Nothing Special   »   [go: up one dir, main page]

WO2023169047A1 - 便于集成的新能源汽车热管理系统 - Google Patents

便于集成的新能源汽车热管理系统 Download PDF

Info

Publication number
WO2023169047A1
WO2023169047A1 PCT/CN2022/141462 CN2022141462W WO2023169047A1 WO 2023169047 A1 WO2023169047 A1 WO 2023169047A1 CN 2022141462 W CN2022141462 W CN 2022141462W WO 2023169047 A1 WO2023169047 A1 WO 2023169047A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
inlet
heat exchanger
outlet
heat
Prior art date
Application number
PCT/CN2022/141462
Other languages
English (en)
French (fr)
Inventor
孟娟
杨云
赵雷兴
陈杰
Original Assignee
浙江银轮机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江银轮机械股份有限公司 filed Critical 浙江银轮机械股份有限公司
Publication of WO2023169047A1 publication Critical patent/WO2023169047A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00342Heat exchangers for air-conditioning devices of the liquid-liquid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/00499Heat or cold storage without phase change including solid bodies, e.g. batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/00614Cooling of electronic units in air stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features

Definitions

  • This application relates to the technical field of new energy vehicles, and in particular to a new energy vehicle thermal management system that is easy to integrate.
  • the thermal management systems include refrigeration medium loops and cooling medium loops.
  • the refrigerant medium circuit of a conventional thermal management system has a complex structure. There are many valves used for throttling, on-off, and flow control functions. There are also many heat exchangers used to achieve corresponding functions. Users have different functional requirements.
  • the refrigeration medium system of the system needs to be greatly modified, and the compatibility of the integrated modularization based on the complex refrigeration medium circuit is also poor.
  • the heat source of the conventional thermal management system is the air source.
  • the external heat exchanger acts as an evaporator to absorb heat from the external environment in a low-temperature environment, and then transfers the heat to the passenger compartment.
  • the surface temperature of the external heat exchanger is much lower than the ambient temperature, and it is easy to frost and freeze, and the heating performance of the system will decrease.
  • Even if some thermal management systems are equipped with a defrost mode when entering the defrost mode, the performance of the thermal management system has dropped to a certain level and the heating capacity has decreased.
  • the conventional thermal management system has a relatively short defrost cycle, frequent defrost operations, and poor heating stability in low-temperature environments, making it difficult to ensure the heating of the passenger compartment.
  • the thermal management system includes a front-end module located in the front cabin, and its external heat exchanger is located in the front-end module. Due to the large size of the external heat exchanger and the heavy workload of design matching, all components of the system are unified into The difficulty of modularization has also increased greatly.
  • the motor electronic control in the cooling medium circuit needs to dissipate heat.
  • a common design solution is to provide a radiator on the cooling medium circuit, connect the motor electronic control and the radiator in series, and through the flow of cooling medium in the cooling medium circuit, the motor is The heat generated by the electronic control is brought to the radiator and dissipated to the external environment through the radiator, causing waste heat from the motor electronic control and increasing the complexity of the system structure and manufacturing costs.
  • a new energy vehicle thermal management system that is easy to integrate is provided.
  • This application provides a new energy vehicle thermal management system that is easy to integrate, including: a refrigeration medium loop and a cooling medium loop.
  • the refrigerant medium circuit includes a compressor, a first heat exchanger and a heat exchange component that are connected end to end in sequence.
  • the first heat exchanger includes a first channel and a second channel that are isolated from each other.
  • the outlet of the compressor is connected to the A first channel, and both ends of the heat exchange component are respectively connected to the first channel and the inlet of the compressor.
  • the cooling medium circuit includes a first pump and an electrically controlled motor.
  • the outlet of the first pump is connected to the inlet of the electrically controlled motor.
  • the outlet of the electrically controlled motor and the inlet of the first pump are respectively connected to the third pump. Two ends of the channel.
  • the refrigerant medium flowing through the first channel and the cooling medium flowing through the second channel exchange heat in the first heat exchanger.
  • the new energy vehicle thermal management system further includes an air-conditioning box located in the cabin, and the heat exchange component includes an evaporator located in the air-conditioning box. One end of the evaporator is connected to The other end of the compressor inlet is connected to the first channel.
  • the refrigerant medium circuit also includes a condenser located in the air conditioning box. One end of the condenser is connected to the compressor outlet and the other end is connected to the compressor outlet. Connected to the first channel; a first throttling member is provided in front of the inlet of the first channel, and a second throttling member is provided in front of the evaporator inlet.
  • the refrigerant medium circuit further includes a first on-off valve and a second on-off valve, the first on-off valve is connected between the outlet of the compressor and the inlet of the first channel; The second switching valve is connected between the outlet of the compressor and the inlet of the condenser.
  • the condenser at least includes a first heat exchange area and a second heat exchange area, and a first flow adjustment member is provided in front of the inlet of the compressor and the first heat exchange area, and the A second flow regulator is provided in front of the inlet of the compressor and the first heat exchange zone.
  • the heat exchange component includes a second heat exchanger, the second heat exchanger has a third channel and a fourth channel, the inlet of the third channel and the outlet of the first channel Connected, the outlet of the third channel is connected to the inlet of the compressor, a third throttling member is provided in front of the inlet of the third channel; the inlet of the fourth channel is connected to the outlet of the second channel , the outlet of the fourth channel is connected with the inlet of the first pump.
  • the heat exchange component includes a second heat exchanger, the second heat exchanger has a third channel and a fourth channel that are isolated from each other, and the inlet of the third channel is connected to the first channel.
  • the outlet of the channel is connected, the outlet of the third channel is connected with the inlet of the compressor, and a third throttling member is provided in front of the inlet of the third channel;
  • the cooling medium circuit also includes a second pump and a battery, The outlet of the battery is connected to the inlet of the second pump, and the outlet of the second pump and the inlet of the battery are connected to both sides of the fourth channel respectively.
  • the cooling medium circuit further includes a third heat exchanger for heat exchange between the cooling medium and the gas medium outside the vehicle cabin.
  • the inlet of the third heat exchanger is connected to the second channel.
  • the outlet of the third heat exchanger is connected with the inlet of the first pump.
  • the cooling medium circuit further includes a second pump and a battery connected end-to-end, and the cooling medium circulates in the loop formed by the second pump and the battery to cool the battery.
  • the refrigerant medium circuit further includes a fourth throttling member, one end of the fourth throttling member is connected to the outlet of the compressor, and the other end is connected to the inlet of the compressor.
  • the cooling medium circuit further includes a second pump and a battery, and the outlet of the second pump and the outlet of the second channel are connected with the battery inlet and the inlet of the first pump.
  • the cooling medium circuit further includes a second pump and a battery, the outlet of the second pump is connected to the inlet of the battery, and the outlet of the second channel is connected to the inlet of the first pump. Connected.
  • Figure 1 is a schematic structural diagram of a new energy vehicle thermal management system that is easy to integrate according to one or more embodiments.
  • Figure 2 is a schematic structural diagram of a new energy vehicle thermal management system that is easy to integrate according to one or more embodiments.
  • Figure 3 is a schematic structural diagram of a new energy vehicle thermal management system that is easy to integrate according to one or more embodiments.
  • Figure 4 is a schematic structural diagram of a heat exchange assembly according to one or more embodiments.
  • Figure 5 is a schematic structural diagram of a condenser according to one or more embodiments.
  • Figure 6 is a partial enlarged structural diagram of position A in Figure 1.
  • 100. New energy vehicle thermal management system that is easy to integrate; 110. Compressor; 110a, first temperature and pressure sensor; 110b, second temperature and pressure sensor; 120, first heat exchanger; 120a, first throttling member; 120b , second temperature sensor; 121, first channel; 122, second channel; 130, air conditioning box; 131, blower; 132, evaporator; 132a, second throttling member; 133, condenser; 133a, first temperature Sensor; 1331, first heat exchange area; 1332, second heat exchange area; 134, temperature adjustment damper; 141, first switch valve; 142, second switch valve; 151, first flow regulator; 152, second Flow regulating member; 160, gas-liquid separator; 170, fourth throttling member; 210, first pump; 220, motor electronic control; 230, second pump; 240, battery; 250, kettle; 260, first and third Pass pipe; 270, second three-way pipe; 280, four-way pipe; 290, third heat
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the first feature being "on” or “below” the second feature may mean that the first feature is in direct contact with the second feature, or the first feature and the second feature are in indirect contact. Contact through intermediaries.
  • the terms “above”, “above” and “above” the first feature of the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature of the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the easy-to-integrate new energy vehicle thermal management system 100 is installed in the new energy vehicle and is an important factor affecting the energy utilization and endurance of the new energy vehicle. It includes the refrigeration medium loop and the cooling medium loop. Through the refrigeration medium loop and the cooling medium Circular flow of media in the loop to achieve conversion of different working modes.
  • the refrigerant medium can be R134A, R1234YF, R290, CO2 , etc.; the cooling medium can be water, water-ethylene glycol mixed liquid, etc.
  • the refrigerant medium circuit includes a compressor 110, a first heat exchanger 120 and a heat exchange assembly 500 that are connected end to end in sequence.
  • the first heat exchanger 120 includes a first channel 121 and a second channel 122 that are isolated from each other.
  • the outlet of the machine 110 is connected to the first channel 121, and both ends of the heat exchange component 500 are connected to the first channel 121 and the inlet of the compressor 110 respectively.
  • the compressor 110 is mainly used for compressing and transporting gas-phase refrigeration medium.
  • the structure type is not limited and can be one of electric compressors.
  • the first heat exchanger 120 is mainly used for heat exchange between the cooling medium and the refrigerant medium.
  • the structure type is not limited, a plate heat exchanger is optional, and the process is not limited.
  • the cooling medium circuit includes a first pump 210 and a motor electronic control 220.
  • the outlet of the first pump 210 is connected to the inlet of the motor electronic control 220.
  • the outlet of the motor electronic control 220 and the inlet of the first pump 210 are connected to the second channel 122 respectively. at both ends; the refrigerant medium flowing through the first channel 121 and the cooling medium flowing through the second channel 122 exchange heat in the first heat exchanger 120 .
  • the external heat exchanger in the conventional thermal management system is cancelled, and the first heat exchanger 120 is used to replace the external heat exchanger in the refrigeration medium circuit in the related art, so that the cooling medium in the cooling medium circuit and the refrigeration medium circuit
  • the refrigerant medium performs liquid-liquid heat exchange at the first heat exchanger 120.
  • the heat exchange performance and efficiency of the first heat exchanger 120 are higher, and Smaller in size and easier to integrate.
  • Various components in the thermal management system of this application such as valves, pumps, heat exchangers, gas separation tanks, sensors, etc., can be integrated into one thermal management system module.
  • this application optimizes the front-end module to avoid frost on the surface of the external heat exchanger during system heating operation in low-temperature and high-humidity environments, which requires the system to frequently operate in defrost mode, thus affecting the stable heating of the passenger compartment and simplifying the system design. , save materials and front cabin space.
  • the system requires frequent operation of defrost mode to ensure the heating stability of the passenger compartment and the comfort of the passenger compartment in low-temperature environments.
  • a first throttling member 120a is provided in front of the inlet of the first channel 121. Under different operating modes, the heat exchange requirements of the refrigerant medium at the first heat exchanger 120 will also be different. By adjusting the opening of the first throttling member 120a degree to realize the adjustment of the temperature, pressure, state and flow rate of the refrigerant medium entering the first heat exchanger 120 to meet different heat exchange requirements.
  • the new energy vehicle thermal management system 100 which is easy to integrate, also includes an air conditioning box 130.
  • the air conditioning box 130 is provided with a blower 131, an evaporator 132 and a condenser 133.
  • a wind electric heater can also be installed in the air conditioning box 130 as required.
  • the heat exchange assembly 500 includes an evaporator 132.
  • One end of the evaporator 132 is connected to the inlet of the compressor 110, and the other end is connected to the first channel 121. It is mainly used for refrigeration and dehumidification of the passenger compartment.
  • the inlet of the evaporator 132 A second throttling member 132a is provided in front to adjust the opening as needed in different modes, so that the refrigerant medium entering the evaporator 132 can better meet the temperature, pressure, state, and flow requirements.
  • One end of the condenser 133 is connected to the outlet of the compressor 110, and the other end is connected to the first channel 121, and is mainly used for heating the passenger compartment.
  • the wind electric heater is controlled by low-voltage electricity and is placed on the side of the condenser 133 in the air-conditioning box 130 and placed close to the condenser 133.
  • the wind electric heater When the heating mode of the thermal management system still cannot meet the heating needs of the passenger compartment in a low-temperature environment, the wind electric heater When the heater is turned on, the air sucked by the blower 131 undergoes heat exchange at the wind electric heater, and the heated air enters the passenger compartment for heating.
  • the cooling medium takes away the waste heat from the motor electronic control 220 during the flow process, and flows to the second channel 122 of the first heat exchanger 120 to release heat.
  • the high-temperature and high-pressure refrigerant medium flowing out of the compressor 110 is The condenser 133 that flows through condenses and releases heat, and what flows out of the condenser 133 is a medium-temperature and medium-pressure refrigerant medium.
  • the medium-temperature and medium-pressure refrigerant medium absorbs the heat released by the cooling medium at the first channel 121 of the first heat exchanger 120 , the refrigerant medium after absorbing heat flows back into the compressor 110.
  • the waste heat of the motor electronic control 220 is used to heat the refrigerant medium and perform heating, so as to effectively recover and reuse the waste heat of the motor electronic control 220, thereby avoiding energy waste and saving energy and costs.
  • the cooling medium with the waste heat of the motor electronic control 220 and the refrigerant medium used for heating are directly exchanged at the first heat exchanger 120, and the waste heat is directly utilized. There is no need to collect the waste heat of the motor electronic control 220 and then go through a complicated exchange process.
  • the thermal system is utilized to simplify components, reduce costs, and optimize the thermal management system structure.
  • cooling mode heating is not required when the refrigerant medium flows through the condenser 133, and the condenser 133 is used as a connecting channel.
  • the refrigerant medium flows through the condenser 133, even if the air sucked by the blower 131 in the air-conditioning box 130 Without heat exchange with the refrigerant medium, the refrigerant medium will also cause partial heat loss due to thermal radiation in the condenser 133, thereby causing the cooling performance of the thermal management system to decrease.
  • the refrigerant medium In order to reduce the heat loss of the refrigerant medium at the condenser 133 and improve the refrigeration performance.
  • the refrigerant medium circuit further includes a first switching valve 141 and a second switching valve 142.
  • the first switching valve 141 is connected between the outlet of the compressor 110 and the inlet of the first channel 121. between; the second switch valve 142 is connected between the outlet of the compressor 110 and the inlet of the condenser 133. Therefore, when the system does not need heating, the second switching valve 142 can be closed and the first switching valve 141 can be opened, so that the refrigerant medium flowing out of the compressor 110 directly flows to the first channel 121 of the first heat exchanger 120; the system needs heating.
  • the first on-off valve 141 can be closed, and the second on-off valve 142 can be opened, so that the refrigeration mechanism flowing out of the compressor 110 flows through the condenser 133 and then flows into the first channel 121 of the first heat exchanger 120 .
  • the automobile thermal management system in this embodiment can realize dual heating zones and dual cooling zones.
  • the condenser 133 at least includes a first heat exchange area 1331 and a second heat exchange area 1332, and the inlet of the compressor 110 and the first heat exchange area 1331
  • a first flow regulating member 151 is provided in front of the compressor 110 and a second flow regulating member 152 is provided in front of the inlet of the second heat exchange zone 1332 .
  • the first heat exchange area 1331 and the second heat exchange area 1332 in the condenser 133 are designed side by side.
  • the temperature adjustment damper between the evaporator and the condenser in the air-conditioning box of the related art can be eliminated, simplifying the design of the air-conditioning box and reducing costs.
  • the high-temperature and high-pressure refrigerant medium flows out of the compressor 110 in two branches, one of which flows into the evaporator 132 through the first on-off valve 141, and one of which passes through the first flow regulator 151 or the second flow rate in front of the condenser 133.
  • the adjusting member 152 flows into the condenser 133.
  • One of the first flow adjusting member 151 and the second flow adjusting member 152 is opened. Part of the air sucked by the blower 131 in the air conditioning box 130 is directly blown to the passenger compartment through the evaporator 132, and the other part of the air is blown directly to the passenger compartment.
  • the evaporator 132 After passing through the evaporator 132, it passes through the first heat exchange zone 1331 or the second heat exchange zone 1332 of the condenser 133 and then blows to the passenger cabin, thereby realizing dual-temperature cooling of the main cab and passenger cabin of the passenger compartment; dual-temperature zones
  • the first on-off valve 141 is closed, and the first flow regulator 151 and the second flow regulator 152 in front of the condenser 133 are both opened, and the openings are different.
  • the specific opening needs to be adjusted according to the actual heating temperature demand.
  • the high-temperature and high-pressure refrigerant medium flows from the compressor 110 into the condenser 133 .
  • the amount of heat exchanged by the air passing through the first heat exchange zone 1331 and the second heat exchange zone 1332 of the condenser 133 will also be different.
  • the air with different temperatures is directed to the main cab and the passenger cabin of the passenger compartment respectively, realizing dual temperature zones in the passenger compartment. Heating mode.
  • the heat exchange assembly 500 in this implementation also includes a second heat exchanger 300.
  • the second heat exchanger 300 has a third channel 301 and a fourth channel 302.
  • the inlet of the third channel 301 is connected with the outlet of the first channel 121.
  • the outlet of the third channel 301 is connected to the inlet of the compressor 110, and a third throttling member 300a is provided in front of the inlet of the third channel 301;
  • the inlet of the fourth channel 302 is connected to the outlet of the second channel 122, and the outlet of the fourth channel 302 It is connected with the inlet of the first pump 210 . That is, the refrigerant medium flows in the third channel 301 and the cooling medium flows in the fourth channel 302 to achieve heat exchange between the refrigerant medium and the cooling medium.
  • the refrigerant medium and the cooling medium flow in opposite directions to increase the heat exchange. area, extending the heat exchange time and improving the heat exchange effect.
  • a third throttling member 300a is provided in front of the inlet of the third channel 301, and the opening of the third throttling member 300a is adjusted according to the heat exchange requirements of the refrigerant medium in the third channel 301.
  • the heat exchange can continue in the second heat exchanger 300.
  • the cooling medium that still has residual heat releases heat at the second heat exchanger 300.
  • the cooling medium flows back into the compressor 110 to further use the residual heat in the motor electronic control 220. Recycle and utilize to avoid energy waste, and increase the heat reserve of the refrigeration medium to ensure the heating effect and save energy and costs.
  • the channel where the second heat exchanger 300 and the third throttling member 300a are located can be combined. Dehumidify.
  • the specific process is that the second heat exchanger 300 does not exchange heat and is used as a refrigerant medium connection channel.
  • the high-temperature and high-pressure refrigerant medium flowing out of the compressor 110 flows into the condenser 133 and releases heat at the condenser 133.
  • the refrigerant medium after heat exchange is divided into two paths, one of which flows through the second throttling member 132a and flows into the evaporator 132, where it exchanges heat with the air with higher humidity sucked from the passenger compartment.
  • the humid air is condensed and dehumidified on the surface of the evaporator 132 and then flows to the condenser 133 to heat up.
  • the passenger compartment is dehumidified.
  • the other part flows directly through the third throttling member 300a and the third channel 301 of the second heat exchanger 300.
  • the third throttling member 300a can be closed without circulation, and the evaporator 132 itself can complete dehumidification without frost.
  • the refrigerant medium flowing into the evaporator 132 can be diverted at medium or low ambient temperatures, that is, the flow rate of the refrigerant medium flowing into the evaporator 132 can be controlled.
  • the dehumidification mode of the thermal management system can cover high, medium and low temperatures, thereby broadening the dehumidification application temperature range of the new energy thermal management system.
  • a gas-liquid separator 160 is provided in front of the inlet of the compressor 110.
  • the structure of the gas-liquid separator 160 can be a sleeve type or a U-type. Tube type, structure is not limited.
  • the inlet of the gas-liquid separator 160 is connected to the outlet of the evaporator 132 and the third channel 301 of the second heat exchanger 300, that is, the refrigerant medium flowing out of the evaporator 132 and/or the third channel 301 of the second heat exchanger 300 flows in.
  • the gas-phase refrigerant medium flows back to the compressor 110, and the liquid-phase refrigerant medium is recovered and stored in the gas separation tank.
  • a first temperature and pressure sensor 110a and a second temperature and pressure sensor 110b are respectively provided at the inlet and outlet of the compressor 110 to monitor the superheat of the refrigerant medium at the inlet and outlet of the compressor 110 in real time.
  • the refrigerant medium circuit is also provided with a first temperature sensor 133a and a second temperature sensor 120b.
  • the first temperature sensor 133a is provided at the outlet of the condenser 133 to monitor the temperature of the refrigerant medium at the outlet of the condenser 133 in real time.
  • the second temperature sensor 120b is provided at the outlet of the first channel 121 to monitor the first heat exchanger in real time. The temperature of the refrigerant medium at the outlet of the device 120.
  • the refrigerant medium circuit also includes a fourth throttling member 170 , one end of the fourth throttling member 170 is connected to the outlet of the compressor 110 , and the other end is connected to the inlet of the compressor 110 .
  • one end of the fourth throttle member 170 is connected to the outlet of the compressor 110 , and the other end is connected to the inlet of the gas-liquid separator 160 .
  • the third heat exchanger 290 in the thermal management system is generally used to absorb ambient heat to heat the cooling medium.
  • the third heat exchanger 290 of the first heat exchanger 120 A channel 121 absorbs the heat of the cooling medium to heat the refrigerant medium, and the condenser 133 in the air-conditioning box 130 releases heat to heat the air sucked by the blower 131 and then blow it into the passenger compartment.
  • the fourth throttling member 170 is opened, and the thermal management system uses the self-heating mode of the compressor 110 to heat the passenger compartment and the battery, that is, the compressor 110 A part of the discharged high-temperature and high-pressure refrigerant medium is introduced through the fourth throttle member 170 to the gas-liquid separator 160 and the inlet of the compressor 110 to increase the suction density of the refrigerant medium at the air inlet of the compressor 110, improve efficiency, and thereby improve the vehicle thermal management system.
  • the heating performance and heating rate allow the passenger compartment refrigeration medium circuit and cooling medium circuit to be heated faster.
  • the first throttling member 120a, the second throttling member 132a, the third throttling member 300a, and the fourth throttling member 170 may be capillary tubes, electronic expansion valves, or short throttle tubes, etc., as long as the throttling is and circulation function, optional electronic expansion valve.
  • the third throttling member 300a is a valve component that can be throttled or fully opened. When the third throttling member 300a is fully opened and the cooling medium does not flow through the second heat exchanger 300, the second heat exchanger 300 can It is used as a refrigerant medium connection channel, so the third throttling member 300a can be selected as a large-diameter electronic expansion valve.
  • the first temperature sensor 133a and the second temperature sensor 120b can be wall-mounted sensors or embedded sensors, and their styles are not limited.
  • the throttling member, temperature sensor, and temperature and pressure sensor in this embodiment are only described as examples. Changing the number and position, and replacing them with components that perform the same function also fall within the scope of rights protection.
  • the cooling medium circuit also includes a third heat exchanger 290 for heat exchange between the cooling medium and the gas medium outside the cabin.
  • the cooling medium flows in the internal flow channel of the third heat exchanger 290 and the air flows outside.
  • the cooling medium is in the third heat exchanger 290.
  • the third heat exchanger 290 performs convective heat exchange with the outside air through flat tubes and fins, and releases or absorbs heat to the outside air.
  • the third heat exchanger 290 is used in conjunction with the fan 290a, and the fan 290a is arranged next to the third heat exchanger 290.
  • the inlet of the third heat exchanger 290 is connected with the outlet of the second channel 122 of the first heat exchanger 120 , and the outlet of the third heat exchanger 290 is connected with the inlet of the first pump 210 .
  • the first pump 210, the motor electronic control 220, the first heat exchanger 120 and the third heat exchanger 290 are connected end to end to form a loop. In some modes where there is no need to recover and utilize the waste heat of the motor electronic control 220, the motor electric The control 220 performs self-circulation cooling of the motor electronic control 220 in this loop.
  • the cooling medium circuit also includes a second pump 230 and a battery 240.
  • the outlet of the battery 240 is connected to the inlet of the second pump 230.
  • the outlet of the second pump 230 and the inlet of the battery 240 are connected to the fourth channel 302 of the second heat exchanger 300. both sides. If the battery 240 has waste heat that can be recycled or the battery 240 needs to be forced to cool, the cooling medium flowing through the battery 240 can take out the waste heat of the battery 240 and release heat at the fourth channel 302 of the second heat exchanger 300.
  • the refrigerant medium absorbs heat at the third channel 301 of the second heat exchanger 300, and the cooling medium and the refrigerant medium exchange heat at the second heat exchanger 300 to recycle the waste heat of the battery 240 to avoid energy waste and save money. Energy and cost, at the same time, forced cooling of the battery 240 can also be achieved.
  • the cooling medium circuit has a simple structure, a high degree of integration, a more optimized system, and can realize rapid adjustment and conversion of multiple modes.
  • the second pump 230 and the battery 240 are connected end-to-end to form a loop.
  • the cooling medium circulates in this loop to evenly temperature the battery 240, so as to realize the self-circulation of the battery 240. Uniform temperature.
  • the thermal management system When the cooling medium temperature is lower than the required operating temperature range of the battery 240, the thermal management system will issue a heating request for the battery 240. At this time, the waste heat of the motor electronic control 220 can be used to heat the battery 240.
  • the specific structure is the outlet of the second pump 230, the third The outlet of the second channel 122 of a heat exchanger 120 is connected to the inlet of the battery 240 and the inlet of the first pump 210 respectively. That is, the outlet of the second pump 230 is connected to the inlet of the battery 240 , and the outlet of the second channel 122 of the first heat exchanger 120 is connected to the inlet of the first pump 210 .
  • a part of the cooling medium flows into the fifth interface 405 of the five-way valve 400 through the outlet of the second pump 230, flows out from the fourth interface 404 and flows into the inlet of the battery 240, and the other part of the cooling medium flows through the second channel 122 of the first heat exchanger 120.
  • the outlet flows into the second interface 402 of the five-way valve 400, flows out from the fourth interface 404 and flows into the inlet of the first pump 210.
  • the cooling medium with a higher temperature flowing in the first pump 210 and the motor electronic control 220 is mixed with the cooling medium with a lower temperature flowing in the second pump 230 and the battery 240 to form a mixed cooling medium with an intermediate temperature.
  • the mixed cooling medium flows out, it is divided into There are two paths, one flowing into the first pump 210 and the motor electronic control 220 for cooling the motor electronic control 220; the other flowing into the second pump 230 and the battery 240 for heating the battery 240. Therefore, the cooling medium flows in the loop formed by the connection between the motor electronic control 220 and the battery 240, and the waste heat of the motor electronic control 220 is used to heat the battery 240, and the waste heat of the motor electronic control 220 is further effectively recovered and reused. Avoid wastage of energy. Moreover, the cooling of the motor electronic control 220 and the heating of the battery 240 can be realized simultaneously through one loop, which simplifies the structure of the thermal management system and reduces costs.
  • the waste heat of the motor electronic control 220 can be used for heating, and can also be used for heating the battery 240 , which expands the scope of use of the waste heat of the motor electronic control 220 and further optimizes the thermal management system.
  • the automobile thermal management system also includes a five-way valve 400.
  • the five-way valve 400 includes a first interface 401, a second interface 402, a third interface Interface 403, fourth interface 404 and fifth interface 405, the first interface 401 is connected to the inlet of the fourth channel 302 in the second heat exchanger 300, and the second interface 402 is connected to the second channel 122 in the first heat exchanger 120.
  • the third interface 403 is connected to the inlet of the third heat exchanger 290
  • the fourth interface 404 is connected to the inlet of the battery 240 and the inlet of the first pump 210
  • the fifth interface 405 is connected to the outlet of the second pump 230 .
  • the interface of the five-way valve 400 can be equipped with a joint and used alone, or it can be used in an integrated and modular manner with other components.
  • the cooling medium circuit also includes a first three-way pipe 260, a second three-way pipe 270, a four-way pipe 280 and a kettle 250.
  • the kettle 250 is used to supplement the cooling medium circuit with cooling medium and remove air.
  • the first interface of the first three-way pipe 260 is connected to the fourth interface 404 of the five-way valve 400
  • the second interface of the first three-way pipe 260 is connected to the inlet of the battery 240
  • the third interface of the first three-way pipe 260 is connected to the inlet of the battery 240.
  • the second interface of the second three-way pipe 270 is connected.
  • the first interface of the second three-way pipe 270 is connected with the fourth interface of the four-way pipe 280 .
  • the third interface of the second three-way pipe 270 is connected with the fourth channel 302 of the second heat exchanger 300 .
  • the first interface is connected to the kettle 250
  • the second interface of the four-way pipe 280 is connected to the outlet of the third heat exchanger 290
  • the third interface of the four-way pipe 280 is connected to the inlet of the first pump 210 .
  • thermal management system module Various components in the thermal management system of this application, such as throttling parts, switch valves, pumps, heat exchangers, gas-liquid separators, temperature sensors, etc., can be integrated into a thermal management system module, thereby saving space and improving New energy vehicle performance and suitable for a variety of models.
  • Mode 1 cooling mode + battery 240 self-circulation mode
  • the new energy vehicle thermal management system operates in cooling mode for the passenger compartment.
  • the blower 131 in the air conditioning box 130 is turned on.
  • the first on-off valve 141 is opened and the second on-off valve 142 is closed.
  • the high-temperature and high-pressure refrigerant medium flows out from the compressor 110 and flows in through the first on-off valve 141.
  • the first throttling member 120a is fully open.
  • the first heat exchanger 120 condenses and releases heat, and the refrigerant medium flows out from the first heat exchanger 120 and then flows to the second
  • the throttling member 132a is throttled at the second throttling member 132a and then enters the evaporator 132 in the air conditioning box 130.
  • the refrigerant medium evaporates and absorbs heat at the evaporator 132 and then flows back to the compressor 110 through the gas-liquid separator 160.
  • the air sucked by the blower 131 in the air-conditioning box 130 passes through the evaporator 132, exchanges heat with the evaporator 132 for cooling, and then is blown into the passenger compartment.
  • the cooling medium circuit the cooling medium is divided into two parts for circulation.
  • a part of the cooling medium flows out from the second pump 230 and then enters the five-way valve 400 through the fifth interface 405 of the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the fifth interface 405.
  • ⁇ Fourth interface 404 after flowing out from the fourth interface 404 of the five-way valve 400, it enters the internal flow channel of the battery 240 through the first three-way pipe 260, and flows out from the internal flow channel of the battery 240 into the inlet of the second pump 230 to realize the operation of the battery 240.
  • Self-circulating temperature equalization Another part of the cooling medium flows out from the first pump 210 and then enters the motor electronic control 220. It absorbs heat at the motor electronic control 220 and then flows into the first heat exchanger 120.
  • the cooling medium absorbs heat again at the first heat exchanger 120 and then flows from the first heat exchanger 120 to the first heat exchanger 120.
  • the second interface 402 of the five-way valve 400 enters the five-way valve 400, and the internal flow direction of the five-way valve 400 is the second interface 402 ⁇ the third interface 403; then this cooling medium flows to the third interface 403 of the five-way valve 400.
  • the cooling medium dissipates heat at the third heat exchanger 290 and flows to the four-way pipe 280. It flows into the first pump 210 through the second interface and the third interface of the four-way pipe 280, forming a heat dissipation system for the motor electronic control 220. cycle.
  • Mode 2 cooling mode + battery 240 forced cooling mode
  • the battery 240 In the cooling mode, when the temperature of the battery 240 exceeds the temperature required by the thermal management system, the battery 240 operates in the forced cooling mode.
  • the refrigeration medium condenses and releases heat from the first heat exchanger 120 and flows out, branching into two paths and flowing in one way.
  • the refrigerant medium enters the evaporator 132 in the air-conditioning box 130 after being throttled at the second throttling member 132a, and evaporates and absorbs heat at the evaporator 132; the other way flows into the third throttling member 300a, cooling
  • the medium enters the second heat exchanger 300 after being throttled at the third throttling member 300a.
  • the medium After evaporating and absorbing heat at the second heat exchanger 300, the medium merges with the refrigerant medium flowing out of the evaporator 132 in front of the inlet of the gas-liquid separator 160. Flows to gas-liquid separator 160 and compressor 110.
  • the cooling medium circuit the cooling medium is divided into two parts for circulation. A part of the cooling medium flows out from the second pump 230 and then enters the five-way valve 400 through the fifth interface 405 of the five-way valve 400. The internal flow direction of the five-way valve 400 is the fifth interface 405.
  • Mode 3 Dual temperature zone cooling mode
  • the air-conditioning box 130 When the dual-temperature zone cooling of the main cab and passenger cabin of the passenger compartment is achieved in the cooling mode, when the air-conditioning box 130 is equipped with a temperature-adjusting damper 134, this can be achieved by adjusting the temperature-adjusting damper 134 in the air-conditioning box 130. There is no temperature in the air-conditioning box 130.
  • the damper 134 needs to be adjusted by adjusting the first flow regulating member 151 and the second flow regulating member 152 in front of the condenser 133 .
  • the first on-off valve 141 is opened, and one of the first flow regulating member 151 and the second flow regulating member 152 Once opened, the high-temperature and high-pressure refrigerant medium flows out from the compressor 110 and branches into two paths.
  • One path passes through the first on-off valve 141, and the other path passes through the first heat exchange area 1331 or the second heat exchange area 1332 of the condenser 133 in the air conditioning box 130.
  • the circulating heat exchange area is determined by opening the corresponding flow regulator.
  • the refrigerant medium flowing out from the condenser 133 merges with the refrigerant medium flowing out from the first switching valve 141 and enters the first throttling member 120a and the first heat exchanger 120 , the first throttle member 120a is fully open. At this time, the refrigerant medium condenses and releases heat in the first heat exchanger 120. The refrigerant medium flows out from the first heat exchanger 120 and then flows to the second throttle member 132a. After being throttled at component 132a, it enters the evaporator 132 in the air conditioning box 130. The refrigerant medium evaporates and absorbs heat at the evaporator 132, and then flows back to the compressor 110 through the gas-liquid separator 160.
  • the air sucked in by the blower 131 in the air-conditioning box 130 passes through the evaporator 132. Part of the air is directly exchanged for heat and cooled down and then blown into the passenger compartment. The other part of the air is exchanged for heat by the evaporator 132 and then passes through the first heat exchange zone 1331 or the first heat exchange zone 1331 of the condenser 133. The heat exchanged in the second heat exchange zone 1332 is blown into the passenger cabin to realize the dual temperature zone cooling mode of the passenger cabin.
  • Mode 4 Heating mode + battery 240 self-circulation mode
  • the first on-off valve 141 is closed, the second on-off valve 142 is opened, the blower 131 in the air-conditioning box 130 is on, and the high-temperature and high-pressure refrigerant medium flows from the compressor 110 After flowing out, it enters the condenser 133 in the air-conditioning box 130. After releasing heat at the condenser 133, it flows to the first throttling member 120a.
  • the refrigerant medium is throttled at the first throttling member 120a.
  • the throttled refrigerant medium passes through the third throttling member 120a.
  • a heat exchanger 120 is used to the refrigerant medium circuit.
  • the first heat exchanger 120 absorbs the heat in the motor electronic control 220 circulation loop, and the third heat exchanger 290 absorbs the heat in the environment, and then flows out from the first heat exchanger 120 to the third heat exchanger 120.
  • the throttling member 300a, the third throttling member 300a is fully open without throttling, and finally flows back to the compressor 110 through the second heat exchanger 300 and the gas-liquid separator 160.
  • the second heat exchanger 300 is equivalent to a connecting channel. No heat exchange with the cooling medium. The air sucked by the blower 131 in the air-conditioning box 130 first passes through the evaporator 132.
  • the refrigerant medium does not flow through the evaporator 132, and the air passes through the evaporator 132 without heat exchange.
  • the air Heat exchange occurs with the refrigerant medium in the condenser 133, and the heated hot air is blown into the passenger compartment.
  • the cooling medium circuit the cooling medium circulates in two parts. A part of the cooling medium flows out from the second pump 230 and then enters the five-way valve 400 through the fifth interface 405 of the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the fifth interface 405 ⁇
  • the fourth interface 404 flows out from the fourth interface 404 of the five-way valve 400 and enters the internal flow channel of the battery 240 through the first three-way pipe 260, and flows out from the internal flow channel of the battery 240 into the inlet of the second pump 230 to realize self-circulation of the battery 240.
  • Uniform temperature Another part of the cooling medium flows out from the first pump 210 and then enters the motor electronic control 220 and the first heat exchanger 120. After the cooling medium releases heat at the first heat exchanger 120, it then enters the five-way valve 400 through the second interface 402 of the five-way valve 400.
  • the internal flow direction of the five-way valve 400 and the five-way valve 400 is the second interface 402 ⁇ the third interface 403; then the cooling medium in this way flows through the third interface 403 of the five-way valve 400 to the third heat exchanger 290, and the cooling medium flows through the third interface 403 of the five-way valve 400.
  • the ambient heat absorbed by the heat exchanger 290 flows to the four-way pipe 280, and flows into the first pump 210 through the second interface and the third interface of the four-way pipe 280.
  • the motor electronic control 220 When the new energy vehicle has heat for waste heat recovery under the heating condition, the motor electronic control 220 operates in the waste heat recovery heating mode.
  • the first on-off valve 141 In the refrigerant medium circuit, the first on-off valve 141 is closed, the second on-off valve 142 is open, the blower 131 in the air-conditioning box 130 is turned on, and the high-temperature and high-pressure refrigerant medium flows out from the compressor 110 and then flows to the condenser 133 in the air-conditioning box 130. After the heat is released at the condenser 133, it flows to the first throttling member 120a. After being throttled at the first throttling member 120a, it passes through the first heat exchanger 120 in sequence.
  • the first heat exchanger 120 absorbs the motor electronic control 220.
  • the heat in the circulation loop flows out from the first heat exchanger 120 to the third throttling member 300a.
  • the third throttling member 300a is opened to throttle, but the opening is too large.
  • the refrigerant medium flowing out from the third throttling member 300a is The second heat exchanger 300 continues to absorb heat, and then flows back to the compressor 110 through the gas-liquid separator 160 .
  • the blower 131 in the air conditioning box 130 sucks air through the evaporator 132 and then through the condenser 133.
  • the cooling medium is divided into two parts for circulation.
  • One cooling medium flows out from the second pump 230 and then enters the five-way valve 400 through the fifth interface 405 of the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the fifth interface 405.
  • ⁇ Fourth interface 404 after flowing out from the fourth interface 404 of the five-way valve 400, it passes through the first three-way pipe 260 and enters the internal flow channel of the battery 240. It flows out from the internal flow channel of the battery 240 and finally flows to the second pump 230 to realize the battery 240 degree of self-circulating uniform temperature.
  • the other cooling medium flows out from the first pump 210 and then enters the motor electronic control 220.
  • the second interface 402 of the five-way valve 400 enters the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the second interface 402 ⁇ the first interface 401. It flows out from the first interface 401 of the five-way valve 400 and then flows to the second heat exchanger. 300, after releasing heat at the second heat exchanger 300, it passes through the third interface and the first interface of the second three-way pipe 270, the fourth interface and the third interface of the four-way pipe 280, and then flows back to the first pump 210. .
  • the internal flow direction of the five-way valve 400 can be switched to participate in the waste heat recovery mode.
  • the cooling medium circuit of the battery 240 flows from the internal flow of the five-way valve 400 to the fifth interface 405 ⁇ the fourth interface 404. It is the fifth interface 405 ⁇ the first interface 401.
  • the air-conditioning box 130 When the dual-temperature zone heating of the main cab and passenger cabin of the passenger compartment is achieved in the heating mode, when the air-conditioning box 130 is equipped with a temperature-adjusting damper 134, it can be achieved by adjusting the temperature-adjusting damper 134 in the air-conditioning box 130. Without temperature adjustment damper 134, it is necessary to adjust the first flow adjustment member 151 and the second flow adjustment member 152 in front of the condenser 133.
  • the blower 131 in the air conditioning box 130 is turned on, the first switch valve 141 is closed, and the first flow regulator 151 and the second flow adjusting member 152 are all opened, and the opening degrees are different.
  • the specific opening degree is adjusted according to the actual heating temperature demand.
  • the high-temperature and high-pressure refrigerant medium flowing out of the compressor 110 passes through the first flow adjusting member 151 and the second flow adjusting member respectively.
  • the air sucked by the blower 131 in the air-conditioning box 130 first passes through the evaporator 132. Since the second throttling member 132a is closed, the refrigerant medium does not flow through the evaporator 132. The air passes through the evaporator 132 without heat exchange, and then passes through the second part of the condenser 133.
  • the refrigerant medium flow rates flowing through the two different heat exchange areas are different, and the air passes through the condenser.
  • the heat exchange amounts of the first heat exchange zone 1331 and the second heat exchange zone 1332 will also be different, and air of different temperatures will be blown into the passenger cabin respectively, realizing a dual-temperature zone heating mode for the passenger cabin.
  • the vehicle thermal management system will issue a dehumidification request.
  • the dehumidification mode is running, in the refrigerant medium circuit, the first switch valve 141 is closed and the second switch valve 142 is opened.
  • the high-temperature and high-pressure refrigerant medium flows out from the compressor 110 and enters the condenser 133 in the air-conditioning box 130.
  • the refrigerant medium is in the condenser. 133 releases heat. After releasing heat at the condenser 133, it flows to the first throttling member 120a.
  • the refrigerant medium is throttled at the first throttling member 120a.
  • the throttled refrigerant medium passes through the first heat exchanger 120.
  • the first heat exchanger 120 can evaporate and absorb heat, and can also condense and release heat. It needs to be determined according to the ambient temperature and the opening of the first throttling member 120a valve, which flows out from the first heat exchanger 120 to the second section.
  • the refrigerant medium enters the evaporator 132 after being throttled at the second throttle member 132a.
  • the refrigerant medium evaporates and absorbs heat at the evaporator 132, and finally flows back to the compressor 110 through the gas-liquid separator 160. If the temperature of the refrigerant medium is low, frost may easily form on the surface of the evaporator 132.
  • the third throttling member 300a and the second heat exchanger 300 can be combined for dehumidification.
  • the specific dehumidification method is described in detail above and will not be repeated here. .
  • the blower 131 in the air-conditioning box 130 sucks the humid air in the passenger cabin, exchanges heat and dehumidifies it through the evaporator 132, then passes through the condenser 133 to heat up, and then blows it into the passenger cabin. In this cycle, the dehumidification of the passenger cabin is achieved.
  • the cooling medium circuit under dehumidification conditions, the cooling medium must be controlled at a suitable temperature to meet the cooling and heating requirements of the passenger compartment without triggering the cooling of the battery 240 .
  • the battery 240 does not require heating or forced cooling. You can choose the battery 240 to operate in a self-circulating manner or in a third heat exchanger 290 connected to the motor electronic control 220 to operate in a cyclical manner. The specific operating mode can be switched according to the ambient temperature through the logic control of the thermal management system. .
  • Mode 8 Battery 240 forced cooling mode
  • the first switching valve 141 When the temperature of the battery 240 is higher than the temperature range required by the thermal management system, in the refrigerant medium circuit, the first switching valve 141 is opened, the second switching valve 142 is closed, the blower 131 in the air conditioning box 130 is closed, and the high-temperature and high-pressure refrigerant medium is discharged from the compressor 110 After flowing out, it enters the first throttling member 120a and the first heat exchanger 120.
  • the first throttling member 120a is fully opened.
  • the first heat exchanger 120 condenses and releases heat, and the refrigerant medium flows out of the first heat exchanger 120. to the third throttling member 300a. After being throttled at the third throttling member 300a, it enters the second heat exchanger 300.
  • the refrigerant medium evaporates and absorbs heat at the second heat exchanger 300 and then flows back to the gas-liquid separator 160. Compressor 110.
  • the cooling medium circuit the cooling medium is divided into two parts for circulation. A part of the cooling medium flows out from the second pump 230 and then enters the five-way valve 400 through the fifth interface 405 of the five-way valve 400. The internal flow direction of the five-way valve 400 is the fifth interface 405.
  • the interface 402 enters the five-way valve 400, and the internal flow direction of the five-way valve 400 is the second interface 402 ⁇ the third interface 403; then this cooling medium flows through the third interface 403 of the five-way valve 400 to the third heat exchanger 290 for cooling.
  • the medium flows to the four-way pipe 280 after dissipating heat at the third heat exchanger 290, and flows into the first pump 210 through the second interface and the third interface of the four-way pipe 280, forming a heat dissipation cycle for the motor electronic control 220.
  • Mode 9 Battery 240 fast charge cooling mode
  • the vehicle thermal management system will run the battery 240 fast charging cooling mode.
  • the battery 240 is running in the fast charging and cooling mode, in the refrigerant medium circuit, the first on-off valve 141 is closed, the second on-off valve 142 is open, the blower 131 in the air conditioning box 130 is on, and the high-temperature and high-pressure refrigerant medium flows out from the compressor 110 and then flows into the condenser. 133 condenses and releases heat into the passenger compartment and then flows out into the first throttling member 120a and the first heat exchanger 120.
  • the first throttling member 120a is fully opened, and the refrigerant medium condenses again in the first heat exchanger 120 and releases heat and flows to the third heat exchanger 120.
  • the throttling member 300a After the refrigerant medium is throttled at the third throttling member 300a, it enters the second heat exchanger 300. The refrigerant medium evaporates and absorbs heat at the second heat exchanger 300 and then flows back to the compression chamber through the gas-liquid separator 160.
  • Machine 110 When the vehicle is charged to 80%-90%, the first switching valve 141 opens, the second switching valve 142 closes, the air conditioning box 130 switches to the cooling mode, and the refrigerant medium flows through the evaporator 132 to evaporate and absorb heat, cooling the passenger compartment.
  • the process in the cooling medium circuit is consistent with the forced cooling mode of the battery 240 and will not be described in detail here.
  • Mode 10 Battery 240 heat pump heating mode
  • the vehicle thermal management system When the cooling medium temperature is lower than the required temperature range of the battery 240, the vehicle thermal management system will issue a heating request for the battery 240.
  • the battery 240 can be heated by a heat pump, the battery 240 can be heated by self-heating of the compressor 110, the battery 240 can be heated by self-heating, the motor can be blocked for heating, or the waste heat of the motor electronic control 220 can be used for heating.
  • the first on-off valve 141 is opened, the second on-off valve 142 is closed, the blower 131 in the air conditioning box 130 is off, and the high-temperature and high-pressure refrigerant medium flows out of the compressor 110 and then flows into the first section.
  • the flow member 120a and the first heat exchanger 120, the first throttling member 120a is fully open without throttling, the refrigerant medium condenses and releases heat at the first heat exchanger 120 and then flows to the third throttling member 300a.
  • the cooling medium circuit After being throttled by the three throttling members 300a, it evaporates and absorbs heat in the second heat exchanger 300, and finally flows back to the compressor 110 through the gas-liquid separator 160.
  • the cooling medium circuit the cooling medium is divided into two circulations. One cooling medium flows out from the first pump 210 and then flows through the motor electronic control 220 and the first heat exchanger 120. After absorbing heat at the first heat exchanger 120, it flows from The second interface 402 of the one-way valve 400 flows to the five-way valve 400, and the internal flow direction of the five-way valve 400 is the second interface 402 ⁇ the first interface 401. Another cooling medium flows out from the second pump 230 and enters the five-way valve 400 from the fifth interface 405 of the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the fifth interface 405 ⁇ the first interface 401.
  • the two cooling mediums are connected in the five-way valve 400.
  • the first interface 401 of the valve 400 merges and flows to the second heat exchanger 300, where it releases heat, and then flows to the second three-way pipe 270, where it is divided into Two paths, one path passes through the second interface of the second tee tube 270, the third interface and the second interface of the first tee tube 260, flows to the battery 240, is heated by the battery 240, and then flows back to the second pump 230, and the other path passes through
  • the first interface of the second three-way pipe 270 , the fourth interface and the third interface of the four-way pipe 280 return to the first pump 210 .
  • the cooling medium absorbs heat at the first heat exchanger 120 and then releases heat at the second heat exchanger 300 , but the heat absorbed by the cooling medium at the first heat exchanger 120 is much greater than that at the second heat exchanger 300 Generally speaking, the temperature of the cooling medium increases through this cycle, and flowing into the battery 240 can have a heating effect on the battery 240.
  • Mode 11 Battery 240 utilizes motor electronic control 220 waste heat heating mode
  • the cooling medium is divided into two circulations.
  • One cooling medium flows out from the first pump 210 and then flows through the motor electronic control 220, and flows inside the motor electronic control 220. After absorbing heat, it flows through the first heat exchanger 120 from the second interface 402 of the five-way valve 400 to the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the second interface 402 ⁇ the fourth interface 404; the other cooling channel After the medium flows out from the second pump 230, it enters the five-way valve 400 through the fifth interface 405 of the five-way valve 400.
  • the internal flow direction of the five-way valve 400 is the fifth interface 405 ⁇ the fourth interface 404.
  • the two-way cooling medium flows through the five-way valve 400.
  • the fourth interface 404 of the first three-way pipe 260 merges and flows to the first three-way pipe 260.
  • Two branches flow out from the first three-way pipe 260, and one flow flows from the second interface of the first three-way pipe 260 to the battery 240 to heat the battery 240. It then flows out to the second pump 230.
  • the other path flows from the third interface of the first three-way pipe 260 through the second interface and the first interface of the second three-way pipe 270 and the fourth interface and the third interface of the four-way pipe 280 and returns to the first pump 210 .
  • Mode 12 Compressor 110 self-heating passenger cabin mode
  • the vehicle thermal management system In a lower temperature environment, when the car is cold started and the passenger compartment is heated, the vehicle thermal management system will switch to the compressor 110 self-heating passenger compartment mode, causing the gaseous cooling medium at the outlet of the compressor 110 to cause gas-liquid separation.
  • the inlet of the device 160 is used to increase the suction density, thereby improving the heating capacity of the vehicle thermal management.
  • the compressor 110 When the compressor 110 is operating in the self-heating passenger cabin mode, in the refrigerant medium circuit, the first on-off valve 141 is closed, the second on-off valve 142 is open, the blower 131 in the air conditioning box 130 is on, and the high-temperature and high-pressure refrigerant medium flows out of the compressor 110 Finally, it is divided into two paths.
  • a part of the refrigerant medium enters the condenser 133 in the air-conditioning box 130. After releasing heat at the condenser 133, it flows to the first throttling member 120a.
  • the refrigerant medium is throttled at the first throttling member 120a. It flows through the first heat exchanger 120 and then enters the third throttling member 300a.
  • the third throttling member 300a is fully open and does not throttle.
  • the refrigerant medium flows out from the third throttling member 300a and then flows through the second heat exchanger 300 to Before the inlet of gas-liquid separator 160.
  • the other refrigerant medium flows out from the compressor 110 and is throttled by the fourth throttling member 170 before flowing to the inlet of the gas-liquid separator 160.
  • the two refrigerant mediums merge at the inlet of the gas-liquid separator 160 and then pass through the gas-liquid separator. 160 returns to compressor 110.
  • the air sucked by the blower 131 in the air-conditioning box 130 passes through the evaporator 132 and flows into the condenser 133, where it exchanges heat with the refrigerant medium in the condenser 133, and the heat-absorbed air is blown into the passenger compartment.
  • the cooling medium circuit already has heat due to the battery 240 being heated by a heat pump or self-heating, the motor being blocked, or the compressor 110 being self-heating. At this time, the temperature can be uniformized through self-circulation.
  • the motor electronic control 220 turns off the first pump 210 of the cooling medium circuit. At this time, the cooling medium circuit does not circulate, and no heat exchange occurs between the first channel 121 and the second channel 122 of the first heat exchanger 120 .
  • An operation mode of the new energy vehicle thermal management system 100 that is easy to integrate includes but is not limited to the operation modes listed above.
  • the refrigeration medium circuit of the thermal management system of this application has a simple structure and relatively few valves used for throttling, on-off, and flow control functions. It has strong adaptability in response to different functional needs of users and can also be adapted to a variety of cooling media.
  • the circuit is easier to integrate and modularize, and at the same time, the technical cost is lower than that of thermal management systems in related technologies.
  • the thermal management system of this application cancels the external heat exchanger and uses the first heat exchanger 120 for liquid-to-liquid heat exchange to replace the external heat exchanger.
  • the first heat exchanger 120 has equivalent performance to the external heat exchanger and is small in size and more convenient. It is easy to integrate, and the elimination of external heat exchanger saves space in the front cabin of the vehicle.
  • the third heat exchanger 290 is used as a heat exchange component with the outside world.
  • the third heat exchanger 290 has little or no frost, which can ensure the stable heating of the condenser 133, that is, Ensure the thermal comfort of the passenger compartment.
  • a first heat exchanger 120 is added to the refrigerant circuit, and a fourth throttling member 170 is added to the compressor 110 circuit to realize the self-heating function of the compressor 110.
  • the thermal management system can use the self-heating of the battery 240 to heat, or the heat pump to heat the battery 240, or the motor to heat and heat when blocked, or the motor electronic control 220 to recover waste heat to heat the battery 240, or the compressor 110 to self-heat to heat the battery 240, either
  • the battery 240 is controlled to work at the required temperature, and at the same time, the problem of power consumption and impact on battery mileage caused by using PTC heating is solved.
  • the easy-to-integrate new energy vehicle thermal management system 100 in this application has multiple modes, a wide range of applicable working conditions, and strong adaptability, and can meet the needs of the entire vehicle's passenger compartment, battery 240, and motor electronic control 220 under different working conditions. Thermal management needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种便于集成的新能源汽车热管理系统(100)。该系统包括:制冷介质回路包括依次首尾连通的压缩机(110)、第一换热器(120)和换热组件(500),第一换热器(120)包括相互隔离的第一通道(121)与第二通道(122),压缩机(110)的出口连通于第一通道(121),换热组件(500)的两端分别连通于第一通道(121)及压缩机(110)的进口;冷却介质回路包括第一泵(210)与电机电控(220),第一泵(210)的出口与电机电控(220)的进口连通,电机电控(220)的出口与第一泵(210)的进口分别连通于第二通道(122)的两端。

Description

便于集成的新能源汽车热管理系统
相关申请
本申请要求2022年3月10日申请的,申请号为202210240081.7,发明名称为“一种便于集成的新能源汽车热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车技术领域,特别是涉及一种便于集成的新能源汽车热管理系统。
背景技术
为响应国家政策和环保号召,现在市场上正大力发展新能源汽车,但随之又带来汽车热管理问题,从而衍生出许多热管理系统,热管理系统包括制冷介质回路与冷却介质回路。相关技术中常规热管理系统的制冷介质回路结构复杂,用作节流、通断、控制流向功能的阀较多,为实现相应的功能所利用的换热器也较多,用户有不同功能需求时系统制冷介质系统需要进行较大的改动,基于复杂制冷介质回路的集成式模块化的兼容性也较差。
常规热管理系统热源为空气源,制热模式下,外部换热器作蒸发器在低温环境下吸收外界环境的热量,然后往乘员舱输送热。当系统长时间运行在低温高湿的外界环境中,外部换热器表面温度比环境温度要低的多,很容易结霜结冰,系统制热性能将下降。即使有的热管理系统中配置有化霜模式,但进入化霜模式时,热管理系统的性能已下降至一定水平,供热能力下降。另外,常规热管理系统的结化霜周期相对较短,化霜运行频繁,低温环境下供热稳定性较差,乘员舱的供热较难保证。
同时,热管理系统包括设在前舱中的前端模块,其外部换热器设在前端模块中,由于外部换热器的尺寸较大、设计匹配工作量较大,将系统各部件统一集成为模块化的难度也大大增加。而在冷却介质回路中的电机电控需要散热,广泛的设计方案是在冷却介质回路上设有散热器,将电机电控与散热器串联,通过冷却介质在冷却介质回路中的流动,将电机电控产生的热量带至散热器处,通过散热器向外部环境散热,造成电机电控余热浪费,增大了系统结构复杂度和制造成本。
发明内容
根据本申请的各种实施例,提供一种便于集成的新能源汽车热管理系统。
本申请提供一种便于集成的新能源汽车热管理系统,包括:制冷介质回路和冷却介质回路。
制冷介质回路包括依次首尾连通的压缩机、第一换热器和换热组件,所述第一换热器包括相互隔离的第一通道与第二通道,所述压缩机的出口连通于所述第一通道,所述换热组件的两端分别连通于所述第一通道及所述压缩机的进口。
冷却介质回路包括第一泵与电机电控,所述第一泵的出口与所述电机电控的进口连通,所述电机电控的出口与所述第一泵的进口分别连通于所述第二通道的两端。
流经所述第一通道的所述制冷介质与流经所述第二通道的所述冷却介质在所述第一换热器中换热。
在其中一个实施例中,所述新能源汽车热管理系统还包括设于车舱内的空调箱,所述换热组件包括设于所述空调箱的蒸发器,所述蒸发器的一端连通于所述压缩机进口,另一端连通于所述第一通道,所述制冷介质回路还包括设于所述空调箱内的冷凝器,所述冷凝器的一端连通于所述压缩机出口,另一端连通于所述第一通道;所述第一通道进口前设有第一节流件,所述蒸发器进口前设有第二节流件。
在其中一个实施例中,所述制冷介质回路还包括第一开关阀与第二开关阀,所述第一开关阀连接于所述压缩机的出口与所述第一通道的进口之间;所述第二开关阀连接于所述压缩机的出口与所述冷凝器的进口之间。
在其中一个实施例中,所述冷凝器至少包括第一换热区与第二换热区,所述压缩机与所述第一换热区的进口前设有第一流量调节件,所述压缩机与所述第一换热区的进口前设有第二流量调节件。
在其中一个实施例中,所述换热组件包括第二换热器,所述第二换热器具有第三通道与第四通道,所述第三通道的进口与所述第一通道的出口连通,所述第三通道的出口与所述压缩机的进口连通,所述第三通道的进口前设有第三节流件;所述第四通道的进口与所述第二通道的出口连通,所述第四通道的出口与所述第一泵的进口连通。
在其中一个实施例中,所述换热组件包括第二换热器,所述第二换热器具有相互隔离的第三通道与第四通道,所述第三通道的进口与所述第一通道的出口连通,所述第三通道的出口与所述压缩机的进口连通,所述第三通道的进口前设有第三节流件;所述冷却介质回路还包括第二泵与电池,所述电池的出口与所述第二泵的进口连通,所述第二泵的出口及所述电池的进口分别连通于所述第四通道的两侧。
在其中一个实施例中,所述冷却介质回路还包括第三换热器,以用于冷却介质与车舱外气体介质的换热,所述第三换热器的进口与所述第二通道的出口连通,所述第三换热器 的出口与所述第一泵的进口连通。
在其中一个实施例中,所述冷却介质回路还包括首尾连通的第二泵与电池,所述冷却介质在所述第二泵与所述电池形成的回路中循环流动以冷却所述电池。
在其中一个实施例中,所述制冷介质回路还包括第四节流件,所述第四节流件的一端连接于所述压缩机的出口,另一端连接于所述压缩机的进口。
在其中一个实施例中,所述冷却介质回路还包括第二泵与电池,所述第二泵的出口、所述第二通道的出口与所述电池进口及所述第一泵的进口连通。
在其中一个实施例中,所述冷却介质回路还包括第二泵与电池,所述第二泵的出口与所述电池的进口连通,所述第二通道的出口与所述第一泵的进口连通。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一个或多个实施例的便于集成的新能源汽车热管理系统的结构示意图。
图2为根据一个或多个实施例的便于集成的新能源汽车热管理系统的结构示意图。
图3为根据一个或多个实施例的便于集成的新能源汽车热管理系统的结构示意图。
图4为根据一个或多个实施例的换热组件的结构示意图。
图5为根据一个或多个实施例的冷凝器的结构示意图。
图6为图1中A处的局部放大结构示意图。
附图标记:
100、便于集成的新能源汽车热管理系统;110、压缩机;110a、第一温度压力传感器;110b、第二温度压力传感器;120、第一换热器;120a、第一节流件;120b、第二温度传感器;121、第一通道;122、第二通道;130、空调箱;131、鼓风机;132、蒸发器;132a、第二节流件;133、冷凝器;133a、第一温度传感器;1331、第一换热区;1332、第二换热区;134、温度调节风门;141、第一开关阀;142、第二开关阀;151、第一流量调节件;152、第二流量调节件;160、气液分离器;170、第四节流件;210、第一泵;220、电机电控;230、第二泵;240、电池;250、水壶;260、第一三通管;270、第二三通管;280、四通管;290、第三换热器;290a、风机;300、第二换热器;300a、第三节流件;301、第 三通道;302、第四通道;400、五通阀;401、第一接口;402、第二接口;403、第三接口;404、第四接口;405、第五接口;500、换热组件。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,当组件被称为“固定于”或“设置于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本申请的说明书所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”、“下”可以是第一特征直接和第二特征接触,或第一特征和第二特征间接地通过中间媒介接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅表示第一特征水平高度小于第二特征。
除非另有定义,本申请的说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请的说明书所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图与具体实施方式对本申请的便于集成的新能源汽车热管理系统100作进一步详细描述:
便于集成的新能源汽车热管理系统100,设在新能源汽车中,是影响新能源汽车整车能量利用率和续航力的重要因素,包括制冷介质回路与冷却介质回路,通过制冷介质回路和冷却介质回路中介质的循环流动,以实现不同工作模式的转换。制冷介质可以为R134A, R1234YF,R290,CO 2等;冷却介质可以为水,水-乙二醇混合液等。
参照图1,制冷介质回路,包括依次首尾连通的压缩机110、第一换热器120和换热组件500,第一换热器120包括相互隔离的第一通道121与第二通道122,压缩机110的出口连通于第一通道121,换热组件500的两端分别连通于第一通道121及压缩机110的进口。压缩机110主要用于压缩和输送气相制冷介质,结构类型不限,可以为电动压缩机中的一种。第一换热器120主要用于冷却介质和制冷介质进行热交换,结构类型不限,可选板式换热器,流程不限。
冷却介质回路,包括第一泵210与电机电控220,第一泵210的出口与电机电控220的进口连通,电机电控220的出口与第一泵210的进口分别连通于第二通道122的两端;流经第一通道121的制冷介质与流经第二通道122的冷却介质在第一换热器120中换热。
本实施例中取消常规热管理系统中的外部换热器,利用第一换热器120替代相关技术中制冷介质回路中的外部换热器,使冷却介质回路中的冷却介质与制冷介质回路中的制冷介质在第一换热器120处进行液液换热,相较于相关技术中利用外部换热器进行气液换热,第一换热器120的换热性能和效率更高,且体积更小,更便于集成。本申请热管理系统中的各个零部件,例如阀件,泵,换热器,气分罐,传感器等均能集成为一体,集成为一个热管理系统模块。同时本申请优化了前端模块,避免了外部换热器在低温高湿环境下系统供热运行时表面结霜,需要系统频繁的运行化霜模式,从而影响乘员舱的稳定供热,简化系统设计,节约物料,节省前舱空间。且避免外部换热器在低温高湿环境下表面结霜,需要系统频繁的运行化霜模式,保证了低温环境下乘员舱供热稳定性及乘员舱的舒适性。
第一通道121进口前设有第一节流件120a,不同运行模式下,制冷介质在第一换热器120处的换热需求也会有所不同,通过调节第一节流件120a的开度,来实现进入第一换热器120中制冷介质温度压力状态、流量的调节,满足不同的换热需求。
便于集成的新能源汽车热管理系统100还包括空调箱130,空调箱130内设有鼓风机131、蒸发器132与冷凝器133,根据需求空调箱130中也可设置风电加热器。
如图4所示,换热组件500包括蒸发器132,蒸发器132的一端连通于压缩机110进口,另一端连通于第一通道121,主要用于乘员舱的制冷和除湿,蒸发器132进口前设有第二节流件132a,以在不同模式下根据需要进行开度的调节,使进入蒸发器132的制冷介质更好地满足温度压力状态、流量的需求。冷凝器133的一端连通于压缩机110出口,另一端连通于第一通道121,主要用于乘员舱的制热。
风电加热器通过低压电控制,在空调箱130中放在冷凝器133的侧边,贴着冷凝器133放置,在低温环境下热管理系统制热模式仍无法满足乘员舱制热需求时,风电加热器开启, 鼓风机131吸入的空气在风电加热器处进行热交换,加热后的空气进入乘员舱进行加热。
在制热模式下,冷却介质流动过程中将电机电控220的余热带走,并流至第一换热器120的第二通道122处放热,压缩机110流出的高温高压的制冷介质在流经的冷凝器133处冷凝放热,流出冷凝器133的则为中温中压的制冷介质,中温中压的制冷介质在第一换热器120的第一通道121处吸收冷却介质放出的热,吸热后的制冷介质,再流回压缩机110中,鼓风机131吸入的空气在空调箱130中与冷凝器133进行热交换,加热的空气吹入乘员舱。通过设置第一换热器120,利用电机电控220的余热加热制冷介质并进行制热,以对电机电控220的余热进行有效地回收和再利用,避免能量的浪费,节省能量和成本。且带有电机电控220余热的冷却介质与用于制热的制冷介质直接在第一换热器120处换热,对余热直接利用,无需对电机电控220余热收集后再通过复杂的换热系统进行利用,简化部件,降低成本,并优化了热管理系统结构。
在制冷模式等多种模式下,制冷介质流经冷凝器133时无需制热,冷凝器133作为连接通道使用,但制冷介质在流经冷凝器133时,即使空调箱130中鼓风机131吸入的空气不与制冷介质发生热交换,制冷介质也会在冷凝器133中由于热辐射而引起部分热量损失,进而造成热管理系统制冷性能下降。为了减少制冷介质在冷凝器133处的热量损失,提升制冷性能。参照图2,根据本实施例的一个实施例,制冷介质回路还包括第一开关阀141与第二开关阀142,第一开关阀141连接于压缩机110的出口与第一通道121的进口之间;第二开关阀142连接于压缩机110的出口与冷凝器133的进口之间。从而系统不需要制热时,可以关闭第二开关阀142,打开第一开关阀141,使压缩机110中流出的制冷介质直接流向第一换热器120的第一通道121;系统需要制热时,可以关闭第一开关阀141,打开第二开关阀142,使压缩机110中流出的制冷机制流经冷凝器133后再流向第一换热器120的第一通道121中。
为了满足乘员舱内不同乘客的温度需求,提升用户的使用体验感,本实施例中的汽车热管理系统可以实现制热双温区和制冷双温区。具体结构为,参考图3和图5,根据本申请的一个实施例,冷凝器133至少包括第一换热区1331与第二换热区1332,压缩机110与第一换热区1331的进口前设有第一流量调节件151,压缩机110与第二换热区1332的进口前设有第二流量调节件152。冷凝器133内的第一换热区1331和第二换热区1332为并排设计,可以横向并排设计,可以纵向并排设计,也可以对角并排设计,不作限制。此时,可以取消相关技术空调箱中蒸发器与冷凝器之间的温度调节风门,简化空调箱的设计,降低成本。双温区制冷模式下,高温高压制冷介质从压缩机110流出分支两路,一路通过第一开关阀141流入蒸发器132中,一路通过冷凝器133前的第一流量调节件151或第二 流量调节件152流入冷凝器133中,第一流量调节件151与第二流量调节件152其中之一打开,空调箱130中鼓风机131吸入的空气经过蒸发器132一部分直接吹向乘员舱,另一部分空气经过蒸发器132后再经过冷凝器133的第一换热区1331或第二换热区1332后再吹向乘员舱,从而实现乘员舱的主驾驶室和副驾驶室制冷双温;双温区制热模式下,第一开关阀141关闭,冷凝器133前的第一流量调节件151及第二流量调节件152均打开,且开度不同,具体开度需根据实际制热温度需求进行调节,高温高压制冷介质从压缩机110流进冷凝器133中。空调箱130中鼓风机131吸入的空气经过蒸发器132后流向冷凝器133,由于第二节流件132a关闭,制冷介质不流通蒸发器132,空气经过蒸发器132处不换热,然后再经过冷凝器133的第一换热区1331和第二换热区1332,由于第一流量调节件151及第二流量调节件152的开度不同,流经两个不同换热区的制冷介质流量不同,空气经过冷凝器133第一换热区1331和第二换热区1332的换热量也会不同,不同温度的空气分别通向乘员舱的主驾驶室和副驾驶室,实现乘员舱双温区制热模式。
本实施中的换热组件500还包括第二换热器300,第二换热器300具有第三通道301与第四通道302,第三通道301的进口与第一通道121的出口连通,第三通道301的出口与压缩机110的进口连通,第三通道301的进口前设有第三节流件300a;第四通道302的进口与第二通道122的出口连通,第四通道302的出口与第一泵210的进口连通。即,制冷介质在第三通道301中流动,冷却介质在第四通道302中流动,以实现制冷介质与冷却介质的换热,可选地,制冷介质与冷却介质逆向流动,以增大换热面积,延长换热时间,提升换热效果。第三通道301的进口前设有第三节流件300a,根据制冷介质在第三通道301中的换热需求调节第三节流件300a的开度。
热管理系统在制热模式下,冷却介质与制冷介质在第一换热器120处换热后,若仍有余热,则可以在第二换热器300继续换热。此时,仍有余热的冷却介质在第二换热器300处放热,制冷介质在第二换热器300处吸热后,流回压缩机110中,以进一步对电机电控220的余热进行回收和利用,避免能源浪费,且增加制冷介质的热量储备,保证制热效果,节省能量和成本。
同时,在中、低环境温度下除湿时,为防止湿空气在蒸发器132表面结霜或结冰,影响换热,可结合第二换热器300与第三节流件300a所在的通道进行除湿。具体过程为,第二换热器300处不换热,作为制冷介质连接通道使用,此时,压缩机110流出的高温高压的制冷介质,流入冷凝器133中并在冷凝器133处放热,以实现乘员舱的制热,经过换热后的制冷介质分为两路,一路流经第二节流件132a流入蒸发器132中,与从乘员舱吸入的湿度较高的空气进行热交换,湿空气在蒸发器132表面冷凝减湿后流通至冷凝器133升温, 如此循环,实现乘员舱的除湿,另一路由第三节流件300a及第二换热器300的第三通道301直接流回压缩机110;若高环境温度下除湿可关闭第三节流件300a,无需流通,蒸发器132本身可在不结霜的情况下完成除湿。通过增加第三节流件300a及第二换热器300所在的通道,可以在中、低环境温度下分流流至蒸发器132内的制冷介质,即控制流入蒸发器132内制冷介质的流量,以控制蒸发器132的换热,使热管理系统除湿模式可以涵盖高、中、低温,拓宽新能源热管理系统的除湿应用温度范围。
为了防止液态制冷介质进入压缩机110中而损坏压缩机110,本实施例中压缩机110的进口前设有气液分离器160,气液分离器160结构可以为套管式,也可为U型管式,结构不限。气液分离器160的进口连通于蒸发器132的出口及第二换热器300的第三通道301,即由蒸发器132和/或第二换热器300第三通道301流出的制冷介质流入气液分离器160中,经气液分离后,气相制冷介质流回压缩机110中,液相制冷介质则被回收储存在气分罐中。压缩机110的进口处与出口处分别设有第一温度压力传感器110a及第二温度压力传感器110b,以实时监测压缩机110的进口及出口处的制冷介质的过热度。
制冷介质回路还设有第一温度传感器133a与第二温度传感器120b。第一温度传感器133a设在冷凝器133的出口处,以实时监测冷凝器133的出口处制冷介质的温度,第二温度传感器120b设在第一通道121的出口处,以实时监测第一换热器120的出口处制冷介质的温度。
制冷介质回路还包括第四节流件170,第四节流件170的一端连接于压缩机110的出口,另一端连接于压缩机110的进口。具体地,第四节流件170的一端连接于压缩机110的出口,另一端连接于气液分离器160的进口。在较低环境温度下,新能源汽车在冷启动且乘员舱需求制热时,一般是利用热管理系统中的第三换热器290吸收环境热量加热冷却介质,第一换热器120的第一通道121吸收冷却介质的热加热制冷介质,空调箱130中冷凝器133放热,以加热鼓风机131吸入的空气后吹入到乘员舱。当环境温度很低无法利用热泵吸收环境热量时,或冷启动电池240需加热时,第四节流件170打开,热管理系统利用压缩机110自加热模式加热乘员舱和电池,即将压缩机110排出高温高压制冷介质通过第四节流件170引入一部分至气液分离器160和压缩机110进口,提升压缩机110进气口制冷介质的吸气密度,提升效率,进而提高整车热管理系统的制热性能和采暖速率,让乘员舱制冷介质回路和冷却介质回路更快地制热。
本实施例中的第一节流件120a、第二节流件132a、第三节流件300a、第四节流件170可以为毛细管或电子膨胀阀或节流短管等,只要起节流和流通作用即可,可选电子膨胀阀。同时第三节流件300a为可节流也可全通的阀部件,当第三节流件300a全开,且冷却介质 不流经第二换热器300时,第二换热器300可做制冷介质连接通道用,因此第三节流件300a可选为大口径电子膨胀阀。
第一温度传感器133a与第二温度传感器120b可以为贴壁式传感器,也可为内嵌式传感器,样式不限制。
本实施例中的节流件,温度传感器、温度压力传感器仅以示例进行说明,若改变数量和改变位置,以及用起到相同作用的部件替换也属于权利保护范围。
冷却介质回路还包括第三换热器290,以用于冷却介质与车舱外气体介质的换热,第三换热器290内部流道有冷却介质流动,外部有空气流动,冷却介质在第三换热器290通过扁管、翅片与外部空气进行对流换热,向外界空气放热或吸热。第三换热器290与风机290a配合使用,风机290a设置在第三换热器290旁。
第三换热器290的进口与第一换热器120第二通道122的出口连通,第三换热器290的出口与第一泵210的进口连通。第一泵210、电机电控220、第一换热器120及第三换热器290首尾相连形成回路,在有些无需对电机电控220的余热进行回收和利用的模式下,此时电机电控220在此回路中进行电机电控220自循环冷却。
冷却介质回路还包括第二泵230与电池240,电池240的出口与第二泵230的进口连通,第二泵230的出口及电池240的进口连通于第二换热器300第四通道302的两侧。若电池240有余热可以进行回收或电池240需要被强制冷却时,流经电池240的冷却介质可以将电池240的余热带出,并在第二换热器300的第四通道302处放热,制冷介质则在第二换热器300的第三通道301处吸热,冷却介质与制冷介质在第二换热器300处进行热交换,以对电池240余热进行回收利用,避免能源浪费,节省能量和成本,同时,也可以实现电池240的强制冷却。本实施例中冷却介质回路结构简单,集成度高,系统更优化,能够实现多种模式的快速调整和转换。
在有些模式下,无需对电池240进行余热回收或强制冷却,此时第二泵230与电池240首尾连通形成回路,冷却介质在此回路中循环流动以均温电池240,以实现电池240自循环均温。
当冷却介质温度低于电池240要求运行温度范围时,热管理系统会发出电池240加热请求,此时可以利用电机电控220的余热为电池240加热,具体结构为第二泵230的出口、第一换热器120第二通道122的出口分别与电池240进口及第一泵210的进口连通。即第二泵230的出口与电池240的进口连接,且第一换热器120第二通道122的出口与第一泵210的进口连通。一部分冷却介质通过第二泵230的出口流入五通阀400的第五接口405,从第四接口404流出并流入电池240的进口,且另一部分冷却介质通过第一换热器120第 二通道122的出口流入五通阀400的第二接口402,从第四接口404流出并流入与第一泵210的进口。
第一泵210、电机电控220中流动的温度较高的冷却介质与第二泵230、电池240流动的温度较低的冷却介质混合形成中间温度的混合冷却介质,混合冷却介质流出后分为两路,一路流入第一泵210与电机电控220中,用于冷却电机电控220;另一路流入第二泵230、电池240中,用于加热电池240。从而通过冷却介质在电机电控220与电池240的连通后形成的回路中流动,利用电机电控220的余热对电池240进行加热,进一步对电机电控220的余热进行有效地回收和再利用,避免能量的浪费。且通过一个回路可以同时实现对电机电控220的冷却与电池240的加热,简化了热管理系统结构,降低成本。
通过本实施例中,电机电控220的余热可以用于制热,还可以用于电池240的加热,扩大了电机电控220余热的使用范围,进一步优化了热管理系统。
如图6所示,为了实现多种模式和功能的快速转换和调整,优化布局,汽车热管理系统还包括五通阀400,五通阀400包括第一接口401、第二接口402、第三接口403、第四接口404和第五接口405,第一接口401连通于第二换热器300中第四通道302的进口,第二接口402连通于第一换热器120中第二通道122的出口,第三接口403连通于第三换热器290的进口,第四接口404连通于电池240的进口及第一泵210的进口,第五接口405连通于第二泵230的出口。通过五通阀400各个接口之间的快速转换,实现不同模式的调整,从而提高了汽车热管理系统的集成度,简化了冷却介质通道,优化系统整体结构。五通阀400的接口处可以带有接头,单独使用,也可以与其他部件配合集成模块化使用。
冷却介质回路还包括第一三通管260、第二三通管270、四通管280与水壶250,水壶250用于为冷却介质回路补充冷却介质和排除空气。第一三通管260的第一接口与五通阀400的第四接口404连通,第一三通管260的第二接口与电池240的进口连通,第一三通管260的第三接口与第二三通管270的第二接口连通。第二三通管270的第一接口与四通管280的第四接口连通,第二三通管270的第三接口与第二换热器300的第四通道302连通,四通管280的第一接口与水壶250连通,四通管280的第二接口与第三换热器290的出口连通,四通管280的第三接口与第一泵210的进口连通。通过第一三通管260、第二三通管270与四通管280的设置,进一步提高了汽车热管理系统的集成度。
冷却介质回路中各部件相对位置仅是作为本申请说明,不代表最终选定位置,若改变相对位置能实现相同功能也属于本申请保护范围内。
本申请热管理系统中的各个零部件,如节流件、开关阀、泵、换热器、气液分离器、温度传感器等均能集成为一体,成为热管理系统模块,从而节省空间,提升新能源汽车性 能,并适用于多种车型。
下面,对本申请实施例所提供的便于集成的新能源汽车热管理系统100的几种运行模式进行举例:
模式一:制冷模式+电池240自循环模式
在高环境温度的工况下,新能源汽车热管理系统对乘员舱进行制冷模式。制冷模式运行时,空调箱130中鼓风机131打开,制冷介质回路中,第一开关阀141打开,第二开关阀142关闭,高温高压的制冷介质从压缩机110流出后通过第一开关阀141流入第一节流件120a和第一换热器120,第一节流件120a全开,此时第一换热器120冷凝放热,制冷介质从第一换热器120流出后流至第二节流件132a,在第二节流件132a处节流后进入空调箱130内的蒸发器132,制冷介质在蒸发器132处蒸发吸热后再经过气液分离器160回流至压缩机110。空调箱130中鼓风机131吸入的空气经过蒸发器132,与蒸发器132换热降温后吹入乘员舱。冷却介质回路中,冷却介质分为两部分循环,一部分冷却介质从第二泵230流出后从五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第四接口404;从五通阀400的第四接口404流出后经过第一三通管260进入电池240内部流道,从电池240内部流道中流出进入第二泵230进口,实现电池240的自循环均温。另一部分冷却介质从第一泵210流出后进入电机电控220,在电机电控220处吸热后再流入第一换热器120,冷却介质在第一换热器120处再次吸热后从五通阀400的第二接口402进入五通阀400,五通阀400内部流向为第二接口402→第三接口403;然后这一路冷却介质在五通阀400的第三接口403再流向第三换热器290,冷却介质在第三换热器290处散热后流向四通管280,通过四通管280的第二接口及第三接口流进第一泵210,形成电机电控220散热的循环。
模式二:制冷模式+电池240强制冷却模式
在制冷模式下,电池240温度超过热管理系统要求温度时,电池240运行强制冷却模式,制冷介质回路中,制冷介质从第一换热器120处冷凝放热后流出会分支两路,一路流入第二节流件132a,制冷介质在第二节流件132a处节流后进入空调箱130内的蒸发器132,在蒸发器132处蒸发吸热;另一路流入第三节流件300a,制冷介质在第三节流件300a处节流后进入第二换热器300,在第二换热器300处蒸发吸热后与流出蒸发器132的制冷介质在气液分离器160进口前汇合一起流至气液分离器160和压缩机110。冷却介质回路中,冷却介质分为两部分循环,一部分冷却介质从第二泵230流出后从五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第一接口401;从五通阀400的第一接口401流出后经过第二换热器300的第四通道302,再依次流经第二三通管270 的第三接口及第二接口、第一三通管260的第三接口及第二接口后,进入电池240内部流道,实现电池240的强制冷却。另一部分冷却介质从第一泵210流出后进入电机电控220,该部分冷却介质循环与上述过程一致,在此不再一一赘述。
模式三:双温区制冷模式
在制冷模式下实现乘员舱的主驾驶室和副驾驶室双温区制冷时,当空调箱130配置温度调节风门134可以通过调节空调箱130内的温度调节风门134实现,空调箱130中无温度调节风门134则需通过调节冷凝器133前的第一流量调节件151与第二流量调节件152实现。以调节第一流量调节件151与第二流量调节件152实现双温区制冷为例,制冷介质回路中,第一开关阀141打开,第一流量调节件151与第二流量调节件152其中之一打开,高温高压的制冷介质从压缩机110流出后分支两路,一路通过第一开关阀141,另一路通过空调箱130内冷凝器133的第一换热区1331或第二换热区1332,流通的换热区根据打开对应的流量调节件所定,从冷凝器133流出后的制冷介质与从第一开关阀141流出的制冷介质汇合进入第一节流件120a和第一换热器120,第一节流件120a全开,此时制冷介质在第一换热器120冷凝放热,制冷介质从第一换热器120流出后流至第二节流件132a,在第二节流件132a处节流后进入空调箱130内的蒸发器132,制冷介质在蒸发器132处蒸发吸热后再经过气液分离器160回流至压缩机110。空调箱130中鼓风机131吸入的空气经过蒸发器132,一部分空气直接换热降温后吹入乘员舱,另一部分空气经过蒸发器132换热后在经过冷凝器133的第一换热区1331或第二换热区1332换热吹入乘员舱,实现乘员舱双温区制冷模式。
模式四:制热模式+电池240自循环模式
在低温环境下,新能源汽车运行制热模式时,制冷介质回路中,第一开关阀141关闭,第二开关阀142打开,空调箱130中鼓风机131打开,高温高压的制冷介质从压缩机110流出后进入空调箱130内的冷凝器133,在冷凝器133处放热后流至第一节流件120a,制冷介质在第一节流件120a处节流,节流后的制冷介质经过第一换热器120,此时第一换热器120吸收电机电控220循环回路中的热量,第三换热器290吸收环境中的热量,从第一换热器120流出后流至第三节流件300a,第三节流件300a全开不节流,最后再依次经过第二换热器300和气液分离器160回流压缩机110,此时第二换热器300相当于连接通道,不与冷却介质进行热交换。空调箱130中鼓风机131吸入空气先经过蒸发器132,由于第二节流件132a关闭,制冷介质不流通蒸发器132,空气经过蒸发器132处不换热,然后再经过冷凝器133时,空气与冷凝器133中的制冷介质发生热交换,加热后的热空气吹入乘员舱。冷却介质回路中,冷却介质分两部分循环,一部分冷却介质从第二泵230流出后从 五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第四接口404;从五通阀400的第四接口404流出后经过第一三通管260进入电池240内部流道,从电池240内部流道中流出进入第二泵230进口,实现电池240自循环均温。另一部分冷却介质从第一泵210流出后进入电机电控220和第一换热器120,冷却介质在第一换热器120处放热后再从五通阀400的第二接口402进入五通阀400,五通阀400内部流向为第二接口402→第三接口403;然后这一路冷却介质在五通阀400的第三接口403再流向第三换热器290,冷却介质在第三换热器290处吸收环境热量后流向四通管280,由四通管280的第二接口及第三接口流进第一泵210。
模式五:制热模式+余热回收模式
新能源汽车在制热工况下电机电控220有热量可以进行余热回收时,运行余热回收制热模式。制冷介质回路中,第一开关阀141关闭,第二开关阀142打开,空调箱130中鼓风机131打开,高温高压的制冷介质从压缩机110流出后流至空调箱130内的冷凝器133,在冷凝器133处放热后流至第一节流件120a,在第一节流件120a处节流后依次经过第一换热器120,此时在第一换热器120吸收电机电控220循环回路中的热量,从第一换热器120流出至第三节流件300a,第三节流件300a打开节流,但开度偏大,从第三节流件300a流出的制冷介质在第二换热器300处继续吸热,然后再经过气液分离器160流回压缩机110。空调箱130中鼓风机131吸入空气经过蒸发器132后再经过冷凝器133,空气与冷凝器133中的制冷介质发生热交换,加热后的热空气吹入乘员舱。冷却介质回路中,冷却介质分为两部分循环,一路冷却介质从第二泵230流出后从五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第四接口404;从五通阀400的第四接口404流出后经过第一三通管260进入电池240内部流道,从电池240内部流道流出最后再流至第二泵230,实现电池240的自循环匀温。另一路冷却介质从第一泵210流出后进入电机电控220,在电机电控220内流道处吸热后经过第一换热器120放热,从第一换热器120流出后从五通阀400的第二接口402进入五通阀400,五通阀400内部流向为第二接口402→第一接口401,从五通阀400的第一接口401流出后流至第二换热器300,在第二换热器300处放热后再依次经过第二三通管270的第三接口及第一接口、四通管280的第四接口及第三接口后回流至第一泵210。若电池240也有较多余热的情况下也可切换五通阀400的内部流向参加到余热回收模式中,电池240冷却介质回路中由五通阀400内部流向第五接口405→第四接口404变为第五接口405→第一接口401。
模式六:双温区制热模式
在制热模式下实现乘员舱的主驾驶室和副驾驶室双温区制热时,当空调箱130配置温 度调节风门134可以通过调节空调箱130内的温度调节风门134实现,空调箱130中无温度调节风门134则需通过调节冷凝器133前的第一流量调节件151与第二流量调节件152实现。以调节第一流量调节件151与第二流量调节件152实现双温区制热为例,制冷介质回路中,空调箱130内鼓风机131打开,第一开关阀141关闭,第一流量调节件151及第二流量调节件152均打开,且开度不同,具体开度根据实际制热温度需求进行调节,压缩机110流出的高温高压制冷介质分别通过第一流量调节件151和第二流量调节件152进入空调箱130中冷凝器133的第一换热区1331和第二换热区1332,从冷凝器133流出后进入第一节流件120a和第一换热器120,制冷介质后续流动过程和单温区制热模式一致,在此不再一一赘述。空调箱130内鼓风机131吸入的空气先经过蒸发器132,由于第二节流件132a关闭,制冷介质不流通蒸发器132,空气经过蒸发器132处不换热,然后再经过冷凝器133的第一换热区1331和第二换热区1332,由于第一流量调节件151及第二流量调节件152的开度不同,流经两个不同换热区的制冷介质流量不同,空气经过冷凝器133第一换热区1331和第二换热区1332的换热量也会不同,不同温度的空气分别吹入乘员舱,实现乘员舱双温区制热模式。
模式七:除湿模式
当乘员舱内湿度过高时,整车热管理系统会发出除湿请求。除湿模式运行时,制冷介质回路中,第一开关阀141关闭,第二开关阀142打开,高温高压的制冷介质从压缩机110流出后进入空调箱130内的冷凝器133,制冷介质在冷凝器133处放热,在冷凝器133处放热后流至第一节流件120a,制冷介质在第一节流件120a处节流,节流后的制冷介质经过第一换热器120,在第一换热器120处可蒸发吸热,也可冷凝放热,需根据环境温度和逻辑控制第一节流件120a阀的开度决定,从第一换热器120流出后至第二节流件132a,制冷介质在第二节流件132a处节流后进入蒸发器132,制冷介质在蒸发器132处蒸发吸热,最后再经过气液分离器160回流压缩机110。若制冷介质温度较低易会造成蒸发器132表面结霜,这时可结合第三节流件300a和第二换热器300除湿,具体除湿方式在上文中以具体描述,在此不再赘述。空调箱130内鼓风机131吸入乘员舱内的湿空气经过蒸发器132换热减湿后再经过冷凝器133升温,然后吹入到乘员舱,如此循环,实现乘员舱的除湿。冷却介质回路中,除湿工况下是要将冷却介质控制在合适的温度,不触发电池240冷却的情况下,满足乘员舱的制冷制热请求。一般情况下,电池240不需要加热或强制冷却,可选择电池240自循环运行或与电机电控220连接第三换热器290循环运行,具体运行模式可根据环境温度进行热管理系统逻辑控制切换。
模式八:电池240强制冷却模式
当电池240温度高于热管理系统要求温度范围时,制冷介质回路中,第一开关阀141打开,第二开关阀142关闭,空调箱130中鼓风机131关闭,高温高压的制冷介质从压缩机110流出后进入第一节流件120a和第一换热器120,第一节流件120a全开,此时第一换热器120冷凝放热,制冷介质从第一换热器120流出后流至第三节流件300a,在第三节流件300a处节流后进入第二换热器300,制冷介质在第二换热器300处蒸发吸热后再经过气液分离器160回流至压缩机110。冷却介质回路中,冷却介质分为两部分循环,一部分冷却介质从第二泵230流出后从五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第一接口401;从五通阀400的第一接口401流出后进入第二换热器300的第四通道302放热,然后经过第二三通管270,第一三通管260进入电池240内部流道,从电池240内部流道中流出进入第二泵230进口,实现电池240的强制冷却。另一部分冷却介质从第一泵210流出后进入电机电控220吸热后再流入第一换热器120,冷却介质在第一换热器120处再次吸热后从五通阀400的第二接口402进入五通阀400,五通阀400内部流向为第二接口402→第三接口403;然后这一路冷却介质在五通阀400的第三接口403再流向第三换热器290,冷却介质在第三换热器290处散热后流向四通管280,由四通管280的第二接口及第三接口流进第一泵210,形成一个电机电控220散热的循环。
模式九:电池240快充冷却模式
当整车进行电池240快速充电时,一般会造成电池240热量过高影响电池240充电速率和寿命,此时整车热管理系统会运行电池240快充冷却模式。电池240快充冷却模式运行时,制冷介质回路中,第一开关阀141关闭,第二开关阀142打开,空调箱130中鼓风机131打开,高温高压的制冷介质从压缩机110流出后流入冷凝器133冷凝放热到乘员舱后流出进入第一节流件120a和第一换热器120,第一节流件120a全开,制冷介质在第一换热器120中再次冷凝放热流至第三节流件300a,制冷介质在第三节流件300a处节流后进入第二换热器300,制冷介质在第二换热器300处蒸发吸热后再经过气液分离器160回流至压缩机110。当整车电量充入80%-90%时,第一开关阀141打开,第二开关阀142关闭,空调箱130切换制冷模式,制冷介质流经蒸发器132蒸发吸热,给乘员舱降温。冷却介质回路中与电池240强制冷却模式过程一致,在此不再一一赘述。
模式十:电池240热泵加热模式
当冷却介质温度低于电池240要求温度范围时,整车热管理系统会发出电池240加热请求。此时可用热泵加热电池240,可以利用压缩机110自加热来加热电池240,可用电池240自发热加热,可用电机堵转发热加热,也可利用电机电控220余热进行加热。电池240 热泵加热模式运行时,制冷介质回路中,第一开关阀141打开,第二开关阀142关闭,空调箱130中鼓风机131关闭,高温高压的制冷介质从压缩机110流出后流入第一节流件120a和第一换热器120,第一节流件120a全开不节流,制冷介质在第一换热器120处冷凝放热后流至第三节流件300a,制冷介质在第三节流件300a节流后再在第二换热器300处蒸发吸热,最后再经过气液分离器160回流至压缩机110。冷却介质回路中,冷却介质分为两路循环,一路冷却介质从第一泵210流出后流经电机电控220和第一换热器120,在第一换热器120处吸热后从五通阀400的第二接口402流至五通阀400,五通阀400内部流向为第二接口402→第一接口401。另一路冷却介质从第二泵230流出后从五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第一接口401,两路冷却介质在五通阀400的第一接口401处汇合后流至第二换热器300,在第二换热器300处放热,再流至第二三通管270,在第二三通管270处分为两路,一路经过第二三通管270的第二接口、第一三通管260的第三接口及第二接口流至电池240给电池240加热后回流出至第二泵230,另一路经过第二三通管270的第一接口、四通管280的第四接口及第三接口回流至第一泵210。冷却介质在第一换热器120处吸热后又在第二换热器300处放热,但是冷却介质在第一换热器120处的吸热量远远大于在第二换热器300处的放热量,总体来说冷却介质通过此循环温度升高,流动到电池240内可以起到电池240加热效果。
模式十一:电池240利用电机电控220余热加热模式
电机电控220余热回收加热电池240模式运行时,冷却介质回路中,冷却介质分为两路循环,一路冷却介质从第一泵210流出后流经电机电控220,在电机电控220内流道吸热后再流经第一换热器120从五通阀400的第二接口402流至五通阀400,五通阀400内部流向为第二接口402→第四接口404;另一路冷却介质从第二泵230流出后从五通阀400的第五接口405进入五通阀400,五通阀400内部流向为第五接口405→第四接口404,两路冷却介质在五通阀400的第四接口404处汇合后流至第一三通管260,从第一三通管260流出分支两路,一路从第一三通管260的第二接口流至电池240给电池240加热,然后流出至第二泵230。另一路从第一三通管260的第三接口流经第二三通管270的第二接口及第一接口、四通管280的第四接口及第三接口回流至第一泵210。
模式十二:压缩机110自加热制热乘员舱模式
在较低温环境下,汽车在冷启动且乘员舱制热时,整车热管理系统会切换至压缩机110自加热制热乘员舱模式,将压缩机110的出口处气态冷却介质引致气液分离器160进口处以增加吸气密度,进而提高整车热管理的制热能力。压缩机110自加热制热乘员舱模式运行时,制冷介质回路中,第一开关阀141关闭,第二开关阀142打开,空调箱130内鼓风 机131打开,高温高压的制冷介质从压缩机110流出后,分为两路,一部分制冷介质进入空调箱130内的冷凝器133,在冷凝器133处放热后流至第一节流件120a,制冷介质在第一节流件120a处节流后流经第一换热器120然后进入第三节流件300a,第三节流件300a全开不节流,制冷介质从第三节流件300a流出后再流经第二换热器300至气液分离器160进口前。另一路制冷介质由压缩机110流出后经过第四节流件170节流后流至气液分离器160进口之前,两路制冷介质在气液分离器160进口处汇合后再经过气液分离器160回流至压缩机110。空调箱130内鼓风机131吸入空气经过蒸发器132在流入冷凝器133,与冷凝器133内制冷介质进行热交换,吸热后的空气吹入乘员舱。冷却介质回路由于电池240通过热泵加热或自发热加热或电机堵转发热加热或压缩机110自加热已有热量,此时可以通过自循环进行匀温。电机电控220冷却介质回路第一泵210关闭,此时冷却介质回路不循环流动,第一换热器120的第一通道121和第二通道122不发生热交换。
一种便于集成的新能源汽车热管理系统100运行模式包括但不局限于以上所列述的运行模式。
本申请热管理系统制冷介质回路结构简单,用作节流、通断、控制流向功能的阀件相对较少,既可对应用户不同功能需求时适配性强,也可以适配多种冷却介质回路更加便于集成模块化,同时相对相关技术中的热管理系统技术成本低。
且本申请热管理系统取消外部换热器,利用液液换热的第一换热器120来代替外部换热器,第一换热器120与外部换热器性能相当,且体积小,更便于集成,而且取消外部换热器更节省整车前舱利用空间。在低温环境下热泵制热时,使用第三换热器290作为与外界换热部件,第三换热器290很少结霜或不结霜,这样可以保证冷凝器133的稳定供热,即保证乘员舱的热舒适性。
同时,本申请热管理系统中无PTC(Positive Temperature Coefficient)零部件,在冷媒回路增加第一换热器120,并在压缩机110回路增加第四节流件170以实现压缩机110自加热功能,从而热管理系统可利用电池240自发热加热,或热泵加热电池240,或电机堵转发热加热,或电机电控220余热回收加热电池240,或压缩机110自加热实现电池240加热,既可以控制电池240在要求的温度下工作,同时也解决了利用PTC加热的耗电、影响电池续航里程问题。
最后,本申请中的便于集成的新能源汽车热管理系统100模式多,适用工况范围宽、适配性强,可以满足整车在不同工况下乘员舱与电池240及电机电控220的热管理需求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛 盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的专利保护范围应以所附权利要求为准。

Claims (11)

  1. 一种便于集成的新能源汽车热管理系统,其特征在于,包括:
    制冷介质回路,包括依次首尾连通的压缩机、第一换热器和换热组件,所述第一换热器包括相互隔离的第一通道与第二通道,所述压缩机的出口连通于所述第一通道,所述换热组件的两端分别连通于所述第一通道及所述压缩机的进口;
    冷却介质回路,包括第一泵与电机电控,所述第一泵的出口与所述电机电控的进口连通,所述电机电控的出口与所述第一泵的进口分别连通于所述第二通道的两端;
    流经所述第一通道的所述制冷介质与流经所述第二通道的所述冷却介质在所述第一换热器中换热。
  2. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述新能源汽车热管理系统还包括空调箱,所述换热组件包括设于所述空调箱的蒸发器,所述蒸发器的一端连通于所述压缩机进口,另一端连通于所述第一通道,所述制冷介质回路还包括设于所述空调箱内的冷凝器,所述冷凝器的一端连通于所述压缩机出口,另一端连通于所述第一通道;所述第一通道进口前设有第一节流件,所述蒸发器进口前设有第二节流件。
  3. 根据权利要求2所述的便于集成的新能源汽车热管理系统,其中,所述制冷介质回路还包括第一开关阀与第二开关阀,所述第一开关阀连接于所述压缩机的出口与所述第一通道的进口之间;所述第二开关阀连接于所述压缩机的出口与所述冷凝器的进口之间。
  4. 根据权利要求2所述的便于集成的新能源汽车热管理系统,其中,所述冷凝器至少包括第一换热区与第二换热区,所述压缩机与所述第一换热区的进口前设有第一流量调节件,所述压缩机与所述第二换热区的进口前设有第二流量调节件。
  5. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述换热组件包括第二换热器,所述第二换热器具有第三通道与第四通道,所述第三通道的进口与所述第一通道的出口连通,所述第三通道的出口与所述压缩机的进口连通,所述第三通道的进口前设有第三节流件;所述第四通道的进口与所述第二通道的出口连通,所述第四通道的出口与所述第一泵的进口连通。
  6. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述换热组件包括第二换热器,所述第二换热器具有相互隔离的第三通道与第四通道,所述第三通道的进口与所述第一通道的出口连通,所述第三通道的出口与所述压缩机的进口连通,所述第三通道的进口前设有第三节流件;所述冷却介质回路还包括第二泵与电池,所述电池的出口与所述第二泵的进口连通,所述第二泵的出口及所述电池的进口分别连通于所述第四通道 的两侧。
  7. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述制冷介质回路还包括第四节流件,所述第四节流件的一端连接于所述压缩机的出口,另一端连接于所述压缩机的进口。
  8. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述冷却介质回路还包括首尾连通的第二泵与电池,所述冷却介质在所述第二泵与所述电池形成的回路中循环流动以冷却所述电池。
  9. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述冷却介质回路还包括第三换热器,以用于冷却介质与车舱外气体介质的换热,所述第三换热器的进口与所述第二通道的出口连通,所述第三换热器的出口与所述第一泵的进口连通。
  10. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述冷却介质回路还包括第二泵与电池,所述第二泵的出口、所述第二通道的出口与所述电池进口及所述第一泵的进口连通。
  11. 根据权利要求1所述的便于集成的新能源汽车热管理系统,其中,所述冷却介质回路还包括第二泵与电池,所述第二泵的出口与所述电池的进口连通,所述第二通道的出口与所述第一泵的进口连通。
PCT/CN2022/141462 2022-03-10 2022-12-23 便于集成的新能源汽车热管理系统 WO2023169047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210240081.7A CN114701323B (zh) 2022-03-10 2022-03-10 一种便于集成的新能源汽车热管理系统
CN202210240081.7 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023169047A1 true WO2023169047A1 (zh) 2023-09-14

Family

ID=82169235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141462 WO2023169047A1 (zh) 2022-03-10 2022-12-23 便于集成的新能源汽车热管理系统

Country Status (2)

Country Link
CN (1) CN114701323B (zh)
WO (1) WO2023169047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118010179A (zh) * 2024-04-10 2024-05-10 苏州新立本电子有限公司 一种自适应贴合的ntc贴壁式管路温度传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114701323B (zh) * 2022-03-10 2024-04-16 浙江银轮机械股份有限公司 一种便于集成的新能源汽车热管理系统
CN117818287A (zh) * 2022-09-29 2024-04-05 比亚迪股份有限公司 热管理系统和具有其的车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108501658A (zh) * 2018-06-12 2018-09-07 上海加冷松芝汽车空调股份有限公司 一种热管理系统及汽车
DE102017121188B3 (de) * 2017-09-13 2019-02-21 Borgward Trademark Holdings Gmbh Fahrzeug-Thermomanagementsystem und Fahrzeug
CN112477554A (zh) * 2020-12-03 2021-03-12 安徽江淮松芝空调有限公司 一种用于电动汽车热泵的电池热管理系统
CN113954601A (zh) * 2021-11-15 2022-01-21 安徽江淮汽车集团股份有限公司 一种新能源电动汽车的热管理系统
CN114701323A (zh) * 2022-03-10 2022-07-05 浙江银轮机械股份有限公司 一种便于集成的新能源汽车热管理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017121188B3 (de) * 2017-09-13 2019-02-21 Borgward Trademark Holdings Gmbh Fahrzeug-Thermomanagementsystem und Fahrzeug
CN108501658A (zh) * 2018-06-12 2018-09-07 上海加冷松芝汽车空调股份有限公司 一种热管理系统及汽车
CN112477554A (zh) * 2020-12-03 2021-03-12 安徽江淮松芝空调有限公司 一种用于电动汽车热泵的电池热管理系统
CN113954601A (zh) * 2021-11-15 2022-01-21 安徽江淮汽车集团股份有限公司 一种新能源电动汽车的热管理系统
CN114701323A (zh) * 2022-03-10 2022-07-05 浙江银轮机械股份有限公司 一种便于集成的新能源汽车热管理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118010179A (zh) * 2024-04-10 2024-05-10 苏州新立本电子有限公司 一种自适应贴合的ntc贴壁式管路温度传感器
CN118010179B (zh) * 2024-04-10 2024-05-31 苏州新立本电子有限公司 一种自适应贴合的ntc贴壁式管路温度传感器

Also Published As

Publication number Publication date
CN114701323B (zh) 2024-04-16
CN114701323A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN112543709B (zh) 一种热管理系统及电动汽车
WO2023169047A1 (zh) 便于集成的新能源汽车热管理系统
CN114734778B (zh) 一种集成式模块化整车热管理系统
WO2014173201A1 (zh) 空调系统及热交换器
WO2023169048A1 (zh) 一种新能源汽车整车热管理系统
CN210821724U (zh) 一种热管理系统及其新能源汽车
CN109968940B (zh) 一种应用于电动汽车的空调系统及电动汽车
CN115675013A (zh) 新能源电动汽车多工况整车热管理系统及方法
CN113173050A (zh) 热管理系统
CN113561731B (zh) 一种整车热管理系统和电动车
CN109624650B (zh) 一种车用空调系统
CN110186222B (zh) 热泵空调系统及车辆
CN113173049A (zh) 热管理系统
WO2023160198A1 (zh) 汽车热管理系统及新能源汽车
CN217778281U (zh) 车辆热管理系统和具有其的车辆
CN110345658A (zh) 一种用于新能源车辆的热泵系统及车辆
CN116476592A (zh) 一种新能源汽车热管理系统及汽车
CN114987138A (zh) 汽车的热管理系统及汽车
CN217374081U (zh) 一种基于余热回收的新能源汽车热管理系统及新能源汽车
CN221162111U (zh) 热泵系统及车辆
WO2024230810A1 (zh) 热管理系统和具有其的车辆
CN221819830U (zh) 一种热泵系统及车辆
CN118306176B (zh) 热管理系统、热管理系统的控制方法、电子装置和车辆
CN221913972U (zh) 汽车空调集成热管理系统
CN221023691U (zh) 一种储能式轨道车辆的综合热管理系统总成及储能式轨道车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930666

Country of ref document: EP

Kind code of ref document: A1