Nothing Special   »   [go: up one dir, main page]

WO2023166740A1 - 駆動装置、内視鏡システムおよび駆動方法 - Google Patents

駆動装置、内視鏡システムおよび駆動方法 Download PDF

Info

Publication number
WO2023166740A1
WO2023166740A1 PCT/JP2022/009558 JP2022009558W WO2023166740A1 WO 2023166740 A1 WO2023166740 A1 WO 2023166740A1 JP 2022009558 W JP2022009558 W JP 2022009558W WO 2023166740 A1 WO2023166740 A1 WO 2023166740A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
drive
unit
driving
driver
Prior art date
Application number
PCT/JP2022/009558
Other languages
English (en)
French (fr)
Inventor
悠示 榊
幸太 小川
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2022/009558 priority Critical patent/WO2023166740A1/ja
Publication of WO2023166740A1 publication Critical patent/WO2023166740A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present disclosure relates to a driving device, an endoscope system, and a driving method.
  • Patent Document 1 described above a strong impact that occurs in a narrow space such as an endoscope is not assumed, and when the lens moves from the stop position due to an external impact, the lens position is changed. cannot be detected. As a result, in Patent Document 1 described above, there is a possibility that the lens cannot be moved to a desired position, and in order to hold the lens at a predetermined position, the tip portion heats up by continuously applying a high voltage. There was a problem that the
  • the present disclosure has been made in view of the above, and aims to provide a driving device, an endoscope system, and a driving method that can be made thinner and shorter.
  • the driving device includes a fixed portion, a movable portion provided slidably inside the fixed portion and holding a lens, and the fixed portion. a drive unit for sliding the movable unit along the optical axis direction of the lens, a drive driver for supplying current to the drive unit, and a control unit for controlling the drive driver,
  • the controller comprises a processor having hardware, the processor causes the drive to supply a first current to the drive driver and a second current greater than the first current to the drive driver.
  • the driving driver is caused to repeatedly perform the supply at a predetermined cycle.
  • the processor causes the second current to be supplied after a predetermined time has elapsed after supplying the first current.
  • the processor causes the first current to be supplied again after supplying the second current for a predetermined time.
  • the processor has a longer supply period for supplying the first current than a supply period for supplying the second current.
  • the processor when a focus switching signal instructing focus switching is input, switches the direction of the current supplied by the drive driver to the driving unit, thereby 1 current and said second current.
  • the processor when the focus switching signal is input, the processor causes the driving driver to supply the first current during a supply period during which the driving driver supplies the first current. Switches the direction of the current supplied to the part.
  • the processor causes the driving driver to supply the current to the second current within a predetermined time.
  • the predetermined period is 100 to 500 ms.
  • the predetermined period is 300 to 500 ms.
  • the predetermined period is 500 ms.
  • the driving section includes a voice coil motor having a magnet and a coil.
  • the magnet includes a first magnet and a second magnet provided on different outer peripheral surfaces of the movable portion.
  • an endoscope system includes an endoscope that has an optical unit, is inserted into the inside of a subject and observes the inside of the subject, and is detachably connected to the endoscope, a control device for controlling driving of the optical unit, wherein the optical unit includes a fixed portion, a movable portion provided slidably inside the fixed portion, and holding a lens; and a drive section for sliding the movable section along the optical axis direction of the lens, wherein the control device includes a drive driver for supplying current to the drive section, and a control section for controlling the drive driver.
  • control unit includes a processor having hardware, the processor causes the drive unit to supply a first current to the drive driver, and causes the drive driver to supply the first current at a predetermined cycle. repeatedly causing the drive driver to supply a second current greater than the current of .
  • the driving method includes: a fixed part; a movable part provided slidably inside the fixed part and holding a lens; A driving method executed by a driving device comprising a driving section that slides along an axial direction and a driving driver that supplies a current to the driving section, wherein a first current is applied to the driving section. A driving driver is caused to supply a second current larger than the first current at a predetermined cycle.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to one embodiment.
  • FIG. 2 is an exploded perspective view showing the configuration of the optical unit according to one embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of the essential parts of the optical unit when viewed from a cross-sectional plane passing through the axis O in FIG.
  • FIG. 4 is a cross-sectional view of the optical unit when viewed along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the optical unit when viewed from a cross-sectional plane passing through line VV in FIG.
  • FIG. 6 is a perspective view showing the configuration of a movable portion according to one embodiment.
  • FIG. 7 is a top view of a movable section according to one embodiment.
  • FIG. 8 is a block diagram showing the functional configuration of the endoscope system according to one embodiment.
  • FIG. 9 is a flowchart showing an outline of driving processing for the optical unit 10 executed by the endoscope system according to one embodiment.
  • FIG. 10 is a timing chart showing an outline of driving processing for the optical unit executed by the endoscope system according to the embodiment.
  • FIG. 11 is a diagram schematically illustrating a state in which the position of the movable portion relative to the fixed portion is stopped at the Normal position according to one embodiment.
  • FIG. 12 is a diagram schematically illustrating a state in which the position of the movable portion relative to the fixed portion is stopped at the Near position (enlarged) according to one embodiment.
  • FIG. 13 is a diagram showing a table showing an example of comparison results of effective currents for each cycle in which the driver according to the embodiment applies the first current and the second current.
  • 14 is a top view of a movable portion according to a modification of one embodiment; FIG.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to one embodiment.
  • An endoscope system 1 shown in FIG. 1 includes an endoscope 2 , a control device 3 and a display device 4 .
  • the endoscope 2 can be introduced into a subject such as a human body, and images a predetermined observation site within the subject to generate imaging data.
  • the subject into which the endoscope 2 is introduced is not limited to the human body, and may be other living organisms or artificial objects such as machines and buildings.
  • the endoscope 2 may be a flexible or rigid medical endoscope, or an industrial endoscope.
  • a medical endoscope such as a nasal endoscope will be described below as the endoscope 2 .
  • the endoscope 2 includes an insertion section 21 inserted into the subject, an operation section 22 positioned at the proximal end of the insertion section 21, and a universal cord 23 as a composite cable extending from the operation section 22. Prepare.
  • the insertion portion 21 has a distal end portion 211 disposed at the distal end thereof and irradiating an object in the subject with illumination light, a bendable bending portion 212 disposed on the proximal end side of the distal end portion, and a bending portion. 212 and connected to the distal end of the operating portion 22, and a flexible tube portion 213 having flexibility. Further, the distal end portion 211 is provided with an imaging section 214 that collects light from a subject and captures a subject image of the subject.
  • the imaging unit 214 includes an optical unit 10 that collects light from a subject to form a subject image, and an imaging device that receives the subject image formed by the optical unit 10 and photoelectrically converts the subject image to generate imaging data. and have The imaging element is configured using an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). The detailed configurations of the optical unit 10 and the imaging device will be described later.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the operation unit 22 has an angle operation unit 221 that operates the bending state of the bending unit 212, and a zoom operation unit 222 that outputs a focus switching signal instructing zoom operation in the optical unit 10, which will be described later.
  • the angle operation unit 221 is formed in a knob shape
  • the zoom operation unit 222 is formed in a lever shape. and other forms such as toggle switches.
  • the universal cord 23 is a member that connects the operation unit 22 and the control device 3 .
  • the endoscope 2 is connected to the control device 3 through a connector 231 provided at the proximal end of the universal cord 23 .
  • a cable 24 such as a wire, an electric wire and an optical fiber is inserted through the insertion portion 21, the operation portion 22 and the universal cord 23.
  • the control device 3 controls each part that configures the endoscope system 1 and controls the entire endoscope system 1 in an integrated manner.
  • the control device 3 supplies illumination light for illuminating a subject to the endoscope 2, and outputs image data obtained by performing various image processing on imaging data generated by the imaging unit 214 to the display device 4. do.
  • the control device 3 is configured using a processor having hardware such as a memory, a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable Gate Array). A detailed configuration of the control device 3 will be described later.
  • the display device 4 displays a display image corresponding to image data input from the control device 3 under the control of the control device 3 .
  • the display device 4 is configured using a liquid crystal display, an organic EL display (Organic Electroluminescent Display), or the like.
  • FIG. 2 is an exploded perspective view showing the configuration of the optical unit.
  • FIG. 3 is a cross-sectional view showing the configuration of the main parts of the optical unit 10 when viewed along a cross-section passing through the axis O in FIG.
  • FIG. 4 is a cross-sectional view of the optical unit 10 as viewed along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the optical unit 10 as viewed along the line VV in FIG.
  • the side opposite to the object side in the direction of the axis O will be referred to as the image side. That is, in the optical unit 10 shown in FIG. 2, the left side is the object side and the right side is the image side.
  • the central axis of each member may also be referred to as the axis O. This is because the central axis of the member coincides with the axis O during assembly.
  • the optical unit 10 shown in FIGS. 2 to 5 includes a fixed portion 11 having a cylindrical shape, a movable portion 12 that can slide inside the fixed portion 11, and a movable portion 12 that is positioned relative to the fixed portion 11 along the optical axis of the lens. and a voice coil motor 13 that generates a driving force for sliding and moving along a direction.
  • the voice coil motor 13 functions as a driving section.
  • the fixed portion 11 holds a fixed portion main body 14 and an object side fixed lens group Gf closer to the object side than the movable lens group Gv held by the movable portion 12, and a front frame portion attached to the object side of the fixed portion main body 14. 15, and a rear frame portion 16 that holds the image side fixed lens group Gb on the image side of the movable lens group Gv and is attached to the image side of the fixed portion main body 14. As shown in FIG.
  • the fixed part main body 14 is made of a cylindrical member centered on the axis O.
  • the fixed portion main body 14 has a first cylindrical portion 141 having the axis O as a central axis, and a second cylindrical portion 142 formed on the image side in the direction of the axis O with respect to the first cylindrical portion 141 .
  • the stationary part body 14 has a rotational symmetry of 90° with respect to the axis O.
  • the first cylindrical portion 141 has a cylindrical shape smaller than the outer diameter of the second cylindrical portion 142 .
  • Two penetrating portions 141a are formed in the upper and lower surfaces of the first cylindrical portion 141 so as to penetrate in a direction orthogonal to the axis O (radial direction).
  • the first cylindrical portion 141 is formed with two penetrating portions 141a penetrating in the radial direction of the first cylindrical portion 141, symmetrically with respect to the longitudinal axis O of the first cylindrical portion 141.
  • the radially inner surface of the first cylindrical portion 141 excluding the through portion 141 a is a cylindrical cylindrical surface serving as a fixed side sliding surface 141 b that guides and supports the movable portion 12 .
  • two rail portions 141c extending in the direction of the axis O are formed on the inner peripheral surface of the first cylindrical portion 141.
  • the penetrating portion 141a and the rail portion 141c are respectively formed vertically in a cross section taken along a plane orthogonal to the axis O. As shown in FIG.
  • the second cylindrical portion 142 has a stepped portion 142a formed by protruding the image-side end portion of the outer peripheral portion. A part of the second tubular portion 142 is housed in the front frame portion 15 , and the stepped portion 142 a contacts the front frame portion 15 . Also, the second tubular portion 142 accommodates the rear frame portion 16 therein.
  • the front frame portion 15 holds the object-side fixed lens group Gf.
  • the object-side fixed lens group Gf includes a plurality of lenses including an objective lens Lf1 (here, objective lens Lf1 and lens Lf2) arranged side by side in the axis O direction.
  • the rear frame portion 16 holds the image side fixed lens group Gb.
  • the image-side fixed lens group Gb includes a lens Lb1 and a lens Lb2 arranged in the axis O direction. A part of the rear frame portion 16 is accommodated in the second tubular portion 112 .
  • FIG. 6 is a perspective view showing the configuration of the movable portion 12.
  • FIG. 7 is a top view of the movable portion 12.
  • the movable portion 12 shown in FIGS. 6 and 7 is a tubular member having an outer peripheral portion 121 and an inner peripheral portion 122 .
  • the central axis of the movable portion 12 is also referred to as the axis O below. This is because the central axis of the movable portion 12 and the central axis of the fixed portion main body 14 coincide during assembly.
  • the outer peripheral portion 121 includes, from its outer peripheral surface, a cylindrical portion 123 functioning as a movable-side sliding surface, object-side rotation restricting portions 124 formed on upper and lower surfaces of both ends of the cylindrical portion 123 in the direction of the axis O, and image-side rotation restricting portions 124, respectively. It has a regulating portion 125 and a stepped portion 126 .
  • the cylindrical portion 123, the object-side rotation restricting portion 124, the image-side rotation restricting portion 125, and the stepped portion 126 may be configured as an integral member or may be configured as separate members.
  • the object-side rotation restricting portion 124 and the image-side rotation restricting portion 125 are formed with a groove portion 124a and a groove portion 125a having planar outer peripheral surfaces formed radially outwardly of the cylinder portion 123 .
  • the object-side rotation restricting portion 124 and the image-side rotation restricting portion 125 are slidably held by the rail portions 141c of the fixed portion main body 14, thereby moving the movable portion 12 back and forth along the axis O while moving the movable portion 12 forward and backward. Rotation of the portion 12 around the axis O is restricted. As a result, it is possible to prevent vibration when the movable portion 12 is moved.
  • the stepped portion 126 is formed radially outward from the tubular portion 123 and has a planar outer peripheral surface.
  • a magnet 17 is arranged on the upper surface of the stepped portion 126 .
  • the width d1 of the grooves 124a and 125a in the circumferential direction on the plane orthogonal to the axis O in the movable part 12 is formed to have a length that substantially matches the width d2 of the magnet 17 in the circumferential direction on the same plane. Thereby, the magnet 17 can be easily arranged on the plane of the step portion 126 .
  • the movable part 12 holds the movable lens group Gv. Specifically, the movable section 12 holds the movable first lens Lv1 of the movable lens group Gv. As shown in FIGS. 2 to 7, the image side of the movable first lens Lv1 is preferably in contact with the inner peripheral side.
  • the movable part 12 configured in this manner is inserted into the fixed part main body 14 while the cylindrical part 123 is in contact with the fixed-side sliding surface 141b.
  • the movable portion 12 is configured using a material such as stainless steel, aluminum, or resin, for example.
  • the voice coil motor 13 includes a coil 18 arranged in the fixed portion main body 14 of the fixed portion 11, a magnet 17 arranged in the movable portion so as to oppose the coil 18, have
  • the coil 18 is arranged in a state of being wound around the outer periphery of the first cylindrical portion 141 of the fixed portion main body 14 .
  • the coil 18 may be pre-wound and then installed.
  • the coil 18 has a cylindrical portion 181 facing the through portion 141 a of the fixing portion main body 114 and a flat portion 182 facing the side surface of the fixing portion main body 14 .
  • the coil 18 is formed by alternately arranging two cylindrical portions 181 and two flat portions 182 in a cross section perpendicular to the axis O. As shown in FIG.
  • the magnet 17 is arranged inside the cylindrical portion 181 of the coil 18 at the stepped portion 126 of the movable portion 12 along the direction of the axis O so as to face the cylindrical portion 106. .
  • the voice coil motor 13 configured in this way, a stable magnetic field is formed, and it is possible to suppress the shaking of the movable part 12 moving with respect to the fixed part 11 .
  • the magnets 17 (the first magnets and the second magnets) are arranged at 180° intervals around the axis O, but the magnets 17 may be arranged at other angular intervals.
  • FIG. 8 is a block diagram showing the functional configuration of the endoscope system 1. As shown in FIG. As shown in FIG. 8, the endoscope system 1 includes an endoscope 2, a control device 3, and a display device 4.
  • the endoscope 2 includes at least a distal end portion 211 , an operating portion 22 and a universal cord 23 .
  • the imaging unit 214 has an imaging device 216 and a driving unit 217 .
  • the imaging device 216 Under the control of the control device 3, which will be described later, the imaging device 216 generates imaging data of the subject image formed by the lens group of the optical unit 10 described above, and outputs the generated imaging data to the control device 3.
  • the drive unit 217 is configured by the voice coil motor 13 of the optical unit 10 described above, and drives the movable unit 12 and the movable lens group Gv held by the movable unit 12 along the axis O under the control of the control device 3, which will be described later. move.
  • the illumination lens 215 irradiates the subject with illumination light supplied from the control device 3 to be described later via the light guide of the universal cord 23 or the like.
  • Illumination lens 215 is configured using one or more lenses.
  • the operation unit 22 includes at least the zoom operation unit 222 described above, an endoscope control unit 224 that controls driving of the driving unit 217 and the imaging device 216, and an endoscope recording unit that records various information about the endoscope 2. 225 and .
  • the endoscope control unit 224 is configured using a memory and a processor having hardware such as a CPU, FPGA, and ASIC.
  • the endoscope control section 224 controls the imaging element 216 and the drive section 217 according to the control signal of the control signal transmitted from the control device 3 and the focus switching signal from the zoom operation section 222 .
  • the endoscope control unit 224 performs predetermined image processing on imaging data input from the imaging element 216 and outputs the processed data to the control device 3 .
  • the endoscope recording unit 223 is configured using flash memory, ROM and RAM, and records various information about the endoscope 2 . Specifically, the endoscope recording unit 223 records the type information of the endoscope 2, the identification information of the endoscope 2, the manufacturing date of the endoscope 2, and the like.
  • the control device 3 includes an AC/DC conversion section 31, a DC/DC conversion section 32, a first detection section 33, a drive driver 34, a second detection section 35, a light source driver 36, and a light source section 37. , a transmission/reception unit 38 , a communication unit 39 , a recording unit 40 , and a processor control unit 41 .
  • the AC/DC converter 31 converts the alternating current supplied from the external power supply into a direct current and outputs it to the DC/DC converter.
  • the AD/DC converter 31 is configured using a switching regulator or the like.
  • the DC/DC conversion unit 32 converts the direct current input from the AC/DC conversion unit 31 into a predetermined voltage value, and converts each unit constituting the control device 3, such as the drive driver 34, the light source driver 36, and the processor control unit. 41.
  • the DC/DC converter 32 is configured using a linear regulator, a switching regulator, or the like.
  • the first detection unit 33 is electrically connected in parallel and in series to the wiring that electrically connects the DC/DC conversion unit 32 and the processor control unit 41 .
  • the first detection unit 33 detects the current value and voltage value output by the DC/DC conversion unit 32 and outputs the detection result to the processor control unit 41 .
  • the first detection unit 33 is configured using a voltage sensor, a current sensor, and the like.
  • the drive driver 34 drives the drive unit 217 of the endoscope 2 using the DC current adjusted to a predetermined voltage value input from the DC/DC conversion unit 32.
  • supply a predetermined current for The drive driver 34 is configured using, for example, an H bridge circuit or the like.
  • the second detection unit 35 is electrically connected in series and parallel to the wiring that electrically connects the driver 34 and the driving unit 217 .
  • the second detection unit 35 detects the current value and voltage value supplied by the drive driver 34 and outputs the detection result to the processor control unit 41 .
  • the second detection unit 35 is configured using a current sensor, a voltage sensor, and the like.
  • the light source driver 36 uses the DC current input from the DC/DC conversion section 32 to supply current for causing the light source section 37 to emit light.
  • the light source unit 37 emits white light based on the direct current supplied from the light source driver 36 and supplies illumination light for illuminating the subject to the distal end of the endoscope 2 .
  • the light source unit 37 is configured using a white LED (Light Emitting Diode) or the like.
  • the transmission/reception unit 38 communicates with an external database server DB via the network NW, transmits imaging data generated by the endoscope 2 to the database server DB, and , receives various information from the database server DB.
  • the transmitting/receiving unit 38 is configured using a communication module capable of, for example, Wi-Fi (registered trademark).
  • the network NW is assumed to be composed of, for example, an Internet line network, a mobile phone line network, and the like.
  • the communication unit 39 outputs image data to the display device 4 under the control of the processor control unit 41 .
  • the communication unit 39 is configured using a communication module such as HDMI (High-Definition Multimedia Interface) (registered trademark).
  • the recording unit 40 records various information regarding the endoscope system 1 .
  • the recording unit 40 also has a program recording unit 401 that records various programs executed by the endoscope system 1 .
  • the recording unit 40 is configured using RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the processor control unit 41 comprehensively controls each unit that configures the endoscope system 1 .
  • the processor control unit 41 is configured using a memory and a processor having hardware such as a CPU, FPGA, and ASIC.
  • the processor control unit 41 reads out the program recorded in the program recording unit 401 into a working area of the memory and executes it, and controls each component through the execution of the program by the processor, so that hardware and software cooperate. It works and realizes a functional module that meets a predetermined purpose.
  • the processor control unit 41 has a drive control unit 421, a determination unit 422, and a switching unit 423 as functional modules. Note that, in one embodiment, the optical unit 10, the drive driver 34, and the processor control section 41 function as a drive device.
  • the drive control unit 421 causes the drive driver 34 to apply the first current or the second current to the drive unit 217 . Further, the drive control section 421 causes the drive driver 34 to supply current so as to become the second current within a predetermined time. Note that, in one embodiment, the drive control unit 421 functions as a control unit.
  • the determination unit 422 determines whether or not a predetermined time, which is the second application time, has elapsed since the driving driver 34 applied the first current to the driving unit 217 .
  • the switching unit 423 switches the direction of the current that the driving driver 34 supplies to the driving unit 217 . Specifically, the switching unit 423 determines that the focus switching signal for switching the focus has been input from the zoom operation unit 222 by the determining unit 422 while the driving driver 34 is applying the first current to the driving unit 217. Then, the driving driver 34 switches the direction of current supplied to the drive unit 217 from positive (+) to negative (-) or from negative (-) to positive (+).
  • FIG. 9 is a flow chart showing an outline of driving processing for the optical unit 10 executed by the endoscope system 1.
  • FIG. 10 is a timing chart showing an outline of driving processing for the optical unit 10 executed by the endoscope system 1.
  • FIG. 11 is a diagram schematically illustrating a state in which the position of the movable portion 12 relative to the fixed portion 11 is stopped at the Normal position.
  • FIG. 12 is a diagram schematically illustrating a situation in which the position of the movable part 12 relative to the fixed part 11 is stopped at the Near position (enlarged view).
  • the horizontal axis indicates time
  • the vertical axis indicates current.
  • the drive control unit 421 first causes the drive driver 34 to apply the second current to the drive unit 217 (step S101).
  • the drive control unit 421 applies the second current to the drive driver 34 immediately after the endoscope 2 is activated (time t1). Print in time.
  • the drive control unit 421 causes the drive driver 34 to apply the second current to the drive unit 217 with a slope within the switching time.
  • the movable portion 12 moves on the object side of the fixed portion 11 and hits the fixed portion 11, and the drive portion 217 prevents overshoot and undershoot caused by a sudden current change. can do.
  • the drive control section 421 causes the drive driver 34 to apply the first current, which is the holding current for holding the movable section 12 to the fixed section 11, to the drive section 217 for the second application time (step S102). ).
  • the drive control section 421 causes the drive driver 34 to apply the first current to the drive section 217 for the second application time (time t2).
  • time t2 the time where it abuts against the object side of the fixed portion 11
  • the determination unit 422 determines whether or not a predetermined time, which is the second application time, has elapsed after the driver 34 applied the first current to the drive unit 217 (step S103).
  • a predetermined time which is the second application time
  • the endoscope system 1 proceeds to step S104, which will be described later.
  • the endoscope system 1 waits until the predetermined time elapses.
  • the drive control section 421 causes the drive driver 34 to apply the second current to the drive section 217 . In this case, as shown in FIG.
  • the drive control section 421 causes the drive driver 34 to apply the second current to the drive section 217 for the first application time (time t3).
  • time t3 the first application time
  • the movable portion 12 hits the fixed portion 11 on the object side of the fixed portion 11, as shown in FIG.
  • the driving driver 34 applies the first current to the driving unit 217, even if the movable unit 12 is displaced due to disturbance, the movable unit 12 is held at the first position.
  • the effective current can be maintained below a predetermined value in a predetermined period, it is possible to prevent the optical unit 10 from generating heat.
  • the drive control unit 421 causes the drive driver 34 to apply the first current to the drive unit 217 for the second application time (step S105). Thereby, the movable part 12 can be maintained at the first position on the fixed part 11 .
  • the determination unit 422 determines whether or not a predetermined time, which is the second application time, has elapsed since the driving driver 34 applied the first current to the driving unit 217 (step S106).
  • a predetermined time which is the second application time
  • the endoscope system 1 proceeds to step S107, which will be described later.
  • the determination unit 422 determines that the result has not been obtained for the predetermined time (step S106: No)
  • the endoscope system 1 proceeds to step S108, which will be described later.
  • step S107 the determination unit 422 determines whether or not an end signal instructing the end of the examination has been input from the operation unit 22.
  • the determination unit 422 determines that the end signal instructing the end of the examination has been input from the operation unit 22 (step S107: Yes)
  • the endoscope system 1 ends this process.
  • the determination unit 422 determines that the end signal for instructing the end of the examination is not input from the operation unit 22 (step S107: No)
  • the endoscope system 1 proceeds to step S104 described above. do.
  • step S108 the determination unit 422 determines whether or not a focus switching signal for switching the focus has been input from the zoom operation unit 222. Specifically, as shown in FIG. 10, the determination unit 422 switches the focus from the zoom operation unit 222 within the second application time during which the drive driver 34 applies the first current to the drive unit 217. It is determined whether or not a focus switching signal has been input.
  • the determination unit 422 determines that the focus switching signal for switching the focus has been input from the zoom operation unit 222 (step S108: Yes)
  • the endoscope system 1 proceeds to step S109, which will be described later.
  • the determination unit 422 determines that the focus switching signal for switching the focus is not input from the zoom operation unit 222 (step S108: No)
  • the endoscope system 1 returns to step S105 described above.
  • step S ⁇ b>109 the switching unit 423 switches the direction of current supplied from the driving driver 34 to the driving unit 217 .
  • the endoscope system 1 returns to step S104 described above.
  • the switching unit 423 outputs a focus switching signal for switching the focus from the zoom operation unit 222 by the determination unit 422 while the driving driver 34 is applying the first current to the driving unit 217. is input (time t4), the driving driver 34 switches the direction of the current supplied to the driving unit 217 by inverting it to negative.
  • the drive control unit 421 causes the drive driver 34 to apply the negative second current for the first application time including the switching time and the movement start time (time t4).
  • the drive control unit 421 causes the drive driver 34 to apply the second current to the drive unit 217 with a slope within the switching time.
  • the movable portion 12 abuts against the fixed portion 11 at a position on the image side (hereinafter simply referred to as the “second position”), and the driving portion 217 overshoots due to a rapid current change. and undershoot can be prevented.
  • the drive control unit 421 supplies the drive driver 34 with a negative first current, which is a holding current for holding the movable part 12 at the second position, for a second application time at a predetermined cycle. 217 (time t5).
  • a negative first current which is a holding current for holding the movable part 12 at the second position
  • the switching unit 423 causes the determination unit 422 to output a focus switching signal for switching the focus from the zoom operation unit 222 while the driving driver 34 is applying the negative first current to the driving unit 217. If it is determined that the input has been made, the driving driver 34 reverses the direction of the current supplied to the driving unit 217 to switch to the positive direction.
  • the endoscope system 1 performs the same processing as steps S104 and S105 described above.
  • the determination unit 422 outputs a focus switching signal for switching the focus from the zoom operation unit 222.
  • time t6 time t6
  • time t7 time t7
  • the direction of the current supplied by the drive driver 34 to the drive unit 217 is reversed to positive. and switch to apply a positive second current.
  • FIG. 13 is a diagram showing a table showing an example of comparison results of effective currents for each cycle in which the driver 34 applies the first current and the second current.
  • the drive control unit 421 repeatedly causes the drive driver 34 to supply a second current larger than the first current at a predetermined cycle of 100 to 500 ms.
  • the predetermined period of the drive control unit 421 is preferably 300 to 500 ms, more preferably 500 ms.
  • the drive control unit 421 repeatedly causes the drive driver 34 to supply the second current, which is larger than the first current, at 500 ms as a predetermined cycle, so that the effective current can be maintained at 60 mA. Heat generation in the optical unit 10 can be prevented.
  • the drive control unit 421 causes the drive unit 217 to supply the first current to the drive driver 34, and the second current larger than the first current at a predetermined cycle. Since the current is repeatedly supplied to the drive driver 34, there is no need to provide a Hall element detection for detecting the position of the movable part 12. Therefore, it is possible to reduce the diameter and shorten the tip part 211. can.
  • the switching unit 423 switches the direction of the current supplied to the driving unit 217 by the driving driver 34 to switch between the first current and the second current. 2, the focal length can be switched with a simple configuration.
  • the drive driver 34 when a focus switching signal for instructing focus switching is input, the drive driver 34 causes the drive unit Since the direction of the current supplied to 217 is switched, the movable part 12 can be moved smoothly.
  • the drive control section 421 causes the drive driver 34 to supply the current so as to become the second current within a predetermined time, the drive section 217 is prevented from overshooting or undershooting due to a rapid current change. Shoot can be prevented.
  • the predetermined period is 100 to 500 ms, heat generation of the driving section 217 can be suppressed, so that the tip section 211 can be prevented from being heated.
  • FIG. 14 is a top view of a movable portion according to a modification of one embodiment; FIG.
  • the movable portion 12A shown in FIG. 14 further includes a connecting portion 127 that connects the object-side rotation restricting portion 124 and the image-side rotation restricting portion 125 in addition to the configuration of the movable portion 12 described above. This makes it possible to prevent vibration during movement of the movable portion 12A.
  • Various inventions can be formed by appropriately combining the plurality of components disclosed in the endoscope system according to the embodiment described above. For example, some components may be deleted from all the components described in the endoscope system according to one embodiment described above. Furthermore, the constituent elements described in the endoscope system according to one embodiment described above may be combined as appropriate.
  • the "unit" described above can be read as “means” or “circuit”.
  • the control unit can be read as control means or a control circuit.
  • program to be executed by the endoscope system is file data in an installable format or executable format, and Digital Versatile Disk), USB media, flash memory, or other computer-readable recording media.
  • the program to be executed by the endoscope system according to the embodiment of the present disclosure may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. good.
  • endoscope system 2 endoscope 3 control device 4 display device 10 optical unit 11 fixed parts 12, 12A movable part 13 voice coil motor 14 fixed part main body 15 front frame part 16 rear frame part 17 magnet 18 coil 21 insertion part 22 Operation unit 23 Universal cord 24 Cable 31 AC/DC conversion unit 32 DC/DC conversion unit 33 First detection unit 34 Driving driver 35 Second detection unit 36 Light source driver 37 Light source unit 38 Transmission/reception unit 39 Communication unit 40 Recording unit 41 Processor control section 211 Tip section 212 Bending section 213 Flexible tube section 214 Imaging section 215 Illumination lens 216 Imaging element 217 Driving section 221 Angle operation section 222 Zoom operation section 223 Endoscope recording section 224 Endoscope control section 225 Endoscope Recording unit 231 Connector 401 Program recording unit 421 Drive control unit 422 Judgment unit 423 Switching unit O Axis T1 Comparison result table

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)

Abstract

細径化および短縮化を図ることができる駆動装置、内視鏡システムおよび駆動方法を提供する。駆動装置は、固定部と、固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、固定部に対して、可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、駆動部に電流を供給する駆動ドライバと、駆動部に対して、第1の電流を駆動ドライバに供給させ、かつ、所定の周期で第1の電流より大きい第2の電流を駆動ドライバに供給させることを繰り返し実行させる制御部と、を備える。

Description

駆動装置、内視鏡システムおよび駆動方法
 本開示は、駆動装置、内視鏡システムおよび駆動方法に関する。
 従来、ステッピングモータの駆動によってレンズを光軸方向に沿って移動させるレンズ駆動装置において、レンズを停止させる場合、励磁安定位置までレンズを移動させた後に、停止時に必要な励磁電流を下げる技術が知られている(例えば特許文献1参照)。
特開2011-197163号公報
 ところで、内視鏡では、被検体への挿入部における先端部の細径化および先端部における硬質長の短縮化が望まれている。このため、焦点距離を変換可能な内視鏡では、光軸上におけるレンズ位置を検出するホール素子を設けず、上述した特許文献1の技術を用いて先端部の細径化および硬質長の短縮化を図ることが考えられる。
 しかしながら、上述した特許文献1では、内視鏡のような狭い空間内で発生する強い衝撃が想定されておらず、外部からの衝撃によってレンズが停止位置から移動してしまった場合、レンズ位置を検出することができない。この結果、上述した特許文献1では、レンズを所望の位置へ移動させることができない可能性があるうえ、所定の位置でレンズを保持するため、高い電圧を印可し続けることによって先端部が発熱してしまうという問題点があった。
 本開示は、上記に鑑みてなされたものであって、細径化および短縮化を図ることができる駆動装置、内視鏡システムおよび駆動方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る駆動装置は、固定部と、前記固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、前記固定部に対して、前記可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、前記駆動部に電流を供給する駆動ドライバと、前記駆動ドライバを制御する制御部と、を備え、前記制御部は、ハードウェアを有するプロセッサを備え、前記プロセッサは、前記駆動部に対して、第1の電流を前記駆動ドライバに供給させ、かつ、前記第1の電流より大きい第2の電流を前記駆動ドライバに供給させることを所定の周期で繰り返し実行させる。
 また、本開示に係る駆動装置は、上記開示において、前記プロセッサは、前記第1電流を供給後、所定の時間が経過した後に前記第2電流を供給させる。
 また、本開示に係る駆動装置は、上記開示において、前記プロセッサは、前記第2電流を所定の時間供給後、再び前記第1電流を供給させる。
 また、本開示に係る駆動装置は、上記開示において、前記プロセッサは、前記第1の電流を供給する供給期間は、前記第2の電流を供給する供給期間よりも長い。
 また、本開示に係る駆動装置は、上記開示において、前記プロセッサは、焦点切替を指示する焦点切替信号が入力された場合、前記駆動ドライバが前記駆動部に供給する電流の向きを切り替えて前記第1の電流および前記第2の電流を供給させる。
 また、本開示に係る駆動装置は、上記開示において、前記プロセッサは、前記焦点切替信号が入力された場合、前記駆動ドライバが前記第1の電流を供給する供給期間において、前記駆動ドライバが前記駆動部に供給する電流の向きを切り替える。
 また、本開示に係る駆動装置は、上記開示において、前記プロセッサは、所定時間内で前記第2の電流となるように前記駆動ドライバに電流を供給させる。
 また、本開示に係る駆動装置は、上記開示において、前記所定の周期は、100~500msである。
 また、本開示に係る駆動装置は、上記開示において、前記所定の周期は、300~500msである。
 また、本開示に係る駆動装置は、上記開示において、前記所定の周期は、500msである。
 また、本開示に係る駆動装置は、上記開示において、前記駆動部は、磁石と、コイルと、を有するボイスコイルモータを備える。
 また、本開示に係る駆動装置は、上記開示において、前記磁石は、前記可動部の互いに異なる外周面に設けられる第1磁石および第2磁石を有する。
 また、本開示に係る内視鏡システムは、光学ユニットを有し、被検体の内部に挿入され、該被検体の内部を観察する内視鏡と、前記内視鏡が着脱自在に接続され、前記光学ユニットの駆動を制御する制御装置と、を備え、前記光学ユニットは、固定部と、前記固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、前記固定部に対して、前記可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、を備え、前記制御装置は、前記駆動部に電流を供給する駆動ドライバと、前記駆動ドライバを制御する制御部と、を備え、前記制御部は、ハードウェアを有するプロセッサを備え、前記プロセッサは、前記駆動部に対して、第1の電流を前記駆動ドライバに供給させ、かつ、所定の周期で前記第1の電流より大きい第2の電流を前記駆動ドライバに供給させることを繰り返し実行させると、を備える。
 また、本開示に係る駆動方法は、固定部と、前記固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、前記固定部に対して、前記可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、前記駆動部に電流を供給する駆動ドライバと、を備える駆動装置が実行する駆動方法であって、前記駆動部に対して、第1の電流を前記駆動ドライバに供給させ、かつ、所定の周期で前記第1の電流より大きい第2の電流を前記駆動ドライバに供給させることを繰り返し実行させる。
 本開示によれば、細径化および短縮化を図ることができるという効果を奏する。
図1は、一実施の形態に係る内視鏡システムの概略構成を示す図である。 図2は、一実施の形態に係る光学ユニットの構成を示す分解斜視図である。 図3は、図2の軸Oを通過する切断面で見たときの光学ユニットの要部の構成を示す断面図である。 図4は、図3のIV-IV線を通過する切断面で見たときの光学ユニットの断面図である。 図5は、図3のV-V線を通過する切断面で見たときの光学ユニットの断面図である。 図6は、一実施の形態に係る可動部の構成を示す斜視図である。 図7は、一実施の形態に係る可動部の上面図である。 図8は、一実施の形態に係る内視鏡システムの機能構成を示すブロック図である。 図9は、一実施の形態に係る内視鏡システムが実行する光学ユニット10に対する駆動処理の概要を示すフローチャートである。 図10は、一実施の形態に係る内視鏡システムが実行する光学ユニットに対する駆動処理の概要を示すタイミングチャートである。 図11は、一実施の形態に係る固定部に対する可動部の位置がNormal位置で停止している状況を模式的に説明する図である。 図12は、一実施の形態に係る固定部に対する可動部の位置がNear位置(拡大)で停止している状況を模式的に説明する図である。 図13は、一実施の形態に係る駆動ドライバが第1の電流および第2の電流を印可する周期毎の実効電流の比較結果の一例を示す表を示す図である。 図14は、一実施の形態の変形例に係る可動部の上面図である。
 以下、本開示を実施するための形態を図面とともに詳細に説明する。なお、以下の実施の形態により本開示が限定されるものでない。また、以下の説明において、参照する各図は、本開示の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。即ち、本開示は、各図で例示された形状、大きさおよび位置関係のみに限定されるものではない。
 〔内視鏡システムの概略構成〕
 図1は、一実施の形態に係る内視鏡システムの概略構成を示す図である。図1に示す内視鏡システム1は、内視鏡2と、制御装置3と、表示装置4と、を備える。
 内視鏡2は、人体等の被検体内に導入可能であり、被検体内の所定の観察部位を撮像して撮像データを生成する。なお、内視鏡2が導入される被検体は、人体に限らず、他の生体でもよく、機械、建造物等の人工物でもよい。換言すれば、内視鏡2は、軟性または硬性の医療用内視鏡でもよいし、工業用内視鏡でもよい。なお、以下においては、内視鏡2として医療用内視鏡、例えば鼻腔用内視鏡について説明する。
 内視鏡2は、被検体の内部に挿入される挿入部21と、挿入部21の基端に位置する操作部22と、操作部22から延出される複合ケーブルとしてのユニバーサルコード23と、を備える。
 挿入部21は、先端に配設され、被検体内の被写体に向けて照明光を照射する先端部211と、先端部の基端側に配設される湾曲自在な湾曲部212と、湾曲部212の基端側に配設されて操作部22の先端側に接続され、可撓性を有する可撓管部213と、を有する。また、先端部211には、被写体からの光を集光し、被写体の被写体像を撮像する撮像部214が設けられている。
 撮像部214は、被写体からの光を集光して被写体像を結像する光学ユニット10と、光学ユニット10が結像した被写体像を受光し、光電変換することによって撮像データを生成する撮像素子と、を有する。撮像素子は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサを用いて構成される。なお、光学ユニット10および撮像素子の詳細な構成は、後述する。
 操作部22は、湾曲部212の湾曲状態を操作するアングル操作部221と、後述する光学ユニット10におけるズーム動作を指示する焦点切替信号を出力するズーム操作部222と、を有する。なお、一実施の形態では、アングル操作部221がノブ形状で形成されており、ズーム操作部222がレバー形状で形成されているが、これに限定されることなく、各々がボリュームスイッチ、プッシュスイッチおよびトグルスイッチ等の他の形式であってもよい。
 ユニバーサルコード23は、操作部22と制御装置3とを接続する部材である。内視鏡2は、ユニバーサルコード23の基端部に設けられるコネクタ231を通じて制御装置3に接続される。
 挿入部21、操作部22およびユニバーサルコード23には、ワイヤ、電気線および光ファイバ等のケーブル24が挿通される。
 制御装置3は、内視鏡システム1を構成する各部を制御し、内視鏡システム1の全体を統括して制御する。制御装置3は、被写体を照射するための照明光を内視鏡2に供給し、かつ、撮像部214が生成した撮像データに対して各種の画像処理を行った画像データを表示装置4へ出力する。また、制御装置3は、メモリと、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアを有するプロセッサ等を用いて構成される。なお、制御装置3の詳細な構成は、後述する。
 表示装置4は、制御装置3の制御のもと、制御装置3から入力される画像データに対応する表示画像を表示する。表示装置4は、液晶ディスプレイまたは有機ELディスプレイ(Organic Electroluminescent Display)等を用いて構成される。
 〔光学ユニットの構成〕
 次に、光学ユニット10の詳細な構成について説明する。図2は、光学ユニットの構成を示す分解斜視図である。図3は、図2の軸Oを通過する切断面で見たときの光学ユニット10の要部の構成を示す断面図である。図4は、図3のIV-IV線を通過する切断面で見たときの光学ユニット10の断面図である。図5は、図3のV-V線を通過する切断面で見たときの光学ユニット10の断面図である。以下、光学ユニット10を通過する軸Oが、当該光学ユニット10の光軸と一致する例について説明する。以下、軸O方向において、物体側と反対側のことを像側という。即ち、図2に示す光学ユニット10では、左側を物体側、右側を像側とする。また、各部材の中心軸も軸Oと称することがある。これは、組み付け時に当該部材の中心軸が軸Oと一致するためである。
 図2~図5に示す光学ユニット10は、筒状をなす固定部11と、固定部11の内部を摺動可能な可動部12と、固定部11に対して可動部12をレンズの光軸方向に沿って摺動させて移動させる駆動力を発生させるボイスコイルモータ13と、を備える。なお、一実施の形態1では、ボイスコイルモータ13が駆動部として機能する。
 〔固定部の構成〕
 固定部11は、固定部本体14と、動部12が保持する可動レンズ群Gvよりも物体側の物体側固定レンズ群Gfを保持し、固定部本体14の物体側に取り付けられた前枠部15と、可動レンズ群Gvよりも像側の像側固定レンズ群Gbを保持し固定部本体14の像側に取り付けられた後枠部16と、を有する。
 固定部本体14は、軸Oを中心とした筒形状の部材からなる。固定部本体14は、軸Oを中心軸とする第1筒部141と、第1筒部141に対して軸O方向の像側に形成された第2筒部142と、を有する。固定部本体14、軸Oに対して90°の回転対称性を有する。
 第1筒部141は、第2筒部142の外周のなす径よりも小さい筒状をなす。第1筒部141の上面および下面には、軸Oと直交する方向(径方向)に貫通する2つの貫通部141aが形成されている。具体的には、第1筒部141には、第1筒部141の長手方向の軸Oに対称に、第1筒部141の径方向にそれぞれ貫通した2つの貫通部141aが形成されている。貫通部141aを除いた第1筒部141の径方向内側の面は、筒状のシリンドリカル面であって、可動部12を案内支持する固定側摺動面141bとなす。さらに、第1筒部141の内周面には、軸O方向に延びる2つのレール部141cが形成されている。貫通部141aおよびレール部141cは、軸Oと直交する平面を切断面とする断面において、上下にそれぞれ形成されている。
 第2筒部142は、外周部の像側の端部が突出してなる段付き形状をなす段部142aが形成されている。第2筒部142は、一部が前枠部15に収容され、かつ、段部142aが前枠部15に当接する。また、第2筒部142は、内部で後枠部16を収容する。
 前枠部15は、物体側固定レンズ群Gfを保持する。物体側固定レンズ群Gfは、対物レンズLf1を含む複数のレンズ(ここでは対物レンズLf1およびレンズLf2)が、軸O方向に並んで配置されてなる。
 後枠部16は、像側固定レンズ群Gbを保持する。像側固定レンズ群Gbは、レンズLb1およびレンズLb2が、軸O方向に並んでなる。また、後枠部16は、一部が第2筒部112に収容される。
 〔可動部の構成〕
 次に、可動部12について説明する。図6は、可動部12の構成を示す斜視図である。図7は、可動部12の上面図である。
 図6および図7に示す可動部12は、外周部121と、内周部122と、を有する筒形状の部材からなる。以下において、可動部12の中心軸も軸Oと称する。これは、組み付け時に可動部12の中心軸と固定部本体14の中心軸とが一致するためである。
 外周部121は、その外周面から可動側摺動面として機能する筒部123と、筒部123の軸O方向の両端部の上下面にそれぞれ形成された物体側回転規制部124および像側回転規制部125と、段差部126と、を有する。筒部123、物体側回転規制部124、像側回転規制部125および段差部126は、一体の部材として構成してもよい、別体の部材として構成してもよい。
 物体側回転規制部124および像側回転規制部125は、筒部123より径方向外側に形成された平面上の外周面を有する溝部124aおよび溝部125aが形成されている。物体側回転規制部124および像側回転規制部125は、固定部本体14のレール部141cに摺動可能に保持されることによって、可動部12を軸Oに沿って前後に移動させつつ、可動部12が軸Oを中心に回転することを規制する。これにより、可動部12の移動時における振れを防止することができる。
 段差部126は、筒部123より径方向外側に形成され、平面上の外周面を有する。段差部126の上面には、磁石17が配置される。可動部12における軸Oと直交する平面における周方向の溝部124aおよび溝部125aの幅d1は、同じ平面における磁石17の周方向の幅d2と略一致する長さで形成される。これにより、磁石17を容易に段差部126の平面上に配置することができる。
 可動部12は、可動レンズ群Gvを保持する。具体的には、可動部12は、可動レンズ群Gvが有する可動第1レンズLv1を保持する。図2~図7に示すように、可動第1レンズLv1の像側は、内周側に当接しているのが好ましい。
 このように構成された可動部12は、筒部123が固定側摺動面141bと接触しながら固定部本体14に挿入される。また、可動部12は、例えばステンレス、アルミニウムまたは樹脂等の材料を用いて構成される。
 〔ボイスコイルモータの構成〕
 次に、ボイスコイルモータ13の構成について説明する。ボイスコイルモータ13は、図2~図7に示すように、固定部11の固定部本体14に配置されてなるコイル18と、コイル18に対抗するように可動部に配置された磁石17と、を有する。
 コイル18は、固定部本体14の第1筒部141の外周に巻かれた状態で配置される。コイル18は、予め巻かれたものを後から配設してもよい。コイル18は、固定部本体114の貫通部141aに対向する円筒部181と、固定部本体14の側面に対向する平面部182と、を有する。コイル18は、軸Oと直交する断面において、2つの円筒部181と、2つの平面部182とが交互に配置されて形成される。
 磁石17は、図2~図7に示すように、コイル18の円筒部181の内側に、円筒部106と対向するように、軸O方向に沿って可動部12の段差部126に配置される。
 このように構成されたボイスコイルモータ13では、安定した磁界が形成され、固定部11に対して移動する可動部12のブレを抑制することが可能となる。なお、一実施の形態では、軸Oのまわりに180°毎に磁石17(第1磁石、第2磁石)を配置したが、他の角度間隔で磁石17を配置してもよい。
 〔内視鏡システムの機能構成〕
 次に、内視鏡システム1の機能構成について説明する。図8は、内視鏡システム1の機能構成を示すブロック図である。図8に示すように内視鏡システム1は、内視鏡2と、制御装置3と、表示装置4と、を備える。
 〔内視鏡の機能構成〕
 まず、内視鏡2の機能構成について説明する。内視鏡2は、少なくとも、先端部211と、操作部22と、ユニバーサルコード23と、を備える。
 先端部211には、撮像部214と、照明レンズ215と、が設けられている。撮像部214は、撮像素子216と、駆動部217と、を有する。
 撮像素子216は、後述する制御装置3の制御のもと、上述した光学ユニット10のレンズ群が結像した被写体像の撮像データを生成し、生成した撮像データを制御装置3へ出力する。
 駆動部217は、上述した光学ユニット10のボイスコイルモータ13によって構成され、後述する制御装置3の制御のもと、可動部12および可動部12が保持する可動レンズ群Gvを軸Oに沿って移動させる。
 照明レンズ215は、ユニバーサルコード23のライトガイド等を経由して後述する制御装置3から供給される照明光を被写体に向けて照射する。照明レンズ215は、1または複数のレンズを用いて構成される。
 操作部22は、少なくとも、上述したズーム操作部222と、駆動部217および撮像素子216の駆動を制御する内視鏡制御部224と、内視鏡2に関する各種情報を記録する内視鏡記録部225と、を有する。
 内視鏡制御部224は、メモリと、CPU、FPGA、ASIC等のハードウェアを有するプロセッサを用いて構成される。内視鏡制御部224は、制御装置3から送信される制御信号の制御信号およびズーム操作部222からの焦点切替信号に従って、撮像素子216および駆動部217を制御する。また、内視鏡制御部224は、撮像素子216から入力される撮像データに対して所定の画像処理を施して制御装置3へ出力する。
 内視鏡記録部223は、フラッシュメモリ、ROMおよびRAMを用いて構成され、内視鏡2に関する各種情報を記録する。具体的には、内視鏡記録部223は、内視鏡2の種別情報、内視鏡2の識別情報および内視鏡2の製造年月日等を記録する。
 〔制御装置の機能構成〕
 次に、制御装置3の機能構成について説明する。制御装置3は、AC/DC変換部31と、DC/DC変換部32と、第1の検出部33と、駆動ドライバ34と、第2の検出部35と、光源ドライバ36と、光源部37と、送受信部38と、通信部39と、記録部40と、プロセッサ制御部41と、を備える。
 AC/DC変換部31は、外部電源から供給された交流電流を直流電流に変換してDC/DC変換部へ出力する。AD/DC変換部31は、スイッチングレギュレータ等を用いて構成される。
 DC/DC変換部32は、AC/DC変換部31から入力された直流電流を所定の電圧値に変換して、制御装置3を構成する各部、例えば駆動ドライバ34、光源ドライバ36およびプロセッサ制御部41へ出力する。DC/DC変換部32は、リニアレギュレータまたはスイッチングレギュレータ等を用いて構成される。
 第1の検出部33は、DC/DC変換部32とプロセッサ制御部41とを電気的に接続する配線に対して並列および直列に電気的に接続される。第1の検出部33は、DC/DC変換部32が出力する電流値および電圧値を検出し、この検出結果をプロセッサ制御部41へ出力する。第1の検出部33は、電圧センサおよび電流センサ等を用いて構成される。
 駆動ドライバ34は、プロセッサ制御部41の制御のもと、DC/DC変換部32から入力された所定の電圧値に調整された直流電流を用いて、内視鏡2の駆動部217を駆動するための所定の電流を供給する。駆動ドライバ34は、例えばHブリッジ回路等を用いて構成される。
 第2の検出部35は、駆動ドライバ34と駆動部217とを電気的に接続する配線に対して、直列および並列に電気的に接続される。第2の検出部35は、駆動ドライバ34が供給する電流値および電圧値を検出し、この検出結果をプロセッサ制御部41へ出力する。第2の検出部35は、電流センサおよび電圧センサ等を用いて構成される。
 光源ドライバ36は、プロセッサ制御部41の制御のもと、DC/DC変換部32から入力された直流電流を用いて、光源部37を発光ささせるための電流を供給する。
 光源部37は、光源ドライバ36から供給される直流電流に基づいて、白色光を発光し、被写体を照射するための照明光を内視鏡2の先端部へ供給する。光源部37は、白色LED(Light Emitting Diode)等を用いて構成される。
 送受信部38は、プロセッサ制御部41の制御のもと、ネットワークNWを経由して外部のデータベースサーバDBと通信を行い、内視鏡2が生成した撮像データ等をデータベースサーバDBへ送信し、かつ、データベースサーバDBから各種の情報を受信する。送受信部38は、例えばWi-Fi(登録商標)等が可能な通信モジュールを用いて構成される。また、ネットワークNWは、例えばインターネット回線網および携帯電話回線網等から構成されるものが想定される。
 通信部39は、プロセッサ制御部41の制御のもと、表示装置4へ画像データを出力する。通信部39は、例えばHDMI(High-Definition Multimedia Interface)(登録商標)等の通信モジュールを用いて構成される。
 記録部40は、内視鏡システム1に関する各種情報を記録する。また、記録部40は、内視鏡システム1が実行する各種のプログラムを記録するプログラム記録部401を有する。記録部40は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)およびSSD(Solid State Drive)等を用いて構成される。
 プロセッサ制御部41は、内視鏡システム1を構成する各部を統括的に制御する。プロセッサ制御部41は、メモリと、CPU、FPGAおよびASIC等のハードウェアを有するプロセッサと、を用いて構成される。プロセッサ制御部41は、プログラム記録部401に記録されているプログラムをメモリの作業領域に読み出して実行し、プロセッサによるプログラムの実行を通じて各構成部等を制御することによって、ハードウェアとソフトウェアとが協働し、所定の目的に合致した機能モジュールを実現する。具体的には、プロセッサ制御部41は、機能モジュールとして、駆動制御部421と、判定部422と、切替部423と、を有する。なお、一実施の形態では、光学ユニット10、駆動ドライバ34およびプロセッサ制御部41が駆動装置として機能する。
 駆動制御部421は、駆動ドライバ34に第1の電流または第2の電流を駆動部217に印可させる。また、駆動制御部421は、所定時間内で第2の電流となるように駆動ドライバ34に電流を供給させる。なお、一実施の形態では、駆動制御部421が制御部として機能する。
 判定部422は、駆動ドライバ34が第1の電流を駆動部217に印可してから第2の印可時間である所定時間経過したか否かを判定する。
 切替部423は、駆動ドライバ34が駆動部217に供給する電流の向きを切り替える。具体的には、切替部423は、駆動ドライバ34が第1の電流を駆動部217に印可している期間に、判定部422によってズーム操作部222から焦点を切り替える焦点切替信号が入力されたと判定されたとき、駆動ドライバ34が駆動部217に供給する電流の向きを正(+)から負(-)または負(-)から正(+)に切り替える。
 〔光学ユニットに対する駆動処理〕
 次に、内視鏡システム1が実行する光学ユニット10に対する駆動処理の概要について説明する。図9は、内視鏡システム1が実行する光学ユニット10に対する駆動処理の概要を示すフローチャートである。図10は、内視鏡システム1が実行する光学ユニット10に対する駆動処理の概要を示すタイミングチャートである。図11は、固定部11に対する可動部12の位置がNormal位置で停止している状況を模式的に説明する図である。図12は、固定部11に対する可動部12の位置がNear位置(拡大)で停止している状況を模式的に説明する図である。なお、図10では、横軸が時間を示し、縦軸が電流を示す。
 図9に示すように、まず、駆動制御部421は、駆動ドライバ34に第2の電流を駆動部217に印可させる(ステップS101)。この場合、図10に示すように、駆動制御部421は、内視鏡2が起動した直後(時刻t1)に、駆動ドライバ34に第2の電流を切替時間および動き出し時間を含む第1の印可時間で印可させる。このとき、駆動制御部421は、駆動ドライバ34に切替時間内で第2の電流となるように傾斜を持たせて駆動部217に印可させる。これにより、可動部12は、図11に示すように、固定部11における物体側で移動して固定部11に突き当たるうえ、駆動部217が急激な電流急激な電流変化によるオーバーシュートやアンダーシュート防止することができる。
 その後、駆動制御部421は、駆動ドライバ34に、第2の印可時間で、可動部12を固定部11に保持するための保持電流である第1の電流を駆動部217に印可させる(ステップS102)。この場合、図10に示すように、駆動制御部421は、駆動ドライバ34に、第2の印可時間で第1の電流を駆動部217に印可させる(時刻t2)。これにより、可動部12は、固定部11の物体側に突き当たる位置(以下、単に「第1の位置」という)で保持される。
 続いて、判定部422は、駆動ドライバ34が第1の電流を駆動部217に印可してから第2の印可時間である所定時間経過したか否かを判定する(ステップS103)。判定部422が所定時間経過したと判定した場合(ステップS103:Yes)、内視鏡システム1は、後述するステップS104へ移行する。これに対して、判定部422が所定時間結果していないと判定した場合(ステップS103:No)、内視鏡システム1は、所定時間経過するまで待機する。
 ステップS104において、駆動制御部421は、駆動ドライバ34に第2の電流を駆動部217に印可させる。この場合、図10に示すように、駆動制御部421は、駆動ドライバ34に第1の印可時間で第2の電流を駆動部217に印可させる(時刻t3)。これにより、可動部12は、図11に示すように、固定部11における物体側で固定部11に突き当たる。この結果、駆動ドライバ34が駆動部217に第1の電流を印可している場合において、可動部12に外乱が加わりずれた場合であっても、可動部12の位置を第1の位置で保持することができるうえ、所定の周期で実効電流を所定値未満で維持することができるため、光学ユニット10が熱を持つことを防止することができる。
 続いて、駆動制御部421は、駆動ドライバ34に第2の印可時間で第1の電流を駆動部217に印可させる(ステップS105)。これにより、可動部12は、固定部11における第1の位置で維持することができる。
 その後、判定部422は、駆動ドライバ34が第1の電流を駆動部217に印可してから第2の印可時間である所定時間経過したか否かを判定する(ステップS106)。判定部422が所定時間経過したと判定した場合(ステップS106:Yes)、内視鏡システム1は、後述するステップS107へ移行する。これに対して、判定部422が所定時間結果していないと判定した場合(ステップS106:No)、内視鏡システム1は、後述するステップS108へ移行する。
 ステップS107において、判定部422は、操作部22から検査の終了を指示する終了信号が入力されたか否かを判定する。判定部422が操作部22から検査の終了を指示する終了信号が入力されたと判定した場合(ステップS107:Yes)、内視鏡システム1は、本処理を終了する。これに対して、判定部422が操作部22から検査の終了を指示する終了信号が入力されていないと判定した場合(ステップS107:No)、内視鏡システム1は、上述したステップS104へ移行する。
 ステップS108において、判定部422は、ズーム操作部222から焦点を切り替える焦点切替信号が入力されたか否かを判定する。具体的には、図10に示すように、判定部422は、駆動ドライバ34が第1の電流を駆動部217に印可している第2の印可時間内に、ズーム操作部222から焦点を切り替える焦点切替信号が入力されたか否かを判定する。判定部422がズーム操作部222から焦点を切り替える焦点切替信号が入力されたと判定した場合(ステップS108:Yes)、内視鏡システム1は、後述するステップS109へ移行する。これに対して、判定部422がズーム操作部222から焦点を切り替える焦点切替信号が入力されていないと判定した場合(ステップS108:No)、内視鏡システム1は、上述したステップS105へ戻る。
 ステップS109において、切替部423は、駆動ドライバ34が駆動部217に供給する電流の向きを切り替える。ステップS109の後、内視鏡システム1は、上述したステップS104へ戻る。この場合、図10に示すように、切替部423は、駆動ドライバ34が第1の電流を駆動部217に印可している期間に、判定部422によってズーム操作部222から焦点を切り替える焦点切替信号が入力されたと判定されたとき(時刻t4)、駆動ドライバ34が駆動部217に供給する電流の向きを負に反転させて切り替える。これにより、図10に示すように、駆動制御部421は、駆動ドライバ34に負の第2の電流を切替時間および動き出し時間を含む第1の印可時間で印可させる(時刻t4)。この場合、駆動制御部421は、駆動ドライバ34に切替時間内で第2の電流となるように傾斜を持たせて駆動部217に印可させる。この結果、可動部12は、図12に示すように、固定部11における像側の位置(以下、単に「第2の位置」という)で突き当たるうえ、駆動部217が急激な電流変化によるオーバーシュートやアンダーシュートを防止することができる。
 さらに、駆動制御部421は、駆動ドライバ34に、第2の印可時間で、可動部12を第2の位置で保持するための保持電流である負の第1の電流を所定の周期で駆動部217に印可させる(時刻t5)。これにより、可動部12は、固定部11における第2の位置(Near)で保持することができるうえ、所定の周期で実効電流を所定値未満で維持することができるため、光学ユニット10が熱を持つことを防止することができる。この場合において、同様に、切替部423は、駆動ドライバ34が負の第1の電流を駆動部217に印可している期間に、判定部422によってズーム操作部222から焦点を切り替える焦点切替信号が入力されたと判定された場合、駆動ドライバ34が駆動部217に供給する電流の向きを正に反転させて切り替える。この結果、内視鏡システム1は、上述したステップS104およびステップS105の同様の処理を行う。
 これに対して、図10に示すように、駆動ドライバ34が負の第2の電流を駆動部217に印可している期間に、判定部422によってズーム操作部222から焦点を切り替える焦点切替信号が入力されたと判定された場合(時刻t6)、第2の電流を印可する第1の印可時間を経過後(時刻t7)に、駆動ドライバ34が駆動部217に供給する電流の向きを正に反転させて切り替えて、正の第2の電流を印可する。
 次に、駆動ドライバ34が第1の電流および第2の電流を印可する周期毎の実効電流の比較結果について説明する。図13は、駆動ドライバ34が第1の電流および第2の電流を印可する周期毎の実効電流の比較結果の一例を示す表を示す図である。
 図13に示す比較結果テーブルT1に示すように、駆動制御部421は、所定の周期として、100~500msで、第1の電流より大きい第2の電流を駆動ドライバ34に供給させることを繰り返し実行させる。駆動制御部421は、所定の周期として、300~500msが好ましく、500msがより好ましい。駆動制御部421は、所定の周期として、500msで第1の電流より大きい第2の電流を駆動ドライバ34に供給させることを繰り返し実行させることで、実効電流を60mAで維持することができるため、光学ユニット10に熱が発生することを防止することができる。
 以上説明した一実施の形態によれば、駆動制御部421が駆動部217に対して、第1の電流を駆動ドライバ34に供給させ、かつ、所定の周期で第1の電流より大きい第2の電流を駆動ドライバ34に供給させることを繰り返し実行させるため、可動部12の位置を検出するためのホール素子の検出を設ける必要がないため、先端部211の細径化および短縮化を図ることができる。
 また、一実施の形態によれば、焦点切替を指示する焦点切替信号が入力された場合、切替部423が駆動ドライバ34による駆動部217に供給する電流の向きを切り替えて第1の電流および第2の電流を供給させるため、簡易な構成で焦点距離を切り替えることができる。
 また、一実施の形態によれば、焦点切替を指示する焦点切替信号が入力された場合、切替部423が駆動ドライバに34によって第1の電流を供給する供給期間において、駆動ドライバ34が駆動部217に供給する電流の向きを切り替えるため、滑らかに可動部12を移動させることができる。
 また、一実施の形態によれば、駆動制御部421が所定時間内で第2の電流となるように駆動ドライバ34に電流を供給させるため、駆動部217が急激な電流変化によるオーバーシュートやアンダーシュートを防止することができる。
 また、一実施の形態によれば、所定の周期が100~500msであるため、駆動部217の発熱を抑えることができるため、先端部211に熱が生じることを防止することができる。
(変形例)
 次に、一実施の形態の変形例について説明する。図14は、一実施の形態の変形例に係る可動部の上面図である。図14に示す可動部12Aは、上述した可動部12の構成に加えて、物体側回転規制部124と像側回転規制部125とを連結する連結部127をさらに有する。これにより、可動部12Aの移動時における振れを防止することができる。
(その他の実施の形態)
 上述した一実施の形態に係る内視鏡システムに開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した一実施の形態に係る内視鏡システムに記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、上述した一実施の形態に係る内視鏡システムで説明した構成要素を適宜組み合わせてもよい。
 また、本開示の一実施の形態に係る内視鏡システムでは、上述してきた「部」は、「手段」や「回路」などに読み替えることができる。例えば、制御部は、制御手段や制御回路に読み替えることができる。
 また、本開示の一実施の形態に係る内視鏡システムに実行させるプログラムは、インストール可能な形式または実行可能な形式のファイルデータでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)、USB媒体、フラッシュメモリ等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本開示の一実施の形態に係る内視鏡システムに実行させるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。
 なお、本明細書におけるフローチャートの説明では、「まず」、「その後」、「続いて」等の表現を用いてステップ間の処理の前後関係を明示していたが、本開示の実施の形態を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。即ち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。
 以上、本願の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
1 内視鏡システム
2 内視鏡
3 制御装置
4 表示装置
10 光学ユニット
11 固定部
12,12A 可動部
13 ボイスコイルモータ
14 固定部本体
15 前枠部
16 後枠部
17 磁石
18 コイル
21 挿入部
22 操作部
23 ユニバーサルコード
24 ケーブル
31 AC/DC変換部
32 DC/DC変換部
33 第1の検出部
34 駆動ドライバ
35 第2の検出部
36 光源ドライバ
37 光源部
38 送受信部
39 通信部
40 記録部
41 プロセッサ制御部
211 先端部
212 湾曲部
213 可撓管部
214 撮像部
215 照明レンズ
216 撮像素子
217 駆動部
221 アングル操作部
222 ズーム操作部
223 内視鏡記録部
224 内視鏡制御部
225 内視鏡記録部
231 コネクタ
401 プログラム記録部
421 駆動制御部
422 判定部
423 切替部
O 軸
T1 比較結果テーブル

Claims (14)

  1.  固定部と、
     前記固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、
     前記固定部に対して、前記可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、
     前記駆動部に電流を供給する駆動ドライバと、
     前記駆動ドライバを制御する制御部と、
     を備え、
     前記制御部は、
     ハードウェアを有するプロセッサを備え、
     前記プロセッサは、
     前記駆動部に対して、第1の電流を前記駆動ドライバに供給させ、かつ、前記第1の電流より大きい第2の電流を前記駆動ドライバに供給させることを所定の周期で繰り返し実行させる、
     駆動装置。
  2.  請求項1に記載の駆動装置であって、
     前記プロセッサは、
     前記第1の電流を供給後、所定の時間が経過した後に前記第2の電流を供給させる、
     駆動装置。
  3.  請求項1に記載の駆動装置であって、
     前記プロセッサは、
     前記第2の電流を所定の時間供給後、再び前記第1の電流を供給させる、
     駆動装置。
  4.  請求項1に記載の駆動装置であって、
     前記プロセッサは、
     前記第1の電流を供給する供給期間は、前記第2の電流を供給する供給期間よりも長い、
     駆動装置。
  5.  請求項1に記載の駆動装置であって、
     前記プロセッサは、
     焦点切替を指示する焦点切替信号が入力された場合、前記駆動ドライバが前記駆動部に供給する電流の向きを切り替えて前記第1の電流および前記第2の電流を供給させる、
     駆動装置。
  6.  請求項5に記載の駆動装置であって、
     前記プロセッサは、
     前記焦点切替信号が入力された場合、前記駆動ドライバが前記第1の電流を供給する供給期間において、前記駆動ドライバが前記駆動部に供給する電流の向きを切り替える、
     駆動装置。
  7.  請求項6に記載の駆動装置であって、
     前記プロセッサは、
     所定時間内で前記第2の電流となるように前記駆動ドライバに電流を供給させる、
     駆動装置。
  8.  請求項1に記載の駆動装置であって、
     前記所定の周期は、
     100~500msである、
     駆動装置。
  9.  請求項8に記載の駆動装置であって、
     前記所定の周期は、
     300~500msである、
     駆動装置。
  10.  請求項9に記載の駆動装置であって、
     前記所定の周期は、
     500msである、
     駆動装置。
  11.  請求項1に記載の駆動装置であって、
     前記駆動部は、
     磁石と、コイルと、を有するボイスコイルモータを備える、
     駆動装置。
  12.  請求項11に記載の駆動装置であって、
     前記磁石は、
     前記可動部の互いに異なる外周面に設けられる第1磁石および第2磁石を有する、
     駆動装置。
  13.  光学ユニットを有し、被検体の内部に挿入され、該被検体の内部を観察する内視鏡と、
     前記内視鏡が着脱自在に接続され、前記光学ユニットの駆動を制御する制御装置と、
     を備え、
     前記光学ユニットは、
     固定部と、
     前記固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、
     前記固定部に対して、前記可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、
     を備え、
     前記制御装置は、
     前記駆動部に電流を供給する駆動ドライバと、
     前記駆動ドライバを制御する制御部と、
     を備え、
     前記制御部は、
     ハードウェアを有するプロセッサを備え、
     前記プロセッサは、
     前記駆動部に対して、第1の電流を前記駆動ドライバに供給させ、かつ、所定の周期で前記第1の電流より大きい第2の電流を前記駆動ドライバに供給させることを繰り返し実行させると、
     を備える、
     内視鏡システム。
  14.  固定部と、前記固定部の内部を摺動可能に設けられ、レンズを保持する可動部と、前記固定部に対して、前記可動部を前記レンズの光軸方向に沿って摺動させる駆動部と、前記駆動部に電流を供給する駆動ドライバと、を備える駆動装置が実行する駆動方法であって、
     前記駆動部に対して、第1の電流を前記駆動ドライバに供給させ、かつ、所定の周期で前記第1の電流より大きい第2の電流を前記駆動ドライバに供給させることを繰り返し実行させる、
     駆動方法。
PCT/JP2022/009558 2022-03-04 2022-03-04 駆動装置、内視鏡システムおよび駆動方法 WO2023166740A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009558 WO2023166740A1 (ja) 2022-03-04 2022-03-04 駆動装置、内視鏡システムおよび駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009558 WO2023166740A1 (ja) 2022-03-04 2022-03-04 駆動装置、内視鏡システムおよび駆動方法

Publications (1)

Publication Number Publication Date
WO2023166740A1 true WO2023166740A1 (ja) 2023-09-07

Family

ID=87883472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009558 WO2023166740A1 (ja) 2022-03-04 2022-03-04 駆動装置、内視鏡システムおよび駆動方法

Country Status (1)

Country Link
WO (1) WO2023166740A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225438A (ja) * 1997-02-14 1998-08-25 Fuji Photo Film Co Ltd 撮像装置および蛍光内視鏡並びに蛍光電子内視鏡
JP2015134100A (ja) * 2014-01-17 2015-07-27 オリンパス株式会社 移動装置及び内視鏡システム
WO2015178126A1 (ja) * 2014-05-22 2015-11-26 オリンパス株式会社 撮像装置、内視鏡
WO2016009842A1 (ja) * 2014-07-16 2016-01-21 オリンパス株式会社 レンズ駆動装置
WO2019207781A1 (ja) * 2018-04-27 2019-10-31 オリンパス株式会社 光学ユニット及び内視鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225438A (ja) * 1997-02-14 1998-08-25 Fuji Photo Film Co Ltd 撮像装置および蛍光内視鏡並びに蛍光電子内視鏡
JP2015134100A (ja) * 2014-01-17 2015-07-27 オリンパス株式会社 移動装置及び内視鏡システム
WO2015178126A1 (ja) * 2014-05-22 2015-11-26 オリンパス株式会社 撮像装置、内視鏡
WO2016009842A1 (ja) * 2014-07-16 2016-01-21 オリンパス株式会社 レンズ駆動装置
WO2019207781A1 (ja) * 2018-04-27 2019-10-31 オリンパス株式会社 光学ユニット及び内視鏡

Similar Documents

Publication Publication Date Title
US11382715B2 (en) Jig-holding device and medical observation device
US20130345508A1 (en) Light irradiating device, scanning endoscopic device, manufacturing method of light irradiating device, and manufacturing method of scanning endoscopic device
JP6388361B2 (ja) 駆動ユニット、光学ユニット、撮像装置及び内視鏡
EP3086153A1 (en) Drive unit, optical unit, imaging device, and endoscope
US20170123181A1 (en) Lens driving apparatus
US8305486B2 (en) Auto-focus intra-oral camera having a linear piezoelectric actuator
CN115670350B (zh) 内窥镜的成像物镜机构、可变焦镜头以及内窥镜
WO2023166740A1 (ja) 駆動装置、内視鏡システムおよび駆動方法
JP7441897B2 (ja) 制御装置、内視鏡システムおよび制御装置の作動方法
JP2008033167A (ja) 撮像ユニット
US20210181457A1 (en) Optical device and endoscope
JP2004159924A (ja) 内視鏡
JP5799213B2 (ja) 内視鏡
JPH10118007A (ja) 内視鏡
US11213186B2 (en) Endoscope apparatus and image processing apparatus
JP2003140030A (ja) 内視鏡のオートフォーカス装置
JP3635525B2 (ja) 内視鏡システム
JP2011104068A (ja) 口腔内カメラ
JP2011043638A (ja) レンズ駆動装置及び撮像装置
WO2019187188A1 (ja) 内視鏡
CN108135452B (zh) 摄像装置以及内窥镜系统
CN108135439B (zh) 光学系统和内窥镜系统
JPH02181718A (ja) 電子内視鏡
JP2012152434A (ja) 内視鏡
WO2015015942A1 (ja) 内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE