Nothing Special   »   [go: up one dir, main page]

WO2023148953A1 - Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor - Google Patents

Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor Download PDF

Info

Publication number
WO2023148953A1
WO2023148953A1 PCT/JP2022/004601 JP2022004601W WO2023148953A1 WO 2023148953 A1 WO2023148953 A1 WO 2023148953A1 JP 2022004601 W JP2022004601 W JP 2022004601W WO 2023148953 A1 WO2023148953 A1 WO 2023148953A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
rotating shaft
core
rotor core
Prior art date
Application number
PCT/JP2022/004601
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 下川
隆徳 渡邉
和慶 土田
祐輔 前島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023578326A priority Critical patent/JPWO2023148953A1/ja
Priority to PCT/JP2022/004601 priority patent/WO2023148953A1/en
Publication of WO2023148953A1 publication Critical patent/WO2023148953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit

Definitions

  • the present disclosure relates to rotors, electric motors, blowers, air conditioners, and electric motor manufacturing methods.
  • An electric motor has a rotor fixed to a rotating shaft and an annular stator surrounding the rotor (see Patent Document 1, for example).
  • a rotor fixed to a rotating shaft and an annular stator surrounding the rotor (see Patent Document 1, for example).
  • the present disclosure has been made to solve the above problems, and aims to enable the rotor to be inserted without contacting the stator.
  • the rotor of the present disclosure has a rotating shaft to which bearings are attached, a rotor core fixed to the rotating shaft, and permanent magnets fixed to the rotor core.
  • the rotor core has a hole extending in the axial direction of the rotating shaft.
  • a method of manufacturing an electric motor includes steps of assembling a rotor having a rotating shaft, a rotor core fixed to the rotating shaft and having a hole in the axial direction of the rotating shaft, and permanent magnets attached to the rotor core;
  • the method includes a step of assembling a stator, a step of attaching a bearing to the rotating shaft of the rotor, and a step of inserting the rotor inside the stator while inserting the shaft portion of the jig into the hole to hold the rotor.
  • the hole is formed at a position that does not block the magnetic path in the rotor core as much as possible. Further, since the distances Ls and Lb satisfy Ls>Lb, the rotor can be inserted into the stator while being held by a jig inserted into the hole. Therefore, the rotor can be inserted without contacting the stator.
  • FIG. 1 is a longitudinal sectional view showing the electric motor of Embodiment 1;
  • FIG. 2 is a cross-sectional view showing the electric motor of Embodiment 1;
  • FIG. 2 is a cross-sectional view showing the rotor of Embodiment 1;
  • FIG. 2 is a schematic diagram showing a rotor and bearings of the electric motor of Embodiment 1;
  • FIG. 4 is a flow chart showing a method for manufacturing the electric motor of Embodiment 1.
  • FIG. FIG. 4 is a schematic diagram showing a method of inserting the rotor into the stator according to the first embodiment;
  • FIG. 8 is a schematic diagram showing another example of a method of inserting the rotor into the stator of Modification 1;
  • FIG. 11 is a cross-sectional view showing a rotor of modification 2;
  • FIG. 10 is a vertical cross-sectional view showing a rotor of Embodiment 2;
  • FIG. 10 is a cross-sectional view of the rotor of Embodiment 2 taken along the line XX in FIG. 9;
  • FIG. 10 is a cross-sectional view of the rotor of Embodiment 2 taken along line XI-XI in FIG. 9;
  • FIG. 8 is a schematic diagram showing a method of inserting the rotor into the stator according to the second embodiment;
  • FIG. 11 is a cross-sectional view showing a rotor according to Embodiment 3;
  • FIG. 11 is a cross-sectional view showing a rotor according to Embodiment 3;
  • It is the figure (A) which shows the air conditioning apparatus to which the electric motor of each embodiment and the modification is applicable, and the figure (B) which shows its outdoor unit.
  • FIG. 1 is a longitudinal sectional view showing an electric motor 1 according to Embodiment 1.
  • FIG. A motor 1 is a synchronous motor, and is used, for example, as a blower of an air conditioner 500 (FIG. 15(A)).
  • the electric motor 1 includes a rotor 2 having a rotating shaft 10 , a stator 3 surrounding the rotor 2 , a circuit board 45 , a molded resin portion 40 covering the stator 3 and the circuit board 45 , and bearings 11 and 12 supporting the rotating shaft 10 . and A central axis Ax of the rotating shaft 10 defines the center of rotation of the rotor 2 .
  • the stator 3 and the molded resin portion 40 constitute the molded stator 4 .
  • a radial direction centered on the central axis Ax is defined as a “radial direction”.
  • a circumferential direction centered on the central axis Ax is defined as a “circumferential direction”.
  • the rotating shaft 10 protrudes from the molded stator 4 to one side in the axial direction.
  • an impeller 511 (FIG. 15A) of a blower is attached to the protruding portion of the rotating shaft 10 . Therefore, the side from which the rotating shaft 10 protrudes is called the "load side”, and the opposite side is called the "counter-load side”.
  • the molded stator 4 has the stator 3 and the molded resin portion 40 as described above.
  • the mold resin portion 40 is made of thermosetting resin such as unsaturated polyester resin or epoxy resin. Unsaturated polyester resins are, for example, bulk molding compounds (BMC).
  • the molded resin portion 40 is an outer shell member and covers the radially outer side and anti-load side of the stator 3 .
  • the mold resin portion 40 has an opening 41 on the load side and a bottom portion 42 on the anti-load side.
  • the rotor 2 is inserted inside the stator 3 through the opening 41 .
  • the molded resin portion 40 may have an opening 41 on the side opposite to the load and a bottom portion 42 on the load side, which will be described later with reference to FIG.
  • a metal bracket 13 that supports the bearing 11 on the load side is attached to the opening 41 of the mold resin portion 40 .
  • the bracket 13 is an annular member centered on the central axis Ax, and holds the bearing 11 at its radially central portion.
  • a bottom portion 42 of the mold resin portion 40 is formed so as to cover the anti-load side of the stator 3 .
  • a recess 43 is formed in the bottom 42 to accommodate the bearing 12 .
  • the bearing 11 has an inner ring 11a fixed to the rotating shaft 10, an outer ring 11b held by the bracket 13, and a plurality of rolling elements 11c provided between the inner ring 11a and the outer ring 11b.
  • the rolling bodies 11c are, for example, balls.
  • Bearing 11 is also referred to as the first bearing.
  • the bearing 12 has an inner ring 12a fixed to the rotating shaft 10, an outer ring 12b held in the recess 43 of the mold resin portion 40, and a plurality of rolling elements 12c provided between the inner ring 12a and the outer ring 12b.
  • the rolling bodies 12c are, for example, balls.
  • Bearing 12 is also referred to as a second bearing.
  • a circuit board 45 is arranged on the anti-load side of the stator 3 .
  • the circuit board 45 has an annular shape, is disposed so as to radially surround the bearing 12 on the opposite side of the load, and is held by the mold resin portion 40 .
  • Elements 45a such as a drive circuit are mounted on the circuit board 45, and lead wires 46 are wired.
  • the lead wire 46 is drawn out from a drawing part 47 provided on the outer periphery of the mold resin portion 40 .
  • the outer shell member covering the stator 3 and the circuit board 45 is not limited to the mold resin portion 40, and may be, for example, a metal shell.
  • the shell is, for example, a cylindrical member whose main component is Fe (iron), and the stator 3 is fixed inside the shell by shrink fitting or the like.
  • FIG. 2 is a cross-sectional view showing the rotor 2 and stator 3 of the electric motor 1.
  • FIG. 2 the mold resin portion 40 is omitted.
  • the stator 3 has a stator core 30 and a coil 35 wound around the stator core 30 .
  • the stator core 30 is formed by laminating a plurality of magnetic thin plates in the axial direction and fixing them by caulking or the like.
  • the magnetic thin plate is a thin plate containing Fe as a main component, more specifically an electromagnetic steel plate.
  • the plate thickness of the magnetic thin plate is, for example, 0.2 mm to 0.5 mm.
  • the stator core 30 has an annular yoke 31 and a plurality of teeth 32 extending radially inward from the yoke 31 .
  • the number of teeth 32 is 12 here, it is not limited to this. Tip portions of the teeth 32 are formed to face the rotor 2 .
  • a slot 33 is formed between the teeth 32 adjacent in the circumferential direction.
  • the coil 35 is wound around the tooth 32 via the insulating portion 34 and accommodated in the slot 33 .
  • the insulating portion 34 is made of insulating resin such as PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), liquid crystal polymer (LCP), and PET (polyethylene terephthalate). Also, an insulating film with a thickness of 0.035 mm to 0.4 mm may be used.
  • the coils 35 are wound around the teeth 32 and housed in the slots 33 .
  • the coil 35 is composed of magnet wire, for example.
  • the winding method of the coil 35 may be either concentrated winding or distributed winding.
  • FIG. 3 is a cross-sectional view showing the rotor 2. As shown in FIG. 3 , the rotor 2 has a rotor core 20 fixed to the rotating shaft 10 and a plurality of permanent magnets 25 embedded in the rotor core 20 .
  • the rotor core 20 is a cylindrical member centered on the central axis Ax.
  • the rotor core 20 is formed by stacking a plurality of thin magnetic plates in the axial direction and fixing them by caulking or the like.
  • the magnetic thin plate is a thin plate containing Fe as a main component, more specifically an electromagnetic steel plate.
  • the plate thickness of the magnetic thin plate is, for example, 0.2 mm to 0.5 mm.
  • the rotor core 20 has a shaft hole 23 in the center in the radial direction.
  • the rotating shaft 10 is fixed in the shaft hole 23 .
  • the fixing method is, for example, press fitting, shrink fitting, caulking, or integral molding with resin.
  • the rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction.
  • the magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at equal distances from the central axis Ax.
  • a permanent magnet 25 is inserted into each magnet insertion hole 21 .
  • the permanent magnet 25 has a flat plate shape and has a rectangular cross section in a plane perpendicular to the axial direction.
  • One permanent magnet 25 corresponds to one magnetic pole. Therefore, the rotor 2 has ten poles. However, the number of poles of the rotor 2 is not limited to ten, and may be two or more.
  • the circumferential center of each magnetic pole is the pole center. A straight line in the radial direction passing through the pole center is called a magnetic pole centerline.
  • the permanent magnet 25 here is a rare earth magnet whose main component is Nd (neodymium) or Sm (samarium). Also, a ferrite magnet may be used instead of the rare earth magnet.
  • a hole 24 is formed radially inside the magnet insertion hole 21 of the rotor core 20 .
  • the hole portion 24 is a through hole axially extending from one axial end of the rotor core 20 to the other axial end. It is desirable that the hole portion 24 is formed at a position corresponding to the center of the magnet insertion hole 21 in the circumferential direction, that is, on the pole center line.
  • the number of holes 24 is the same as the number of magnet insertion holes 21 here, it may be more or less than the number of magnet insertion holes 21 .
  • the cross-sectional shape of the hole 24 is circular, it may have another shape (see FIG. 8 described later).
  • the shortest distance from the central axis Ax of the rotating shaft 10 to the hole 24 is called a distance Ls.
  • a shortest distance from the central axis Ax to the magnet insertion hole 21 is called a distance Lm.
  • the distance Ls and the distance Lm have a relationship of Ls ⁇ Lm.
  • FIG. 4 is a schematic diagram showing the rotor 2 and bearings 11 and 12.
  • FIG. The distance from the central axis Ax to the outer circumference of the bearing 11 (more specifically, the outer circumference of the outer ring 11b) is equal to the distance from the central axis Ax to the outer circumference of the bearing 12 (more specifically, the outer circumference of the outer ring 12b). Let this distance be distance Lb.
  • a distance Ls from the central axis Ax to the hole 24 and a distance Lb from the central axis Ax to the outer peripheries of the bearings 11 and 12 have a relationship of Lb ⁇ Ls.
  • the holes 24 are formed radially outside the outer peripheries of the bearings 11 and 12 .
  • the axial length of the rotor 2 is longer than the axial length of the stator 3.
  • the magnetic flux emitted from the rotor 2 flows into not only the tips of the teeth 32 but also the axial end faces of the stator core 30 .
  • the rotating shaft 10 has a large amount of protrusion from the rotor core 20 toward the load side, and a small amount of protrusion toward the anti-load side. Therefore, the end region of the rotating shaft 10 on the load side is called a long shaft portion, and the end region on the anti-load side is called a short shaft portion.
  • FIG. 5 is a flow chart showing manufacturing steps of the electric motor 1 according to the first embodiment.
  • the stator 3 is assembled. That is, the stator core 30 is formed by laminating a plurality of magnetic thin plates in the axial direction and fixing them by caulking or the like (step S101).
  • the insulating portion 34 is attached to the stator core 30 or integrally molded, and the coil 35 is wound around the stator core 30 via the insulating portion 34 (step S102). This completes assembly of the stator 3 .
  • the circuit board 45 is mounted on the stator 3 and integrally molded with molding resin to obtain the molded stator 4 (step S103).
  • the rotor 2 is assembled. That is, the rotor core 20 is formed by laminating a plurality of magnetic thin plates in the axial direction and fixing them by caulking or the like (step S104).
  • step S105 the permanent magnet 25 is inserted into the magnet insertion hole 21
  • step S106 the rotary shaft 10 is fixed to the shaft hole 23 of the rotor core 20 by shrink fitting or press fitting. This completes assembly of the rotor 2 .
  • the bearing 11 is attached to the load side of the rotary shaft 10, and the bearing 12 is attached to the anti-load side (step S107).
  • the rotating shaft 10 of the rotor 2 and the bearings 11 and 12 are integrated.
  • FIG. 6 is a schematic diagram showing a method of inserting the rotor 2 into the stator 3.
  • a jig 5 is used to insert the rotor 2 into the stator 3 .
  • the jig 5 has a plurality of shafts 51 to be inserted into the holes 24 of the rotor 2 and a support plate 52 for supporting them.
  • the number of shaft portions 51 is the same as the number of hole portions 24, for example. In this case, the shaft portion 51 is inserted into all the holes 24 of the rotor 2 . However, the number of shaft portions 51 may be less than the number of hole portions 24 . For example, the number of shaft portions 51 may be half the number of holes 24 and the shaft portions 51 may be inserted into every other hole portion 24 . Further, the support plate 52 has a center hole 53 through which the rotating shaft 10 is inserted.
  • the shaft portion 51 of the jig 5 is inserted into the hole portion 24 of the rotor 2 from the load side of the rotary shaft 10 through the radially outer side of the bearing 11 .
  • the jig 5 may be inserted into the hole 24 of the rotor 2 from the non-load side of the rotary shaft 10, which will be described later (FIG. 7).
  • the distance Ls from the central axis Ax to the hole 24 is longer than the distance Lb from the central axis Ax to the outer circumference of the bearing 11 (see FIG. 4). does not interfere.
  • the rotor 2 is axially inserted inside the stator 3 through the opening 41 of the molded stator 4 while the jig 5 is used to hold the rotor 2 . Thereby, the rotor 2 is arranged radially inside the stator 3 .
  • the anti-load side bearing 12 fits into the recess 43 formed in the bottom 42 of the mold resin portion 40 .
  • the jig 5 is pulled out from the stator 3 in the axial direction. Since the bearing 12 is fitted in the concave portion 43 of the molded resin portion 40 , the bearing 12 , the rotating shaft 10 fixed thereto, and the rotor core 20 and the bearing 11 fixed to the rotating shaft 10 are all connected to the molded stator 4 . left on the side and only the jig 5 is pulled out.
  • bracket 13 (FIG. 1) is fitted into the opening 41 of the molded stator 4, and the bearing 11 is attached to this bracket 13. Further, the cap 14 (FIG. 1) is attached to the rotating shaft 10 so as to cover the outside of the bracket 13 (step S109). Thus, the electric motor 1 is completed.
  • Embodiment 1 Next, the operation of Embodiment 1 will be described. Generally, when inserting the rotor 2 inside the stator 3 , the rotor 2 is inserted inside the stator 3 while gripping the load-side end of the rotating shaft 10 .
  • the rotor 2 has a permanent magnet 25, and magnetic attraction acts between it and the stator 3. Therefore, the end of the rotor 2 on the opposite side of the load tends to sway and possibly come into contact with the stator 3 .
  • the stator 3 When the rotor 2 and the stator 3 come into contact with each other, there is a possibility that these deformations will occur, or abrasion powder will be generated due to wear.
  • the shaft portion 51 of the jig 5 is positioned outside the bearing 11. It can be passed through and inserted into the hole 24 . Thereby, the rotor 2 can be inserted inside the stator 3 while being held by the jig 5 .
  • the holes 24 are formed radially inward of the permanent magnets 25 (Lm>Ls), the holes 24 can prevent the flow of magnetic flux in the rotor core 20 from being hindered as much as possible.
  • a plurality of holes 24 are formed in the rotor core 20 at regular intervals in the circumferential direction, a plurality of shafts 51 provided on the jig 5 can be inserted into the holes 24 . Therefore, the rotor 2 can be held in a stable state, and contact between the rotor 2 and the stator 3 can be effectively suppressed.
  • the shaft portion 51 of the jig 5 since the cross-sectional shape of the hole portion 24 is circular, the shaft portion 51 of the jig 5 also has a cylindrical shape. Therefore, it is easy to manufacture the jig 5, and it is easy to improve the dimensional accuracy. Moreover, the outer diameter of the shaft portion 51 can be increased to reduce the gap between the shaft portion 51 and the hole portion 24, and the strength of the jig 5 can be improved. As a result, contact between the rotor 2 and the stator 3 can be suppressed more effectively.
  • the hole 24 is formed on the pole center line, the magnetic flux emitted from the inner peripheral surface of the permanent magnet 25 can be evenly guided to both sides in the circumferential direction. As a result, the unevenness of the magnetic flux in the rotor core 20 can be reduced, and the torque fluctuation of the electric motor 1 can be suppressed.
  • the present invention is not limited to this example, and the hole 24 is formed at a position that does not hinder the flow of magnetic flux in the rotor core 20 as much as possible. All you have to do is
  • the rotor 2 of Embodiment 1 has the rotating shaft 10, the rotor core 20 attached to the rotating shaft 10, and the permanent magnets 25 fixed to the rotor core 20.
  • the rotor core 20 is axially It has an extending bore 24 .
  • the distance Lm from the central axis Ax of the rotary shaft 10 to the permanent magnet 25, the distance Ls from the central axis Ax to the hole 24, and the distance Lb from the central axis Ax to the outer peripheries of the bearings 11 and 12 satisfy Lm>Ls. >Lb is satisfied.
  • the shaft portion 51 of the jig 5 can be passed through the outside of the bearing 11 and inserted into the hole portion 24 , and can be inserted inside the stator 3 while the rotor 2 is held by the jig 5 .
  • the rotor 2 can be inserted without contacting the stator 3, and deformation or wear of the rotor 2 and the stator 3 can be suppressed.
  • the holes 24 are formed radially inward of the permanent magnets 25, the flow of magnetic flux in the rotor core 20 can be prevented from being hindered by the holes 24 as much as possible.
  • FIG. 7 is a diagram showing a method of inserting the rotor 2 inside the stator 3 in Modification 1. As shown in FIG. In Modification 1, the load side and the anti-load side (that is, the long axis portion and the short axis portion) of the rotating shaft 10 are reversed from those in the first embodiment.
  • the end of the rotating shaft 10 on the load side passes through the through hole 44 of the mold resin portion 40 and is held by the gripping jig 6 . Also, the anti-load side of the rotating shaft 10 is held by a jig 5 .
  • the configuration of the jig 5 is as described in Embodiment 1, but the support plate 52 of the jig 5 does not need to be provided with the center hole 53 through which the rotating shaft 10 passes.
  • the rotor 2 can be inserted inside the stator 3 while both ends of the rotating shaft 10 on the load side and the anti-load side are held. Thereby, the contact between the rotor 2 and the stator 3 can be suppressed more effectively.
  • FIG. 8 is a cross-sectional view showing a rotor 2A of Modification 2. As shown in FIG. The rotor 2 ⁇ /b>A of Modification 2 differs from the hole 24 of the rotor 2 of the first embodiment in the shape of the hole 26 . A rotor 2 ⁇ /b>A of Modification 2 is configured in the same manner as the rotor 2 of Embodiment 1 except for the shape of hole portions 26 .
  • the hole portion 26 has a first edge 26a facing the rotary shaft 10 and a second edge 26b on the opposite side in a plane orthogonal to the axial direction.
  • the first edge 26a extends linearly.
  • the second edge 26b is curved so as to be convex in a direction away from the rotary shaft 10. As shown in FIG.
  • the hole portion 26 has two radially extending side edges 26c between the first edge 26a and the second edge 26b. However, the hole 26 does not necessarily have the side edge 26c. In other words, the hole 26 may be formed in a semicircular shape by the first edge 26a and the second edge 26b.
  • FIG. 9 is a longitudinal sectional view showing a rotor 2B of Embodiment 2.
  • FIG. The rotor core 20 of the rotor 2B of Embodiment 2 has a first core portion 201 and a second core portion 202 in the axial direction.
  • the first core portion 201 and the second core portion 202 have different cross-sectional areas of the holes.
  • the rotor core 20 has a first core portion 201 at one end in the axial direction, and a second core portion 202 from the central portion to the other end in the axial direction.
  • the rotor core 20 has a first core portion 201 at the end on the load side.
  • FIG. 10 is a cross-sectional view of the rotor 2B taken along line XX shown in FIG. As shown in FIG. 10 , a hole portion 27 as a first hole portion is formed radially inside the magnet insertion hole 21 of the first core portion 201 .
  • the diameter of the hole 27 is A1.
  • FIG. 11 is a cross-sectional view of the rotor 2B taken along line XI-XI shown in FIG. As shown in FIG. 11 , a hole portion 28 as a second hole portion is formed inside the magnet insertion hole 21 of the second core portion 202 in the radial direction.
  • the diameter of the hole 28 is A2.
  • the center of the hole 27 (Fig. 10) and the center of the hole 28 (Fig. 11) match.
  • the holes 27 and 28 are coaxial.
  • the inner diameter A1 of the hole portion 27 is larger than the inner diameter A2 of the hole portion 28 .
  • the cross-sectional area of the hole 27 in the plane orthogonal to the axial direction is larger than the cross-sectional area of the hole 28 .
  • FIG. 12A and 12B are diagrams showing a method of inserting the rotor 2B into the stator 3.
  • FIG. A shaft portion 51 of the jig 5B has a root portion 51a inserted into the hole portion 27 of the rotor 2B and a tip portion 51b inserted into the hole portion 28. As shown in FIG. The root portion 51a and the tip portion 51b are coaxially formed.
  • the hole formed in the rotor core 20 have a small cross-sectional area so as not to interfere with the magnetic flux in the rotor core 20 as much as possible.
  • the shaft portion 51 to be inserted into the hole must be made thin, which reduces the strength of the jig 5B.
  • the inner diameter A2 of the hole 28 of the second core portion 202 is small, the flow of magnetic flux can be prevented as much as possible. Moreover, since the inner diameter A1 of the hole portion 27 of the first core portion 201 is large, the root portion 51a of the shaft portion 51 can be thickened and the strength of the shaft portion 51 can be increased.
  • the rotor core 20 has a first core portion 201 at one axial end and a second core portion 202 at the other portion.
  • the ratio of the axial lengths of the first core portion 201 and the second core portion 202 can be changed as appropriate.
  • the axial length of the first core portion 201 and the axial length of the second core portion 202 may be the same.
  • the second core portion 202 may be provided in the center of the rotor core 20 in the axial direction, and the first core portions 201 may be provided at both ends in the axial direction.
  • the rotor 2B of the second embodiment is configured similarly to the rotor 2 of the first embodiment. It should be noted that the load side and the anti-load side may be reversed when the rotor 2B is inserted into the stator 3, as in Modification 1 shown in FIG. Moreover, the shape of the holes 27 and 28 of the rotor 2B may be the same shape as the hole 26 of the comparative example 2 shown in FIG.
  • the rotor core 20 has the first core portion 201 and the second core portion 202 in the axial direction, and the first core portion 201 extends at least in the axial direction of the rotor core 20 .
  • the cross-sectional area of the hole 27 of the first core portion 201 is larger than the cross-sectional area of the hole 28 of the second core portion 202 . Therefore, the magnetic path of the rotor core 20 is prevented from being blocked as much as possible to stabilize the output, and the strength of the jig 5B is ensured to enhance the effect of suppressing the contact between the rotor 2B and the stator 3.
  • FIG. 13 is a cross-sectional view showing rotor 2C of the third embodiment.
  • the rotor 2C of Embodiment 3 is a consequent-pole rotor in which magnet magnetic poles P1 and virtual magnetic poles P2 are alternately arranged in the circumferential direction.
  • the rotor 2 ⁇ /b>C has a plurality of magnet insertion holes 21 along the outer circumference of the rotor core 20 .
  • the number of magnet insertion holes 21 is half the number of magnet insertion holes 21 (FIG. 2) in the first embodiment.
  • the magnet insertion holes 21 are arranged at regular intervals in the circumferential direction. Flux barriers 22 are formed at both ends of each magnet insertion hole 21 in the circumferential direction to suppress leakage magnetic flux.
  • a permanent magnet 25 is arranged in each magnet insertion hole 21 .
  • the permanent magnets 25 are arranged with the same magnetic pole faces (for example, N poles) directed toward the outer circumference.
  • a portion of the rotor core 20 located between the adjacent permanent magnets 25 has a portion through which the magnetic flux flows in the radial direction.
  • the magnet magnetic pole P1 as the first magnetic pole formed by the permanent magnet 25 and the virtual magnetic pole P2 as the second magnetic pole formed by a part of the rotor core 20 are They are arranged alternately in the circumferential direction.
  • the magnet magnetic pole P1 is the N pole and the virtual magnetic pole P2 is the S pole, but the magnet magnetic pole P1 may be the S pole and the virtual magnetic pole P2 may be the N pole.
  • the consequent-pole rotor 2C has half the number of permanent magnets 25 compared to the non-consequent-pole rotor 2 (FIG. 3) having the same number of poles, and can significantly reduce manufacturing costs.
  • holes 24 are formed in the virtual magnetic poles P ⁇ b>2 of the rotor core 20 .
  • the distance Lm from the central axis Ax to the magnet insertion hole 21, the distance Ls from the central axis Ax to the hole 24, and the distance Lb from the central axis Ax to the outer peripheries of the bearings 11 and 12 satisfy Lm>Ls>Lb. Be satisfied.
  • the hole 24 can be brought closer to the outer circumference of the rotor core 20. Therefore, the hole portion 24 can be enlarged while satisfying the above inequality. As a result, the shaft portion 51 (FIG. 6) inserted into the hole portion 24 can be made thicker to increase the strength, and the effect of suppressing the contact between the rotor 2C and the stator 3 can be enhanced.
  • the virtual magnetic pole P2 does not have a magnet insertion hole, so the core amount of the virtual magnetic pole P2 is larger than the core amount of the magnet magnetic pole P1.
  • the amount of core is the amount of core material such as a magnetic thin plate.
  • the magnetic attraction force between the rotor 2C and the stator 3 is greater at the virtual magnetic pole P2 than at the magnetic magnetic pole P1. As a result, vibration and noise may occur due to differences in magnetic attraction.
  • the core amount of the magnet magnetic pole P1 and the core amount of the virtual magnetic pole P2 can be brought close to each other. As a result, vibration and noise caused by the difference in magnetic attraction force between the magnet magnetic pole P1 and the virtual magnetic pole P2 can be reduced.
  • FIG. 14 is a diagram for explaining the arrangement of the holes 24 in the rotor 2C.
  • an edge E that defines the position of the circumferential end of the virtual magnetic pole P2 is formed.
  • the circumferential length of the portion corresponding to between two adjacent edges E is defined as Lv.
  • This Lv corresponds to the circumferential width of the virtual magnetic pole P ⁇ b>2 on the outer circumference 20 a of the rotor core 20 .
  • the magnetic flux emitted from the outer peripheral surface of the permanent magnet 25 flows through the stator core 30, flows into the virtual magnetic pole P2, and returns to the inner peripheral surface of the permanent magnet 25.
  • the circumferential width Lv of the virtual magnetic poles P2 on the outer circumference 20a of the rotor core 20 is desirably wide enough so that magnetic flux from the permanent magnets 25 can be received.
  • the inner diameter of the hole 24 into which the shaft 51 is inserted is large. If the inner diameter is increased without changing the radial position of the center of the hole 24, the region R from the hole 24 to the outer circumference 20a of the rotor core 20 becomes narrower. However, since the magnetic flux flowing from the magnet magnetic pole P1 to the virtual magnetic pole P2 can flow radially on both circumferential sides of the hole 24, the area R can be narrowed. Therefore, the distance La from the hole 24 to the outer circumference 20a of the rotor core 20 (that is, the radial width of the region R) can be shortened so as to satisfy La ⁇ Lv.
  • the distance La is set to be equal to or greater than the plate thickness of the magnetic thin plate.
  • the hole 24 is preferably formed at a position where the magnetic flux density in the area B between the magnet insertion hole 21 and the hole 24 is 1.6 T or more.
  • the region B since the region B is magnetically saturated, the region B does not exhibit the original magnetic properties of the core material with respect to the magnetic flux flowing from the stator 3 .
  • the region B With respect to the magnetic flux flowing from the stator 3, the region B is in the same state as if the core material were not present.
  • the core amount of the magnet magnetic pole P1 and the core amount of the virtual magnetic pole P2 can be brought closer to each other, and vibration and noise can be further reduced.
  • the rotor 2C of the third embodiment is configured in the same manner as the rotor 2 of the first embodiment. It should be noted that the load side and the anti-load side may be reversed when the rotor 2C is inserted into the stator 3, as in Modification 1 shown in FIG. Further, the shape of the hole portion 24 of the rotor 2C may be the same shape as the hole portion 26 of the comparative example 2 shown in FIG. Further, the rotor core 20 of the rotor 2C may be formed of a plurality of core portions having holes with different cross-sectional areas as in the second embodiment.
  • the consequent-pole rotor 2C has the holes 24 in the virtual magnetic poles P2. Therefore, in addition to the effects described in the first embodiment, the core amount of the magnet magnetic pole P1 and the core amount of the virtual magnetic pole P2 are brought closer to reduce vibration and noise caused by the difference in magnetic attraction force with the stator 3. can be done.
  • FIG. 15(A) is a diagram showing the configuration of an air conditioner 500 to which the electric motor 1 of Embodiment 1 is applied.
  • An air conditioner 500 includes an outdoor unit 501 and an indoor unit 502 .
  • the outdoor unit 501 and the indoor unit 502 are connected by a refrigerant pipe 503 .
  • the outdoor unit 501 includes a compressor 504, a condenser 505, and an outdoor fan 510.
  • Outdoor fan 510 is, for example, a propeller fan.
  • the outdoor fan 510 has an impeller 511 and an electric motor 1A for driving the same.
  • the indoor unit 502 includes an evaporator 506 and an indoor fan 520.
  • Indoor fan 520 is, for example, a cross-flow fan.
  • the indoor fan 520 has an impeller 521 and an electric motor 1B for driving the same.
  • FIG. 15(B) is a cross-sectional view of the outdoor unit 501.
  • FIG. The electric motor 1A is supported by a frame 509 arranged inside a housing 508 of the outdoor unit 501.
  • An impeller 511 is attached to the rotary shaft 10 of the electric motor 1 via a hub 512 .
  • the impeller 511 is rotated by the electric motor 1A to blow air outdoors.
  • the heat released when the refrigerant compressed by the compressor 504 is condensed by the condenser 505 is released to the outside by the air blown by the outdoor fan 510 .
  • the impeller 521 is rotated by the electric motor 1B to blow air into the room.
  • the indoor fan 520 blows the air from which heat was removed when the refrigerant was evaporated in the evaporator 506 into the room.
  • the electric motors 1A and 1B are configured with the electric motor 1 of Embodiment 1, they can be stably operated over a long period of time by preventing contact between the rotor 2 and the stator 3. Therefore, the reliability of outdoor fan 510 and indoor fan 520 can be improved.
  • the electric motors 1A and 1B are not limited to the electric motor 1 of the first embodiment, and may be the electric motors of the second and third embodiments or the modifications. Also, although the electric motors of the embodiments and modifications are used for both the outdoor fan 510 and the indoor fan 520 here, they may be used for only one of them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This rotor has a rotating shaft to which a bearing is attached, a rotor core fixed to the rotating shaft, and a permanent magnet fixed to the rotor core. The rotor core has a hole section extending in the axial direction of the rotating shaft. The distance Lm from the central axis of the rotating shaft to the permanent magnet, the distance Ls from the central axis to the hole section, and the distance Lb from the central axis to the outer circumference of a bearing satisfy Lm > Ls > Lb.

Description

ロータ、電動機、送風機、空気調和装置および電動機の製造方法Rotor, electric motor, blower, air conditioner, and electric motor manufacturing method
 本開示は、ロータ、電動機、送風機、空気調和装置および電動機の製造方法に関する。 The present disclosure relates to rotors, electric motors, blowers, air conditioners, and electric motor manufacturing methods.
 電動機は、回転シャフトに固定されたロータと、ロータを囲む環状のステータとを有する(例えば、特許文献1参照)。電動機を組み立てる際には、回転シャフトの一端部を把持してロータをステータの内側に挿入する。 An electric motor has a rotor fixed to a rotating shaft and an annular stator surrounding the rotor (see Patent Document 1, for example). When assembling the electric motor, one end of the rotating shaft is gripped and the rotor is inserted inside the stator.
国際公開WO2020/003341号(図2参照)International publication WO2020/003341 (see FIG. 2)
 しかしながら、ロータをステータに挿入する際には、両者の間に磁気的吸引力が作用する。回転シャフトの把持された側と反対側の端部では、ロータがステータと接触し、ロータおよびステータの変形あるいは摩耗を生じる可能性がある。 However, when inserting the rotor into the stator, a magnetic attraction acts between them. At the end of the rotating shaft opposite the gripped side, the rotor contacts the stator, which can cause deformation or wear of the rotor and stator.
 本開示は、上記の課題を解決するためになされたものであり、ロータをステータに接触させずに挿入できるようにすることを目的とする。 The present disclosure has been made to solve the above problems, and aims to enable the rotor to be inserted without contacting the stator.
 本開示のロータは、ベアリングが取り付けられる回転シャフトと、回転シャフトに固定されたロータコアと、ロータコアに固定された永久磁石とを有する。ロータコアは、回転シャフトの軸方向に延在する孔部を有する。回転シャフトの中心軸から永久磁石までの距離Lmと、中心軸から孔部までの距離Lsと、中心軸からベアリングの外周までの距離Lbとは、Lm>Ls>Lbを満足する。 The rotor of the present disclosure has a rotating shaft to which bearings are attached, a rotor core fixed to the rotating shaft, and permanent magnets fixed to the rotor core. The rotor core has a hole extending in the axial direction of the rotating shaft. The distance Lm from the central axis of the rotating shaft to the permanent magnet, the distance Ls from the central axis to the hole, and the distance Lb from the central axis to the outer circumference of the bearing satisfy Lm>Ls>Lb.
 本開示の電動機の製造方法は、回転シャフトと、回転シャフトに固定されて回転シャフトの軸方向に孔部を有するロータコアと、ロータコアに取り付けられた永久磁石とを有するロータを組み立てる工程と、環状のステータを組み立てる工程と、ロータの回転シャフトにベアリングを取り付ける工程と、治具の軸部を孔部に挿入してロータを保持しながら、ロータをステータの内側に挿入する工程とを有する。 A method of manufacturing an electric motor according to the present disclosure includes steps of assembling a rotor having a rotating shaft, a rotor core fixed to the rotating shaft and having a hole in the axial direction of the rotating shaft, and permanent magnets attached to the rotor core; The method includes a step of assembling a stator, a step of attaching a bearing to the rotating shaft of the rotor, and a step of inserting the rotor inside the stator while inserting the shaft portion of the jig into the hole to hold the rotor.
 本開示によれば、距離Lm,LsがLm>Lsを満足するため、ロータコア内の磁路をできるだけ遮らない位置に孔部が形成される。また、距離Ls,LbがLs>Lbを満足するため、孔部に挿入した治具でロータを保持しながらステータの内側に挿入することができる。そのため、ロータをステータに接触させずに挿入することができる。 According to the present disclosure, since the distances Lm and Ls satisfy Lm>Ls, the hole is formed at a position that does not block the magnetic path in the rotor core as much as possible. Further, since the distances Ls and Lb satisfy Ls>Lb, the rotor can be inserted into the stator while being held by a jig inserted into the hole. Therefore, the rotor can be inserted without contacting the stator.
実施の形態1の電動機を示す縦断面図である。1 is a longitudinal sectional view showing the electric motor of Embodiment 1; FIG. 実施の形態1の電動機を示す断面図である。2 is a cross-sectional view showing the electric motor of Embodiment 1; FIG. 実施の形態1のロータを示す断面図である。2 is a cross-sectional view showing the rotor of Embodiment 1; FIG. 実施の形態1の電動機のロータおよびベアリングを示す模式図である。2 is a schematic diagram showing a rotor and bearings of the electric motor of Embodiment 1; FIG. 実施の形態1の電動機の製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing the electric motor of Embodiment 1. FIG. 実施の形態1のロータのステータへの挿入方法を示す模式図である。FIG. 4 is a schematic diagram showing a method of inserting the rotor into the stator according to the first embodiment; 変形例1のロータのステータへの挿入方法の他の例を示す模式図である。FIG. 8 is a schematic diagram showing another example of a method of inserting the rotor into the stator of Modification 1; 変形例2のロータを示す断面図である。FIG. 11 is a cross-sectional view showing a rotor of modification 2; 実施の形態2のロータを示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing a rotor of Embodiment 2; 実施の形態2のロータの図9の線分X-Xにおける断面図である。FIG. 10 is a cross-sectional view of the rotor of Embodiment 2 taken along the line XX in FIG. 9; 実施の形態2のロータの図9の線分XI-XIにおける断面図である。FIG. 10 is a cross-sectional view of the rotor of Embodiment 2 taken along line XI-XI in FIG. 9; 実施の形態2のロータのステータへの挿入方法を示す模式図である。FIG. 8 is a schematic diagram showing a method of inserting the rotor into the stator according to the second embodiment; 実施の形態3のロータを示す断面図である。FIG. 11 is a cross-sectional view showing a rotor according to Embodiment 3; 実施の形態3のロータを示す断面図である。FIG. 11 is a cross-sectional view showing a rotor according to Embodiment 3; 各実施の形態および変形例の電動機が適用可能な空気調和装置示す図(A)およびその室外機を示す図(B)である。It is the figure (A) which shows the air conditioning apparatus to which the electric motor of each embodiment and the modification is applicable, and the figure (B) which shows its outdoor unit.
実施の形態1.
<電動機1の全体構成>
 実施の形態1の電動機について説明する。図1は、実施の形態1の電動機1を示す縦断面図である。電動機1は同期電動機であり、例えば、空気調和装置500(図15(A))の送風機に用いられる。
Embodiment 1.
<Overall Configuration of Electric Motor 1>
An electric motor according to Embodiment 1 will be described. FIG. 1 is a longitudinal sectional view showing an electric motor 1 according to Embodiment 1. FIG. A motor 1 is a synchronous motor, and is used, for example, as a blower of an air conditioner 500 (FIG. 15(A)).
 電動機1は、回転シャフト10を有するロータ2と、ロータ2を囲むステータ3と、回路基板45と、ステータ3および回路基板45を覆うモールド樹脂部40と、回転シャフト10を支持するベアリング11,12とを備える。回転シャフト10の中心軸Axは、ロータ2の回転中心を規定する。ステータ3およびモールド樹脂部40は、モールドステータ4を構成する。 The electric motor 1 includes a rotor 2 having a rotating shaft 10 , a stator 3 surrounding the rotor 2 , a circuit board 45 , a molded resin portion 40 covering the stator 3 and the circuit board 45 , and bearings 11 and 12 supporting the rotating shaft 10 . and A central axis Ax of the rotating shaft 10 defines the center of rotation of the rotor 2 . The stator 3 and the molded resin portion 40 constitute the molded stator 4 .
 以下では、中心軸Axの方向を「軸方向」とする。中心軸Axを中心とする径方向を「径方向」とする。中心軸Axを中心とする周方向を「周方向」とする。 In the following, the direction of the central axis Ax will be referred to as the "axial direction". A radial direction centered on the central axis Ax is defined as a “radial direction”. A circumferential direction centered on the central axis Ax is defined as a “circumferential direction”.
 回転シャフト10は、モールドステータ4から軸方向の一方の側に突出している。回転シャフト10の突出部には、例えば送風機の羽根車511(図15(A))が取り付けられる。そのため、回転シャフト10が突出する側を「負荷側」と称し、その反対側を「反負荷側」と称する。 The rotating shaft 10 protrudes from the molded stator 4 to one side in the axial direction. For example, an impeller 511 (FIG. 15A) of a blower is attached to the protruding portion of the rotating shaft 10 . Therefore, the side from which the rotating shaft 10 protrudes is called the "load side", and the opposite side is called the "counter-load side".
<モールドステータ4の構成>
 モールドステータ4は、上記の通り、ステータ3とモールド樹脂部40とを有する。モールド樹脂部40は、不飽和ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹脂で形成される。不飽和ポリエステル樹脂は、例えばバルクモールディングコンパウンド(BMC)である。
<Configuration of molded stator 4>
The molded stator 4 has the stator 3 and the molded resin portion 40 as described above. The mold resin portion 40 is made of thermosetting resin such as unsaturated polyester resin or epoxy resin. Unsaturated polyester resins are, for example, bulk molding compounds (BMC).
 モールド樹脂部40は外郭部材であり、ステータ3の径方向外側および反負荷側を覆っている。モールド樹脂部40は、負荷側に開口部41を有し、反負荷側に底部42を有する。ロータ2は、開口部41からステータ3の内側に挿入される。なお、モールド樹脂部40は、反負荷側に開口部41を有し、負荷側に底部42を有する場合もあるが、これについては図7を参照して後述する。 The molded resin portion 40 is an outer shell member and covers the radially outer side and anti-load side of the stator 3 . The mold resin portion 40 has an opening 41 on the load side and a bottom portion 42 on the anti-load side. The rotor 2 is inserted inside the stator 3 through the opening 41 . The molded resin portion 40 may have an opening 41 on the side opposite to the load and a bottom portion 42 on the load side, which will be described later with reference to FIG.
 モールド樹脂部40の開口部41には、負荷側のベアリング11を支持する金属製のブラケット13が取り付けられている。ブラケット13は、中心軸Axを中心とする環状の部材であり、その径方向中央部でベアリング11を保持する。 A metal bracket 13 that supports the bearing 11 on the load side is attached to the opening 41 of the mold resin portion 40 . The bracket 13 is an annular member centered on the central axis Ax, and holds the bearing 11 at its radially central portion.
 モールド樹脂部40の底部42は、ステータ3の反負荷側を覆うように形成されている。底部42には、ベアリング12を収容する凹部43が形成されている。 A bottom portion 42 of the mold resin portion 40 is formed so as to cover the anti-load side of the stator 3 . A recess 43 is formed in the bottom 42 to accommodate the bearing 12 .
 ベアリング11は、回転シャフト10に固定される内輪11aと、ブラケット13に保持される外輪11bと、内輪11aと外輪11bとの間に設けられる複数の転動体11cとを有する。転動体11cは、例えばボールである。ベアリング11は、第1のベアリングとも称する。 The bearing 11 has an inner ring 11a fixed to the rotating shaft 10, an outer ring 11b held by the bracket 13, and a plurality of rolling elements 11c provided between the inner ring 11a and the outer ring 11b. The rolling bodies 11c are, for example, balls. Bearing 11 is also referred to as the first bearing.
 ベアリング12は、回転シャフト10に固定される内輪12aと、モールド樹脂部40の凹部43に保持される外輪12bと、内輪12aと外輪12bとの間に設けられる複数の転動体12cとを有する。転動体12cは、例えばボールである。ベアリング12は、第2のベアリングとも称する。 The bearing 12 has an inner ring 12a fixed to the rotating shaft 10, an outer ring 12b held in the recess 43 of the mold resin portion 40, and a plurality of rolling elements 12c provided between the inner ring 12a and the outer ring 12b. The rolling bodies 12c are, for example, balls. Bearing 12 is also referred to as a second bearing.
 ステータ3の反負荷側には、回路基板45が配置されている。回路基板45は環状であり、反負荷側のベアリング12を径方向外側から囲むように配置され、モールド樹脂部40に保持されている。回路基板45には、駆動回路等の素子45aが実装され、リード線46が配線されている。リード線46は、モールド樹脂部40の外周に設けられた引き出し部品47から外部に引き出されている。 A circuit board 45 is arranged on the anti-load side of the stator 3 . The circuit board 45 has an annular shape, is disposed so as to radially surround the bearing 12 on the opposite side of the load, and is held by the mold resin portion 40 . Elements 45a such as a drive circuit are mounted on the circuit board 45, and lead wires 46 are wired. The lead wire 46 is drawn out from a drawing part 47 provided on the outer periphery of the mold resin portion 40 .
 なお、ステータ3および回路基板45を覆う外郭部材は、モールド樹脂部40には限定されず、例えば金属製のシェルであってもよい。シェルは、例えば、Fe(鉄)を主成分とする円筒状の部材であり、その内側にステータ3が焼き嵌め等によって固定される。 The outer shell member covering the stator 3 and the circuit board 45 is not limited to the mold resin portion 40, and may be, for example, a metal shell. The shell is, for example, a cylindrical member whose main component is Fe (iron), and the stator 3 is fixed inside the shell by shrink fitting or the like.
 図2は、電動機1のロータ2とステータ3とを示す断面図である。図2では、モールド樹脂部40を省略している。ステータ3は、ステータコア30と、ステータコア30に巻き付けられたコイル35とを有する。 FIG. 2 is a cross-sectional view showing the rotor 2 and stator 3 of the electric motor 1. FIG. In FIG. 2, the mold resin portion 40 is omitted. The stator 3 has a stator core 30 and a coil 35 wound around the stator core 30 .
 ステータコア30は、複数の磁性薄板を軸方向に積層し、カシメ等により固定したものである。磁性薄板は、Feを主成分とする薄板であり、より具体的には電磁鋼板である。磁性薄板の板厚は、例えば、0.2mm~0.5mmである。磁性薄板の積層体の代わりに、Feを主成分とする塊を加工したものを用いてもよい。 The stator core 30 is formed by laminating a plurality of magnetic thin plates in the axial direction and fixing them by caulking or the like. The magnetic thin plate is a thin plate containing Fe as a main component, more specifically an electromagnetic steel plate. The plate thickness of the magnetic thin plate is, for example, 0.2 mm to 0.5 mm. Instead of the laminate of magnetic thin plates, it is also possible to use a processed mass containing Fe as a main component.
 ステータコア30は、環状のヨーク31と、ヨーク31から径方向内側に延在する複数のティース32とを有する。ティース32の数は、ここでは12であるが、これに限定されるものではない。ティース32の先端部には、ロータ2に対向する歯先部が形成されている。 The stator core 30 has an annular yoke 31 and a plurality of teeth 32 extending radially inward from the yoke 31 . Although the number of teeth 32 is 12 here, it is not limited to this. Tip portions of the teeth 32 are formed to face the rotor 2 .
 周方向に隣り合うティース32の間には、スロット33が形成される。コイル35は、絶縁部34を介してティース32に巻き付けられ、スロット33に収容される。 A slot 33 is formed between the teeth 32 adjacent in the circumferential direction. The coil 35 is wound around the tooth 32 via the insulating portion 34 and accommodated in the slot 33 .
 絶縁部34は、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)、液晶ポリマー(LCP)、PET(ポリエチレンテレフタレート)等の絶縁性の樹脂で構成される。また、厚さ0.035mm~0.4mmの絶縁フィルムを用いてもよい。 The insulating portion 34 is made of insulating resin such as PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), liquid crystal polymer (LCP), and PET (polyethylene terephthalate). Also, an insulating film with a thickness of 0.035 mm to 0.4 mm may be used.
 コイル35は、ティース32に巻き付けられ、スロット33に収容されている。コイル35は、例えばマグネットワイヤで構成される。コイル35の巻き付け方法は、集中巻きおよび分布巻きのいずれであってもよい。 The coils 35 are wound around the teeth 32 and housed in the slots 33 . The coil 35 is composed of magnet wire, for example. The winding method of the coil 35 may be either concentrated winding or distributed winding.
<ロータ2の構成>
 図3は、ロータ2を示す断面図である。図3に示すように、ロータ2は、回転シャフト10に固定されたロータコア20と、ロータコア20に埋め込まれた複数の永久磁石25とを有する。
<Configuration of Rotor 2>
FIG. 3 is a cross-sectional view showing the rotor 2. As shown in FIG. As shown in FIG. 3 , the rotor 2 has a rotor core 20 fixed to the rotating shaft 10 and a plurality of permanent magnets 25 embedded in the rotor core 20 .
 ロータコア20は、中心軸Axを中心とする円筒状の部材である。ロータコア20は、複数の磁性薄板を軸方向に積層し、カシメ等により固定したものである。磁性薄板は、Feを主成分とする薄板であり、より具体的には電磁鋼板である。磁性薄板の板厚は、例えば、0.2mm~0.5mmである。 The rotor core 20 is a cylindrical member centered on the central axis Ax. The rotor core 20 is formed by stacking a plurality of thin magnetic plates in the axial direction and fixing them by caulking or the like. The magnetic thin plate is a thin plate containing Fe as a main component, more specifically an electromagnetic steel plate. The plate thickness of the magnetic thin plate is, for example, 0.2 mm to 0.5 mm.
 ロータコア20は、径方向中心にシャフト孔23を有する。シャフト孔23には、回転シャフト10が固定されている。固定方法は、例えば、圧入、焼き嵌め、コーキング、または樹脂による一体成形である。 The rotor core 20 has a shaft hole 23 in the center in the radial direction. The rotating shaft 10 is fixed in the shaft hole 23 . The fixing method is, for example, press fitting, shrink fitting, caulking, or integral molding with resin.
 ロータコア20は、周方向に複数の磁石挿入孔21を有する。磁石挿入孔21は、周方向に等間隔で、且つ中心軸Axから等距離に配置されている。各磁石挿入孔21には、永久磁石25が挿入されている。永久磁石25は平板状であり、軸方向に直交する面において矩形状の断面を有する。 The rotor core 20 has a plurality of magnet insertion holes 21 in the circumferential direction. The magnet insertion holes 21 are arranged at equal intervals in the circumferential direction and at equal distances from the central axis Ax. A permanent magnet 25 is inserted into each magnet insertion hole 21 . The permanent magnet 25 has a flat plate shape and has a rectangular cross section in a plane perpendicular to the axial direction.
 1つの永久磁石25は、1磁極に相当する。そのため、ロータ2の極数は10である。但し、ロータ2の極数は10に限らず、2以上であればよい。各磁極の周方向中心は、極中心である。極中心を通る径方向の直線を、磁極中心線と称する。 One permanent magnet 25 corresponds to one magnetic pole. Therefore, the rotor 2 has ten poles. However, the number of poles of the rotor 2 is not limited to ten, and may be two or more. The circumferential center of each magnetic pole is the pole center. A straight line in the radial direction passing through the pole center is called a magnetic pole centerline.
 永久磁石25は、ここではNd(ネオジム)またはSm(サマリウム)を主成分とする希土類磁石である。また、希土類磁石の代わりにフェライト磁石を用いてもよい。 The permanent magnet 25 here is a rare earth magnet whose main component is Nd (neodymium) or Sm (samarium). Also, a ferrite magnet may be used instead of the rare earth magnet.
 ロータコア20の磁石挿入孔21の径方向内側には、孔部24が形成されている。孔部24は、ロータコア20の軸方向一端から他端まで軸方向に延在する貫通孔である。孔部24は、磁石挿入孔21の周方向中心に対応する位置、すなわち極中心線上に形成されていることが望ましい。 A hole 24 is formed radially inside the magnet insertion hole 21 of the rotor core 20 . The hole portion 24 is a through hole axially extending from one axial end of the rotor core 20 to the other axial end. It is desirable that the hole portion 24 is formed at a position corresponding to the center of the magnet insertion hole 21 in the circumferential direction, that is, on the pole center line.
 孔部24の数は、ここでは磁石挿入孔21の数と同数であるが、磁石挿入孔21の数より多くてもよく、少なくてもよい。孔部24の断面形状は円形であるが、他の形状であってもよい(後述する図8参照)。 Although the number of holes 24 is the same as the number of magnet insertion holes 21 here, it may be more or less than the number of magnet insertion holes 21 . Although the cross-sectional shape of the hole 24 is circular, it may have another shape (see FIG. 8 described later).
 回転シャフト10の中心軸Axから孔部24までの最短距離を、距離Lsと称する。中心軸Axから磁石挿入孔21までの最短距離を、距離Lmと称する。距離Lsおよび距離Lmは、Ls<Lmの関係にある。 The shortest distance from the central axis Ax of the rotating shaft 10 to the hole 24 is called a distance Ls. A shortest distance from the central axis Ax to the magnet insertion hole 21 is called a distance Lm. The distance Ls and the distance Lm have a relationship of Ls<Lm.
 図4は、ロータ2およびベアリング11,12を示す模式図である。中心軸Axからベアリング11の外周(より具体的には外輪11bの外周)までの距離と、中心軸Axからベアリング12の外周(より具体的には外輪12bの外周)までの距離とは等しい。この距離を、距離Lbとする。 FIG. 4 is a schematic diagram showing the rotor 2 and bearings 11 and 12. FIG. The distance from the central axis Ax to the outer circumference of the bearing 11 (more specifically, the outer circumference of the outer ring 11b) is equal to the distance from the central axis Ax to the outer circumference of the bearing 12 (more specifically, the outer circumference of the outer ring 12b). Let this distance be distance Lb.
 中心軸Axから孔部24までの距離Lsと、中心軸Axからベアリング11,12の外周までの距離Lbとは、Lb<Lsの関係にある。言い換えると、孔部24は、ベアリング11,12の外周よりも径方向外側に形成されている。 A distance Ls from the central axis Ax to the hole 24 and a distance Lb from the central axis Ax to the outer peripheries of the bearings 11 and 12 have a relationship of Lb<Ls. In other words, the holes 24 are formed radially outside the outer peripheries of the bearings 11 and 12 .
 なお、ベアリング11,12の外径が異なる場合、すなわち中心軸Axからベアリング11の外周までの距離と、中心軸Axからベアリング12の外周までの距離とが異なる場合には、これらのうちの短い方の距離Lbよりも距離Lsが短ければよい。 When the outer diameters of the bearings 11 and 12 are different, that is, when the distance from the central axis Ax to the outer circumference of the bearing 11 and the distance from the central axis Ax to the outer circumference of the bearing 12 are different, the shorter of these It is sufficient if the distance Ls is shorter than the distance Lb on the other side.
 図1に示すように、ロータ2の軸方向長さはステータ3の軸方向長さよりも長い。これにより、ロータ2から出た磁束は、ティース32の先端だけでなく、ステータコア30の軸方向端面にも流入する。 As shown in FIG. 1, the axial length of the rotor 2 is longer than the axial length of the stator 3. As a result, the magnetic flux emitted from the rotor 2 flows into not only the tips of the teeth 32 but also the axial end faces of the stator core 30 .
 また、回転シャフト10は、ロータコア20から負荷側への突出量が大きく、反負荷側への突出量は小さい。そのため、回転シャフト10の負荷側の端部領域を長軸部と称し、反負荷側の端部領域を短軸部と称する。 In addition, the rotating shaft 10 has a large amount of protrusion from the rotor core 20 toward the load side, and a small amount of protrusion toward the anti-load side. Therefore, the end region of the rotating shaft 10 on the load side is called a long shaft portion, and the end region on the anti-load side is called a short shaft portion.
<電動機1の製造方法>
 図5は、実施の形態1の電動機1の製造工程を示すフローチャートである。電動機1の製造工程では、まず、ステータ3の組み立てを行う。すなわち、複数の磁性薄板を軸方向に積層し、カシメ等で固定することにより、ステータコア30を形成する(ステップS101)。
<Manufacturing Method of Electric Motor 1>
FIG. 5 is a flow chart showing manufacturing steps of the electric motor 1 according to the first embodiment. In the manufacturing process of the electric motor 1, first, the stator 3 is assembled. That is, the stator core 30 is formed by laminating a plurality of magnetic thin plates in the axial direction and fixing them by caulking or the like (step S101).
 次に、ステータコア30に絶縁部34を取り付けるかまたは一体成形し、ステータコア30に絶縁部34を介してコイル35を巻き付ける(ステップS102)。これによりステータ3の組み立てが完了する。そして、ステータ3上に回路基板45を取り付け、モールド樹脂で一体成形することにより、モールドステータ4が得られる(ステップS103)。 Next, the insulating portion 34 is attached to the stator core 30 or integrally molded, and the coil 35 is wound around the stator core 30 via the insulating portion 34 (step S102). This completes assembly of the stator 3 . Then, the circuit board 45 is mounted on the stator 3 and integrally molded with molding resin to obtain the molded stator 4 (step S103).
 このステップS101~S103と並行して、ロータ2の組み立てを行う。すなわち、複数の磁性薄板を軸方向に積層し、カシメ等で固定することにより、ロータコア20を形成する(ステップS104)。 In parallel with these steps S101 to S103, the rotor 2 is assembled. That is, the rotor core 20 is formed by laminating a plurality of magnetic thin plates in the axial direction and fixing them by caulking or the like (step S104).
 次に、磁石挿入孔21に永久磁石25を挿入する(ステップS105)。さらに、ロータコア20のシャフト孔23に、回転シャフト10を焼嵌めまたは圧入により固定する(ステップS106)。これにより、ロータ2の組み立てが完了する。 Next, the permanent magnet 25 is inserted into the magnet insertion hole 21 (step S105). Further, the rotary shaft 10 is fixed to the shaft hole 23 of the rotor core 20 by shrink fitting or press fitting (step S106). This completes assembly of the rotor 2 .
 その後、回転シャフト10の負荷側にベアリング11を取り付け、反負荷側にベアリング12を取り付ける(ステップS107)。これにより、ロータ2の回転シャフト10とベアリング11,12とが一体となる。 After that, the bearing 11 is attached to the load side of the rotary shaft 10, and the bearing 12 is attached to the anti-load side (step S107). As a result, the rotating shaft 10 of the rotor 2 and the bearings 11 and 12 are integrated.
 次に、ロータ2をステータ3に挿入する(ステップS108)。図6は、ロータ2のステータ3への挿入方法を示す模式図である。図6に示すように、ロータ2をステータ3に挿入する際には、治具5を用いる。治具5は、ロータ2の孔部24に挿入される複数の軸部51と、これらを支持する支持板52とを有する。 Next, the rotor 2 is inserted into the stator 3 (step S108). FIG. 6 is a schematic diagram showing a method of inserting the rotor 2 into the stator 3. As shown in FIG. As shown in FIG. 6, a jig 5 is used to insert the rotor 2 into the stator 3 . The jig 5 has a plurality of shafts 51 to be inserted into the holes 24 of the rotor 2 and a support plate 52 for supporting them.
 軸部51の数は、例えば、孔部24の数と同数である。この場合、ロータ2の全ての孔部24に軸部51が挿入される。但し、軸部51の数が孔部24の数よりも少なくてもよい。例えば軸部51の数を孔部24の数の半数とし、孔部24の1つおきに軸部51を挿入してもよい。また、支持板52は、回転シャフト10を挿通させる中心孔53を有する。 The number of shaft portions 51 is the same as the number of hole portions 24, for example. In this case, the shaft portion 51 is inserted into all the holes 24 of the rotor 2 . However, the number of shaft portions 51 may be less than the number of hole portions 24 . For example, the number of shaft portions 51 may be half the number of holes 24 and the shaft portions 51 may be inserted into every other hole portion 24 . Further, the support plate 52 has a center hole 53 through which the rotating shaft 10 is inserted.
 治具5の軸部51は、ここでは、回転シャフト10の負荷側から、ベアリング11の径方向外側を通って、ロータ2の孔部24に挿入される。なお、治具5は、回転シャフト10の反負荷側からロータ2の孔部24に挿入してもよいが、これについては後述する(図7)。 Here, the shaft portion 51 of the jig 5 is inserted into the hole portion 24 of the rotor 2 from the load side of the rotary shaft 10 through the radially outer side of the bearing 11 . The jig 5 may be inserted into the hole 24 of the rotor 2 from the non-load side of the rotary shaft 10, which will be described later (FIG. 7).
 上記の通り、中心軸Axから孔部24までの距離Lsが、中心軸Axからベアリング11の外周までの距離Lbよりも長いため(図4参照)、治具5の軸部51とベアリング11とが干渉することがない。 As described above, the distance Ls from the central axis Ax to the hole 24 is longer than the distance Lb from the central axis Ax to the outer circumference of the bearing 11 (see FIG. 4). does not interfere.
 この治具5を用いてロータ2を保持しながら、ロータ2をモールドステータ4の開口部41からステータ3の内側に軸方向に挿入する。これにより、ロータ2がステータ3の径方向内側に配置される。 The rotor 2 is axially inserted inside the stator 3 through the opening 41 of the molded stator 4 while the jig 5 is used to hold the rotor 2 . Thereby, the rotor 2 is arranged radially inside the stator 3 .
 ロータ2がステータ3の径方向内側に配置されると、反負荷側のベアリング12は、モールド樹脂部40の底部42に形成された凹部43に嵌合する。 When the rotor 2 is arranged radially inward of the stator 3 , the anti-load side bearing 12 fits into the recess 43 formed in the bottom 42 of the mold resin portion 40 .
 その後、治具5をステータ3から軸方向に引き抜く。ベアリング12がモールド樹脂部40の凹部43に嵌合しているため、ベアリング12と、これに固定された回転シャフト10と、回転シャフト10に固定されたロータコア20およびベアリング11はいずれもモールドステータ4側に残り、治具5だけが引き抜かれる。 After that, the jig 5 is pulled out from the stator 3 in the axial direction. Since the bearing 12 is fitted in the concave portion 43 of the molded resin portion 40 , the bearing 12 , the rotating shaft 10 fixed thereto, and the rotor core 20 and the bearing 11 fixed to the rotating shaft 10 are all connected to the molded stator 4 . left on the side and only the jig 5 is pulled out.
 その後、モールドステータ4の開口部41にブラケット13(図1)を嵌合させ、このブラケット13にベアリング11を取り付ける。さらに、ブラケット13の外側を覆うように回転シャフト10にキャップ14(図1)を取り付ける(ステップS109)。これにより、電動機1が完成する。 After that, the bracket 13 (FIG. 1) is fitted into the opening 41 of the molded stator 4, and the bearing 11 is attached to this bracket 13. Further, the cap 14 (FIG. 1) is attached to the rotating shaft 10 so as to cover the outside of the bracket 13 (step S109). Thus, the electric motor 1 is completed.
<作用>
 次に、実施の形態1の作用について説明する。一般に、ロータ2をステータ3の内側に挿入する際には、回転シャフト10の負荷側の端部を把持してロータ2をステータ3の内側に挿入する。
<Action>
Next, the operation of Embodiment 1 will be described. Generally, when inserting the rotor 2 inside the stator 3 , the rotor 2 is inserted inside the stator 3 while gripping the load-side end of the rotating shaft 10 .
 一方、ロータ2は永久磁石25を有しており、ステータ3との間で磁気的吸引力が作用する。そのため、ロータ2の反負荷側の端部は振れやすく、ステータ3と接触する可能性がある。ロータ2とステータ3とが接触すると、これらの変形が生じ、あるいは摩耗によって摩耗粉が発生する可能性がある。 On the other hand, the rotor 2 has a permanent magnet 25, and magnetic attraction acts between it and the stator 3. Therefore, the end of the rotor 2 on the opposite side of the load tends to sway and possibly come into contact with the stator 3 . When the rotor 2 and the stator 3 come into contact with each other, there is a possibility that these deformations will occur, or abrasion powder will be generated due to wear.
 この実施の形態1では、ロータコア20の孔部24が、ベアリング11の外周よりも径方向外側に形成されているため(Ls>Lb)、治具5の軸部51を、ベアリング11の外側を通過させて孔部24に挿入することができる。これにより、ロータ2を治具5で保持しながらステータ3の内側に挿入することができる。 In the first embodiment, since the hole portion 24 of the rotor core 20 is formed radially outside the outer circumference of the bearing 11 (Ls>Lb), the shaft portion 51 of the jig 5 is positioned outside the bearing 11. It can be passed through and inserted into the hole 24 . Thereby, the rotor 2 can be inserted inside the stator 3 while being held by the jig 5 .
 そのため、ロータ2とステータ3との間で磁気的吸引力が作用しても、ロータ2をステータ3に接触しないように挿入することができる。そのため、ロータ2とステータ3との接触による変形、および摩耗粉の発生を抑制することができる。 Therefore, even if a magnetic attraction force acts between the rotor 2 and the stator 3, the rotor 2 can be inserted without contacting the stator 3. Therefore, deformation due to contact between the rotor 2 and the stator 3 and generation of abrasion powder can be suppressed.
 また、孔部24が永久磁石25よりも径方向内側に形成されているため(Lm>Ls)、孔部24によってロータコア20内の磁束の流れをできるだけ妨げないようにすることができる。 In addition, since the holes 24 are formed radially inward of the permanent magnets 25 (Lm>Ls), the holes 24 can prevent the flow of magnetic flux in the rotor core 20 from being hindered as much as possible.
 また、ロータコア20に複数の孔部24が周方向に等間隔に形成されているため、治具5に設けた複数の軸部51を孔部24に挿入することができる。そのため、ロータ2を安定した状態で保持することができ、ロータ2とステータ3との接触を効果的に抑制することができる。 Further, since a plurality of holes 24 are formed in the rotor core 20 at regular intervals in the circumferential direction, a plurality of shafts 51 provided on the jig 5 can be inserted into the holes 24 . Therefore, the rotor 2 can be held in a stable state, and contact between the rotor 2 and the stator 3 can be effectively suppressed.
 特に、孔部24の断面形状が円形であるため、治具5の軸部51も円柱状となる。そのため、治具5の製造が容易であり、また寸法精度を向上しやすい。また、軸部51の外径を大きくして孔部24との隙間を小さくすることができ、治具5の強度を向上することができる。その結果、ロータ2とステータ3との接触をより効果的に抑制することができる。 In particular, since the cross-sectional shape of the hole portion 24 is circular, the shaft portion 51 of the jig 5 also has a cylindrical shape. Therefore, it is easy to manufacture the jig 5, and it is easy to improve the dimensional accuracy. Moreover, the outer diameter of the shaft portion 51 can be increased to reduce the gap between the shaft portion 51 and the hole portion 24, and the strength of the jig 5 can be improved. As a result, contact between the rotor 2 and the stator 3 can be suppressed more effectively.
 また、孔部24が極中心線上に形成されているため、永久磁石25の内周側の面から出た磁束を周方向両側に均等に案内することができる。これにより、ロータコア20内の磁束の偏りを低減し、電動機1のトルク変動を抑制することができる。 Also, since the hole 24 is formed on the pole center line, the magnetic flux emitted from the inner peripheral surface of the permanent magnet 25 can be evenly guided to both sides in the circumferential direction. As a result, the unevenness of the magnetic flux in the rotor core 20 can be reduced, and the torque fluctuation of the electric motor 1 can be suppressed.
 ここでは孔部24が極中心線上に形成されている例について説明したが、この例に限定されるものではなく、孔部24がロータコア20内の磁束の流れをできるだけ妨げない位置に形成されていればよい。 Although an example in which the hole 24 is formed on the pole center line has been described here, the present invention is not limited to this example, and the hole 24 is formed at a position that does not hinder the flow of magnetic flux in the rotor core 20 as much as possible. All you have to do is
<実施の形態の効果>
 以上説明したように、実施の形態1のロータ2は、回転シャフト10と、回転シャフト10に取り付けられるロータコア20と、ロータコア20に固定された永久磁石25とを有し、ロータコア20は軸方向に延在する孔部24を有する。回転シャフト10の中心軸Axから永久磁石25までの距離Lmと、中心軸Axから孔部24までの距離Lsと、中心軸Axからベアリング11,12の外周までの距離Lbとは、Lm>Ls>Lbを満足する。
<Effect of Embodiment>
As described above, the rotor 2 of Embodiment 1 has the rotating shaft 10, the rotor core 20 attached to the rotating shaft 10, and the permanent magnets 25 fixed to the rotor core 20. The rotor core 20 is axially It has an extending bore 24 . The distance Lm from the central axis Ax of the rotary shaft 10 to the permanent magnet 25, the distance Ls from the central axis Ax to the hole 24, and the distance Lb from the central axis Ax to the outer peripheries of the bearings 11 and 12 satisfy Lm>Ls. >Lb is satisfied.
 そのため、治具5の軸部51を、ベアリング11の外側を通過させて孔部24に挿入し、ロータ2を治具5で保持しながらステータ3の内側に挿入することができる。これにより、ロータ2をステータ3に接触させずに挿入することができ、ロータ2およびステータ3の変形あるいは摩耗を抑制することができる。 Therefore, the shaft portion 51 of the jig 5 can be passed through the outside of the bearing 11 and inserted into the hole portion 24 , and can be inserted inside the stator 3 while the rotor 2 is held by the jig 5 . Thereby, the rotor 2 can be inserted without contacting the stator 3, and deformation or wear of the rotor 2 and the stator 3 can be suppressed.
 また、孔部24が永久磁石25よりも径方向内側に形成されているため、孔部24によってロータコア20内の磁束の流れをできるだけ妨げないようにすることができる。 In addition, since the holes 24 are formed radially inward of the permanent magnets 25, the flow of magnetic flux in the rotor core 20 can be prevented from being hindered by the holes 24 as much as possible.
変形例1.
 図7は、変形例1におけるロータ2のステータ3の内側への挿入方法を示す図である。変形例1では、回転シャフト10の負荷側と反負荷側(すなわち長軸部と短軸部)が、実施の形態1とは逆になっている。
Modification 1.
FIG. 7 is a diagram showing a method of inserting the rotor 2 inside the stator 3 in Modification 1. As shown in FIG. In Modification 1, the load side and the anti-load side (that is, the long axis portion and the short axis portion) of the rotating shaft 10 are reversed from those in the first embodiment.
 上述した実施の形態1では、図1および図6に示したように、回転シャフト10の負荷側すなわち長軸部がモールド樹脂部40の開口部41から突出し、回転シャフト10の反負荷側すなわち短軸部がモールド樹脂部40の底部42で覆われていた。 In the above-described first embodiment, as shown in FIGS. 1 and 6, the load side of rotating shaft 10, that is, the long shaft portion, protrudes from opening 41 of molded resin portion 40, and the anti-load side, that is, the short shaft portion of rotating shaft 10 protrudes from opening portion 41. The shaft portion was covered with the bottom portion 42 of the mold resin portion 40 .
 これに対し、変形例1では、図7に示すように、回転シャフト10の負荷側(図7の右側)すなわち長軸部がモールド樹脂部40の底部42に形成された貫通穴44から突出し、回転シャフト10の反負荷側(図7の左側)すなわち短軸部がモールド樹脂部40の開口部41から突出している。 On the other hand, in Modified Example 1, as shown in FIG. 7, the load side (right side in FIG. 7) of the rotary shaft 10, that is, the long shaft portion protrudes from a through hole 44 formed in the bottom portion 42 of the mold resin portion 40, The anti-load side (left side in FIG. 7) of the rotary shaft 10 , that is, the short shaft portion protrudes from the opening 41 of the mold resin portion 40 .
 ロータ2をステータ3に挿入する際には、回転シャフト10の負荷側の端部がモールド樹脂部40の貫通穴44を通過し、把持治具6で保持される。また、回転シャフト10の反負荷側は、治具5で保持される。 When inserting the rotor 2 into the stator 3 , the end of the rotating shaft 10 on the load side passes through the through hole 44 of the mold resin portion 40 and is held by the gripping jig 6 . Also, the anti-load side of the rotating shaft 10 is held by a jig 5 .
 治具5の構成は、実施の形態1で説明した通りであるが、治具5の支持板52には回転シャフト10を通過させる中心孔53を設ける必要がない。 The configuration of the jig 5 is as described in Embodiment 1, but the support plate 52 of the jig 5 does not need to be provided with the center hole 53 through which the rotating shaft 10 passes.
 この変形例1では、回転シャフト10の負荷側および反負荷側の両端部を保持した状態で、ロータ2をステータ3の内側に挿入することができる。これにより、ロータ2とステータ3との接触をより効果的に抑制することができる。 In this modified example 1, the rotor 2 can be inserted inside the stator 3 while both ends of the rotating shaft 10 on the load side and the anti-load side are held. Thereby, the contact between the rotor 2 and the stator 3 can be suppressed more effectively.
変形例2.
 図8は、変形例2のロータ2Aを示す断面図である。変形例2のロータ2Aは、孔部26の形状が実施の形態1のロータ2の孔部24と異なる。変形例2のロータ2Aは、孔部26の形状を除き、実施の形態1のロータ2と同様に構成されている。
Modification 2.
FIG. 8 is a cross-sectional view showing a rotor 2A of Modification 2. As shown in FIG. The rotor 2</b>A of Modification 2 differs from the hole 24 of the rotor 2 of the first embodiment in the shape of the hole 26 . A rotor 2</b>A of Modification 2 is configured in the same manner as the rotor 2 of Embodiment 1 except for the shape of hole portions 26 .
 孔部26は、軸方向に直交する面内において、回転シャフト10に対向する第1端縁26aと、その反対側の第2端縁26bとを有する。第1端縁26aは、直線状に延在している。第2端縁26bは、回転シャフト10から離れる方向に凸となるように湾曲している。 The hole portion 26 has a first edge 26a facing the rotary shaft 10 and a second edge 26b on the opposite side in a plane orthogonal to the axial direction. The first edge 26a extends linearly. The second edge 26b is curved so as to be convex in a direction away from the rotary shaft 10. As shown in FIG.
 孔部26は、第1端縁26aと第2端縁26bとの間に、径方向に延在する2つの側端縁26cを有する。但し、孔部26は必ずしも側端縁26cを有さなくてもよい。言い換えると、孔部26は、第1端縁26aと第2端縁26bとで半円状に形成されていてもよい。 The hole portion 26 has two radially extending side edges 26c between the first edge 26a and the second edge 26b. However, the hole 26 does not necessarily have the side edge 26c. In other words, the hole 26 may be formed in a semicircular shape by the first edge 26a and the second edge 26b.
 ロータコア20では外周側ほど多くの磁束が流れるため、磁束をできるだけ遮らないようにするためには、孔部26をできるだけロータコア20の内周側に形成することが望ましい。一方、治具5(図6)の強度を向上するためには、軸部51が挿入される孔部26の断面積は大きいことが望ましい。 Since more magnetic flux flows in the rotor core 20 toward the outer circumference, it is desirable to form the hole 26 as close to the inner circumference of the rotor core 20 as possible in order to prevent the magnetic flux from being blocked as much as possible. On the other hand, in order to improve the strength of the jig 5 (FIG. 6), it is desirable that the cross-sectional area of the hole 26 into which the shaft 51 is inserted is large.
 この変形例2では、孔部26の第1端縁26aが直線状で、第2端縁26bが湾曲しているため、中心軸Axから孔部26までの距離Lsが実施の形態1と同じであったとしても、孔部26の断面積を大きくすることができる。これにより、ロータコア20内の磁束をできるだけ遮らないようにしながら、治具5の強度を向上することができる。 In Modification 2, since the first edge 26a of the hole 26 is linear and the second edge 26b is curved, the distance Ls from the central axis Ax to the hole 26 is the same as in the first embodiment. , the cross-sectional area of the hole portion 26 can be increased. As a result, the strength of the jig 5 can be improved while preventing the magnetic flux in the rotor core 20 from being interrupted as much as possible.
実施の形態2.
 次に、実施の形態2について説明する。図9は、実施の形態2のロータ2Bを示す縦断面図である。実施の形態2のロータ2Bのロータコア20は、軸方向に、第1のコア部201と第2のコア部202とを有する。第1のコア部201と第2のコア部202とは、孔部の断面積が異なる。
Embodiment 2.
Next, Embodiment 2 will be described. FIG. 9 is a longitudinal sectional view showing a rotor 2B of Embodiment 2. FIG. The rotor core 20 of the rotor 2B of Embodiment 2 has a first core portion 201 and a second core portion 202 in the axial direction. The first core portion 201 and the second core portion 202 have different cross-sectional areas of the holes.
 ロータコア20は、軸方向の一端部に第1のコア部201を有し、軸方向の中央部から他端部にかけて第2のコア部202を有する。ここでは、ロータコア20は、負荷側の端部に第1のコア部201を有する。 The rotor core 20 has a first core portion 201 at one end in the axial direction, and a second core portion 202 from the central portion to the other end in the axial direction. Here, the rotor core 20 has a first core portion 201 at the end on the load side.
 図10は、図9に示す線分X-Xにおけるロータ2Bの断面図、すなわち第1のコア部201を通る面における断面図である。図10に示すように、第1のコア部201の磁石挿入孔21の径方向内側には、第1の孔部としての孔部27が形成されている。 FIG. 10 is a cross-sectional view of the rotor 2B taken along line XX shown in FIG. As shown in FIG. 10 , a hole portion 27 as a first hole portion is formed radially inside the magnet insertion hole 21 of the first core portion 201 .
 中心軸Axから磁石挿入孔21までの距離Lmと、中心軸Axから孔部27までの距離Lsと、中心軸Axからベアリング11,12までの距離Lb(図9)とは、Lm>Ls>Lbを満足する。孔部27の直径はA1である。 The distance Lm from the central axis Ax to the magnet insertion hole 21, the distance Ls from the central axis Ax to the hole 27, and the distance Lb (FIG. 9) from the central axis Ax to the bearings 11 and 12 satisfy Lm>Ls> satisfy Lb. The diameter of the hole 27 is A1.
 図11は、図9に示す線分XI-XIにおけるロータ2Bの断面図、すなわち第2のコア部202を通る面における断面図である。図11に示すように、第2のコア部202の磁石挿入孔21の径方向内側には、第2の孔部としての孔部28が形成されている。 FIG. 11 is a cross-sectional view of the rotor 2B taken along line XI-XI shown in FIG. As shown in FIG. 11 , a hole portion 28 as a second hole portion is formed inside the magnet insertion hole 21 of the second core portion 202 in the radial direction.
 中心軸Axから磁石挿入孔21までの距離Lmと、中心軸Axから孔部28までの距離Ls´と、中心軸Axからベアリング11,12までの距離Lb(図9)とは、Lm>Ls´>Lbを満足する。孔部28の直径はA2である。 The distance Lm from the central axis Ax to the magnet insertion hole 21, the distance Ls' from the central axis Ax to the hole 28, and the distance Lb (FIG. 9) from the central axis Ax to the bearings 11 and 12 satisfy Lm>Ls. '>Lb is satisfied. The diameter of the hole 28 is A2.
 孔部27(図10)の中心と孔部28(図11)の中心とは一致している。言い換えると、孔部27と孔部28とは同軸上にある。また、孔部27の内径A1は、孔部28の内径A2よりも大きい。言い換えると、軸方向に直交する面における孔部27の断面積は、孔部28の断面積よりも大きい。 The center of the hole 27 (Fig. 10) and the center of the hole 28 (Fig. 11) match. In other words, the holes 27 and 28 are coaxial. Moreover, the inner diameter A1 of the hole portion 27 is larger than the inner diameter A2 of the hole portion 28 . In other words, the cross-sectional area of the hole 27 in the plane orthogonal to the axial direction is larger than the cross-sectional area of the hole 28 .
 図12は、ロータ2Bのステータ3への挿入方法を示す図である。治具5Bの軸部51は、ロータ2Bの孔部27に挿入される根元部51aと、孔部28に挿入される先端部51bとを有する。根元部51aと先端部51bとは同軸状に形成されている。 12A and 12B are diagrams showing a method of inserting the rotor 2B into the stator 3. FIG. A shaft portion 51 of the jig 5B has a root portion 51a inserted into the hole portion 27 of the rotor 2B and a tip portion 51b inserted into the hole portion 28. As shown in FIG. The root portion 51a and the tip portion 51b are coaxially formed.
 ロータコア20に形成する孔部は、ロータコア20内の磁束をできるだけ妨げないようにするためには、断面積が小さいことが望ましい。一方、孔部の断面積を小さくすると、孔部に挿入する軸部51を細くしなければならず、治具5Bの強度が低下する。 It is desirable that the hole formed in the rotor core 20 have a small cross-sectional area so as not to interfere with the magnetic flux in the rotor core 20 as much as possible. On the other hand, if the cross-sectional area of the hole is reduced, the shaft portion 51 to be inserted into the hole must be made thin, which reduces the strength of the jig 5B.
 この実施の形態2のロータ2Bは、第2のコア部202の孔部28の内径A2が小さいため、磁束の流れをできるだけ妨げないようにすることができる。また、第1のコア部201の孔部27の内径A1が大きいため、軸部51の根元部51aを太くし、軸部51の強度を高めることができる。 In the rotor 2B of the second embodiment, since the inner diameter A2 of the hole 28 of the second core portion 202 is small, the flow of magnetic flux can be prevented as much as possible. Moreover, since the inner diameter A1 of the hole portion 27 of the first core portion 201 is large, the root portion 51a of the shaft portion 51 can be thickened and the strength of the shaft portion 51 can be increased.
 ここでは、ロータコア20が軸方向の一端部に第1のコア部201を有し、それ以外の部分に第2のコア部202を有している。しかしながら、第1のコア部201と第2のコア部202との軸方向長さの割合は、適宜変更することができる。例えば、第1のコア部201の軸方向長さと第2のコア部202の軸方向長さとが同じであってもよい。 Here, the rotor core 20 has a first core portion 201 at one axial end and a second core portion 202 at the other portion. However, the ratio of the axial lengths of the first core portion 201 and the second core portion 202 can be changed as appropriate. For example, the axial length of the first core portion 201 and the axial length of the second core portion 202 may be the same.
 また、ロータコア20の軸方向中央に第2のコア部202を設け、軸方向両端に第1のコア部201を設けてもよい。 Alternatively, the second core portion 202 may be provided in the center of the rotor core 20 in the axial direction, and the first core portions 201 may be provided at both ends in the axial direction.
 上述した点を除き、実施の形態2のロータ2Bは、実施の形態1のロータ2と同様に構成されている。なお、図7に示した変形例1のように、ロータ2Bのステータ3への挿入時に負荷側と反負荷側を逆にしてもよい。また、ロータ2Bの孔部27,28の形状を、図8に示した比較例2の孔部26と同様の形状にしてもよい。 Except for the points described above, the rotor 2B of the second embodiment is configured similarly to the rotor 2 of the first embodiment. It should be noted that the load side and the anti-load side may be reversed when the rotor 2B is inserted into the stator 3, as in Modification 1 shown in FIG. Moreover, the shape of the holes 27 and 28 of the rotor 2B may be the same shape as the hole 26 of the comparative example 2 shown in FIG.
 以上説明したように、実施の形態2では、ロータコア20が軸方向に第1のコア部201と第2のコア部202とを有し、第1のコア部201はロータコア20の少なくとも軸方向の一端部に位置し、第1のコア部201の孔部27の断面積が第2のコア部202の孔部28の断面積よりも大きい。そのため、ロータコア20の磁路をできるだけ遮らないようにして出力を安定させ、なお且つ治具5Bの強度を確保してロータ2Bとステータ3との接触を抑制する効果を高めることができる。 As described above, in Embodiment 2, the rotor core 20 has the first core portion 201 and the second core portion 202 in the axial direction, and the first core portion 201 extends at least in the axial direction of the rotor core 20 . Positioned at one end, the cross-sectional area of the hole 27 of the first core portion 201 is larger than the cross-sectional area of the hole 28 of the second core portion 202 . Therefore, the magnetic path of the rotor core 20 is prevented from being blocked as much as possible to stabilize the output, and the strength of the jig 5B is ensured to enhance the effect of suppressing the contact between the rotor 2B and the stator 3.
実施の形態3.
 次に、実施の形態3について説明する。図13は、実施の形態3のロータ2Cを示す断面図である。実施の形態3のロータ2Cは、磁石磁極P1と仮想磁極P2とが周方向に交互に配置されたコンシクエントポール型のロータである。
Embodiment 3.
Next, Embodiment 3 will be described. FIG. 13 is a cross-sectional view showing rotor 2C of the third embodiment. The rotor 2C of Embodiment 3 is a consequent-pole rotor in which magnet magnetic poles P1 and virtual magnetic poles P2 are alternately arranged in the circumferential direction.
 ロータ2Cは、ロータコア20の外周に沿って複数の磁石挿入孔21を有する。磁石挿入孔21の数は、実施の形態1の磁石挿入孔21(図2)の数の半数である。磁石挿入孔21は、周方向に等間隔に配置されている。各磁石挿入孔21の周方向の両端には、漏れ磁束を抑制するためのフラックスバリア22が形成されている。 The rotor 2</b>C has a plurality of magnet insertion holes 21 along the outer circumference of the rotor core 20 . The number of magnet insertion holes 21 is half the number of magnet insertion holes 21 (FIG. 2) in the first embodiment. The magnet insertion holes 21 are arranged at regular intervals in the circumferential direction. Flux barriers 22 are formed at both ends of each magnet insertion hole 21 in the circumferential direction to suppress leakage magnetic flux.
 各磁石挿入孔21には、永久磁石25が配置されている。永久磁石25は、互いに同じ磁極面(例えばN極)を外周側に向けて配置されている。ロータコア20において隣り合う永久磁石25の間に位置する部分には、径方向に磁束が流れる部分が生じる。 A permanent magnet 25 is arranged in each magnet insertion hole 21 . The permanent magnets 25 are arranged with the same magnetic pole faces (for example, N poles) directed toward the outer circumference. A portion of the rotor core 20 located between the adjacent permanent magnets 25 has a portion through which the magnetic flux flows in the radial direction.
 そのため、コンシクエントポール型のロータ2Cでは、永久磁石25によって形成される第1の磁極としての磁石磁極P1と、ロータコア20の一部によって形成される第2の磁極としての仮想磁極P2とが、周方向に交互に配置される。図13では、磁石磁極P1がN極で仮想磁極P2がS極であるが、磁石磁極P1がS極で仮想磁極P2がN極であってもよい。 Therefore, in the consequent-pole rotor 2C, the magnet magnetic pole P1 as the first magnetic pole formed by the permanent magnet 25 and the virtual magnetic pole P2 as the second magnetic pole formed by a part of the rotor core 20 are They are arranged alternately in the circumferential direction. In FIG. 13, the magnet magnetic pole P1 is the N pole and the virtual magnetic pole P2 is the S pole, but the magnet magnetic pole P1 may be the S pole and the virtual magnetic pole P2 may be the N pole.
 コンシクエントポール型のロータ2Cは、非コンシクエントポール型で同じ極数のロータ2(図3)と比較して永久磁石25の数が半分となり、製造コストを大幅に低減することができる。 The consequent-pole rotor 2C has half the number of permanent magnets 25 compared to the non-consequent-pole rotor 2 (FIG. 3) having the same number of poles, and can significantly reduce manufacturing costs.
 実施の形態3のロータ2Cでは、ロータコア20の仮想磁極P2に孔部24が形成されている。中心軸Axから磁石挿入孔21までの距離Lmと、中心軸Axから孔部24までの距離Lsと、中心軸Axからベアリング11,12の外周までの距離Lbとは、Lm>Ls>Lbを満足する。 In the rotor 2</b>C of Embodiment 3, holes 24 are formed in the virtual magnetic poles P<b>2 of the rotor core 20 . The distance Lm from the central axis Ax to the magnet insertion hole 21, the distance Ls from the central axis Ax to the hole 24, and the distance Lb from the central axis Ax to the outer peripheries of the bearings 11 and 12 satisfy Lm>Ls>Lb. Be satisfied.
 仮想磁極P2には永久磁石が設けられていないため、孔部24をロータコア20の外周に近づけることができる。そのため、上記の不等式を満足しながら、孔部24を大きくすることができる。これにより、孔部24に挿入される軸部51(図6)を太くして強度を高め、ロータ2Cとステータ3との接触を抑制する効果を高めることができる。 Since the virtual magnetic pole P2 is not provided with a permanent magnet, the hole 24 can be brought closer to the outer circumference of the rotor core 20. Therefore, the hole portion 24 can be enlarged while satisfying the above inequality. As a result, the shaft portion 51 (FIG. 6) inserted into the hole portion 24 can be made thicker to increase the strength, and the effect of suppressing the contact between the rotor 2C and the stator 3 can be enhanced.
 また、コンシクエントポール型のロータ2Cでは、仮想磁極P2に磁石挿入孔が存在しないため、仮想磁極P2のコア量が磁石磁極P1のコア量よりも多い。なお、コア量とは、磁性薄板等のコア材料の量である。 Also, in the consequent-pole rotor 2C, the virtual magnetic pole P2 does not have a magnet insertion hole, so the core amount of the virtual magnetic pole P2 is larger than the core amount of the magnet magnetic pole P1. Note that the amount of core is the amount of core material such as a magnetic thin plate.
 このように仮想磁極P2のコア量が磁石磁極P1のコア量よりも多いため、ロータ2Cとステータ3との間の磁気的吸引力が磁石磁極P1よりも仮想磁極P2で大きくなる。その結果、磁気的吸引力の違いに起因する振動および騒音が発生する可能性がある。 Since the core amount of the virtual magnetic pole P2 is larger than that of the magnet magnetic pole P1, the magnetic attraction force between the rotor 2C and the stator 3 is greater at the virtual magnetic pole P2 than at the magnetic magnetic pole P1. As a result, vibration and noise may occur due to differences in magnetic attraction.
 仮想磁極P2に孔部24を形成することで、磁石磁極P1のコア量と仮想磁極P2のコア量とを近づけることができる。これにより、磁石磁極P1と仮想磁極P2との磁気的吸引力の違いに起因する振動および騒音を低減することができる。 By forming the hole 24 in the virtual magnetic pole P2, the core amount of the magnet magnetic pole P1 and the core amount of the virtual magnetic pole P2 can be brought close to each other. As a result, vibration and noise caused by the difference in magnetic attraction force between the magnet magnetic pole P1 and the virtual magnetic pole P2 can be reduced.
 ここで、孔部24の配置について、さらに説明する。図14は、ロータ2Cにおける孔部24の配置を説明するための図である。磁石挿入孔21の一部であるフラックスバリア22の仮想磁極P2側には、仮想磁極P2の周方向端部の位置を規定する端縁Eが形成されている。 Here, the arrangement of the holes 24 will be further described. FIG. 14 is a diagram for explaining the arrangement of the holes 24 in the rotor 2C. On the side of the virtual magnetic pole P2 of the flux barrier 22, which is a part of the magnet insertion hole 21, an edge E that defines the position of the circumferential end of the virtual magnetic pole P2 is formed.
 ロータコア20の外周20aにおいて、隣り合う2つの端縁Eの間に相当する部分の周方向長さを、Lvとする。このLvは、ロータコア20の外周20aにおける仮想磁極P2の周方向幅に相当する。 In the outer circumference 20a of the rotor core 20, the circumferential length of the portion corresponding to between two adjacent edges E is defined as Lv. This Lv corresponds to the circumferential width of the virtual magnetic pole P<b>2 on the outer circumference 20 a of the rotor core 20 .
 磁石磁極P1がN極の場合、永久磁石25の外周側の面から出た磁束は、ステータコア30を流れて仮想磁極P2に流入し、永久磁石25の内周側の面に戻る。ロータコア20の外周20aにおける仮想磁極P2の周方向幅Lvは、永久磁石25からの磁束の流入を受けられるよう十分に広いことが望ましい。 When the magnet magnetic pole P1 is the N pole, the magnetic flux emitted from the outer peripheral surface of the permanent magnet 25 flows through the stator core 30, flows into the virtual magnetic pole P2, and returns to the inner peripheral surface of the permanent magnet 25. The circumferential width Lv of the virtual magnetic poles P2 on the outer circumference 20a of the rotor core 20 is desirably wide enough so that magnetic flux from the permanent magnets 25 can be received.
 また、治具5の強度を向上するためには、軸部51が挿入される孔部24の内径が大きいことが望ましい。孔部24の中心の径方向位置を変えずに内径を大きくすると、孔部24からロータコア20の外周20aまでの領域Rが狭くなる。しかしながら、磁石磁極P1から仮想磁極P2に流入した磁束は、孔部24の周方向両側を径方向に流れることができるため、領域Rは狭くすることが可能である。そのため、孔部24からロータコア20の外周20aまでの距離(すなわち領域Rの径方向幅)Laは、La<Lvを満足するように短くすることができる。 Also, in order to improve the strength of the jig 5, it is desirable that the inner diameter of the hole 24 into which the shaft 51 is inserted is large. If the inner diameter is increased without changing the radial position of the center of the hole 24, the region R from the hole 24 to the outer circumference 20a of the rotor core 20 becomes narrower. However, since the magnetic flux flowing from the magnet magnetic pole P1 to the virtual magnetic pole P2 can flow radially on both circumferential sides of the hole 24, the area R can be narrowed. Therefore, the distance La from the hole 24 to the outer circumference 20a of the rotor core 20 (that is, the radial width of the region R) can be shortened so as to satisfy La<Lv.
 但し、孔部24からロータコア20の外周20aまでの距離Laをロータコア20の磁性薄板の板厚よりも狭くすることは製造上困難であるため、距離Laは磁性薄板の板厚以上に設定される。 However, since it is difficult to make the distance La from the hole 24 to the outer circumference 20a of the rotor core 20 narrower than the plate thickness of the magnetic thin plate of the rotor core 20, the distance La is set to be equal to or greater than the plate thickness of the magnetic thin plate. .
 孔部24は、磁石挿入孔21と孔部24との間の領域Bでの磁束密度が1.6T以上となる位置に形成されることが望ましい。この場合、領域Bでは磁気飽和状態となるため、ステータ3から流入する磁束に対して、領域Bはコア材料の本来の磁気特性を示さない。言い換えると、ステータ3から流入する磁束に対しては、領域Bにはコア材料が存在しないのと同じ状態になる。その結果、磁石磁極P1のコア量と仮想磁極P2のコア量とをさらに近づけ、振動および騒音をさらに低減することができる。 The hole 24 is preferably formed at a position where the magnetic flux density in the area B between the magnet insertion hole 21 and the hole 24 is 1.6 T or more. In this case, since the region B is magnetically saturated, the region B does not exhibit the original magnetic properties of the core material with respect to the magnetic flux flowing from the stator 3 . In other words, with respect to the magnetic flux flowing from the stator 3, the region B is in the same state as if the core material were not present. As a result, the core amount of the magnet magnetic pole P1 and the core amount of the virtual magnetic pole P2 can be brought closer to each other, and vibration and noise can be further reduced.
 上述した点を除き、実施の形態3のロータ2Cは、実施の形態1のロータ2と同様に構成されている。なお、図7に示した変形例1のように、ロータ2Cのステータ3への挿入時に負荷側と反負荷側を逆にしてもよい。また、ロータ2Cの孔部24の形状を、図8に示した比較例2の孔部26と同様の形状にしてもよい。また、ロータ2Cのロータコア20を、実施の形態2のように孔部の断面積の異なる複数のコア部で形成してもよい。 Except for the points described above, the rotor 2C of the third embodiment is configured in the same manner as the rotor 2 of the first embodiment. It should be noted that the load side and the anti-load side may be reversed when the rotor 2C is inserted into the stator 3, as in Modification 1 shown in FIG. Further, the shape of the hole portion 24 of the rotor 2C may be the same shape as the hole portion 26 of the comparative example 2 shown in FIG. Further, the rotor core 20 of the rotor 2C may be formed of a plurality of core portions having holes with different cross-sectional areas as in the second embodiment.
 以上説明したように、実施の形態3では、コンシクエントポール型のロータ2Cが、仮想磁極P2に孔部24を有する。そのため、実施の形態1で説明した効果に加えて、磁石磁極P1のコア量と仮想磁極P2のコア量を近付け、ステータ3との磁気的吸引力の違いに起因する振動および騒音を低減することができる。 As described above, in the third embodiment, the consequent-pole rotor 2C has the holes 24 in the virtual magnetic poles P2. Therefore, in addition to the effects described in the first embodiment, the core amount of the magnet magnetic pole P1 and the core amount of the virtual magnetic pole P2 are brought closer to reduce vibration and noise caused by the difference in magnetic attraction force with the stator 3. can be done.
<空気調和装置>
 次に、上述した各実施の形態および各変形例の電動機1が適用可能な空気調和装置について説明する。図15(A)は、実施の形態1の電動機1を適用した空気調和装置500の構成を示す図である。空気調和装置500は、室外機501と室内機502とを備える。室外機501と室内機502とは、冷媒配管503で接続されている。
<Air conditioner>
Next, an air conditioner to which the electric motor 1 of each embodiment and each modification described above can be applied will be described. FIG. 15(A) is a diagram showing the configuration of an air conditioner 500 to which the electric motor 1 of Embodiment 1 is applied. An air conditioner 500 includes an outdoor unit 501 and an indoor unit 502 . The outdoor unit 501 and the indoor unit 502 are connected by a refrigerant pipe 503 .
 室外機501は、圧縮機504と、凝縮器505と、室外送風機510とを備える。室外送風機510は、例えばプロペラファンである。室外送風機510は、羽根車(インペラ)511と、これを駆動する電動機1Aとを有する。 The outdoor unit 501 includes a compressor 504, a condenser 505, and an outdoor fan 510. Outdoor fan 510 is, for example, a propeller fan. The outdoor fan 510 has an impeller 511 and an electric motor 1A for driving the same.
 室内機502は、蒸発器506と、室内送風機520とを備える。室内送風機520は、例えばクロスフローファンである。室内送風機520は、羽根車(インペラ)521と、これを駆動する電動機1Bとを有する。 The indoor unit 502 includes an evaporator 506 and an indoor fan 520. Indoor fan 520 is, for example, a cross-flow fan. The indoor fan 520 has an impeller 521 and an electric motor 1B for driving the same.
 図15(B)は、室外機501の断面図である。電動機1Aは、室外機501のハウジング508内に配置されたフレーム509によって支持されている。電動機1の回転シャフト10には、ハブ512を介して羽根車511が取り付けられている。 15(B) is a cross-sectional view of the outdoor unit 501. FIG. The electric motor 1A is supported by a frame 509 arranged inside a housing 508 of the outdoor unit 501. As shown in FIG. An impeller 511 is attached to the rotary shaft 10 of the electric motor 1 via a hub 512 .
 室外送風機510では、電動機1Aによって羽根車511が回転し、室外に送風する。空気調和装置500の冷房運転時には、圧縮機504で圧縮された冷媒が凝縮器505で凝縮する際に放出された熱を、室外送風機510の送風によって室外に放出する。 In the outdoor blower 510, the impeller 511 is rotated by the electric motor 1A to blow air outdoors. During the cooling operation of the air conditioner 500 , the heat released when the refrigerant compressed by the compressor 504 is condensed by the condenser 505 is released to the outside by the air blown by the outdoor fan 510 .
 室内送風機520(図15(A))では、電動機1Bによって羽根車521が回転し、室内に送風する。空気調和装置500の冷房運転時には、冷媒が蒸発器506で蒸発する際に熱が奪われた空気を、室内送風機520の送風によって室内に送風する。 In the indoor blower 520 (FIG. 15(A)), the impeller 521 is rotated by the electric motor 1B to blow air into the room. During the cooling operation of the air conditioner 500 , the indoor fan 520 blows the air from which heat was removed when the refrigerant was evaporated in the evaporator 506 into the room.
 電動機1A,1Bは、実施の形態1の電動機1で構成されているため、ロータ2とステータ3との接触防止により、長期間に亘って安定した運転が可能である。そのため、室外送風機510および室内送風機520の信頼性を向上することができる。 Since the electric motors 1A and 1B are configured with the electric motor 1 of Embodiment 1, they can be stably operated over a long period of time by preventing contact between the rotor 2 and the stator 3. Therefore, the reliability of outdoor fan 510 and indoor fan 520 can be improved.
 電動機1A,1Bには、実施の形態1の電動機1に限らず、実施の形態2,3あるいは各変形例の電動機を用いてもよい。また、各実施の形態および各変形例の電動機は、ここでは室外送風機510および室内送風機520の両方に用いているが、いずれか一方のみに用いてもよい。 The electric motors 1A and 1B are not limited to the electric motor 1 of the first embodiment, and may be the electric motors of the second and third embodiments or the modifications. Also, although the electric motors of the embodiments and modifications are used for both the outdoor fan 510 and the indoor fan 520 here, they may be used for only one of them.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。 Although the preferred embodiments have been specifically described above, the present disclosure is not limited to the above embodiments, and various improvements and modifications can be made.
 1,1A,1B 電動機、 2,2A,2B,2C ロータ、 3 ステータ、 4 モールドステータ、 5,5B 治具、 10 回転シャフト、 11 ベアリング(第1のベアリング)、 12 ベアリング(第2のベアリング)、 13 ブラケット、 20 ロータコア、 21 磁石挿入孔、 23 シャフト孔、 24 孔部、 25 永久磁石、 26 孔部、 26a 第1端縁、 26b 第2端縁、 26c 側端縁、 27,28 孔部、 30 ステータコア、 31 ヨーク、 32 ティース、 33 スロット、 35 コイル、 40 モールド樹脂部、 41 開口部、 42 底部、 43 凹部、 44 貫通穴、 45 回路基板、 50 治具、 51 軸部、 51a 根元部、 51b 先端部、 52 支持板、 201 第1のコア部、 202 第2のコア部、 500 空気調和装置、 501 室外機、 502 室内機、 510 室外送風機(送風機)、 511 羽根車、 520 室内送風機(送風機、 521 羽根車。 1, 1A, 1B electric motor, 2, 2A, 2B, 2C rotor, 3 stator, 4 molded stator, 5, 5B jig, 10 rotating shaft, 11 bearing (first bearing), 12 bearing (second bearing) , 13 bracket, 20 rotor core, 21 magnet insertion hole, 23 shaft hole, 24 hole, 25 permanent magnet, 26 hole, 26a first edge, 26b second edge, 26c side edge, 27, 28 hole 30 Stator core 31 Yoke 32 Teeth 33 Slot 35 Coil 40 Mold resin part 41 Opening 42 Bottom 43 Recess 44 Through hole 45 Circuit board 50 Jig 51 Shaft 51a Root , 51b tip, 52 support plate, 201 first core, 202 second core, 500 air conditioner, 501 outdoor unit, 502 indoor unit, 510 outdoor blower (blower), 511 impeller, 520 indoor blower (Blower, 521 impeller.

Claims (14)

  1.  ベアリングが取り付けられる回転シャフトと、
     前記回転シャフトに固定されたロータコアと、
     前記ロータコアに固定された永久磁石と
     を有し、
     前記ロータコアは、前記回転シャフトの軸方向に延在する孔部を有し、
     前記回転シャフトの中心軸から前記永久磁石までの距離Lmと、前記中心軸から前記孔部までの距離Lsと、前記中心軸から前記ベアリングの外周までの距離Lbとは、Lm>Ls>Lbを満足する
     ロータ。
    a rotating shaft on which the bearings are mounted;
    a rotor core fixed to the rotating shaft;
    permanent magnets fixed to the rotor core;
    The rotor core has a hole extending in the axial direction of the rotating shaft,
    The distance Lm from the central axis of the rotating shaft to the permanent magnet, the distance Ls from the central axis to the hole, and the distance Lb from the central axis to the outer periphery of the bearing satisfy Lm>Ls>Lb. Satisfied rotor.
  2.  前記永久磁石は磁極を構成し、
     前記孔部は、前記磁極の中心と前記中心軸とを通る直線状に形成されている
     請求項1に記載のロータ。
    The permanent magnet constitutes a magnetic pole,
    The rotor according to claim 1, wherein the hole is formed in a straight line passing through the center of the magnetic pole and the central axis.
  3.  前記孔部は、円形断面を有する
     請求項1または2に記載のロータ。
    A rotor according to claim 1 or 2, wherein the hole has a circular cross-section.
  4.  前記軸方向に直交する面内において、前記孔部は、前記回転シャフトに対向する第1端縁と、前記回転シャフトとは反対側の第2端縁とを有し、
     前記第1端縁が直線状であり、前記第2端縁が前記回転シャフトから離れる方向に凸となるように湾曲している
     請求項1から3までのいずれか1項に記載のロータ。
    In a plane orthogonal to the axial direction, the hole has a first edge facing the rotating shaft and a second edge opposite to the rotating shaft,
    4. The rotor according to any one of claims 1 to 3, wherein said first edge is straight and said second edge is curved so as to be convex in a direction away from said rotating shaft.
  5.  前記ロータコアは、前記軸方向に第1のコア部と第2のコア部とを有し、
     前記第1のコア部は、前記ロータコアの前記軸方向の少なくとも一端に位置し、
     前記第1のコア部における前記孔部の断面積は、前記第2のコア部における前記孔部の断面積よりも大きい
     請求項1から4までのいずれか1項に記載のロータ。
    The rotor core has a first core portion and a second core portion in the axial direction,
    The first core portion is positioned at least one end of the rotor core in the axial direction,
    The rotor according to any one of claims 1 to 4, wherein the cross-sectional area of the hole in the first core portion is larger than the cross-sectional area of the hole in the second core portion.
  6.  前記永久磁石は第1の磁極を構成し、前記ロータコアの一部は第2の磁極を構成し、
     前記ロータコアの前記第2の磁極に、前記孔部が形成されている
     請求項1から5までの何れか1項に記載のロータ。
    the permanent magnet constitutes a first magnetic pole, a part of the rotor core constitutes a second magnetic pole,
    The rotor according to any one of claims 1 to 5, wherein the hole is formed in the second magnetic pole of the rotor core.
  7.  前記ロータコアは、前記永久磁石が挿入される磁石挿入孔を有し、
     前記孔部は、前記孔部と前記磁石挿入孔との間の領域における磁束密度が1.6T以上となるように配置されている
     請求項6に記載のロータ。
    The rotor core has magnet insertion holes into which the permanent magnets are inserted,
    7. The rotor according to claim 6, wherein the holes are arranged such that a magnetic flux density in a region between the holes and the magnet insertion holes is 1.6 T or more.
  8.  前記ロータコアは、それぞれ前記永久磁石が挿入された2つの磁石挿入孔を有し、前記2つの磁石挿入孔の間に前記第2の磁極が形成され、
     前記2つの磁石挿入孔の間に対応する前記ロータコアの外周の長さLvと、前記孔部から前記ロータコアの前記外周までの距離Laとが、La<Lvを満足する
     請求項6または7に記載のロータ。
    The rotor core has two magnet insertion holes into which the permanent magnets are inserted respectively, and the second magnetic pole is formed between the two magnet insertion holes,
    The length Lv of the outer circumference of the rotor core corresponding to the space between the two magnet insertion holes and the distance La from the hole to the outer circumference of the rotor core satisfy La<Lv according to claim 6 or 7. rotor.
  9.  請求項1から8までのいずれか1項に記載のロータと、
     前記ロータを囲む環状のステータと、
     前記ステータに対して固定され、前記回転シャフトを回転可能に支持する前記ベアリングと
     を有する電動機。
    a rotor according to any one of claims 1 to 8;
    an annular stator surrounding the rotor;
    and the bearing fixed to the stator and rotatably supporting the rotating shaft.
  10.  請求項9に記載の電動機と、
     前記電動機の前記回転シャフトに取り付けられた羽根車と
     を備えた送風機。
    The electric motor according to claim 9;
    and an impeller attached to the rotating shaft of the electric motor.
  11.  室外機と室内機とを備え、
     前記室外機と前記室内機の少なくとも一方は、請求項10に記載の送風機を有する
     空気調和装置。
    Equipped with an outdoor unit and an indoor unit,
    At least one of the outdoor unit and the indoor unit has the fan according to claim 10. An air conditioner.
  12.  回転シャフトと、前記回転シャフトに固定されて前記回転シャフトの軸方向に孔部を有するロータコアと、前記ロータコアに取り付けられた永久磁石とを有するロータを組み立てる工程と、
     環状のステータを組み立てる工程と、
     前記ロータの前記回転シャフトにベアリングを取り付ける工程と、
     治具の軸部を前記孔部に挿入して前記ロータを保持しながら、前記ロータを前記ステータの内側に挿入する工程と
     を有する電動機の製造方法。
    assembling a rotor having a rotating shaft, a rotor core fixed to the rotating shaft and having a hole in the axial direction of the rotating shaft, and a permanent magnet attached to the rotor core;
    assembling an annular stator;
    attaching a bearing to the rotating shaft of the rotor;
    A method of manufacturing an electric motor, comprising: inserting the rotor into the stator while inserting the shaft of a jig into the hole to hold the rotor.
  13.  前記回転シャフトは、前記ロータコアからの前記軸方向の突出量の異なる長軸部と短軸部とを有し、
     前記治具は、前記回転シャフトの前記長軸部の側から、前記ロータの前記孔部に挿入される
     請求項12に記載の電動機の製造方法。
    The rotating shaft has a long shaft portion and a short shaft portion that project from the rotor core in different amounts in the axial direction,
    13. The method of manufacturing an electric motor according to claim 12, wherein the jig is inserted into the hole of the rotor from the long shaft portion side of the rotating shaft.
  14.  前記回転シャフトは、前記ロータコアからの前記軸方向の突出量の異なる長軸部と短軸部とを有し、
     前記治具は、前記回転シャフトの前記短軸部の側から、前記ロータの前記孔部に挿入される
     請求項12に記載の電動機の製造方法。
    The rotating shaft has a long shaft portion and a short shaft portion that project from the rotor core in different amounts in the axial direction,
    13. The method of manufacturing an electric motor according to claim 12, wherein the jig is inserted into the hole of the rotor from the short shaft portion side of the rotating shaft.
PCT/JP2022/004601 2022-02-07 2022-02-07 Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor WO2023148953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023578326A JPWO2023148953A1 (en) 2022-02-07 2022-02-07
PCT/JP2022/004601 WO2023148953A1 (en) 2022-02-07 2022-02-07 Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004601 WO2023148953A1 (en) 2022-02-07 2022-02-07 Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor

Publications (1)

Publication Number Publication Date
WO2023148953A1 true WO2023148953A1 (en) 2023-08-10

Family

ID=87553263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004601 WO2023148953A1 (en) 2022-02-07 2022-02-07 Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor

Country Status (2)

Country Link
JP (1) JPWO2023148953A1 (en)
WO (1) WO2023148953A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072035A (en) * 2007-09-18 2009-04-02 Meidensha Corp Rotor core of rotating electrical machine
JP2009148035A (en) * 2007-12-12 2009-07-02 Aisin Aw Co Ltd Rotor attaching apparatus
JP2009268263A (en) * 2008-04-25 2009-11-12 Jtekt Corp Rotor of motor and electric power steering apparatus
JP2014108020A (en) * 2012-11-29 2014-06-09 Honda Motor Co Ltd Rotor position adjustment device, rotor position adjustment method and manufacturing method of rotary electric machine
JP2014131376A (en) * 2012-12-28 2014-07-10 Denso Corp Rotor, and dynamo-electric machine using the same
JP3217347U (en) * 2018-05-22 2018-08-02 威技電器股▲分▼有限公司 Consecutive pole type permanent magnet motor rotor with magnetic dispersion grooves
JP2019213414A (en) * 2018-06-07 2019-12-12 株式会社ミツバ Rotor assembling apparatus and rotor assembling method
WO2020003341A1 (en) * 2018-06-25 2020-01-02 三菱電機株式会社 Rotor, electric motor, fan, and air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072035A (en) * 2007-09-18 2009-04-02 Meidensha Corp Rotor core of rotating electrical machine
JP2009148035A (en) * 2007-12-12 2009-07-02 Aisin Aw Co Ltd Rotor attaching apparatus
JP2009268263A (en) * 2008-04-25 2009-11-12 Jtekt Corp Rotor of motor and electric power steering apparatus
JP2014108020A (en) * 2012-11-29 2014-06-09 Honda Motor Co Ltd Rotor position adjustment device, rotor position adjustment method and manufacturing method of rotary electric machine
JP2014131376A (en) * 2012-12-28 2014-07-10 Denso Corp Rotor, and dynamo-electric machine using the same
JP3217347U (en) * 2018-05-22 2018-08-02 威技電器股▲分▼有限公司 Consecutive pole type permanent magnet motor rotor with magnetic dispersion grooves
JP2019213414A (en) * 2018-06-07 2019-12-12 株式会社ミツバ Rotor assembling apparatus and rotor assembling method
WO2020003341A1 (en) * 2018-06-25 2020-01-02 三菱電機株式会社 Rotor, electric motor, fan, and air conditioner

Also Published As

Publication number Publication date
JPWO2023148953A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
US11552515B2 (en) Rotor, motor, fan, and air conditioner
US11190069B2 (en) Consequent-pole-type rotor, electric motor, and air conditioner
WO2019026273A1 (en) Rotor, electric motor, fan, and method for manufacturing air conditioner and rotor
JP6615375B2 (en) Electric motor and air conditioner
US20060220485A1 (en) Motor
JP7090740B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors
WO2023148953A1 (en) Rotor, electric motor, air blower, air conditioning device, and method for producing electric motor
JP7559044B2 (en) Electric motors, fans, and air conditioners
JP7301972B2 (en) Electric motor, blower, air conditioner, and method for manufacturing electric motor
JP7337249B2 (en) Blowers and air conditioners
WO2021171435A1 (en) Stator, electric motor, blower, air conditioner, and stator manufacturing method
WO2024218980A1 (en) Electric motor, blower, air conditioner, and method for manufacturing electric motor
CN115104237A (en) Motor, blower, and air conditioner
WO2024189888A1 (en) Rotor, motor, blower, air-conditioning device, and method for manufacturing motor
WO2023073757A1 (en) Rotor, electric motor, fan, and air conditioner
JP7204018B2 (en) Rotors, electric motors, blowers and air conditioners
WO2023148949A1 (en) Electric motor and air conditioner
JP7239738B2 (en) Rotors, electric motors, fans, and air conditioners
JP7527469B2 (en) Rotor, electric motor, blower, air conditioner, and method of manufacturing rotor
JP7012878B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors
US20240235285A1 (en) Motor, fan, and air conditioner
JP7219331B2 (en) Electric motor, blower, air conditioner, and method for manufacturing electric motor
WO2022085576A1 (en) Rotor, motor using rotor, and electronic apparatus
JP7062089B2 (en) How to manufacture rotors, motors, blowers, air conditioners and rotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE