Nothing Special   »   [go: up one dir, main page]

WO2023152701A1 - Piston à double effet multitempérature - Google Patents

Piston à double effet multitempérature Download PDF

Info

Publication number
WO2023152701A1
WO2023152701A1 PCT/IB2023/051213 IB2023051213W WO2023152701A1 WO 2023152701 A1 WO2023152701 A1 WO 2023152701A1 IB 2023051213 W IB2023051213 W IB 2023051213W WO 2023152701 A1 WO2023152701 A1 WO 2023152701A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cap
ring
temperature double
cooling
Prior art date
Application number
PCT/IB2023/051213
Other languages
English (en)
Inventor
Vianney Rabhi
Original Assignee
Vianney Rabhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vianney Rabhi filed Critical Vianney Rabhi
Priority to AU2023219331A priority Critical patent/AU2023219331A1/en
Publication of WO2023152701A1 publication Critical patent/WO2023152701A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • F01K7/025Consecutive expansion in a turbine or a positive displacement engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/001Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in the two directions is obtained by one double acting piston motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/0535Seals or sealing arrangements

Definitions

  • the present invention relates to a multi-temperature double-acting piston, said piston being particularly suitable for reciprocating engines implementing the regenerative Brayton thermodynamic cycle with pistons rather than with centrifugal compressors and turbines.
  • Regenerative Brayton cycle engines generally comprise separate organs dedicated to each of the phases of said cycle, said phases taking place continuously and simultaneously in said organs, unlike reciprocating internal combustion engines using the Beau de Rochas cycle, Miller, Atkinson or Diesel whose phases are carried out successively in one and the same cylinder.
  • regenerative Brayton cycle engines comprise at least one compressor, at least one regenerative exchanger, at least one burner operating continuously or an internal or external heat source, and at least one expansion valve,
  • the temperature of the internal walls of the compressor of a regenerative Brayton cycle engine can be kept as low as possible, which helps to minimize the work of compression and to maximize the total thermodynamic efficiency of said engine.
  • either said engine is made up of centrifugal compressors and high-temperature resistant turbines, but in this case, the modest efficiency of these components does not allow it to exceed a total efficiency equivalent to that of an automobile diesel, or it is made up of a volumetric piston pressure reducer which, to be sealed, requires a piston provided with a segmentation sliding on a film of oil formed on the surface of a cylinder, the latter in front for this to remain at a temperature not exceeding approximately one hundred and twenty degrees Celsius, which also does not allow the total efficiency of said motor to be competitive.
  • the thermal transfer-expansion and regeneration engine according to patent WO2016120560 published on August 4, 2016 and belonging to the applicant comprises non-contact piston sealing means consisting of a continuous inflatable perforated ring which, when subjected to a certain internal pressure, swells and comes within a few micrometers of the regulator cylinder with which it cooperates without touching said cylinder, this while allowing compressed air to leak via calibrated orifices which cross right through in its radial thickness.
  • thermodynamic efficiency of a Brayton cycle engine with volumetric regeneration with pistons can reach or even exceed seventy percent, which in practice can lead to the production of engines whose the energy efficiency at the brake exceeds sixty percent after deducting the inevitable thermal and mechanical irreversibility due to the very constitution of said motors.
  • the regenerative cooling system according to patent No. EP 3585993 provides a cooling enclosure which envelops the expander while a gas circulation space is left between said enclosure and said expander in which the gases flowing out of the expander itself -even at a temperature between five hundred and six hundred degrees Celsius.
  • the fluid cushion sealing device of patent No. FR 3032252 can be used with a continuous perforated ring, for example made of “Udimet 720” superalloy.
  • the cylinder and cylinder heads of the regenerative Brayton cycle piston reciprocating engine must be made of materials with a high nickel content such as "Niresist” cast iron which, because of the high volatility and high price of nickel represents an economic disadvantage.
  • the temperature of the regulator remains at least six hundred degrees Celsius higher than that of the rest of the engine and in particular, of the mobile coupling and of the transmission casing in which said said coupling.
  • the differential expansions which result from this temperature difference can in particular be managed by the double-acting expander cylinder with adaptive support, the subject of patent No. EP3350433 issued on August 7, 2019 and belonging to the applicant.
  • Said support allows an isotropic or anisotropic expansion of the expansion cylinder which is very different from that of the transmission casing on which it is fixed, this without compromising either the operation of said cylinder or that of the piston which evolves in said cylinder.
  • Said support also keeps the piston centered in the cylinder, transmits the axial forces resulting from the expansion of the gases to the transmission casing, and limits heat transfer from the expander cylinder to said casing.
  • the fluid cushion sealing device must be supplied with compressed air by a compressor which consumes part of the work available on the shaft of the regenerative Brayton cycle piston reciprocating engine, to the detriment of the its total return.
  • said cooling system makes the path of the gases expelled from the expander tortuous and induces pressure drops which reduce the total efficiency of the reciprocating engine with regenerative Brayton cycle piston.
  • the reciprocating heat engine with hot cylinder head and cold cylinder according to the invention is, among other things, intended to produce reciprocating Brayton cycle piston engines at regeneration whose mainly hot expansion valve limits heat losses, and this, while ensuring a robust and durable seal between the piston and the cylinder of said expansion valve.
  • Whose sealing with the cylinder with which it cooperates can be achieved by means of cast iron or steel segments such as those included in conventional internal combustion engines with spark ignition or Diesel cycle;
  • the multi-temperature double-acting piston according to the invention makes it possible to prevent the engine that houses it from being manufactured with materials with a high nickel content such as "Niresist" cast iron, the cylinder of said engine which can be made of cast iron at low cost such as that ordinarily used to make the cylinder casings of automobile diesel engines, and said engine which can comprise hot cylinder heads operating at high temperature made of silicon carbide, a high-strength material high temperature mechanics, plentiful and cheap.
  • the multi-temperature double-acting piston capable of translating in a cold cylinder arranged in a cooled cylinder block that includes a heat engine, said piston being directly or indirectly connected by power transmission means housed in a transmission casing to at least at least one rotating or reciprocating power output shaft while said piston forms a lower variable volume chamber with the cold cylinder and a lower cylinder head which is positioned between said piston and the transmission housing, said piston simultaneously forming a variable volume chamber upper with said cylinder and an upper cylinder head, said chambers, containing a working gas, comprise
  • a central piston pin approximately coaxial with the cold cylinder and of which a first end forms a lower piston rod which passes right through the lower cylinder head via a lower rod orifice which cooperates with lower rod sealing means to open in the transmission casing and to be directly or indirectly connected to the power transmission means by piston fixing means, while the second end of said pin forms an upper piston rod which passes right through the upper cylinder head via an upper rod orifice which cooperates with upper rod sealing means to open into a piston cooling and lubrication chamber connected to a source of lubricant-coolant fluid, the latter introducing a lubricant-coolant fluid into said chamber;
  • a peripheral sealing ring whose outer diameter is substantially smaller than the inner diameter of the cold cylinder, said ring comprising piston sealing means which are in contact with said cylinder to achieve a seal with the latter;
  • a lower radial connection disc which radially connects the central piston pin with the peripheral sealing ring on the side of the lower variable volume chamber
  • an upper radial connection disc which radially connects the central piston pin with the peripheral sealing ring on the side of the upper variable volume chamber, the space left between said discs, the peripheral sealing ring and the central piston pin forming an internal volume of the piston
  • a lubrication-cooling gallery arranged mainly axially in the central piston pin and in one or more sections, said gallery communicating on the one hand, the piston cooling and lubrication chamber with the internal piston volume, and on the other hand, said volume with the interior of the transmission casing;
  • At least one peripheral ring lubrication orifice which places the internal volume of the piston in communication with the outer peripheral face of the peripheral sealing ring, said orifice emerging axially from said face between at least two sealing means of plunger;
  • Guide means which bear directly or indirectly on or close to the power transmission means and/or the cold cylinder and/or the lower cylinder head and/or the upper cylinder head, said means directly or indirectly retaining the peripheral sealing ring centered in the cold cylinder;
  • Cap pressing means which directly or indirectly hold the lower hot dome pressed against the peripheral sealing ring and/or on the lower radial connection disc, and/or which directly or indirectly hold the upper hot dome pressed against said ring and/or on the upper radial connection disc, said means leaving said caps free to expand relative to said ring and/or said discs;
  • the multi-temperature double-acting piston according to the invention comprises a lower hot cap and/or an upper hot cap which are wholly or partly made of a material resistant to high temperatures.
  • the multi-temperature double-acting piston according to the invention comprises a material resistant to high temperatures which is mainly made of silicon carbide.
  • the multi-temperature double-acting piston comprises thermal insulation means and/or cap sealing means which are interposed either between the lower hot cap and the peripheral sealing ring and/or or the lower radial connection disk, either between the upper hot cap and said ring and/or the upper radial connection disk, or both.
  • the multi-temperature double-acting piston according to the invention comprises thermal insulation means and/or cap sealing means which are interposed either between the lower hot cap and the central piston pin, or between the upper hot cap and said pin, or both.
  • the multi-temperature double-acting piston according to the invention comprises thermal insulation means which consist of at least one insulating ring made of a material with low thermal conductivity.
  • the multi-temperature double-acting piston according to the invention comprises a material with low thermal conductivity which consists mainly of zirconium oxide.
  • the multi-temperature double-acting piston comprises an insulating ring which is held directly or indirectly in contact with the central piston pin and/or the peripheral sealing ring and/or the lower hot cap and/ or the lower radial connection disc and/or the upper hot cap and/or the upper radial connection disc via at least one small surface contact edge.
  • the multi-temperature double-acting piston comprises an insulating ring which is held directly or indirectly in contact with the central piston pin and/or the peripheral sealing ring and/or the cap lower hot plate and/or the lower radial connection disk and/or the upper hot cap and/or the upper radial connection disk via at least one insulating ring seal which is gastight from work.
  • the multi-temperature double-acting piston comprises cap pressing means which directly or indirectly hold the lower hot cap pressed against the peripheral sealing ring and/or on the lower radial connecting disc, which are formed of an outer coaxial lower spindle tube which envelops the central piston spindle, said tube bearing on the one hand, on the lower hot cap in the vicinity of said spindle, and on the other hand, on the transmission means power.
  • the multi-temperature double-acting piston comprises cap pressing means which directly or indirectly hold the upper hot cap pressed against the peripheral sealing ring and/or on the upper radial connecting disc, which are formed of an outer coaxial upper pin tube which envelops the central piston pin, said tube bearing on the one hand, on the upper hot cap in the vicinity of said pin, and on the other hand, on a rod stop upper arranged directly or indirectly on the upper piston rod in the vicinity of its end which opens into the piston cooling and lubrication chamber.
  • the multi-temperature double-acting piston according to the invention comprises some or all of the ends of an outer coaxial pin lower tube and/or an outer coaxial upper pin tube which receive a tube spring via of which said tubes bear respectively on the lower hot cap and on the power transmission means and/or on the upper hot cap and on the upper rod stop.
  • the multi-temperature double-acting piston comprises a lower hot cap and/or an upper hot cap which has a concave conical cap surface by means of which said cap is held flat by the pressing means of cap on a circular peripheral contact edge which is directly or indirectly attached to the peripheral sealing ring and/or to the periphery of the connecting disc lower radial and/or of the periphery of the upper radial connecting disc, the angle of the concave cone formed by said surface being such that when said surface slides on said edge due to the difference between the thermal expansion of said cap and that of the assembly formed by the peripheral sealing ring, the lower radial connection disk, the upper radial connection disk and the central piston pin, the axial distance which separates the bearing point from the cap plating means on said cap of the peripheral sealing ring remains approximately constant all other things being equal, while the concave conical surface of the cap and the circular peripheral contact edge form the cap centering means.
  • the multi-temperature double-acting piston comprises piston fixing means which consist of a double-acting piston axial screw which firstly comprises a piston screw body which is housed in a piston screw tunnel which crosses right through the central piston pin in the direction of its length, said screw comprising on the one hand, a piston screw head which bears at the end of the upper piston rod which opens into the piston cooling and lubrication chamber, and on the other hand, a piston screw thread which is screwed into the power transmission means.
  • piston fixing means consist of a double-acting piston axial screw which firstly comprises a piston screw body which is housed in a piston screw tunnel which crosses right through the central piston pin in the direction of its length, said screw comprising on the one hand, a piston screw head which bears at the end of the upper piston rod which opens into the piston cooling and lubrication chamber, and on the other hand, a piston screw thread which is screwed into the power transmission means.
  • the multi-temperature double-acting piston comprises a piston screw tunnel which forms at least part of the lubrication-cooling gallery, the lubricating-cooling fluid being able to circulate between the piston screw body and the internal wall of said tunnel, the latter forming with said body a first section which goes from the piston cooling and lubrication chamber to the internal piston volume, and a second section which goes from said volume inside the transmission casing.
  • the multi-temperature double-acting piston according to the invention comprises guide means which consist of a barrel-shaped skirt which is arranged on the outer periphery of the peripheral sealing ring and which rests on the cold cylinder.
  • the multi-temperature double-acting piston comprises a lubrication-cooling gallery which opens into the internal volume of piston via a small axial play left between, on the one hand, a fluid distribution disc which is housed in said volume and, on the other hand, the upper radial connection disc, said distribution disc being approximately parallel to said radial connection disc and forming on the one hand, a seal with the central pin of the piston, and ending on the other hand, radially in the vicinity of the internal wall of the peripheral sealing ring, the cooling-lubricating fluid coming from the chamber piston cooling and lubrication that can exit at said vicinity.
  • the multi-temperature double-acting piston comprises a central piston pin which comprises, inside the internal volume of the piston and in the vicinity of the lower radial connecting disc, a fluid recirculation collar which, when the central piston pin moves in the direction of the lower cylinder head, rejects radially and in the direction of the inner wall of the peripheral sealing ring the lubricant-cooling fluid which has accumulated in said volume and on the surface of said disk.
  • the multi-temperature double-acting piston comprises a lower radial connection disc which has a hollow shape at its connection with the central piston pin, said shape constituting an overflow reservoir which can store lubricating-cooling fluid, while at least one overflow orifice which communicates with the interior of the transmission casing via the lubrication-cooling gallery fixes the maximum level of said reservoir.
  • the multi-temperature double-acting piston comprises a fluid nozzle fed by the source of lubricant-coolant fluid which opens into the piston cooling and lubrication chamber to inject a jet of fluid therein.
  • the multi-temperature double-acting piston according to the invention comprises a fluid nozzle which injects a jet of lubricating-cooling fluid into an axial screw reservoir which is arranged axially in the piston screw head, said reservoir communicating with the lubrication-cooling gallery via at least one radial duct connecting tank-gallery.
  • the multi-temperature double-acting piston according to the invention comprises a screw check valve which is housed in the axial screw of the double-acting piston, said valve allowing the lubricant-cooling fluid to flow from the axial screw reservoir to the lubrication-cooling gallery, but not the reverse.
  • the multi-temperature double-acting piston comprises a piston cooling and lubrication chamber which is connected to a source of air by an air inlet check valve which lets in air from forcing fluid into said chamber without letting it out, while said chamber is connected to an air tank by a pressure relief valve which allows fluid forcing air to flow from said chamber to said tank when the pressure of said air in said chamber reaches a certain value.
  • the multi-temperature double-acting piston according to the invention comprises a reflective screen which is interposed between the lower hot cap and the lower radial connection disc to which part of the peripheral sealing ring and/or , between the upper hot dome and the upper radial connecting disc to which part of said ring can be added.
  • the multi-temperature double-acting piston according to the invention comprises thermal insulation means which consist of a cellular or fibrous insulating material which occupies all or part of the space between the lower hot cap and the lower radial connection and/or between the upper hot cap and the upper radial connection disc.
  • the multi-temperature double-acting piston comprises at least a first radial space left between the outer coaxial upper pin tube and the central piston pin, at least a second radial space left between the outer coaxial lower tube of pin and the piston center pin, and a plurality of radial spaces left between the piston screw body and the internal wall of the piston screw tunnel which form at least part of the lubrication-cooling gallery, the lubricating-cooling fluid being able to circulate successively in said spaces to go from the piston cooling and lubrication chamber to the internal piston volume, then from said volume inside the transmission casing.
  • the multi-temperature double-acting piston according to the invention comprises lower rod sealing means and/or upper rod sealing means which consist of an extendable continuous ring which is directly or indirectly integral with the housing -cooled cylinder, and whose inside diameter is substantially smaller than the outside diameter of the lower piston rod or of the upper piston rod that it encloses.
  • the multi-temperature double-acting piston according to the invention comprises an extensible continuous ring which is connected to a ring plate by a ring tube of small radial thickness, said ring, said plate and said ring being made in a one and the same piece of matter.
  • the multi-temperature double-acting piston according to the invention comprises a continuous extensible ring which is axially clamped between two ring rings by an axial ring compression spring.
  • FIG. 1 is a three-dimensional view of a heat engine as it may be provided to receive the multi-temperature double-acting piston according to the invention, said engine forming an expansion valve which makes it possible, for example, to implement a thermodynamic cycle of Regenerative baritone.
  • FIG. 2 is a three-dimensional cross-sectional view of the multi-temperature double-acting piston according to the invention, housed in the heat engine shown in FIG. 1, said engine also being represented in three-dimensional cross-section.
  • FIG. 3 is a sectional view of the multi-temperature double-acting piston according to the invention, housed in the heat engine shown in FIG. 1, said engine also being shown in section.
  • FIG. 4 is a three-dimensional sectional view of the multi-temperature double-acting piston according to the invention, said piston being connected to the power transmission means by a double-acting piston axial screw while the cap plating means consist in particular of an external coaxial lower spindle tube and an external coaxial upper spindle tube.
  • FIG. 5 is an exploded three-dimensional view of the multi-temperature double-acting piston according to the invention and according to its particular configuration shown in figures 2 to 5.
  • FIG. 6 is a close-up cross-sectional view of the multi-temperature double-acting piston according to the invention placed in the context of the engine shown in FIG. 1, said view showing in particular how said piston is connected to the power transmission means, and how the lower hot cap is held pressed against the peripheral sealing ring by an outer coaxial lower pin tube via insulating rings.
  • FIG. 7 is a close-up cross-sectional view of the multi-temperature double-acting piston according to the invention placed in the context of the engine shown in FIG. 1, said view showing in particular how the upper piston rod opens into the cooling and lubrication chamber piston, and how the upper hot cap is held pressed against the peripheral sealing ring by an external coaxial upper pin tube via insulating rings.
  • FIG. 8 is a cross-sectional view of the multi-temperature double-acting piston according to the invention as shown in FIGS. 2 to 7, said view showing how a lubricating-cooling fluid can circulate from an axial screw reservoir to the interior of the transmission casing to successively cool the upper radial connection disc, the peripheral sealing ring and the lower radial connection disc, this while cooling and lubricating the piston sealing means and the barrel skirt that said ring, said means and said skirt being kept in contact with the cold cylinder.
  • FIG. 9 is a sectional view of the multi-temperature double-acting piston according to the invention as shown in FIG. 8, said view showing in particular how the lubricating-cooling fluid can recirculate inside the internal volume of the piston to complete the cooling of the mechanically welded assembly formed by the peripheral sealing ring, the lower radial connection disc, the upper radial connection disc and the central piston pin, and to supply peripheral ring lubrication orifices that the peripheral sealing ring comprises.
  • FIG. 10 is a close-up schematic sectional view of the multi-temperature double-acting piston according to the invention and according to the particular configuration of said piston as shown in FIGS. 2 to 9, said view showing the position and dimensions of the lower and upper hot caps by relative to the mechanically welded assembly and to the insulating ring when said caps are cold.
  • FIG. 11 is a close-up schematic sectional view of the multi-temperature double-acting piston according to the invention and according to the particular configuration of said piston as shown in FIGS. 2 to 9, said view showing the position and dimensions of the lower and upper hot caps by relative to the mechanically welded assembly and to the insulating ring when said caps are hot.
  • FIG. 12 is a three-dimensional view framed on the piston cooling and lubrication chamber of the multi-temperature double-acting piston according to the invention, said view showing in particular the air intake non-return valve and the pressure limiting valve which are both connected inside the transmission case which here acts as an air source and air cover.
  • FIG. 13 is a sectional view of a variant of the multi-temperature double-acting piston according to the invention in which part of the lubrication-cooling gallery is formed by a radial space left between, on the one hand, the outer coaxial upper tube spindle and the lower outer coaxial spindle tube and on the other hand, the central piston spindle, while a reflective screen and a cellular or fibrous insulating material are interposed between the lower and upper hot caps and the radial connecting disc lower and upper facing said caps.
  • FIG. 14 is a close-up sectional view of the upper rod sealing means of the multi-temperature double-acting piston according to the invention, said means being constituted by an extendable continuous ring connected to a ring plate by a ring tube thin radial thickness.
  • FIG. 15 is a close-up sectional view of the upper rod sealing means of the multi-temperature double-acting piston according to the invention, said means being constituted by an axially extensible continuous ring sandwiched between two ring rings by a compression spring ring axial.
  • Figures 1 to 12 show the multi-temperature double-acting piston 201 according to the invention, various details of its components, its variants, and its accessories.
  • the multi-temperature double-acting piston 201 can translate in a cold cylinder 204 arranged in a cooled cylinder block 203 that includes a heat engine 202, said piston 201 being directly or indirectly connected by power transmission means 205 housed in a transmission casing 206 to at least one rotary or reciprocating power output shaft 207 .
  • said piston 201 forms a lower variable volume chamber 208 with the cold cylinder 204 and a lower cylinder head 213 which is positioned between said piston 201 and the transmission housing 206, said piston 201 simultaneously forming an upper variable volume chamber 209 with said cylinder 204 and an upper cylinder head 214, said chambers 208, 209 containing a working gas 240.
  • the multi-temperature double-acting piston 201 comprises a central piston pin 210 approximately coaxial with the cold cylinder 204 and of which a first end forms a lower rod piston 211 which crosses right through the lower cylinder head 213 via a lower rod orifice 215 which cooperates with lower rod sealing means 280 to open into the transmission casing 206 and to be directly or indirectly connected to the means of power transmission 205 by piston fixing means 231 .
  • the second end of said pin 210 forms an upper piston rod 212 which passes right through the upper cylinder head 214 via an upper rod orifice 216 which cooperates with upper rod sealing means 281 for emerge into a cooling chamber and piston lubricator 217 connected to a source of lubricating-cooling fluid 218, the latter introducing a lubricating-cooling fluid 257 into said chamber 217.
  • the lower rod sealing means 280 and the upper rod sealing means 281 can be respectively in contact with the lower piston rod 211 and with the upper piston rod 212 either directly or indirectly via an outer coaxial lower tube of spindle 243 and an outer coaxial upper spindle tube 248, respectively, as illustrated in Figures 2, 3, 6, 7, 14 and 15.
  • the multi-temperature double-acting piston 201 comprises a peripheral sealing ring 220 whose outer diameter is substantially smaller than the inner diameter of the cold cylinder 204.
  • peripheral sealing ring 220 comprises piston sealing means 221, for example consisting of compression rings 222 of cast iron or steel such as those ordinarily found on the pistons of automobile engines conventional, said means 221 being in contact with said cylinder 204 to achieve a seal with the latter.
  • the multi-temperature double-acting piston 201 also comprises a lower radial connecting disc 224 which radially connects the central piston pin 210 with the peripheral sealing ring 220 of the side of the lower variable volume chamber 208, and an upper radial connection disc 225 which radially connects the central piston pin 210 with the peripheral sealing ring 220 on the side of the upper variable volume chamber 209, the space left between said discs 224, 225, the peripheral sealing ring 220 and the central piston pin 210 forming an internal piston volume 228.
  • the lower radial connection disk 224 and/or the upper radial connection disk 225 can be a simple metal disk, a cone, a dome or a frustosphere, or be of any non-ribbed geometry or ribbed to give said discs 224, 225 great rigidity.
  • the lower radial connecting disc 224 can be connected inside the internal volume of the piston 228 to the connecting disc upper radial 225 by stays, spokes, fins or by any other mechanical connection which secures said discs 224, 225 so that they constitute a rigid assembly.
  • the lower radial connecting disc 224 and/or the upper radial connecting disc 225 can preferably be secured to the central piston pin 210 and/or the peripheral sealing ring 220 by welding. by friction, by electron beam or by arc welding, or not any type of welding or assembly known to those skilled in the art.
  • the multi-temperature double-acting piston 201 comprises a lubrication-cooling gallery 227 which is arranged mainly axially in the central piston pin 210 and in one or more sections, said gallery 227 communicating on the one hand, the piston cooling and lubrication chamber 217 with the internal volume of the piston 228, and on the other hand, said volume 228 with the interior of the transmission casing 206.
  • the multi-temperature double-acting piston 201 comprises at least one peripheral ring lubrication orifice 229 which places the internal volume of the piston 228 in communication with the outer peripheral face of peripheral sealing ring 220, said orifice 229 emerging axially from said face between at least two piston sealing means 221 .
  • the multi-temperature double-acting piston 201 also comprises guide means 230 particularly visible in FIG. 4, said means 230 bearing directly or indirectly on or near the power transmission means 205 and/or the cold cylinder 204 and/or of the lower cylinder head 213 and/or of the upper cylinder head 214, said means 230 directly or indirectly retaining the peripheral sealing ring 220 centered in the cold cylinder 204.
  • the multi-temperature double-acting piston 201 comprises a lower hot cap 226 interposed between the lower radial connecting disc 224 and the lower variable volume chamber 208 and / or a cap upper heater 232 interposed between the upper radial connecting disc 225 and the upper variable volume chamber 209;
  • the multi-temperature double-acting piston 201 also comprises cap pressing means 234, which all appear in FIGS. 2 to 5 and in FIGS. 8 and 9, and which directly or indirectly hold the lower hot cap 226 pressed on the peripheral sealing ring 220 and/or on the lower radial connection disk 224, and/or which directly or indirectly hold the upper hot cap 232 pressed on said ring 220 and/or on the upper radial connection disk 225, said means 234 leaving said caps 226, 232 free to expand relative to said ring 220 and/or to said discs 224, 225.
  • the multi-temperature double-acting piston 201 comprises cap centering means 235 - for example shown in FIG. 7 - which locate the lower hot cap 226 and/or the upper hot cap 232 with respect to the peripheral sealing ring 220.
  • the lower hot cap 226 and/or the upper hot cap 232 may be wholly or partly made of a material resistant to high temperatures 275 such as silicon carbide 276 and its various variants, whether or not combined with other materials.
  • thermal insulation means 233 and / or cap sealing means 239 can be interposed either between the lower hot cap 226 and the peripheral ring seal 220 and/or the lower radial connecting disc 224, either between the upper hot cap 232 and said ring 220 and/or the upper radial connecting disc 225, or both, said means 233, 239 possibly forming part integral to said caps 226, 232 and/or said discs 224, 225.
  • thermal insulation means 233 and/or cap sealing means 239 can be interposed either between the lower hot cap 226 and the central piston pin 210 , either between the upper hot cap 232 and said spindle 210, or both, said means 233, 239 possibly forming an integral part of said caps 226, 232 and/or of said spindle 210.
  • the thermal insulation means 233 can consist of at least one insulating ring 236 made of a low thermal conductivity material 237 such as zirconium oxide 238 and its various variants , whether or not combined with other materials, or such as quartz.
  • the insulating ring 236 can also be made of quartz whose thermal conductivity is also low, and whose low modulus of elasticity gives it a great ability to adapt to the geometry of the components with which it is in contact and cooperates.
  • the insulating ring 236 can be maintained directly or indirectly in contact with the central piston pin 210 and/or the peripheral sealing ring 220 and/or the lower hot cap 226 and/or the disc of lower radial connection 224 and/or the upper hot cap 232 and/or the upper radial connection disc 225 via at least one small surface contact edge 241 .
  • the insulating ring 236 may include a de-stiffening groove 291 which gives it more flexibility and which ensures a more homogeneous and better distributed contact between said ring 236 and the part 210, 220, 226, 224, 232, 225 with which said ring 236 cooperates.
  • the insulating ring 236 can also be kept directly or indirectly in contact with the central piston pin 210 and/or the peripheral sealing ring 220 and/or the lower hot cap 226 and/or the lower radial connection disc 224 and/or the upper hot cap 232 and/or the upper radial connection disc 225 via at least one insulating ring seal 242 which is tight to working gas 240.
  • the insulating ring seal 242 may for example comprise several metal sheets like the cylinder head gaskets that modern automobile internal combustion heat engines have, or be made of materials resistant to high temperatures such as "Therma-pur" developed by the company "Garlock".
  • the cap plating means 234 which directly or indirectly hold the lower hot cap 226 pressed against the peripheral sealing ring 220 and / or on the lower radial connecting disc 224, can be formed from an outer coaxial lower tube of spindle 243 which envelops the central piston spindle 210, said tube 243 bearing on the one hand, on the lower hot cap 226 in the vicinity of said spindle 210, and of on the other hand, on the power transmission means 205 which may for example consist of a stock 244 which translates in a stock cylinder 293, said stock 244 being articulated around the foot of a connecting rod 245 which is itself articulated around a crank 246 arranged on a crankshaft 247, the latter forming the power output shaft 207.
  • the cap pressing means 234 which directly or indirectly hold the upper hot cap 232 pressed against the peripheral sealing ring 220 and/or on the upper radial connecting disc 225, can be formed of an outer coaxial upper pin tube 248 which envelops the central piston pin 210, said tube 248 bearing on the one hand, on the upper hot cap 232 in the vicinity of said pin 210, and on the other hand, on an upper rod stop 249 provided directly or indirectly on the upper piston rod 212 near its end which opens into the piston cooling and lubrication chamber 217.
  • some or all of the ends of the pin outer coaxial lower tube 243 and/or the pin outer coaxial upper tube 248 can receive a tube spring 250 through which said tubes 243, 248 bear respectively on the lower hot cap 226 and on the power transmission means 205 and/or on the upper hot cap 232 and on the upper rod stop 249, the tube spring 250 advantageously being made up of a stack of “Belleville” washers known per se.
  • FIGS 10 and 1 1 illustrate that according to a particular configuration of the multi-temperature double-acting piston 201 according to the invention, the lower hot cap 226 and / or the upper hot cap 232 can advantageously have a concave conical surface of cap 251 by means of which said cap 226, 232 is held flat by the cap pressing means 234 on a circular peripheral contact edge 252 which is directly or indirectly integral with the peripheral sealing ring 220 and/or the periphery of the lower radial connecting disc 224 and/or the periphery of the upper radial connecting disc 225.
  • the angle of the concave cone formed by the concave conical surface of cap 251 is such that when said surface 251 slides on said edge 252 due to the difference between the thermal expansion of said cap 226, 232 and that of the assembly formed by the peripheral sealing ring 220, the lower radial connection disc 224, the upper radial connection disc 225 and the central piston pin 210, the axial distance which separates the fulcrum cap plating means 234 on said cap 226, 232 of the peripheral sealing ring 220 remains approximately constant all other things being equal, while the concave conical surface of the cap 251 and the circular peripheral contact edge 252 form the cap centering means 235.
  • this particular configuration of the multi-temperature double-acting piston 201 allows the force to which the cap pressing means 234 are subjected - which are outside the image in FIGS. 10 and 11 but actually present - remains approximately constant regardless of the difference between the thermal expansion of said cap 226, 232 and that of the mechanically welded assembly 289 formed by the peripheral sealing ring 220, the lower radial connecting disc 224 , upper radial link disc 225 and piston center pin 210.
  • said configuration makes it possible to limit the volumetric ratio variation of the thermal engine 202 as a function of its temperature, particularly during the cold start phases of said engine 202.
  • the circular peripheral contact edge 252 could advantageously have a spherical contact with the concave conical surface of the cap 251 .
  • the piston fixing means 231 can consist of a double-acting piston axial screw 219 which firstly comprises a piston screw body 255 which is housed in a piston screw tunnel 256 which passes right through the central piston pin 210 in the direction of its length, said screw 219 comprising on the one hand, a piston screw head 253 which bears at the end of the upper piston rod 212 which opens into the piston cooling and lubrication chamber 217, and on the other hand, a piston screw thread 254 which is screwed into the power transmission means 205.
  • a double-acting piston axial screw 219 which firstly comprises a piston screw body 255 which is housed in a piston screw tunnel 256 which passes right through the central piston pin 210 in the direction of its length, said screw 219 comprising on the one hand, a piston screw head 253 which bears at the end of the upper piston rod 212 which opens into the piston cooling and lubrication chamber 217, and on the other hand, a piston screw thread 254 which is screwed into the power
  • a screw-nut assembly can replace the piston screw head 253 which can moreover be replaced by any other type of fixing which will appear from obvious to those skilled in the art.
  • the piston screw tunnel 256 can advantageously form at least part of the lubrication-cooling gallery 227, the lubricant-cooling fluid 257 being able to circulate between the screw body piston 255 and the internal wall of said tunnel 256, the latter forming with said body 255 a first section which goes from the piston cooling and lubrication chamber 217 to the piston internal volume 228, and a second section which goes from said volume 228 inside the transmission case 206, the piston screw body 255 being able to include screw sealing bulges 258 to separate the piston screw tunnel 256 into sections, said bulges 258 being able for these purposes to have a sealing gasket bulge sealing 259.
  • the guide means 230 may consist of a barrel skirt 260 which is arranged on the periphery external of the peripheral sealing ring 220 and which rests on the cold cylinder 204, said skirt 260 having a convergent shape which promotes the establishment of a hydrodynamic lubrication regime between itself and the cold cylinder 204 with which she cooperates.
  • barrel skirt 260 can advantageously be positioned between two compression rings 222 and adjoin an oil scraper ring 278.
  • Figure 8 illustrates that the lubrication-cooling gallery 227 can open into the internal volume of piston 228 via a small axial play left between on the one hand, a fluid distribution disc 261 which is housed in said volume 228 and on the other hand, the upper radial connection disk 225, said distribution disk 261 being approximately parallel to said radial connection disk 225 and forming on the one hand, a seal with the central piston pin 210, and ending on the other part, radially in the vicinity of the inner wall of the peripheral sealing ring 220, the cooling-lubricating fluid 257 coming from the piston cooling and lubrication chamber 217 being able to exit at the level of said vicinity, for example via weirs distribution 290, orifices or slots of any kind whatsoever arranged on the periphery of the fluid distribution disk 261 .
  • the central piston pin 210 may comprise, inside the internal volume of the piston 228 and in the vicinity of the lower radial connection disc 224, a fluid recirculation flange 262 which, when the central piston pin 210 moves in the direction of the lower cylinder head 213, rejects radially and in the direction of the internal wall of the peripheral ring of sealing 220 the lubricating-cooling fluid 257 which has accumulated in said volume 228 and on the surface of said disc 224, said flange 262 possibly comprising flange channels 263 which form radial jets of lubricating-cooling fluid 257 which are uniformly distributed over three hundred and sixty degrees.
  • the lower radial connecting disc 224 can advantageously have the shape of a hollow 294 at the level of its connection with the central piston pin 210, said form 294 constituting an overflow reservoir 264 which can store lubricating-cooling fluid 257, while at least one overflow orifice 265 which communicates with the inside the transmission casing 206 via the lubrication-cooling gallery 227 fixes the maximum level of said tank 264 so that at each acceleration towards the upper cylinder head 214 of the multi-temperature double-acting piston 201 according to the invention, the level of the lubricating-cooling fluid 257 contained in said reservoir 264 does not exceed that of the overflow orifice 265, said excess fluid 257 being expelled inside the transmission housing 206.
  • a fluid nozzle 266 fed by the source of lubricant-cooling fluid 218 can open into the piston cooling and lubrication chamber 217 to inject therein a jet of fluid 267 which is shown in figures 8 and 9.
  • the fluid nozzle 266 can inject a jet of lubricating-cooling fluid 257 into an axial screw reservoir 267 which is arranged axially in the piston screw head 253, said reservoir 267 communicating with the lubrication-cooling gallery 227 via at least one radial tank-gallery connection duct 268.
  • FIGS 8 and 9 also clearly show that a screw check valve 269 can be housed in the axial screw of the double-acting piston 219, said valve 269 allowing the lubricating-cooling fluid 257 to go from axial screw reservoir 267 towards the lubrication-cooling gallery 227, but not the reverse, so that at each acceleration in the direction of the upper cylinder head 214 of the multi-temperature double-acting piston 201 according to the invention, the lubricating fluid- coolant 257 contained in said tank 267 is forced to enter the lubrication-cooling gallery 227 while when said piston 201 accelerates towards the lower cylinder head 213, said fluid 257 contained in said gallery 227 does not return to said tank 267.
  • a screw check valve 269 can be housed in the axial screw of the double-acting piston 219, said valve 269 allowing the lubricating-cooling fluid 257 to go from axial screw reservoir 267 towards the lubrication-cooling gallery 227, but not the reverse, so that
  • the piston cooling and lubrication chamber 217 can be connected to an air source 270 or to a any gas source of any kind by an air inlet check valve 271 which allows fluid forcing air 272 to enter said chamber 217 without leaving it while said chamber 217 is connected to an air reservoir 273 by a pressure relief valve 274 which lets fluid forcing air 272 flow from said chamber 217 to said reservoir 273 when the pressure of said air 272 in said chamber 217 reaches a certain value.
  • a reflective screen 295 can be interposed between the lower hot cap 226 and the lower radial connecting disc 224 to which part of the peripheral sealing ring 220 can be added. and/or, between the upper hot cap 232 and the upper radial connecting disc 225 to which part of said ring 220 can be added, said reflective screen 295 returning to the lower hot cap 226 and/or to the upper hot cap 232 the heat emitted, in particular in the form of infrared radiation, by said cap 226, 232.
  • the thermal insulation means 233 may consist of a cellular or fibrous insulating material 296 which occupies all or part of the space between the lower hot cap 226 and the lower radial connection 224 and/or between the upper hot cap 232 and the upper radial connection disc 225.
  • Figure 13 also illustrates that at least a first radial space left between the pin outer coaxial upper tube 248 and the piston center pin 210, at least a second radial space left between the pin outer coaxial lower tube 243 and the piston center pin 210, and a plurality of radial spaces left between the piston screw body 255 and the inner wall of the piston screw tunnel 256 may form at least part of the lubrication-cooling gallery 227, the lubricating-cooling fluid 257 being able to circulate successively in said spaces to go from the piston cooling and lubrication chamber 217 to the internal volume of piston 228, then said volume 228 inside the transmission casing 206.
  • the outer wall of the upper outer coaxial pin tube 248 and the outer wall of the lower outer coaxial pin tube 243 are always maintained at low temperature, this in order to that a film of lubricating oil which coats the outer wall of said tubes 248, 243 is preserved from any coking or spontaneous combustion by excess temperature, including when the heat engine 202 is stopped after having operated at high temperature, and particularly insofar as an electric pump is provided which forces lubricating-cooling fluid 257 to circulate in the lubrication-cooling gallery 227 after said motor 202 has stopped.
  • the lower rod sealing means 280 and/or the upper rod sealing means 281 may consist of a continuous extensible ring 297 which is directly or indirectly integral with the cooled cylinder block 203, and whose inside diameter is substantially smaller than the outside diameter of the lower piston rod 211 or of the upper piston rod 212 that it encloses.
  • the radial thickness and the axial thickness of the extensible continuous ring 297 are advantageously low to limit the energy losses produced by the friction of said ring 297 on the lower piston rod 211 and /or the upper piston rod 212.
  • Figure 14 illustrates that the extensible continuous ring 297 can be connected to a ring plate 298 by a ring tube 299 of small radial thickness, said ring 297, said plate 298 and said ring 297 being made in one and the same piece of material.
  • the ring plate 298 can directly or indirectly move radially and in a sealed manner in the cooled cylinder block 203, and comprise at least one radial ring abutment 303 which limits its eccentricity relative to the lower piston rod 211 or relative to the upper piston rod 212.
  • FIG. 15 Another variant illustrated in Figure 15 provides that the extendable continuous ring 297 can be axially clamped between two ring rings 300 by a ring axial compression spring 301 which can cooperate with a tight ring ring 302 , the two ring rings 300 being able to expose to the lower piston rod 211 or to the upper piston rod 212 a radial ring stop 303 which can come into contact with said rod 211, 212.
  • Said piston 201 can be applied to any heat engine 202 running a Beau de Rochas, Miller, Atkinson, Diesel cycle, or any other thermodynamic cycle known to those skilled in the art.
  • said piston 201 applies only to the expander 279 of said engine 202, also, the other organs of the latter such as one or more compressors, a burner or a regeneration exchanger necessary for the implementation of the regenerative Brayton cycle, are not shown.
  • the objective of the multi-temperature double-acting piston 201 according to the invention is to minimize the heat losses of the working gas 240 during the expansion phase of said gas 240 operated during the regeneration Brayton cycle, while ensuring that said piston 201 achieves good sealing with cold cylinder 204 by using only conventional piston sealing means 221, in this case compression rings 222 similar to those fitted to combustion engines in-house automotive products large series, said segments 222 cooperating with an oil scraper segment 278.
  • the multi-temperature double-acting piston 201 is advantageously applied to a heat engine 202 based on the same said objective and which, as such, limits the losses of heat of the working gas 240 by having the greatest possible part of its internal walls brought to high temperature.
  • FIGS. 1 to 3 a heat engine 202 has been shown, the regulator 279 of which receives the multi-temperature double-acting piston 201, said regulator 279 comprising a lower cylinder head 213 and an upper cylinder head 214 whose operating temperature is high - of the order of nine hundred and fifty degrees Celsius - said cylinder heads 213, 214 being made of silicon carbide 276, a material which retains its mechanical characteristics up to temperatures of the order of one thousand four hundred degrees Celsius , and which can be used in an oxidizing medium at these high temperatures.
  • said surfaces are, in addition to the cold cylinder 204 arranged in a cooled cylinder block 203, part of the peripheral sealing ring 220, part of the lower stem of piston 211 and a part of the upper piston rod 212, these members 220, 204, 211, 212 totaling a surface in contact with the working gas 240 much lower than that totaled by the lower cylinder head 213, the upper cylinder head 214, the lower hot cap 226, and upper hot cap 232.
  • the transmission casing 206 and the power transmission means 205 are advantageously maintained at a temperature close to one hundred degrees Celsius, compatible with the lubricating and cooling oil 283.
  • the power transmission means 205 are for example made up of a connecting rod 245 which is connected to the lower piston rod 211 via a butt 244, said connecting rod 34 being articulated around a crank 246 arranged on the crankshaft 247, the latter forming a power output shaft 207.
  • the piston screw tunnel 256 here forms a lubrication-cooling gallery 227, the lubrication and cooling oil 283 being able in particular to circulate between the piston screw body 255 and the internal wall of said tunnel 256, the latter forming with said body 255 a first lubrication-cooling gallery section 227 which goes from the piston cooling and lubrication chamber 217 to the piston internal volume 228, and a second section of said gallery 227 which goes from said volume 228 to the inside the transmission case 206.
  • the piston screw body 255 has screw sealing bulges 258 which seal the piston screw tunnel 256 into two sections by means of bulge seals 259.
  • the double-acting piston axial screw 219 also includes a piston screw head 253 which bears at the end of the upper rod piston 212 which faces the piston cooling and lubricating chamber 217, and a piston screw thread 254 which is screwed into the stock 244.
  • the working gas 240 is introduced into the expander 279 via an inlet valve 284 at a temperature of one thousand three hundred degrees Celsius, while the operating equilibrium temperature of the lower cylinder head 213 and of the upper cylinder head 214 which surrounds the cooled cylinder block 203 on the one hand, and that of the lower hot cap 226 and of the upper hot cap 232 which cover the multi-temperature double-acting piston 201 on the other hand, is new -one hundred and fifty degrees Celsius.
  • the inlet valve 284 and an exhaust valve 285 through which the working gas 240 is expelled from the regulator 279 after having been relaxed therein are autoclaves, and can each be controlled by a regenerative valve hydraulic actuator as described in patent No. 3071896 dated October 11, 2019 and belonging to the applicant.
  • crankcase-cylinder cooling means 286 may consist of a cooling chamber 287 which envelops the outer surface of the cold cylinder 204, a heat transfer liquid 288, in the occurrence of water, circulating in said chamber 287.
  • peripheral sealing ring 220 has a barrel skirt 260, two compression rings 222 and an oil scraper ring 278, these components 260, 222, 278 also being maintained at a temperature of the order of one hundred degrees Celsius, close to that of the cold cylinder 204 with which they cooperate, this in particular to preserve the integrity of the lubricating and cooling oil 283 which forms a film on the inner wall of said cylinder 204.
  • the piston sealing means 221 no longer here consist of a fluid cushion sealing device according to patent FR 3032252, but of a segmentation comparable to that of conventional automotive internal combustion engines, said means 221 being cooled and lubricated in the same way.
  • the surface that the cold cylinder 204 exposes to the working gas 240 is small at the start of expansion of said gas 240, then increases as said gas 240 expands and that in parallel, its temperature drops , unlike the lower yoke 213, the upper yoke 214, the lower hot cap 226 and the upper hot cap 232, whose surface exposed to the working gas 240 remains constant.
  • the cold cylinder 204 being common to the lower variable volume chamber 208 and to the upper variable volume chamber 209, its surface is here and according to the embodiment of the multitemperature double-acting piston 201 according to l invention shown in Figures 2 and 3, less than thirty percent of the total internal surface of the regulator 279 which is brought into contact with the working gas 240.
  • the maximum temperature reached by the gases in the cylinder of an Otto cycle or conventional diesel engine is of the order of two thousand five hundred degrees Celsius compared to only about one thousand three hundred degrees Celsius.
  • this lower temperature further reduces the heat losses of the working gas 240 in contact with the cold cylinder 204.
  • the heat engine 202 being equipped with the multi-temperature double-acting piston 201 according to the invention, its cold cylinder 204 is located in a zone of low turbulence of the working gas 240 during the introduction of said gas 240 into the lower variable volume chamber 208 or the upper variable volume chamber 209 via the matching 284 intake, or during the expulsion of said gas 240 from said chambers 208, 209 via their exhaust valve 285.
  • the thermal engine 202 equipped with the multi-temperature double-acting piston 201 according to the invention performs a regenerative Brayton cycle - which is its primary purpose - the combustion or heating of the working gas 240 is carried out by means of a hot source located upstream of the expander 279 and not in said expander 279, said source possibly consisting of a burner, a heat exchanger or even, by way of example, non- limiting, of a solar radiation concentration sensor.
  • the non-necessity of creating deliberate turbulence to promote combustion therefore further reduces the heat losses of the heat engine 202 equipped with the multi-temperature double-acting piston 201 according to the invention performing a regenerative Brayton cycle compared to those of a conventional Otto or Diesel cycle engine, and this, due to less convective forcing between the working gas 240 and the internal wall of the cold cylinder 204.
  • the cooled cylinder block 203 and the cold cylinder 204 are made of cast iron, while the lower cylinder head 213 and the upper cylinder head 214 are also made of silicon carbide 276.
  • the temperature of the welded assembly 289 stabilizes at approximately one hundred degrees Celsius, while that of the lower hot cap 226 stabilizes at nine hundred and fifty degrees Celsius.
  • the total axial length of the lower hot dome 226 also increases by around one millimeter, such a variation of said length can only be absorbed with difficulty by the cap pressing means 234 which must also take up the axial forces generated by the inertia of said cap 226 during accelerations of the multi-temperature double-acting piston 201 according to the invention.
  • the multi-temperature double-acting piston 201 according to the invention meets this dual need, on the one hand, to absorb large expansion differences between various parts kept in contact with each other and operating at very different temperatures, and on the other hand, to limit heat exchanges between said parts.
  • said piston 201 comprises on the one hand, an insulating ring 236 of zirconium oxide 238 or quartz - materials known for their good temperature resistance and their very low thermal conductivity - which is interposed between the lower hot cap 226 and the peripheral sealing ring 220 and on the other hand, an insulating ring 236 made of the same material which is interposed between said cap 226 and the central piston pin 210 .
  • the outer coaxial lower pin tube 243 which forms the cap plating means 234 rests on the insulating ring 236 which is radially close to the central piston pin 210.
  • the insulating ring 236 interposed between the hot cap lower 226 and the peripheral sealing ring 220 is held pressed against said cap 226 by via a small surface contact edge 241 which reduces the section left to the passage of heat.
  • the lower hot cap 226 has a concave conical cap surface 251 through which said cap 226 is held flat by the cap plating means 234 on an edge circular peripheral contact 252 presented by the insulating ring 236 which is secured to the peripheral sealing ring 220, said edge 252 acting as a small surface contact edge 241 .
  • the angle of the concave cone formed by the concave conical surface of the cap 251 is calculated so that when said surface 251 slides on the circular edge of peripheral contact 252 due to the difference between the thermal expansion of the hot cap lower 226 and that of the mechanically welded assembly 289, the axial distance which separates the point of support of the lower external coaxial spindle tube 243 on said cap 226 of the peripheral sealing ring 220 remains approximately constant all things being equal Moreover.
  • the axial force to which the lower outer coaxial spindle tube 243 is subjected remains approximately constant regardless of the difference between the thermal expansion of the lower hot cap 226 and that of the mechanically welded assembly 289 , while said cap 226 remains radially always centered with respect to the peripheral sealing ring 220.
  • a barrel skirt 260 is therefore well arranged on the outer periphery of the peripheral sealing ring 220 so as to rest on the cylinder cold 204, said skirt 260 having a convergent shape which promotes the establishment of a hydrodynamic lubrication regime between itself and said cylinder 204.
  • This arrangement allows on the one hand, to bring lubricating and cooling oil 283 to lubricate the barrel skirt 260 and the compression rings 222, and on the other hand, to return any excess of said oil 283 in the internal volume of piston 228.
  • FIGs 8 and 9 show the path of the lubricating and cooling oil 283 through the welded assembly 289.
  • said oil 283 coming from a source of lubricant-cooling fluid 218 is here injected into the piston cooling and lubrication chamber 217 by a fluid nozzle 266, the latter projecting a jet of oil lubrication and cooling 283 in an axial screw reservoir 267 which is arranged axially in the piston screw head 253.
  • the axial screw reservoir 267 makes it possible to store lubricating and cooling oil 283 regardless of the direction of movement of the multi-temperature double-acting piston 201 according to the invention, and to maximize the share of said oil 283 which passes through the internal volume of piston 228 before being expelled into the transmission housing 206.
  • the pressure relief valve 274 which acts as an overflow of the piston cooling and lubrication chamber 217 and which, in cooperation with a non-return valve, allows air intake 271 connected to an air source 270 said valve 271 letting fluid forcing air 272 enter said chamber 217, to slightly pressurize the latter while limiting the level of lubricating and cooling oil 283 that contains said chamber 217.
  • the air inlet check valve 271 lets in fluid forcing air 272 in from the air source 270 in said chamber 217, while above a certain said pressure, the pressure relief valve 274 expels fluid forcing air 272 into an air tank 273.
  • the interior of the transmission casing 206 can form both the air source 270 and the air cover 273.
  • a first section of the lubrication-cooling gallery 227 conveys the lubrication and cooling oil 283 from the piston cooling and lubrication chamber 217 to the internal volume of piston 228, this by first passing through the axial screw reservoir 267, the screw non-return valve 269 and the radial ducts connecting reservoir-gallery 268.
  • This particular configuration of the multi-temperature double-acting piston 201 according to the invention makes it possible to maintain the temperature of the upper radial connecting disc 225 close to one hundred degrees Celsius, regardless of the power delivered by the heat engine 202.
  • a reflective screen 295 can advantageously be interposed between the lower hot cap 226 and the lower radial connecting disc 224 and between the upper hot cap 232 and the upper radial connecting disc 225, said reflecting screen 295 returning to the lower hot cap 226 and/or to the upper hot cap 232 the heat emitted, in particular in the form of infrared radiation, said cap 226, 232.
  • Figure 13 illustrates that in addition to the reflective screen 295, a cellular or fibrous insulating material 296 can occupy all or part of the space between the lower hot cap 226 and the lower radial connecting disc 224 and between the upper hot cap 232 and the upper radial connecting disc 225.
  • part of the lubricating and cooling oil 283 leaving the distribution weirs 290 cools the peripheral sealing ring 220 from the inside and supplies the peripheral lubrication orifices of ring 229, so that a little of said oil 283 comes out between the two lips of the oil scraper ring 278, the latter forming, following the back and forth movements operated by the multi-temperature double-acting piston 201 in the cold cylinder 204, a film of lubricating and cooling oil 283 on the surface of said cylinder 204, this while recovering said oil 283 present in excess on said surface.
  • the fluid recirculation flange 262 may advantageously include flange channels 263 which form radial jets of lubricant-coolant fluid 257 so as to ensure that the lubricating and cooling oil 283 is evenly distributed over three hundred and sixty degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

Le piston à double effet multitempérature (201) comprend un anneau périphérique d'étanchéité (220), une calotte chaude inférieure (226) et/ou une calotte chaude supérieure (232), et translate dans un cylindre froid (204) d'un moteur thermique (202) qui comprend une culasse inférieure (213) et une culasse supérieure (214), ledit piston (201) comprenant une broche centrale de piston (210) dont la tige inférieure de piston (211) traverse la culasse inférieure (213) pour être reliée à des moyens de transmission de puissance (205) logés dans un carter de transmission (206), et dont la tige supérieure de piston (212) traverse la culasse supérieure (214) pour déboucher dans une chambre de refroidissement et de lubrification de piston (217), une galerie de lubrification-refroidissement (227) aménagée dans ladite broche (210) mettant en communication ladite chambre (217) avec ledit carter (206) via un volume interne de piston (228).

Description

Description
Titre de l’invention : PISTON A DOUBLE EFFET MULTITEMPERATURE
[1] La présente invention est relative à un piston à double effet multitempérature, ledit piston étant particulièrement adapté aux moteurs alternatifs mettant en œuvre le cycle thermodynamique de Brayton à régénération avec des pistons plutôt qu’avec des compresseurs centrifuges et des turbines.
[2] Les moteurs à cycle de Brayton à régénération comprennent en général des organes séparés dédiés à chacune des phases dudit cycle, lesdites phases ayant lieu continûment et simultanément dans lesdits organes contrairement aux moteurs à combustion interne alternatifs à cycle de Beau de Rochas, de Miller, d’Atkinson ou de Diesel dont les phases sont exécutées successivement dans un seul et même cylindre.
[3] En conséquence, les moteurs à cycle de Brayton à régénération comportent au moins un compresseur, au moins un échangeur de régénération, au moins un brûleur opérant en continu ou une source chaude interne ou externe, et au moins un détendeur,
[4] Confier chaque phase d’un cycle thermodynamique à un organe dédié présente divers avantages. Notamment, la température des parois internes de chaque dit organe peut rester très proche de celle des gaz durant ladite phase.
[5] Par exemple, la température des parois internes du compresseur d’un moteur à cycle de Brayton à régénération peut être maintenue la plus basse possible, ce qui contribue à minimiser le travail de compression et à maximiser le rendement thermodynamique total dudit moteur.
[6] A l’inverse, les parois internes du détendeur dudit moteur étant au contact des gaz chauds en provenance du brûleur, leur température doit être élevée et dans tous les cas, maintenue au plus proche possible de la température moyenne desdits gaz entre le début et la fin de leur détente.
[7] Malgré ces avantages, le rendement thermodynamique maximal des moteurs à compresseurs centrifuges et turbines à cycle de Brayton à régénération n’est en pratique guère plus élevé que celui des moteurs à allumage commandé conventionnels, et au mieux, comparable à celui des moteurs Diesel rapides. [8] Dans tous les cas, ledit rendement reste inférieur à celui des moteurs Diesel à deux-temps lents de plusieurs dizaines de mégawatts utilisés par exemple pour la propulsion navale ou la production stationnaire d’électricité.
[9] En outre, les moteurs à compresseurs centrifuges et turbines à cycle de Brayton à régénération sont peu adaptés aux faibles puissances, et ne peuvent opérer que sur une plage de puissance restreinte en dehors de laquelle leur rendement baisse drastiquement.
[10] C’est pourquoi les moteurs à compresseurs centrifuges et turbines à cycle de Brayton à régénération sont principalement mis au service d’applications dont le rendement n’est pas l’unique objectif, et qui requièrent par exemple une puissance massique et volumique élevée, de faibles émissions acoustiques et vibratoires, une longue durée de vie, ou une maintenance réduite.
[1 1 ] C’est le cas par exemple de certains navires militaires qu’équipe par exemple le moteur à compresseurs centrifuges et turbines à cycle de Brayton à régénération « Rolls-Royce WR-21 », dont le rendement ne dépasse guère quarante pourcent cependant que celui des moteurs Diesel deux-temps lents qui équipent certains navires dépasse cinquante pourcent.
[12] C’est le cas aussi de certains groupes électrogènes opérant le plus souvent en cogénération d’électricité et de chaleur comme la micro turbine « T100 >> de la société « Turbec >>, ou la micro turbine « C65 >> de la société « Capstone >>, dont les rendements électriques sont de l’ordre de vingt-huit à trente pourcent seulement, mais qui ne demandent que peu de maintenance tout en offrant de très longues durées de vie.
[13] L’avantage de ces turbomoteurs est que leur turbine peut supporter des températures de l’ordre de mille trois-cent degrés Celsius. Toutefois, leur rendement thermodynamique total reste limité par celui des compresseurs centrifuges et des turbines qui les constituent, le rendement desdits compresseurs et desdites turbines n’excédant guère quatre-vingt pour cent sur une plage de fonctionnement relativement étroite.
[14] Tenant compte de ce qui précède, il serait particulièrement intéressant de pouvoir remplacer les compresseurs centrifuges et turbines des moteurs à cycle de Brayton à régénération par des machines volumétriques à piston dont le rendement est notoirement plus élevé.
[15] Ceci est par exemple l’objet du brevet N°US4653269 du 31 mars 1987, où la turbine de détente ordinairement trouvée sur les turbomoteurs à cycle de Brayton à régénération, est remplacée par un cylindre détendeur volumétrique à piston.
[16] Toutefois, les calculs démontrent que si les parois internes dudit détendeur volumétrique sont refroidies et maintenues par exemple autour de cent degrés Celsius à l’instar des moteurs alternatifs produits et commercialisés à grande échelle, le rendement thermodynamique d’un moteur à cycle de Brayton à régénération ne peut pas dépasser celui d’un moteur Diesel automobile.
[17] Pour qu’un moteur à cycle de Brayton régénéré à détendeur volumétrique délivre des rendements thermodynamiques très élevés, il est indispensable que les parois internes de son détendeur soient maintenues à une température proche de la température moyenne des gaz détendus dans ledit détendeur.
[18] Par exemple, si les gaz chauds sont introduits dans le détendeur à une température de mille trois-cents degrés Celsius et sont expulsés dudit détendeur en fin de détente à une température de six-cents degrés Celsius, les parois internes dudit détendeur doivent être maintenues approximativement à une température de neuf cent cinquante degrés Celsius.
[19] Le problème, c’est qu’à une telle température, il est impossible de conserver un film d’huile sur les parois du cylindre du détendeur pour lubrifier quelque segment d’étanchéité que ce soit que comporterait un piston de détendeur se déplaçant dans ledit cylindre.
[20] En effet, à partir d’environ cent soixante degrés Celsius, le film d’huile sur le cylindre commence à cokéfier, puis brûle au-delà de deux cent cinquante degrés Celsius.
[21] Produire un moteur à cycle de Brayton à régénération à haut rendement thermodynamique fait donc face à une double impasse.
[22] En effet, soit ledit moteur est constitué de compresseurs centrifuges et de turbines résistantes à haute température, mais en ce cas, le rendement modeste de ces organes ne lui permet pas de dépasser un rendement total équivalent à celui d’un Diesel automobile, soit il est constitué d’un détendeur volumétrique à piston qui, pour être étanche, nécessite un piston muni d’une segmentation glissant sur un film d’huile formé en surface d’un cylindre, ce dernier devant pour cela rester à une température n’excédant pas environ cent-vingt degrés Celsius, ce qui ne permet pas non plus au rendement total dudit moteur d’être compétitif.
[23] Dans ce contexte, il serait avantageux de pouvoir de combiner la faculté des turbines à opérer à haute température avec celle des machines volumétriques à piston à détendre des gaz sous un rendement élevé.
[24] C’est dans cet objectif que le moteur thermique à transfert-détente et régénération selon le brevet WO2016120560 publié le 4 août 2016 et appartenant au demandeur comprend des moyens d’étanchéité de piston sans contact constitués d’un anneau continu perforé gonflable qui, lorsqu’il est soumis à une certaine pression interne, gonfle et s’approche à quelques micromètres du cylindre de détendeur avec lequel il coopère sans toucher ledit cylindre, ceci tout en laissant fuir de l’air comprimé via des orifices calibrés qui le traversent de part en part dans son épaisseur radiale.
[25] Le dispositif d’étanchéité à coussin de fluide qui vient d’être décrit a également fait l’objet du brevet N° FR 3032252 délivré le 25 mai 2018 et appartenant au demandeur. Ce dispositif permet bien de réaliser une étanchéité sans contact et donc, de ne plus recourir à de l’huile pour lubrifier un segment opérant par contact, et donc de coopérer avec un cylindre de détendeur chaud, maintenu à une température de plusieurs centaines de degrés Celsius.
[26] Dans ce contexte, il devient donc effectivement possible de recourir à un détendeur volumétrique à piston pour réaliser un moteur à cycle de Brayton à régénération, et de maximiser le rendement dudit moteur pour largement surpasser celui des moteurs à cycle de Diesel.
[27] En effet, les calculs et simulations démontrent que le rendement thermodynamique d’un moteur à cycle de Brayton à régénération volumétrique à pistons peut atteindre voire dépasser les soixante-dix pourcent, ce qui en pratique peut déboucher sur la production de moteurs dont le rendement énergétique au frein dépasse soixante pourcent une fois déduites les inévitables irréversibilités thermiques et mécaniques dues à la constitution même desdits moteurs.
[28] Le problème rencontré avec le dispositif d’étanchéité à coussin de fluide du brevet N° FR 3032252 est que la température du cylindre reste encore excessive pour les matériaux disponibles dont peut être constitué l’anneau continu perforé.
[29] En effet, pour que le rendement d’un moteur à cycle de Brayton à régénération volumétrique à pistons soit significativement plus élevé que celui des moteurs Diesel existants, les gaz doivent être introduits dans son détendeur à une température de l’ordre de mille trois-cent degrés Celsius, sous une pression avoisinant les vingt bars.
[30] Il résulte de ces conditions opérationnelles que la température des parois internes du détendeur se stabilise autour de neuf cent cinquante degrés Celsius.
[31] Etant donné que l’anneau continu perforé selon le brevet N° FR 3032252 est proche du cylindre avec lequel il coopère de seulement quelques microns, en pratique, ledit anneau adopte la température d’environ neuf cent cinquante degrés Celsius dudit cylindre.
[32] Or, aucun matériau ne peut à la fois permettre de fabriquer ledit anneau et de supporter une telle température.
[33] Même un superalliage tel que le « Udimet 720 >> notamment utilisé en aéronautique et dans l’industrie spatiale et connu pour sa résistance aux températures extrêmes ne peut supporter une telle température sans être sujet au fluage et tout en étant soumis à la contrainte de gonflement qu’impose l’anneau continu perforé du dispositif d’étanchéité à coussin de fluide selon le brevet N° FR 3032252.
[34] C’est notamment pour cette raison et pour recourir à des matériaux plus usuels que les céramiques résistantes à haute température, que le système de refroidissement régénératif selon le brevet N° EP 3585993 publié le 7 avril 2021 et appartenant au demandeur prévoit d’abaisser la température des parois internes du détendeur et notamment du cylindre à des valeurs pratiques de l’ordre de sept-cents degrés Celsius. [35] Par exemple, le superalliage « Udimet 720 >> résiste au fluage à une température de sept-cents degrés Celsius s’il est soumis à une contrainte n’excédant pas deux cent trente méga Pascals.
[36] Le système de refroidissement régénératif selon le brevet N° EP 3585993 prévoit une enceinte de refroidissement qui enveloppe le détendeur tandis qu’est laissé un espace de circulation des gaz entre ladite enceinte et ledit détendeur dans lequel circulent les gaz sortant du détendeur lui-même à une température comprise entre cinq-cents et six-cents degrés Celsius.
[37] Ainsi, selon le système de refroidissement régénératif suivant le brevet N° EP 3585993, les gaz d’échappement du détendeur maintiennent la température des parois internes du détendeur à une température de l’ordre de sept-cents degrés Celsius cependant que la chaleur exportée par lesdits gaz est pour l’essentiel récupérée pour être réintroduite dans le cycle par l’échangeur thermique de régénération que comprend le moteur alternatif à piston à cycle de Brayton à régénération.
[38] Dans ce contexte, le dispositif d’étanchéité à coussin de fluide du brevet N° FR 3032252 est utilisable avec un anneau continu perforé par exemple réalisé en superalliage « Udimet 720 ».
[39] Toutefois, en contrepartie de cette possibilité, le cylindre et les culasses du moteur alternatif à piston à cycle de Brayton à régénération doivent être faits de matériaux à forte teneur en nickel comme la fonte « Niresist >> ce qui, du fait de la forte volatilité et du prix élevé du nickel, représente un inconvénient économique.
[40] Dans tous les cas, on remarque que la température du détendeur reste au moins de six-cents degrés Celsius plus élevée que celle du reste du moteur et notamment, de l’attelage mobile et du carter de transmission dans lequel est logé ledit attelage.
[41 ] Avantageusement, les dilatations différentielles qui résultent de cet écart de température peuvent notamment être gérées par le cylindre détendeur à double effet à support adaptatif objet du brevet N° EP3350433 délivré le 7 août 2019 et appartenant au demandeur. [42] Ledit support autorise une dilatation isotrope ou anisotrope du cylindre détendeur qui soit très différente de celle du carter de transmission sur lequel il est fixé, ceci sans compromettre ni le fonctionnement dudit cylindre, ni celui du piston qui évolue dans ledit cylindre.
[43] Ledit support conserve en outre le piston centré dans le cylindre, transmet les efforts axiaux résultant de la détente des gaz au carter de transmission, et limite les transferts de chaleur depuis le cylindre de détendeur vers ledit carter.
[44] A la lecture de ce qui précède, on comprend qu’aucune configuration n’est à ce stade pleinement satisfaisante qui permette de réaliser dans les meilleures conditions possibles un moteur alternatif à piston à cycle de Brayton à régénération.
[45] En effet, le dispositif d’étanchéité à coussin de fluide doit être alimenté en air comprimé par un compresseur qui consomme une partie du travail disponible sur l’arbre du moteur alternatif à piston à cycle de Brayton à régénération, au détriment du rendement total de ce dernier.
[46] Ceci réduit en effet le rendement énergétique final dudit moteur, et ce d’autant plus si ce dernier opère à faible puissance car la quantité d’air comprimé à fournir au dispositif d’étanchéité à coussin de fluide est quasi constante, quels que soient le régime et la charge dudit moteur.
[47] Par ailleurs, pour garantir un fonctionnement pérenne au dispositif d’étanchéité à coussin de fluide, il faut recourir au système de refroidissement régénératif selon le brevet N° EP 3585993, or, ledit système n’est pas neutre au plan énergétique.
[48] En effet, ledit système de refroidissement rend tortueux le cheminement des gaz expulsés du détendeur et induit des pertes de charges qui diminuent le rendement total du moteur alternatif à piston à cycle de Brayton à régénération.
[49] En outre, la chaleur extraite des parois internes du détendeur par le système de refroidissement régénératif est réintroduite dans le cycle de Brayton en amont d’un brûleur ou d’une source chaude par un échangeur thermique de régénération dont le rendement n’est pas de cent pour cent. [50] Une part de la chaleur extraite des parois internes du détendeur se retrouve donc perdue, et la puissance passant par l’échangeur augmente du fait de la présence dudit système de refroidissement.
[51] De plus, la puissance massique du moteur alternatif à piston à cycle de Brayton à régénération est sensiblement réduite par le système de refroidissement régénératif selon le brevet N° EP 3585993, ce qui implique de réviser à la hausse le dimensionnement dudit moteur pour tenir les objectifs de puissance de l’application à laquelle il se destine.
[52] On note également que la mise au point du dispositif d’étanchéité à coussin de fluide du brevet N° FR 3032252 reste complexe, particulièrement pour en assurer le bon fonctionnement dans le cadre d’applications non-stationnaires soumises à des chocs et vibrations.
[53] C’est pourquoi, sans exclure toute autre application dans quelque domaine que ce soit, le moteur thermique alternatif à culasse chaude et cylindre froid suivant l’invention est entre autres prévu pour réaliser des moteurs alternatifs à piston à cycle de Brayton à régénération dont le détendeur principalement chaud limite les pertes thermiques, et ceci, tout en assurant une étanchéité robuste et durable entre le piston et le cylindre dudit détendeur.
[54] Dans le domaine d’application des machines thermiques alternative à pistons en général et des moteurs thermiques en particulier, il résulte de l’invention un piston à double effet multitempérature :
• Dont les calottes de piston sont maintenues à haute température de sorte à limiter le refroidissement des gaz chauds à leur contact ;
• Dont l’étanchéité avec le cylindre avec lequel il coopère peut être réalisée au moyen de segments en fonte ou en acier tels que ceux que comprennent les moteurs à combustion interne conventionnels à allumage commandé ou à cycle de Diesel ;
• Qui ne recourt plus au dispositif d’étanchéité à coussin de fluide objet du brevet N° FR 3032252 et donc, qui ne requiert plus que le moteur qui le reçoit soit doté du système de refroidissement régénératif tel que celui que décrit le brevet N° EP 3585993, ledit moteur ne subissant donc plus ni les pertes de puissance et de rendement liées à l’emploi d’un compresseur d’alimentation dudit dispositif d’étanchéité, ni les pertes de charges additionnelles à l’échappement du détendeur liées à un parcours des gaz plus tortueux, ni les pertes de chaleur dues au rendement inférieur à « un >> de l’échangeur thermique de régénération, ni les pertes en puissance spécifique du moteur associées à cette configuration.
[55] Par voie de conséquence, le piston à double effet multitempérature suivant l’invention permet d’éviter que le moteur qui l’héberge ne soit fabriqué avec des matériaux à forte teneur en nickel comme la fonte « Niresist », le cylindre dudit moteur pouvant être réalisé en fonte à faible prix de revient telle que celle ordinairement utilisée pour réaliser les carters-cylindres des moteurs Diesel automobiles, et ledit moteur pouvant comporter des culasses chaudes fonctionnant à haute température réalisées en carbure de silicium, un matériau à haute résistance mécanique à hautes températures, abondant et bon marché.
[56] A titre d’avantage induit par le piston à double effet multitempérature suivant l’invention, la moindre densité du carbure de silicium dont il permet l’emploi pour réaliser les culasses chaudes du moteur qui l’héberge d’une part, et l’absence de système de refroidissement régénératif d’autre part, conduisent à un moindre poids et à une moindre capacité calorifique totale dudit moteur.
[57] Ceci favorise une montée rapide en température dudit moteur par la réduction de l’énergie nécessaire pour atteindre sa température de fonctionnement, et conduit à une consommation d’énergie plus faible dudit moteur particulièrement lorsque ce dernier s’applique au transport routier, ferroviaire, ou maritime.
[58] Il est entendu que le piston à double effet multitempérature suivant l’invention peut s’appliquer, outre aux moteurs thermiques en général stationnaires ou mobiles et à combustion interne ou externe, à toute autre application voisine dans son concept et dans son principe qui pourrait avantageusement tirer parti des caractéristiques et fonctionnalités particulières dudit piston selon l’invention.
[59] Les autres caractéristiques de la présente invention ont été décrites dans la description et dans les revendications secondaires dépendantes directement ou indirectement de la revendication principale. [60] Le piston à double effet multitempérature pouvant translater dans un cylindre froid aménagé dans un carter-cylindre refroidi que comprend un moteur thermique, ledit piston étant directement ou indirectement relié par des moyens de transmission de puissance logés dans un carter de transmission à au moins un arbre de sortie de puissance rotatif ou alternatif cependant que ledit piston forme une chambre de volume variable inférieure avec le cylindre froid et une culasse inférieure qui est positionnée entre ledit piston et le carter de transmission, ledit piston formant simultanément une chambre de volume variable supérieure avec ledit cylindre et une culasse supérieure, lesdites chambres, renfermant un gaz de travail, comprend
• Une broche centrale de piston approximativement coaxiale au cylindre froid et dont une première extrémité forme une tige inférieure de piston qui traverse de part en part la culasse inférieure via un orifice de tige inférieure qui coopère avec des moyens d’étanchéité de tige inférieure pour déboucher dans le carter de transmission et pour être directement ou indirectement reliée aux moyens de transmission de puissance par des moyens de fixation de piston, tandis que la deuxième extrémité de ladite broche forme une tige supérieure de piston qui traverse de part en part la culasse supérieure via un orifice de tige supérieure qui coopère avec des moyens d’étanchéité de tige supérieure pour déboucher dans une chambre de refroidissement et de lubrification de piston reliée à une source de fluide lubrifiant-refroidissant, cette dernière introduisant un fluide lubrifiant-refroidissant dans ladite chambre ;
• Un anneau périphérique d’étanchéité dont le diamètre extérieur est sensiblement inférieur au diamètre intérieur du cylindre froid, ledit anneau comportant des moyens d’étanchéité de piston qui sont en contact avec ledit cylindre pour réaliser avec ce dernier une étanchéité ;
• Un disque de liaison radiale inférieure qui relie radialement la broche centrale de piston avec l’anneau périphérique d’étanchéité du côté de la chambre de volume variable inférieure, et un disque de liaison radiale supérieure qui relie radialement la broche centrale de piston avec l’anneau périphérique d’étanchéité du côté de la chambre de volume variable supérieure, l’espace laissé entre lesdits disques,, l’anneau périphérique d’étanchéité et la broche centrale de piston formant un volume interne de piston ;
• Une galerie de lubrification-refroidissement aménagée principalement axialement dans la broche centrale de piston et en une ou plusieurs sections, ladite galerie mettant en communication d’une part, la chambre de refroidissement et de lubrification de piston avec le volume interne de piston, et d’autre part, ledit volume avec l’intérieur du carter de transmission ;
• Au moins un orifice périphérique de lubrification d’anneau qui met en communication le volume interne de piston avec la face périphérique externe de l’anneau périphérique d’étanchéité, ledit orifice débouchant axialement de ladite face entre au moins deux moyens d’étanchéité de piston ;
• Des moyens de guidage qui prennent directement ou indirectement appui sur ou à proximité des moyens de transmission de puissance et/ou du cylindre froid et/ou de la culasse inférieure et/ou de la culasse supérieure, lesdits moyens conservant directement ou indirectement l’anneau périphérique d’étanchéité centré dans le cylindre froid ;
• Une calotte chaude inférieure interposée entre le disque de liaison radiale inférieure et la chambre de volume variable inférieure et/ou une calotte chaude supérieure interposée entre le disque de liaison radiale supérieure et la chambre de volume variable supérieure ;
• Des moyens de plaquage de calotte qui maintiennent directement ou indirectement la calotte chaude inférieure plaquée sur l’anneau périphérique d’étanchéité et/ou sur le disque de liaison radiale inférieure, et/ou qui maintiennent directement ou indirectement la calotte chaude supérieure plaquée sur ledit anneau et/ou sur le disque de liaison radiale supérieure, lesdits moyens laissant lesdites calottes, libres de se dilater par rapport audit anneau et/ou auxdits disques ;
Des moyens de centrage de calotte qui localisent la calotte chaude inférieure et/ou la calotte chaude supérieure par rapport à l’anneau périphérique d’étanchéité. [61] Le piston à double effet multitempérature suivant l’invention comprend une calotte chaude inférieure et/ou une calotte chaude supérieure qui sont en tout ou partie constituées d’un matériau résistant à hautes températures.
[62] Le piston à double effet multitempérature suivant l’invention comprend un matériau résistant à hautes températures qui est principalement constitué de carbure de silicium.
[63] Le piston à double effet multitempérature suivant l’invention comprend des moyens d’isolation thermique et/ou des moyens d’étanchéité de calotte qui sont interposés soit, entre la calotte chaude inférieure et l’anneau périphérique d’étanchéité et/ou le disque de liaison radiale inférieure, soit, entre la calotte chaude supérieure et ledit anneau et/ou le disque de liaison radiale supérieure, soit les deux.
[64] Le piston à double effet multitempérature suivant l’invention comprend des moyens d’isolation thermique et/ou des moyens d’étanchéité de calotte qui sont interposés soit, entre la calotte chaude inférieure et la broche centrale de piston, soit, entre la calotte chaude supérieure et ladite broche, soit les deux.
[65] Le piston à double effet multitempérature suivant l’invention comprend des moyens d’isolation thermique qui sont constitués d’au moins un anneau isolant fait d’un matériau à faible conductivité thermique.
[66] Le piston à double effet multitempérature suivant l’invention comprend un matériau à faible conductivité thermique qui est principalement constitué d’oxyde de zirconium.
[67] Le piston à double effet multitempérature suivant l’invention comprend un anneau isolant qui est maintenu directement ou indirectement en contact avec la broche centrale de piston et/ou l’anneau périphérique d’étanchéité et/ou la calotte chaude inférieure et/ou le disque de liaison radiale inférieure et/ou la calotte chaude supérieure et/ou le disque de liaison radiale supérieure par l’intermédiaire d’au moins une arête de contact de faible surface.
[68] Le piston à double effet multitempérature suivant l’invention comprend un anneau isolant qui est maintenu directement ou indirectement en contact avec la broche centrale de piston et/ou l’anneau périphérique d’étanchéité et/ou la calotte chaude inférieure et/ou le disque de liaison radiale inférieure et/ou la calotte chaude supérieure et/ou le disque de liaison radiale supérieure par l’intermédiaire d’au moins un joint d’étanchéité d’anneau isolant qui est étanche au gaz de travail.
[69] Le piston à double effet multitempérature suivant l’invention comprend des moyens de plaquage de calotte qui maintiennent directement ou indirectement la calotte chaude inférieure plaquée sur l’anneau périphérique d’étanchéité et/ou sur le disque de liaison radiale inférieure, qui sont formés d’un tube inférieur coaxial externe de broche qui enveloppe la broche centrale de piston, ledit tube prenant appui d’une part, sur la calotte chaude inférieure au voisinage de ladite broche, et d’autre part, sur les moyens de transmission de puissance.
[70] Le piston à double effet multitempérature suivant l’invention comprend des moyens de plaquage de calotte qui maintiennent directement ou indirectement la calotte chaude supérieure plaquée sur l’anneau périphérique d’étanchéité et/ou sur le disque de liaison radiale supérieure, qui sont formés d’un tube supérieur coaxial externe de broche qui enveloppe la broche centrale de piston, ledit tube prenant appui d’une part, sur la calotte chaude supérieure au voisinage de ladite broche, et d’autre part, sur une butée de tige supérieure aménagée directement ou indirectement sur la tige supérieure de piston au voisinage de son extrémité qui débouche dans la chambre de refroidissement et de lubrification de piston.
[71] Le piston à double effet multitempérature suivant l’invention comprend certaines ou toutes les extrémités d’un tube inférieur coaxial externe de broche et/ou d’un tube supérieur coaxial externe de broche qui reçoivent un ressort de tube par l’intermédiaire duquel lesdits tubes prennent respectivement appui sur la calotte chaude inférieure et sur les moyens de transmission de puissance et/ou sur la calotte chaude supérieure et sur la butée de tige supérieure.
[72] Le piston à double effet multitempérature suivant l’invention comprend une calotte chaude inférieure et/ou une calotte chaude supérieure qui présente une surface conique concave de calotte par l’intermédiaire de laquelle ladite calotte est maintenue plaquée par les moyens de plaquage de calotte sur une arête circulaire de contact périphérique qui est directement ou indirectement solidaire de l’anneau périphérique d’étanchéité et/ou de la périphérie du disque de liaison radiale inférieure et/ou de la périphérie du disque de liaison radiale supérieure, l’angle du cône concave que forme ladite surface étant tel que lorsque ladite surface glisse sur ladite arête du fait de l’écart entre la dilatation thermique de ladite calotte et celle de l’ensemble que forme l’anneau périphérique d’étanchéité, le disque de liaison radiale inférieure, le disque de liaison radiale supérieure et la broche centrale de piston, la distance axiale qui sépare le point d’appui des moyens de plaquage de calotte sur ladite calotte de l’anneau périphérique d’étanchéité reste approximativement constante toute chose égale par ailleurs, cependant que la surface conique concave de calotte et l’arête circulaire de contact périphérique forment les moyens de centrage de calotte.
[73] Le piston à double effet multitempérature suivant l’invention comprend des moyens de fixation de piston qui sont constitués d’une vis axiale de piston à double effet qui comprend de première part, un corps de vis de piston qui est logé dans un tunnel de vis de piston qui traverse de part en part la broche centrale de piston dans le sens de sa longueur, ladite vis comprenant d’une part, une tête de vis de piston qui prend appui à l’extrémité de la tige supérieure de piston qui débouche dans la chambre de refroidissement et de lubrification de piston, et d’autre part, un filetage de vis de piston qui est vissé dans les moyens de transmission de puissance.
[74] Le piston à double effet multitempérature suivant l’invention comprend un tunnel de vis de piston qui forme une part au moins de la galerie de lubrification- refroidissement, le fluide lubrifiant-refroidissant pouvant circuler entre le corps de vis de piston et la paroi interne dudit tunnel, ce dernier formant avec ledit corps une première section qui va de la chambre de refroidissement et de lubrification de piston au volume interne de piston, et une deuxième section qui va dudit volume à l’intérieur du carter de transmission.
[75] Le piston à double effet multitempérature suivant l’invention comprend des moyens de guidage qui sont constitués d’une jupe en tonneau qui est aménagée en périphérie externe de l’anneau périphérique d’étanchéité et qui prend appui sur le cylindre froid.
[76] Le piston à double effet multitempérature suivant l’invention comprend une galerie de lubrification-refroidissement qui débouche dans le volume interne de piston via un faible jeu axial laissé entre d’une part, un disque de répartition de fluide qui est logé dans ledit volume et d’autre part, le disque de liaison radiale supérieure, ledit disque de répartition étant approximativement parallèle audit disque de liaison radiale et formant d’une part, une étanchéité avec la broche centrale de piston, et finissant d’autre part, radialement au voisinage de la paroi interne de l’anneau périphérique d’étanchéité, le fluide lubrifiant-ref roidissant en provenance de la chambre de refroidissement et de lubrification de piston pouvant sortir au niveau dudit voisinage.
[77] Le piston à double effet multitempérature suivant l’invention comprend une broche centrale de piston qui comporte, à l’intérieur du volume interne de piston et au voisinage du disque de liaison radiale inférieure, une collerette de recirculation de fluide qui, lorsque la broche centrale de piston se déplace en direction de la culasse inférieure, rejette radialement et en direction de la paroi interne de l’anneau périphérique d’étanchéité le fluide lubrifiant-refroidissant qui s’est accumulé dans ledit volume et en surface dudit disque.
[78] Le piston à double effet multitempérature suivant l’invention comprend un disque de liaison radiale inférieure qui présente une forme un creux au niveau de sa liaison avec la broche centrale de piston, ladite forme constituant un réservoir à trop-plein qui peut stocker du fluide lubrifiant-refroidissant, cependant qu’au moins un orifice de trop-plein qui communique avec l’intérieur du carter de transmission via la galerie de lubrification-refroidissement fixe le niveau maximal dudit réservoir.
[79] Le piston à double effet multitempérature suivant l’invention comprend une buse à fluide alimentée par la source de fluide lubrifiant-refroidissant qui débouche dans la chambre de refroidissement et de lubrification de piston pour y injecter un jet de fluide.
[80] Le piston à double effet multitempérature suivant l’invention comprend une buse à fluide qui injecte un jet de fluide lubrifiant-refroidissant dans un réservoir axial de vis qui est aménagé axialement dans la tête de vis de piston, ledit réservoir communiquant avec la galerie de lubrification-refroidissement via au moins un conduit radial de liaison réservoir-galerie. [81] Le piston à double effet multitempérature suivant l’invention comprend un clapet anti retour de vis qui est logé dans la vis axiale de piston à double effet, ledit clapet permettant au fluide lubrifiant-refroidissant d’aller du réservoir axial de vis vers la galerie de lubrification-refroidissement, mais non l’inverse.
[82] Le piston à double effet multitempérature suivant l’invention comprend une chambre de refroidissement et de lubrification de piston qui est reliée à une source d’air par un clapet anti-retour d’admission d’air qui laisse entrer un air de forçage de fluide dans ladite chambre sans le laisser en ressortir, cependant que ladite chambre est reliée à une bâche à air par un clapet limiteur de pression qui laisse l’air de forçage de fluide aller de ladite chambre à ladite bâche lorsque la pression dudit air dans ladite chambre atteint une certaine valeur.
[83] Le piston à double effet multitempérature suivant l’invention comprend un écran réfléchissant qui est interposé entre la calotte chaude inférieure et le disque de liaison radiale inférieure auquel peut s’ajouter une partie de l’anneau périphérique d’étanchéité et/ou, entre la calotte chaude supérieure et le disque de liaison radiale supérieure auquel peut s’ajouter une partie dudit anneau.
[84] Le piston à double effet multitempérature suivant l’invention comprend des moyens d’isolation thermique qui sont constitués d’un matériau isolant alvéolaire ou fibreux qui occupe tout ou partie de l’espace compris entre la calotte chaude inférieure et le disque de liaison radiale inférieure et/ou entre la calotte chaude supérieure et le disque de liaison radiale supérieure.
[85] Le piston à double effet multitempérature suivant l’invention comprend au moins un premier espace radial laissé entre le tube supérieur coaxial externe de broche et la broche centrale de piston, au moins un deuxième espace radial laissé entre le tube inférieur coaxial externe de broche et la broche centrale de piston, et un plusieurs espaces radiaux laissés entre le corps de vis de piston et la paroi interne du tunnel de vis de piston qui forment une part au moins de la galerie de lubrification-refroidissement, le fluide lubrifiant-refroidissant pouvant circuler successivement dans lesdits espaces pour aller de la chambre de refroidissement et de lubrification de piston au volume interne de piston, puis dudit volume à l’intérieur du carter de transmission. [86] Le piston à double effet multitempérature suivant l’invention comprend des moyens d’étanchéité de tige inférieure et/ou des moyens d’étanchéité de tige supérieure qui sont constitués d’un anneau continu extensible qui est directement ou indirectement solidaire du carter-cylindre refroidi, et dont le diamètre intérieur est sensiblement plus petit que le diamètre extérieur de la tige inférieure de piston ou de la tige supérieure de piston qu’il enserre.
[87] Le piston à double effet multitempérature suivant l’invention comprend un anneau continu extensible qui est relié à une platine d’anneau par un tube d’anneau de faible épaisseur radiale, ledit anneau, ladite platine et ledit anneau étant réalisés dans un seul et même lopin de matière.
[88] Le piston à double effet multitempérature suivant l’invention comprend un anneau continu extensible qui est axialement enserré entre deux bagues d’anneau par un ressort de compression axiale d’anneau.
[89] La description qui va suivre en regard des dessins annexés et donnés à titre d’exemples non limitatifs permettra de mieux comprendre l’invention, les caractéristiques qu’elle présente, et les avantages qu’elle est susceptible de procurer :
[90] [Fig. 1] est une vue tridimensionnelle d’un moteur thermique tel qu’il peut être prévu pour recevoir le piston à double effet multitempérature selon l’invention, ledit moteur formant un détendeur qui permet, par exemple, de mettre en œuvre un cycle thermodynamique de Baryton à régénération.
[91] [Fig. 2] est une vue tridimensionnelle en coupe du piston à double effet multitempérature selon l’invention, logé dans le moteur thermique montré en figure 1 , ledit moteur étant également représenté en coupe tridimensionnelle.
[92] [Fig. 3] est une vue en coupe du piston à double effet multitempérature selon l’invention, logé dans le moteur thermique montré en figure 1 , ledit moteur étant également représenté en coupe.
[93] [Fig. 4] est une vue tridimensionnelle en coupe du piston à double effet multitempérature selon l’invention, ledit piston étant relié aux moyens de transmission de puissance par une vis axiale de piston à double effet tandis que les moyens de plaquage de calotte sont notamment constitués d’un tube inférieur coaxial externe de broche et d’un tube supérieur coaxial externe de broche.
[94] [Fig. 5] est une vue tridimensionnelle éclatée du piston à double effet multitempérature selon l’invention et suivant sa configuration particulière montrée en figures 2 à 5.
[95] [Fig. 6] est une vue rapprochée en coupe du piston à double effet multitempérature suivant l’invention mis dans le contexte du moteur montré en figure 1 , ladite vue mettant notamment en évidence comment ledit piston est relié aux moyens de transmission de puissance, et comment la calotte chaude inférieure est maintenue plaquée sur l’anneau périphérique d’étanchéité par un tube inférieur coaxial externe de broche par l’intermédiaire d’anneaux isolants.
[96] [Fig. 7] est une vue rapprochée en coupe du piston à double effet multitempérature suivant l’invention mis dans le contexte du moteur montré en figure 1 , ladite vue mettant notamment en évidence comment la tige supérieure de piston débouche dans la chambre de refroidissement et de lubrification de piston, et comment la calotte chaude supérieure est maintenue plaquée sur l’anneau périphérique d’étanchéité par un tube supérieur coaxial externe de broche par l’intermédiaire d’anneaux isolants.
[97] [Fig. 8] est une vue en coupe du piston à double effet multitempérature suivant l’invention tel que montré en figures 2 à 7, ladite vue montrant comment un fluide lubrifiant-refroidissant peut circuler depuis un réservoir axial de vis jusqu’à l’intérieur du carter de transmission pour successivement refroidir le disque de liaison radiale supérieure, l’anneau périphérique d’étanchéité et le disque de liaison radiale inférieure, ceci tout en refroidissant et en lubrifiant les moyens d’étanchéité de piston et la jupe en tonneau que présente ledit anneau, lesdits moyens et ladite jupe étant maintenus au contact du cylindre froid.
[98] [Fig. 9] est une vue en coupe du piston à double effet multitempérature suivant l’invention tel que montré en figure 8, ladite vue montrant notamment comment le fluide lubrifiant-refroidissant peut recirculer à l’intérieur du volume interne de piston pour parfaire le refroidissement de l’ensemble mécano soudé que forment l’anneau périphérique d’étanchéité, le disque de liaison radiale inférieure, le disque de liaison radiale supérieure et la broche centrale de piston, et pour alimenter des orifices périphériques de lubrification d’anneau que comporte l’anneau périphérique d’étanchéité.
[99] [Fig. 10] est une vue en coupe schématique rapprochée du piston à double effet multitempérature suivant l’invention et selon la configuration particulière dudit piston telle que montrée en figures 2 à 9, ladite vue montrant la position et les dimensions des calottes chaudes inférieure et supérieure par rapport à l’ensemble mécano soudé et à l’anneau isolant lorsque lesdites calottes sont froides.
[100] [Fig. 11] est une vue en coupe schématique rapprochée du piston à double effet multitempérature suivant l’invention et selon la configuration particulière dudit piston telle que montrée en figures 2 à 9, ladite vue montrant la position et les dimensions des calottes chaudes inférieure et supérieure par rapport à l’ensemble mécano soudé et à l’anneau isolant lorsque lesdites calottes sont chaudes.
[101] [Fig. 12] est une vue tridimensionnelle cadrée sur la chambre de refroidissement et de lubrification de piston du piston à double effet multitempérature suivant l’invention, ladite vue montrant notamment le clapet anti-retour d'admission d’air et le clapet limiteur de pression qui sont tous deux reliés à l’intérieur du carter de transmission qui fait ici office de source d’air et de bâche à air.
[102] [Fig. 13] est une vue en coupe d’une variante du piston à double effet multitempérature suivant l’invention selon laquelle une partie de la galerie de lubrification-refroidissement est formée par un espace radial laissé entre d’une part, le tube supérieur coaxial externe de broche et le tube inférieur coaxial externe de broche et d’autre part, la broche centrale de piston, tandis qu’un écran réfléchissant et un matériau isolant alvéolaire ou fibreux sont interposés entre les calottes chaudes inférieure et supérieure et le disque de liaison radiale inférieure et supérieure auxquelles font face lesdites calottes.
[103] [Fig. 14] est une vue en coupe rapprochée des moyens d’étanchéité de tige supérieure du piston à double effet multitempérature suivant l’invention, lesdits moyens étant constitués d’un anneau continu extensible relié à une platine d’anneau par un tube d’anneau de faible épaisseur radiale. [104] [Fig. 15] est une vue en coupe rapprochée des moyens d’étanchéité de tige supérieure du piston à double effet multitempérature suivant l’invention, lesdits moyens étant constitués d’un anneau continu extensible axialement enserré entre deux bagues d’anneau par un ressort de compression axiale d’anneau.
[105] DESCRIPTION DE L’INVENTION :
[106] On a montré en figures 1 à 12 le piston à double effet multitempérature 201 suivant l’invention, divers détails de ses composants, ses variantes, et ses accessoires.
[107] Comme le montrent les figures 2, 3, 6 et 7, le piston à double effet multitempérature 201 peut translater dans un cylindre froid 204 aménagé dans un carter-cylindre refroidi 203 que comprend un moteur thermique 202, ledit piston 201 étant directement ou indirectement relié par des moyens de transmission de puissance 205 logés dans un carter de transmission 206 à au moins un arbre de sortie de puissance 207 rotatif ou alternatif.
[108] Comme on le voit clairement en figure 7, ledit piston 201 forme une chambre de volume variable inférieure 208 avec le cylindre froid 204 et une culasse inférieure 213 qui est positionnée entre ledit piston 201 et le carter de transmission 206, ledit piston 201 formant simultanément une chambre de volume variable supérieure 209 avec ledit cylindre 204 et une culasse supérieure 214, lesdites chambres 208, 209 renfermant un gaz de travail 240.
[109] Comme illustré en figures 2 à 5 et en figures 8 et 9, le piston à double effet multitempérature 201 suivant l’invention comprend une broche centrale de piston 210 approximativement coaxiale au cylindre froid 204 et dont une première extrémité forme une tige inférieure de piston 211 qui traverse de part en part la culasse inférieure 213 via un orifice de tige inférieure 215 qui coopère avec des moyens d’étanchéité de tige inférieure 280 pour déboucher dans le carter de transmission 206 et pour être directement ou indirectement reliée aux moyens de transmission de puissance 205 par des moyens de fixation de piston 231 .
[110] La deuxième extrémité de ladite broche 210 forme quant à elle une tige supérieure de piston 212 qui traverse de part en part la culasse supérieure 214 via un orifice de tige supérieure 216 qui coopère avec des moyens d’étanchéité de tige supérieure 281 pour déboucher dans une chambre de refroidissement et de lubrification de piston 217 reliée à une source de fluide lubrifiant-refroidissant 218, cette dernière introduisant un fluide lubrifiant-refroidissant 257 dans ladite chambre 217.
[111] On note que les moyens d’étanchéité de tige inférieure 280 et les moyens d’étanchéité de tige supérieure 281 peuvent être respectivement en contact avec la tige inférieure de piston 211 et avec la tige supérieure de piston 212 soit directement, soit indirectement par l’intermédiaire respectivement d’un tube inférieur coaxial externe de broche 243 et d’un tube supérieur coaxial externe de broche 248, comme l’illustrent les figures 2, 3, 6, 7, 14 et 15.
[112] On remarque en figures 2 à 11 que le piston à double effet multitempérature 201 suivant l’invention comprend un anneau périphérique d’étanchéité 220 dont le diamètre extérieur est sensiblement inférieur au diamètre intérieur du cylindre froid 204.
[113] On remarque sur lesdites figures que l’anneau périphérique d’étanchéité 220 comporte des moyens d’étanchéité de piston 221 par exemple constitués de segments de compression 222 en fonte ou en acier tels que ceux ordinairement trouvés sur les pistons des moteurs automobiles conventionnels, lesdits moyens 221 étant en contact avec ledit cylindre 204 pour réaliser avec ce dernier une étanchéité.
[114] On voit très clairement en figure 4 que le piston à double effet multitempérature 201 suivant l’invention comprend également un disque de liaison radiale inférieure 224 qui relie radialement la broche centrale de piston 210 avec l’anneau périphérique d’étanchéité 220 du côté de la chambre de volume variable inférieure 208, et un disque de liaison radiale supérieure 225 qui relie radialement la broche centrale de piston 210 avec l’anneau périphérique d’étanchéité 220 du côté de la chambre de volume variable supérieure 209, l’espace laissé entre lesdits disques 224, 225, l’anneau périphérique d’étanchéité 220 et la broche centrale de piston 210 formant un volume interne de piston 228.
[115] On notera que le disque de liaison radiale inférieure 224 et/ou le disque de liaison radiale supérieure 225 peut être un simple disque métallique, un cône, un dôme ou une troncosphère, ou être de toute géométrie que ce soit non-nervurée ou nervurée pour donner aux dits disques 224, 225 une grande rigidité. [116] On note aussi qu’à titre de variante de réalisation du piston à double effet multitempérature 201 selon l’invention, le disque de liaison radiale inférieure 224 peut être relié à l’intérieur du volume interne de piston 228 au disque de liaison radiale supérieure 225 par des étais, des rayons, des ailettes ou par toute autre liaison mécanique qui solidarise lesdits disques 224, 225 afin qu’ils constituent un ensemble rigide.
[117] On notera également que le disque de liaison radiale inférieure 224 et/ou le disque de liaison radiale supérieure 225 peuvent être préférentiellement rendus solidaires de la broche centrale de piston 210 et/ou de l’anneau périphérique d’étanchéité 220 par soudage par friction, par faisceau d’électron ou par soudage à l’arc, ou pas tout type de soudage ou d’assemblage connu de l’homme de l’art.
[118] On remarque en figures 8 et 9 que le piston à double effet multitempérature 201 suivant l’invention comprend une galerie de lubrification-refroidissement 227 qui est aménagée principalement axialement dans la broche centrale de piston 210 et en une ou plusieurs sections, ladite galerie 227 mettant en communication d’une part, la chambre de refroidissement et de lubrification de piston 217 avec le volume interne de piston 228, et d’autre part, ledit volume 228 avec l’intérieur du carter de transmission 206.
[119] En figures 10 et 11 , on peut voir très clairement que le piston à double effet multitempérature 201 suivant l’invention comprend au moins un orifice périphérique de lubrification d’anneau 229 qui met en communication le volume interne de piston 228 avec la face périphérique externe de l’anneau périphérique d’étanchéité 220, ledit orifice 229 débouchant axialement de ladite face entre au moins deux moyens d’étanchéité de piston 221 .
[120] Le piston à double effet multitempérature 201 suivant l’invention comprend aussi des moyens de guidage 230 particulièrement visibles en figure 4, lesdits moyens 230 prenant directement ou indirectement appui sur ou à proximité des moyens de transmission de puissance 205 et/ou du cylindre froid 204 et/ou de la culasse inférieure 213 et/ou de la culasse supérieure 214, lesdits moyens 230 conservant directement ou indirectement l’anneau périphérique d’étanchéité 220 centré dans le cylindre froid 204. [121] Particulièrement en figure 7, on remarque que le piston à double effet multitempérature 201 suivant l’invention comprend une calotte chaude inférieure 226 interposée entre le disque de liaison radiale inférieure 224 et la chambre de volume variable inférieure 208 et/ou une calotte chaude supérieure 232 interposée entre le disque de liaison radiale supérieure 225 et la chambre de volume variable supérieure 209 ;
[122] Le piston à double effet multitempérature 201 suivant l’invention comprend aussi des moyens de plaquage de calotte 234, qui tous apparaissent en figures 2 à 5 et en figures 8 et 9, et qui maintiennent directement ou indirectement la calotte chaude inférieure 226 plaquée sur l’anneau périphérique d’étanchéité 220 et/ou sur le disque de liaison radiale inférieure 224, et/ou qui maintiennent directement ou indirectement la calotte chaude supérieure 232 plaquée sur ledit anneau 220 et/ou sur le disque de liaison radiale supérieure 225, lesdits moyens 234 laissant lesdites calottes 226, 232 libres de se dilater par rapport audit anneau 220 et/ou auxdits disques 224, 225.
[123] Enfin, le piston à double effet multitempérature 201 suivant l’invention comprend des moyens de centrage de calotte 235 - par exemple montrés en figure 7 - qui localisent la calotte chaude inférieure 226 et/ou la calotte chaude supérieure 232 par rapport à l’anneau périphérique d’étanchéité 220.
[124] On notera que selon une variante de réalisation du piston à double effet multitempérature 201 suivant l’invention, la calotte chaude inférieure 226 et/ou la calotte chaude supérieure 232 peuvent être en tout ou partie constituées d’un matériau résistant à hautes températures 275 tel que du carbure de silicium 276 et ses différentes variantes, allié ou non à d’autres matériaux.
[125] A titre d’autre variante montrée en figures 2 à 11 , des moyens d’isolation thermique 233 et/ou des moyens d’étanchéité de calotte 239 peuvent être interposés soit, entre la calotte chaude inférieure 226 et l’anneau périphérique d’étanchéité 220 et/ou le disque de liaison radiale inférieure 224, soit, entre la calotte chaude supérieure 232 et ledit anneau 220 et/ou le disque de liaison radiale supérieure 225, soit les deux, lesdits moyens 233, 239 pouvant faire partie intégrante desdites calottes 226, 232 et/ou desdits disques 224, 225. [126] En figures 4 à 9, on a aussi montré que des moyens d’isolation thermique 233 et/ou des moyens d’étanchéité de calotte 239 peuvent être interposés soit, entre la calotte chaude inférieure 226 et la broche centrale de piston 210, soit, entre la calotte chaude supérieure 232 et ladite broche 210, soit les deux, lesdits moyens 233, 239 pouvant faire partie intégrante desdites calottes 226, 232 et/ou de ladite broche 210.
[127] Où qu’ils soient situés, les moyens d’isolation thermique 233 peuvent être constitués d’au moins un anneau isolant 236 fait d’un matériau à faible conductivité thermique 237 tel que l’oxyde de zirconium 238 et ses différentes variantes, allié ou non à d’autres matériaux, ou tel que le quartz.
[128] A titre d’alternative non-limitative, l’anneau isolant 236 peut aussi être fait en quartz dont la conductivité thermique est également basse, et dont le faible module d’élasticité lui confère une grande faculté à s’accommoder à la géométrie des composants avec lesquels il est en contact et coopère.
[129] On notera que l’anneau isolant 236 peut être maintenu directement ou indirectement en contact avec la broche centrale de piston 210 et/ou l’anneau périphérique d’étanchéité 220 et/ou la calotte chaude inférieure 226 et/ou le disque de liaison radiale inférieure 224 et/ou la calotte chaude supérieure 232 et/ou le disque de liaison radiale supérieure 225 par l’intermédiaire d’au moins une arête de contact de faible surface 241 .
[130] On remarquera en figures 10 et 11 qu’avantageusement, l’anneau isolant 236 peut comporter une gorge de dé-rigidification 291 qui lui confère plus de souplesse et qui assure un contact plus homogène et mieux réparti entre ledit anneau 236 et la pièce 210, 220, 226, 224, 232, 225 avec laquelle coopère ledit anneau 236.
[131] Selon une configuration particulière du piston à double effet multitempérature 201 , l’anneau isolant 236 peut aussi être maintenu directement ou indirectement en contact avec la broche centrale de piston 210 et/ou l’anneau périphérique d’étanchéité 220 et/ou la calotte chaude inférieure 226 et/ou le disque de liaison radiale inférieure 224 et/ou la calotte chaude supérieure 232 et/ou le disque de liaison radiale supérieure 225 par l’intermédiaire d’au moins un joint d’étanchéité d’anneau isolant 242 qui est étanche au gaz de travail 240. [132] On note que le joint d’étanchéité d’anneau isolant 242 peut par exemple comporter plusieurs feuilles métalliques à l’instar des joints de culasse que comportent les moteurs thermiques à combustion interne automobiles modernes, ou être constitué de matériaux résistants aux hautes températures comme le « Therma-pur >> développé par la société « Garlock ».
[133] Comme on le constate en figures 2 à 9, les moyens de plaquage de calotte 234 qui maintiennent directement ou indirectement la calotte chaude inférieure 226 plaquée sur l’anneau périphérique d’étanchéité 220 et/ou sur le disque de liaison radiale inférieure 224, peuvent être formés d’un tube inférieur coaxial externe de broche 243 qui enveloppe la broche centrale de piston 210, ledit tube 243 prenant appui d’une part, sur la calotte chaude inférieure 226 au voisinage de ladite broche 210, et d’autre part, sur les moyens de transmission de puissance 205 qui peuvent être par exemple constitués d’une crosse 244 qui translate dans une cylindre de crosse 293, ladite crosse 244 étant articulée autour du pied d’une bielle 245 qui est elle-même articulée autour d’une manivelle 246 aménagée sur un vilebrequin 247 ce dernier formant l’arbre de sortie de puissance 207.
[134] On constate aussi en figures 2 à 5 et en figures 7 à 9 que les moyens de plaquage de calotte 234 qui maintiennent directement ou indirectement la calotte chaude supérieure 232 plaquée sur l’anneau périphérique d’étanchéité 220 et/ou sur le disque de liaison radiale supérieure 225, peuvent être formés d’un tube supérieur coaxial externe de broche 248 qui enveloppe la broche centrale de piston 210, ledit tube 248 prenant appui d’une part, sur la calotte chaude supérieure 232 au voisinage de ladite broche 210, et d’autre part, sur une butée de tige supérieure 249 aménagée directement ou indirectement sur la tige supérieure de piston 212 au voisinage de son extrémité qui débouche dans la chambre de refroidissement et de lubrification de piston 217.
[135] Comme on le voit clairement en figure 4, certaines ou toutes les extrémités du tube inférieur coaxial externe de broche 243 et/ou du tube supérieur coaxial externe de broche 248 peuvent recevoir un ressort de tube 250 par l’intermédiaire duquel lesdits tubes 243, 248 prennent respectivement appui sur la calotte chaude inférieure 226 et sur les moyens de transmission de puissance 205 et/ou sur la calotte chaude supérieure 232 et sur la butée de tige supérieure 249, le ressort de tube 250 pouvant avantageusement être constitué d’un empilement de rondelles « Belleville >> connues en soi.
[136] Les figures 10 et 1 1 illustrent que selon une configuration particulière du piston à double effet multitempérature 201 suivant l’invention, la calotte chaude inférieure 226 et/ou la calotte chaude supérieure 232 peut avantageusement présenter une surface conique concave de calotte 251 par l’intermédiaire de laquelle ladite calotte 226, 232 est maintenue plaquée par les moyens de plaquage de calotte 234 sur une arête circulaire de contact périphérique 252 qui est directement ou indirectement solidaire de l’anneau périphérique d’étanchéité 220 et/ou de la périphérie du disque de liaison radiale inférieure 224 et/ou de la périphérie du disque de liaison radiale supérieure 225.
[137] Selon ladite configuration, l’angle du cône concave que forme surface conique concave de calotte 251 est tel, que lorsque ladite surface 251 glisse sur ladite arête 252 du fait de l’écart entre la dilatation thermique de ladite calotte 226, 232 et celle de l’ensemble que forme l’anneau périphérique d’étanchéité 220, le disque de liaison radiale inférieure 224, le disque de liaison radiale supérieure 225 et la broche centrale de piston 210, la distance axiale qui sépare le point d’appui des moyens de plaquage de calotte 234 sur ladite calotte 226, 232 de l’anneau périphérique d’étanchéité 220 reste approximativement constante toute chose égale par ailleurs, cependant que la surface conique concave de calotte 251 et l’arête circulaire de contact périphérique 252 forment les moyens de centrage de calotte 235.
[138] On remarque que cette configuration particulière du piston à double effet multitempérature 201 selon l’invention permet que l’effort auquel sont soumis les moyens de plaquage de calotte 234 - qui sont hors de l’image en figures 10 et 11 mais bien présents en réalité - reste approximativement constant quel que soit l’écart entre la dilatation thermique de ladite calotte 226, 232 et celle de l’ensemble mécano soudé 289 que forme l’anneau périphérique d’étanchéité 220, le disque de liaison radiale inférieure 224, le disque de liaison radiale supérieure 225 et la broche centrale de piston 210. [139] En outre, ladite configuration permet que limiter la variation de rapport volumétrique du moteur thermique 202 en fonction de sa température, particulièrement lors des phases de démarrage à froid dudit moteur 202.
[140] On remarque qu’avantageusement et à titre de variante non représentée, l’arête circulaire de contact périphérique 252 pourrait avantageusement présenter un contact sphérique à la surface conique concave de calotte 251 .
[141] En figures 2 à 9, on a montré que les moyens de fixation de piston 231 peuvent être constitués d’une vis axiale de piston à double effet 219 qui comprend de première part, un corps de vis de piston 255 qui est logé dans un tunnel de vis de piston 256 qui traverse de part en part la broche centrale de piston 210 dans le sens de sa longueur, ladite vis 219 comprenant d’une part, une tête de vis de piston 253 qui prend appui à l’extrémité de la tige supérieure de piston 212 qui débouche dans la chambre de refroidissement et de lubrification de piston 217, et d’autre part, un filetage de vis de piston 254 qui est vissé dans les moyens de transmission de puissance 205.
[142] Selon une variante de réalisation du piston à double effet multitempérature 201 suivant l’invention, un ensemble vis-écrou peut remplacer la tête de vis de piston 253 qui peut d’ailleurs être remplacée par tout autre type de fixation qui apparaîtra de façon évidente à l’homme de l’art.
[143] Comme on le voit clairement en figures 8 et 9, le tunnel de vis de piston 256 peut avantageusement former une part au moins de la galerie de lubrification- refroidissement 227, le fluide lubrifiant-refroidissant 257 pouvant circuler entre le corps de vis de piston 255 et la paroi interne dudit tunnel 256, ce dernier formant avec ledit corps 255 une première section qui va de la chambre de refroidissement et de lubrification de piston 217 au volume interne de piston 228, et une deuxième section qui va dudit volume 228 à l’intérieur du carter de transmission 206, le corps de vis de piston 255 pouvant comporter des renflements d’étanchéité de vis 258 pour séparer le tunnel de vis de piston 256 en sections, lesdits renflements 258 pouvant à ces fins présenter un joint d’étanchéité de renflement 259.
[144] Comme l’illustre clairement la figure 4, les moyens de guidage 230 peuvent être constitués d’une jupe en tonneau 260 qui est aménagée en périphérie externe de l’anneau périphérique d’étanchéité 220 et qui prend appui sur le cylindre froid 204, ladite jupe 260 présentant une forme convergente qui favorise l’établissement d’un régime de lubrification hydrodynamique entre elle-même et le cylindre froid 204 avec lequel elle coopère.
[145] On remarque de façon évidente en figures 10 et 11 que la jupe en tonneau 260 peut avantageusement être positionnée entre deux segments de compression 222 et jouxter un segment racleur d’huile 278.
[146] La figure 8 illustre que la galerie de lubrification-refroidissement 227 peut déboucher dans le volume interne de piston 228 via un faible jeu axial laissé entre d’une part, un disque de répartition de fluide 261 qui est logé dans ledit volume 228 et d’autre part, le disque de liaison radiale supérieure 225, ledit disque de répartition 261 étant approximativement parallèle audit disque de liaison radiale 225 et formant d’une part, une étanchéité avec la broche centrale de piston 210, et finissant d’autre part, radialement au voisinage de la paroi interne de l’anneau périphérique d’étanchéité 220, le fluide lubrifiant-ref roidissant 257 en provenance de la chambre de refroidissement et de lubrification de piston 217 pouvant sortir au niveau dudit voisinage par exemple via des déversoirs de répartition 290, des orifices ou des créneaux de quelque nature que ce soit aménagés en périphérie du disque de répartition de fluide 261 .
[147] Comme l’illustre bien la figure 9, selon une variante particulière du piston à double effet multitempérature 201 suivant l’invention, la broche centrale de piston 210 peut comporter, à l’intérieur du volume interne de piston 228 et au voisinage du disque de liaison radiale inférieure 224, une collerette de recirculation de fluide 262 qui, lorsque la broche centrale de piston 210 se déplace en direction de la culasse inférieure 213, rejette radialement et en direction de la paroi interne de l’anneau périphérique d’étanchéité 220 le fluide lubrifiant-refroidissant 257 qui s’est accumulé dans ledit volume 228 et en surface dudit disque 224, ladite collerette 262 pouvant comporter des rigoles de collerette 263 qui forment des jets radiaux de fluide lubrifiant-refroidissant 257 qui sont uniformément répartis sur trois cent soixante degrés.
[148] Particulièrement en figure 8, on remarque que le disque de liaison radiale inférieure 224 peut avantageusement présenter une forme un creux 294 au niveau de sa liaison avec la broche centrale de piston 210, ladite forme 294 constituant un réservoir à trop-plein 264 qui peut stocker du fluide lubrifiant- refroidissant 257, cependant qu’au moins un orifice de trop-plein 265 qui communique avec l’intérieur du carter de transmission 206 via la galerie de lubrification-refroidissement 227 fixe le niveau maximal dudit réservoir 264 de sorte qu’à chaque accélération en direction de la culasse supérieure 214 du piston à double effet multitempérature 201 suivant l’invention, le niveau du fluide lubrifiant-refroidissant 257 que contient ledit réservoir 264 ne dépasse pas celui de l’orifice de trop-plein 265, ledit fluide 257 en excès étant expulsé à l’intérieur du carter de transmission 206.
[149] En figure 7, on note qu’une buse à fluide 266 alimentée par la source de fluide lubrifiant-refroidissant 218 peut déboucher dans la chambre de refroidissement et de lubrification de piston 217 pour y injecter un jet de fluide 267 qui est montré en figures 8 et 9.
[150] Toujours en figures 8 et 9, on constate que la buse à fluide 266 peut injecter un jet de fluide lubrifiant-refroidissant 257 dans un réservoir axial de vis 267 qui est aménagé axialement dans la tête de vis de piston 253, ledit réservoir 267 communiquant avec la galerie de lubrification-refroidissement 227 via au moins un conduit radial de liaison réservoir-galerie 268.
[151] Les figures 8 et 9 montrent aussi de façon évidente qu’un clapet anti retour de vis 269 peut être logé dans la vis axiale de piston à double effet 219, ledit clapet 269 permettant au fluide lubrifiant-refroidissant 257 d’aller du réservoir axial de vis 267 vers la galerie de lubrification-refroidissement 227, mais non l’inverse, de sorte qu’à chaque accélération en direction de la culasse supérieure 214 du piston à double effet multitempérature 201 suivant l’invention, le fluide lubrifiant- refroidissant 257 que contient ledit réservoir 267 soit forcé à pénétrer dans la galerie de lubrification-refroidissement 227 tandis que lorsque ledit piston 201 accélère en direction de la culasse inférieure 213, ledit fluide 257 contenu dans ladite galerie 227 ne retourne pas audit réservoir 267.
[152] A titre de variante du piston à double effet multitempérature 201 suivant l’invention, on a montré en figure 12 que la chambre de refroidissement et de lubrification de piston 217 peut être reliée à une source d’air 270 ou à une quelconque source de gaz de quelque nature que ce soit par un clapet anti-retour d’admission d’air 271 qui laisse entrer un air de forçage de fluide 272 dans ladite chambre 217 sans le laisser en ressortir, cependant que ladite chambre 217 est reliée à une bâche à air 273 par un clapet limiteur de pression 274 qui laisse l’air de forçage de fluide 272 aller de ladite chambre 217 à ladite bâche 273 lorsque la pression dudit air 272 dans ladite chambre 217 atteint une certaine valeur.
[153] Selon cette configuration particulière du piston à double effet multitempérature 201 suivant l’invention, la pression qui alimente la buse à fluide
266 en fluide lubrifiant-refroidissant 257 est avantageusement supérieure à la pression d’ouverture du clapet limiteur de pression 274.
[154] On remarque également en figure 12 que l’altitude du conduit qui relie la chambre de refroidissement et de lubrification de piston 217 au clapet limiteur de pression 274 peut déterminer le niveau maximal du fluide lubrifiant-refroidissant
267 dans ladite chambre 217, ledit conduit faisant office de trop-plein.
[155] Comme on l’a montré en figure 13, un écran réfléchissant 295 peut être interposé entre la calotte chaude inférieure 226 et le disque de liaison radiale inférieure 224 auquel peut s’ajouter une partie de l’anneau périphérique d’étanchéité 220 et/ou, entre la calotte chaude supérieure 232 et le disque de liaison radiale supérieure 225 auquel peut s’ajouter une partie dudit anneau 220, ledit écran réfléchissant 295 retournant à la calotte chaude inférieure 226 et/ou à la calotte chaude supérieure 232 la chaleur qu’émet, notamment sous la forme de rayonnement dans l’infrarouge, ladite calotte 226, 232.
[156] On a également montré en figure 13 que les moyens d’isolation thermique 233 peuvent être constitués d’un matériau isolant alvéolaire ou fibreux 296 qui occupe tout ou partie de l’espace compris entre la calotte chaude inférieure 226 et le disque de liaison radiale inférieure 224 et/ou entre la calotte chaude supérieure 232 et le disque de liaison radiale supérieure 225.
[157] La figure 13 illustre également qu’au moins un premier espace radial laissé entre le tube supérieur coaxial externe de broche 248 et la broche centrale de piston 210, au moins un deuxième espace radial laissé entre le tube inférieur coaxial externe de broche 243 et la broche centrale de piston 210, et un plusieurs espaces radiaux laissés entre le corps de vis de piston 255 et la paroi interne du tunnel de vis de piston 256 peuvent former une part au moins de la galerie de lubrification-refroidissement 227, le fluide lubrifiant-refroidissant 257 pouvant circuler successivement dans lesdits espaces pour aller de la chambre de refroidissement et de lubrification de piston 217 au volume interne de piston 228, puis dudit volume 228 à l’intérieur du carter de transmission 206.
[158] Selon cette configuration particulière du piston à double effet multitempérature suivant l’invention, la paroi externe du tube supérieur coaxial externe de broche 248 et la paroi externe du tube inférieur coaxial externe de broche 243 sont toujours maintenues à basse température, ceci afin qu’un film d’huile de lubrification qui revêt la paroi externe desdits tubes 248, 243 soit préservé de tout cokéfaction ou combustion spontanée par excès de température, y-compris quand le moteur thermique 202 est arrêté après avoir fonctionné à haute température, et particulièrement dans la mesure ou une pompe électrique est prévue qui force du fluide lubrifiant-refroidissant 257 à circuler dans le galerie de lubrification-refroidissement 227 après l’arrêt dudit moteur 202.
[159] On a montré en figures 14 et 15 que les moyens d’étanchéité de tige inférieure 280 et/ou les moyens d’étanchéité de tige supérieure 281 peuvent être constitués d’un anneau continu extensible 297 qui est directement ou indirectement solidaire du carter-cylindre refroidi 203, et dont le diamètre intérieur est sensiblement plus petit que le diamètre extérieur de la tige inférieure de piston 211 ou de la tige supérieure de piston 212 qu’il enserre.
[160] On note qu’en ce cas, l’épaisseur radiale et l’épaisseur axiale de l’anneau continu extensible 297 sont avantageusement faibles pour limiter les pertes énergétiques produites par le frottement dudit anneau 297 sur la tige inférieure de piston 211 et/ou la tige supérieure de piston 212.
[161] La figure 14 illustre que l’anneau continu extensible 297 peut être relié à une platine d’anneau 298 par un tube d’anneau 299 de faible épaisseur radiale, ledit anneau 297, ladite platine 298 et ledit anneau 297 étant réalisés dans un seul et même lopin de matière.
[162] On note qu’en ce cas et avantageusement, la platine d’anneau 298 peut directement ou indirectement se déplacer radialement et de façon étanche dans le carter-cylindre refroidi 203, et comporter au moins une butée radiale d’anneau 303 qui limite son excentration par rapport à la tige inférieure de piston 211 ou par rapport à la tige supérieure de piston 212.
[163] Une autre variante illustrée en figure 15 prévoit que l’anneau continu extensible 297 peut être axialement enserré entre deux bagues d’anneau 300 par un ressort de compression axiale d’anneau 301 qui peut coopérer avec une bague étanche d’anneau 302, les deux bagues d’anneau 300 pouvant exposer à la tige inférieure de piston 211 ou à la tige supérieure de piston 212 une butée radiale d’anneau 303 qui peut entrer en contact avec ladite tige 211 , 212.
[164] FONCTIONNEMENT DE L’INVENTION :
[165] Le fonctionnement du piston à double effet multitempérature 201 selon l’invention se comprend aisément à la vue des figures 1 à 15.
[166] Ledit piston 201 peut s’appliquer à tout moteur thermique 202 exécutant un cycle de Beau de Rochas, de Miller, d’Atkinson, de Diesel, ou tout autre cycle thermodynamique connu de l’homme de l’art.
[167] En figures 1 à 15, on a montré le piston à double effet multitempérature 201 selon l’invention et tel qu’il peut être mis en œuvre dans un moteur thermique 202 exécutant un cycle de Brayton à régénération qui est identique à celui qu’exécute le moteur thermique à transfert-détente et régénération selon le brevet N° WO2016120560.
[168] Dans ce contexte particulier, ledit piston 201 ne s’applique qu’au détendeur 279 dudit moteur 202, aussi, les autres organes de ce dernier tels qu’un ou des compresseurs, un brûleur ou un échangeur de régénération nécessaires à la mise en œuvre du cycle de Brayton à régénération, ne sont pas représentés.
[169] L’objectif du piston à double effet multitempérature 201 selon l’invention est de limiter au maximum les pertes de chaleur du gaz de travail 240 durant la phase de détente dudit gaz 240 opérée durant le cycle de Brayton à régénération, tout en s’assurant que ledit piston 201 réalise avec le cylindre froid 204 une bonne étanchéité en ne recourant qu’à des moyens d’étanchéité de piston 221 conventionnels, en l’occurrence des segments de compression 222 similaires à ceux qui équipent les moteurs à combustion interne automobiles produits en grande série, lesdits segments 222 coopérant avec un segment racleur d'huile 278.
[170] Tenir cet objectif implique notamment que la plus grande part possible de surface de paroi externe du piston à double effet multitempérature 201 soit maintenue à haute température.
[171] Tenir cet objectif nécessite également que le piston à double effet multitempérature 201 selon l’invention réalise une bonne étanchéité avec la culasse inférieure 213 et avec la culasse supérieure 214, respectivement grâce à des moyens d’étanchéité de tige inférieure 280 et à des moyens d’étanchéité de tige supérieure 281 , lesdits moyens 280, 281 étant formés soit, de segments à coupe 282 métalliques connus en soi, soit d’un anneau continu extensible 297 qui est directement ou indirectement solidaire du carter-cylindre refroidi 203 comme le montrent les figures 14 et 15.
[172] Pour que ledit objectif soit pleinement atteint, le piston à double effet multitempérature 201 selon l’invention s’applique avantageusement à un moteur thermique 202 fondé sur le même dit objectif et qui, à ce titre, limite au maximum les pertes de chaleur du gaz de travail 240 en ayant la plus grande part possible de ses parois internes portée à haute température.
[173] C’est pourquoi en figures 1 à 3 on a montré un moteur thermique 202 dont le détendeur 279 reçoit le piston à double effet multitempérature 201 , ledit détendeur 279 comportant une culasse inférieure 213 et une culasse supérieure 214 dont la température de fonctionnement est élevée - de l’ordre de neuf cent cinquante degrés Celsius - lesdites culasses 213, 214 étant réalisées en carbure de silicium 276, un matériau qui conserve ses caractéristiques mécaniques jusqu’à des températures de l’ordre de mille quatre-cents degrés Celsius, et qui peut être utilisé en milieu oxydant à ces températures élevées.
[174] Seules les surfaces internes dudit détendeur 279 qui sont en contact à la fois avec le gaz de travail 240 et avec les moyens d’étanchéité de piston 221 sont maintenues à une température de seulement cent degrés Celsius, ladite température restant compatible avec un fluide lubrifiant-refroidissant 257 tel que de l’huile de lubrification et de refroidissement 283, et évitant que cette dernière - en l’occurrence de l’huile pour moteur connue en soi - ne cokéfie, ne brûle, ou ne se dégrade prématurément.
[175] Comme on le voit en figures 2 et 3, lesdites surfaces sont, outre le cylindre froid 204 aménagé dans un carter-cylindre refroidi 203, une partie de l’anneau périphérique d’étanchéité 220, une partie de la tige inférieure de piston 211 et une partie de la tige supérieure de piston 212, ces organes 220, 204, 211 , 212 totalisant une surface en contact avec le gaz de travail 240 très inférieure à celle que totalisent la culasse inférieure 213, la culasse supérieure 214, la calotte chaude inférieure 226, et la calotte chaude supérieure 232.
[176] En figures 2 et 3 on a montré à titre d’exemple de mise en œuvre particulier du piston à double effet multitempérature 201 selon l’invention les moyens de transmission de puissance 205 qui sont logés dans le carter de transmission 206 et qui sont ici prévus pour transformer les mouvements de va-et-vient dudit piston 201 dans le cylindre froid 204 en mouvement de rotation continu d’un vilebrequin 247.
[177] Toujours selon cet exemple de réalisation non-limitatif, le carter de transmission 206 et les moyens de transmission de puissance 205 sont avantageusement maintenus à une température voisine de cent degrés Celsius, compatible avec l’huile de lubrification et de refroidissement 283.
[178] On remarque en figures 2 et 3 que les moyens de transmission de puissance 205 sont à titre d’exemple constitués d’une bielle 245 qui est reliée à la tige inférieure de piston 211 par l’intermédiaire d’une crosse 244, ladite bielle 34 étant articulée autour d’une manivelle 246 aménagée sur le vilebrequin 247, ce dernier formant un arbre de sortie de puissance 207.
[179] Comme on le voit clairement en figures 2 à 5 et en figures 8, 9 et 13, l’ensemble mécano soudé 289 que forme l’anneau périphérique d’étanchéité 220, le disque de liaison radiale inférieure 224, le disque de liaison radiale supérieure 225 et la broche centrale de piston 210 sont fixés sur la crosse 244 par une vis axiale de piston à double effet 219 dont le corps de vis de piston 255 est logé dans un tunnel de vis de piston 256 qui traverse de part en part la broche centrale de piston 210 dans le sens de sa longueur. [180] Le tunnel de vis de piston 256 forme ici une galerie de lubrification- refroidissement 227, l’huile de lubrification et de refroidissement 283 pouvant notamment circuler entre le corps de vis de piston 255 et la paroi interne dudit tunnel 256, ce dernier formant avec ledit corps 255 une première section de galerie de lubrification-refroidissement 227 qui va de la chambre de refroidissement et de lubrification de piston 217 au volume interne de piston 228, et une deuxième section de dite galerie 227 qui va dudit volume 228 à l’intérieur du carter de transmission 206.
[181] Avantageusement, le corps de vis de piston 255 comporte des renflements d’étanchéité de vis 258 qui séparent de façon étanche le tunnel de vis de piston 256 en deux sections au moyen de joints d’étanchéité de renflement 259.
[182] Comme le montre clairement les figures 2 à 5 et les figures 8, 9 et 13, la vis axiale de piston à double effet 219 comprend également une tête de vis de piston 253 qui prend appui à l’extrémité de la tige supérieure de piston 212 qui est orientée vers la chambre de refroidissement et de lubrification de piston 217, et un filetage de vis de piston 254 qui est vissé dans la crosse 244.
[183] Nous supposerons ici que le gaz de travail 240 est introduit dans le détendeur 279 via une soupape d’admission 284 à une température de mille trois-cents degrés Celsius, tandis que la température d’équilibre opérationnelle de la culasse inférieure 213 et de la culasse supérieure 214 qui enserrent le carter-cylindre refroidi 203 d’une part, et celle de la calotte chaude inférieure 226 et de la calotte chaude supérieure 232 qui coiffent le piston à double effet multitempérature 201 d’autre part, est de neuf-cent cinquante degrés Celsius.
[184] On note qu’avantageusement et comme l’illustrent les figures 1 et 2 et les figures 6 et 7, la soupape d’admission 284 et une soupape d'échappement 285 par laquelle le gaz de travail 240 est expulsé du détendeur 279 après y avoir été détendu sont autoclaves, et peuvent être chacune pilotée par un actionneur hydraulique de soupape à régénération tel que décrit dans le brevet N° 3071896 en date du 11 octobre 2019 et appartenant au demandeur.
[185] Différemment du moteur thermique à transfert-détente et régénération selon le brevet WO2016120560 dont toutes les parois internes de détendeur sont maintenues à une température élevée de par exemple de neuf-cent cinquante degrés Celsius, la paroi interne du cylindre froid 204 du détendeur 279 du moteur thermique 202 est ici maintenue par des moyens de refroidissement de carter- cylindre 286 à la température relativement basse de cent degrés Celsius, cette température n’étant donnée qu’à titre d’exemple.
[186] En figures 2 et 3, on a montré que les moyens de refroidissement de carter- cylindre 286 peuvent être constitués d’une chambre de refroidissement 287 qui enveloppe la surface externe du cylindre froid 204, un liquide caloporteur 288, en l’occurrence de l’eau, circulant dans ladite chambre 287.
[187] Ainsi et comme le montrent clairement les figures 2 et 3, pratiquement toutes les parois internes du détendeur 279 du moteur thermique 202 restent chaudes à l’instar de celles du moteur thermique à transfert-détente et régénération selon le brevet WC2016120560, à l’exception du cylindre froid 204.
[188] Les surfaces chaudes restantes sont suffisantes pour obtenir du cycle de Brayton à régénération un rendement thermodynamique significativement plus élevé en pratique que celui obtenu des cycles d’Otto et de Diesel.
[189] On note, ce qui est montré de façon évidente en figures 10 et 11 , que l’anneau périphérique d’étanchéité 220 présente une jupe en tonneau 260, deux segments de compression 222 et un segment racleur d’huile 278, ces composants 260, 222, 278 étant également maintenus à une température de l’ordre de cent degrés Celsius, proche de celle du cylindre froid 204 avec lequel ils coopèrent, ceci notamment pour préserver l’intégrité de l’huile de lubrification et de refroidissement 283 qui forme un film sur la paroi interne dudit cylindre 204.
[190] On comprend donc que, contrairement au moteur thermique à transfert- détente et régénération selon le brevet WO2016120560, les moyens d’étanchéité de piston 221 ne sont plus ici constitués d’un dispositif d’étanchéité à coussin de fluide selon le brevet FR 3032252, mais bien d’une segmentation comparable à celle des moteurs à combustion interne automobiles conventionnels, lesdits moyens 221 étant refroidis et lubrifiés de la même manière.
[191] Cette similitude permet au piston à double effet multi température 201 selon l’invention de bénéficier de savoirs faires plus que centenaires dans le domaine de la segmentation des pistons de moteurs à combustion interne. [192] La configuration particulière dudit piston 201 et du détendeur 279 dont fait partie ledit piston 201 se justifie en ce que, dans les conditions de température qui viennent d’être décrites, la chaleur cédée au cylindre froid 204 par le gaz de travail 240 forme une perte énergétique comparable voire inférieure à celle induite d’une part, par le dispositif d’étanchéité à coussin de fluide objet du brevet FR 3032252 du fait des moyens de compression nécessaires à son alimentation en air comprimé, et d’autre part, par le système de refroidissement régénératif selon le brevet N° EP 3585993 à cause des pertes de charges à l’échappement additionnelles qu’il génère, et de la réintroduction dans le cycle thermodynamique de la chaleur extraite des parois internes du détendeur via un échangeur thermique de régénération dont le rendement est inférieur à un.
[193] Pour preuve du bien-fondé du piston à double effet multitempérature 201 selon l’invention, on note que si toutes les parois internes du détendeur 279 montré en figures 2 et 3 - y compris la culasse inférieure 213, la culasse supérieure 214, la calotte chaude inférieure 226 et la calotte chaude supérieure 232 - étaient maintenues à seulement cent degrés Celsius à l’instar des parois internes des moteurs à combustion interne automobiles produits en grande série, la puissance calorifique moyenne spécifique à la surface - par exemple exprimée en kilowatts par mètre carré - cédée par le gaz de travail 240 au cylindre froid 204, serait très inférieure à celle cédée par ledit gaz 240 auxdites culasses 213, 214 et auxdites calottes 226, 232.
[194] En effet, la surface que le cylindre froid 204 expose au gaz de travail 240 est petite en début de détente dudit gaz 240, puis s’agrandit au fur et mesure que ledit gaz 240 se détend et que parallèlement, sa température baisse, contrairement à la culasse inférieure 213, à la culasse supérieure 214, à la calotte chaude inférieure 226 et à la calotte chaude supérieure 232, dont la surface exposée au gaz de travail 240 reste constante.
[195] Ainsi, en supposant que lesdites culasses 213, 214 et lesdites calottes 226, 232 soient maintenues volontairement à cent degrés Celsius durant la détente, la puissance de refroidissement spécifique à la surface serait beaucoup plus faible au niveau des parois internes du cylindre froid 204 qu’au niveau de celles desdites culasses 213, 214 et desdites calottes 226, 232. [196] En outre, le piston à double effet multitempérature 201 étant comme son nom l’indique à double effet, la surface du cylindre froid 204 relativement à celle desdites culasses 213, 214 et desdites calottes 226, 232 se retrouve fortement réduite comparativement à ce que serait ladite surface si ledit piston 201 était à simple effet.
[197] En effet, le cylindre froid 204 étant commun à la chambre de volume variable inférieure 208 et à la chambre de volume variable supérieure 209, sa surface vaut ici et selon l’exemple de réalisation du piston à double effet multitempérature 201 suivant l’invention montré en figures 2 et 3, moins de trente pour cent de la surface interne totale du détendeur 279 qui est mise en contact avec le gaz de travail 240.
[198] On observe également qu’à puissance maximale identique, le moteur thermique 202 étant doté du piston à double effet multitempérature 201 et exécutant un cycle de Brayton à régénération, la surface interne de son cylindre froid 204 est plus petite en absolu que la surface interne du cylindre d’un moteur à cycle d’Otto ou de Diesel d’architecture conventionnelle.
[199] Ceci, réduit les pertes thermiques relatives imputables audit cylindre froid 204.
[200] De plus, la température maximale atteinte par les gaz dans le cylindre d’un moteur à cycle d’Otto ou de Diesel conventionnel est de l’ordre de deux mille cinq cents degrés Celsius contre seulement environ mille trois-cents degrés Celsius s’agissant du moteur thermique 202 exécutant un cycle de Brayton à régénération montré en figures 1 à 3.
[201] Toutes choses égales par ailleurs, cette moindre température réduit encore les pertes de chaleur du gaz de travail 240 au contact du cylindre froid 204.
[202] En outre, on remarquera que contrairement à la culasse inférieure 213, à la culasse supérieure 214, à la calotte chaude inférieure 226 et à la calotte chaude supérieure 232, le moteur thermique 202 étant doté du piston à double effet multitempérature 201 selon l’invention, son cylindre froid 204 est localisé dans une zone de faible turbulence du gaz de travail 240 lors de l’introduction dudit gaz 240 dans la chambre de volume variable inférieure 208 ou la chambre de volume variable supérieure 209 via la soupape d’admission 284 correspondante, ou lors de l’expulsion dudit gaz 240 hors desdites chambres 208, 209 via leur soupape d'échappement 285.
[203] Cette turbulence de faible intensité limite le forçage convectif et la cession de chaleur par le gaz de travail 240 au cylindre froid 204.
[204] On remarquera d’ailleurs que, contrairement aux moteurs conventionnels à cycle d’Otto ou de Diesel, la turbulence des gaz introduits dans le détendeur 279 n’a pas besoin d’être forcée par des mouvements connus de l’homme de l’art sous les termes anglo-saxons de « tumble », de «swirl >> ou de « squish >>, pour favoriser quelque combustion que ce soit.
[205] En effet, dans la mesure où le moteur thermique 202 doté du piston à double effet multitempérature 201 selon l’invention exécute un cycle de Brayton à régénération - ce qui est sa vocation première - la combustion ou le réchauffage du gaz de travail 240 s’effectue au moyen d’une source chaude située en amont du détendeur 279 et non dans ledit détendeur 279, ladite source pouvant être constituée d’un brûleur, d’un échangeur de chaleur ou encore et à titre d’exemple non-limitatif, d’un capteur à concentration de rayonnement solaire.
[206] La non nécessité de créer de la turbulence volontaire pour favoriser une combustion réduit donc encore les pertes thermiques du moteur thermique 202 doté du piston à double effet multitempérature 201 selon l’invention exécutant un cycle de Brayton à régénération par rapport à celles d’un moteur conventionnel à cycle d’Otto ou de Diesel, et ceci, du fait d’un moindre forçage convectif entre le gaz de travail 240 et la paroi interne du cylindre froid 204.
[207] Ceci étant exposé, pour bénéficier des avantages du piston à double effet multitempérature 201 selon l’invention, on comprend que ledit piston 201 implique de faire coopérer des pièces chaudes et des pièces froides distantes les unes des autres de seulement quelques millimètres.
[208] Pour démontrer comment le piston à double effet multitempérature 201 selon l’invention autorise cette coopération de pièces chaudes et de pièces froides très proches les unes des autres, nous supposerons ici que la broche centrale de piston 210, le disque de liaison radiale inférieure 224, le disque de liaison radiale supérieure 225, l’anneau périphérique d’étanchéité 220 ainsi que le tube inférieur coaxial externe de broche 243 et le tube supérieur coaxial externe de broche 248 sont réalisés en acier à hautes caractéristiques mécaniques, tandis que la calotte chaude inférieure 226 et la calotte chaude supérieure 232 sont réalisées en carbure silicium 276.
[209] Le carter-cylindre refroidi 203 et le cylindre froid 204 sont quant à eux réalisés en fonte, cependant que la culasse inférieure 213 et la culasse supérieure 214 sont également réalisées en carbure silicium 276.
[210] Nous supposerons également ici que le diamètre intérieur du cylindre froid 204 vaut deux cent quarante millimètres.
[21 1] La grande proximité entre les pièces froides 210, 224, 225, 220 en acier ou celles en fonte 203, 204, et les pièces chaudes 226, 232, fait apparaître un double enjeu lié aux dilatations différentielles et à la limitation des transferts de chaleur depuis lesdites pièces chaudes 226, 232, vers lesdites pièces froides 210, 224, 225, 220, 203, 204.
[212] Prenons par exemple le cas de la calotte chaude inférieure 226 du piston à double effet multitempérature 201 suivant l’invention, selon sa configuration particulière montrée en figures 2 à 4, en figures 6 à 1 1 , et en figure 13, le fonctionnement de la calotte chaude supérieure 232 étant identique.
[213] Ladite calotte 226 et l’ensemble mécano soudé 289 que forme l’anneau périphérique d’étanchéité 220, le disque de liaison radiale inférieure 224, le disque de liaison radiale supérieure 225 et la broche centrale de piston 210 avec lequel coopère ladite calotte 226, sont tous deux fabriqués à une température de l’ordre de vingt degrés Celsius.
[214] Or, en fonctionnement, la température de l’ensemble mécano soudé 289 se stabilise à environ cent degrés Celsius cependant que celle de la calotte chaude inférieure 226 se stabilise à neuf cent cinquante degrés Celsius.
[215] Tenant compte des coefficients de dilatation des matériaux constitutifs de la calotte chaude inférieure 226 et de l’ensemble mécano soudé 289, ces températures conduisent à des écarts de diamètre à chaud entre celui de ladite calotte 226 et celui dudit ensemble 289 de près d’un millimètre.
[216] De même, sous l’effet de la température, la longueur axiale totale de la calotte chaude inférieure 226 croît de l’ordre d’un millimètre également, une telle variation de dite longueur ne pouvant que difficilement être absorbée par les moyens de plaquage de calotte 234 qui doivent par ailleurs reprendre les efforts axiaux générés par l’inertie de ladite calotte 226 lors des accélérations du piston à double effet multitempérature 201 suivant l’invention.
[217] En outre, la grande proximité entre la calotte chaude inférieure 226 et l’ensemble mécano soudé 289 est de nature à favoriser les transferts de chaleur depuis ladite calotte 226 vers ledit ensemble 289, lesdits transferts étant néfastes au rendement thermodynamique du moteur thermique 202 à cycle de Brayton à régénération.
[218] Le piston à double effet multitempérature 201 selon l’invention répond à ce double besoin d’une part, d’absorber d’importants écarts de dilatation entre diverses pièces maintenues au contact l’une de l’autre et opérant à des températures très différentes, et d’autre part, de limiter les échanges de chaleur entre lesdites pièces.
[219] En effet, comme on le voit par exemple en figure 5, ledit piston 201 comprend d’une part, un anneau isolant 236 en oxyde de zirconium 238 ou en quartz - des matériaux réputés pour leur bonne tenue en température et leur très faible conductivité thermique - qui est interposé entre la calotte chaude inférieure 226 et l’anneau périphérique d’étanchéité 220 et d’autre part, un anneau isolant 236 fait du même matériau qui est interposé entre ladite calotte 226 et la broche centrale de piston 210.
[220] Comme on le voit en figure 6, avantageusement, le tube inférieur coaxial externe de broche 243 qui forme les moyens de plaquage de calotte 234 repose sur l’anneau isolant 236 qui est radialement proche de la broche centrale de piston 210.
[221] On note aussi en figure 6 le ressort de tube 250 qui prend appui sur la crosse 244 et qui est constitué d’un empilement de rondelles élastiques « Belleville >>.
[222] On remarque également que pour limiter les pertes de chaleur préjudiciables au rendement du moteur thermique 202 à cycle de Brayton à régénération qui reçoit le piston à double effet multitempérature 201 selon l’invention, l’anneau isolant 236 interposé entre la calotte chaude inférieure 226 et l’anneau périphérique d’étanchéité 220 est maintenu plaqué sur ladite calotte 226 par l’intermédiaire d’une arête de contact de faible surface 241 qui réduit la section laissée au passage de la chaleur.
[223] Comme on le remarque en figures 10 et 11 , grâce à la configuration particulière du piston à double effet multitempérature 201 suivant l’invention, la dilatation thermique de la calotte chaude inférieure 226 n’influe que peu ou pas sur la longueur totale de l’assemblage que constitue ladite calotte 226 avec l’anneau périphérique d’étanchéité 220, de sorte que les moyens de plaquage de calotte 234 qui plaquent ladite calotte 226 sur ledit anneau 220 ne sont pas surcontraints par ladite dilatation.
[224] En effet, on remarque en figures 10 et 11 que la calotte chaude inférieure 226 présente une surface conique concave de calotte 251 par l’intermédiaire de laquelle ladite calotte 226 est maintenue plaquée par les moyens de plaquage de calotte 234 sur une arête circulaire de contact périphérique 252 que présente l’anneau isolant 236 lequel est solidaire de l’anneau périphérique d’étanchéité 220, ladite arête 252 faisant office d’arête de contact de faible surface 241 .
[225] L’angle du cône concave que forme la surface conique concave de calotte 251 est calculé pour que lorsque ladite surface 251 glisse sur l’arête circulaire de contact périphérique 252 du fait de l’écart entre la dilatation thermique de la calotte chaude inférieure 226 et celle de l’ensemble ensemble mécano soudé 289, la distance axiale qui sépare le point d’appui du tube inférieur coaxial externe de broche 243 sur ladite calotte 226 de l’anneau périphérique d’étanchéité 220 reste approximativement constante toute chose égale par ailleurs.
[226] Selon cette configuration particulière du piston à double effet multitempérature 201 suivant l’invention, la surface conique concave de calotte 251 et l’arête circulaire de contact périphérique 252 que présente l’anneau isolant 236 qui est solidaire de l’anneau périphérique d’étanchéité 220, forment les moyens de centrage de calotte 235.
[227] Selon ladite configuration, l’effort axial auquel est soumis le tube inférieur coaxial externe de broche 243 reste approximativement constant quel que soit l’écart entre la dilatation thermique de la calotte chaude inférieure 226 et celle de l’ensemble mécano soudé 289, cependant que ladite calotte 226 reste radialement toujours centrée par rapport à l’anneau périphérique d’étanchéité 220.
[228] Notons d’ailleurs que ladite configuration permet aussi de limiter la variation de rapport volumétrique du moteur thermique 202 en fonction de sa température, particulièrement lors des phases de démarrage à froid dudit moteur 202.
[229] On remarquera, par exemple en figure 6, que l’anneau isolant 236 qui est interposé entre la calotte chaude inférieure 226 et le tube inférieur coaxial externe de broche 243 ne comporte pas à proprement parler d’arête de contact de faible surface 241 , l’épaisseur radiale dudit tube 243 constituant en soi ladite arête 241 .
[230] Comme le montrent clairement les figures 4 et 5 et les figures 8, 11 et 13, une jupe en tonneau 260 est donc bien aménagée en périphérie externe de l’anneau périphérique d’étanchéité 220 de sorte à prendre appui sur le cylindre froid 204, ladite jupe 260 présentant une forme convergente qui favorise l’établissement d’un régime de lubrification hydrodynamique entre elle-même et ledit cylindre 204.
[231] Au voisinage des deux extrémités axiales de l’anneau périphérique d’étanchéité 220, on remarque, de façon particulièrement claire en figures 10 et 11 , les deux segments de compression 222 qui forment les moyens d’étanchéité de piston 221 et qui empêchent le gaz de travail 240 de passer de la chambre de volume variable inférieure 208 à la chambre de volume variable supérieure 209, et inversement.
[232] Toujours en figures 10 et 11 , au dessous de la jupe en tonneau 260, on distingue le segment racleur d’huile 278 et les orifices périphériques de lubrification d’anneau 229 qui débouchent à l’arrière dudit segment 278.
[233] Cette disposition permet d’une part, d’amener de l’huile de lubrification et de refroidissement 283 pour lubrifier la jupe en tonneau 260 et les segments de compression 222, et d’autre part, de retourner tout excédent de dite huile 283 dans le volume interne de piston 228.
[234] Les figures 8 et 9 montrent le cheminement de l’huile de lubrification et de refroidissement 283 au travers de l’ensemble mécano soudé 289. [235] En effet, ladite huile 283 en provenance d’une source de fluide lubrifiant- refroidissant 218 est ici injectée dans la chambre de refroidissement et de lubrification de piston 217 par une buse à fluide 266, cette dernière projetant un jet d’huile de lubrification et de refroidissement 283 dans un réservoir axial de vis 267 qui est aménagé axialement dans la tête de vis de piston 253.
[236] Le réservoir axial de vis 267 permet de stocker de l’huile de lubrification et de refroidissement 283 quel que soit le sens de déplacement du piston à double effet multitempérature 201 suivant l’invention, et de maximiser la part de dite huile 283 qui transite par le volume interne de piston 228 avant d’être expulsée dans le carter de transmission 206.
[237] En effet, une partie relativement faible de ladite huile 283 est utilisée d’une part, pour lubrifier les segments à coupe 282 ou l’anneau continu extensible 297 qui forment une étanchéité entre le tube supérieur coaxial externe de broche 248 et la culasse supérieure 214 et d’autre part, pour refroidir ledit tube 248.
[238] A ce titre, on remarque en figure 12 le clapet limiteur de pression 274 qui fait office de trop-plein de la chambre de refroidissement et de lubrification de piston 217 et qui permet, en coopération avec un clapet anti-retour d’admission d’air 271 relié à une source d’air 270 ledit clapet 271 laissant un air de forçage de fluide 272 entrer dans ladite chambre 217, de légèrement pressuriser cette dernière tout en limitant le niveau d’huile de lubrification et de refroidissement 283 que contient ladite chambre 217.
[239] En effet, en deçà d’une certaine pression régnant dans la chambre de refroidissement et de lubrification de piston 217, le clapet anti-retour d’admission d’air 271 laisse entrer de l’air de forçage de fluide 272 en provenance de la source d’air 270 dans ladite chambre 217, cependant qu’au dessus d’une certaine dite pression, le clapet limiteur de pression 274 expulse de l’air de forçage de fluide 272 dans une bâche à air 273.
[240] Comme on le voit en figure 12, avantageusement, l’intérieur du carter de transmission 206 peut former à la fois la source d’air 270 et la bâche à air 273.
[241] La légère pressurisation de la chambre de refroidissement et de lubrification de piston 217 au moyen d’un air de forçage de fluide 272 permet, lorsque le moteur thermique 202 tourne à faible vitesse et que les accélérations du piston à double effet multitempérature 201 suivant l’invention sont de faible intensité, de forcer l’huile de lubrification et de refroidissement 283 à pénétrer dans la galerie de lubrification-refroidissement 227 qui est aménagée dans la broche centrale de piston 210.
[242] Toujours aux fins de maximiser la part d’huile de lubrification et de refroidissement 283 qui transite par le volume interne de piston 228, on remarque en figures 7, 8, 9 et 13 le clapet anti retour de vis 269 qui est ici positionné au fond du réservoir axial de vis 267 afin qu’à chaque accélération en direction de la culasse supérieure 214 du piston à double effet multitempérature 201 suivant l’invention, l’huile de lubrification et de refroidissement 283 que contient ledit réservoir 267 soit forcée à pénétrer dans la galerie de lubrification- refroidissement 227 via des conduits radiaux de liaison réservoir-galerie 268, tandis que lorsque ledit piston 201 accélère en direction de la culasse inférieure 213, ladite huile 283 contenue dans ladite galerie 227 ne retourne pas audit réservoir 267.
[243] L’ensemble de ces aménagements réalisés au niveau de la chambre de refroidissement et de lubrification de piston 217 et au niveau de la tête de vis de piston 253 assure une circulation d’huile de lubrification et de refroidissement 283 à l’intérieur de l’ensemble mécano soudé 289 pour maintenir la température de ce dernier aux environs de cent degrés Celsius, ceci tout en assurant à la jupe en tonneau 260 et aux segments 222, 278 une lubrification appropriée.
[244] Comme on le voit en figures 8, 9 et 13, une première section de la galerie de lubrification-refroidissement 227 achemine l’huile de lubrification et de refroidissement 283 depuis la chambre de refroidissement et de lubrification de piston 217 jusqu’au volume interne de piston 228, ceci en passant d’abord par le réservoir axial de vis 267, le clapet anti retour de vis 269 et les conduits radiaux de liaison réservoir-galerie 268.
[245] En figures 8 et 9, on a montré que l’huile de lubrification et de refroidissement 283 débouche dans le volume interne de piston 228 via un faible jeu axial laissé entre un disque de répartition de fluide 261 et le disque de liaison radiale supérieure 225, ledit disque de répartition 261 étant principalement parallèle audit disque de liaison radiale 225 et formant d’une part, une étanchéité avec la broche centrale de piston 210, et finissant d’autre part, radialement au voisinage de la paroi interne de l’anneau périphérique d’étanchéité 220, l’huile de lubrification et de refroidissement 283 en provenance de la chambre de refroidissement et de lubrification de piston 217 pouvant sortir au niveau dudit voisinage via des déversoirs de répartition 290.
[246] La proximité axiale entre le disque de répartition de fluide 261 et le disque de liaison radiale supérieure 225 est telle, que l’huile de lubrification et de refroidissement 283 est forcée à lécher l’entièreté de la surface interne du disque de liaison radiale supérieure 225 avant de ressortir par les déversoirs de répartition 290.
[247] Cette configuration particulière du piston à double effet multitempérature 201 suivant l’invention permet de maintenir la température du disque de liaison radiale supérieure 225 proche de cent degrés Celsius, quelle que soit la puissance délivrée par le moteur thermique 202.
[248] On remarque d’ailleurs en figure 13 que pour limiter la chaleur reçue par le disque de liaison radiale inférieure 224 et par le disque de liaison radiale supérieure 225, un écran réfléchissant 295 peut avantageusement être interposé entre la calotte chaude inférieure 226 et le disque de liaison radiale inférieure 224 et entre la calotte chaude supérieure 232 et le disque de liaison radiale supérieure 225, ledit écran réfléchissant 295 retournant à la calotte chaude inférieure 226 et/ou à la calotte chaude supérieure 232 la chaleur qu’émet, notamment sous la forme de rayonnement dans l’infrarouge, ladite calotte 226, 232.
[249] La figure 13 illustre qu’en plus de l’écran réfléchissant 295, un matériau isolant alvéolaire ou fibreux 296 peut occuper tout ou partie de l’espace compris entre la calotte chaude inférieure 226 et le disque de liaison radiale inférieure 224 et entre la calotte chaude supérieure 232 et le disque de liaison radiale supérieure 225.
[250] Comme on le voit en figure 8, une partie de l’huile de lubrification et de refroidissement 283 sortant des déversoirs de répartition 290 refroidit l’anneau périphérique d’étanchéité 220 par l’intérieur et alimente les orifices périphériques de lubrification d’anneau 229, de sorte qu’un peu de ladite huile 283 ressort entre les deux lèvres du segment racleur d’huile 278, ce dernier formant, consécutivement aux allers et retours opérés par le piston à double effet multitempérature 201 dans le cylindre froid 204, un film d’huile de lubrification et de refroidissement 283 en surface dudit cylindre 204, ceci tout en récupérant ladite huile 283 présente en excès sur ladite surface.
[251] On remarque en figures 8 et 9 que les efforts d’accélération sont utilisés par le piston à double effet multitempérature 201 suivant l’invention pour forcer le parcours de l’huile de lubrification et de refroidissement 283 afin que toutes les surfaces du volume interne de piston 228 soient uniformément refroidies.
[252] A ce titre, on remarque en figures 8 et 9 la collerette de recirculation de fluide 262 que comporte la broche centrale de piston 210, à l’intérieur du volume interne de piston 228 et au voisinage du disque de liaison radiale inférieure 224.
[253] A chaque accélération en direction de la culasse inférieure 213 du piston à double effet multitempérature 201 suivant l’invention et comme l’illustre la figure 9, ladite collerette 262 rejette radialement et en direction de la paroi interne de l’anneau périphérique d’étanchéité 220 de l’huile de lubrification et de refroidissement 283 qui s’est accumulée dans un réservoir à trop-plein 264 constitué d’une forme en creux que présente le disque de liaison radiale inférieure 224 au niveau de sa liaison avec la broche centrale de piston 210.
[254] Comme montré en figures 4 à 11 , la collerette de recirculation de fluide 262 peut avantageusement comporter des rigoles de collerette 263 qui forment des jets radiaux de fluide lubrifiant-refroidissant 257 de sorte à garantir que l’huile de lubrification et de refroidissement 283 soit uniformément répartie sur trois cent soixante degrés.
[255] On remarque en figures 8 et 9 les orifices de trop-plein 265 qui débouchent de la paroi externe de la broche centrale de piston 210 et qui communiquent avec l’intérieur du carter de transmission 206 via la galerie de lubrification- refroidissement 227.
[256] La position axiale desdits orifices 265 fixe le niveau maximal dudit réservoir 264 de sorte qu’à chaque accélération en direction de la culasse supérieure 214 du piston à double effet multitempérature 201 suivant l’invention, le niveau d’huile de lubrification et de refroidissement 283 que contient ledit réservoir 264 ne dépasse pas celui desdits orifices de trop-plein 265, ladite huile 283 en excès étant expulsée vers l’intérieur du carter de transmission 206.
[257] Les possibilités du piston à double effet multitempérature 1 selon l’invention ne s’en limitent pas aux applications qui viennent d’être décrites et il doit d’ailleurs être entendu que la description qui précède n’a été donnée qu’à titre d’exemple et qu’elle ne limite nullement le domaine de ladite invention dont on ne sortirait pas en remplaçant les détails d’exécution décrits par tout autre équivalents

Claims

Revendications
[Revendication 1] Piston à double effet multitempérature (201 ) pouvant translater dans un cylindre froid (204) aménagé dans un carter-cylindre refroidi (203) que comprend un moteur thermique (202), ledit piston (201 ) étant directement ou indirectement relié par des moyens de transmission de puissance (205) logés dans un carter de transmission (206) à au moins un arbre de sortie de puissance (207) rotatif ou alternatif cependant que ledit piston (201 ) forme une chambre de volume variable inférieure (208) avec le cylindre froid (204) et une culasse inférieure (213) qui est positionnée entre ledit piston (201 ) et le carter de transmission (206), ledit piston (201 ) formant simultanément une chambre de volume variable supérieure (209) avec ledit cylindre (204) et une culasse supérieure (214), lesdites chambres (208, 209) renfermant un gaz de travail (240), caractérisé en ce qu’il comprend
• Une broche centrale de piston (210) approximativement coaxiale au cylindre froid (204) et dont une première extrémité forme une tige inférieure de piston (211 ) qui traverse de part en part la culasse inférieure (213) via un orifice de tige inférieure (215) qui coopère avec des moyens d’étanchéité de tige inférieure (280) pour déboucher dans le carter de transmission (206) et pour être directement ou indirectement reliée aux moyens de transmission de puissance (205) par des moyens de fixation de piston (231 ), tandis que la deuxième extrémité de ladite broche (210) forme une tige supérieure de piston (212) qui traverse de part en part la culasse supérieure (214) via un orifice de tige supérieure (216) qui coopère avec des moyens d’étanchéité de tige supérieure (281 ) pour déboucher dans une chambre de refroidissement et de lubrification de piston (217) reliée à une source de fluide lubrifiant-refroidissant (218), cette dernière introduisant un fluide lubrifiant-refroidissant (257) dans ladite chambre (217) ;
• Un anneau périphérique d’étanchéité (220) dont le diamètre extérieur est sensiblement inférieur au diamètre intérieur du cylindre froid (204), ledit anneau (220) comportant des moyens d’étanchéité de piston (221 ) qui sont en contact avec ledit cylindre (204) pour réaliser avec ce dernier une étanchéité ;
• Un disque de liaison radiale inférieure (224) qui relie radialement la broche centrale de piston (210) avec l’anneau périphérique d’étanchéité (220) du côté de la chambre de volume variable inférieure (208), et un disque de liaison radiale supérieure (225) qui relie radialement la broche centrale de piston (210) avec l’anneau périphérique d’étanchéité (220) du côté de la chambre de volume variable supérieure (209), l’espace laissé entre lesdits disques (224, 225), l’anneau périphérique d’étanchéité (220) et la broche centrale de piston (210) formant un volume interne de piston (228) ;
• Une galerie de lubrification-refroidissement (227) aménagée principalement axialement dans la broche centrale de piston (210) et en une ou plusieurs sections, ladite galerie (227) mettant en communication d’une part, la chambre de refroidissement et de lubrification de piston (217) avec le volume interne de piston (228), et d’autre part, ledit volume (228) avec l’intérieur du carter de transmission (206) ;
• Au moins un orifice périphérique de lubrification d’anneau (229) qui met en communication le volume interne de piston (228) avec la face périphérique externe de l’anneau périphérique d’étanchéité (220), ledit orifice (229) débouchant axialement de ladite face entre au moins deux moyens d’étanchéité de piston (221 ) ;
• Des moyens de guidage (230) qui prennent directement ou indirectement appui sur ou à proximité des moyens de transmission de puissance (205) et/ou du cylindre froid (204) et/ou de la culasse inférieure (213) et/ou de la culasse supérieure (214), lesdits moyens (230) conservant directement ou indirectement l’anneau périphérique d’étanchéité (220) centré dans le cylindre froid (204) ;
• Une calotte chaude inférieure (226) interposée entre le disque de liaison radiale inférieure (224) et la chambre de volume variable inférieure (208) et/ou une calotte chaude supérieure (232) interposée entre le disque de liaison radiale supérieure (225) et la chambre de volume variable supérieure (209) ;
• Des moyens de plaquage de calotte (234) qui maintiennent directement ou indirectement la calotte chaude inférieure (226) plaquée sur l’anneau périphérique d’étanchéité (220) et/ou sur le disque de liaison radiale inférieure (224), et/ou qui maintiennent directement ou indirectement la calotte chaude supérieure (232) plaquée sur ledit anneau (220) et/ou sur le disque de liaison radiale supérieure (225), lesdits moyens (234) laissant lesdites calottes (226, 232) libres de se dilater par rapport audit anneau (220) et/ou auxdits disques (224, 225) ;
• Des moyens de centrage de calotte (235) qui localisent la calotte chaude inférieure (226) et/ou la calotte chaude supérieure (232) par rapport à l’anneau périphérique d’étanchéité (220).
[Revendication 2] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que la calotte chaude inférieure (226) et/ou la calotte chaude supérieure (232) sont en tout ou partie constituées d’un matériau résistant à hautes températures (275).
[Revendication 3] Piston à double effet multitempérature suivant la revendication 2, caractérisé en ce que le matériau résistant à hautes températures (275) est principalement constitué de carbure de silicium (276).
[Revendication 4] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que des moyens d’isolation thermique (233) et/ou des moyens d’étanchéité de calotte (239) sont interposés soit, entre la calotte chaude inférieure (226) et l’anneau périphérique d’étanchéité (220) et/ou le disque de liaison radiale inférieure (224), soit, entre la calotte chaude supérieure (232) et ledit anneau (220) et/ou le disque de liaison radiale supérieure (225), soit les deux.
[Revendication 5] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que des moyens d’isolation thermique (233) et/ou des moyens d’étanchéité de calotte (239) sont interposés soit, entre la calotte chaude inférieure (226) et la broche centrale de piston (210), soit, entre la calotte chaude supérieure (232) et ladite broche (210), soit les deux.
[Revendication 6] Piston à double effet multitempérature suivant les revendications 4 et 5, caractérisé en ce que les moyens d’isolation thermique (233) sont constitués d’au moins un anneau isolant (236) fait d’un matériau à faible conductivité thermique (237).
[Revendication 7] Piston à double effet multitempérature suivant la revendication 6, caractérisé en ce que le matériau à faible conductivité thermique (237) est principalement constitué d’oxyde de zirconium (238).
[Revendication 8] Piston à double effet multitempérature suivant la revendication 6, caractérisé en ce que l’anneau isolant (236) est maintenu directement ou indirectement en contact avec la broche centrale de piston (210) et/ou l’anneau périphérique d’étanchéité (220) et/ou la calotte chaude inférieure (226) et/ou le disque de liaison radiale inférieure (224) et/ou la calotte chaude supérieure (232) et/ou le disque de liaison radiale supérieure (225) par l’intermédiaire d’au moins une arête de contact de faible surface
(241 ).
[Revendication 9] Piston à double effet multitempérature suivant la revendication 6, caractérisé en ce que l’anneau isolant (236) est maintenu directement ou indirectement en contact avec la broche centrale de piston (210) et/ou l’anneau périphérique d’étanchéité (220) et/ou la calotte chaude inférieure (226) et/ou le disque de liaison radiale inférieure (224) et/ou la calotte chaude supérieure (232) et/ou le disque de liaison radiale supérieure (225) par l’intermédiaire d’au moins un joint d’étanchéité d’anneau isolant
(242) qui est étanche au gaz de travail (240).
[Revendication 10] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que les moyens de plaquage de calotte (234) qui maintiennent directement ou indirectement la calotte chaude inférieure (226) plaquée sur l’anneau périphérique d’étanchéité (220) et/ou sur le disque de liaison radiale inférieure (224), sont formés d’un tube inférieur coaxial externe de broche (243) qui enveloppe la broche centrale de piston (210), ledit tube (243) prenant appui d’une part, sur la calotte chaude inférieure (226) au voisinage de ladite broche (210), et d’autre part, sur les moyens de transmission de puissance (205).
[Revendication 11] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que les moyens de plaquage de calotte (234) qui maintiennent directement ou indirectement la calotte chaude supérieure (232) plaquée sur l’anneau périphérique d’étanchéité (220) et/ou sur le disque de liaison radiale supérieure (225), sont formés d’un tube supérieur coaxial externe de broche (248) qui enveloppe la broche centrale de piston (210), ledit tube (248) prenant appui d’une part, sur la calotte chaude supérieure (232) au voisinage de ladite broche (210), et d’autre part, sur une butée de tige supérieure (249) aménagée directement ou indirectement sur la tige supérieure de piston (212) au voisinage de son extrémité qui débouche dans la chambre de refroidissement et de lubrification de piston (217).
[Revendication 12] Piston à double effet multitempérature suivant les revendications 10 et 11 , caractérisé en ce que certaines ou toutes les extrémités du tube inférieur coaxial externe de broche (243) et/ou du tube supérieur coaxial externe de broche (248) reçoivent un ressort de tube (250) par l’intermédiaire duquel lesdits tubes (243, 248) prennent respectivement appui sur la calotte chaude inférieure (226) et sur les moyens de transmission de puissance (205) et/ou sur la calotte chaude supérieure (232) et sur la butée de tige supérieure (249).
[Revendication 13] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que la calotte chaude inférieure (226) et/ou la calotte chaude supérieure (232) présente une surface conique concave de calotte (251 ) par l’intermédiaire de laquelle ladite calotte (226, 232) est maintenue plaquée par les moyens de plaquage de calotte (234) sur une arête circulaire de contact périphérique (252) qui est directement ou indirectement solidaire de l’anneau périphérique d’étanchéité (220) et/ou de la périphérie du disque de liaison radiale inférieure (224) et/ou de la périphérie du disque de liaison radiale supérieure (225), l’angle du cône concave que forme ladite surface (251 ) étant tel que lorsque ladite surface (251 ) glisse sur ladite arête (252) du fait de l’écart entre la dilatation thermique de ladite calotte (226, 232) et celle de l’ensemble que forme l’anneau périphérique d’étanchéité (220), le disque de liaison radiale inférieure (224), le disque de liaison radiale supérieure (225) et la broche centrale de piston (210), la distance axiale qui sépare le point d’appui des moyens de plaquage de calotte (234) sur ladite calotte (226, 232) de l’anneau périphérique d’étanchéité (220) reste approximativement constante toute chose égale par ailleurs, cependant que la surface conique concave de calotte (251 ) et l’arête circulaire de contact périphérique (252) forment les moyens de centrage de calotte (235).
[Revendication 14] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que les moyens de fixation de piston (231 ) sont constitués d’une vis axiale de piston à double effet (219) qui comprend de première part, un corps de vis de piston (255) qui est logé dans un tunnel de vis de piston (256) qui traverse de part en part la broche centrale de piston (210) dans le sens de sa longueur, ladite vis (219) comprenant d’une part, une tête de vis de piston (253) qui prend appui à l’extrémité de la tige supérieure de piston (212) qui débouche dans la chambre de refroidissement et de lubrification de piston (217), et d’autre part, un filetage de vis de piston (254) qui est vissé dans les moyens de transmission de puissance (205).
[Revendication 15] Piston à double effet multitempérature suivant la revendication 14, caractérisé en ce que le tunnel de vis de piston (256) forme une part au moins de la galerie de lubrification-refroidissement (227), le fluide lubrifiant-refroidissant (257) pouvant circuler entre le corps de vis de piston (255) et la paroi interne dudit tunnel (256), ce dernier formant avec ledit corps (255) une première section qui va de la chambre de refroidissement et de lubrification de piston (217) au volume interne de piston (228), et une deuxième section qui va dudit volume (228) à l’intérieur du carter de transmission (206).
[Revendication 16] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que les moyens de guidage (230) sont constitués d’une jupe en tonneau (260) qui est aménagée en périphérie externe de l’anneau périphérique d’étanchéité (220) et qui prend appui sur le cylindre froid (204).
[Revendication 17] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que la galerie de lubrification- refroidissement (227) débouche dans le volume interne de piston (228) via un faible jeu axial laissé entre d’une part, un disque de répartition de fluide (261 ) qui est logé dans ledit volume (228) et d’autre part, le disque de liaison radiale supérieure (225), ledit disque de répartition (261) étant approximativement parallèle audit disque de liaison radiale (225) et formant d’une part, une étanchéité avec la broche centrale de piston (210), et finissant d’autre part, radialement au voisinage de la paroi interne de l’anneau périphérique d’étanchéité (220), le fluide lubrifiant-refroidissant (257) en provenance de la chambre de refroidissement et de lubrification de piston (217) pouvant sortir au niveau dudit voisinage.
[Revendication 18] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que la broche centrale de piston (210) comporte, à l’intérieur du volume interne de piston (228) et au voisinage du disque de liaison radiale inférieure (224), une collerette de recirculation de fluide (262) qui, lorsque la broche centrale de piston (210) se déplace en direction de la culasse inférieure (213), rejette radialement et en direction de la paroi interne de l’anneau périphérique d’étanchéité (220) le fluide lubrifiant- refroidissant (257) qui s’est accumulé dans ledit volume (228) et en surface dudit disque (224).
[Revendication 19] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que le disque de liaison radiale inférieure (224) présente une forme un creux (294) au niveau de sa liaison avec la broche centrale de piston (210), ladite forme (294) constituant un réservoir à trop-plein (264) qui peut stocker du fluide lubrifiant-refroidissant (257), cependant qu’au moins un orifice de trop-plein (265) qui communique avec l’intérieur du carter de transmission (206) via la galerie de lubrification- refroidissement (227) fixe le niveau maximal dudit réservoir (264).
[Revendication 20] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce qu’une buse à fluide (266) alimentée par la source de fluide lubrifiant-refroidissant (218) débouche dans la chambre de refroidissement et de lubrification de piston (217) pour y injecter un jet de fluide (267).
[Revendication 21] Piston à double effet multitempérature suivant les revendications 14 et 20, caractérisé en ce que la buse à fluide (266) injecte un jet de fluide lubrifiant-refroidissant (257) dans un réservoir axial de vis (267) qui est aménagé axialement dans la tête de vis de piston (253), ledit réservoir (267) communiquant avec la galerie de lubrification-refroidissement (227) via au moins un conduit radial de liaison réservoir-galerie (268).
[Revendication 22] Piston à double effet multitempérature suivant la revendication 21 , caractérisé en ce qu’un clapet anti retour de vis (269) est logé dans la vis axiale de piston à double effet (219), ledit clapet (269) permettant au fluide lubrifiant-refroidissant (257) d’aller du réservoir axial de vis (267) vers la galerie de lubrification-refroidissement (227), mais non l’inverse.
[Revendication 23] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que la chambre de refroidissement et de lubrification de piston (217) est reliée à une source d’air (270) par un clapet anti-retour d’admission d’air (271) qui laisse entrer un air de forçage de fluide (272) dans ladite chambre (217) sans le laisser en ressortir, cependant que ladite chambre (217) est reliée à une bâche à air (273) par un clapet limiteur de pression (274) qui laisse l’air de forçage de fluide (272) aller de ladite chambre (217) à ladite bâche (273) lorsque la pression dudit air (272) dans ladite chambre (217) atteint une certaine valeur.
[Revendication 24] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce qu’un écran réfléchissant (295) est interposé entre la calotte chaude inférieure (226) et le disque de liaison radiale inférieure (224) auquel peut s’ajouter une partie de l’anneau périphérique d’étanchéité (220) et/ou, entre la calotte chaude supérieure (232) et le disque de liaison radiale supérieure (225) auquel peut s’ajouter une partie dudit anneau (220)
[Revendication 25] Piston à double effet multitempérature suivant la revendication 4, caractérisé en ce que les moyens d’isolation thermique (233) sont constitués d’un matériau isolant alvéolaire ou fibreux (296) qui occupe tout ou partie de l’espace compris entre la calotte chaude inférieure (226) et le disque de liaison radiale inférieure (224) et/ou entre la calotte chaude supérieure (232) et le disque de liaison radiale supérieure (225).
[Revendication 26] Piston à double effet multitempérature suivant les revendications 10, 11 et 14, caractérisé en ce qu’au moins un premier espace radial laissé entre le tube supérieur coaxial externe de broche (248) et la broche centrale de piston (210), au moins un deuxième espace radial laissé entre le tube inférieur coaxial externe de broche (243) et la broche centrale de piston (210), et un plusieurs espaces radiaux laissés entre le corps de vis de piston (255) et la paroi interne du tunnel de vis de piston (256) forment une part au moins de la galerie de lubrification-refroidissement (227), le fluide lubrifiant-refroidissant (257) pouvant circuler successivement dans lesdits espaces pour aller de la chambre de refroidissement et de lubrification de piston (217) au volume interne de piston (228), puis dudit volume (228) à l’intérieur du carter de transmission (206).
[Revendication 27] Piston à double effet multitempérature suivant la revendication 1 , caractérisé en ce que les moyens d’étanchéité de tige inférieure (280) et/ou les moyens d’étanchéité de tige supérieure (281 ) sont constitués d’un anneau continu extensible (297) qui est directement ou indirectement solidaire du carter-cylindre refroidi (203), et dont le diamètre intérieur est sensiblement plus petit que le diamètre extérieur de la tige inférieure de piston (211 ) ou de la tige supérieure de piston (212) qu’il enserre.
[Revendication 28] Piston à double effet multitempérature suivant la revendication 27, caractérisé en ce que l’anneau continu extensible (297) est relié à une platine d’anneau (298) par un tube d’anneau (299) de faible épaisseur radiale, ledit anneau (297), ladite platine (298) et ledit anneau (297) étant réalisés dans un seul et même lopin de matière.
[Revendication 29] Piston à double effet multitempérature suivant la revendication 27, caractérisé en ce que l’anneau continu extensible (297) est axialement enserré entre deux bagues d’anneau (300) par un ressort de compression axiale d’anneau (301). i
PCT/IB2023/051213 2022-02-11 2023-02-10 Piston à double effet multitempérature WO2023152701A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023219331A AU2023219331A1 (en) 2022-02-11 2023-02-10 Multi-temperature double-acting piston

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2201218A FR3132747B1 (fr) 2022-02-11 2022-02-11 Piston à double effet multitemperature
FRFR2201218 2022-02-11

Publications (1)

Publication Number Publication Date
WO2023152701A1 true WO2023152701A1 (fr) 2023-08-17

Family

ID=81851134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/051213 WO2023152701A1 (fr) 2022-02-11 2023-02-10 Piston à double effet multitempérature

Country Status (3)

Country Link
AU (1) AU2023219331A1 (fr)
FR (1) FR3132747B1 (fr)
WO (1) WO2023152701A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230304456A1 (en) * 2022-02-11 2023-09-28 Vianney Rabhi Moteur thermique alternatif a culasse chaude et cylindre froid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213873A (ja) * 1985-07-10 1987-01-22 Toshiba Corp 往復動軸シ−ル装置
US4653269A (en) 1975-03-14 1987-03-31 Johnson David E Heat engine
US5056419A (en) * 1989-07-21 1991-10-15 Aisin Seiki Kabushiki Kaisha Sealing device for a piston rod of a stirling engine
WO2016120560A2 (fr) 2015-01-30 2016-08-04 Vianney Rabhi Moteur thermique a transfert détente et régénération
WO2016120556A1 (fr) * 2015-01-30 2016-08-04 Vianney Rabhi Dispositif d'etancheite a coussin de fluide
US20170074398A1 (en) * 2015-09-14 2017-03-16 Vianney Rabhi Double-acting piston
EP3350433A1 (fr) 2015-09-14 2018-07-25 Vianney Rabhi Cylindre detendeur a double effet a support adaptatif
RU2674839C1 (ru) * 2017-10-31 2018-12-13 Михаил Иванович Азанов Двигатель стирлинга с чашеобразным поршнем-вытеснителем
EP3585993A1 (fr) 2017-02-27 2020-01-01 Vianney Rabhi Système de refroidissement régénératif

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3071896A (en) 1961-04-14 1963-01-08 Phillip C Kayser Article rotating and advancing mechanism for cutting or grinding machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653269A (en) 1975-03-14 1987-03-31 Johnson David E Heat engine
JPS6213873A (ja) * 1985-07-10 1987-01-22 Toshiba Corp 往復動軸シ−ル装置
US5056419A (en) * 1989-07-21 1991-10-15 Aisin Seiki Kabushiki Kaisha Sealing device for a piston rod of a stirling engine
WO2016120560A2 (fr) 2015-01-30 2016-08-04 Vianney Rabhi Moteur thermique a transfert détente et régénération
WO2016120556A1 (fr) * 2015-01-30 2016-08-04 Vianney Rabhi Dispositif d'etancheite a coussin de fluide
FR3032252A1 (fr) 2015-01-30 2016-08-05 Vianney Rabhi Dispositif d'etancheite a coussin de fluide
US20170074398A1 (en) * 2015-09-14 2017-03-16 Vianney Rabhi Double-acting piston
EP3350433A1 (fr) 2015-09-14 2018-07-25 Vianney Rabhi Cylindre detendeur a double effet a support adaptatif
EP3585993A1 (fr) 2017-02-27 2020-01-01 Vianney Rabhi Système de refroidissement régénératif
RU2674839C1 (ru) * 2017-10-31 2018-12-13 Михаил Иванович Азанов Двигатель стирлинга с чашеобразным поршнем-вытеснителем

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230304456A1 (en) * 2022-02-11 2023-09-28 Vianney Rabhi Moteur thermique alternatif a culasse chaude et cylindre froid
US12000357B2 (en) * 2022-02-11 2024-06-04 Vianney Rabhi Reciprocating heat engine with hot cylinder head and cold cylinder

Also Published As

Publication number Publication date
FR3132747B1 (fr) 2024-01-05
AU2023219331A1 (en) 2024-08-29
FR3132747A1 (fr) 2023-08-18

Similar Documents

Publication Publication Date Title
CA2974478C (fr) Moteur thermique a transfert-detente et regeneration
CA2998581C (fr) Cylindre detendeur a double effet a support adaptatif
FR2955618A1 (fr) Culasse de moteur a combustion interne comportant un circuit de refroidissement
FR2998922A1 (fr) Etancheite d'enceintes de turbomachine realisee par joint a brosse et labyrinthe
CA2916005C (fr) Dispositif de compression thermique de fluide gazeux
FR2970290A1 (fr) Systeme pour regler des segments de joint brosse dans une turbomachine
WO2023152701A1 (fr) Piston à double effet multitempérature
CA2639209C (fr) Ventilation et pressurisation de composants dans une turbomachine
FR2871527A1 (fr) Moteur stirling
WO2023152451A1 (fr) Moteur thermique alternatif a culasse chaude et cylindre froid
FR2777944A1 (fr) Moteur a explosions, a plat et a cylindres opposes
US20230258145A1 (en) Piston a double effet multitemperature
WO2017046480A1 (fr) Piston a double effet
FR2999249A1 (fr) Compresseur pour turbomachine dote de moyens de refroidissement d'un joint tournant assurant l'etancheite entre un redresseur et un rotor
FR3067386B1 (fr) Machine de detente
FR2913458A1 (fr) Architecture innovante pour moteurs stirling,moteur stirling ainsi dispose.
EP3258078B1 (fr) Système de refroidissement d'un moteur thermique
WO2014184200A1 (fr) Système d'admission amélioré pour une machine de détente axiale
FR3028563A1 (fr) Piston alternatif et contenant faisant moteur thermique, pneumatique, hybride et recuperateur d'energie pneumatique
FR3085058A1 (fr) Turbomachine comportant un echangeur thermique a immersion variable dans une veine d'ecoulement d'air
BE526146A (fr)
FR2913459A1 (fr) Dispositifs pour moteurs stirling,notamment pour diminuer les pertes thermiques,et moteur comprenant de tels dispositifs
FR3144187A1 (fr) Turbomachine comprenant des moyens de blindage economiques.
WO2017194844A1 (fr) Piston alternatif et contenant faisant moteur thermique, pneumatique, hybride et récupérateur d'énergie pneumatique.
FR2730274A1 (fr) Moteur a pistons rotatifs et combustion externe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23708552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU23219331

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023219331

Country of ref document: AU

Date of ref document: 20230210

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247030637

Country of ref document: KR

Ref document number: 2023708552

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023708552

Country of ref document: EP

Effective date: 20240911