Nothing Special   »   [go: up one dir, main page]

WO2023153763A1 - C-met의 에피토프 및 hif1alpha의 에피토프를 포함하는 암 백신 및 이의 용도 - Google Patents

C-met의 에피토프 및 hif1alpha의 에피토프를 포함하는 암 백신 및 이의 용도 Download PDF

Info

Publication number
WO2023153763A1
WO2023153763A1 PCT/KR2023/001715 KR2023001715W WO2023153763A1 WO 2023153763 A1 WO2023153763 A1 WO 2023153763A1 KR 2023001715 W KR2023001715 W KR 2023001715W WO 2023153763 A1 WO2023153763 A1 WO 2023153763A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
met
hif1α
bone
pharmaceutical composition
Prior art date
Application number
PCT/KR2023/001715
Other languages
English (en)
French (fr)
Inventor
박경화
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220102718A external-priority patent/KR20230120542A/ko
Priority claimed from KR1020230015177A external-priority patent/KR20230120585A/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023153763A1 publication Critical patent/WO2023153763A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the present invention relates to the use of the epitope of c-MET and the epitope of HIF1 ⁇ as a cancer vaccine, the use of the cancer vaccine, and the like.
  • TNBC Triple Negative Breast Cancer
  • HER2 human epidermal growth factor receptor 2
  • TNBC accounts for 10-15% of all breast cancers.
  • TNBC is the most aggressive type of breast cancer and has more aggressive biological characteristics than other breast cancer subtypes.
  • PIK3CA/Akt pathway currently in phase 3 clinical trials
  • TNBC treatment targets remain unclear.
  • PIK3CA/Akt mutation is a promising target and is currently undergoing phase 3 clinical trials. New treatment strategies are needed because disease-free survival and overall survival are significantly shortened due to lack of drug sensitivity and limited targeted treatment options.
  • TNBC is the only subtype of metastatic cancer that prolongs survival in some patients when combined with immunotherapy. Therefore, it is worth exploring more therapies that stimulate the immune system to overcome the clinical challenges of TNBC treatment.
  • hypoxia in tumors is known to be associated with cancer progression and poor clinical outcomes in breast cancer patients.
  • TNBC often exhibits morphological features of hypoxia, such as the presence of fibrils and areas of necrosis.
  • high expression of HIF-1 ⁇ negatively affects TNBC survival.
  • HIF-1 ⁇ many genes involved in resistance, proliferation, invasion and metastasis, immune evasion as well as angiogenesis, cell survival, chemotherapy and radiation are regulated through HIF-1 ⁇ .
  • the importance of HIF-1 ⁇ was demonstrated using MDA-MB-231 cells in an immunodeficient mouse model.
  • HIF-1 ⁇ signaling contributes to bone metastasis by inhibiting the differentiation of osteoblasts and promoting the formation of osteoclasts to regulate the bone microenvironment during bone metastasis.
  • tumors overexpressing HIF-1 ⁇ protein did not survive longer than tumors with low expression of HIF-1 ⁇ protein.
  • Abnormal overexpression of self proteins has also been reported to enhance immunogenicity. Given that HIF-1 ⁇ expression is specifically increased in TNBC, targeting HIF-1 ⁇ may provide a new treatment option for TNBC patients.
  • c-MET has been reported to be overexpressed in approximately 52% of TNBC and is associated with reduced disease-free and overall survival.
  • c-MET which is mainly expressed in epithelial cells, induces various intracellular signaling pathways essential for the development and progression of many human cancers.
  • HGF hepatocyte growth factor
  • MET hepatocyte growth factor
  • TIL tumor-infiltrating lymphocytes
  • Treating cancer by regulating the immune system is called cancer immunotherapy, and various approaches are being developed to fight cancer by activating the immune system of cancer patients.
  • various tumor-associated antigens (TAAs) or neoantigens expressed in cancer cells can induce anti-tumor immune responses and can be used for immunotherapy such as cancer vaccines.
  • TAAs tumor-associated antigens
  • cancer vaccine platforms including peptide- or protein-based vaccines, oncolytic virus or recombinant viral vector vaccines, dendritic cell vaccines and engineered cell vaccines. Additionally, recent advances in effective immune adjuvants may enhance the utility of vaccines for a variety of therapeutic purposes.
  • MHC class ⁇ epitope-based peptides induce tumor-specific T cell responses using TAA-derived tumor-specific peptides and are in clinical trials as attractive cancer therapeutics because of their low toxicity.
  • Peptide vaccines based on MHC class II peptides are longer than MHC class I peptides (8-10 amino acids) and primarily stimulate CD4 T cells.
  • Vaccination with MHC class I restricted peptides may induce immune tolerance by not inducing sufficient cytotoxic T-lymphocytes (CTLs).
  • CTLs cytotoxic T-lymphocytes
  • MHC class ⁇ restricted peptides have the advantage of sufficiently inducing CTL and T-helper cells.
  • Tumor cells can evade immune surveillance through immune checkpoint pathways such as Tim-3, PD-1, LAG-3 and CTLA-4.
  • Immune checkpoint inhibitors (ICIs) block these pathways and improve antitumor immune responses in various tumor types, such as melanoma, lung, renal cell and bladder cancer.
  • ICIs immune checkpoint inhibitors
  • the effect of a single immune checkpoint inhibitor was rarely observed in patients with other malignancies such as breast cancer, prostate cancer, and pancreatic cancer.
  • Peptide-based cancer vaccines have been shown to be beneficial for survival with fewer side effects compared to conventional treatments, but peptide-based cancer vaccines alone are considered insufficient to maintain cancer control.
  • combination therapy of immune checkpoint inhibitors and various types of cancer vaccines increased tumor-specific T cell activation and antitumor effects.
  • Combination therapy of peptide-based cancer vaccines and immune checkpoint inhibitors to activate tumor-specific immune responses and inactivate immune suppression in the tumor microenvironment can induce stronger antitumor responses.
  • An object of the present invention is to provide a method for preventing or treating cancer by inducing an immune response with the HIF-1 ⁇ epitope and the c-Met epitope, and providing the use of the two epitopes as a cancer vaccine.
  • the present invention provides a combination administration method of a vaccine and an immune checkpoint inhibitor for the effective prevention or treatment of cancer.
  • the present invention provides the use of a HIF1 ⁇ epitope peptide and a c-MET epitope peptide as a cancer vaccine.
  • the present invention provides a pharmaceutical composition for preventing or treating cancer comprising an epitope of HIF1 ⁇ and an epitope of c-MET as active ingredients.
  • the two epitopes may be provided as distinct peptides or as one polypeptide.
  • the c-MET epitope peptide may include one or more amino acid sequences selected from the group consisting of the amino acid sequences represented by SEQ ID NO: 1 and SEQ ID NO: 2.
  • the c-MET epitope peptide may include or consist of the amino acid sequence represented by SEQ ID NO: 1, and may include or consist of the amino acid sequence represented by SEQ ID NO: 2.
  • the c-MET epitope peptide may include or consist of the amino acid sequences represented by SEQ ID NO: 1 and SEQ ID NO: 2.
  • the HIF1 ⁇ epitope peptide may include one or more amino acid sequences selected from the group consisting of the amino acid sequences represented by SEQ ID NOs: 3 to 5.
  • the HIF1 ⁇ epitope peptide may include or consist of the amino acid sequence represented by SEQ ID NO: 3, may include or consist of the amino acid sequence represented by SEQ ID NO: 4, and SEQ ID NO: It may contain or consist of the amino acid sequence represented by 5.
  • the HIF1 ⁇ epitope peptide may include or consist of the amino acid sequences represented by SEQ ID NO: 3 and SEQ ID NO: 4, and may include or consist of the amino acid sequences represented by SEQ ID NO: 4 and SEQ ID NO: 5 It may consist of this, and may include or consist of the amino acid sequences represented by SEQ ID NO: 3 and SEQ ID NO: 5.
  • the HIF1 ⁇ epitope peptide may include or consist of the amino acid sequences represented by SEQ ID NO: 3 to SEQ ID NO: 5.
  • the HIF1 ⁇ epitope peptide and the c-MET epitope peptide each include two or more sequences in the sequence listing provided herein
  • the structure of the amino acid sequence of each SEQ ID NO is affected , that is, 1 to 3 amino acids at a level that does not affect the function of the secondary structure of each amino acid sequence may be additionally included, and the amino acid sequences of each sequence number may be directly linked and their structure and function can be linked by a linker that does not affect
  • the polypeptide when the two epitopes are provided as one polypeptide, the polypeptide may include or consist of the amino acid sequence represented by SEQ ID NO: 6.
  • the pharmaceutical composition may be for combined administration with an immune checkpoint inhibitor, wherein the combined administration means simultaneous or sequential administration with the immune checkpoint inhibitor, and simultaneous administration means the pharmaceutical composition or immune checkpoint inhibitor. It means that the remaining drugs are administered within 24 hours after the checkpoint inhibitor is administered to the subject, and is not limited to the meaning that the two drugs are necessarily administered to the subject as one composition.
  • an immune checkpoint inhibitor may be administered after administration of the pharmaceutical composition.
  • the pharmaceutical composition may further include an immune checkpoint inhibitor.
  • the immune checkpoint inhibitor is CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, TIGIT, CD47, VISTA and It may block signal transduction of one or more immune checkpoint proteins selected from the group consisting of A2aR, and specifically, may be an antibody targeting the one or more immune checkpoint proteins, and the antibody may be a monoclonal antibody.
  • the cancer is not limited as long as it is a carcinoma in which c-MET and/or HIF1 ⁇ overexpression has been reported, but is preferably breast cancer, non-small cell lung cancer, stomach cancer, head and neck cancer, kidney cancer, liver cancer, or prostate cancer. , and at least one carcinoma selected from the group consisting of thyroid cancer, and the breast cancer includes triple negative breast cancer.
  • the cancer includes advanced cancer and/or metastatic cancer, and the metastatic cancer means metastatic cancer throughout the body and includes metastatic bone tumor.
  • the present invention provides a method for preventing or treating cancer comprising administering an epitope of HIF1 ⁇ and an epitope of c-MET to a subject.
  • the subject is not limited as long as it is a mammal in need of prevention or treatment of cancer, and may preferably be a human who is concerned about cancer metastasis.
  • the method may further include administering an immune checkpoint inhibitor to the subject.
  • the present invention provides the use of the HIF1 ⁇ epitope and the c-MET epitope for the manufacture of a drug for preventing or treating cancer.
  • the HIF1 ⁇ /c-MET polypeptide cancer vaccine of the present invention reduces the expression level of the protein, reduces the expression of angiogenesis-related markers, and inhibits tumor growth in various carcinomas known to overexpress HIF1 ⁇ and/or c-MET can do. Furthermore, the cancer vaccine induces antigen-specific T1 cells and increases intratumoral infiltration, and is not limited to the carcinoma, and can be used for the prevention or treatment of general cancers, and in particular, suppresses cancer progression and metastasis It is expected to be used as a vaccine for prevention. In addition, the cancer vaccine of the present invention can be used in a combination administration regimen with an immune checkpoint inhibitor.
  • Figure 2 shows the results of confirming the expression levels of c-MET and HIF1 ⁇ in metastatic bone tumors using RNA sequencing and IHC analysis.
  • T cell panel shows the distribution of tumor cells (blue) in CD8 T cells (red), CD4 T cells (yellow) and MDSCs (green). Immune cell infiltration of normal and metastatic bone is expressed as mean ⁇ SEM (*, p ⁇ 0.05).
  • Figure 4 shows the tumor volume after subcutaneous injection of 50 ⁇ g of HIF1 ⁇ /c-MET polypeptide vaccine 3 times at 10-day intervals to C3-Tag mice and 5 ⁇ 10 5 cells/100 ⁇ l of M cells subcutaneously on the 10th day of the last injection. is the result of the measurement.
  • Mean tumor volumes of the control and HIF1 ⁇ /c-MET vaccine groups are expressed as mean ⁇ SEM (*, p ⁇ 0.05).
  • HIF1 ⁇ /c-MET polypeptide vaccine promotes IFN- ⁇ secretion from Th1 cells by measuring average IFN- ⁇ spots per well of mice immunized with HIF1 ⁇ and c-MET MHC class ⁇ .
  • Experimental groups were divided into unstimulated cells and negative control cells stimulated with TT or HIF1 ⁇ and c-MET peptides (*** p ⁇ 0.001).
  • T cell panel 6 is a result of evaluating the degree of infiltration of immune cells in transplanted tumors.
  • (A) is intracardiac injection of M6-bone cells into mice immunized with CFA/IFA or HIF1 ⁇ /c-MET, and 14, 21, 28, and 35 days later, tumor growth and spread were observed through luciferase imaging. This is the result of tracking.
  • (B) is a graph quantifying the growth of metastatic bone tumors over time in the bones of mice immunized with CFA/IFA or HIF1 ⁇ /c-MET.
  • (C) is a micro-CT image (indicated by an arrow) of a mouse bone immunized with CFA/IFA or HIF1 ⁇ /c-MET.
  • CD4 and CD8 expression in normal and metastatic bone tumors are expressed as mean ⁇ SEM (*, p ⁇ 0.05; ***, p ⁇ 0.001).
  • 11 is an image confirming the formation of osteoclasts by treating BMM with M-CSF (30ng/mL), RANKL (100ng/mL), and IFN- ⁇ (50,100ng/ml) for 1, 3, 5, and 7 days ( arrow), it was confirmed that IFN- ⁇ inhibits M-CSF and RANKL-induced osteoclastogenesis.
  • Figure 13 shows the results of Western blotting using the same amount of protein after treating M6 and M6-bone cells with 100 ng/ml of IFN- ⁇ for 18 hours. It can be seen that transmission is inhibited.
  • ⁇ SMA and CD31 are angiogenesis-related markers in metastatic bone tumor.
  • Green represents ⁇ SMA and red represents CD31 (scale bar: 20 ⁇ m).
  • ⁇ SMA and CD31 expression in normal and metastatic bone tumors are expressed as mean ⁇ SEM (*, p ⁇ 0.05).
  • Fig. 17 shows images of immunofluorescence staining of CD4 and CD8 infiltrating transplanted tumors in each group. Levels of CD4 and CD8 in normal and metastatic bone tumors are expressed as mean ⁇ SEM (*, p ⁇ 0.05; **, p ⁇ 0.005).
  • FIG. 18 shows results of evaluation of bone metastasis following administration of a HIF1 ⁇ /c-MET polypeptide vaccine and an immune checkpoint inhibitor in an advanced cancer metastasis model.
  • A is a representative image confirming the growth and spread of tumors with luciferase imaging images
  • B is a quantification of the average number of photons in the bone region in each group of mice over time.
  • FIG. 19 shows evaluation results of the degree of bone damage following administration of a HIF1 ⁇ /c-MET polypeptide vaccine and an immune checkpoint inhibitor in an advanced cancer metastasis model.
  • Representative micrographs of mouse bones in the CFA/IFA group, the HIF1 ⁇ /c-MET peptide alone group, the HIF1 ⁇ /c-MET peptide+anti-PD-1 Ab combination group, and the HIF1 ⁇ /c-MET peptide+anti-CTLA-4 Ab combination group -CT is indicated by an arrow.
  • FIG. 20 is immunofluorescence staining images of CD4 and CD8 in each group as a result of evaluating the degree of immune cell infiltration into metastatic bone tumors after administration of a HIF1 ⁇ /c-MET polypeptide vaccine and an immune checkpoint inhibitor in an advanced cancer metastasis model.
  • CD4 and CD8 expression in normal and metastatic bone tumors were expressed as mean ⁇ SEM (**, p ⁇ 0.005; ***, p ⁇ 0.001).
  • Figure 22 shows mouse bones in the CFA/IFA group, the HIF1 ⁇ /c-MET peptide alone group, the HIF1 ⁇ /c-MET peptide+anti-PD-1 Ab combination group, and the HIF1 ⁇ /c-MET peptide+anti-CTLA-4 Ab combination group.
  • H&E and TRAP staining images of (arrow mark).
  • Concomitant administration of HIF1 ⁇ /c-MET polypeptide vaccine and immune checkpoint inhibitors reduces the formation of TRAP-positive osteoclasts.
  • A is a schematic diagram of the experiment
  • B is a graph comparing and confirming the tumor size of the experimental animals over time.
  • Figure 24a is a result confirming the induction of IFN- ⁇ secreting Th1 cells according to the administration of HIF1 ⁇ / c-MET polypeptide in a lapatinib-resistant cancer-induced animal model
  • Figures 24b to 24d are H&E and immunofluorescence staining of the tumor tissue of the animal. It is an image.
  • 25 is a schematic view of an experiment using an animal model inducing metastasis of the body by administration of the M6-bone cell line.
  • 26a and 26b show the results of H&E and immunofluorescence staining of lung, liver, and bone tissues of a systemic metastatic cancer-induced animal model, confirming the occurrence of metastasis in the lung, liver, and bone by administration of the M6-bone cell line. .
  • 27 is a luciferase imaging image for evaluating cancer metastasis following administration of a HIF1 ⁇ /c-MET polypeptide vaccine and an immune checkpoint inhibitor in a systemic metastatic cancer-induced animal model.
  • FIG. 28a is an H&E and immunofluorescence staining image confirming CD47 overexpression in lung and liver tissues of a systemic metastatic cancer-induced animal model
  • FIG. 28b is an image of CD47 overexpression in bone of the animal model and lung, liver, and bone It is a graph quantifying the number of CD47 overexpressing cells.
  • 29a and 29b are H&E and immunofluorescence staining images confirming CD8 T cells infiltrating tumor tissue according to administration of HIF1 ⁇ /c-MET polypeptide vaccine and immune checkpoint inhibitor in systemic metastatic cancer-induced animal models and graphs quantifying them. .
  • HIF1 ⁇ and c-MET which are target proteins, and the expression of angiogenesis markers were decreased in the tumors immunized with the vaccine. Furthermore, by reducing the production of osteoclasts in the bone microenvironment, an effective immune response was confirmed in mice exhibiting reduced osteolysis. Finally, the combined use of the HIF1 ⁇ /c-MET vaccine with an immune checkpoint inhibitor confirmed its potential as a therapeutic vaccine in the setting of advanced cancer. From the above results, the present inventors intend to provide HIF1 ⁇ /c-MET polypeptide as a cancer vaccine, and a cancer treatment method through combined administration of the cancer vaccine and an immune checkpoint inhibitor.
  • MHC class I-restricted vaccines do not always induce an immune response sufficient to induce effective antitumor immunity.
  • MHC class I-based vaccines lack signal transduction of costimulatory molecules, which can lead to tolerance or anergy of CD8 T cells when presented by MHC class I molecules expressed on non-professional APCs. Because of this phenomenon, vaccines with short peptides have limited effectiveness.
  • TAA-derived MHC class I-based vaccines are that they induce not only Type I T cells but also Type II T cells or Treg cells, and thus have limited clinical efficacy.
  • MHC class II epitope-based vaccines can overcome this problem because they cannot directly bind to MHC class I molecules expressed in non-professional APCs.
  • Immunological regulation of TNBC requires a robust immune response against multiple antigens.
  • multi-epitope vaccines induce a strong Th1-type immune response compared to single-epitope vaccines, significantly reduce tumor volume, limit bone destruction, and significantly improve survival rates.
  • Vaccines based on multiple epitopes and multiple peptides can be used as more suitable therapeutic agents because they induce stronger immunity and avoid immune escape than vaccines based on single epitopes and single peptides. For this reason, the present inventors selected epitopes targeting c-MET and HIF1 ⁇ and combined them into a polypeptide vaccine.
  • epitope targeting HIF1 ⁇ those developed in previous studies were used, and for the epitope targeting c-MET, a peptide sequence with high contact affinity for HLA among the c-MET proteins was selected, and INF-gamma ELISPOT and IL-10 were selected. ELISPOT was performed to induce a Th1 immune response, and an epitope verified to induce an immune response in mice was used.
  • the amino acid sequence of the c-MET epitope used is as follows.
  • the present inventors provide a polypeptide in which each epitope of c-MET and HIF1 ⁇ are fused as a cancer vaccine for preventing and/or treating cancer.
  • Immune checkpoint inhibitors disrupt co-inhibitory signaling pathways to activate antitumor immune responses and promote immune-mediated clearance of tumor cells. Immune checkpoint inhibitors are a breakthrough in cancer treatment, but their clinical effects are still limited to some patients. Blocking the immune checkpoint pathway is most effective in the presence of pre-existing tumor-specific T-cell responses, but CD8 T-cell-mediated anti-tumor immunity is not sufficiently induced due to the low immunogenicity of many tumors. Vaccination can induce the expansion of tumor-specific T cells and enhance anti-cancer immune responses.
  • the present inventors studied the antitumor effect of Type I immunity and inhibition of bone metastasis using the vaccine of the present invention, which was confirmed to induce Th1, and simultaneously investigated the effect of combination treatment with an immune checkpoint inhibitor in C3(I)-Tag mice. evaluated. As a result, it was confirmed that the combined administration of the immune checkpoint inhibitor with the vaccine induced more tumor trafficking of Th1 and showed an effective antitumor response and suppression of bone metastasis.
  • interferon genes are indicators that can predict a better prognosis in various carcinomas including breast cancer, pancreatic cancer, and ovarian cancer.
  • an increase in IFN- ⁇ in cancer is associated with a positive response and outcome to treatment.
  • IFN- ⁇ is known to inhibit cell proliferation and angiogenesis and induce apoptosis.
  • local IFN- ⁇ upregulation in mouse models has been shown to be essential for anti-PD-1 mediated tumor suppression.
  • IFN- ⁇ sms inhibits osteoclast formation by inhibiting RNAK signaling in osteoclast precursors of mice. Conversely, loss of the IFN- ⁇ receptor induces osteoclast formation and enhances bone destruction in a mouse model of inflammatory bone loss.
  • IFN- ⁇ can prevent tumor-related bone loss by inhibiting osteoclastogenesis.
  • the present inventors confirmed that the number of osteoclasts was significantly reduced in the case of metastatic bone tumor in the immunized mouse compared to the control group.
  • C3(1)-Tag bone marrow monocytes (BMMs) supported a role for IFN- ⁇ .
  • the present inventors confirmed that the developed cancer vaccine induces decreased expression of oncoproteins, c-MET and HIF1 ⁇ and decreased expression of angiogenesis-related markers.
  • Hypoxia inducible factor (HIF)-1 is a transcription factor that maintains intracellular homeostasis by inducing glycolysis and angiogenesis to respond appropriately to changes in external oxygen concentration under hypoxic conditions. Overexpression is known in various solid cancers such as gastric cancer and breast cancer, and small molecule substances targeting HIF-1alpha as a subtype of HIF-1 are under clinical trials. In addition, it is known that HIF-1 ⁇ signaling contributes to bone metastasis by controlling the bone microenvironment by inhibiting the differentiation of osteoblasts and promoting the formation of osteoclasts in the process of bone metastasis.
  • c-Met is known to be involved in cancer development by continuously activating intracellular signal transduction systems by being activated by hepatocyte growth factor (HGF). It is known that expression of C-Met is increased in carcinomas such as liver cancer, lung cancer, stomach cancer, thyroid cancer, prostate cancer, endometrial cancer, and breast cancer.
  • HGF hepatocyte growth factor
  • an "epitope” is a set of amino acid residues in an antigen-binding site recognized by a specific antibody, or in T cells, recognized by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. It is a residue that becomes An epitope is a molecule that forms a site recognized by an antibody, T cell receptor or HLA molecule, and refers to a primary, secondary and tertiary peptide structure, or charge.
  • the present invention provides a polypeptide containing an HIF-1alpha epitope and a c-Met epitope as a cancer vaccine.
  • the cancer vaccine may be provided as a polypeptide in which the peptides of both epitopes are linked, and the peptides of both epitopes may exist separately, but may be provided as one composition, and the peptides of both epitopes may be used together It may be provided as a separate composition, respectively, to be used separately.
  • the epitope of HIF1 ⁇ and the epitope of c-MET constituting the cancer vaccine in the present invention can be prepared by a known chemical synthesis method or genetic engineering method, and amino (N-) terminal or carboxy (C- ) may include modifications of the ends.
  • the "stability” is meant to include not only in vivo stability, but also storage stability (including storage stability when stored at room temperature, refrigerated, or frozen).
  • the polypeptide containing the HIF-1 ⁇ epitope and the c-Met epitope is referred to as “HIF1 ⁇ /c-Met polypeptide”, and is injected into the body to activate the immune response by providing the HIF1 ⁇ epitope and the c-Met epitope.
  • the cancer vaccine of the present invention encodes the polypeptide or peptide as well as the polypeptide and the peptide itself. It may contain genetic material that
  • the genetic material when the genetic material encoding the polypeptide or peptide is provided as a cancer vaccine, the genetic material may consist of RNA and/or DNA and may include a modified nucleotide.
  • the genetic material when the genetic material is mainly composed of RNA, it may include known structures for expression in vivo, and non-limiting examples include IRES, 5'-capping, and the like.
  • the genetic material when the genetic material is mainly composed of DNA, it may be provided as a recombinant vector including an operably linked promoter for its expression.
  • the genetic material may include a signal peptide for secretion to the outside of the cell.
  • promoter is involved in the binding of RNA polymerase to initiate transcription as a portion of DNA.
  • it is located adjacent to and upstream of the target gene, and is a binding site for RNA polymerase or a transcription factor, a protein that induces RNA polymerase, and can induce the enzyme or protein to be located at the correct transcription start site.
  • RNA polymerase or a transcription factor
  • a specific gene sequence have
  • the “cancer” that the vaccine is intended to prevent or treat has a problem with the normal division, differentiation, and death control function of cells, abnormally proliferates, infiltrates surrounding tissues and organs, forms a lump, and forms a lump, and the existing structure refers to the state of being destroyed or deformed.
  • cancer may include non-small cell lung cancer, gastric cancer, head and neck cancer, kidney cancer, liver cancer, prostate cancer, and solid cancers in which overexpression of HIF-1 ⁇ has been reported, such as non-small cell lung cancer, liver cancer, prostate cancer, and thyroid cancer, in addition to breast cancer.
  • the vaccines can prevent or treat metastatic cancer, especially bone metastasis cancer.
  • the cancer vaccine of the present invention induces a Th1 immune response.
  • Th1 cell refers to a subset of helper T cell lymphocytes characterized in terms of gene expression, protein secretion, and functional activity.
  • Th1 cells display a cytokine expression pattern that synthesizes IL-2 and IFN- ⁇ but not IL-4, IL-5, IL-10 and IL-13.
  • Th1 cells are involved in cell-mediated immune responses against various intracellular pathogens, organ-specific autoimmune diseases and delayed hypersensitivity reactions.
  • the cancer vaccine of the present invention can exhibit a more remarkable anticancer effect when administered in combination with an immune checkpoint inhibitor, and can improve drug sensitivity in checkpoint inhibitor-resistant cancer.
  • the present invention provides a combination administration therapy of the aforementioned cancer vaccine and immune checkpoint inhibitor for the prevention or treatment of cancer.
  • the cancer vaccine and the immune checkpoint inhibitor may be provided as one composition, and each may be provided separately and administered sequentially.
  • the order is irrelevant, but the immune checkpoint inhibitor may be administered preferably after administration of the cancer vaccine.
  • the immune checkpoint inhibitor performs the binding inhibitory function between PD-L1 and PD-1 for maintaining the immune function of T cells, and inhibits the activity of T-cells infiltrating into the tumor. Since it inhibits PD-1 or PDL-1, which inhibits it, it can increase the anticancer effect by maximizing the activity of T-cell.
  • the present invention confirmed the effect of increasing immune cell infiltration and inhibiting tumor growth by administering the vaccine of the present invention in combination with anti-CTLA-4 Ab or anti-PD-1 Ab, but for T-cell activity It is not limited as long as it is an immune checkpoint inhibitor targeting an immune checkpoint protein.
  • the immune checkpoint inhibitor may be an inhibitor of CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, TIGIT, CD47, VISTA or A2aR.
  • prevention refers to all activities that inhibit metastasis of cancer or delay the onset and metastasis of cancer by administering the vaccine according to the present invention or the combination of the vaccine and an immune checkpoint inhibitor.
  • treatment refers to all activities that improve cancer or beneficially change its symptoms by administering the vaccine according to the present invention or the combination of the vaccine and an immune checkpoint inhibitor.
  • the vaccine of the present invention may be provided as a pharmaceutical composition containing the above-described HIF1 ⁇ /c-Met polypeptide or each peptide, and the pharmaceutical composition according to the present invention may further contain a pharmaceutically acceptable carrier, excipient or diluent.
  • a pharmaceutically acceptable carrier, excipients and diluents that can be used in the pharmaceutical composition of the present invention include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, and alginate.
  • gelatin calcium phosphate, calcium silicate, calcium carbonate, cellulose, methyl cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like.
  • the pharmaceutical composition of the present invention may be administered orally or parenterally depending on the desired method, but is preferably administered parenterally.
  • the pharmaceutical composition according to the present invention can be directly administered intravenously, intraarterially, into cancer tissue or subcutaneously, or administered as an injection.
  • the injection according to the present invention may be in a form dispersed in a sterile medium so that it can be used as it is when administered to a patient, or may be administered after dispersing in an appropriate concentration by adding distilled water for injection.
  • it when prepared as an injection, it may be mixed with buffers, preservatives, analgesics, solubilizers, tonicity agents, stabilizers, etc., and may be prepared in unit dosage ampoules or multiple dosage forms.
  • the dosage of the pharmaceutical composition of the present invention varies depending on the condition and body weight of the patient, the severity of the disease, the drug type, the administration route and time, but can be appropriately selected by those skilled in the art. Meanwhile, the pharmaceutical composition according to the present invention may be used alone or in combination with auxiliary treatment methods such as surgical treatment.
  • amino acid sequences are abbreviated as follows according to the IUPAC-IUB nomenclature.
  • Arginine (Arg, R), Lysine (Lys, K), Histidine (His, H), Serine (Ser, S), Threonine (Thr, T), Glutamine (Gln, Q), Asparagine (Asp, N), Methionine (Met, M), Leucine (Leu, L), Isoleucine (Ile, I), Valine (Val, V), Phenylalanine (Phe, F), Tryptophan (Trp, W), Tyrosine (Tyr, Y), Alanine (Ala, A), Glycine (Gly, G), Proline (Pro, P), Cysteine (Cys, C), Aspartic acid (Asp, D) Glutamic acid (Glu, E), Norleucine (Nle)
  • mice Female FVB-Tg (C3-1-TAg) cJeg/Jeg (C3(1)-Tag) mice, 5-8 weeks of age, were purchased from Jackson Laboratories.
  • the C3(1) tag mouse is a TNBC mouse model with a basal phenotype.
  • Each experimental group used 4 or more mice. All experiments were performed according to protocols approved by Korea University Animal Laboratory, and all mice were raised in sterile facilities. (Korea-2020-0014)
  • the mouse mammary tumor cell line M6 was derived from spontaneous mammary tumors of C3(1)-Tag mice. M6-luc cells were inoculated into C3(1)-Tag mice by intracardiac injection. After 2 weeks, metastatic tibial lesions were identified by in vitro bioluminescence imaging and metastatic sites were excised in mice. After cutting the entire hind limb with a blade, the cut hind limb was cultured in RPMI1640 medium for 24 hours. The next day, cells adhered to the dish were identified and treated with 10 ⁇ g/ml blasticidin in RPMI1460 medium containing 10% FBS and 1% antibiotics to select only metastatic cells. All cell lines were cultured in RPMI 1640 medium supplemented with 10% FBS and 1% antibiotics and maintained in a 37°C 5% CO 2 incubator. This process was repeated twice to establish a bone seeking cell line.
  • Bone metastatic cell lines were cultured in RPMI1460 medium supplemented with 10% FBS, 10 ug/ml blasticidin, and stably transfected with luciferase (LVP326, GenTaget).
  • LVP326, GenTaget luciferase
  • 1 ⁇ 10 5 viable cells were washed, harvested in DPBS and inoculated into 8-9 week old C3(1)-Tag mice by intracardiac injection. Bone metastases were monitored by weekly bioluminescence imaging using a NightOWL LB 983 in vivo imaging system.
  • C3(1)-Tag mice were harvested at week 6.
  • RNA samples were transformed into cDNA libraries using the TruSeq Stranded mRNA Sample Prep Kit (Illumina). Starting with 1000 ng of total RNA, mRNA was mainly selected and purified using an oligo-dT-conjugated magnetic bead. The purified mRNA was physically fragmented and single-stranded cDNA was constructed using reverse transcriptase and random hexamer primers. Actinomycin D was added to inhibit DNA-dependent synthesis of the second strand, and double-stranded cDNA was prepared by removing the RNA template and synthesizing the second strand in the presence of deoxyribouridine triphosphate (dUTP) instead of dTTP (deoxythymidine triphosphate).
  • dUTP deoxyribouridine triphosphate
  • a single A base was added to the 3' end to facilitate ligation of a sequencing adapter containing a single T base overhang.
  • Adapter-ligated cDNA was amplified by polymerase chain reaction to increase the amount of sequence-ready library. During the PCR, the polymerase stops when it encounters a U base, making the second strand a poor template. Thus, the amplified material preserves strand information by using the first strand as a template.
  • the final cDNA library was analyzed for size distribution using an Agilent Bioanalyzer (DNA 1000 kit; Agilent), quantified by qPCR (Kapa Library Quant Kit; Kapa Biosystems, Wilmington, MA), and then diluted to 2 nmol/L for sequencing. normalized. Indexed libraries were sequenced using the Novaseq 6000 platform (Illumina, San Diego, USA, Macrogen Inc).
  • M6 or M6-bone tumor cells were injected into mice prior to initiating PD-1/CTLA-4 blockade therapy.
  • mice Armenian hamster IgG (BioXCell)/rat IgG2b (LTF-2, BioXCell) isotype control antibodies, anti-PD-1 blocking antibody (250 ⁇ g/mouse, J43, BioXCell), anti-CTLA-4 blocking antibody (150 ⁇ g/mouse, UC10-4F10-11, BioXCell) was injected intraperitoneally once every 3 days.
  • mice were sacrificed, and lungs, livers, bones, and tumors were separated and fixed with 4% formalin.
  • H&E staining was performed in the Department of Pathology as follows: after dehydration, tissue sections were immersed in hematoxylin for 10 minutes, washed with tap water for 1 minute, quickly immersed in HCl alcohol, washed with tap water for 1 minute, soaked in ammonia water for 1 minute, and washed with eosin. (eosin) for 15 seconds and then dehydrated. Dehydrate by immersion in a series of increasing concentrations of alcohol (two 95% and two 100%, 1 min each). Then, each section was immersed in xylene twice for 1 min each, mounted in Permount, and photographed using an optical microscope.
  • Paraffin-fixed tissues were cut into slides and paraffin was removed from the slides using xylene and ethanol. Slide tissues were incubated overnight at 4°C with primary antibodies: rabbit anti-CD4, mouse anti-CD8, anti-HIF1 ⁇ (NB100-105, Novusbio), anti-c-MET (ab51067, Abcam), anti- Anti- ⁇ SMA (C6198, Sigma) diluted in CD31, background block serum. Slide tissues with anti-CD4, anti-CD8, anti-HIF1 ⁇ and anti-c-MET primary antibodies were washed 3 times with TBS and incubated for 1 hour with the following secondary antibodies: Alexa Fluor® 488 rat anti-mouse IgG ( 1:1000). Nuclei were stained with 1ug/ml DAPI (1:1000, D1306, Invitrogen). The stained tissue slides were washed three times with TBS and mounted with fluorescent mounting medium (S3023, Dako).
  • Tissue slides with anti-HIF1 ⁇ and anti-c-MET were incubated with a second non-fluorescent antibody for 1 hour at room temperature.
  • DAB solution was incubated for 3 min, washed with D.W, and nuclei were stained with hematoxylin. Stained tissue slides were washed with D.W. and mounted after dehydration. Osteoclasts were stained using a TRAP staining kit (KT-008, KAMIYA biomedical company, Seattle, WA, USA).
  • mice After the mice were sacrificed, spleen cells were isolated from the spleen.
  • ELISPOT analysis was performed to evaluate the frequency of IFN- ⁇ secreted from Ag-specific T cells. After reacting 30ul/well of 35% ethanol for 1 minute in a 96-well filtration plate (MAIPS4510, Merck Millipore, Darmstadt, Germany), 200ul was washed three times with 1X PBS. Then, 10 ug/ml anti-mouse IFN- ⁇ antibody (AN81, MabTech, Sweden) was coated on a 96-well filtration plate at 50 ⁇ l per well at 4° C. overnight. After culturing overnight at 4 °C, washed 3 times with 1xPBS and incubated with 200ul of mouse T cell medium for 2 hours at room temperature.
  • splenocytes were cultured in a medium containing 10 ⁇ g/ml TT peptide, 10 ⁇ g/ml HIF1a peptide, 10 ⁇ g/ml c-MET peptide, and 5 ⁇ g/ml concanavalin A (Sigma-Aldrich) in an incubator at 37° C. for 48-72 days. incubated for hours.
  • the plate was washed with 200 ul of PBS dissolved in 0.05% Tween-20, and 5 ⁇ g/ml of biotinylated anti-mouse IFN- ⁇ antibody (R46A2, MabTech) was added at 50 ul per well, followed by incubation at 4° C. overnight. Plates were scanned and spots counted using an automated ELISPOT reader system.
  • BMM Primary mouse bone marrow monocytes
  • Mouse BMM was flushed through 8 ml of serum-free 2 mM EDTA ⁇ -MEM media into a 15 ml tube. After dispensing Lymphocyte Separation Medium (LSM; MP Biomedicals; Catalog No. 50494) into a new tube, 8 ml of flushed BMM was gently added thereon and centrifuged at room temperature at 1600 rpm for 20 minutes. The isolated BMM was seeded in a 48-well plate at 3 x 10 5 cells/well with 0.5 mL of medium per well and incubated in ⁇ -MEM containing 10% FBS and 1% antibiotics.
  • LSM Lymphocyte Separation Medium
  • the BMMs of the negative control group were treated with M-CSF (30ng/mL), the BMMs of the positive control group were treated with M-CSF and RANKL (100ng/mL), and the BMMs of the experimental group were treated with M-CSF, RANKL and IFN- ⁇ . (50, 100, ng/mL) and stimulated.
  • M-CSF, RANKL and IFN- ⁇ 50, 100, ng/mL
  • the medium was replaced, and M-CSF, RANKL, and IFN- ⁇ were treated for each experimental group.
  • staining was performed after cells were fixed with 10% formalin using a TRAP staining kit (KT-008, KAMIYA biomedical company, Seattle, WA, USA).
  • TRAP + TRAP positive multinucleated cells
  • M6 and M6-bone cells were stimulated with 100ng/ml recombinant mouse IFN- ⁇ and cultured for 18 hours in medium containing 1% FBS.
  • the cells were lysed in a buffered mixture of PRO-PREPTM protein extraction solution (iNtRON Biotechnology, 17081) and phosphatase inhibitor cocktail (Gen DEPOT, p3200-001). Protein concentration was measured using Bradford assay (Bio-rad, 500-0006, Hercules, CA, USA). 30ug of protein was separated by SDS-polyacrylamide gel electrophoresis, transferred to a PVDF membrane (10600023), and the membrane was blocked with Tris buffered saline containing 0.05% Tween 20 and 5% non-fat milk powder for 1 hour.
  • the PVDF membrane was incubated with primary antibodies overnight at 4 °C.
  • HIF1 ⁇ (NB100-105, Novusbio), c-MET, Akt (Cat# 9272), p-Akt (Cat# 9271) antibodies were Cell Signaling Technology (Beverly, MA, USA) and ß-actin (Cat# A5316) It was purchased from Sigma (Saint Louis, MO, USA).
  • the horseradish peroxidase-conjugated secondary antibody was incubated at room temperature for 1 hour. Immunoreactive bands were detected with a chemiluminescent reagent (Cat# RPN2106).
  • M6 cells generated from spontaneous breast tumors of a C3(1)-Tag mouse model for cancer.
  • M6 cells were intracardiacly injected into 8-9 week-old C3(1)-Tag female mice, and cells were isolated and cultured from bone metastatic lesions to establish a bone seeking cell line and to M6-bone. named.
  • the M6-bone cells were injected back into the heart for another cycle of in vivo selection and culture. Migration of M6-bone cells was confirmed by tracking fluorescence 14 days after intracardiac administration (FIG. 1A).
  • the hind limbs of the metastasized mice were collected and measured by X-ray. X-rays showed dramatic destruction of metastatic hind limbs compared to control hind limbs ( Figure 1B).
  • FIG. 1C histological analysis
  • RNA sequencing was performed using metastatic bone, M6 cells, and M6-bone cells. Expressions of HIF1 ⁇ and c-MET were increased in metastatic bone compared to the M6-bone clone (Fig. 2A). The protein levels of two biological markers, HIF1 ⁇ and c-MET, in metastatic bone tumors were compared with normal bone, liver and lung using immunohistochemical staining (Fig. 2B).
  • CD4 T cells 98.2 vs 111.7 counts/HPF
  • CD8 T cells (62.8 vs 29.5 counts/HPF)
  • myeloid- derived suppressor cells MDSCs
  • Gr-1+/CD11b+ myeloid- derived suppressor cells
  • the CD8/MDSC ratio (0.12 vs 0.52, p ⁇ 0.05) was significantly lower in metastatic bone marrow than in normal bone marrow, and the CD4/MDSC ratio (0.74 vs 0.64, ns) was significantly lower in metastatic bone marrow than in normal bone marrow. did not indicate
  • HIF1 ⁇ /c-MET polypeptide vaccine affects tumor growth. As a result of continuous measurement of M6 tumors transplanted into immunized mice, it was confirmed that the growth of tumors was limited in the group administered with the HIF1 ⁇ /c-MET polypeptide vaccine compared to the control group (613 ⁇ 131 mm 3 vs 879 ⁇ 93 mm 3 , p ⁇ 0.05) (FIG. 4). The ability of the vaccine to induce interferon (IFN)- ⁇ -secreting antigen-specific T cells was confirmed using ELISPOT. Compared to the control group, the HIF1 ⁇ /c-MET polypeptide vaccine induced significantly higher levels of antigen-specific Type IT cells.
  • IFN interferon
  • T cell infiltration of transplanted tumors was assessed by immunohistochemistry. MDSC infiltration (1.9 vs 1.22 counts/HPF, ns) was decreased, but CD8 T cell (0 vs 0.54 counts/HPF, ns) infiltration was increased in the tumors of the vaccine group compared to the control group (FIG. 6). However, no statistical significance was found. Protein expression of the two targets of the vaccine (c-MET and HIF1 ⁇ ) was significantly reduced in immunized tumors compared to control tumors (FIG. 7).
  • the HIF1 ⁇ /c-MET polypeptide vaccine targeting c-MET and HIF1 ⁇ limits tumor growth and increases the Ag-specific T cell immune response, and furthermore, immunized tumors exhibit increased CD8 T cell infiltration and It can be seen that it indicates a reduced target protein expression.
  • a systemic metastasis model was created by intracardiac injection of the M6-bone clone after 3 vaccinations.
  • the luciferase signal detected in the tibia at 35 days after injection was lower in the vaccine group than in the control group (Fig. 8A, B).
  • CT microcomputed tomography
  • Three-dimensional reconstruction micro-CT images of the bones of representative control animals revealed severe bone destruction.
  • the bones of the vaccine group showed limited osteolysis with intact periosteal integrity (FIG. 8).
  • Infiltration of T cells was also evaluated by immunofluorescence staining.
  • the numbers of infiltrated CD4 (mean; 3.5 vs 23.6 counts, p ⁇ 0.05) and CD8 T cells (mean; 9 vs 31.1 counts, p ⁇ 0.001) were significantly higher in the HIF1 ⁇ /c-MET polypeptide vaccine group compared to the CFA/IFA group. significantly increased (FIG. 9).
  • IFN- ⁇ is a key cytokine for T-helper type 1 (Th1) immunity and has been reported to reduce osteoclastogenesis
  • Th1 T-helper type 1
  • the HIF1 ⁇ and c-MET polypeptide vaccines induced more T cells into the bone microenvironment in the early bone metastasis progression model, stimulated Th cells to promote IFN- ⁇ secretion, thereby inhibiting the production of osteoclasts, It was found to affect the tumor microenvironment.
  • Bone metastasis occurs as cancer progresses, and vaccines alone may have limited therapeutic effects on metastatic bone tumors.
  • Immune checkpoint proteins such as PD-1 and CTLA-4 are known to be highly expressed in TNBC patients.
  • the efficacy of the vaccine and immune checkpoint inhibitor combination therapy was evaluated in an advanced cancer mouse model. Unlike the earlier cancer model ( FIG. 4 ), immunization with the vaccine did not show a significant therapeutic effect on transplanted M6 tumor growth compared to control (vaccine vs control; 1081 ⁇ 46 vs 1208 ⁇ 234 mm 3 ).
  • T cell infiltration in tumors was investigated in relation to the immune microenvironment.
  • immune cell infiltration was significantly increased in the MET polypeptide + anti-CTLA-4 Ab combination treatment group (mean; 7.5 vs 23.8 counts, p ⁇ 0.05).
  • CD8 T cell infiltration was significantly higher in the HIF1 ⁇ /c-MET polypeptide + anti-PD-1 Ab combination therapy group (mean; 5.6 vs 41.2 counts, p ⁇ 0.005) and the HIF1 ⁇ /c-MET polypeptide group.
  • + CTLA-4 Ab combination therapy group (mean; 5.6 vs 40 counts, p ⁇ 0.05) increased significantly (FIG. 17).
  • T cell infiltration in metastatic bone tumor was investigated. Compared to the CFA/IFA group, more CD8 T cells (mean; 7 vs 12.2 counts, p ⁇ 0.005) were infiltrated in the HIF1 ⁇ /c-MET polypeptide + anti-PD-1 Ab combination therapy group, but CD4 T cells was not infiltrated.
  • CD4 mean; 1.8 vs 16.8 counts, p ⁇ 0.005
  • CD8 T cells mean; 7 vs 25.2 counts, p ⁇ 0.001
  • mean; 6.5 vs 25.2 counts, p ⁇ 0.001) ⁇ 0.001 compared to the CFA/IFA group and the HIF1 ⁇ /c-MET polypeptide alone group, which were significantly more densely infiltrated (FIG. 20).
  • IFN- ⁇ ELISPOT analysis showed that Ag-specific T cells were more expanded upon stimulation with c-MET peptide in the combination therapy group than in the HIF1 ⁇ /c-MET polypeptide alone group (FIG. 21).
  • subsequent analysis using H&E staining and TRAP staining showed that the number and activity of osteoclasts were significantly reduced in metastatic bone lesions in the combination therapy group compared to the CFA/IFA and HIF1 ⁇ /c-MET polypeptide alone group (Fig. 22).
  • the combination therapy of HIF1 ⁇ /c-MET polypeptide vaccine and immune checkpoint inhibitor inhibits the growth of metastatic bone tumors and increases Ag-specific T-cell immune response and T-cell infiltration in the bone microenvironment. It can be seen that osteoclast differentiation is further reduced.
  • HIF1 ⁇ /c-MET polypeptide was administered to MMTV-neu transgenic mice three times and lapatinib-resistant cell lines were inoculated (FIG. 23A). On day 35 after inoculation, the mice were sacrificed and the tumor size was measured. As a result, it was confirmed that the growth of the tumors of the mice administered with the HIF1A/c-MET vaccine was significantly inhibited compared to the control group (FIG. 23B).
  • IFN- ⁇ ELISPOT assay showed that Ag-specific T cells were further expanded upon HIF1 ⁇ /c-MET polypeptide stimulation (FIG. 24A). And, subsequent analysis using H&E staining and immunofluorescence staining showed that the administration of HIF1 ⁇ /c-MET polypeptide increased the number of T cells infiltrating the tumor (FIG. 24B), decreased the expression of the target protein (FIG. 24C), It was confirmed that the expression of blood vessel marker proteins was reduced (FIG. 24d).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 c-MET의 에피토프 및 HIF1α의 에피토프의 암 백신으로서의 용도와, 상기 암 백신의 용도 등에 관한 것으로서, 본 발명의 암 백신은 HIF1α 및/또는 c-MET을 과발현하는 것으로 알려진 다양한 암종에서 상기 단백질의 발현 수준을 감소시키고 혈관신생 관련 마커의 발현을 감소시키며, 종양 성장을 저해할 수 있으며, 나아가 T1 세포를 활성화시키고 종양 내 침윤을 유도하는 바 상술한 암종에 제한되지 아니하고 암의 진행을 억제하고, 그 전이를 예방하기 위한 범용적 암 백신으로 이용될 수 있다. 또한, 본 발명의 백신은 면역관문억제제와 병용투여 하여 보다 효과적으로 암의 성장을 저해하고 그 진행을 억제할 수 있으며 전이성 암의 발생을 저해할 수 있다.

Description

C-MET의 에피토프 및 HIF1ALPHA의 에피토프를 포함하는 암 백신 및 이의 용도
본 발명은 c-MET의 에피토프 및 HIF1α의 에피토프의 암 백신으로서의 용도와, 상기 암 백신의 용도 등에 관한 것이다.
유방암은 전 세계적으로 여성에게 가장 흔히 진단되는 암이며 암 관련 사망의 주요 원인이다. 삼중 음성 유방암(Triple Negative Breast Cancer, TNBC)에는 유방암에서 흔히 발견되는 세 가지 수용체, 즉 에스트로겐 수용체, 프로게스테론 수용체 및 인간 표피 성장 인자 수용체 2(HER2)가 없다. TNBC는 전체 유방암의 10~15%를 차지한다. 특히, TNBC는 유방암의 가장 공격적인 암종이며 다른 유방암 아형보다 더 공격적인 생물학적 특성을 가지고 있다. 그러나 현재 임상 3상이 진행 중인 PIK3CA/Akt 경로 억제제의 최근 진전을 제외하고는 TNBC 치료 목표가 명확하지 않다. 또한 PIK3CA/Akt 돌연변이는 유망한 표적으로 현재 임상 3상을 진행 중이다. 약물에 대한 민감도 부족과 제한된 표적 치료 옵션으로 인해 무병 생존 기간과 전체 생존 기간이 크게 단축되기 때문에 새로운 치료 전략이 필요하다. TNBC는 면역 요법과 병용할 때 일부 환자에서 생존 기간이 연장되는 전이성 암의 유일한 아형이다. 따라서 TNBC 치료의 임상적 문제를 극복하기 위해 면역 체계를 자극하는 더 많은 치료법을 탐색할 가치가 있다.
초기 유방암의 20~30%에서 전이성 암의 발생되는 것으로 추정된다. 모든 유방암 환자에서 뼈는 진행성 유방암의 가장 흔한 부위로 간주되며, 발병률은 80%에 가깝다. 일반적으로 골전이(bone metastasis) 환자는 내장 전이 환자보다 더 오래 생존하는 경향이 있으며 우수한 임상 결과를 보인다. 그러나 TNBC 골전이 환자는 내장 전이 환자와 유사하게 예후가 좋지 않다. 따라서, TNBC 환자에서 골 전이의 발생은 진행성 암 환자의 주요 임상 과제 중 하나입니다. 유방암 세포 전파 및 뼈로의 집락화에 기반한 메커니즘에 대한 더 나은 이해는 표적 치료 개발에 대한 새로운 통찰력을 제공할 것으로 기대된다.
종양에서 저산소증은 유방암 환자에서 암의 진행 및 좋지 못한 임상 결과와 관련된 것으로 알려져 있다. TNBC는 종종 섬유질 및 괴사 부위의 존재와 같은 저산소증의 형태학적 특징을 나타낸다. 특히 HIF-1α의 높은 발현은 TNBC의 생존에 부정적인 영향을 미친다. 또한, 저항성, 증식, 침습 및 전이, 면역회피 뿐만 아니라 혈관신생, 세포생존, 화학요법 및 방사선에 관여하는 많은 유전자가 HIF-1α을 통해 조절됨이 알려져 있다. 이전 연구에서 HIF-1α의 중요성은 면역 결핍 마우스 모델에서 MDA-MB-231 세포를 사용하여 입증된바 있다. 골전이 과정에서 HIF-1α 신호전달은 조골세포의 분화를 억제하고 파골세포 형성을 촉진하여 골 미세환경을 조절하여 골전이에 기여하는 것으로 보고되고 있다. TNBC 환자를 대상으로 한 이전 연구에서 HIF-1α 단백질 과발현 종양은 HIF-1α 단백질의 발현이 낮은 종양보다 오래 생존하지 못했다. 또한 자가 단백질의 비정상적인 과발현은 면역원성을 향상시키는 것으로 보고된바 있다. HIF-1α의 발현이 TNBC에서 특히 증가한다는 점을 감안할 때 HIF-1α를 표적으로 하는 것이 TNBC 환자에게 새로운 치료 옵션을 제공할 수 있다.
c-MET는 약 52%의 TNBC에서 과발현되는 것으로 보고되었으며 무병 및 전체 생존율 감소와 관련이 있다. 주로 상피세포에서 발현되는 c-MET는 많은 인간 암의 발달과 진행에 필수적인 다양한 세포내 신호전달 경로를 유도한다. 이전 연구에서는 HGF (hepatocyte growth factor)/MET 메커니즘이 뼈 미세 환경의 상피 유방암 세포와 중간엽 세포 사이의 중요한 매개체로 작용하여 생체 내 골용해성 골 전이의 진행에 기여한다고 보고한바 있다. 따라서 전이성 골 미세환경에서 HGF/MET의 역할과 조절은 추가적인 조사가 필요하다.
유방암의 악성종양은 유전적 이상과 생물학적 특성뿐만 아니라 암세포와 미세환경 간의 상호작용에도 영향을 받기 때문에 종양 미세환경을 이해하는 것이 중요하다. 유방암의 종양 미세 환경에는 다양한 세포 유형과 종양 침윤 림프구(tumor-infiltrating lymphocytes, TIL)가 포함된다. 무작위 임상 시험의 분석에 따르면 높은 수준의 TIL이 재발 및 사망 위험 감소와 관련되고, TIL은 다른 유방암 하위 유형에 비해 TNBC에서 더 풍부하다고 보고되었다. 연구에 따르면 다양한 TIL 하위 유형이 유방암 면역 반응과 하위 그룹 세포의 교차 수용에 참여하여 종양 관련 면역을 공동으로 매개하고 조절하는 것으로 나타났다. 종양 침윤 유형 I T 세포(Tumor-infiltrating Type I T cell), 특히 CD8 T 세포는 TNBC의 생존과 가장 흔히 관련된 림프구이다. 또한 높은 수준의 종양 침윤 CD8 T 세포는 화학 요법에 대한 개선된 반응과 관련이 있는 것으로 알려졌다.
면역체계를 조절하여 암을 치료하는 것을 암 면역요법(cancer immunotherapy)이라고 하며, 암환자의 면역체계를 활성화시켜 암과 싸우기 위한 다양한 접근법이 개발되고 있다. 특히, 암세포에서 발현되는 다양한 TAA(tumor-associated antigens) 또는 돌연변이 유래 항원(neoantigen)은 항종양 면역 반응을 유도할 수 있으며, 암 백신과 같은 면역 요법으로 사용될 수 있다. 현재 펩타이드 또는 단백질 기반 백신, 종양 용해성 바이러스 또는 재조합 바이러스 벡터 백신, 수지상 세포 백신 및 조작된 세포 백신을 포함하여 많은 암 백신 플랫폼이 개발되었다. 또한, 효과적인 면역 보조제의 최근 발전은 다양한 치료 목적을 위한 백신의 유용성을 향상시킬 수 있다.
MHC(Major Histocompatibility Complex) class ± 에피토프 기반 펩타이드의 암 백신은 TAA 유래 종양 특이적 펩타이드를 사용하여 종양 특이적 T 세포 반응을 유도하며, 독성이 낮기 때문에 매력적인 암 치료제로서 임상 시험 중에 있다. MHC class II 펩타이드(아미노산 13~25개)를 기반으로 하는 펩타이드 백신은 MHC class I 펩타이드(아미노산 8~10개)보다 길며 주로 CD4 T 세포를 자극한다. MHC class I 제한 펩타이드를 사용한 백신 접종은 충분한 CTL(cytotoxic T-lymphocytes)를 유도하지 않아 면역 내성을 유발할 수 있다. 그러나 MHC class ±제한 펩타이드는 CTL과 T-helper 세포를 충분히 유도할 수 있다는 장점이 있다. 또한 IGF-IR, IGFBP-2, HER2 또는 HIF-1α class II 에피토프를 기반으로 하는 펩타이드 백신이 T-helper 세포와 CTL을 모두 유도할 수 있다는 연구도 있다. MHC class II 기반의 백신이 면역 기억 생성 및 에피토프 확산에 강점이 있다는 증거는 계속 축적되고 있다.
종양 세포는 Tim-3, PD-1, LAG-3 및 CTLA-4와 같은 면역 관문 경로를 통해 면역 감시(immune surveillance)를 회피할 수 있다. 면역 관문 억제제(Immune checkpoint inhibitor, ICI)는 이러한 경로를 차단하고 흑색종, 폐, 신장 세포 및 방광암과 같은 다양한 종양 유형에서 항종양 면역 반응을 개선한다. 그러나 유방암, 전립선암, 췌장암 등 다른 악성종양을 가진 환자에서는 단일 면역관문억제제의 효과가 거의 관찰되지 않았다.
펩타이드 기반 암 백신은 기존 치료법에 비해 부작용이 적고 생존에 유익한 것으로 나타났지만 펩타이드 기반 암 백신만으로는 암 조절을 유지하기에는 불충분한 것으로 여겨진다. 이전에 보고된 동물 실험에서 면역관문억제제와 다양한 종류의 암 백신과의 병용 요법은 종양 특이적 T 세포 활성화 및 항종양 효과를 증가시켰다. 종양 미세 환경에서 종양 특이적 면역 반응을 활성화하고 면역 억제를 비활성화하기 위해 펩타이드 기반 암 백신과 면역 관문 억제제의 병용 요법이 더 강한 항종양 반응을 유도할 수 있다.
본 발명이 이루고자 하는 기술적 과제는 HIF-1α 에피토프와 c-Met 에피토프로 면역반응을유도하여 암을 예방 또는 치료하는 방법을 제공하는 것으로서, 상기 2종 에피토프의 암 백신으로서의 용도를 제공한다.
또한, 본 발명은 상기 효과적인 암의 예방 또는 치료를 위한 백신과 면역관문억제제의 병용투여 용법을 제공한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명은 HIF1α의 에피토프 펩타이드 및 c-MET의 에피토프 펩타이드의 암 백신으로서의 용도를 제공한다.
이에, 본 발명은 HIF1α의 에피토프 및 c-MET의 에피토프를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 일 구현예로서, 상기 2종 에피토프는 서로 구별되는 펩타이드로서 제공될 수 있으며, 하나의 폴리펩타이드로 제공될 수 있다.
본 발명의 다른 구현예로서, 상기 c-MET의 에피토프 펩타이드는 서열번호 1 및 서열번호 2로 표시되는 아미노산 서열로 이루어진 군으로부터 선택되는 1종 이상의 아미노산 서열을 포함하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 c-MET의 에피토프 펩타이드는 서열번호 1로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있으며, 서열번호 2로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있다.
본 발명의 다른 구현예로서, 상기 c-MET의 에피토프 펩타이드는 서열번호 1 및 서열번호 2로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있다.
본 발명의 다른 구현예로서, 상기 HIF1α의 에피토프 펩타이드는 서열번호 3 내지 5로 표시되는 아미노산 서열로 이루어진 군으로부터 선택되는 1종 이상의 아미노산 서열을 포함하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 HIF1α의 에피토프 펩타이드는 서열번호 3으로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있으며, 서열번호 4로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있으며, 서열번호 5로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있다.
본 발명의 다른 구현예로서, 상기 HIF1α의 에피토프 펩타이드는 서열번호 3 및 서열번호 4로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있으며, 서열번호 4 및 서열번호 5로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있으며, 서열번호 3 및 서열번호 5로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있다.
본 발명의 다른 구현예로서, 상기 HIF1α의 에피토프 펩타이드는 서열번호 3 내지 서열번호 5로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있다.
본 발명의 다른 구현예로서, 상기 HIF1α의 에피토프 펩타이드 및 c-MET의 에피토프 펩타이드가 각각 본 명세서가 제공하는 서열목록에서 2종 이상의 서열을 포함하는 경우, 각 서열번호의 아미노산 서열의 구조에 영향을 미치지 아니하는, 즉 각 아미노산 서열의 2차 구조가 갖는 기능에 영향을 미치지 아니하는 수준의 1 내지 3개의 아미노산이 추가로 포함될 수 있으며, 각 서열번호의 아미노산 서열은 직접 연결될 수 있고 그 구조 및 기능에 영향을 미치지 아니하는 링커로 연결될 수 있다.
본 발명의 다른 구현예로서, 상기 2종 에피토프가 하나의 폴리펩타이드로 제공되는 경우 상기 폴리펩타이드는 서열번호 6으로 표시되는 아미노산 서열을 포함하거나 이로 이루어진 것일 수 있다.
본 발명의 다른 구현예로서, 상기 약학적 조성물은 면역관문억제제와 병용 투여용일 수 있으며, 이때 병용 투여는 면역관문억제제와 동시에 또는 순차로 투여되는 것을 의미하며, 동시에 투여는 상기 약학적 조성물 또는 면역관문억제제가 개체에 투여된 이후 24시간 이내에 나머지 약물이 투여되는 것을 의미하며, 2종 약물이 반드시 하나의 조성물로서 개체에 투여되는 의미에 한정되지 않는다. 상기 순차로 병용 투여시 그 선후는 제한되지 아니하나 바람직하게는 상기 약학적 조성물 투여 이후에 면역관문억제제가 투여될 수 있다.
본 발명의 다른 구현예로서, 상기 약학적 조성물은 면역관문억제제를 추가로 포함할 수 있다.
본 발명의 다른 구현예로서, 상기 상기 면역관문억제제는 CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, TIGIT, CD47, VISTA 및 A2aR로 이루어진 군으로부터 선택된 1종 이상의 면역관문 단백질의 신호 전달을 차단하는 것일 수 있으며, 구체적으로, 상기 1종 이상의 면역관문 단백질을 표적으로 하는 항체일 수 있고, 상기 항체는 단클론 항체일 수 있다.
본 발명의 다른 구현예로서, 상기 암은 c-MET 및/또는 HIF1α 과발현이 보고된 암종이라면 제한되지 아니하나, 바람직하게는 유방암, 비소세포폐암, 위암, 두경부암, 신장암, 간암, 전립선암, 및 갑상선암으로 이루어진 군으로부터 선택된 1종 이상의 암종일 수 있고, 상기 유방암은 삼중음성유방암을 포함한다.
본 발명의 다른 구현예로서, 상기 암은 진행성 암 및/또는 전이성 암을 포함하고, 상기 전이성 암은 전신에 전이암을 의미하고, 전이성 골 종양을 포함한다.
또한, 본 발명은 HIF1α의 에피토프 및 c-MET의 에피토프를 개체에 투여하는 단계를 포함하는 암의 예방 또는 치료 방법을 제공한다.
본 발명의 일 구현예로서, 상기 개체는 암의 예방 또는 치료가 필요한 포유류라면 제한되지 아니하며, 바람직하게는 암이 발병하여 그 전이가 우려되는 인간일 수 있다.
본 발명의 다른 구현예로서, 상기 방법은 상기 개체에 면역관문억제제를 투여하는 단계를 추가로 포함할 수 있다.
또한, 본 발명은 암의 예방 또는 치료용 약제 제조를 위한 HIF1α의 에피토프 및 c-MET의 에피토프의 용도를 제공한다.
본 발명의 HIF1α/c-MET 폴리펩타이드 암 백신은 HIF1α 및/또는 c-MET을 과발현하는 것으로 알려진 다양한 암종에서 상기 단백질의 발현 수준을 감소시키고 혈관신생 관련 마커의 발현을 감소시키며, 종양 성장을 저해할 수 있다. 나아가, 상기 암 백신은 항원 특이적 T1 세포를 유도하고 종양내 침윤을 증가시키는바 상기 암종에 제한되지 아니하고 범용적 암의 예방 또는 치료에 이용될 수 있으며, 특히 암의 진행을 억제하고 그 전이를 예방하기 위한 백신으로서 이용될 것으로 기대된다. 또한, 본 발명의 암 백신은 면역관문억제제와 병용 투여 용법으로 이용될 수 있다.
도 1에 A는 C3(1)-Tag 마우스에 M6-bone 세포를 심장 내 주사한 후 14, 21, 28, 및 35일 후에 종양의 성장 및 확산을 생물발광을 통해 확인한 결과로, 각 시점에 대한 대표이미지이다. B는 골용해성 병변을 확인하기 위하여 M6-bone 세포 접종 35일 후 X선 필름으로 뒷다리를 촬영한 방사선 사진 대표 이미지로서, 대조군과 비교하여 경골 안정 세포(tibia-stable cell)를 접종한 C3(1)-Tag 마우스에서 관찰된 가용성 병변(흰색 화살표)의 전형적인 측면을 확인할 수 있다. C는 35일 후 마우스를 희생하고 전이된 간, 폐, 및 뼈의 파라핀 절편을 H&E 염색하여 종양 세포의 존재를 확인한 결과이다(스케일 바= 50μm).
도 2는 RNA 시퀀싱 및 IHC 분석을 사용하여 전이성 골 종양에서 c-MET 및 HIF1α의 발현 수준을 확인한 결과이다. A는 계층적 클러스터링의 히트맵으로 M6 세포, M6-bone 세포 및 3개의 전이성 뼈 사이에서 차등적으로 발현된 유전자(행)를 나타낸다((fold-change> 2, p <0.05). 노란색은 상향조절을 나타내고 파란색은 하향 조절을 나타낸다. B는 전이성 뼈, 간, 폐 샘플에서 HIF1α 및 c-MET에 대한 면역조직화학 염색 결과이다(스케일 바= 50μm).
도 3은 전이성 골 종양에서 면역 미세환경 평가 결과이다. T 세포 패널에 대해 표시된 데이터는 CD8 T 세포(빨간색), CD4 T 세포(노란색) 및 MDSC(녹색)에서 종양 세포(파란색)의 분포를 나타낸다. 정상 및 전이성 뼈의 면역 세포 침윤은 평균 ± SEM으로 표시하였다(*, p < 0.05).
도 4는 C3-Tag 마우스에 HIF1α /c-MET 폴리펩타이드 백신 50μg을 10일 간격으로 3회 피하 주사하고 마지막 주사 10일 째에 5Х105 cell/100μl의 M 세포를 피하 주사한 후 종양의 부피를 측정한 결과이다. 대조군과 HIF1α/c-MET 백신 그룹의 평균 종양 부피는 평균 ± SEM으로 나타내었다(*, p < 0.05).
도 5는 HIF1α 및 c-MET MHC class ±를 면역화된 마우스의 웰당 평균 IFN-γspot을 측정하여 HIF1α/c-MET 폴리펩타이드 백신이 Th1 세포의 IFN-γ 분비를 촉진함을 확인한 결과이다. 실험군은 자극되지 않은 세포, 음성 대조군으로 TT 또는 HIF1α 및 c-MET 펩타이드로 자극된 세포로 구분하였다(*** p <0.001).
도 6은 이식된 종양에서 면역세포의 침윤 정도를 평가한 결과이다. T 세포 패널에 대해 표시된 데이터는 CD8 T 세포(빨간색), CD4 T 세포(노란색) 및 MDSC(녹색)에서 종양 세포(파란색)의 분포를 나타낸다. 정상 및 전이성 종양의 면역 세포 침윤은 평균 ± SEM(p = ns)으로 표시하였다.
도 7은 전이성 종양에서 HIF1α 및 c-MET에 대한 면역형광 염색 결과이다. 녹색은 HIF1α를 나타내고 빨간색은 c-MET를 나타낸다(스케일 바 = 50 μm).
도 8은 HIF1α/c-MET 폴리펩타이드 백신이 골 전이를 방해함을 확인한 결과이다. 구체적으로 (A)는 CFA/IFA 또는 HIF1α/c-MET으로 면역화된 마우스에 M6-bone 세포를 심장 내 주사하고 14, 21, 28, 35일 후에 종양의 성장과 확산을 루시퍼라아제 영상화를 통해 추적한 결과이다. (B)는 CFA/IFA 또는 HIF1α/c-MET으로 면역화된 마우스의 뼈에서 전이성 골 종양의 성장을 시간 경과에 따라 정량화한 그래프이다. (C)는 CFA/IFA 또는 HIF1α/c-MET로 면역화된 마우스 뼈의 마이크로 CT 이미지(화살표로 표시)이다.
도 9는 전이성 골 종양에서 CD4 및 CD8 침윤을 면역형광 염색을 통해 확인한 결과이다. CD8은 녹색으로 나타나고, CD4는 빨간색으로 나타내었다(스케일 바 = 20μm). 정상 및 전이성 골종양에서 CD4 및 CD8 발현은 평균 ± SEM으로 표시하였다(*, p < 0.05; ***, p < 0.001).
도 10은 CFA/IFA 또는 HIF1α/c-MET으로 면역화된 마우스 뼈의 대표적인 H&E 및 트랩 염색 이미지로서(화살표로 표시), HIF1α/c-MET 폴리펩타이드 백신 투여를 통해 TRAP 양성 파골세포의 형성이 감소됨을 확인한 것이다.
도 11은 BMM을 1, 3, 5 및 7일 동안 M-CSF(30ng/mL), RANKL(100ng/mL) 및 IFN-γ(50,100ng/ml)로 처리하여 파골세포 형성을 확인한 이미지로서(화살표로 표시), IFN-γ는 M-CSF 및 RANKL 유도 파골세포 형성을 억제함을 확인한 것이다.
도 12는 전이성 골종양에 의한 HIF1α 및 c-MET에 대한 면역형광 염색 결과이다. 녹색은 HIF1α를 나타내고 빨간색은 c-MET를 나타낸다(스케일 바: 100 μm).
도 13은 M6 및 M6-bone 세포를 100ng/ml의 IFN-γ로 18시간 동안 처리한 다음 동일한 양의 단백질을 사용하여 웨스턴 블롯을 수행한 결과로서, IFN-γ는 SOCS1 단백질 유도 및 발암성 신호전달을 억제함을 알 수 있다.
도 14는 전이성 골종양에서 혈관신생 관련 마커인 αSMA 및 CD31에 대한 면역형광 염색결과이다. 녹색은 αSMA를 나타내고 빨간색은 CD31을 나타낸다(스케일 바: 20 μm). 정상 및 전이성 골종양에서 αSMA 및 CD31 발현은 평균 ± SEM으로 표시하였다(*, p < 0.05).
도 15는 HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제와의 병용 투여를 통한 종양 성장 억제 효과를 확인한 결과이다. CFA/IFA 그룹, HIF1α/c-MET 폴리펩타이드 백신 단독 그룹, HIF1α/c-MET 폴리펩타이드 + 항-PD-1 Ab 그룹, HIF1α/c-MET 폴리펩타이드 + 항-CTLA-4 Ab 그룹의 평균 종양 부피는 평균 ± SEM(**, p < 0.005; ***, p < 0.001)으로 나타내었다.
도 16은 HIF1α/c-MET 폴리펩타이드 백신 및 면역관문 억제제 병용 투여에 따른 IFN-γ 분비 Th1 세포 유도를 확인한 결과이다. 각 실험군은 자극되지 않은 세포, 음성 대조군 펩타이드(TT) 또는 HIF1α 및 c-MET 펩타이드로 자극된 세포를 포함한다(*** p <0.001).
도 17은 각 그룹에서 이식된 종양에 침투한 CD4 및 CD8의 면역형광 염색 이미지이다. 정상 및 전이성 골종양에서의 CD4 및 CD8의 수준은 평균 ± SEM으로 나타내었다(*, p < 0.05; **, p < 0.005).
도 18은 진행된 암 전이 모델에서 HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제 투여에 따른 골 전이 평가 결과이다. (A)는 루시퍼라아제 영상화 이미지로 종양의 성장과 확산을 확인한 대표 이미지이고, (B)는 시간의 경과에 따른 각 그룹의 마우스에서 뼈 영역의 평균 광자 수를 정량화한 것이다.
도 19는 진행된 암 전이 모델에서 HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제 투여에 따른 골 손상 정도 평가 결과이다. CFA/IFA 그룹, HIF1α/c-MET 펩타이드 단독 그룹, HIF1α/c-MET 펩타이드+항 PD-1 Ab 병용 그룹, 및 HIF1α/c-MET 펩타이드+항 CTLA-4 Ab 병용 그룹에 마우스 뼈의 대표적 micro-CT 로 화살표로 표시하였다.
도 20은 진행된 암 전이 모델에서 HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제 투여 후 전이성 골 종양 내에 면역 세포 침윤 정도를 평가한 것으로서 각 그룹의 CD4 및 CD8의 면역형광 염색 이미지이다. 정상 및 전이성 골 종양에서 CD4 및 CD8 발현은 평균 ± SEM으로 표현하였다(**, p < 0.005; ***, p < 0.001).
도 21은 IFN-γ ELISPOT을 수행하여 각 그룹의 마우스 비장세포에서 Ag-specific T 세포 반응을 측정한 결과이다(***, P < 0.001). HIF1α/c-MET 폴리펩타이드 백신 및 면역관문 억제제의 병용 투여는 IFN-γ 분비 Th1 세포를 유도하였다.
도 22는 CFA/IFA 그룹, HIF1α/c-MET 펩타이드 단독 그룹, HIF1α/c-MET 펩타이드+항 PD-1 Ab 병용 그룹, 및 HIF1α/c-MET 펩타이드+항 CTLA-4 Ab 병용 그룹에 마우스 뼈의 H&E 및 TRAP 염색 이미지이다(화살표 표시). HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제병용 투여는 TRAP 양성 파골세포 형성을 감소시킨다.
도 23은 라파티닙 (lapatinib) 내성 암 유도 동물모델에서 HIF1α/c-MET 폴리펩타이드의 암백신 효과를 확인한 것이다. 구체적으로, A는 실험의 모식도이고, B는 시간의 경과에 따른 실험동물의 종양 크기를 비교확인한 그래프이다.
도 24a는 라파티닙 내성 암 유도 동물모델에서 HIF1α/c-MET 폴리펩타이드투여에 따른 IFN-γ 분비 Th1 세포 유도를 확인한 결과이고, 도 24b 내지 도 24d는 상기 동물의 종양 조직을 H&E 및 면역형광 염색한 이미지이다.
도 25는 M6-bone 세포주의 투여로 전신의 전이암 유도 동물모델을 이용한 실험의 모식도이다.
도 26a 및 도 26b는 전신 전이암 유도 동물모델의 폐, 간, 및 뼈 조직의 H&E 및 면역형광 염색 결과로, M6-bone 세포주의 투여로 폐, 간, 및 뼈에서 전이암의 발생을 확인한 것이다.
도 27은 전신 전이암 유도 동물모델에서 HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제 투여에 따른 암의 전이를 평가한 루시퍼라아제 영상화 이미지이다.
도 28a은 전신 전이암 유도 동물모델의 폐와 간 조직에서 CD47 과발현을 확인한 H&E 및 면역형광 염색 이미지이고, 도 28b는 상기 동물모델의 뼈에서 CD47 과발현을 확인한 결과와 폐, 간, 및 뼈에서의 CD47 과발현 세포 수를 정량한 그래프이다.
도 29a 및 도 29b는 전신 전이암 유도 동물모델에서 HIF1α/c-MET 폴리펩타이드 백신과 면역관문억제제 투여에 따른 종양 조직에 침투한 CD8 T 세포를 확인한 H&E 및 면역형광 염색 이미지와 이를 정량한 그래프이다.
표적 치료에 반응하지 않는 골 전이 TNBC 환자는 HR 또는 HER2 유방암 환자에 비해 사망률이 높다. c-MET 및 HIF-1α 단백질은 TNBC 환자의 52% 및 80%에서 과발현되어 면역학적 표적이 될 가능성이 있는 것으로 보고되었다. 본 발명자들은 TNBC 마우스 모델을 사용하여 골 전이 모델을 구축하고 뼈 미세 환경을 조사하였다. 그 결과 HIF1α/c-MET 폴리펩타이드 백신을 사용한 표적 면역화가 골 미세 환경에서 항원 특이적 T 세포를 유도하고 종양 내부로 침윤을 증가시켜 전이성 골 종양을 유의하게 억제함을 확인하였다. 이어서, 상기 백신으로 면역화된 종양에서 표적 단백질인 HIF1α와 c-MET의 발현 감소와 혈관신생 마커의 발현 감소를 확인하였다. 나아가, 뼈 미세 환경에서 파골세포의 생성을 감소시킴으로서 감소된 골 용해를 나타내는 마우스에서 효과적인 면역 반응을 확인하였다. 마지막으로, HIF1α/c-MET 백신과 면역 관문 억제제를 병용한 결과는 진행된 암 환경에서 치료 백신으로서의 가능성을 확인하였다. 상기 결과로부터 본 발명자들은 HIF1α/c-MET 폴리펩타이드를 암 백신으로 제공하며, 상기 암 백신과 면역관문억제제의 병용투여를 통한 암 치료 방법을 제공하고자 한다.
종래의 골 전이 암 연구는 면역결핍 마우스에 인간 유방암 세포주를 이식하여 수행되어 왔다. 면역결핍 마우스를 이용한 연구모델은 뼈 미세 환경과 면역세포 반응과의 상호관계가 간과된다는 제한이 있다. 이러한 문제를 해결하기 위하여 본 발명자들은 TNBC 모델인 C3(1)-Tag 마우스에 골 전이성 세포주(이하 M-bone으로 명명)에 의한 골 전이 모델을 확립하여, 암 세포와 뼈 미세 환경간의 상호 작용이 골 전이 과정에서 중요한 역할을 수행함을 입증하였다. 구체적으로 골 전이는 T 세포의 감소와 MDSC의 증가와 관련이 있음을 확인하였다. 골 전이는 type I IFN 신호를 억제하고 MDSC를 유도함으로서 뼈 미세환경에서 면역 감시(immune surveillance)를 피할 수 있다.
MHC class I-restricted vaccine이 항상 효과적인 항종양 면역을 유도하기에 충분한 면역 반응을 유도하는 것은 아니다. MHC class I 기반의 백신은 공동 자극 분자의 신호 전달이 부족하여 non-professional APCs에서 발현되는 MHC class I 분자에 의해 제시될 때 CD8 T 세포의 내성 또는 무반응을 유발할 수 있다. 이러한 현상으로 인해 짧은 펩타이드의 백신은 효과가 제한적이다. TAA 유래 MHC class I 기반 백신의 보고된 약점 중 하나는 Type Ⅰ T 세포뿐만 아니라 Type Ⅱ T 세포나 Treg 세포까지 유도하여 임상적 효능이 제한적이라는 점이다. 반면, MHC class Ⅱ epitope 기반 백신은 non-professional APCs에서 발현되는 MHC class I 분자에 직접 결합할 수 없기 때문에 이러한 문제를 극복할 수 있다.
TNBC의 면역학적 조절은 여러 항원에 대한 강력한 면역 반응을 필요로 한다. 또한 다중 에피토프 백신은 단일 에피토프 백신에 비해 강력한 Th1형 면역 반응을 유도하여 종양의 부피를 크게 줄이고 뼈 파괴를 제한하며 생존율을 크게 향상시키는 것으로 보고되었다. 다중 에피토프 및 다중 펩타이드 기반 백신은 단일 에피토프 및 단일 펩타이드 기반 백신보다 더 강력한 면역을 유도하고 면역 탈출을 피하기 때문에 보다 적합한 치료제로 사용될 수 있다. 이러한 이유로 본 발명자들은 c-MET 및 HIF1α를 표적으로 하는 에피토프를 선택하여 폴리펩타이드 백신으로 조합하였다. HIF1α를 표적으로 하는 에피토프는 선행 연구에서 개발된 것을 이용하였으며, c-MET를 표적으로 하는 에피토프는 c-MET 단백 중 HLA에 접화 친화도가 큰 펩타이드 서열을 선별한고 INF-gamma ELISPOT과 IL-10 ELISPOT을 수행하여 Th1 면역반응을 유도하고 마우스에서 면역반응 유도가 검증된 에피토프를 이용하였다. 이용된 c-MET 에피토프의 아미노산 서열은 아래와 같다.
- p275 - 289: HTRIIRFCSINSGLH
- p314 - 328: FNILQAAYVSKPGAQ
이에, 본 발명자들은 c-MET 및 HIF1α의 각 에피토프가 융합된 폴리펩타이드를 암의 예방 및/또는 치료를 위한 암 백신으로 제공한다.
아미노산 서열 서열번호
cMet epitope HTRIIRFCSINSGLH (P275) 1
FNILQAAYVSKPGAQ (P314) 2
HIF1alpha epitope YELAHQLPLPHNVSSH (p38-53) 3
MRLTISYLRVRKLLDAGDLDIED (p60-82) 4
LKALDGFVMVLTDDGDMIYISDNVN (p93-117) 5
HIF1α/cMet polypeptide HTRIIRFCSINSGLH (P275)
FNILQAAYVSKPGAQ (P314)
YELAHQLPLPHNVSSH (p38-53)
MRLTISYLRVRKLLDAGDLDIED (p60-82)
LKALDGFVMVLTDDGDMIYISDNVN (p93-117)
6
종양 세포는 면역 감시를 피하고 면역관문 경로의 활성화를 비롯한 다양한 메커니즘을 통해 항종양 면역 반응을 억제한다. 면역관문 억제제는 항종양 면역 반응을 활성화하고 종양 세포의 면역 매개 제거를 촉진하기 위해 공동 억제 신호 전달 경로를 방해한다. 면역관문억제제는 암 치료의 돌파구이지만 임상적 효과는 여전히 일부 환자에 국한되어 있다. 면역 관문 경로를 차단하는 것은 기존의 종양 특이적 T 세포 반응이 있을 때 가장 효과적이나, 많은 종양의 낮은 면역원성으로 인해 CD8 T 세포 매개 항종양 면역이 충분히 유도되지 않는다. 백신 접종은 종양 특이적 T 세포의 확장을 유도할 수 있으며 항암 면역 반응을 향상시킬 수 있다. 이에, 본 발명자들은 Th1을 유도하는 것이 확인된 본 발명의 백신을 사용하여 Type I 면역의 항종양 효과와 골전이 억제를 연구하고 동시에 C3(I)-Tag 마우스에서 면역 관문 억제제와 병용 치료의 효과를 평가하였다. 그 결과 면역관문 억제제를 백신과 함께 병용 투여하면 Th1의 더 많은 종양 트래피킹이 유도되고 효과적인 항종양 반응과 골 전이 억제가 나타남을 확인하였다.
한편, 인터페론 유전자는 유방암, 췌장암, 난소암을 비롯한 다양한 암종에서 보다 우수한 예후를 예측할 수 있는 지표이다. 특히, 암에서 IFN-γ의 증가는 치료에 대한 긍정적인 반응 및 결과와 관련이 있다. 종양에서 IFN-γ는 세포 증식과 혈관신생을 억제하며 세포자멸사를 유도하는 것으로 알려져 있다. 또한, 마우스 모델에서 국소 IFN-γ 상향 조절은 항-PD-1 매개 종양 억제에 필수적인 것으로 알려졌다. 그리고, IFN-γsms 쥐의 파골세포 전구체에서 RNAK 신호절달을 억제함으로서 파골세포 형성을 억제한다. 반대로 IFN-γ 수용체의 손실은 염증성 골 손실 마우스 모델에서 파골세포의 형성을 유도하고 골의 파괴를 향상시킨다. 즉, IFN-γ는 파골세포 형성을 억제하여 종양 관련 골 손실을 예방할 수 있다. 본 발명자들은 면역화된 마우스에서 뼈에 전이성 종양이 있는 경우 파골세포의 수가 대조군에 비해 유의하게 감소됨을 확인하였다. C3(1)-Tag의 골수 단핵구(BMM)를 사용한 파골세포 생성의 시험관 내 실험은 IFN-γ의 역할을 뒷받침하였다. 이러한 데이터는 IFN-γ를 분비하는 효과적인 면역 반응이 생체 내 뼈 미세 환경의 전이성 암에 대한 반응으로 파골세포 형성을 조절할 수 있음을 시사한다.
한편, 본 발명자들은 개발된 암 백신이 oncoproteins, c-MET 및 HIF1α의 발현 감소와 혈관신생 관련 마커의 발현 감소를 유도함을 확인하였다.
Hypoxia inducible factor (HIF)-1은 저산소상태에서 외부의 산소 농도의 변화에 적절하게 반응하기 위해 해당과정, 혈관 신생 과정 등을 유도함으로서 세포내의 항상성을 유지시켜주는 전사 인자로서, 대장암, 간암, 위암, 및 유방암 등의 다양한 고형암에서 과발현이 알려져 있으며, HIF-1의 subtype으로 HIF-1alpha를 타겟으로 하는 소분자 물질이 임상시험 중에 있다. 또한, 골전이 과정에서 HIF-1α 신호전달은 조골세포의 분화를 억제하고 파골세포 형성을 촉진하여 골 미세환경을 조절하여 골전이에 기여하는 것이 알려져 있다.
c-Met은 간세포성장인자(Hepatocyte growth factor, HGF)에 의해 활성화되어 세포 내의 신호전달체계를 연속적으로 활성화시킴으로서 암 발생과정에 관여하는 것으로 알려져 있다. C-Met은 간암, 폐암, 위암, 갑상선암, 전립선암, 자궁내막암, 및 유방암 등의 암종에서 발현이 증가하는 것으로 알려져 있다.
본 발명에서 "에피토프(epitope)"는 특정 항체에 의해 인식되는 항원결합부위의 아미노산 잔기 세트, 또는 T 세포에서는 T 세포 수용체 단백질 및/또는 주요 조직적합성 복합체(Major Histocompatibility Complex, MHC)수용체에 의해 인식되는 잔기이다. 에피토프는 항체, T 세포 수용체 또는 HLA 분자에 의해 인식되는 부위를 형성하는 분자로, 일차, 이차 및 삼차 펩티드 구조, 또는 전하를 의미한다.
본 발명은 HIF-1alpha 에피토프와 c-Met 에피토프를 포함하는 폴리펩타이드를 암 백신으로 제공한다. 본 발명에서 암 백신은 상기 양 에피토프의 펩타이드가가 연결된 폴리펩타이드로서 제공될 수 있고, 상기 양 에피토프의 펩타이드가 각각 별개로 존재하되 하나의 조성물로 제공될 수 있으며, 상기 양 에피토프의 펩타이드가 함께 병용하여 이용되기 위하여 각각 별개로 별도의 조성물로 제공될 수도 있다.
본 발명에서 암 백신을 구성하는 HIF1α의 에피토프와 c-MET의 에피토프 펩타이드는 공지의 화학적 합성 방법 또는 유전공학적 방법에 의해 제조될 수 있으며, 안정성 향상을 위하여 아미노(N-) 말단 또는 카르복시(C-) 말단의 변형을 포함할 수 있다. 상기 “안정성”은 생체 내(in vivo) 안정성뿐만 아니라, 저장 안정성(상온, 냉장, 냉동 보관 시 저장 안정성 포함)도 포함하는 의미이다.
본 명세서에서 HIF-1α 에피토프와 c-Met 에피토프를 포함하는 폴리펩타이드는 “HIF1α/c-Met 폴리펩타이드”로 표시하며, 체내에 주입되어 HIF1α 에피토프와 c-Met 에피토프를 제공하여 면역반응을 활성화하는 것이라면 제한되지 상술한 바와 같이 각각의 에피토프가 연결된 하나의 폴리펩타이드와 별개로 존재하는 2종의 펩타이드를 포함하며, 본 발명의 암 백신은 상기 폴리펩타이드 및 펩타이드 자체는 물론 상기 폴리펩타이드 또는 펩타이드를 암호화하는 유전물질을 포함할 수 있다.
본 발명에서 상기 폴리펩타이드 또는 펩타이드를 암호화하는 유전물질이 암 백신으로 제공되는 경우 상기 유전물질은 RNA 및/또는 DNA로 이루어질 수 있으며, modified nucleotide를 포함할 수 있다. 상기 유전물질이 주로 RNA로 이루어지는 경우 생체 내에서 발현을 위한 공지의 구성을 포함할 수 있으며, 비제한적인 예로는 IRES, 5'-Capping 등이 있다. 또한, 상기 유전물질이 주로 DNA로 이루어지는 경우 그 발현을 위하여 작동 가능하게 연결된(operably linked) 프로모터를 포함한 재조합 벡터로 제공될 수 있다. 또한, 상기 유전물질은 세포 외부로 분비를 위하여 신호 펩타이드(signal peptide)를 포함할 수 있다.
본 발명에서 “프로모터”는 DNA의 일부분으로 전사를 개시할 수 있도록 RNA 중합효소의 결합에 관여한다. 일반적으로 표적 유전자에 인접하여 이의 상류에 위치하며, RNA 중합효소 또는 RNA 중합효소를 유도하는 단백질인 전사 인자(transcription factor)가 결합하는 자리로서 상기 효소 또는 단백질이 올바른 전사 시작 부위에 위치하도록 유도할 수 있다. 즉, 센스 가닥(sense strand)에서 전사하고자 하는 유전자의 5' 부위에 위치하여 RNA 중합효소가 직접 또는 전사인자를 통해 해당 위치에 결합하여 표적 유전자에 대한 mRNA 합성을 개시하도록 유도하는 것으로 특정한 유전자 서열을 갖는다.
본 발명에서 백신이 예방 또는 치료하고자 하는 “암”은 세포의 정상적인 분열, 분화 및 사멸의 조절 기능에 문제가 발생하여 비정상적으로는 과다 증식하여 주위 조직 및 장기에 침윤하여 덩어리를 형성하고 기존의 구조를 파괴하거나 변형시킨 상태를 의미한다.
본 발명에서 암은 유방암 외에도 비소세포폐암, 위암, 두경부암, 신장암, 간암, 전립선암, 갑상선암 등의 c-MET 및/또는 HIF-1α의 과발현이 보고된 고형암이 포함될 수 있으며, 나아가 본 발명의 백신은 전이성 암, 특히 골 전이 암을 예방 또는 치료할 수 있다.
본 발명의 암 백신은 Th1 면역반응을 유도한다.
본 발명에서 “Th1 세포”는 유전자 발현, 단백질 분비 및 기능적 활성 측면에서 특정되는 헬퍼 T 세포림포사이트의 서브세트를 의미한다. 예를 들어, Th1 세포는 IL-2 및 IFN-γ를 합성하지만 IL-4, IL-5, IL-10 및 IL-13는 합성하지 않는 사이토카인 발현 패턴을 나타낸다. Th1 세포는 다양한 세포내 병원균에 대한 세포-매개 면역반응, 기관-특이적 자가면역 질환 및 지연성 과민반응에 관여한다.
한편, 본 발명의 암 백신은 면역관문억제제와 병용투여 되어 보다 현저한 항암 효과를 나타낼 수 있으며, 면역관문억제제 내성 암에서 약물 감수성을 향상시킬 수 있다.
이에, 본 발명은 암의 예방 또는 치료를 위하여 상술한 암 백신과 면역관문억제제를 병용 투여 요법을 제공한다. 이때, 암 백신과 면역관문억제제는 하나의 조성물로서 제공될 수 있으며, 각각 별도로 제공되어 순차로 투여되는 것일 수 있다. 암 백신과 면역관문억제제가 순차로 투여되는 경우 그 순서는 무관하지만, 바람직하게는 암 백신의 투여 이후에 면역관문억제제가 투여될 수 있다.
본 발명에서 면역관문억제제(Immune checkpoint inhibitor: ICI)는 T세포의 면역 기능 유지를 위한 PD-L1과 PD-1의 결합 저해기능 등을 수행하는 것으로서, 종양 내부로 침윤된 T-cell의 활성을 억제하는 PD-1또는 PDL-1을 저해하므로 T-cell의 활성을 극대화하여 항암 효과를 상승시킬 수 있다. 본 발명은 구체적인 실험에서 본 발명의 백신과 항-CTLA-4 Ab 또는 항-PD-1 Ab를 병용투여 하여 종양 내의 면역세포 침윤 증가와 종양의 성장 저해 효과를 확인하였으나, T-cell 활성을 위해 면역관문 단백질을 표적으로 하는 면역관문억제제라면 제한되지 않는다. 본 발명에서 면역관문 억제제는 CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, TIGIT, CD47, VISTA 또는 A2aR의 억제제일 수 있다.
본 발명에서 "예방"이란 본 발명에 따른 백신 또는 상기 백신과 면역관문억제제 병용물의 투여로 암의 전이를 억제하거나 암의 발병 및 그 전이를 지연시키는 모든 행위를 의미한다.
본 발명에서 "치료"란 본 발명에 따른 백신 또는 상기 백신과 면역관문억제제 병용물의 투여로 암이 호전되거나 그 증상을 이롭게 변경하는 모든 행위를 의미한다.
본 발명의 백신은 상술한 HIF1α/c-Met 폴리펩타이드 또는 각 펩타이드를 포함하는 약학적 조성물로 제공될 수 있으며, 본 발명에 따른 약학적 조성물은 약학적으로 허용가능한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다. 본 발명의 약학적 조성물에 사용될 수 있는 약학적으로 허용가능한 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 칼슘 카보네이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시 벤조에이트, 탈크, 마그네슘 스테아레이트, 광물유 등을 들 수 있다.
본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여할 수 있으나, 비경구로 투여하는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 본 발명에 따른 약학적 조성물은 정맥내, 동맥내, 암조직 내 또는 피하로 직접 투여될 수 있으며, 주사제로 투여될 수 있다. 본 발명에 따른 주사제는 환자에게 투여시 그대로 이용될 수 있도록 멸균 매질에 분산된 형태일 수 있으며, 투여시 주사용 증류수를 가해 적절한 농도로 분산시킨 다음 투여하는 형태일 수도 있다. 또한, 주사제로 제조될 때 완충제, 보존제, 무통화제, 가용화제, 등장화제, 안정화제 등과 혼합될 수 있고, 단위 투약 앰플 또는 다중 투약 형태로 제조될 수 있다.
본 발명의 약학적 조성물의 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여 경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 한편, 본 발명에 따른 약학적 조성물은 단독으로 사용되거나, 또는 외과적 수술요법 등의 보조 치료 방법들과 병행하여 사용될 수 있다.
본 명세서에서는 아미노산 서열을 IUPAC-IUB 명명법에 따라 아래와 같이 약어로 기재하였다.
아르기닌(Arg, R), 라이신(Lys, K), 히스티딘(His, H), 세린(Ser, S), 트레오닌(Thr, T), 글루타민(Gln, Q), 아스파라진(Asp, N), 메티오닌(Met, M), 루신(Leu, L), 이소루신(Ile, I), 발린(Val, V), 페닐알라닌(Phe, F), 트립토판(Trp, W), 티로신(Tyr, Y), 알라닌(Ala, A), 글리신(Gly, G), 프롤린(Pro, P), 시스테인(Cys, C), 아스파르트산(Asp, D) 글루탐산(Glu, E), 노르루신(Nle)
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
[실험 방법 및 재료]
1. 동물모델
5-8 주령의 암컷 FVB-Tg (C3-1-TAg) cJeg/Jeg (C3(1)-Tag) 마우스를 Jackson Laboratories에서 구입하였다. C3(1) 태그 마우스는 기본 표현형을 가진 TNBC 마우스 모델이다. 각 실험군은 4마리 이상의 마우스를 사용하였다. 모든 실험은 고려대학교 동물실험실에서 승인한 프로토콜에 따랐으며, 모든 마우스는 무균 시설에서 생육하였다. (한국-2020-0014)
2. 골 전이 세포 분리 및 세포주 확립
마우스 유선 종양 세포주 M6은 C3(1)-Tag 마우스의 자발적인 유선 종양에서 유래되었다. 심장내 주사에 의해 M6-luc 세포를 C3(1)-Tag 마우스에 접종하였다. 2주 후, 시험관내 생물발광 영상화에 의해 경골 전이성 병변을 확인하고 마우스에서 전이 부위를 절제하였다. 뒷다리 전체를 칼날로 절단한 후, 절단된 뒷다리를 RPMI1640 배양액에서 24시간 동안 배양하였다. 다음 날, 접시에 부착된 세포를 확인하고 10% FBS 및 1% 항생제가 포함된 RPMI1460 배지에서 10㎍/ml 블라스티시딘(blasticidin)으로 처리하여 전이성 세포만을 선별하였다. 모든 세포주는 10% FBS 및 1% 항생제가 보충된 RPMI 1640 배지에서 배양되었고 37℃ 5% CO2 인큐베이터에서 유지되었다. 이 과정을 두 번 반복하여 골 전이성 세포주(bone seeking cell line)를 확립하였다.
3. 골 전이가 발생한 삼중 음성 유방암 마우스 모델 제작
골 전이성 세포주를 10% FBS, 10ug/ml 블라스티시딘이 보충된 RPMI1460 배지에서 배양하고, 안정적으로 루시퍼라제(LVP326, GenTaget)를 형질감염시켰다. 골 전이 형성을 위해, 1Х105개 생존 세포를 세척하고, DPBS에서 수확하고, 심장내 주사에 의해 8-9 주령의 C3(1)-Tag 마우스에 접종하였다. NightOWL LB 983 생체내 이미징 시스템을 사용하여 매주 생물발광 이미징으로 골 전이를 모니터링하였다. 접종 4주 후, C3(1)-Tag 마우스를 6주째에 수확하였다.
4. RNA sequencing
TruSeq Stranded mRNA Sample Prep Kit(Illumina)를 사용하여 총 RNA 샘플을 cDNA 라이브러리로 형질전환하였다. 1000ng의 total RNA를 시작으로 oligo-dT-conjugated magnetic bead를 이용하여 주로 mRNA를 선별하여 정제하였다. 상기 정제된 mRNA는 물리적으로 단편화되었고 역전사효소와 무작위 6량체 프라이머를 사용하여 단일 가닥 cDNA를 제작하였다. 두 번째 가닥의 DNA 의존적 합성을 억제하기 위해 Actinomycin D를 추가하고, 이중 가닥 cDNA는 RNA 주형을 제거한 후 dTTP(deoxythymidine triphosphate) 대신 dUTP(deoxyribouridine triphosphate)가 있는 상태에서 두 번째 가닥을 합성하여 제작하였다. 단일 T 염기 돌출부를 포함하는 시퀀싱 어댑터의 결찰을 용이하게 하기 위해 단일 A 염기를 3' 말단에 추가하였다. Adapter-ligated cDNA는 sequence-ready library의 양을 증가시키기 위해 polymerase chain reaction에 의해 증폭되었다. 상기 PCR 중에 중합효소는 U 염기를 만나면 정지하여 두 번째 가닥을 불량한 주형으로 만든다. 따라서 증폭된 물질은 첫 번째 가닥을 주형으로 사용하여 가닥 정보를 보존한다. Agilent Bioanalyzer(DNA 1000 키트; Agilent)를 사용하여 크기 분포에 대해 최종 cDNA 라이브러리를 분석하고, qPCR(Kapa Library Quant Kit; Kapa Biosystems, Wilmington, MA)로 정량한 다음, 시퀀싱을 위해 2 nmol/L로 정규화하였다. 인덱싱된 라이브러리는 Novaseq 6000 플랫폼(Illumina, San Diego, USA, Macrogen Inc)을 사용하여 시퀀싱되었다.
5. 면역반응 유도 및 종양 성장
각 마우스를 complete/incomplete Freud's adjuvant (sigma), 50㎕의 HIF-1α peptide pools (p38-53, p60-82 및 p93-117; 50㎍) 및 c-MET peptide pools (p275, p314; 각각 50μg)으로 예방 접종하였다. 과발현된 자가항원에 대한 효과적인 면역반응을 유도하기 위해 7-10일 간격으로 3회 접종하였다. 그리고, 종양 공격을 위하여 대응하는 syngenic M6 세포(0.5 Х 106 세포)를 마지막 백신 10일 후에 유방 지방 패드에 이식하였다(n = 5/그룹). 종양을 상술한 바와 동일하게 측정되었다. 모든 종양 성장은 평균 종양 부피(mm3 ± SEM)로 표시하였다.
6. 생체 내 PD-1/CTLA-4 차단 요법
M6 또는 M6-골 종양 세포를 PD-1/CTLA-4 차단 요법을 시작하기 전에 마우스에 주입하였다. 그리고 마우스에 Armenian hamster IgG(BioXCell)/rat IgG2b(LTF-2, BioXCell) 동형 대조 항체(isotype control antibodies), 항 PD-1 차단 항체(250μg/마우스, J43, BioXCell), 항 CTLA-4 차단 항체(150μg/마우스, UC10-4F10-11, BioXCell)를 3일에 1회 복강내 주사하였다.
7. H&E 염색
실험 종료 후 마우스를 희생하고 폐, 간, 뼈 및 종양을 분리하여 4% 포르말린(formalin)으로 고정하였다. H&E 염색은 병리과에서 다음과 같이 수행하였다: 탈수 후 조직 절편을 헤마톡실린(hematoxylin)에 10분간 담그고 수돗물로 1분간 세척한 후 HCl 알코올에 빠르게 담그고 수돗물로 1분간 세척하고 암모니아수에 1분간 담그고 에오신(eosin)에 15초 침지한 후 탈수한다. 일련의 증가하는 농도의 알코올(95% 2회 및 100% 2회, 각각 1분)에 침지하여 탈수한다. 그런 다음 각 절편을 자일렌(xylene)에 1분씩 두 번 담그고 Permount로 장착하고 광학 현미경을 사용하여 사진을 찍었다.
8. 면역형광(Immunofluorescence), 면역조직화학(Immunohistochemical), 및 TRAP 염색
파라핀에 고정된 조직을 슬라이드로 절단하고 자일렌과 에탄올을 사용하여 슬라이드에서 파라핀을 제거하였다. 슬라이드 조직을 1차 항체와 함께 4°C에서 밤새 인큐베이션하였다: 토끼 항-CD4, 마우스 항-CD8, 항-HIF1α(NB100-105, Novusbio), 항-c-MET(ab51067, Abcam), 항-CD31, background block serum에 희석된 항-αSMA(C6198, Sigma). 항-CD4, 항-CD8, 항-HIF1α 및 항-c-MET 일차 항체가 있는 슬라이드 조직을 TBS로 3회 세척하고 다음 이차 항체와 함께 1시간 동안 인큐베이션하였다: Alexa Fluor® 488 쥐 항-마우스 IgG( 1:1000). 핵은 1ug/ml DAPI(1:1000, D1306, Invitrogen)로 염색하였다. 염색된 조직 슬라이드를 TBS로 3회 세척하고 fluorescent mounting medium (S3023, Dako)로 마운팅하였다.
항-HIF1α 및 항-c-MET가 있는 조직 슬라이드를 형광이 없는 두 번째 항체와 함께 실온에서 1시간 동안 인큐베이션하였다. DAB 용액을 3분 동안 배양하고 D.W로 세척하고 핵을 헤마톡실린으로 염색하였다. 염색된 조직 슬라이드를 D.W로 세척하고 탈수 후 장착하였다. 파골세포 염색은 TRAP 염색 키트(KT-008, KAMIYA biomedical company, Seattle, WA, USA)를 사용하여 염색하였다.
9. Enzyme-linked immune spot assay (ELISPOT)
마우스를 희생시킨 후, 비장 세포를 비장에서 분리하였다. Ag-specific T 세포에서 분비되는 IFN-γ의 정도(frequency)를 평가하기 위해 ELISPOT 분석을 수행하였다. 96-well filtration plate (MAIPS4510, Merck Millipore, Darmstadt, Germany)에 30ul/well의 35% 에탄올을 1분간 반응시킨 후, 200ul를 1X PBS로 3회 세척하였다. 이어서, 10 ug/ml 항-마우스 IFN-γ 항체(AN81, MabTech, Stockholm)를 96- well filtration plate에 웰당 50ul씩 4℃에서 밤새 코팅하였다. 4°C에서 밤새 배양한 후 1xPBS로 3회 세척하고 200ul의 마우스 T 세포 배지를 실온에서 2시간 동안 배양하였다.
마우스 T 세포 배지를 제거한 후, 2.5 또는 3 x 106 비장세포를 플레이팅하였다. 상기 비장세포는 10ug/ml TT 펩타이드, 10㎍/ml HIF1a 펩타이드, 10㎍/ml c-MET 펩타이드, 5㎍/ml concanavalin A (Sigma-Aldrich)가 포함된 배지에서 37℃의 인큐베이터 하에 48-72시간 동안 배양하였다. 그 다음, 플레이트를 0.05% Tween-20에 녹인 PBS 200ul로 세척한 후, 웰당 50ul씩 biotinylated anti-mouse IFN-γ 항체(R46A2, MabTech) 5㎍/ml를 첨가하고 4℃에서 밤새 배양하였다. 플레이트를 스캔하고 자동 ELISPOT 판독기 시스템을 사용하여 spot을 계산하였다.
10. 파골세포 생성 분석
4-8주령 C3(1)-Tag 마우스의 뒷다리 뼈(2개 대퇴골 및 2개 경골)에서 1차 마우스 골수 단핵구(bone marrow monocytes, BMM)를 분리하였다. 8 ml의 무혈청 2mM EDTA α-MEM 매체를 통해 마우스 BMM를 15 ml 튜브로 플러시하였다. LSM(Lymphocyte Separation Medium; MP Biomedicals; Catalog No. 50494)을 새 튜브에 분주한 후, 플러시된 BMM 8ml를 그 위에 부드럽게 추가하고 실온에서 1600rpm으로 20분 동안 원심분리하였다. 분리된 BMM는 48웰 플레이트에 3 x 105 세포/웰로 웰당 0.5mL의 배지와 함께 접종하고 10% FBS 및 1% 항생제를 함유하는 α-MEM에서 인큐베이션하였다.
음성 대조군의 BMM은 M-CSF(30ng/mL)을 처리하였고, 양성 대조군의 BMM은 M-CSF, RANKL(100ng/mL)을 처리하였으며, 실험 그룹의 BMM은 M-CSF, RANKL 및 IFN-γ(50, 100, ng/ mL)으로 처리하여 자극하였다. 배양 1일, 3일, 5일, 7일째에 배지를 교체하고 각 실험군에 대해 M-CSF, RANKL 및 IFN-γ를 처리하였다. 배양 9일 후, TRAP 염색 키트(KT-008, KAMIYA biomedical company, Seattle, WA, USA)를 사용하여 10% 포르말린으로 세포 고정 후 염색을 수행하였다. 각 웰에 대해, TRAP 양성(TRAP+) 다핵 세포(TRAP+ MNC)를 계수하였다. 모든 실험은 독립적으로 3회 반복하였다.
11. Western Blotting
M6 및 M6-골 세포를 100ng/ml recombinant mouse IFN-γ로 자극하고 1% FBS가 포함된베지에서 18시간 동안 배양하였다. 상기 세포를 PRO-PREPTM 단백질 추출 용액(iNtRON Biotechnology, 17081)과 phosphatase inhibitor cocktail (Gen DEPOT, p3200-001)의 완충 혼합물에서 용해시켰다. 단백질 농도는 Bradford assay (Bio-rad, 500-0006, Hercules, CA, USA)를 이용하여 측정하였다. 30ug의 단백질을 SDS-polyacrylamide gel 전기영동으로 분리하여 PVDF 멤브레인(10600023)으로 옮긴 후 0.05% Tween 20과 5% non-fat milk powder를 함유한 Tris 완충 식염수로 멤브레인을 1시간 동안 차단하였다. PVDF 멤브레인을 1차 항체와 함께 4°C에서 밤새 인큐베이션하였다. HIF1α(NB100-105, Novusbio), c-MET, Akt(Cat# 9272), p-Akt(Cat# 9271) 항체는 Cell Signaling Technology(Beverly, MA, USA) 및 ß-actin(Cat# A5316)은 Sigma(Saint Louis, MO, USA) 에서 구입하였다. 이어서, horseradish peroxidase 가 결합된 이차 항체를 실온에서 1시간 동안 배양하였다. 면역반응성 밴드는 화학발광 시약(Cat# RPN2106)으로 검출하였다.
12. 통계 분석
그래프 및 통계 비교는 Graph-pad Prism v5.01 소프트웨어으로 수행하였다. 복수의 실험 그룹 간의 차이는 일원(one-way) 또는 양방향(two-way) ANOVA 분석에 이어 turkey test으로 수행하였다.
[실험 결과]
1. 골전이 마우스 모델 구축
유방암에서 골 전이의 기전과 미세 환경을 조사하기 위해, 위해 C3(1)-Tag 마우스 모델의 자발적인 유방 종양에서 생성된 M6 세포를 사용하여 골 전이성 세포를 구축하였다. 구체적으로, M6 세포를 8-9주령 C3(1)-Tag 암컷 마우스에 심장 내 주사하고, 골 전이성 병변에서 세포를 분리하고 배양하여 골 전이성 세포주(bone seeking cell line)를 확립하고 M6-bone으로 명명하였다. 상기 M6-bone 세포는 생체 내 선택(in vivo selection)과 배양(culture)의 또 다른 주기를 위해 심장 내로 다시 주입되었다. 심장 내 투여 14일 후에 형광을 추적하여 M6-bone 세포의 이동을 확인하였다(도 1A). 이어서 전이된 마우스의 뒷다리를 채취하여 X선으로 측정하였다. X선은 대조군 뒷다리에 비해 전이성 뒷다리의 극적인 파괴를 보여주었다(도 1B). 또한, 조직학적 분석을 통해서 간, 폐 및 뼈에서 암세포의 존재를 확인하였다(도 1C).
2. HIF1α 및 c-MET의 골 전이와의 관련성 확인
골 전이의 기전을 확인하기 위해 전이성 뼈(metastatic bone), M6 세포, M6-bone 세포를 이용하여 RNA 염기서열 분석을 수행하였다. HIF1α 및 c-MET의 발현은 M6-bone clone에 비해 전이성 골에서 증가하였다(도 2A). 전이성 골 종양에서 두 생물학적 마커인 HIF1α 및 c-MET의 단백질 수준을 면역조직화학적 염색을 사용하여 정상 골, 간 및 폐와 비교하였다(도 2B).
3. 골전이암 미세환경 평가
전이성 골종양(metastatic bone tumor)에서 면역 세포 침윤은 다중 면역 조직 화학에 의해 평가되었다. 정상 및 전이성 골수에서 CD4 T 세포(98.2 vs 111.7 counts/HPF), CD8 T 세포(62.8 vs 29.5 counts/HPF), 골수 유래 억제 세포(myeloid- derived suppressor cell, MDSCs) (Gr-1+/CD11b+) (130 vs 153.7 counts/HPF)의 침윤을 확인하였다. 도 3에 나타난 바와 같이 암세포가 뼈로 전이된 후 정상 골수에 비해 CD8 T 세포는 적지만 MDSC는 더 많이 침윤되었다. 종합하면, CD8/MDSC 비율(0.12 vs 0.52, p <0.05)은 전이성 골수에서 정상 골수보다 유의하게 낮았으며, CD4/MDSC 비율(0.74 vs 0.64, ns)은 정상 골수에 비해 전이성 골수에서 유의한 결과를 나타내지 않았다.
4. 초기 유방암 모델에서 HIF1α 및 c-MET 폴리펩타이드 백신의 종양 성장 저해 확인
HIF1α/c-MET 폴리펩타이드 백신이 종양 성장에 영향을 미치는지 여부를 조사하였다. 면역화된 마우스에 이식된 M6 종양을 연속적으로 측정한 결과, 대조군과 비교하여 HIF1α/c-MET 폴리펩타이드 백신 투여 그룹에서 종양의 성장이 제한됨을 확인하였다 (613 ± 131 mm3 vs 879 ± 93 mm3, p < 0.05)(도 4). 상기 백신의 인터페론(IFN)-γ-분비 항원 특이적 T 세포를 유도하는 능력은 ELISPOT을 사용하여 확인하였다. 대조군과 비교하여, HIF1α/c-MET 폴리펩타이드 백신은 항원-특이적 Type I T 세포의 유의하게 더 높은 수준을 유도하였다. 비장세포에서 항원 특이적 T 세포 반응은 HIF1α 펩타이드보다는 c-MET 펩타이드로 자극되었을 때 더 두드러졌다(도 5). 종양 미세환경을 평가하기 위해, 이식된 종양의 T 세포 침윤을 면역조직화학으로 평가하였다. MDSC의 침윤(1.9 vs 1.22 counts/HPF, ns)은 감소했지만 CD8 T 세포(0 vs 0.54 counts/HPF, ns)의 침윤은 대조군에 비해 백신군의 종양에서 증가하였다(도 6). 그러나 통계적 유의성은 나타나지 않았다. 백신의 두 표적의 단백질(c-MET 및 HIF1α) 발현은 대조군 종양과 비교하여 면역화된 종양에서 현저하게 감소하였다(도 7). 상기 결과로부터 c-MET 및 HIF1α를 표적으로 하는 HIF1α/c-MET 폴리펩타이드 백신이 종양 성장을 제한하고 Ag-특이적 T 세포 면역 반응을 증가시키며, 나아가 면역화된 종양은 증가된 CD8 T 세포 침윤 및 감소된 표적 단백질 발현을 나타냄을 알 수 있었다.
5. 초기 유방암 모델에서 HIF1α 및 c-MET 폴리펩타이드 백신의 골 전이 억제 효과 확인
HIF1α/c-MET 폴리펩타이드 백신의 효과를 조사하기 위해, 3회 백신 접종 후 M6-bone clone을 심장내 주사하여 전신 전이 모델을 만들었다. 주사 후 35일째 경골에서 검출된 루시퍼라아제 신호는 대조군보다 백신군에서 낮았다(도 8A, B). HIF1α/c-MET 폴리펩타이드 백신의 골 손실에 대한 영향은 마이크로컴퓨터 단층촬영(CT) 분석을 통해 평가하였다. 대표적인 대조 동물의 뼈를 3차원으로 재구성한 마이크로 CT 영상에서 심각한 뼈의 파괴가 나타났다. 대조적으로, 백신 그룹의 뼈는 온전한 골막 완전성과 함께 제한된 골용해(osteolysis)를 확인할 수 있었다(도 8).
또한, 면역형광 염색에 의해 T 세포의 침윤을 평가하였다. 침윤된 CD4(mean; 3.5 vs 23.6 counts, p < 0.05) 및 CD8 T 세포(mean; 9 vs 31.1 counts, p < 0.001)의 수는 CFA/IFA 그룹에 비해 HIF1α/c-MET 폴리펩타이드 백신 그룹에서 유의하게 증가하였다(도 9).
백신 그룹에서 감소된 골용해가 관찰되었기 때문에 우리는 TRAP 염색을 통해 뼈의 파골세포를 추가로 평가하였다. HIF1α/c-MET 폴리펩타이드 백신 그룹에서 파골세포의 수와 활성은 대조군에 비해 유의하게 감소하였다(1.06% vs 2.43% counts/HPF, p < 0.05) (도 10).
또한, IFN-γ는 T-helper type 1(Th1) 면역의 핵심 사이토카인이며 파골세포 생성을 감소시키는 것으로 보고되었기 때문에 IFN-γ가 in vitro에서 파골세포 생성을 억제하는지 여부를 평가하였다. IFN-γ 처리군은 양성 대조군에 비해 파골세포 형성을 완전히 억제하였다(도 11).
추가로, 대조군 종양에 비해 면역화된 종양에서 c-MET 및 HIF1α 표적 단백질이 감소했기 때문에 시험관내 IFN-γ 처리가 M6-bone 세포에서 종양단백질의 발현에 미치는 영향을 조사하였다(도 12). c-MET 및 p-Akt의 발현은 IFN-γ 처리된 M6-bone 세포에서 감소한 반면, 수용체 티로신 키나아제 신호전달을 조절하는 것으로 알려진 SOCS1의 발현은 증가하였다(도 13). 혈관신생 마커인 α-SMA(평균; 10.6 대 5.6 카운트, p < 0.05) 및 CD31(평균; 12 대 5.1 카운트, p < 0.05)의 발현도 백신 그룹에서 유의하게 감소하였다(도 14).
상기 결과로부터, HIF1α 및 c-MET 폴리펩타이드 백신은 초기 골 전이 진행 모델에서 더 많은 T 세포를 골 미세 환경으로 유도하였고, Th 세포를 자극하여 IFN-γ 분비를 촉진시킴으로서 파골세포의 생성을 억제하고 종양 미세 환경에 영향을 미침을 알 수 있었다.
6. 진행된 암 전이 모델에서 HIF1α 및 c-MET 표적 펩타이드 백신과 면역 관문 억제제의 병용 투여를 통한 종양 성장 억제 확인
골 전이는 암의 진행에 따라 발생하는 것으로서, 백신만으로는 전이성 골 종양의 치료 효과가 제한적일 수 있다. PD-1 및 CTLA-4와 같은 면역 관문 단백질은 TNBC 환자에서 높게 발현되는 것으로 알려져 있다. 백신의 치료 효과를 높이기 위해 진행성 암 마우스 모델에서 백신과 면역관문억제제 병용요법의 효능을 평가했다. 초기 암 모델과 달리(도 4), 백신을 사용한 면역화는 대조군과 비교하여 이식된 M6 종양 성장에 유의한 치료 효과를 나타내지 않았다(vaccine vs control; 1081± 46 vs 1208± 234 mm3). 대조적으로, 종양 성장은 백신과 항-PD1 또는 항-CTLA4 항체의 조합으로 처리된 마우스 그룹에서 효과적으로 억제되었다(818 ± 184 mm3, p < 0.005; 748 ± 209 mm3, p < 0.001)(도 15). 또한, ELISPOT 분석은 IFN-γ 분비 Ag-특이적 T 세포가 HIF1α/c-MET 폴리펩타이드 백신과 항-CTLA4 항체 처리군의 조합에서 가장 유의하게 유도되었음을 보여주었다(도 16).
그리고, 면역 미세환경과 관련하여 종양에서 T 세포의 침윤을 조사하였다. CFA/IFA 대조군과 비교하여 면역세포의 침윤은 MET 폴리펩타이드 + 항-CTLA-4 Ab 조합 치료군 에서 유의하게 증가하였다(mean; 7.5 vs 23.8 counts, p < 0.05). CFA/IFA 대조군과 비교하여 CD8 T 세포의 침윤은 HIF1α/c-MET 폴리펩타이드 + 항-PD-1 Ab 병용 요법 그룹(mean; 5.6 vs 41.2 counts, p < 0.005)과 HIF1α/c-MET 폴리펩타이드 + CTLA-4 Ab 병용 요법 그룹(mean; 5.6 vs 40 counts, p < 0.05) 모두에서 유의하게 증가하였다(도 17).
상기 결과로부터, HIF1α/c-MET 폴리펩타이드 백신과 면역관문 억제제와의 병용 요법은 증가된 Ag-특이적 T 세포 면역 반응 및 T 세포 침윤에 의해 측정된 바와 같이 진행된 암 모델에서 종양 성장 억제에 더 효과적임을 알 수 있다.
7. 진행된 암 전이 모델에서 HIF1α 및 c-MET 표적 펩타이드 백신과 면역 관문 억제제의 병용 투여를 통한 골 전이 억제 확인
이전 결과와 마찬가지로 진행된 전신 전이 모델을 만들어 백신 및 면역 관문 억제제와의 병용 요법의 효과를 평가하였다. 각 치료를 받도록 마우스를 무작위로 지정하고 매주 생물발광 영상화를 사용하여 골 전이 억제에 대해 측정하였다. 심장내 주사 42일 후에 평가된 평균 루시퍼라제 신호는 CFA/IFA 또는 HIF1α/c-MET 폴리펩타이드 단독 그룹과 비교하여 HIF1α/c-MET polypeptide + anti- PD-1 Ab 병용 그룹과 HIF1α/c-MET polypeptide + anti-CTLA-4 Ab 병용 그룹에서 낮게 측정되었다(도 18).
이어서, 마이크로 CT 분석을 통해 각 그룹의 뼈 파괴 정도를 평가하였다. 대표적인 CFA/IFA 및 HIF1α/c-MET 폴리펩타이드 단독 그룹의 뼈에 대한 3차원 재구성 마이크로 CT 이미지는 심각한 골 파괴를 보였다. 대조적으로, HIF1α/c-MET polypeptide + anti- PD-1 Ab 병용 그룹과 HIF1α/c-MET polypeptide + anti-CTLA-4 Ab 병용 그룹은 제한된 골 파괴를 나타내었다(도 19).
그리고, 전이성 골종양에서 T 세포의 침윤을 조사하였다. CFA/IFA 그룹과 비교하여HIF1α/c-MET polypeptide + anti-PD-1 Ab 병용 요법 그룹에서 더 많은 CD8 T 세포(mean; 7 vs 12.2 counts, p < 0.005)가 침윤이 확인되었으나, CD4 T 세포는 침윤되지 않았다. anti-CTLA-4 Ab 병용 그룹의 경우, CD4(mean; 1.8 vs 16.8 counts, p < 0.005) 및 CD8 T 세포(mean; 7 vs 25.2 counts, p < 0.001), (평균; 6.5 vs 25.2 카운트, p < 0.001) CFA/IFA 그룹 및 HIF1α/c-MET 폴리펩타이드 단독 그룹과 비교하여 유의하게 더 조밀하게 침윤되었다(도 20).
또한, IFN-γ ELISPOT 분석은 Ag-특이 T 세포가 HIF1α/c-MET 폴리펩타이드 단독 그룹에서보다 병용 요법군에서 c-MET 펩타이드로 자극시 더 확장되었음을 보여주었다(도 21). 그리고, H&E 염색 및 TRAP 염색을 사용한 후속 분석은 CFA/IFA 및 HIF1α/c-MET 폴리펩타이드 단독 그룹과 비교하여 병용 요법 그룹의 전이성 골 병변에서 파골세포의 수 및 활성이 상당히 감소되었음을 보여주었다(도 22).
상기 결과로부터, 진행된 골 전이에서 HIF1α/c-MET 폴리펩타이드 백신과 면역 관문 억제제와의 병용 요법은 전이성 골 종양의 성장을 억제하고 골 미세 환경에서 Ag 특이적 T 세포 면역 반응 및 T 세포 침윤 증가로 파골세포 분화를 보다 감소시킴을 알 수 있다.
8. 항암제 내성 암종에서 HIF1α 및 c-MET 폴리펩타이드의 항암 효과 확인
라파티닙 (lapatinib) 내성 세포주를 이용하여 치료 내성 세포주의 성장을 종양백신으로 억제할 수 있는지 여부를 확인하고자 하였다. HIF1α/c-MET 폴리펩타이드를 MMTV-neu transgenic 마우스에 3회에 걸쳐 투여하고 라파티닙 내성 세포주를 접종하였다(도 23A). 접종 35일째 마우스를 희생하고 종양의 크기를 측정한 결과 HIF1A/c-MET 백신이 투여된 마우스의 종양이 대조군에 비해 유의하게 성장 억제되는 것을 확인하였다(도 23B).
또한, IFN-γ ELISPOT 분석은 Ag-특이 T 세포가 HIF1α/c-MET 폴리펩타이드 자극 시 더 확장되었음을 보여주었다(도 24a). 그리고, H&E 염색 및 면역형광 염색을 사용한 후속 분석은 HIF1α/c-MET 폴리펩타이드 투여에 의하여 종양 내 침투한 T 세포가 증가되었으며(도 24b), 표적 단백질의 발현이 감소하고(도 24c), 신생혈관 마커 단백질의 발현이 감소됨을 확인하였다(도 24d).
9. HIF1α 및 c-MET 폴리펩타이드의 전이암 억제 효과 확인
이어서, HIF1α 및 c-MET 폴리펩타이드의 골 전이암 예방 효과에 나아가, 전신에 전이암을 예방할 수 있는지 확인하고자 하였다. 실험 스케쥴은 도 25와 같다.
먼저, M6-bone 세포주의 투여로 전신의 전이암이 유도되는지 확인하였다. 골전이를 주로 하는 M6-bone 세포주를 마우스의 심장 내에 주사를 했을 때 폐, 간, 및 뼈에서 c-MET 및 HIF1α를 발현하는 세포의 수가 증가하였으며(도 26a 및 26b), 상기 암 세포는 면역관문 단백질인 CD47을 과발현하는 것을 확인할 수 있었다(도 28a 및 28b).
그리고, c-MET, HIF1α 종양백신 단독 (VAC)과 이와 함께 면역관문 억제제 병용 투여를 각 마우스에 3회 시행 후 심장 내에 암세포를 주사한 경우, 대조군 대비 각 치료군에서 전이암이 감소하고 특히 병용 투여군에서 가장 우수한 전이암 예방의 효과를 확인할 수 있었다(도 27 및 도 29).
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (13)

  1. HIF1α의 에피토프 펩타이드 및 c-MET의 에피토프 펩타이드를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물.
  2. 제1항에 있어서,
    상기 c-MET의 에피토프 펩타이드는 서열번호 1 및 서열번호 2로 표시되는 아미노산 서열로이루어진 군으로부터 선택되는 1종 이상의 아미노산 서열을 포함하는 것인, 약학적 조성물.
  3. 제1항에 있어서,
    상기 HIF1α의 에피토프 펩타이드는 서열번호 3 내지 5로 표시되는 아미노산 서열로 이루어진 군으로부터 선택되는 1종 이상의 아미노산 서열을 포함하는 것인, 약학적 조성물.
  4. 제1항에 있어서,
    HIF1α의 에피토프 펩타이드 및 c-MET의 에피토프 펩타이드는 융합되어 하나의 폴리펩타이드인, 약학적 조성물.
  5. 제4항에 있어서,
    상기 폴리펩타이드는 서열번호 6으로 표시되는 아미노산 서열을 포함하는 것인, 약학적 조성물.
  6. 제1항에 있어서,
    상기 약학적 조성물은 면역관문억제제와 병용 투여용인 것인, 약학적 조성물.
  7. 제1항에 있어서,
    상기 약학적 조성물은 면역관문억제제를 추가로 포함하는 것인, 약학적 조성물.
  8. 제6항 또는 제7항에 있어서,
    상기 면역관문억제제는 CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, TIGIT, CD47, VISTA 및 A2aR로 이루어진 군으로부터 선택된 1종 이상의 면역관문 단백질의 신호 전달을 차단하는 것인, 약학적 조성물.
  9. 제6항 또는 제7항에 있어서,
    상기 면역관문 억제제는 CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, BTLA, B7H3, B7H4, TIM3, KIR, TIGIT, CD47, VISTA 및 A2aR로 이루어진 군으로부터 선택된 1종 이상의 면역관문 단백질을 표적으로 하는 항체인 것인, 약학적 조성물.
  10. 제9항에 있어서,
    상기 항체는 단클론 항체인 것인, 약학적 조성물.
  11. 제1항에 있어서,
    상기 암은 유방암, 폐암, 위암, 두경부암, 신장암, 간암, 전립선암, 및 갑상선암으로 이루어진 군으로부터 선택된 1종 이상의 암인 것인, 약학적 조성물.
  12. 제1항에 있어서,
    상기 상기 암은 전이성 암인 것인, 약학적 조성물.
  13. 제12항에 있어서,
    상기 전이성 암은 전이성 골 종양인 것인, 약학적 조성물.
PCT/KR2023/001715 2022-02-08 2023-02-07 C-met의 에피토프 및 hif1alpha의 에피토프를 포함하는 암 백신 및 이의 용도 WO2023153763A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20220016462 2022-02-08
KR10-2022-0016462 2022-02-08
KR1020220102718A KR20230120542A (ko) 2022-02-08 2022-08-17 c-MET의 에피토프 및 HIF1α의 에피토프를 포함하는 암 백신 및 이의 용도
KR10-2022-0102718 2022-08-17
KR10-2023-0015177 2023-02-03
KR1020230015177A KR20230120585A (ko) 2022-02-08 2023-02-03 c-MET의 에피토프 및 HIF1α의 에피토프를 포함하는 암 백신 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2023153763A1 true WO2023153763A1 (ko) 2023-08-17

Family

ID=87564648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001715 WO2023153763A1 (ko) 2022-02-08 2023-02-07 C-met의 에피토프 및 hif1alpha의 에피토프를 포함하는 암 백신 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2023153763A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170132186A (ko) * 2015-03-31 2017-12-01 이매틱스 바이오테크놀로지스 게엠베하 신세포암종(rcc) 및 기타 암에 대한 면역요법에 사용하기 위한 펩티드 및 펩티드와 골격의 조합
KR20190114996A (ko) * 2017-01-09 2019-10-10 테사로, 인코포레이티드 항-pd-1 항체로 암을 치료하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170132186A (ko) * 2015-03-31 2017-12-01 이매틱스 바이오테크놀로지스 게엠베하 신세포암종(rcc) 및 기타 암에 대한 면역요법에 사용하기 위한 펩티드 및 펩티드와 골격의 조합
KR20190114996A (ko) * 2017-01-09 2019-10-10 테사로, 인코포레이티드 항-pd-1 항체로 암을 치료하는 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Ph.D. thesis", 1 February 2021, KOREA UNIVERSITY GRADUATE SCHOOL, Korea, article LEE, H. J.: "(A) Polypeptide Vaccine Targeting Hypoxia Inducible Factor-1α and c-MET Receptor Suppresses Bone metastasis of Triple Negative Breast Cancer via Regulation of the Metastatic Bone Microenvironment", pages: 1 - 95, XP009548545 *
GAULE PATRICIA B, CROWN JOHN, O’DONOVAN NORMA, DUFFY MICHAEL J: "cMET in triple-negative breast cancer: is it a therapeutic target for this subset of breast cancer patients?", EXPERT OPINION ON THERAPEUTIC TARGETS, INFORMA HEALTHCARE, UK, vol. 18, no. 9, 1 September 2014 (2014-09-01), UK , pages 999 - 1009, XP093084347, ISSN: 1472-8222, DOI: 10.1517/14728222.2014.938050 *
JIN MIN-SUN; LEE HYEBIN; PARK IN AE; CHUNG YUL RI; IM SEOCK-AH; LEE KYUNG-HUN; MOON HYEONG-GON; HAN WONSHIK; KIM KYUBO; KIM TAE-YO: "Overexpression of HIF1α and CAXI predicts poor outcome in early-stage triple negative breast cancer", VIRCHOWS ARCHIV, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 469, no. 2, 16 May 2016 (2016-05-16), Berlin/Heidelberg, pages 183 - 190, XP036025941, ISSN: 0945-6317, DOI: 10.1007/s00428-016-1953-6 *
MASOUD GEORGINA N., LI WEI: "HIF-1α pathway: role, regulation and intervention for cancer therapy", ACTA PHARMACEUTICA SINICA B, vol. 5, no. 5, 1 September 2015 (2015-09-01), pages 378 - 389, XP055853746, ISSN: 2211-3835, DOI: 10.1016/j.apsb.2015.05.007 *

Similar Documents

Publication Publication Date Title
WO2020076105A1 (ko) 신규 항-c-kit 항체
JP4787439B2 (ja) 免疫調節因子であるbaffレセプター(bcma)
WO2015076621A1 (ko) 혈관 신생 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
WO2015156649A1 (ko) 섬유증 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
WO2021201571A1 (ko) Igsf1 에 대한 항체를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물 및 이를 이용한 암 치료 방법
WO2013169077A1 (ko) 악액질 예방 또는 치료용 조성물
JP2004534743A (ja) ヘッジホッグ
JP2009256359A (ja) 血管形成抑制剤
WO2015093854A1 (ko) 전립선 암 치료용 조성물
US20100062012A1 (en) Negative Genetic Regulation of Cancer Cell Renewal in Synergy with Notch- or Numb-Specific Immunotherapy
WO2018106068A1 (ko) 세포외 기질 분해 인자를 발현하는 재조합 아데노바이러스를 포함하는 항암용 조성물
WO2023022271A1 (ko) 항-igsf1 항체 및 이의 용도
WO2021158091A2 (ko) 케모카인 억제제, 콜로니 자극 인자 억제제 및 면역항암제를 포함하는 암의 예방 또는 치료용 조성물 및 병용 요법
WO2019216675A1 (ko) 조절 t 세포 표면 항원의 에피토프 및 이에 특이적으로 결합하는 항체
WO2022025638A1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
WO2023153763A1 (ko) C-met의 에피토프 및 hif1alpha의 에피토프를 포함하는 암 백신 및 이의 용도
WO2018186706A1 (ko) Nk 세포 활성화 융합 단백질, nk 세포 및 이들을 포함하는 약제학적 조성물
WO2023153773A1 (ko) C-met의 에피토프를 포함하는 암 백신 및 이의 용도
WO2024205045A1 (ko) Her2 백신, 및 면역관문 억제제의 조합 요법
WO2024076121A1 (ko) Cd5를 표적하는 키메라 항원 수용체 및 이를 발현하는 면역세포
WO2021040064A1 (ko) 백시니아 바이러스 및 히드록시유레아를 유효성분으로 포함하는 암 치료용 약학 조성물
WO2016027990A1 (ko) Dusp5를 유효성분으로 모두 포함하는 골대사성 질환의 예방 또는 치료용 약학적 조성물
KR20230120542A (ko) c-MET의 에피토프 및 HIF1α의 에피토프를 포함하는 암 백신 및 이의 용도
KR20230120585A (ko) c-MET의 에피토프 및 HIF1α의 에피토프를 포함하는 암 백신 및 이의 용도
WO2021242002A1 (ko) Lsp1 결핍 t 세포

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23753111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE