Nothing Special   »   [go: up one dir, main page]

WO2023145319A1 - Polyolefin microporous membrane and method for producing same - Google Patents

Polyolefin microporous membrane and method for producing same Download PDF

Info

Publication number
WO2023145319A1
WO2023145319A1 PCT/JP2022/047102 JP2022047102W WO2023145319A1 WO 2023145319 A1 WO2023145319 A1 WO 2023145319A1 JP 2022047102 W JP2022047102 W JP 2022047102W WO 2023145319 A1 WO2023145319 A1 WO 2023145319A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
microporous membrane
polypropylene
layer
polyolefin microporous
Prior art date
Application number
PCT/JP2022/047102
Other languages
French (fr)
Japanese (ja)
Inventor
李丹
山崎高志
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2023501587A priority Critical patent/JPWO2023145319A1/ja
Priority to KR1020247015305A priority patent/KR20240144092A/en
Publication of WO2023145319A1 publication Critical patent/WO2023145319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane and a method for producing the same.
  • Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, and separators for batteries and electrolytic capacitors.
  • polyolefin microporous films containing polyolefin as a main component are excellent in chemical resistance, insulating properties, mechanical strength, etc., and have shut-down properties, and have been widely used as separators for secondary batteries in recent years.
  • secondary batteries such as lithium-ion secondary batteries, have high energy density and are widely used as batteries for personal computers, mobile phones, and the like. Lithium-ion secondary batteries are also expected to serve as power sources for driving motors of electric vehicles and hybrid vehicles.
  • Patent Document 1 discloses that the cycle characteristics of a battery are ensured by specifying the TMA behavior, film thickness, resin composition, and air permeability of a microporous membrane made of polyethylene and polypropylene.
  • Patent Document 2 discloses the concentration and distribution of polypropylene effective for imparting oxidation resistance to a monolayer film made of polypropylene and polyethylene.
  • Patent document 3 has at least a first microporous membrane layer containing a first polyethylene, a first polypropylene and a second polypropylene and a second microporous membrane layer containing the first polyethylene and a second polyethylene, and has a puncture strength , describe multi-layer microporous membranes defined for air permeability after hot compression.
  • the average pore diameter measured by a porometer is smaller than 15 nm, the shutdown temperature is 140° C. or lower, the air resistance is 1000 sec/100 cm or lower, and a layer containing 80% by mass or more of a polypropylene resin is A.
  • a porous polyolefin film is described which is characterized by having at least one layer.
  • the polyolefin microporous membranes disclosed in Patent Documents 1 to 4 have a puncture strength of less than 35 gf/ ⁇ m, and cannot be said to have sufficient strength at a film thickness of 9 ⁇ m or less.
  • the present invention provides a polyolefin microporous membrane that has a high meltdown temperature and a low shutdown temperature even when thin and high strength, and has excellent battery safety, a separator and a secondary
  • the purpose is to provide a battery.
  • the present invention has the following constituent requirements.
  • the meltdown temperature is 160° C. or higher and 190° C. or lower
  • the thickness-converted puncture strength is 35 gf/ ⁇ m or higher and 75 gf/ ⁇ m or lower
  • the wavenumber derived from —CH 3 is 1376 cm ⁇ 1 , which is obtained by the following measurement method.
  • a 50 mm ⁇ 50 mm sample piece cut out from the polyolefin microporous film is subjected to transmission measurement under the following conditions using a microscopic infrared spectrophotometer (FT/IR-6600, manufactured by JASCO Corporation); ⁇ Measurement area 300 ⁇ m ⁇ 300 ⁇ m ⁇ Number of measurement points: 40 x 40 points ⁇ Measurement interval: 300 ⁇ m ⁇ Total measurement area 12 x 12mm ⁇ Measurement wavenumber range 600 cm -1 to 4000 cm -1 ⁇ Resolution 4 cm -1 ⁇ The number of times of integration 16 times Select the peak of wavenumber 1376 cm -1 in the graph plotting the wavenumber and absorbance on the horizontal axis and the vertical axis, respectively, and obtain the absorbance from the top of the peak
  • a further preferred embodiment is (2) When the polyolefin microporous membrane is measured by cross fractionation chromatography (CFC method) under the following measurement conditions to obtain a molecular weight distribution curve, the molecular weight distribution curve of polypropylene and the molecular weight distribution curve of polyethylene overlap.
  • CFC method cross fractionation chromatography
  • the shutdown temperature is 134° C. or higher and 140° C. or lower.
  • a polyolefin microporous membrane having three layers, at least a first layer comprising polyethylene and a second layer comprising polypropylene and polyethylene.
  • the first layer is a layer made of polyethylene having a weight average molecular weight (Mw) of 1 million or more and 2 million or less, and the second layer has a weight average molecular weight (Mw) of 1 million or more and 2 million It is a layer obtained using the following polyethylene and polypropylene having a weight average molecular weight (Mw) of 1,000,000 or more as raw materials.
  • the area where the molecular weight distribution curve of the raw material polyethylene and the molecular weight distribution curve of the raw material polypropylene overlap is the raw material. It is 20% or more with respect to the area of the entire molecular weight distribution curve of polypropylene.
  • the layer ratio of the first layer to the total thickness of the polyolefin microporous membrane is 40 to 90% by mass, and the layer ratio of the second layer is 10 to 60% by mass.
  • the film thickness is 9 ⁇ m or less.
  • At least one surface is further provided with one or more coating layers.
  • a non-aqueous electrolyte secondary battery comprising the polyolefin microporous membrane.
  • the present invention it is possible to provide a polyolefin microporous membrane that has a high meltdown temperature and a low shutdown temperature even when thin and high strength, and has excellent battery safety, as well as a separator and a secondary battery using the same.
  • FIG. 4 shows the molecular weight distribution of raw materials polyethylene and polypropylene used in Example 4 of the present invention.
  • 2 shows the molecular weight distribution of raw materials polyethylene and polypropylene used in Comparative Example 2 of the present invention.
  • FIG. 4 is a two-dimensional distribution diagram showing the absorbance intensity of polypropylene of the polyolefin microporous membrane prepared in Example 4 of the present invention.
  • FIG. 4 is a two-dimensional distribution diagram showing the absorbance intensity of polypropylene of the polyolefin microporous film prepared in Comparative Example 2 of the present invention.
  • FIG. 2 shows the molecular weight distribution in CFC evaluation of polyethylene and polypropylene of the polyolefin microporous membrane produced in Example 6 of the present invention.
  • 1 shows the molecular weight distribution in CFC evaluation of polyethylene and polypropylene of the polyolefin microporous membrane produced in Comparative Example 1 of the present invention.
  • the present invention is a method for producing a polyolefin microporous membrane containing polyethylene and polypropylene.
  • the polyolefin microporous membrane of this embodiment includes a polyolefin monolayer microporous membrane containing polyethylene and polypropylene, and a first microporous layer containing polyethylene and a second microporous layer containing polypropylene and polyethylene. Any polyolefin multilayer microporous membrane may be used.
  • the meltdown temperature of the polyolefin microporous membrane of the present invention is preferably 160°C or higher, more preferably 165°C or higher, and even more preferably 170°C or higher.
  • the upper limit of the meltdown temperature is not particularly limited, but 190° C. or less is a substantial upper limit depending on the method of adding PP (polypropylene).
  • the lower limit of the thickness-converted puncture strength of the polyolefin microporous membrane that is, the puncture strength per film thickness is 35 gf/ ⁇ m or more, preferably 37 gf/ ⁇ m or more, and more preferably 40 gf/ ⁇ m or more.
  • the puncture strength is 35 gf/ ⁇ m or more
  • the separator is less likely to break during winding or due to foreign matter, resulting in less short-circuiting, thereby enhancing the safety of the battery.
  • the puncture strength is less than 35 gf/ ⁇ m, when used as a battery separator, the separator may be broken during winding or by foreign matter, and short circuits may easily occur.
  • the upper limit of the puncture strength is preferably 75 gf/ ⁇ m or less. If it is 75 gf/ ⁇ m or more, the shutdown temperature becomes high and there is a risk of safety. When the puncture strength is within the above range, heat shrinkage at high temperatures can be suppressed, and deterioration of meltdown properties can be suppressed.
  • the weight average molecular weight of polyethylene is preferably 1,000,000 or more, and more preferably 1,000,000 or more and 2,000,000 or less from the viewpoint of resin kneading.
  • the high-molecular-weight polyethylene is contained in 50% by mass or more, more preferably 60% by mass or more, in 100% by mass of the polyolefin microporous membrane.
  • the polyolefin resin of the above polyolefin microporous membrane is mainly composed of polyethylene and polypropylene.
  • the "main component” means that the total content of polyethylene and polypropylene is 99% by mass or more in 100% by mass of the polyolefin microporous membrane.
  • the variation coefficient of the absorbance of the peak at wave number 1376 cm ⁇ 1 derived from —CH 3 obtained by measuring the polyolefin microporous membrane by the method described below using a micro-infrared spectrometer is preferably 5.0% or less. , is more preferably 3.0% or less, and even more preferably 2.0% or less.
  • the peak at wave number 1376 cm ⁇ 1 derived from —CH 3 is a characteristic peak of polypropylene. A low coefficient of variation in absorbance for this peak suggests a high degree of homogeneity in the dispersion of polypropylene in the polyolefin microporous membrane. It is well known that the heat resistance of a polyolefin microporous membrane can be improved by adding polypropylene.
  • the shutdown temperature of the polyolefin microporous membrane is preferably 134°C or higher and 140°C or lower, more preferably 134°C or higher and lower than 138°C, and even more preferably 134°C or higher and lower than 136°C.
  • the shutdown temperature within the above range can be achieved by setting the puncture strength of the polyolefin microporous membrane to the aforementioned range.
  • the polyolefin microporous membrane described above is a polyolefin microporous membrane having three layers, and preferably has a first layer containing at least polyethylene and a second layer containing polypropylene and polyethylene.
  • a single-layer microporous membrane made of a composition of polypropylene and polyethylene may inhibit the crystallization of polyethylene due to the addition of polypropylene, which may reduce strength.
  • a multi-layer, microporous membrane having three layers having a first layer containing at least polyethylene and a second layer containing polypropylene and polyethylene functions are assigned to each layer, and meltdown properties, strength, and shutdown properties are balanced. be suitable.
  • the second layer is preferably a layer obtained using polyethylene with a weight average molecular weight (Mw) of 1,000,000 to 2,000,000 and polypropylene with a weight average molecular weight (Mw) of 1,000,000 or more as raw materials.
  • Mw weight average molecular weight
  • Mw weight average molecular weight
  • the area where the molecular weight distribution curve of the raw material polyethylene and the molecular weight distribution curve of the raw material polypropylene overlap is the entire differential molecular weight distribution curve of the raw material polypropylene. It is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more of the area of .
  • the polypropylene contained in the second layer preferably has an Mw of 1 million or more and less than 4 million, and the polyethylene preferably has an Mw of 1 million or more and 2 million or less.
  • the content of polypropylene in the second layer is preferably 8% by mass or more. When the polypropylene content is 8% by mass or more, more preferably 10% by mass or more, the heat resistance of the microporous membrane can be effectively improved.
  • the polypropylene content in the second layer is preferably 50% by mass or less. When the content of polypropylene is 50% by mass or less, more preferably 35% by mass or less, it is possible to suppress the maximum pore size of the microporous membrane from becoming small and suppress the increase in air resistance.
  • both polypropylene and polyethylene By setting the Mw of both polypropylene and polyethylene to 1,000,000 or more, it is possible to suppress deterioration in film strength and foreign matter resistance. Further, by setting the weight average molecular weight (Mw) of both polyethylene and polypropylene to 1,000,000 or more, it is possible to suppress strength reduction or deterioration of polypropylene dispersibility.
  • Mw weight average molecular weight
  • the combination of ultra-high molecular weight polypropylene and polyethylene makes it possible to obtain a functional layer that has a high meltdown temperature while also having high strength.
  • the overlapping area of the differential molecular weight distribution curve of the raw material polyethylene and the differential molecular weight distribution curve of the raw material polypropylene is the differential of the raw material polypropylene.
  • the overlapping area of the differential molecular weight distribution curve of the raw material polyethylene and the differential molecular weight distribution curve of the raw material polypropylene is the differential of the raw material polypropylene. If the total area of the molecular weight distribution curve is less than 70%, the resin becomes hard due to the presence of a large amount of ultra-high molecular weight components, resulting in poor sheet appearance during sheet molding and film breakage during stretching. can be suppressed.
  • the polyolefin microporous membrane is analyzed using a cross fractionation chromatography (CFC) method under the measurement conditions described later, the temperature is lowered to 140 ° C. to 0 ° C., and the strongest detection peak is detected in the temperature range of 140 ° C. to 110 ° C.
  • the peak of polypropylene, the strongest detection peak in the temperature range of 110 ° C. to 75 ° C. is the peak of polyethylene, and when obtaining a molecular weight distribution curve, the overlapping area of the molecular weight distribution curve of polyethylene and the molecular weight distribution curve of polypropylene is the molecular weight of polypropylene. It is preferably 15% or more with respect to the area of the entire distribution curve.
  • the area where the differential molecular weight distribution curve of polyethylene and the differential molecular weight distribution curve of polypropylene overlap is the area of the entire differential molecular weight distribution curve of polypropylene. is preferably 15% or more, more preferably 20% or more.
  • the polyethylene is oriented by the ultrahigh molecular weight component, and high strength of the polyolefin microporous membrane can be achieved.
  • the overlapping area is less than 50%, because heat shrinkage, increase in air resistance, and rise in shutdown temperature can be suppressed, and deterioration in battery performance and safety can be suppressed.
  • the layer ratio of the first layer to the total mass is preferably 40 to 90% by mass, and the layer ratio of the second layer is preferably 10 to 60% by mass.
  • the layer ratio of the second layer to the total mass is more preferably 20 to 50% by mass, more preferably 20 to 40% by mass.
  • the layer ratio of the second layer is 10% by mass or more, the effect of maintaining the shape after shutdown due to the contained polypropylene is favorable, and a meltdown temperature of 160° C. or more can be achieved.
  • the layer ratio of the second layer is 10% by mass or more, it is possible to suppress deterioration in shutdown characteristics due to insufficient thickness of the first layer containing polyethylene.
  • the polyolefin microporous membrane described above preferably has a three-layer structure in which the second layer is a core layer and the first layers are skin layers on both sides of the second layer.
  • polypropylene is susceptible to oxidative degradation. Especially during kneading, low-molecular-weight polypropylene is generated due to oxidative deterioration, and there is a risk that it will peel off from the conveying roll during the casting and winding processes, contaminating the process.
  • a second layer comprising polypropylene can be placed on the core layer to reduce process contamination.
  • the film thickness of the polyolefin microporous membrane is preferably 9 ⁇ m or less.
  • the film thickness is preferably 2 ⁇ m or more and 9 ⁇ m or less, more preferably 2 ⁇ m or more and 7 ⁇ m or less, and still more preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the film thickness is within the above range, when the polyolefin microporous film is used as a battery separator, the battery capacity can be improved and the insulation can be improved.
  • Second layer polyolefin resin composition A containing polypropylene and polyethylene
  • the second layer is preferably a porous layer formed of polyolefin resin composition A containing ultra-high molecular weight polyethylene and polypropylene.
  • Ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 1,000,000 or more.
  • Mw weight average molecular weight
  • ultra-high molecular weight polyethylene refers to polyethylene having Mw of 1,000,000 or more.
  • the ultra-high molecular weight polyethylene may be a copolymer containing a small amount of an ⁇ -olefin copolymer other than ethylene, but it is preferable to use an ethylene homopolymer.
  • ⁇ -olefin copolymers other than ethylene propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene are preferred.
  • the content of ⁇ -olefins other than ethylene is preferably 5 mol % or less based on 100 mol % of all copolymer components. From the viewpoint of uniformity of the pore structure of the polyolefin microporous membrane, it is preferably an ethylene homopolymer.
  • the weight average molecular weight (Mw) of the ultra-high molecular weight polyethylene is preferably 1 million or more and 2 million or less, more preferably 1 million or more and 1.8 million or less. Mw is a value measured by the GPC method described later.
  • the content of ultra-high molecular weight polyethylene in polyolefin resin composition A is preferably 50% by mass or more and 92% by mass or less, more preferably 65% by mass or more, relative to 100% by mass of polyolefin resin composition A. ⁇ 90% by mass or less. More preferably, it is 80% by mass or more.
  • polypropylene The type of polypropylene is not particularly limited, and is a homopolymer of propylene, a copolymer of propylene and other ⁇ -olefins and/or diolefins (propylene copolymer), or two selected from these. Although any of the above mixtures may be used, it is more preferable to use a propylene homopolymer alone.
  • the propylene copolymer either a random copolymer or a block copolymer can be used.
  • ⁇ -olefin in the propylene copolymer ⁇ -olefins having 8 or less carbon atoms are preferred. Examples of ⁇ -olefins having 8 or less carbon atoms include ethylene, butene-1, pentene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, styrene and combinations thereof.
  • the diolefin in the propylene copolymer a diolefin having 4 to 14 carbon atoms is preferable.
  • diolefins having 4 to 14 carbon atoms examples include butadiene, 1,5-hexadiene, 1,7-octadiene and 1,9-decadiene.
  • the content of other ⁇ -olefins and diolefins in the propylene copolymer is preferably less than 10 mol % with respect to 100 mol % of the total copolymer components.
  • the Mw of polypropylene is preferably 1,000,000 or more, more preferably 1,200,000 or more, and particularly preferably 1,500,000 or more. Mw of polypropylene is preferably less than 4 million.
  • the melting point of polypropylene is preferably 155 to 170°C, more preferably 160 to 165°C. The melting point is a value measured by a differential scanning calorimeter (DSC), which will be described later.
  • the content of polypropylene in the polyolefin resin composition A is preferably 8% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 35% by mass or less with respect to 100% by mass of the polyolefin resin composition A.
  • the first layer is a porous layer formed of a polyolefin resin composition (hereinafter referred to as "polyolefin resin composition B") containing ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 1,000,000 or more.
  • polyolefin resin composition B a polyolefin resin composition containing ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 1,000,000 or more.
  • Mw weight average molecular weight
  • the polyolefin resin composition B preferably contains polyethylene other than ultra-high molecular weight polyethylene.
  • the content of polyethylene other than ultra-high molecular weight polyethylene is preferably in the range of 0% by mass or more and 50% by mass or less with respect to 100% by mass of the entire polyolefin resin composition B.
  • Mw of polyethylene other than ultra-high molecular weight polyethylene is preferably less than 300,000, more preferably less than 200,000. Furthermore, from the viewpoint of film strength, the lower limit of Mw is preferably 50,000 or more.
  • the polyethylene other than ultra-high molecular weight polyethylene is preferably at least one selected from the group consisting of high density polyethylene, medium density polyethylene, branched low density polyethylene and linear low density polyethylene.
  • the polyolefin microporous membrane of the present embodiment is a polyolefin single-layer microporous membrane containing polyethylene and polypropylene, or a first microporous layer containing polyethylene and a second microporous layer containing polypropylene and polyethylene. Any polyolefin multilayer microporous membrane containing a microporous layer of
  • the manufacturing method (wet film manufacturing method) of the polyolefin microporous membrane will be explained.
  • the following description is an example of the manufacturing method, and is not limited to this method.
  • the method for producing the polyolefin microporous membrane of this embodiment includes the following steps. (a) Preparation of first layer and second layer solutions (b) Formation of gel sheet (c) First stretching (d) Plasticizer removal (e) Drying (f) Second stretching (g) Heat treatment.
  • a plasticizer is added to a polyolefin resin composition in a twin-screw extruder, melt-kneaded, and a solution for the first layer and a solution for the second layer are prepared. Prepare each.
  • the mixing ratio of the polyolefin resin composition and the plasticizer in the first layer and the second layer is 15% by mass or more and 30% by weight, with the total of the polyolefin resin composition and the plasticizer being 100% by weight. % by weight or less.
  • the solution for the first layer and the solution for the second layer are each fed from an extruder to one die, where both solutions are extruded as a layered sheet to obtain a molded body.
  • the extrusion method may be either a flat die method or an inflation method. In either method, both solutions are supplied to separate manifolds and layered at the lip inlet of a multi-layer die (multi-manifold method), or both solutions are pre-layered and fed to the die (block flow method). method) can be used. The multiple manifold method and the block method can be applied as usual.
  • the gap of the multilayer flat die can be set to 0.1 mm or more and 5 mm or less.
  • the extrusion temperature is preferably 140° C. or higher and 250° C. or lower, and the extrusion speed is preferably 0.2 to 15 m/min. By adjusting the throughput of the solution for each layer, the thickness ratio of the layers can be adjusted.
  • a gel-like sheet is obtained by cooling the obtained extrudate.
  • a cooling method a method of contact with a cooling medium such as cold air or cooling water, a method of contact with a cooling roll, or the like can be used. It is preferable to cool the film by bringing it into contact with a roll cooled with a refrigerant. Cooling is preferably carried out at a rate of 50° C./min or more until at least the gelation temperature. Cooling is preferably performed to 25° C. or lower. Cooling can immobilize the microphases of the first and second polyolefins separated by the plasticizer. When the cooling rate is within the above range, the degree of crystallinity is kept within an appropriate range, and a gel-like sheet suitable for stretching is obtained.
  • the gel-like sheet is stretched.
  • the stretching of the gel-like sheet is also called wet stretching. Since the gel-like sheet contains a plasticizer, it can be uniformly stretched.
  • the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. Stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the draw ratio (area draw ratio) is preferably 2 times or more, more preferably 3 times or more and 30 times or less. In the case of biaxial stretching, it is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more. Moreover, the draw ratio in both MD and TD is preferably 3 times or more, and the draw ratio in MD and TD may be the same or different.
  • the draw ratio in this step refers to the area draw ratio of the microporous membrane just before being subjected to the next step, with the microporous membrane just before this step as a reference.
  • the lower limit of the stretching temperature is preferably 90°C or higher, more preferably 110°C or higher.
  • the upper limit of the stretching temperature is preferably 120° C. or less.
  • the polyolefin microporous membrane from which the plasticizer has been removed is dried by a heat drying method or an air drying method. Any method capable of removing the wash solvent may be used, including conventional methods such as heat drying, air drying (moving air), and the like. Processing conditions for removing volatile components such as washing solvents may be the same as disclosed, for example, in PCT Patent Publication Nos. WO2008/016174 and WO2007/132942.
  • the dried polyolefin microporous membrane is stretched.
  • the stretching of the microporous membrane after drying is referred to as the second stretching.
  • the dried microporous membrane film is stretched at least uniaxially.
  • the second stretching of the polyolefin microporous membrane can be performed by a tenter method or the like while heating in the same manner as described above. Since the present application contains two types of polyolefin resins, polyethylene and polypropylene, in the same layer, the second stretching is preferably uniaxial stretching from the viewpoint of uniformity of the lamellar structure.
  • the draw ratio is preferably at least 1.5 times the TD, more preferably at least 2.0 times.
  • the second stretching is performed at 1.5 times or more, crystal molecular chains are highly oriented in the TD, so the MD/TD Raman orientation ratio can be adjusted to less than 0.8.
  • the Raman orientation ratio can be adjusted to be smaller as the film is drawn at a higher magnification.
  • the upper limit of the draw ratio is preferably 3.5 times or less in consideration of the balance.
  • the stretch ratio of TD in the second stretching is the ratio of the TD length of the polyolefin microporous membrane after the second stretching based on the TD length of the polyolefin microporous membrane before the second stretching.
  • the polyolefin microporous membrane after the second stretching is preferably heat treated.
  • a TD heat setting treatment step is preferable in which the polyolefin microporous membrane is gripped with a clip and subjected to heat treatment while the width is fixed.
  • the heat treatment temperature is preferably 115° C. or higher and 135° C. or lower.
  • a porous layer other than polyolefin resin may be laminated on at least one surface of the polyolefin microporous membrane to form a laminated polyolefin porous membrane (coating film).
  • the other porous layer is not particularly limited, but for example, a coating layer containing a binder and inorganic particles may be laminated by coating.
  • the thickness of the other porous layer is preferably in the range of 1-5 ⁇ m, more preferably 1-4 ⁇ m, even more preferably 1-3 ⁇ m.
  • a sufficient effect of forming the porous layer effect of improving insulation and strength, etc.
  • productivity can be improved.
  • the adhesiveness to the electrode can be secured. If the thickness of the other porous layer is 5 ⁇ m or less, the bulk due to winding and lamination can be suppressed, which is suitable for increasing the capacity of the battery. Furthermore, it is possible to prevent the curl from becoming large and contribute to the improvement of productivity in the battery assembly process.
  • the binder component that constitutes the coating layer is not particularly limited, and known components can be used.
  • acrylic resins, polyvinylidene fluoride resins, polyamideimide resins, polyamide resins, aromatic polyamide resins, polyimide resins, and the like can be used.
  • the inorganic particles that make up the coating layer are not particularly limited, and known materials can be used.
  • titania, alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon and the like can be used.
  • Non-aqueous electrolyte secondary battery The polyolefin microporous membrane and coating film according to this embodiment can be suitably used as a separator for a non-aqueous electrolyte secondary battery.
  • a separator for a non-aqueous electrolyte secondary battery.
  • an electrolytic solution containing an electrolyte is placed in a battery element in which a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween.
  • a battery element in which a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween.
  • An example of a negative electrode is one in which a negative electrode mixture consisting of a negative electrode active material, a conductive aid, and a binder is formed on a current collector.
  • a negative electrode active material a material capable of doping/dedoping lithium ions is used. Specific examples include carbon materials such as graphite and carbon, silicon oxides, silicon alloys, tin alloys, lithium metal, lithium alloys, and the like. Carbon materials such as acetylene black and ketjen black are used as conductive aids. Styrene-butadiene rubber, polyvinylidene fluoride, polyimide and the like are used as the binder. Copper foil, stainless steel foil, nickel foil, or the like is used as the current collector.
  • An example of the positive electrode is one in which a positive electrode mixture consisting of a positive electrode active material, a binder, and optionally a conductive aid is molded on a current collector.
  • positive electrode active materials include lithium composite oxides containing at least one transition metal such as Mn, Fe, Co, and Ni. Specific examples include lithium nickelate, lithium cobaltate, and lithium manganate. Carbon materials such as acetylene black and ketjen black are used as conductive aids. Polyvinylidene fluoride or the like is used as the binder. Aluminum foil, stainless steel foil, or the like is used as the current collector.
  • a solution obtained by dissolving a lithium salt in a non-aqueous solvent can be used.
  • Lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiN(SO 2 CF 3 ) 2 and the like.
  • Non-aqueous solvents include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, ⁇ -butyrolactone and the like. Generally, a mixture of two or more of these solvents is used together with various additives such as vinylene carbonate.
  • Ionic liquids normal temperature molten salts
  • imidazolium cations can also be used.
  • Exterior materials include metal cans and aluminum laminate packs.
  • the shape of the battery includes coin type, cylindrical type, square type, laminate type, and the like.
  • Porosity ((volume - weight / membrane density) / volume) x 100
  • the film density was set to 0.99.
  • the film thickness measured in (1) above was used to calculate the volume.
  • Air resistance For the polyolefin microporous membrane, air resistance (sec / 100 cm 3 ) was measured.
  • the polyolefin microporous membrane is exposed to an atmosphere of 30° C., and the air resistance is measured while raising the temperature at a rate of 5° C./min.
  • the temperature at which the air resistance of the polyolefin microporous membrane reached 100,000 sec/100 cm 3 was defined as the shutdown temperature.
  • the meltdown temperature was defined as the temperature at which the temperature continued to rise after reaching the shutdown temperature and the air resistance was less than 100,000 sec/100 cm 3 .
  • the air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009. Moreover, the measurement is performed 5 times, and the average value is used as the value of the shutdown temperature and the meltdown temperature.
  • the melting point of the polyolefin resin and the melting peak of the polyolefin microporous membrane were determined by a scanning differential calorimeter (PYRIS DIAMOND DSC manufactured by Perkin Elmer).
  • the polyolefin resin and the polyolefin microporous membrane were each placed in a sample holder, heated to 230°C at a rate of 10°C/min until completely melted, then held at 230°C for 3 minutes and heated at 10°C/min. The temperature was lowered to 30°C at a rate of .
  • the melting point (Tm) of the polyolefin resin and the melting peak of the polyolefin microporous membrane were determined from the endothermic peak at the second temperature rise.
  • Tm melting point
  • the peak with the heat of fusion of 70 J/g or more was regarded as the endothermic peak
  • the peak with the heat of fusion of 3.0 J/g or more was regarded as the endothermic peak.
  • GPC permeation chromatography
  • the differential molecular weight distribution curve was calculated by the following procedure.
  • a detection intensity (elution curve) versus elution time was calculated from a GPC differential refractive index detector (RI detector), and the elution time was converted to molecular weight.
  • RI detector GPC differential refractive index detector
  • the baseline of the elution curve was defined as the starting point of the retention time of the peak rise and the end point of the retention time of the peak end, and the peak detection interval was 0.017 minutes.
  • ⁇ Injection amount 500 ⁇ L ⁇
  • Detector Agilent differential refractive index detector (RI detector) - Viscometer: Viscosity detector manufactured by Agilent - Calibration curve: Created by universal calibration curve method using monodisperse polystyrene standard sample.
  • Weight average molecular weight (Mw) of polyolefin microporous membrane, molecular weight distribution and peak area in differential molecular weight distribution curve The weight average molecular weight (Mw) of the resin contained in the polyolefin microporous membrane is cross-fractionated using the following measurement conditions It was obtained by a chromatographic (CFC) method. Further, the differential molecular weight distribution curve of the polyolefin multi-layer, microporous membrane was calculated by the following procedure.
  • the peak of wavenumber 1376 cm -1 derived from -CH 3 was selected as a characteristic peak of polypropylene, and the height from the top of the peak to the baseline was obtained as the absorbance.
  • a line obtained by drawing a straight line between the measured value (absorbance) at a wavenumber of 1330 cm ⁇ 1 and the absorbance at a wavenumber of 1400 cm ⁇ 1 was used as the baseline.
  • the absorbance of a total of 1,600 polypropylene peaks of 40 ⁇ 40 points in the vertical and horizontal directions of the sample piece was obtained, and from the average value and standard deviation, the coefficient of variation of the absorbance of the polypropylene of the polyolefin microporous membrane (standard deviation / average value ).
  • Example 1 Polyolefin solution A first polyolefin resin composition comprising 10 parts by mass of polypropylene (PP, melting point 162°C) with Mw of 2.0 x 106 and 90 parts by mass of ultra-high molecular weight polyethylene with Mw of 1.5 x 106 . 0.2 parts by mass of an antioxidant tetrakis[methylene-3-(3,5-ditert-butyl-4-hydroxyphenyl)-propionate]methane was added to 100 parts by mass of the product to prepare a resin mixture.
  • PP polypropylene
  • PP melting point 162°C
  • ultra-high molecular weight polyethylene with Mw of 1.5 x 106
  • an antioxidant tetrakis[methylene-3-(3,5-ditert-butyl-4-hydroxyphenyl)-propionate]methane was added to 100 parts by mass of the product to prepare a resin mixture.
  • Extrusion A polyolefin solution was supplied from a twin-screw extruder to a die and extruded to obtain an extrudate. The resulting extruded body was cooled while being taken up by a casting roll controlled to 35° C. at a take-up speed of 2 m/min to form a gel-like sheet.
  • the gel-like sheet was simultaneously biaxially stretched 8 times in both the MD and TD directions (first stretching) at 115° C. using a tenter stretching machine.
  • the stretched gel-like sheet was fixed to an aluminum frame plate of 20 cm ⁇ 20 cm, immersed in a methylene chloride bath controlled at 25°C, shaken at 100 rpm for 3 minutes to remove liquid paraffin, and air-dried at room temperature to dry the film. got
  • Example 2 polyolefin microporous membranes were produced in the same manner as in Example 1 except for the conditions described in Table 1.
  • Example 4 Preparation of polyolefin solution for first layer 100 parts by mass of a first polyolefin resin consisting of 70 parts by mass of ultra high molecular weight polyethylene (UHMwPE) with Mw of 1.5 ⁇ 10 6 and 30 parts by mass of high density polyethylene (HDPE) with Mw of 9.0 ⁇ 10 4 , 0.2 parts by mass of an antioxidant tetrakis[methylene-3-(3,5-ditertiarybutyl-4-hydroxyphenyl)-propionate]methane was added to prepare a resin mixture.
  • UHMwPE ultra high molecular weight polyethylene
  • HDPE high density polyethylene
  • Antioxidant tetrakis is added to the polyolefin resin of the second layer consisting of 10 parts by mass of ultra high molecular weight polypropylene with Mw of 2.0 ⁇ 10 6 and 90 parts by weight of ultra high molecular weight polyethylene (UHMwPE) with Mw of 1.5 ⁇ 10 6 0.2 parts by mass of [methylene-3-(3,5-ditert-butyl-4-hydroxyphenyl)-propionate]methane was added to prepare a resin mixture.
  • UHMwPE ultra high molecular weight polyethylene
  • the polyolefin solution for the first layer and the polyolefin solution for the second layer are supplied from each twin-screw extruder to the T-die for three layers, and the first polyolefin solution/second polyolefin solution/first polyolefin solution It was extruded in a layer ratio of 30/40/30.
  • the extruded body was cooled while being taken up by a cooling roll to form a gel-like three-layer sheet.
  • the first stretched gel-like three-layer sheet was immersed in a methylene chloride bath in a washing tank to remove liquid paraffin, and air-dried at room temperature to obtain a dry film.
  • Heat treatment The three-layer sheet subjected to the second stretching is subjected to a relaxation treatment of 0.85 times the TD at 128.4 ° C., and a polyolefin microporous membrane consisting of three layers of the first layer / second layer / first layer is obtained. Obtained.
  • Table 1 shows the mixing ratio of each component of the produced polyolefin microporous membrane, manufacturing conditions, evaluation results, etc.
  • FIG. 3 shows a two-dimensional distribution diagram showing the absorbance intensity of polypropylene in Example 4. As shown in FIG.
  • Examples 5 to 10 A polyolefin microporous membrane was produced in the same manner as in Example 4 except for the conditions described in Tables 1 and 2.
  • Example 1 A microporous polyolefin membrane was produced in the same manner as in Example 1 except for the conditions listed in Table 3.
  • FIG. 2 is a graph showing the overlapping area of the differential molecular weight distribution curves of the raw material polyethylene and the raw material polypropylene of Comparative Example 2 obtained by the GPC method.
  • FIG. 4 shows a two-dimensional distribution diagram showing the absorbance intensity of polypropylene in Comparative Example 2. As shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A polyolefin microporous membrane having a meltdown temperature of 160-190°C inclusive, a puncture strength in terms of thickness of 35-75 gf/μm inclusive, and a coefficient of variation of peak absorbance at a wavenumber of 1376 cm-1 derived from -CH3 of 0-5.0% inclusive. Provided are a polyolefin microporous membrane that has a high meltdown temperature and a low shutdown temperature even when formed to be thin and strong and that offers exceptional battery safety, and a separator and a secondary battery in which the polyolefin microporous membrane is used.

Description

ポリオレフィン微多孔膜およびその製造方法Polyolefin microporous membrane and method for producing the same
本発明は、ポリオレフィン微多孔膜およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a polyolefin microporous membrane and a method for producing the same.
 微多孔膜は、ろ過膜、透析膜などのフィルター、電池用や電解コンデンサー用のセパレータなどの種々の分野に用いられる。これらの中でも、ポリオレフィンを主成分とするポリオレフィン微多孔膜は、耐薬品性、絶縁性、機械的強度などに優れ、シャットダウン特性を有するため、近年、二次電池用セパレータとして広く用いられている。一方、二次電池、例えばリチウムイオン二次電池は、エネルギー密度が高いため、パーソナルコンピュータ、携帯電話などに用いる電池として広く使用されている。また、リチウムイオン二次電池は、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。 Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, and separators for batteries and electrolytic capacitors. Among these, polyolefin microporous films containing polyolefin as a main component are excellent in chemical resistance, insulating properties, mechanical strength, etc., and have shut-down properties, and have been widely used as separators for secondary batteries in recent years. On the other hand, secondary batteries, such as lithium-ion secondary batteries, have high energy density and are widely used as batteries for personal computers, mobile phones, and the like. Lithium-ion secondary batteries are also expected to serve as power sources for driving motors of electric vehicles and hybrid vehicles.
 近年、リチウムイオン二次電池のエネルギー密度の高密度化に伴い、セパレータとして用いられるポリオレフィン微多孔膜の薄膜化が要求されている。特に、スマートフォン向けの電池は、高容量化が進むとともに、電池の安全性が最も重要視されている。スマートフォン向け電池の安全性は種々あるが、中でもホットボックス安全性が重視されている。このような状況下、ホットボックス安全性を達成するため、低熱収縮を満たしながら、十分な絶縁性と機械的強度、シャットダウン特性、メルトダウン特性を有するポリオレフィン微多孔膜を製造するために、種々の検討が行われている。 In recent years, as the energy density of lithium-ion secondary batteries has increased, there has been a demand for thinner polyolefin microporous membranes used as separators. In particular, as the capacity of batteries for smartphones has increased, the safety of batteries has become the most important concern. There are various types of safety for smartphone batteries, but hot box safety is emphasized above all. Under these circumstances, in order to achieve hot box safety, various methods have been developed to produce polyolefin microporous membranes that have sufficient insulating properties, mechanical strength, shutdown properties, and meltdown properties while satisfying low thermal shrinkage. Consideration is underway.
 特許文献1には、ポリエチレンとポリプロピレンからなる微多孔膜のTMA挙動、膜厚、樹脂組成および透気度を特定することにより、電池のサイクル特性を確保することが開示されている。 Patent Document 1 discloses that the cycle characteristics of a battery are ensured by specifying the TMA behavior, film thickness, resin composition, and air permeability of a microporous membrane made of polyethylene and polypropylene.
 特許文献2には、ポリプロピレンとポリエチレンからなる単層膜について、耐酸化性付与に効果的なポリプロピレンの濃度と分布について開示されている。 Patent Document 2 discloses the concentration and distribution of polypropylene effective for imparting oxidation resistance to a monolayer film made of polypropylene and polyethylene.
 特許文献3には、第一ポリエチレン、第一ポリプロピレンおよび第二ポリプロピレンを含む第一微小孔性膜層と第一ポリエチレン及び第二ポリエチレンを含む第二微小孔性膜層を少なくとも有し、突き刺し強度、熱圧縮後の空気透過性について規定された多層微小孔性膜が記載されている。 Patent document 3 has at least a first microporous membrane layer containing a first polyethylene, a first polypropylene and a second polypropylene and a second microporous membrane layer containing the first polyethylene and a second polyethylene, and has a puncture strength , describe multi-layer microporous membranes defined for air permeability after hot compression.
 特許文献4には、ポロメータによる平均細孔径が15nmより小さく、シャットダウン温度が140℃以下であり、透気抵抗度が1000sec/100cm3以下であり、ポリプロピレン系樹脂を80質量%以上含む層を有するA層を少なくとも1層有することを特徴とする多孔性ポリオレフィンフィルムが記載されている。 In Patent Document 4, the average pore diameter measured by a porometer is smaller than 15 nm, the shutdown temperature is 140° C. or lower, the air resistance is 1000 sec/100 cm or lower, and a layer containing 80% by mass or more of a polypropylene resin is A. A porous polyolefin film is described which is characterized by having at least one layer.
特開2021-116316号公報Japanese Patent Application Laid-Open No. 2021-116316 国際公開第2013/099607号International Publication No. 2013/099607 特開2013-224033号JP 2013-224033 特開2020-069796号JP 2020-069796
 しかしながら、特許文献1~4に開示のポリオレフィン微多孔膜においては、突刺強度が35gf/μm未満であり、9μm以下の膜厚において、十分な強度を有しているとは言えない。また、更なる薄膜高強度を担保するには、より高分子量成分を増加させるか、延伸倍率を増加させる必要があり、シャットダウン温度が上昇してしまうことで、電池安全性が損なわれるという問題があった。 However, the polyolefin microporous membranes disclosed in Patent Documents 1 to 4 have a puncture strength of less than 35 gf/μm, and cannot be said to have sufficient strength at a film thickness of 9 μm or less. In addition, in order to ensure further high strength of the thin film, it is necessary to increase the high molecular weight component or increase the draw ratio, and the problem that the shutdown temperature rises and the battery safety is impaired. there were.
 本発明は、上記事情に鑑みて、薄膜かつ高強度化した際にも、高いメルトダウン温度および低いシャットダウン温度を有し、電池安全性に優れるポリオレフィン微多孔膜、それを用いたセパレータおよび二次電池を提供することを目的とする。 In view of the above circumstances, the present invention provides a polyolefin microporous membrane that has a high meltdown temperature and a low shutdown temperature even when thin and high strength, and has excellent battery safety, a separator and a secondary The purpose is to provide a battery.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、メルトダウン特性が優れ、突刺強度が高く、かつ膜中のポリプロピレンを均一分散させ、より良い電池安全性を確保し得るポリオレフィン微多孔膜により、本課題を解決することを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that polyolefins that have excellent meltdown characteristics, high puncture strength, uniform dispersion of polypropylene in the film, and can ensure better battery safety. We have found that this problem can be solved by a microporous membrane.
 すなわち、本発明は以下の構成要件を有する。
(1) メルトダウン温度が160℃以上190℃以下であり、厚み換算突刺強度は35gf/μm以上75gf/μm以下であり、以下の測定方法により求められる、-CHに由来する波数1376cm-1のピークの吸光度の変動係数が0以上5.0%以下であるポリオレフィン微多孔膜:
 [吸光度の変動係数の測定方法]
ポリオレフィン微多孔膜から切り出した50mm×50mmの試料片を、顕微赤外線分光光度計(FT/IR-6600、日本分光社製)を用いて、下記条件で透過測定を行う;
・測定面積 300μm×300μm
・測定点数 縦横40×40点
・測定間隔 縦横300μm
・総測定面積 12×12mm
・測定波数範囲 600cm-1~4000cm-1
・分解能 4cm-1
・積算回数 16回
 横軸および縦軸としてそれぞれ波数および吸光度をプロットしたグラフにおいて波数1376cm-1のピークを選択し、ピークの頂点からベースラインまでの高さを吸光度として求める;ベースラインは波数1330cm-1における測定値(吸光度)と波数1400cm-1における吸光度との間を直線で引いた線を用いる;1600点のポリプロピレンのピークの吸光度を求め、その平均値と標準偏差から、ポリオレフィン微多孔膜のポリプロピレンの吸光度の変動係数(標準偏差/平均値)を求める。
さらに好ましい様態は、
(2) 前記ポリオレフィン微多孔膜を下記の測定条件によりクロス分別クロマトグラフ法(CFC法)による測定を行い、分子量分布曲線を得た際に、ポリプロピレンの分子量分布曲線とポリエチレンの分子量分布曲線の重なる面積が、ポリプロピレンの分子量分布曲線全体の面積に対して15%以上である請求項1に記載のポリオレフィン微多孔膜:
[測定条件]
検出器としてIR4型赤外分光光度計を用いて、140℃~0℃の領域において下記溶出区分で、溶出したポリマーに対する溶出曲線を求め、溶出時間を分子量に変換して、分子量分布曲線を得る;
・ポリプロピレン:140~110℃領域で最も強い検出ピークをポリプロピレンのピークとした;
・ポリエチレン:110~75℃領域で最も強い検出ピークをポリエチレンのピークとした。
(3)シャットダウン温度が134℃以上140℃以下である。
(4)三層を有するポリオレフィン微多孔膜であって、少なくとも、ポリエチレンを含む第1層と、ポリプロピレンおよびポリエチレンを含む第2層を有する。
(5)前記第1層が、重量平均分子量(Mw)が100万以上200万以下のポリエチレンを原料としている層であり、前記第2層が、重量平均分子量(Mw)が100万以上200万以下のポリエチレンおよび重量平均分子量(Mw)が100万以上のポリプロピレンを原料として得られる層である。
(6)第2層における前記原料ポリエチレンと原料ポリプロピレンをGPC法による分子量分布測定を行った際に求められる分子量分布曲線において、原料ポリエチレンの分子量分布曲線と原料ポリプロピレンの分子量分布曲線の重なる面積が原料ポリプロピレンの分子量分布曲線全体の面積に対して20%以上である。
(7)ポリオレフィン微多孔膜の全厚みに占める前記第1層の層比が40~90質量%であり、第2層の層比が10~60質量%である。
(8)前記第2層(コア層)の両側に前記第1層(スキン層)を有する三層構造である。
(9)膜厚が9μm以下である。
(10)少なくとも一方の表面に、さらに1層以上のコーティング層を備える。
(11)前記のポリオレフィン微多孔膜を有する非水電解液二次電池。
That is, the present invention has the following constituent requirements.
(1) The meltdown temperature is 160° C. or higher and 190° C. or lower, the thickness-converted puncture strength is 35 gf/μm or higher and 75 gf/μm or lower, and the wavenumber derived from —CH 3 is 1376 cm −1 , which is obtained by the following measurement method. A polyolefin microporous membrane having a coefficient of variation of the peak absorbance of 0 to 5.0%:
[Method for measuring coefficient of variation of absorbance]
A 50 mm × 50 mm sample piece cut out from the polyolefin microporous film is subjected to transmission measurement under the following conditions using a microscopic infrared spectrophotometer (FT/IR-6600, manufactured by JASCO Corporation);
・Measurement area 300 μm × 300 μm
・Number of measurement points: 40 x 40 points ・Measurement interval: 300 μm
・Total measurement area 12 x 12mm
・Measurement wavenumber range 600 cm -1 to 4000 cm -1
Resolution 4 cm -1
・The number of times of integration 16 times Select the peak of wavenumber 1376 cm -1 in the graph plotting the wavenumber and absorbance on the horizontal axis and the vertical axis, respectively, and obtain the absorbance from the top of the peak to the baseline; the baseline is wavenumber 1330 cm Use a straight line drawn between the measured value (absorbance) at -1 and the absorbance at a wave number of 1400 cm -1 ; Determine the coefficient of variation (standard deviation/mean value) of the absorbance of polypropylene.
A further preferred embodiment is
(2) When the polyolefin microporous membrane is measured by cross fractionation chromatography (CFC method) under the following measurement conditions to obtain a molecular weight distribution curve, the molecular weight distribution curve of polypropylene and the molecular weight distribution curve of polyethylene overlap. The polyolefin microporous membrane according to claim 1, which has an area of 15% or more relative to the area of the entire molecular weight distribution curve of polypropylene:
[Measurement condition]
Using an IR4-type infrared spectrophotometer as a detector, obtain an elution curve for the eluted polymer in the following elution sections in the region of 140°C to 0°C, convert the elution time to molecular weight, and obtain a molecular weight distribution curve. ;
- Polypropylene: The peak detected in the 140-110°C region was taken as the polypropylene peak;
• Polyethylene: The strongest detection peak in the 110 to 75°C region was taken as the polyethylene peak.
(3) The shutdown temperature is 134° C. or higher and 140° C. or lower.
(4) A polyolefin microporous membrane having three layers, at least a first layer comprising polyethylene and a second layer comprising polypropylene and polyethylene.
(5) The first layer is a layer made of polyethylene having a weight average molecular weight (Mw) of 1 million or more and 2 million or less, and the second layer has a weight average molecular weight (Mw) of 1 million or more and 2 million It is a layer obtained using the following polyethylene and polypropylene having a weight average molecular weight (Mw) of 1,000,000 or more as raw materials.
(6) In the molecular weight distribution curve obtained by measuring the molecular weight distribution of the raw material polyethylene and the raw material polypropylene in the second layer by GPC method, the area where the molecular weight distribution curve of the raw material polyethylene and the molecular weight distribution curve of the raw material polypropylene overlap is the raw material. It is 20% or more with respect to the area of the entire molecular weight distribution curve of polypropylene.
(7) The layer ratio of the first layer to the total thickness of the polyolefin microporous membrane is 40 to 90% by mass, and the layer ratio of the second layer is 10 to 60% by mass.
(8) A three-layer structure having the first layer (skin layer) on both sides of the second layer (core layer).
(9) The film thickness is 9 μm or less.
(10) At least one surface is further provided with one or more coating layers.
(11) A non-aqueous electrolyte secondary battery comprising the polyolefin microporous membrane.
 本発明により、薄膜かつ高強度化した際にも、高いメルトダウン温度および低いシャットダウン温度を有し、電池安全性に優れるポリオレフィン微多孔膜およびそれを用いたセパレータおよび二次電池を提供できる。 According to the present invention, it is possible to provide a polyolefin microporous membrane that has a high meltdown temperature and a low shutdown temperature even when thin and high strength, and has excellent battery safety, as well as a separator and a secondary battery using the same.
本願発明の実施例4で用いた原料のポリエチレンとポリプロピレンの分子量分布を示したものである。4 shows the molecular weight distribution of raw materials polyethylene and polypropylene used in Example 4 of the present invention. 本願発明の比較例2で用いた原料のポリエチレンとポリプロピレンの分子量分布を示したものである。2 shows the molecular weight distribution of raw materials polyethylene and polypropylene used in Comparative Example 2 of the present invention. 本願発明の実施例4で作成したポリオレフィン微多孔膜のポリプロピレンの吸光度の強度を示す2次元分布図を示したものである。FIG. 4 is a two-dimensional distribution diagram showing the absorbance intensity of polypropylene of the polyolefin microporous membrane prepared in Example 4 of the present invention. FIG. 本願発明の比較例2で作成したポリオレフィン微多孔膜のポリプロピレンの吸光度の強度を示す2次元分布図を示したものである。FIG. 4 is a two-dimensional distribution diagram showing the absorbance intensity of polypropylene of the polyolefin microporous film prepared in Comparative Example 2 of the present invention. FIG. 本願発明の実施例6で作成したポリオレフィン微多孔膜のポリエチレンとポリプロピレンのCFC評価における分子量分布を示したものである。2 shows the molecular weight distribution in CFC evaluation of polyethylene and polypropylene of the polyolefin microporous membrane produced in Example 6 of the present invention. 本願発明の比較例1で作成したポリオレフィン微多孔膜のポリエチレンとポリプロピレンのCFC評価における分子量分布を示したものである。1 shows the molecular weight distribution in CFC evaluation of polyethylene and polypropylene of the polyolefin microporous membrane produced in Comparative Example 1 of the present invention.
 本発明は、ポリエチレンとポリプロピレンを含むポリオレフィン微多孔膜の製造方法である。 The present invention is a method for producing a polyolefin microporous membrane containing polyethylene and polypropylene.
 本実施形態のポリオレフィン微多孔膜は、ポリエチレンとポリプロピレンを含むポリオレフィン単層微多孔膜、および、ポリエチレンを含む第1の微多孔質層とポリプロピレンとポリエチレンを含む第2の微多孔質層とを含むポリオレフィン多層微多孔膜のいずれでもよい。 The polyolefin microporous membrane of this embodiment includes a polyolefin monolayer microporous membrane containing polyethylene and polypropylene, and a first microporous layer containing polyethylene and a second microporous layer containing polypropylene and polyethylene. Any polyolefin multilayer microporous membrane may be used.
 本発明のポリオレフィン微多孔膜のメルトダウン温度は160℃以上が好ましく、165℃以上がより好ましく、170℃以上がさらに好ましい。メルトダウン温度の上限は特に制限されないが、PP(ポリプロピレン)添加による方法によっては190℃以下が実質的な上限となる。メルトダウン温度が上記範囲である場合、シャットダウン後の膜形状を維持し、破膜による電極間の接触を防止できる。そのため、シャットダウン後の電流発生を抑え、電池安全性を担保できる。 The meltdown temperature of the polyolefin microporous membrane of the present invention is preferably 160°C or higher, more preferably 165°C or higher, and even more preferably 170°C or higher. The upper limit of the meltdown temperature is not particularly limited, but 190° C. or less is a substantial upper limit depending on the method of adding PP (polypropylene). When the meltdown temperature is within the above range, the membrane shape after shutdown can be maintained, and contact between the electrodes due to membrane rupture can be prevented. Therefore, the generation of current after shutdown can be suppressed, and battery safety can be ensured.
 上記のポリオレフィン微多孔膜の厚み換算突刺強度、すなわち、膜厚当たりの突刺強度の下限は35gf/μm以上であり、好ましくは37gf/μm以上、より好ましくは40gf/μm以上である。突刺強度が35gf/μm以上であると、電池用セパレータとして使用した際に、捲回時や異物によりセパレータが破膜し短絡が生じ難くなることから、電池の安全性を高めることができる。突刺強度が35gf/μm未満であると、電池用セパレータとして使用した際に、捲回時や異物によりセパレータが破膜し短絡が生じやすくなる恐れがある。また、突刺強度の上限は75gf/μm以下であることが好ましい。75gf/μm以上であると、シャットダウン温度が高くなり、安全性のリスクがある。突刺強度が上記範囲である場合、高温下での熱収縮を抑え、メルトダウン特性の低下を抑えることができる。 The lower limit of the thickness-converted puncture strength of the polyolefin microporous membrane, that is, the puncture strength per film thickness is 35 gf/μm or more, preferably 37 gf/μm or more, and more preferably 40 gf/μm or more. When the puncture strength is 35 gf/μm or more, when used as a battery separator, the separator is less likely to break during winding or due to foreign matter, resulting in less short-circuiting, thereby enhancing the safety of the battery. If the puncture strength is less than 35 gf/μm, when used as a battery separator, the separator may be broken during winding or by foreign matter, and short circuits may easily occur. Moreover, the upper limit of the puncture strength is preferably 75 gf/μm or less. If it is 75 gf/μm or more, the shutdown temperature becomes high and there is a risk of safety. When the puncture strength is within the above range, heat shrinkage at high temperatures can be suppressed, and deterioration of meltdown properties can be suppressed.
 突刺強度を上記範囲にするためには、ポリオレフィン微多孔膜を構成する高分子成分の分子量および含有量を調整することが効果的である。また、ポリオレフィン微多孔膜を製造する際の延伸倍率を調整することも有効である。突刺強度を上記範囲にするため、ポリエチレンの重量平均分子量を100万以上にすることが好ましく、樹脂混錬の観点から100万以上200万以下にすることがさらに好ましい。また、ポリオレフィン微多孔膜の100質量%中に上記高分子量ポリエチレンを50質量%以上含有することが好ましく、60%以上含有することがより好ましい。 In order to keep the puncture strength within the above range, it is effective to adjust the molecular weight and content of the polymer component that constitutes the polyolefin microporous membrane. It is also effective to adjust the draw ratio when producing the polyolefin microporous membrane. In order to keep the puncture strength within the above range, the weight average molecular weight of polyethylene is preferably 1,000,000 or more, and more preferably 1,000,000 or more and 2,000,000 or less from the viewpoint of resin kneading. In addition, it is preferable that the high-molecular-weight polyethylene is contained in 50% by mass or more, more preferably 60% by mass or more, in 100% by mass of the polyolefin microporous membrane.
 上記のポリオレフィン微多孔膜は、ポリオレフィン樹脂がポリエチレンおよびポリプロピレンを主成分とする。ここで、「主成分」とはポリオレフィン微多孔膜の100%質量中に、ポリエチレンおよびポリプロピレンの合計が99質量%以上含有することを指す。 The polyolefin resin of the above polyolefin microporous membrane is mainly composed of polyethylene and polypropylene. Here, the "main component" means that the total content of polyethylene and polypropylene is 99% by mass or more in 100% by mass of the polyolefin microporous membrane.
 顕微赤外線分光計を用いて、後述の方法によりポリオレフィン微多孔膜を測定することにより得られる-CH由来の波数1376cm-1のピークの吸光度の変動係数が5.0%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下であることがさらに好ましい。-CHに由来する波数1376cm-1のピークはポリプロピレンの特徴ピークである。このピークの吸光度変動係数が少ないことは、ポリオレフィン微多孔膜中のポリプロピレンの分散の均一性が高いことを示唆する。ポリオレフィン微多孔膜は、ポリプロピレンを添加することで耐熱性を向上できることが周知されている。一方、ポリプロピレンを添加し、ポリオレフィン微多孔膜中におけるポリプロピレンの分散性が悪い場合、ポリプロピレンの海島構造ができる。海島構造部分の耐熱性は良いが、その他の部分の耐熱性が劣ることにより、高温時、ポリオレフィン微多孔膜が局所的に破膜してしまい、電極間の接触を起こし、安全性を落とす恐れがある。前記変動係数の下限は特に制限されるものではないが、理論上の下限値は0%であり、0.6%以上が好ましく、より好ましくは0.3%以上である。波数1376cm-1のピークの吸光度の変動係数を上記の範囲にすることにより、メルトダウン特性および強度に優れたポリオレフィン微多孔膜を得ることができる。 The variation coefficient of the absorbance of the peak at wave number 1376 cm −1 derived from —CH 3 obtained by measuring the polyolefin microporous membrane by the method described below using a micro-infrared spectrometer is preferably 5.0% or less. , is more preferably 3.0% or less, and even more preferably 2.0% or less. The peak at wave number 1376 cm −1 derived from —CH 3 is a characteristic peak of polypropylene. A low coefficient of variation in absorbance for this peak suggests a high degree of homogeneity in the dispersion of polypropylene in the polyolefin microporous membrane. It is well known that the heat resistance of a polyolefin microporous membrane can be improved by adding polypropylene. On the other hand, when polypropylene is added and the dispersibility of polypropylene in the polyolefin microporous film is poor, a sea-island structure of polypropylene is formed. The heat resistance of the sea-island structure is good, but the heat resistance of other parts is poor, so the polyolefin microporous membrane may locally rupture at high temperatures, causing contact between electrodes and lowering safety. There is Although the lower limit of the coefficient of variation is not particularly limited, the theoretical lower limit is 0%, preferably 0.6% or more, more preferably 0.3% or more. A polyolefin microporous membrane excellent in meltdown property and strength can be obtained by setting the coefficient of variation of the absorbance at the wavenumber 1376 cm −1 peak within the above range.
 上記ポリオレフィン微多孔膜のシャットダウン温度は134℃以上140℃以下が好ましく、134℃以上138℃未満がより好ましく、134℃以上136℃未満がさらに好ましい。シャットダウン温度が上記範囲である場合、電池の異常発熱時により早くシャットダウンし、異常発熱を防止できる。しかし一方で、シャットダウン温度を追求した場合、ポリオレフィン微多孔膜の強度が弱くなり、異物耐性が低下する恐れがある。上記範囲のシャットダウン温度は、ポリオレフィン微多孔膜を前述の突刺強度の範囲とすることで達成できる。 The shutdown temperature of the polyolefin microporous membrane is preferably 134°C or higher and 140°C or lower, more preferably 134°C or higher and lower than 138°C, and even more preferably 134°C or higher and lower than 136°C. When the shutdown temperature is within the above range, it is possible to shut down the battery more quickly when abnormal heat is generated, thereby preventing abnormal heat generation. On the other hand, however, when the shutdown temperature is pursued, the strength of the polyolefin microporous membrane may be weakened and foreign matter resistance may be lowered. The shutdown temperature within the above range can be achieved by setting the puncture strength of the polyolefin microporous membrane to the aforementioned range.
 上記のポリオレフィン微多孔膜は、三層を有するポリオレフィン微多孔膜であって、少なくともポリエチレンを含む第1層と、ポリプロピレンおよびポリエチレンを含む第2層を有することが好ましい。 The polyolefin microporous membrane described above is a polyolefin microporous membrane having three layers, and preferably has a first layer containing at least polyethylene and a second layer containing polypropylene and polyethylene.
 ポリプロピレンとポリエチレンの組成物からなる単層微多孔膜は、ポリプロピレン添加でポリエチレンの結晶を阻害することがあり、強度低下の恐れがある。少なくともポリエチレンを含む第1層と、ポリプロピレンおよびポリエチレンを含む第2層を有する三層を有する多層微多孔膜とすることで、各層に機能を振り分け、メルトダウン特性、強度およびシャットダウン特性のバランス調整が好適となる。 A single-layer microporous membrane made of a composition of polypropylene and polyethylene may inhibit the crystallization of polyethylene due to the addition of polypropylene, which may reduce strength. By forming a multi-layer, microporous membrane having three layers having a first layer containing at least polyethylene and a second layer containing polypropylene and polyethylene, functions are assigned to each layer, and meltdown properties, strength, and shutdown properties are balanced. be suitable.
 前記第2層は、重量平均分子量(Mw)が100万以上200万以下のポリエチレン、および重量平均分子量(Mw)が100万以上のポリプロピレンを原料として得られる層であることが好ましい。前記原料ポリエチレンと原料ポリプロピレンのゲルパーミエーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において、原料ポリエチレンの分子量分布曲線と原料ポリプロピレンの分子量分布曲線の重なる面積が原料ポリプロピレンの微分分子量分布曲線全体の面積に対して20%以上であることが好ましく、25%以上であることがより好ましく、30%以上であることがさらに好ましい。 The second layer is preferably a layer obtained using polyethylene with a weight average molecular weight (Mw) of 1,000,000 to 2,000,000 and polypropylene with a weight average molecular weight (Mw) of 1,000,000 or more as raw materials. In the differential molecular weight distribution curve obtained by the gel permeation chromatography (GPC) method of the raw material polyethylene and the raw material polypropylene, the area where the molecular weight distribution curve of the raw material polyethylene and the molecular weight distribution curve of the raw material polypropylene overlap is the entire differential molecular weight distribution curve of the raw material polypropylene. It is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more of the area of .
 前記第2の層に含まれるポリプロピレンのMwは100万以上400万未満であることが好ましく、ポリエチレンのMwは100万以上200万以下であることが好ましい。第2の層中のポリプロピレンの含有率は、8質量%以上であることが好ましい。ポリプロピレンの含有率が8質量%以上、より好ましくは10質量%以上であることで、微多孔膜としての耐熱性を効果的に向上させることができる。また、第2の層中のポリプロピレンの含有率は、50質量%以下が好ましい。ポリプロピレンの含有率が50質量%以下、より好ましくは35質量%以下であることで、微多孔膜の最大孔径の小孔径化を抑え、透気抵抗度の増大を抑えることができる。 The polypropylene contained in the second layer preferably has an Mw of 1 million or more and less than 4 million, and the polyethylene preferably has an Mw of 1 million or more and 2 million or less. The content of polypropylene in the second layer is preferably 8% by mass or more. When the polypropylene content is 8% by mass or more, more preferably 10% by mass or more, the heat resistance of the microporous membrane can be effectively improved. Moreover, the polypropylene content in the second layer is preferably 50% by mass or less. When the content of polypropylene is 50% by mass or less, more preferably 35% by mass or less, it is possible to suppress the maximum pore size of the microporous membrane from becoming small and suppress the increase in air resistance.
 上記ポリプロピレンとポリエチレンのMwをどちらも100万以上とすることで、膜強度および異物耐性の低下を抑制できる。また、ポリエチレンおよびポリプロピレンの重量平均分子量(Mw)をどちらも100万以上とすることで、強度低下または、ポリプロピレン分散性の悪化を抑制できる。超高分子量同士のポリプロピレンおよびポリエチレンの組み合わせにより、高いメルトダウン温度を持ちながら、高強度でもある機能層を得ることができる。 By setting the Mw of both polypropylene and polyethylene to 1,000,000 or more, it is possible to suppress deterioration in film strength and foreign matter resistance. Further, by setting the weight average molecular weight (Mw) of both polyethylene and polypropylene to 1,000,000 or more, it is possible to suppress strength reduction or deterioration of polypropylene dispersibility. The combination of ultra-high molecular weight polypropylene and polyethylene makes it possible to obtain a functional layer that has a high meltdown temperature while also having high strength.
 また、前記原料ポリエチレンと原料ポリプロピレンのゲルパーミエーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において、原料ポリエチレンの微分分子量分布曲線と原料ポリプロピレンの微分分子量分布曲線の重なる面積が原料ポリプロピレンの微分分子量分布曲線全体の面積に対して20%以上とすることで、樹脂混練時、ポリプロピレンがポリエチレンの分子鎖に取り込まれ難いことによる相分離の発生を抑制できる。そのため、ポリプロピレンの海島構造の形成、および高温時の局所の早期破膜が起こることを抑制できる。ポリエチレンおよびポリプロピレンの含有率と両者の重量平均分子量(Mw)を上記範囲内とすることにより、溶融混錬する工程で、ポリプロピレンがポリエチレン中に分散配置することが容易になり、ポリオレフィン微多孔膜における-CHに由来する波数1376cm-1のピークの吸光度の変動係数を前述する範囲内に調整することでき、良好なメルトダウン特性、強度およびポリプロピレン分布の均一性を得ることができる。 Further, in the differential molecular weight distribution curve obtained by the gel permeation chromatography (GPC) method of the raw material polyethylene and the raw material polypropylene, the overlapping area of the differential molecular weight distribution curve of the raw material polyethylene and the differential molecular weight distribution curve of the raw material polypropylene is the differential of the raw material polypropylene. By making it 20% or more of the entire area of the molecular weight distribution curve, it is possible to suppress the occurrence of phase separation due to difficulty in incorporating polypropylene into the molecular chains of polyethylene during resin kneading. Therefore, it is possible to suppress the formation of a sea-island structure of polypropylene and the occurrence of local premature membrane rupture at high temperatures. By setting the content of polyethylene and polypropylene and the weight average molecular weight (Mw) of both within the above range, it becomes easy to disperse the polypropylene in the polyethylene in the melt-kneading process, and the polyolefin microporous membrane The coefficient of variation of the absorbance of the peak at wavenumber 1376 cm −1 derived from —CH 3 can be adjusted within the range described above, and good meltdown characteristics, strength and uniformity of polypropylene distribution can be obtained.
 また、前記原料ポリエチレンと原料ポリプロピレンのゲルパーミエーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において、原料ポリエチレンの微分分子量分布曲線と原料ポリプロピレンの微分分子量分布曲線の重なる面積が原料ポリプロピレンの微分分子量分布曲線全体の面積に対して70%未満とすることで、超高分子量の成分が多く存在することで樹脂が固くなり、シート成形段階でシート外観不良が起こり、延伸時破膜してしまうことを抑制できる。 Further, in the differential molecular weight distribution curve obtained by the gel permeation chromatography (GPC) method of the raw material polyethylene and the raw material polypropylene, the overlapping area of the differential molecular weight distribution curve of the raw material polyethylene and the differential molecular weight distribution curve of the raw material polypropylene is the differential of the raw material polypropylene. If the total area of the molecular weight distribution curve is less than 70%, the resin becomes hard due to the presence of a large amount of ultra-high molecular weight components, resulting in poor sheet appearance during sheet molding and film breakage during stretching. can be suppressed.
 前記ポリオレフィン微多孔膜を後述の測定条件によりクロス分別クロマトグラフ(CFC)法を用いた分析を行い、140℃~0℃まで降温を行い、140℃~110℃の温度領域で最も強い検出ピークをポリプロピレンのピーク、110℃~75℃の温度領域で最も強い検出ピークをポリエチレンのピークとし、分子量分布曲線を得た際に、ポリエチレンの分子量分布曲線とポリプロピレンの分子量分布曲線の重なる面積がポリプロピレンの分子量分布曲線全体の面積に対して15%以上であることが好ましい。 The polyolefin microporous membrane is analyzed using a cross fractionation chromatography (CFC) method under the measurement conditions described later, the temperature is lowered to 140 ° C. to 0 ° C., and the strongest detection peak is detected in the temperature range of 140 ° C. to 110 ° C. The peak of polypropylene, the strongest detection peak in the temperature range of 110 ° C. to 75 ° C. is the peak of polyethylene, and when obtaining a molecular weight distribution curve, the overlapping area of the molecular weight distribution curve of polyethylene and the molecular weight distribution curve of polypropylene is the molecular weight of polypropylene. It is preferably 15% or more with respect to the area of the entire distribution curve.
 前記ポリオレフィン微多孔膜のCFC法を用いた分析により得られたポリマーの微分分子量分布曲線において、ポリエチレンの微分分子量分布曲線とポリプロピレンの微分分子量分布曲線が重なる面積がポリプロピレンの微分分子量分布曲線全体の面積に対して15%以上とすることが好ましく、20%以上することがより好ましい。重なる面積を上記の範囲にすると、超高分子量の成分によりポリエチレンが配向し、ポリオレフィン微多孔膜の高強度化が達成可能となる。また、重なる面積が50%未満とすることで、熱収縮、透気抵抗度の上昇およびシャットダウン温度の高温化を抑制し、電池性能および安全性の低下を抑制できるので好ましい。ポリエチレンの分子量分布曲線とポリプロピレンの分子量分布曲線において重なる面積を前記範囲とすることにより、メルトダウン特性、強度および透気抵抗度のバランスが好適となり、強度およびシャットダウン温度を前述する範囲内に調整することができるので好ましい。 In the differential molecular weight distribution curve of the polymer obtained by analysis of the polyolefin microporous membrane using the CFC method, the area where the differential molecular weight distribution curve of polyethylene and the differential molecular weight distribution curve of polypropylene overlap is the area of the entire differential molecular weight distribution curve of polypropylene. is preferably 15% or more, more preferably 20% or more. When the overlapping area is within the above range, the polyethylene is oriented by the ultrahigh molecular weight component, and high strength of the polyolefin microporous membrane can be achieved. Moreover, it is preferable that the overlapping area is less than 50%, because heat shrinkage, increase in air resistance, and rise in shutdown temperature can be suppressed, and deterioration in battery performance and safety can be suppressed. By setting the overlapping area between the molecular weight distribution curve of polyethylene and the molecular weight distribution curve of polypropylene within the above range, the meltdown property, strength and air resistance are well balanced, and the strength and shutdown temperature are adjusted within the ranges described above. It is preferable because it can
 上記のポリオレフィン微多孔膜は、全質量に占める前記第1層の層比が40~90質量%であり、第2層の層比が10~60質量%であることが好ましい。全質量に占める前記第2層の層比がより好ましくは20~50質量%であり、さらに好ましくは20~40質量%である。第2層の層比が10質量%以上の場合、含有ポリプロピレンによるシャットダウン後の形状維持の効果が好適となり、メルトダウン温度160℃以上を達成できる。また、第2層の層比を60質量%以下とすることで、ポリエチレンを含む第1層の厚みが不十分となることによるシャットダウン特性の低下を抑制できる。 In the above polyolefin microporous membrane, the layer ratio of the first layer to the total mass is preferably 40 to 90% by mass, and the layer ratio of the second layer is preferably 10 to 60% by mass. The layer ratio of the second layer to the total mass is more preferably 20 to 50% by mass, more preferably 20 to 40% by mass. When the layer ratio of the second layer is 10% by mass or more, the effect of maintaining the shape after shutdown due to the contained polypropylene is favorable, and a meltdown temperature of 160° C. or more can be achieved. Further, by setting the layer ratio of the second layer to 60% by mass or less, it is possible to suppress deterioration in shutdown characteristics due to insufficient thickness of the first layer containing polyethylene.
 上記のポリオレフィン微多孔膜は、前記第2層をコア層として、その両側に前記第1層をスキン層として有する三層構造であることが好ましい。ポリプロピレンは酸化劣化しやすいことが周知されている。特に混錬時、酸化劣化で低分子量のポリプロピレンが発生し、キャストから巻取工程で、搬送ロールに剥離し、工程を汚染するリスクがある。ポリプロピレンを含む第2層をコア層に配置することで工程汚染を低減することができる。 The polyolefin microporous membrane described above preferably has a three-layer structure in which the second layer is a core layer and the first layers are skin layers on both sides of the second layer. It is well known that polypropylene is susceptible to oxidative degradation. Especially during kneading, low-molecular-weight polypropylene is generated due to oxidative deterioration, and there is a risk that it will peel off from the conveying roll during the casting and winding processes, contaminating the process. A second layer comprising polypropylene can be placed on the core layer to reduce process contamination.
 上記のポリオレフィン微多孔膜の膜厚は、9μm以下であることが好ましい。膜厚は、好ましくは2μm以上9μm以下であり、より好ましくは2μm以上7μm以下、さらに好ましくは2μm以上5μm以下である。膜厚が上記範囲にある場合、ポリオレフィン微多孔膜を電池用セパレータとして使用した際、電池容量を向上させることができ、かつ絶縁性を向上させることができる。 The film thickness of the polyolefin microporous membrane is preferably 9 μm or less. The film thickness is preferably 2 μm or more and 9 μm or less, more preferably 2 μm or more and 7 μm or less, and still more preferably 2 μm or more and 5 μm or less. When the film thickness is within the above range, when the polyolefin microporous film is used as a battery separator, the battery capacity can be improved and the insulation can be improved.
 以下、各層を構成する樹脂組成物の好適な態様、および製造方法について記載する。 Preferred aspects of the resin composition that constitutes each layer and the manufacturing method are described below.
 (1)ポリプロピレンとポリエチレンを含む第2層のポリオレフィン樹脂組成物A
 第2層は、超高分子量ポリエチレンおよびポリプロピレンを含むポリオレフィン樹脂組成物Aにより形成される多孔質層であることが好ましい。
(1) Second layer polyolefin resin composition A containing polypropylene and polyethylene
The second layer is preferably a porous layer formed of polyolefin resin composition A containing ultra-high molecular weight polyethylene and polypropylene.
 (a)ポリエチレン
 ポリエチレンとしては、重量平均分子量(Mw)が100万以上の超高分子量ポリエチレンが好ましい。ここで、「超高分子量ポリエチレン」とはMwが100万以上のポリエチレンを指す。超高分子量ポリエチレンは、エチレン以外の他のα-オレフィン共重合体を少量含有する共重合体であってもよいが、エチレンの単重合体を用いることが好ましい。
(a) Polyethylene Polyethylene is preferably ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 1,000,000 or more. Here, "ultra-high molecular weight polyethylene" refers to polyethylene having Mw of 1,000,000 or more. The ultra-high molecular weight polyethylene may be a copolymer containing a small amount of an α-olefin copolymer other than ethylene, but it is preferable to use an ethylene homopolymer.
 エチレン以外のα-オレフィン共重合体としては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチルおよびスチレンが好ましい。エチレン以外のα-オレフィンの含有率は、全共重合成分を100mol%として5mol%以下が好ましい。ポリオレフィン微多孔膜の細孔構造均一性の観点から、エチレンの単重合体であることが好ましい。 As α-olefin copolymers other than ethylene, propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene are preferred. The content of α-olefins other than ethylene is preferably 5 mol % or less based on 100 mol % of all copolymer components. From the viewpoint of uniformity of the pore structure of the polyolefin microporous membrane, it is preferably an ethylene homopolymer.
 超高分子量ポリエチレンの重量平均分子量(Mw)としては、100万以上200万以下であることが好ましく、100万以上180万以下であることがより好ましい。Mwは、後述するGPC法により測定される値である。  The weight average molecular weight (Mw) of the ultra-high molecular weight polyethylene is preferably 1 million or more and 2 million or less, more preferably 1 million or more and 1.8 million or less. Mw is a value measured by the GPC method described later.
 ポリオレフィン樹脂組成物A中の超高分子量ポリエチレンの含有率は、ポリオレフィン樹脂組成物Aの100質量%に対して、50質量%以上92質量%以下であることが好ましく、より好ましくは65質量%以上~90質量%以下である。さらに好ましくは80質量%以上である。 The content of ultra-high molecular weight polyethylene in polyolefin resin composition A is preferably 50% by mass or more and 92% by mass or less, more preferably 65% by mass or more, relative to 100% by mass of polyolefin resin composition A. ~90% by mass or less. More preferably, it is 80% by mass or more.
 (b)ポリプロピレン
 ポリプロピレンの種類は特に限定されず、プロピレンの単重合体、プロピレンと他のα-オレフィンおよび/またはジオレフィンとの共重合体(プロピレン共重合体)、あるいはこれらから選ばれる2種以上の混合物のいずれでも良いが、プロピレンの単重合体を単独で用いることがより好ましい。
(b) Polypropylene The type of polypropylene is not particularly limited, and is a homopolymer of propylene, a copolymer of propylene and other α-olefins and/or diolefins (propylene copolymer), or two selected from these. Although any of the above mixtures may be used, it is more preferable to use a propylene homopolymer alone.
 プロピレン共重合体としてはランダム共重合体またはブロック共重合体のいずれも用いることができる。プロピレン共重合体中のα-オレフィンとしては、炭素数が8以下であるα-オレフィンが好ましい。炭素数が8以下のα-オレフィンとして、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル、スチレンおよびこれらの組合せ等が挙げられる。プロピレンの共重合体中のジオレフィンとしては、炭素数は4~14のジオレフィンが好ましい。炭素数が4~14のジオレフィンとして、例えばブタジエン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン等が挙げられる。プロピレン共重合体中の他のα-オレフィンおよびジオレフィンの含有率は、全共重合成分を100mol%として10mol%未満であることが好ましい。  As the propylene copolymer, either a random copolymer or a block copolymer can be used. As the α-olefin in the propylene copolymer, α-olefins having 8 or less carbon atoms are preferred. Examples of α-olefins having 8 or less carbon atoms include ethylene, butene-1, pentene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, styrene and combinations thereof. As the diolefin in the propylene copolymer, a diolefin having 4 to 14 carbon atoms is preferable. Examples of diolefins having 4 to 14 carbon atoms include butadiene, 1,5-hexadiene, 1,7-octadiene and 1,9-decadiene. The content of other α-olefins and diolefins in the propylene copolymer is preferably less than 10 mol % with respect to 100 mol % of the total copolymer components.
 ポリプロピレンのMwは100万以上が好ましく、120万以上がより好ましく、150万以上が特に好ましい。ポリプロピレンのMwは400万未満が好ましい。またポリプロピレンの融点は、155~170℃が好ましく、160℃~165℃がより好ましい。なお、融点は後述する走査型示差熱量計(DSC)により測定される値である。 The Mw of polypropylene is preferably 1,000,000 or more, more preferably 1,200,000 or more, and particularly preferably 1,500,000 or more. Mw of polypropylene is preferably less than 4 million. The melting point of polypropylene is preferably 155 to 170°C, more preferably 160 to 165°C. The melting point is a value measured by a differential scanning calorimeter (DSC), which will be described later.
 ポリオレフィン樹脂組成物A中のポリプロピレンの含有率は、ポリオレフィン樹脂組成物A100質量%に対して、好ましくは8質量%以上50質量%以下、より好ましくは10質量%以上35質量%以下である。 The content of polypropylene in the polyolefin resin composition A is preferably 8% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 35% by mass or less with respect to 100% by mass of the polyolefin resin composition A.
 (2)第1層のポリオレフィン樹脂組成物B
 (a)ポリエチレン
 第1層は重量平均分子量(Mw)が100万以上の超高分子量ポリエチレンを含むポリオレフィン樹脂組成物(以下、「ポリオレフィン樹脂組成物B」と記載)により形成される多孔質層であることが好ましい。ポリオレフィン樹脂組成物Bの超高分子量ポリエチレンの好ましい種類や好ましい重量平均分子量(Mw)の範囲は、上記ポリオレフィン樹脂組成物Aと同様のため、説明を省略する。
(2) Polyolefin resin composition B for the first layer
(a) Polyethylene The first layer is a porous layer formed of a polyolefin resin composition (hereinafter referred to as "polyolefin resin composition B") containing ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 1,000,000 or more. Preferably. Since the preferred type and preferred weight average molecular weight (Mw) range of the ultra-high molecular weight polyethylene of the polyolefin resin composition B are the same as those of the polyolefin resin composition A, description thereof is omitted.
 ポリオレフィン樹脂組成物Bは、超高分子量ポリエチレン以外のポリエチレンを含むことが好ましい。超高分子量ポリエチレン以外のポリエチレンは、ポリオレフィン樹脂組成物B全体100質量%に対して0質量%以上50質量%以下の範囲で含まれることが好ましい。超高分子量ポリエチレン以外のポリエチレンのMwは、30万未満であることが好ましく、20万未満であることがより好ましい。さらに膜強度の観点から、Mwの下限は5万以上であることが好ましい。超高分子量ポリエチレン以外のポリエチレンは、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレンおよび線状低密度ポリエチレンからなる群から選ばれる少なくとも一種であることが好ましい。 The polyolefin resin composition B preferably contains polyethylene other than ultra-high molecular weight polyethylene. The content of polyethylene other than ultra-high molecular weight polyethylene is preferably in the range of 0% by mass or more and 50% by mass or less with respect to 100% by mass of the entire polyolefin resin composition B. Mw of polyethylene other than ultra-high molecular weight polyethylene is preferably less than 300,000, more preferably less than 200,000. Furthermore, from the viewpoint of film strength, the lower limit of Mw is preferably 50,000 or more. The polyethylene other than ultra-high molecular weight polyethylene is preferably at least one selected from the group consisting of high density polyethylene, medium density polyethylene, branched low density polyethylene and linear low density polyethylene.
 (3)ポリオレフィン微多孔膜の製造方法
 本実施形態のポリオレフィン微多孔膜は、ポリエチレンとポリプロピレンを含むポリオレフィン単層微多孔膜、またはポリエチレンを含む第1の微多孔層とポリプロピレンとポリエチレンを含む第2の微多孔層を含むポリオレフィン多層微多孔膜のいずれでもよい。
(3) Method for producing a polyolefin microporous membrane The polyolefin microporous membrane of the present embodiment is a polyolefin single-layer microporous membrane containing polyethylene and polypropylene, or a first microporous layer containing polyethylene and a second microporous layer containing polypropylene and polyethylene. Any polyolefin multilayer microporous membrane containing a microporous layer of
 ポリオレフィン微多孔膜の製造方法(湿式の製膜方法)について説明する。なお、以下の説明は、製造方法の一例であって、この方法に限定するものではない。 The manufacturing method (wet film manufacturing method) of the polyolefin microporous membrane will be explained. In addition, the following description is an example of the manufacturing method, and is not limited to this method.
 本態様のポリオレフィン微多孔膜の製造方法は以下の工程を含む。(a)第1層および第2層の溶液の調製(b)ゲル状シートの成形(c)第一の延伸(d)可塑剤の除去(e)乾燥(f)第二の延伸(g)熱処理。 The method for producing the polyolefin microporous membrane of this embodiment includes the following steps. (a) Preparation of first layer and second layer solutions (b) Formation of gel sheet (c) First stretching (d) Plasticizer removal (e) Drying (f) Second stretching (g) Heat treatment.
 (a)第1層および第2層の溶液の調製
 二軸押出し機中にてポリオレフィン樹脂組成物に可塑剤を添加し、溶融混練し、第1層用の溶液および第2層用の溶液をそれぞれ調製する。第1層および第2層のポリオレフィン樹脂組成物と可塑剤との配合割合は、ポリオレフィン樹脂組成物と可塑剤との合計を100重量%として、ポリオレフィン樹脂組成物の含有率を15質量%以上30重量%以下とすることが好ましい。ポリオレフィン樹脂組成物の濃度を上記の範囲内にすることで、ポリオレフィン溶液を押出す際に、ダイ出口でスウェルやネックインが防止でき、押出し成形体の成形性および自己支持性を良好にできる。
(a) Preparation of first layer and second layer solutions A plasticizer is added to a polyolefin resin composition in a twin-screw extruder, melt-kneaded, and a solution for the first layer and a solution for the second layer are prepared. Prepare each. The mixing ratio of the polyolefin resin composition and the plasticizer in the first layer and the second layer is 15% by mass or more and 30% by weight, with the total of the polyolefin resin composition and the plasticizer being 100% by weight. % by weight or less. By adjusting the concentration of the polyolefin resin composition within the above range, it is possible to prevent swelling and neck-in at the die exit during extrusion of the polyolefin solution, and to improve the moldability and self-supporting properties of the extrudate.
 第1層用の溶液および第2層用の溶液をそれぞれ押出機から1つのダイに送給し、そこで両溶液を層状のシートとして押し出し、成形体を得る。押出方法はフラットダイ法およびインフレーション法のいずれでもよい。いずれの方法でも、両溶液を別々のマニホールドに供給して多層用ダイのリップ入口で層状に積層する方法(多数マニホールド法)、または両溶液を予め層状の流れにしてダイに供給する方法(ブロック法)を用いることができる。多数マニホールド法およびブロック法は通常の方法を適用できる。多層用フラットダイのギャップは0.1mm以上5mm以下に設定できる。押出し温度は140℃以上250℃以下が好ましく、押出速度は0.2~15m/分が好ましい。各層用の溶液の押出量を調節することにより、層の膜厚比を調節することができる。 The solution for the first layer and the solution for the second layer are each fed from an extruder to one die, where both solutions are extruded as a layered sheet to obtain a molded body. The extrusion method may be either a flat die method or an inflation method. In either method, both solutions are supplied to separate manifolds and layered at the lip inlet of a multi-layer die (multi-manifold method), or both solutions are pre-layered and fed to the die (block flow method). method) can be used. The multiple manifold method and the block method can be applied as usual. The gap of the multilayer flat die can be set to 0.1 mm or more and 5 mm or less. The extrusion temperature is preferably 140° C. or higher and 250° C. or lower, and the extrusion speed is preferably 0.2 to 15 m/min. By adjusting the throughput of the solution for each layer, the thickness ratio of the layers can be adjusted.
 (b)ゲル状シートの成形
 得られた押出し成形体を冷却することによりゲル状シートを得る。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができる。冷媒で冷却したロールに接触させて冷却させることが好ましい。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、可塑剤によって分離された第一および第二のポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。
(b) Formation of gel-like sheet A gel-like sheet is obtained by cooling the obtained extrudate. As a cooling method, a method of contact with a cooling medium such as cold air or cooling water, a method of contact with a cooling roll, or the like can be used. It is preferable to cool the film by bringing it into contact with a roll cooled with a refrigerant. Cooling is preferably carried out at a rate of 50° C./min or more until at least the gelation temperature. Cooling is preferably performed to 25° C. or lower. Cooling can immobilize the microphases of the first and second polyolefins separated by the plasticizer. When the cooling rate is within the above range, the degree of crystallinity is kept within an appropriate range, and a gel-like sheet suitable for stretching is obtained.
 (c)第一の延伸
 次いで、ゲル状シートを延伸する。ゲル状シートの延伸は、湿式延伸ともいう。ゲル状シートは可塑剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、またはこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸および多段延伸(例えば同時二軸延伸および逐次延伸の組合せ)のいずれでもよい。
(c) First stretching Next, the gel-like sheet is stretched. The stretching of the gel-like sheet is also called wet stretching. Since the gel-like sheet contains a plasticizer, it can be uniformly stretched. After heating, the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof. Stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
 延伸倍率(面積延伸倍率)は、一軸延伸の場合、2倍以上が好ましく、3倍以上30倍以下がより好ましい。二軸延伸の場合は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、MDおよびTDのいずれも延伸倍率は3倍以上が好ましく、MDおよびTDでの延伸倍率は互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。 In the case of uniaxial stretching, the draw ratio (area draw ratio) is preferably 2 times or more, more preferably 3 times or more and 30 times or less. In the case of biaxial stretching, it is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more. Moreover, the draw ratio in both MD and TD is preferably 3 times or more, and the draw ratio in MD and TD may be the same or different. The draw ratio in this step refers to the area draw ratio of the microporous membrane just before being subjected to the next step, with the microporous membrane just before this step as a reference.
 延伸温度の下限は、好ましくは90℃以上であり、より好ましくは110℃以上である。また、この延伸温度の上限は、好ましくは120℃以下である。延伸温度が上記範囲内であると、低融点成分のポリオレフィン樹脂の延伸による破膜が抑制され、高倍率の延伸ができる。 The lower limit of the stretching temperature is preferably 90°C or higher, more preferably 110°C or higher. Moreover, the upper limit of the stretching temperature is preferably 120° C. or less. When the stretching temperature is within the above range, film breakage due to stretching of the low-melting-point polyolefin resin is suppressed, and high magnification stretching is possible.
 (d)可塑剤の除去
 洗浄溶媒を用いて、可塑剤の除去を行う。洗浄溶媒およびこれを用いた可塑剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
(d) Removal of plasticizer The plasticizer is removed using a washing solvent. Since the washing solvent and the method for removing the plasticizer using the washing solvent are known, the explanation thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
 (e)乾燥
 可塑剤を除去したポリオレフィン微多孔膜を、加熱乾燥法または風乾法により乾燥する。加熱乾燥、風乾(空気を動かすこと)等の従来の方法を含む、洗浄溶媒を除去することが可能ないずれの方法を用いてもよい。洗浄溶媒等の揮発成分を除去するための処理条件は、例えばPCT特許公開公報第WO2008/016174号および同第WO2007/132942号に開示されているものと同じであってもよい。
(e) Drying The polyolefin microporous membrane from which the plasticizer has been removed is dried by a heat drying method or an air drying method. Any method capable of removing the wash solvent may be used, including conventional methods such as heat drying, air drying (moving air), and the like. Processing conditions for removing volatile components such as washing solvents may be the same as disclosed, for example, in PCT Patent Publication Nos. WO2008/016174 and WO2007/132942.
 (f)第二の延伸
 次いで、乾燥後のポリオレフィン微多孔膜を延伸する。乾燥後の微多孔膜の延伸は、第二の延伸という。乾燥後の微多孔膜フィルムを、少なくとも一軸方向に延伸する。ポリオレフィン微多孔膜の第二の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。本願は同層にポリエチレンとポリプロピレンの2種のポリオレフィン樹脂を含有しているため、ラメラ構造の均一性の観点から第二の延伸は一軸延伸が好ましい。
(f) Second Stretching Next, the dried polyolefin microporous membrane is stretched. The stretching of the microporous membrane after drying is referred to as the second stretching. The dried microporous membrane film is stretched at least uniaxially. The second stretching of the polyolefin microporous membrane can be performed by a tenter method or the like while heating in the same manner as described above. Since the present application contains two types of polyolefin resins, polyethylene and polypropylene, in the same layer, the second stretching is preferably uniaxial stretching from the viewpoint of uniformity of the lamellar structure.
 延伸倍率は、TDに1.5倍以上であることが好ましく、2.0倍以上であることがより好ましい。第二の延伸を1.5倍以上で行うと、TDに結晶分子鎖が高度に配向するため、MD/TDラマン配向比を0.8未満に調整することができる。より高い倍率で延伸するほどラマン配向比を小さく調整することができる。ただしシャットダウン温度や熱収縮率が上昇するためそのバランスを考慮して、延伸倍率の上限は3.5倍以下であることが好ましい。ここで第二の延伸におけるTDの延伸倍率とは、第二の延伸前のポリオレフィン微多孔膜のTDの長さを基準として、第二の延伸後のポリオレフィン微多孔膜のTDの長さの倍率をいう。 The draw ratio is preferably at least 1.5 times the TD, more preferably at least 2.0 times. When the second stretching is performed at 1.5 times or more, crystal molecular chains are highly oriented in the TD, so the MD/TD Raman orientation ratio can be adjusted to less than 0.8. The Raman orientation ratio can be adjusted to be smaller as the film is drawn at a higher magnification. However, since the shutdown temperature and the thermal shrinkage rate increase, the upper limit of the draw ratio is preferably 3.5 times or less in consideration of the balance. Here, the stretch ratio of TD in the second stretching is the ratio of the TD length of the polyolefin microporous membrane after the second stretching based on the TD length of the polyolefin microporous membrane before the second stretching. Say.
 (g)熱処理
 第二の延伸後のポリオレフィン微多孔膜は熱処理するのが好ましい。熱処理としては、ポリオレフィン微多孔膜をクリップで把持した状態で、幅を固定したまま熱処理を施すTD熱固定処理工程が好ましい。熱処理温度は115℃以上135℃以下とすることが好ましい。
(g) Heat Treatment The polyolefin microporous membrane after the second stretching is preferably heat treated. As the heat treatment, a TD heat setting treatment step is preferable in which the polyolefin microporous membrane is gripped with a clip and subjected to heat treatment while the width is fixed. The heat treatment temperature is preferably 115° C. or higher and 135° C. or lower.
 ポリオレフィン樹脂組成物、前記の第一の延伸工程、第二の延伸工程、熱処理工程を上記好ましい範囲で適宜調整することで、優れた高温メルトダウン特性、高強度、膜中のポリプロピレンの分布均一性および低温シャットダウン特性を有するポリオレフィン微多孔膜が得られる。 By appropriately adjusting the polyolefin resin composition, the first stretching step, the second stretching step, and the heat treatment step within the above preferred ranges, excellent high-temperature meltdown characteristics, high strength, and uniform distribution of polypropylene in the film can be obtained. and a polyolefin microporous membrane having low temperature shutdown properties.
 (コーティングフィルム)
 ポリオレフィン微多孔膜の少なくとも一方の表面に、ポリオレフィン樹脂以外の他の多孔質層を積層して積層ポリオレフィン多孔質膜(コーティングフィルム)としてもよい。他の多孔質層としては、特に限定されないが、例えば、バインダーと無機粒子とを含むコーティング層をコーティングにより積層してもよい。
(coating film)
A porous layer other than polyolefin resin may be laminated on at least one surface of the polyolefin microporous membrane to form a laminated polyolefin porous membrane (coating film). The other porous layer is not particularly limited, but for example, a coating layer containing a binder and inorganic particles may be laminated by coating.
 他の多孔質層の厚みは、1~5μmの範囲が好ましく、1~4μmがより好ましく、1~3μmがさらに好ましい。他の多孔質層の厚みがこのような厚みを有することで、十分な多孔質層の形成効果(絶縁性や強度の向上効果等)が得られ、製品ばらつきを抑えて生産性を向上でき、また電極に対する接着性が確保できる。他の多孔層の厚みが5μm以下であれば、巻き嵩や積層による嵩を抑えることができ、電池の高容量化に適している。さらに、カールが大きくなるのを防ぎ、電池組み立て工程での生産性の向上に寄与することができる。 The thickness of the other porous layer is preferably in the range of 1-5 μm, more preferably 1-4 μm, even more preferably 1-3 μm. When the thickness of the other porous layer has such a thickness, a sufficient effect of forming the porous layer (effect of improving insulation and strength, etc.) can be obtained, and product variation can be suppressed and productivity can be improved. Also, the adhesiveness to the electrode can be secured. If the thickness of the other porous layer is 5 μm or less, the bulk due to winding and lamination can be suppressed, which is suitable for increasing the capacity of the battery. Furthermore, it is possible to prevent the curl from becoming large and contribute to the improvement of productivity in the battery assembly process.
 コーティング層を構成するバインダー成分としては、特に限定されず、公知の成分を用いることができる。例えば、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などを用いることができる。 The binder component that constitutes the coating layer is not particularly limited, and known components can be used. For example, acrylic resins, polyvinylidene fluoride resins, polyamideimide resins, polyamide resins, aromatic polyamide resins, polyimide resins, and the like can be used.
 コーティング層を構成する無機粒子としては、特に限定されず、公知の材料を用いることができる。例えば、チタニア、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などを用いることができる。 The inorganic particles that make up the coating layer are not particularly limited, and known materials can be used. For example, titania, alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon and the like can be used.
 (非水電解液二次電池)
 本実施形態によるポリオレフィン微多孔膜およびコーティングフィルムは、非水電解液二次電池のセパレータとして好適に用いることができる。本実施形態によるポリオレフィン微多孔膜およびコーティングフィルムをセパレータに用いることにより、電池特性に優れた非水電解液二次電池を提供することができる。
(Non-aqueous electrolyte secondary battery)
The polyolefin microporous membrane and coating film according to this embodiment can be suitably used as a separator for a non-aqueous electrolyte secondary battery. By using the polyolefin microporous film and the coating film according to the present embodiment for the separator, it is possible to provide a non-aqueous electrolyte secondary battery having excellent battery characteristics.
 本実施形態によるポリオレフィン微多孔膜およびコーティングフィルムが適用される非水電解液二次電池の例としては、負極と正極がセパレータを介して対向して配置された電池要素に電解質を含む電解液が含浸され、これらが外装材に封入された構造を有するものが挙げられる。 As an example of a non-aqueous electrolyte secondary battery to which the polyolefin microporous film and coating film according to the present embodiment are applied, an electrolytic solution containing an electrolyte is placed in a battery element in which a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween. Those having a structure in which they are impregnated and enclosed in an exterior material are mentioned.
 負極の例としては、負極活物質、導電助剤およびバインダーからなる負極合剤が、集電体上に成形されたものが挙げられる。負極活物質としては、リチウムイオンをドープ・脱ドープ可能な材料が用いられる。具体的には、黒鉛やカーボンなどの炭素材料、シリコン酸化物、シリコン合金、スズ合金、リチウム金属、リチウム合金などなどが挙げられる。導電助剤としては、アセチレンブラック、ケッチェンブラックなどの炭素材料が用いられる。バインダーとしてはスチレン・ブタジエンゴム、ポリフッ化ビニリデン、ポリイミドなどが用いられる。集電体としては銅箔、ステンレス箔、ニッケル箔などが用いられる。 An example of a negative electrode is one in which a negative electrode mixture consisting of a negative electrode active material, a conductive aid, and a binder is formed on a current collector. As the negative electrode active material, a material capable of doping/dedoping lithium ions is used. Specific examples include carbon materials such as graphite and carbon, silicon oxides, silicon alloys, tin alloys, lithium metal, lithium alloys, and the like. Carbon materials such as acetylene black and ketjen black are used as conductive aids. Styrene-butadiene rubber, polyvinylidene fluoride, polyimide and the like are used as the binder. Copper foil, stainless steel foil, nickel foil, or the like is used as the current collector.
 正極の例としては、正極活物質、バインダーおよび必要に応じて導電助剤からなる正極合剤が、集電体上に成形されたものが挙げられる。正極活物質としては、Mn、Fe、Co、Niなどの遷移金属を少なくとも1種含むリチウム複合酸化物が挙げられる。具体的には、例えば、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムなどが挙げられる。導電助剤としては、アセチレンブラック、ケッチェンブラックなどの炭素材料が用いられる。バインダーとしてはポリフッ化ビニリデンなどが用いられる。集電体としてはアルミ箔、ステンレス箔などが用いられる。 An example of the positive electrode is one in which a positive electrode mixture consisting of a positive electrode active material, a binder, and optionally a conductive aid is molded on a current collector. Examples of positive electrode active materials include lithium composite oxides containing at least one transition metal such as Mn, Fe, Co, and Ni. Specific examples include lithium nickelate, lithium cobaltate, and lithium manganate. Carbon materials such as acetylene black and ketjen black are used as conductive aids. Polyvinylidene fluoride or the like is used as the binder. Aluminum foil, stainless steel foil, or the like is used as the current collector.
 電解液としては、例えば、リチウム塩を非水系溶媒に溶解させたものを用いることができる。リチウム塩としては、LiPF、LiBF、LiClO、LiN(SOCFなどが挙げられる。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトンなどが挙げられる。通常はビニレンカーボネートなどの各種添加剤とともに、これらの溶媒のうちの2種以上を混合したものが用いられる。また、イミダゾリウム陽イオン系などのイオン液体(常温溶融塩)も用いることができる。 As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt in a non-aqueous solvent can be used. Lithium salts include LiPF 6 , LiBF 4 , LiClO 4 , LiN(SO 2 CF 3 ) 2 and the like. Non-aqueous solvents include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, γ-butyrolactone and the like. Generally, a mixture of two or more of these solvents is used together with various additives such as vinylene carbonate. Ionic liquids (normal temperature molten salts) such as imidazolium cations can also be used.
 外装材としては、金属缶またはアルミラミネートパックなどが挙げられる。電池の形状は、コイン型、円筒型、角型、ラミネート型などが挙げられる。 Exterior materials include metal cans and aluminum laminate packs. The shape of the battery includes coin type, cylindrical type, square type, laminate type, and the like.
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples.
 [測定方法]
 (1)膜厚
 ポリオレフィン微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック、接触圧0.01N、10.5mmφプローブを用いた)により測定し、平均値を膜厚(μm)とした。
[Measuring method]
(1) Film thickness The film thickness of the polyolefin microporous film was measured at 5 points within a range of 95 mm × 95 mm using a contact thickness meter (Mitutoyo Corp. Lightmatic, contact pressure 0.01 N, 10.5 mmφ probe). and the average value was defined as the film thickness (μm).
 (2)空孔率
 ポリオレフィン微多孔膜を95mm×95mmの大きさに切り出し、その体積(cm)と重量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
式:空孔率(%)=((体積-重量/膜密度)/体積)×100
ここで、膜密度は0.99とした。また、体積の算出には、前述の(1)で測定した膜厚を使用した。
(2) Porosity A polyolefin microporous membrane is cut into a size of 95 mm × 95 mm, its volume (cm 3 ) and weight (g) are obtained, and from these and the membrane density (g/cm 3 ), the following formula is used. calculated by
Formula: Porosity (%) = ((volume - weight / membrane density) / volume) x 100
Here, the film density was set to 0.99. The film thickness measured in (1) above was used to calculate the volume.
 (3)透気抵抗度
 ポリオレフィン微多孔膜について、JIS P-8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて透気抵抗度(sec/100cm)を測定した。
(3) Air resistance For the polyolefin microporous membrane, air resistance (sec / 100 cm 3 ) was measured.
 (4)突刺強度
 直径1mm(先端は0.5mmR)の針を用い、速度2mm/秒で膜厚T(μm)、空孔率P(%)のポリオレフィン微多孔膜を突刺したときの最大荷重値S(gf)を測定した。さらに下記の式により、換算突刺強度を算出した。
式:換算突刺強度=S(gf)/膜厚(μm)。
(4) Puncture strength Maximum load when a needle with a diameter of 1 mm (tip is 0.5 mmR) is used to pierce a polyolefin microporous membrane with a thickness of T (μm) and a porosity of P (%) at a speed of 2 mm/sec. The value S(gf) was measured. Further, the converted puncture strength was calculated by the following formula.
Formula: Converted puncture strength=S (gf)/film thickness (μm).
 (5)シャットダウン温度およびメルトダウン温度
 ポリオレフィン微多孔膜を30℃の雰囲気中にさらして、5℃/分の速度で昇温しながら透気抵抗度を測定する。ポリオレフィン微多孔膜の透気抵抗度が100,000sec/100cmに到達した時の温度をシャットダウン温度と定義した。メルトダウン温度は、前記シャットダウン温度に到達後さらに昇温を継続し、透気抵抗度が100,000sec/100cm未満となる温度と定義した。透気抵抗度は、JIS P8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて測定した。また、測定を5回実施し、その平均値をシャットダウン温度およびメルトダウン温度の値とする。
(5) Shutdown Temperature and Meltdown Temperature The polyolefin microporous membrane is exposed to an atmosphere of 30° C., and the air resistance is measured while raising the temperature at a rate of 5° C./min. The temperature at which the air resistance of the polyolefin microporous membrane reached 100,000 sec/100 cm 3 was defined as the shutdown temperature. The meltdown temperature was defined as the temperature at which the temperature continued to rise after reaching the shutdown temperature and the air resistance was less than 100,000 sec/100 cm 3 . The air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009. Moreover, the measurement is performed 5 times, and the average value is used as the value of the shutdown temperature and the meltdown temperature.
 (6)融点および融解ピーク
 ポリオレフィン樹脂の融点およびポリオレフィン微多孔膜の融解ピークは走査型示差熱量計(PERKIN ELMER製 PYRIS DIAMOND DSC)により求めた。ポリオレフィン樹脂とポリオレフィン微多孔膜をそれぞれサンプルホルダー内に静置し、10℃/分の速度で230℃まで昇温して完全に溶融させたのち、230℃で3分間保持し、10℃/分の速度で30℃まで降温させた。これを1回目の昇温として、同じ測定を再度繰り返し、2回目の昇温時の吸熱ピークよりポリオレフィン樹脂の融点(Tm)と、ポリオレフィン微多孔膜の融解ピークをそれぞれ求めた。ポリオレフィン樹脂については、融解熱量が70J/g以上のピークを吸熱ピークとみなし、ポリオレフィン微多孔膜については、融解熱量が3.0J/g以上のピークを吸熱ピークとみなした。
(6) Melting point and melting peak The melting point of the polyolefin resin and the melting peak of the polyolefin microporous membrane were determined by a scanning differential calorimeter (PYRIS DIAMOND DSC manufactured by Perkin Elmer). The polyolefin resin and the polyolefin microporous membrane were each placed in a sample holder, heated to 230°C at a rate of 10°C/min until completely melted, then held at 230°C for 3 minutes and heated at 10°C/min. The temperature was lowered to 30°C at a rate of . Using this as the first temperature rise, the same measurement was repeated, and the melting point (Tm) of the polyolefin resin and the melting peak of the polyolefin microporous membrane were determined from the endothermic peak at the second temperature rise. For the polyolefin resin, the peak with the heat of fusion of 70 J/g or more was regarded as the endothermic peak, and with the polyolefin microporous film, the peak with the heat of fusion of 3.0 J/g or more was regarded as the endothermic peak.
 (7)樹脂原料の重量平均分子量(Mw)、分子量分布および微分分子量分布曲線におけるピーク面積
 ポリオレフィン樹脂原料の重量平均分子量(Mw)および分子量分布(Mw/Mn)は以下の測定条件を用いてゲルパーミエーションクロマトグラフィー(GPC)法により求めた。また、微分分子量分布曲線は次の手順で算出した。(A)GPCの示差屈折率検出器(RI検出器)から、溶出時間に対する検出強度(溶出曲線)を算出し、溶出時間を分子量に変換した。ここで、溶出曲線のベースラインは、ピークの立ち上がりの保持時間を起点、ピークエンドの保持時間を終点とし、ピーク検出の間隔は0.017分とした。(B)溶出曲線の全体の面積を100%としたときの強度面積を求め、それぞれの分子量の濃度分率を求めた。濃度分率を順次積算し、横軸に分子量の対数値(log(M))、縦軸に濃度分率(w)の積算値をプロットすることにより積分分子量曲線を得た。(C)各分子量の対数値における曲線の微分値を求め、横軸に分子量の対数値(log(M))、縦軸に濃度分率を分子量の対数値で微分した値(dw/dlog(M))をプロットすることで微分分子量分布曲線を得た。得られたポリプロピレンの微分分子量分布曲線の全体の面積を100%としたときの、ポリプロピレンの微分分子量分布曲線とポリエチレンの微分分子量分布曲線が重なった面積を算出した。
(7) Weight Average Molecular Weight (Mw) of Resin Raw Material, Molecular Weight Distribution, and Peak Area in Differential Molecular Weight Distribution Curve Obtained by permeation chromatography (GPC) method. Moreover, the differential molecular weight distribution curve was calculated by the following procedure. (A) A detection intensity (elution curve) versus elution time was calculated from a GPC differential refractive index detector (RI detector), and the elution time was converted to molecular weight. Here, the baseline of the elution curve was defined as the starting point of the retention time of the peak rise and the end point of the retention time of the peak end, and the peak detection interval was 0.017 minutes. (B) The intensity area was determined when the entire area of the elution curve was taken as 100%, and the concentration fraction of each molecular weight was determined. An integrated molecular weight curve was obtained by sequentially accumulating the concentration fractions and plotting the logarithmic value (log(M)) of the molecular weight on the horizontal axis and the integrated value of the concentration fraction (w) on the vertical axis. (C) The differential value of the curve at the logarithmic value of each molecular weight is obtained, the horizontal axis is the logarithmic value of the molecular weight (log (M)), and the vertical axis is the value obtained by differentiating the concentration fraction with the logarithmic value of the molecular weight (dw / dlog ( M)) was plotted to obtain a differential molecular weight distribution curve. The area where the differential molecular weight distribution curve of polypropylene and the differential molecular weight distribution curve of polyethylene overlap was calculated when the entire area of the obtained differential molecular weight distribution curve of polypropylene was taken as 100%.
 [測定条件]
・測定装置:Agilent製高温GPC装置PL-GPC220
・カラム:Agilent製PL1110-6200(20μm MIXED-A)×2本
・カラム温度:160℃
・溶媒(移動相):1,2,4-トリクロロベンゼン
・溶媒流速:1.0mL/分
・試料濃度:0.1wt%(溶解条件:160℃/3.5H)
・インジェクション量:500μL
・検出器:Agilent製示差屈折率検出器(RI検出器)
・粘度計:Agilent製粘度検出器
・検量線:単分散ポリスチレン標準試料を用いたユニバーサル検量線法にて作成。
[Measurement condition]
・Measurement device: Agilent high temperature GPC device PL-GPC220
・Column: Agilent PL1110-6200 (20 μm MIXED-A) x 2 ・Column temperature: 160°C
・ Solvent (mobile phase): 1,2,4-trichlorobenzene ・ Solvent flow rate: 1.0 mL / min ・ Sample concentration: 0.1 wt% (dissolution conditions: 160 ° C. / 3.5 H)
・Injection amount: 500 μL
・ Detector: Agilent differential refractive index detector (RI detector)
- Viscometer: Viscosity detector manufactured by Agilent - Calibration curve: Created by universal calibration curve method using monodisperse polystyrene standard sample.
 (8)ポリオレフィン微多孔膜の重量平均分子量(Mw)、分子量分布および微分分子量分布曲線におけるピーク面積
 ポリオレフィン微多孔膜に含まれる樹脂の重量平均分子量(Mw)は以下の測定条件を用いてクロス分別クロマトグラフ(CFC)法により求めた。また、ポリオレフィン多層微多孔膜の微分分子量分布曲線は次の手順で算出した。(A)下記の測定条件でCFC法による測定を行い、140℃~0℃の領域における下記溶出区分において、溶出したポリマーに対する溶出曲線を求め、溶出時間を分子量に変換した。ここで、140~110℃領域で最も強いピークをポリプロピレンの溶出曲線のピークとし、110~75℃領域で最も強いピークをポリエチレンの溶出曲線のピークとした。溶出曲線のベースラインは、それぞれのピークの立ち上がりの保持時間を起点、ピークエンドの保持時間を終点とし、ピーク検出の間隔は0.014分とした。(B)溶出曲線の全体の面積率を100%としたときの強度面積を求め、それぞれの分子量の濃度分率を求めた。濃度分率を順次積算し、横軸に分子量の対数値(log(M))、縦軸に濃度分率(w)の積算値をプロットすることにより積分分子量曲線を得た。(C)各分子量の対数値における曲線の微分値を求め、横軸に分子量の対数値(log(M))、縦軸に濃度分率を分子量の対数値で微分した値(dw/dlog(M))をプロットすることで微分分子量分布曲線を得た。得られたポリプロピレンの微分分子量分布曲線の全体の面積を100%としたときの、ポリプロピレンの微分分子量分布曲線とポリエチレンの微分分子量分布曲線が重なった面積を算出した。
(8) Weight average molecular weight (Mw) of polyolefin microporous membrane, molecular weight distribution and peak area in differential molecular weight distribution curve The weight average molecular weight (Mw) of the resin contained in the polyolefin microporous membrane is cross-fractionated using the following measurement conditions It was obtained by a chromatographic (CFC) method. Further, the differential molecular weight distribution curve of the polyolefin multi-layer, microporous membrane was calculated by the following procedure. (A) Measurement was performed by the CFC method under the following measurement conditions, an elution curve for the eluted polymer was obtained in the following elution sections in the range of 140°C to 0°C, and the elution time was converted to molecular weight. Here, the strongest peak in the 140-110°C region was taken as the peak of the polypropylene elution curve, and the strongest peak in the 110-75°C region was taken as the peak of the polyethylene elution curve. The baseline of the elution curve was set with the retention time at the rise of each peak as the start point and the retention time at the end of the peak as the end point, and the peak detection interval was 0.014 minutes. (B) The intensity area was determined when the overall area ratio of the elution curve was 100%, and the concentration fraction of each molecular weight was determined. An integrated molecular weight curve was obtained by sequentially accumulating the concentration fractions and plotting the logarithmic value (log(M)) of the molecular weight on the horizontal axis and the integrated value of the concentration fraction (w) on the vertical axis. (C) The differential value of the curve at the logarithmic value of each molecular weight is obtained, the horizontal axis is the logarithmic value of the molecular weight (log (M)), and the vertical axis is the value obtained by differentiating the concentration fraction with the logarithmic value of the molecular weight (dw / dlog ( M)) was plotted to obtain a differential molecular weight distribution curve. The area where the differential molecular weight distribution curve of polypropylene and the differential molecular weight distribution curve of polyethylene overlap was calculated when the entire area of the obtained differential molecular weight distribution curve of polypropylene was taken as 100%.
 [測定条件]
装置:CFC2型クロス分別クロマトグラフ(Polymer Char)
検出器(内蔵):IR4 型赤外分光光度計(Polymer Char)
検出波長:3.42μm
GPC カラム:Shodex HT-806M×3本(昭和電工)
カラム温度:140℃
カラム較正:単分散ポリスチレン(東ソー)
分子量較正法:標品較正法(ポリスチレン換算)
溶離液:o-ジクロロベンゼン(ODCB)、ジブチルヒドロキシトルエン(BHT)添加
流量:1.0mL/min
試料濃度:1.5mg/mL
注入量:0.5mL
試料をカラムに注入した後、140分かけて140℃から0℃に降温し、その後0℃で30分間保持した後、下記のように段階的に昇温して、各溶出区分における溶出物を測定した。
溶出区分(℃):0,10,20,30,40,50,60,65,70,75,80,83,86,88,90,92,94,95,96,97,98,99,100,101,102,103,104,105,106,108,110,112,114,117,120,125,130,135,140(以上39分画)。
[Measurement condition]
Apparatus: CFC2 type cross fractionation chromatograph (Polymer Char)
Detector (built-in): IR4 infrared spectrophotometer (Polymer Char)
Detection wavelength: 3.42 μm
GPC column: Shodex HT-806M x 3 (Showa Denko)
Column temperature: 140°C
Column calibration: monodisperse polystyrene (Tosoh)
Molecular weight calibration method: standard calibration method (polystyrene conversion)
Eluent: o-dichlorobenzene (ODCB), dibutylhydroxytoluene (BHT) Addition flow rate: 1.0 mL/min
Sample concentration: 1.5 mg/mL
Injection volume: 0.5 mL
After injecting the sample into the column, the temperature was lowered from 140° C. to 0° C. over 140 minutes, then held at 0° C. for 30 minutes, and then the temperature was raised stepwise as described below to determine the eluate in each elution section. It was measured.
Elution division (°C): 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 83, 86, 88, 90, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 110, 112, 114, 117, 120, 125, 130, 135, 140 (39 fractions above).
 (9)ポリプロピレンの吸光度の変動係数測定
 [吸光度の変動係数の測定方法]
 ポリオレフィン微多孔膜から切り出した50mm×50mmの試料片を、顕微赤外線分光光度計(FT/IR-6600、日本分光社製)を用いて、下記条件で透過測定を行った。
・測定面積 300μm×300μm
・測定点数 縦横40×40点
・測定間隔 縦横300μm
・総測定面積 12×12mm
・測定波数範囲 600cm-1~4000cm-1
・分解能 4cm-1
・積算回数 16回
 横軸および縦軸としてそれぞれ波数および吸光度をプロットしたグラフにおいて-CH由来の波数1376cm-1のピークをポリプロピレンの特徴ピークとして選択し、ピークの頂点からベースラインまでの高さを吸光度として求めた。ベースラインは波数1330cm-1における測定値(吸光度)と波数1400cm-1における吸光度との間を直線で引いた線を用いた。上記の条件で試料片の縦横40×40点の計1600点のポリプロピレンのピークの吸光度を求め、その平均値と標準偏差から、ポリオレフィン微多孔膜のポリプロピレンの吸光度の変動係数(標準偏差/平均値)を求めた。
(9) Measurement of coefficient of variation of absorbance of polypropylene [Method for measuring coefficient of variation of absorbance]
A sample piece of 50 mm×50 mm cut out from the polyolefin microporous film was subjected to transmission measurement under the following conditions using a microscopic infrared spectrophotometer (FT/IR-6600, manufactured by JASCO Corporation).
・Measurement area 300 μm × 300 μm
・Number of measurement points: 40 x 40 points ・Measurement interval: 300 μm
・Total measurement area 12 x 12 mm
・Measurement wavenumber range 600 cm -1 to 4000 cm -1
Resolution 4 cm -1
・ Number of times of accumulation 16 times In the graph plotting the wavenumber and absorbance on the horizontal axis and the vertical axis, respectively, the peak of wavenumber 1376 cm -1 derived from -CH 3 was selected as a characteristic peak of polypropylene, and the height from the top of the peak to the baseline was obtained as the absorbance. A line obtained by drawing a straight line between the measured value (absorbance) at a wavenumber of 1330 cm −1 and the absorbance at a wavenumber of 1400 cm −1 was used as the baseline. Under the above conditions, the absorbance of a total of 1,600 polypropylene peaks of 40 × 40 points in the vertical and horizontal directions of the sample piece was obtained, and from the average value and standard deviation, the coefficient of variation of the absorbance of the polypropylene of the polyolefin microporous membrane (standard deviation / average value ).
 (実施例1)
 (1)ポリオレフィン溶液
 Mwが2.0×10のポリプロピレン(PP、融点162℃)10質量部およびMwが1.5×10の超高分子量ポリエチレン90質量部からなる第1のポリオレフィン樹脂組成物100質量部に、酸化防止剤テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、樹脂混合物を調製した。得られた樹脂混合物20質量部を二軸押出機(1)に投入し、二軸押出機(1)のサイドフィーダーから可塑剤として流動パラフィン(35cSt(40℃))80質量部を供給し、溶融混練して、ポリオレフィン溶液を調製した。
(Example 1)
(1) Polyolefin solution A first polyolefin resin composition comprising 10 parts by mass of polypropylene (PP, melting point 162°C) with Mw of 2.0 x 106 and 90 parts by mass of ultra-high molecular weight polyethylene with Mw of 1.5 x 106 . 0.2 parts by mass of an antioxidant tetrakis[methylene-3-(3,5-ditert-butyl-4-hydroxyphenyl)-propionate]methane was added to 100 parts by mass of the product to prepare a resin mixture. 20 parts by mass of the resulting resin mixture was charged into the twin-screw extruder (1), and 80 parts by mass of liquid paraffin (35 cSt (40° C.)) was supplied as a plasticizer from the side feeder of the twin-screw extruder (1), A polyolefin solution was prepared by melt-kneading.
 (2)押出
 ポリオレフィン溶液を二軸押出機からダイに供給し、押し出し、押出し成形体を得た。得られた押出し成形体を、35℃に温調したキャストロールで引き取り速度2m/minで、引き取りながら冷却し、ゲル状シートを形成した。
(2) Extrusion A polyolefin solution was supplied from a twin-screw extruder to a die and extruded to obtain an extrudate. The resulting extruded body was cooled while being taken up by a casting roll controlled to 35° C. at a take-up speed of 2 m/min to form a gel-like sheet.
 (3)第1の延伸、可塑剤の除去、乾燥
 ゲル状シートを、テンター延伸機により115℃でMD方向およびTD方向ともに8倍に同時二軸延伸(第1の延伸)した。延伸ゲル状シートを20cm×20cmのアルミニウム枠板に固定し、25℃に温調した塩化メチレン浴中に浸漬し、100rpmで3分間揺動しながら流動パラフィンを除去し、室温で風乾し乾燥膜を得た。
(3) First Stretching, Removal of Plasticizer, and Drying The gel-like sheet was simultaneously biaxially stretched 8 times in both the MD and TD directions (first stretching) at 115° C. using a tenter stretching machine. The stretched gel-like sheet was fixed to an aluminum frame plate of 20 cm × 20 cm, immersed in a methylene chloride bath controlled at 25°C, shaken at 100 rpm for 3 minutes to remove liquid paraffin, and air-dried at room temperature to dry the film. got
 (4)熱固定
 前記乾燥膜を、130℃で熱固定処理し、ポリオレフィン微多孔膜を得た。作製したポリオレフィン微多孔膜の各成分の配合割合、製造条件、評価結果等を表1に示す。
(4) Heat setting The dried film was heat set at 130°C to obtain a polyolefin microporous film. Table 1 shows the blending ratio of each component, manufacturing conditions, evaluation results, etc. of the produced polyolefin microporous membrane.
 (実施例2、3)
 実施例2、3では、表1に記載した条件以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
(Examples 2 and 3)
In Examples 2 and 3, polyolefin microporous membranes were produced in the same manner as in Example 1 except for the conditions described in Table 1.
 (実施例4)
 (第1層用のポリオレフィン溶液の調製)
 Mwが1.5×10の超高分子量ポリエチレン(UHMwPE)70質量部およびMwが9.0×10の高密度ポリエチレン(HDPE)30質量部からなる第1のポリオレフィン樹脂100質量部に、酸化防止剤テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、樹脂混合物を調製した。得られた樹脂混合物20質量部を二軸押出機(1)に投入し、二軸押出機(1)のサイドフィーダーから可塑剤として流動パラフィン(35cSt(40℃))80質量部を供給し、溶融混練して、第1層用のポリオレフィン溶液を調製した。
(Example 4)
(Preparation of polyolefin solution for first layer)
100 parts by mass of a first polyolefin resin consisting of 70 parts by mass of ultra high molecular weight polyethylene (UHMwPE) with Mw of 1.5×10 6 and 30 parts by mass of high density polyethylene (HDPE) with Mw of 9.0×10 4 , 0.2 parts by mass of an antioxidant tetrakis[methylene-3-(3,5-ditertiarybutyl-4-hydroxyphenyl)-propionate]methane was added to prepare a resin mixture. 20 parts by mass of the resulting resin mixture was charged into the twin-screw extruder (1), and 80 parts by mass of liquid paraffin (35 cSt (40° C.)) was supplied as a plasticizer from the side feeder of the twin-screw extruder (1), Melt-kneading was performed to prepare a polyolefin solution for the first layer.
 (第2層用のポリオレフィン溶液の調製)
 Mwが2.0×10の超高分子量ポリプロピレン10質量部およびMwが1.5×10の超高分子量ポリエチレン(UHMwPE)90質量部からなる第2層のポリオレフィン樹脂に、酸化防止剤テトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、樹脂混合物を調製した。得られた樹脂混合物17質量部を、上記二軸押出機(1)と別の二軸押出機(2)に投入し、二軸押出機(2)のサイドフィーダーから可塑剤として流動パラフィン(35cSt(40℃))83質量部を供給し溶融混練して、第2層用のポリオレフィン溶液を調製した。
(Preparation of polyolefin solution for second layer)
Antioxidant tetrakis is added to the polyolefin resin of the second layer consisting of 10 parts by mass of ultra high molecular weight polypropylene with Mw of 2.0 × 10 6 and 90 parts by weight of ultra high molecular weight polyethylene (UHMwPE) with Mw of 1.5 × 10 6 0.2 parts by mass of [methylene-3-(3,5-ditert-butyl-4-hydroxyphenyl)-propionate]methane was added to prepare a resin mixture. 17 parts by mass of the resulting resin mixture was charged into the twin-screw extruder (1) and another twin-screw extruder (2), and liquid paraffin (35 cSt (40° C.)) was supplied and melt-kneaded to prepare a polyolefin solution for the second layer.
 また、実施例4の第2層の原料ポリエチレンと原料ポリプロピレンのGPC法により得られる微分分子量分布曲線において、両者の重なる面積を示すグラフを図1に示す。 In addition, in the differential molecular weight distribution curves obtained by the GPC method of the raw material polyethylene and the raw material polypropylene of the second layer of Example 4, a graph showing the overlapping area of both is shown in FIG.
 (押出)
 第1層用のポリオレフィン溶液および第2層用のポリオレフィン溶液を、各二軸押出機から三層用Tダイに供給し、第1のポリオレフィン溶液/第2のポリオレフィン溶液/第1のポリオレフィン溶液の層比が30/40/30となるように押し出した。押出し成形体を、冷却ロールで引き取りながら冷却し、ゲル状三層シートを成形した。
(Extrusion)
The polyolefin solution for the first layer and the polyolefin solution for the second layer are supplied from each twin-screw extruder to the T-die for three layers, and the first polyolefin solution/second polyolefin solution/first polyolefin solution It was extruded in a layer ratio of 30/40/30. The extruded body was cooled while being taken up by a cooling roll to form a gel-like three-layer sheet.
 (第1の延伸)
 ゲル状三層シートを、テンター延伸機により110℃でMDおよびTDともに5倍に同時二軸延伸(第1の延伸)した。
(First stretching)
The gel-like three-layer sheet was simultaneously biaxially stretched 5 times in both MD and TD (first stretching) at 110° C. with a tenter stretching machine.
 (可塑剤の除去、乾燥)
 第1の延伸を施したゲル状三層シートを洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィンを除去し、室温で風乾して乾燥膜を得た。
(removal of plasticizer, drying)
The first stretched gel-like three-layer sheet was immersed in a methylene chloride bath in a washing tank to remove liquid paraffin, and air-dried at room temperature to obtain a dry film.
 (第2の延伸)
 前記乾燥膜を、128.4℃でTDに1.35倍に延伸した(第2の延伸)。
(Second stretching)
The dried film was stretched 1.35 times in the TD at 128.4°C (second stretch).
 (熱処理)
 第2の延伸を施した三層シートに、128.4℃でTDに0.85倍の緩和処理を施し、第1層/第2層/第1層の三層からなるポリオレフィン微多孔膜を得た。
(Heat treatment)
The three-layer sheet subjected to the second stretching is subjected to a relaxation treatment of 0.85 times the TD at 128.4 ° C., and a polyolefin microporous membrane consisting of three layers of the first layer / second layer / first layer is obtained. Obtained.
 作製したポリオレフィン微多孔膜の各成分の配合割合、製造条件、評価結果等を表1に示す。また、実施例4における、ポリプロピレンの吸光度の強度を示す2次元分布図を図3に示す。 Table 1 shows the mixing ratio of each component of the produced polyolefin microporous membrane, manufacturing conditions, evaluation results, etc. FIG. 3 shows a two-dimensional distribution diagram showing the absorbance intensity of polypropylene in Example 4. As shown in FIG.
 [実施例5~10]
 表1、2に記載した条件以外は実施例4と同様にして、ポリオレフィン微多孔膜を作製した。
[Examples 5 to 10]
A polyolefin microporous membrane was produced in the same manner as in Example 4 except for the conditions described in Tables 1 and 2.
 [比較例1]
 表3に記載した条件以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
[Comparative Example 1]
A microporous polyolefin membrane was produced in the same manner as in Example 1 except for the conditions listed in Table 3.
 [比較例2~7]
 表3に記載した条件以外は実施例4と同様にして、ポリオレフィン微多孔膜を作製した。また、比較例2の第2層の原料ポリエチレンと原料ポリプロピレンのGPC法により得られる微分分子量分布曲線において、両者の重なる面積を示すグラフを図2に示す。比較例2におけるポリプロピレンの吸光度の強度を示す2次元分布図を図4に示す。
[Comparative Examples 2 to 7]
A microporous polyolefin membrane was produced in the same manner as in Example 4 except for the conditions listed in Table 3. FIG. 2 is a graph showing the overlapping area of the differential molecular weight distribution curves of the raw material polyethylene and the raw material polypropylene of Comparative Example 2 obtained by the GPC method. FIG. 4 shows a two-dimensional distribution diagram showing the absorbance intensity of polypropylene in Comparative Example 2. As shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
PP 原料ポリプロピレンの分子量分布曲線
PE 原料ポリエチレンの分子量分布曲線
1 実施例4における原料ポリエチレンと原料ポリプロピレンの重なる面積
2 比較例2における原料ポリエチレンと原料ポリプロピレンの重なる面積
A ポリプロピレンの分子量分布曲線
B ポリエチレンの分子量分布曲線
3 CFC評価における実施例6のフィルムのポリエチレンとポリプロピレンの重なる面積
4 CFC評価における比較例1のフィルムのポリエチレンとポリプロピレンの重なる面積
 
PP Molecular weight distribution curve of raw polypropylene PE Molecular weight distribution curve of raw polyethylene 1 Overlapping area of raw polyethylene and raw polypropylene in Example 4 2 Overlapping area of raw polyethylene and raw polypropylene in Comparative Example 2 A Molecular weight distribution curve of polypropylene B Molecular weight of polyethylene Distribution curve 3 Overlapping area of polyethylene and polypropylene of the film of Example 6 in CFC evaluation 4 Overlapping area of polyethylene and polypropylene of the film of Comparative Example 1 in CFC evaluation

Claims (11)

  1.  メルトダウン温度が160℃以上190℃以下であり、厚み換算突刺強度は35gf/μm以上75gf/μm以下であり、以下の測定方法により求められる、-CHに由来する波数1376cm-1のピークの吸光度の変動係数が0以上5.0%以下であるポリオレフィン微多孔膜:
     [吸光度の変動係数の測定方法]
    ポリオレフィン微多孔膜から切り出した50mm×50mmの試料片を、顕微赤外線分光光度計(FT/IR-6600、日本分光社製)を用いて、下記条件で透過測定を行う;
    ・測定面積 300μm×300μm
    ・測定点数 縦横40×40点
    ・測定間隔 縦横300μm
    ・総測定面積 12×12mm
    ・測定波数範囲 600cm-1~4000cm-1
    ・分解能 4cm-1
    ・積算回数 16回
     横軸および縦軸としてそれぞれ波数および吸光度をプロットしたグラフにおいて波数1376cm-1のピークを選択し、ピークの頂点からベースラインまでの高さを吸光度として求める;ベースラインは波数1330cm-1における測定値(吸光度)と波数1400cm-1における吸光度との間を直線で引いた線を用いる;1600点のポリプロピレンのピークの吸光度を求め、その平均値と標準偏差から、ポリオレフィン微多孔膜のポリプロピレンの吸光度の変動係数(標準偏差/平均値)を求める。
    The meltdown temperature is 160° C. or higher and 190° C. or lower, the thickness-converted puncture strength is 35 gf/μm or higher and 75 gf/μm or lower, and the wave number 1376 cm −1 peak derived from —CH 3 is obtained by the following measurement method. Polyolefin microporous membrane having a coefficient of variation of absorbance of 0 to 5.0%:
    [Method for measuring coefficient of variation of absorbance]
    A 50 mm × 50 mm sample piece cut out from the polyolefin microporous film is subjected to transmission measurement under the following conditions using a microscopic infrared spectrophotometer (FT/IR-6600, manufactured by JASCO Corporation);
    ・Measurement area 300 μm × 300 μm
    ・Number of measurement points: 40 x 40 points ・Measurement interval: 300 μm
    ・Total measurement area 12 x 12 mm
    ・Measurement wavenumber range 600 cm -1 to 4000 cm -1
    ・Resolution 4 cm -1
    ・The number of times of integration 16 times Select the peak of wavenumber 1376 cm -1 in the graph plotting the wavenumber and absorbance on the horizontal axis and the vertical axis, respectively, and obtain the absorbance from the top of the peak to the baseline; the baseline is wavenumber 1330 cm Use a straight line drawn between the measured value (absorbance) at -1 and the absorbance at a wave number of 1400 cm -1 ; Determine the coefficient of variation (standard deviation/mean value) of the absorbance of polypropylene.
  2.  前記ポリオレフィン微多孔膜を下記の測定条件によりクロス分別クロマトグラフ法(CFC法)による測定を行い、分子量分布曲線を得た際に、ポリプロピレンの分子量分布曲線とポリエチレンの分子量分布曲線の重なる面積が、ポリプロピレンの分子量分布曲線全体の面積に対して15%以上である請求項1に記載のポリオレフィン微多孔膜:
    [測定条件]
    検出器としてIR4型赤外分光光度計を用いて、140℃~0℃の領域において下記溶出区分で、溶出したポリマーに対する溶出曲線を求め、溶出時間を分子量に変換して、分子量分布曲線を得る;
    ・ポリプロピレン:140~110℃領域で最も強い検出ピークをポリプロピレンのピークとした;
    ・ポリエチレン:110~75℃領域で最も強い検出ピークをポリエチレンのピークとした。
    When the polyolefin microporous membrane was measured by cross fractionation chromatography (CFC method) under the following measurement conditions to obtain a molecular weight distribution curve, the overlapping area of the polypropylene molecular weight distribution curve and the polyethylene molecular weight distribution curve was The polyolefin microporous membrane according to claim 1, wherein the area of the entire molecular weight distribution curve of polypropylene is 15% or more:
    [Measurement condition]
    Using an IR4-type infrared spectrophotometer as a detector, obtain an elution curve for the eluted polymer in the following elution sections in the region of 140°C to 0°C, convert the elution time to molecular weight, and obtain a molecular weight distribution curve. ;
    - Polypropylene: The peak detected in the 140-110°C region was taken as the polypropylene peak;
    • Polyethylene: The strongest detection peak in the 110 to 75°C region was taken as the polyethylene peak.
  3.  シャットダウン温度が134℃以上140℃以下である請求項2に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 2, wherein the shutdown temperature is 134°C or higher and 140°C or lower.
  4.  三層を有するポリオレフィン微多孔膜であって、少なくとも、ポリエチレンを含む第1層と、ポリプロピレンおよびポリエチレンを含む第2層を有する請求項1または2に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 1 or 2, which has three layers and has at least a first layer containing polyethylene and a second layer containing polypropylene and polyethylene.
  5.  前記第1層が、重量平均分子量(Mw)が100万以上200万以下のポリエチレンを原料としている層であり、前記第2層が、重量平均分子量(Mw)が100万以上200万以下のポリエチレンおよび重量平均分子量(Mw)が100万以上のポリプロピレンを原料として得られる層である請求項4に記載のポリオレフィン微多孔膜。 The first layer is a layer made of polyethylene having a weight average molecular weight (Mw) of 1 million or more and 2 million or less, and the second layer is a polyethylene having a weight average molecular weight (Mw) of 1 million or more and 2 million or less. 5. The polyolefin microporous membrane according to claim 4, which is a layer obtained using polypropylene having a weight average molecular weight (Mw) of 1,000,000 or more as a raw material.
  6.  第2層における前記原料ポリエチレンと原料ポリプロピレンをGPC法による分子量分布測定を行った際に求められる分子量分布曲線において、原料ポリエチレンの分子量分布曲線と原料ポリプロピレンの分子量分布曲線の重なる面積が原料ポリプロピレンの分子量分布曲線全体の面積に対して20%以上である請求項5に記載のポリオレフィン微多孔膜。 In the molecular weight distribution curve obtained by measuring the molecular weight distribution of the raw material polyethylene and the raw material polypropylene in the second layer by GPC method, the area where the molecular weight distribution curve of the raw material polyethylene and the molecular weight distribution curve of the raw material polypropylene overlap is the molecular weight of the raw material polypropylene. 6. The polyolefin microporous membrane according to claim 5, wherein the area of the entire distribution curve is 20% or more.
  7.  ポリオレフィン微多孔膜の全質量に占める前記第1層の層比が40~90質量%であり、第2層の層比が10~60質量%である請求項4に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 4, wherein the first layer accounts for 40 to 90% by mass and the second layer accounts for 10 to 60% by mass of the total mass of the polyolefin microporous membrane.
  8.  前記第2層(コア層)の両側に前記第1層(スキン層)を有する三層構造である請求項4に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 4, which has a three-layer structure having the first layer (skin layer) on both sides of the second layer (core layer).
  9.  膜厚が9μm以下である、請求項1また2に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 1 or 2, which has a thickness of 9 μm or less.
  10.  請求項1または2に記載のポリオレフィン微多孔膜の少なくとも一方の表面に、さらに1層以上のコーティング層を備える、積層ポリオレフィン多層微多孔膜。 A laminated polyolefin multilayer microporous membrane comprising one or more coating layers on at least one surface of the polyolefin microporous membrane according to claim 1 or 2.
  11.  請求項1または2に記載のポリオレフィン微多孔膜を有する非水電解液二次電池。
     
    A non-aqueous electrolyte secondary battery comprising the polyolefin microporous membrane according to claim 1 or 2.
PCT/JP2022/047102 2022-01-28 2022-12-21 Polyolefin microporous membrane and method for producing same WO2023145319A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023501587A JPWO2023145319A1 (en) 2022-01-28 2022-12-21
KR1020247015305A KR20240144092A (en) 2022-01-28 2022-12-21 Polyolefin microporous membrane and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011571 2022-01-28
JP2022011571 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145319A1 true WO2023145319A1 (en) 2023-08-03

Family

ID=87471640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047102 WO2023145319A1 (en) 2022-01-28 2022-12-21 Polyolefin microporous membrane and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2023145319A1 (en)
KR (1) KR20240144092A (en)
WO (1) WO2023145319A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537638A (en) * 2006-05-15 2009-10-29 東燃化学株式会社 Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP2018101613A (en) * 2016-12-20 2018-06-28 旭化成株式会社 Separator for electric storage device, laminate using the same, wound body, lithium ion secondary battery, or electric storage device
JP2019072901A (en) * 2017-10-13 2019-05-16 旭化成株式会社 Polyolefin microporous film and lithium secondary battery using the same
WO2021033735A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous film, layered body, and battery
WO2022154069A1 (en) * 2021-01-18 2022-07-21 東レ株式会社 Polyolefin microporous film and laminated polyolefin microporous film
WO2023276468A1 (en) * 2021-06-30 2023-01-05 東レ株式会社 Polyolefin microporous membrane and battery separator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2212945B1 (en) 2007-10-12 2013-08-21 Toray Battery Separator Film Co., Ltd. Microporous membranes and methods for making and using such membranes
US9624349B2 (en) 2011-12-28 2017-04-18 Toray Battery Separator Film Co., Ltd. Polyolefin microporous film and method for producing same
JP7306200B2 (en) 2018-10-31 2023-07-11 東レ株式会社 porous polyolefin film
JP6956214B2 (en) 2020-01-22 2021-11-02 旭化成株式会社 Polyolefin microporous membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537638A (en) * 2006-05-15 2009-10-29 東燃化学株式会社 Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP2018101613A (en) * 2016-12-20 2018-06-28 旭化成株式会社 Separator for electric storage device, laminate using the same, wound body, lithium ion secondary battery, or electric storage device
JP2019072901A (en) * 2017-10-13 2019-05-16 旭化成株式会社 Polyolefin microporous film and lithium secondary battery using the same
WO2021033735A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous film, layered body, and battery
WO2022154069A1 (en) * 2021-01-18 2022-07-21 東レ株式会社 Polyolefin microporous film and laminated polyolefin microporous film
WO2023276468A1 (en) * 2021-06-30 2023-01-05 東レ株式会社 Polyolefin microporous membrane and battery separator

Also Published As

Publication number Publication date
JPWO2023145319A1 (en) 2023-08-03
KR20240144092A (en) 2024-10-02

Similar Documents

Publication Publication Date Title
JP5651731B2 (en) Microporous membrane and its manufacture and use
JP6443333B2 (en) Polyolefin microporous membrane and method for producing the same
JP4902455B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
KR101448087B1 (en) Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
KR101143106B1 (en) Microporous polymer membrane
JP5403634B2 (en) Microporous membrane, battery separator and battery
JP6394596B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
JP5450929B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP2011503247A5 (en)
JP2011500354A5 (en)
WO2007117005A1 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP6394597B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
US20090117454A1 (en) Multi-Layer Microporous Membrane, Battery Separator And Battery
JPWO2007010878A1 (en) Polyolefin multilayer microporous membrane and battery separator
WO2018043335A1 (en) Microporous membrane, lithium ion secondary battery, and microporous membrane production method
WO2018043331A1 (en) Microporous membrane, lithium ion secondary battery, and microporous membrane production method
EP2111914A1 (en) Multi-layer microporous membrane, battery separator and battery
WO2023145319A1 (en) Polyolefin microporous membrane and method for producing same
WO2023276468A1 (en) Polyolefin microporous membrane and battery separator
JP7380553B2 (en) Polyolefin microporous membrane, battery separator and secondary battery
JP2024112773A (en) Polyolefin microporous membrane
EP2111911A1 (en) Multi-Layer Microporous Membrane, Battery Separator and Battery
CN117203843A (en) Polyolefin microporous membrane and separator for battery
TW200920595A (en) Multi-layer, microporous membrane, battery separator and battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023501587

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE