2,2') aufgebaut ist aus mindestens einer Lage aus Verstärkungsfasern (3) und mindestens zwei Lagen aus thermoplastischen Fasern, wobei die mindestens eine Lage aus Verstärkungsfasern (3) zwischen den mindestens zwei Lagen aus thermoplastischen Fasern im Hybrid-Roving (2, 2') angeordnet ist und zumindest die Verstärkungsfasern innerhalb des Faserverbundwerkstoffes verdrehungsfrei im Faserverbundwerkstoff vorliegen, wobei die Lage aus Verstärkungsfasern (3) und die Lagen aus thermoplastischen Fasern jedes Hybrid-Rovings (2,2') eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern aufweisen, die mehr als 15 mm beträgt, dadurch gekennzeichnet, dass die mindestens zwei Hybrid-Rovings (2,2') quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend in mindestens einem Tape (1 ) innerhalb des Faserverbundwerkstoffes vorgesehen sind, wobei das mindestens eine Tape (1 ) eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 30 mm hat.
2. Faserverbundwerkstoff nach Anspruch 1 , wobei die Breite des mindestens einen Tapes (1 ) quer zur Hauptausbreitungsrichtung der Verstärkungsfasern mehr als 50 mm, mehr als 100 mm, mehr als 250 mm, mehr als 500 mm oder mehr als 600 mm beträgt. Faserverbundwerkstoff nach mindestens einem der vorherigen Ansprüche, wobei innerhalb der Faserlage aus Verstärkungsfasern (3) im Hybrid- Roving und/oder im Tape (1 ) die Verstärkungsfasern nebeneinander und aneinander anliegend ohne Überlappung vorgesehen sind. Faserverbundwerkstoff nach mindestens einem der vorherigen Ansprüche, wobei bei einer Mehrzahl von Faserlagen aus Verstärkungsfasern (3) innerhalb eines Hybrid-Rovings (2, 2'), die unterschiedlichen Faserlagen aus Verstärkungsfasern (3) zumindest in Teilbereichen senkrecht zur Hauptausbreitungsrichtung der Verstärkungsfasern versatzlos oder mit Versatz übereinander liegend im Hybrid-Roving (2,2') angeordnet sind. Faserverbundwerkstoff nach mindestens einem der vorhergehenden Ansprüche, wobei der Faserverbundwerkstoff mindestens zwei Tapes (1 ) aufweist, die innerhalb des Faserverbundwerkstoffes senkrecht zur Hauptausbreitungsrichtung der Verstärkungsfasern versatzlos oder mit Versatz übereinander liegend im Faserverbundwerkstoff angeordnet sind. Faserverbundwerkstoff nach mindestens einem der vorherigen Ansprüche, wobei in jedem Hybrid-Roving (2,2') und/oder im mindestens einem Tape (1 ) innerhalb der Faserlage aus Verstärkungsfasern (3) das Flächengewicht konstant ist und/oder wobei innerhalb der Lagen aus thermoplastischen Fasern das Flächengewicht konstant ist. Faserverbundwerkstoff nach mindestens einem der vorherigen Ansprüche, wobei die mindestens zwei Hybrid-Rovings ein temporäres Bindemittel aufweisen 8. Faserverbundwerkstoff nach mindestens einem der vorherigen Ansprüche, wobei der Faserverbundwerkstoff mehr als 10 Hybrid-Rovings (2,2') aufweist, vorzugsweise jedoch weniger als 100 Hybrid-Rovings (2,2').
9. Faserverbundwerkstoff nach mindestens einem der vorherigen Ansprüche, wobei der Faserverbundwerkstoff in Dicken- und/oder Breiterichtung eine homogene Faserverteilung aufweist.
10. Faserverbundwerkstoff nach mindestens einem der vorhergehenden Ansprüche, wobei der Faserverbundwerkstoff ein Pultrudat ist.
11 . Faserverbundwerkstoff nach Anspruch 10, wobei das Pultrudat eine Stabform aufweist und einen Durchmesser von mindestens 2 mm hat.
12. Faserverbundwerkstoff nach mindestens einem der vorhergehenden Ansprüche, wobei die Lagen aus Verstärkungsfasern (3) unterschiedlicher Hybrid-Rovinge (2, 2') innerhalb des mindestens einen Tapes (1 ) quer zur Hauptausbreitungsrichtung der Verstärkungsfasern verklebungsfrei und überlappungsfrei nebeneinander, aneinander anliegend sind.
13. Verfahren zur Herstellung des Faserverbundwerkstoffes nach Anspruch 1 , wobei mindestens zwei, vorzugsweise mehr als 10, Hybrid-Rovings (2,2') abgewickelt und zu einem Faserverbundwerkstoff zusammengefügt werden, wobei jeder Hybrid-Roving (2,2') eine Breite von mindestens 15 mm quer zur Hauptausbreitungsrichtung der Verstärkungsfasern besitzt, wobei die Hybrid-Rovings (2,2') quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend mindestens ein Tape (1 ) bilden, das eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 30 mm besitzt und zumindest die Verstärkungsfasern verdrehungsfrei zum Faserverbundwerkstoff zusammengefügt werden. Verfahren zur Herstellung des Faserverbundwerkstoffes nach Anspruch 13, wobei nicht mehr als 400 Hybrid-Rovings (2,2') zur Herstellung verwendet werden, wobei der Faserverbundwerkstoff eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mehr als 30 mm hat. Tape (1 ) zur Herstellung eines Faserverbundwerkstoffes nach Anspruch 1 , wobei das Tape (1 ) gebildet wird aus mindestens zwei Hybrid-Rovings (2,2'), die eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 15 mm haben und deren Verstärkungsfasern innerhalb des Tapes (1 ) quer zur Hauptausbreitungsrichtung der Verstärkungsfasern überlappungsfrei nebeneinander, aneinander anliegend sind. Tape (1 ) nach Anspruch 15, wobei das Tape (1 ) aus mindestens 3, aus mindestens 5 oder aus mindestens 10 Hybrid-Rovings (2,2') gebildet wird, wobei jede Lage aus Verstärkungsfasern (3) der Hybrid-Rovings (2,2') eine Breite quer zur Hauptausbreitungsrichtung der Verstärkungsfasern von mindestens 15 mm hat und die Verstärkungsfasern unterschiedlicher Hybrid-Rovings (2,2') innerhalb des Tapes (1 ) quer zur Hauptausbreitungsrichtung der Verstärkungsfasern verklebungsfrei und überlappungsfrei nebeneinander, aneinander anliegend sind.
PCT/EP2023/055896 2022-03-10 2023-03-08 Faserverbundwerkstoff aus mindestens einem tape WO2023170150A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22161402.7 2022-03-10
EP22161402 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023170150A1 true WO2023170150A1 (de) 2023-09-14

Family

ID=80738743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/055896 WO2023170150A1 (de) 2022-03-10 2023-03-08 Faserverbundwerkstoff aus mindestens einem tape

Country Status (1)

Country Link
WO (1) WO2023170150A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010592A1 (de) * 2011-02-08 2012-08-09 Daimler Ag Verfahren zum Herstellen eines Hybridrovings
DE102014019220A1 (de) 2014-12-19 2016-06-23 Daimler Ag Verfahren und Vorrichtung zur Herstellung eines bandförmigen Halbzeugs
EP3638492A1 (de) 2017-06-14 2020-04-22 PHP Fibers GmbH Bändchenförmiger kompositwerkstoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010592A1 (de) * 2011-02-08 2012-08-09 Daimler Ag Verfahren zum Herstellen eines Hybridrovings
DE102014019220A1 (de) 2014-12-19 2016-06-23 Daimler Ag Verfahren und Vorrichtung zur Herstellung eines bandförmigen Halbzeugs
EP3638492A1 (de) 2017-06-14 2020-04-22 PHP Fibers GmbH Bändchenförmiger kompositwerkstoff

Similar Documents

Publication Publication Date Title
DE3851023T2 (de) Kohlenstoffaserverstärkte Harz-Pultrusionsgegenstände und Verfahren zu ihrer Herstellung.
DE2728351C2 (de) Verstärkte Platten oder aus verstärkten Platten hergestellte Gegenstände sowie Verfahren zu deren Herstellung
EP2138615B1 (de) Verfahren zum Herstellen eines multiaxialen Fadengeleges, unidirektionale Faserlagen und Verfahren zu ihrer Herstellung, multiaxiales Fadengelege und Kompositteil mit einer Matrix
AT511349B1 (de) Faserhalbzeug, faser-verbundwerkstoff und verfahren zu deren herstellung
EP2141010B1 (de) Kaskadenführung
DE102011002840A1 (de) Faserverstärktes Verbundbauteil und Verfahren zum Herstellen eines faserverstärkten Verbundbauteils
DD299327A5 (de) Bauplatten aus zementmaterial, verstaerkt durch plastsieb und glasfasern
DE102019107555A1 (de) Verfahren und Vorrichtung zur Herstellung und Ablage eines textilen Bewehrungsstrangs für ein Betonteil
DE69928741T2 (de) Armierungsgewebe für Bauwerke
DE102019112555B3 (de) Verfahren zur Herstellung eines Hybridfaserbündels, Hybridfaserbündel und Vorrichtung zur Herstellung eines Hybridfaserbündels
EP3258029B1 (de) Textiles betonbewehrungsgitterelement und ein verfahren zur herstellung des betonbewehrungsgitterelements
DE1560899C3 (de) Imprägnierter, unverfestigter Schichtstoff in Bahnen- oder Bogenform
DE102008057463B4 (de) Feder aus einem Faserverbundwerkstoff sowie Verfahren und Vorrichtung zur Herstellung derselben
DE3132697A1 (de) Verfahren und vorrichtung zur herstellung eines geleges
DE69827697T2 (de) Gewebe-Prepreg und Nassverfahren zur Herstellung desselben
DE4229546A1 (de) Verfahren und Garn zur Herstellung eines Verbundwerkstoffes
DE60300395T2 (de) Faserstruktur zur herstellung von verbundmaterialien
WO2023170150A1 (de) Faserverbundwerkstoff aus mindestens einem tape
EP3504039B1 (de) Verfahren zur kontinuierlichen herstellung von faserverstärkten schaumstoffen
DE102014105795B4 (de) Textilbetonteil und Verfahren zu dessen Herstellung
DE102020104993B4 (de) Halbzeug für ein Schleifmittel, Schleifmittel und Verfahren zur Herstellung derselben
DE60103369T2 (de) Schlauch- und rohrverstärkung
DE2545910C2 (de) Abdichtungsmittel
DE3227401C2 (de) Verfahren zum Spinnen eines Garnes aus zwei unterschiedlichen Stapelfaser-Komponenten
DE1779842B1 (de) Verfahren zum Herstellen einer vulkanisierbaren oder haertbaren,Glasfasern enthaltenden elastomeren Masse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23709215

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023709215

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023709215

Country of ref document: EP

Effective date: 20241010