Nothing Special   »   [go: up one dir, main page]

WO2023038029A1 - Brain wave measurement device - Google Patents

Brain wave measurement device Download PDF

Info

Publication number
WO2023038029A1
WO2023038029A1 PCT/JP2022/033451 JP2022033451W WO2023038029A1 WO 2023038029 A1 WO2023038029 A1 WO 2023038029A1 JP 2022033451 W JP2022033451 W JP 2022033451W WO 2023038029 A1 WO2023038029 A1 WO 2023038029A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement device
electroencephalogram measurement
electroencephalogram
electrode
head
Prior art date
Application number
PCT/JP2022/033451
Other languages
French (fr)
Japanese (ja)
Inventor
稔 吉水
康 落合
貞雄 政吉
Original Assignee
住友ファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ファーマ株式会社 filed Critical 住友ファーマ株式会社
Priority to CA3231722A priority Critical patent/CA3231722A1/en
Priority to JP2023539049A priority patent/JP7429333B2/en
Priority to EP22867351.3A priority patent/EP4400052A1/en
Priority to CN202280060596.7A priority patent/CN117915837A/en
Publication of WO2023038029A1 publication Critical patent/WO2023038029A1/en
Priority to JP2024010123A priority patent/JP2024046663A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head

Definitions

  • the present invention relates to an electroencephalogram measurement device, and more particularly to an electroencephalogram measurement device that can measure electroencephalograms while attached to the head of a living body.
  • Patent Document 1 Non-Patent Document 1
  • Non-Patent Documents 2 and 3 device is known.
  • the electroencephalogram measuring apparatus of Patent Document 1 has two electrodes on the frontal region side and has a double band structure consisting of an outer band and an inner band. Each is an integral part (FIG. 16 of Patent Document 1), and the device of Patent Document 1 (Non-Patent Document 1) has a problem with wearing comfort.
  • the electroencephalogram measurement device of Non-Patent Document 2 is a hair band type device with two electrodes on the frontal side, but the device has a problem in durability because it is a hair band type using a soft material. In addition, the device of Non-Patent Document 2 is considered to have a high risk of failure such as disconnection.
  • the electroencephalogram measurement device of Non-Patent Document 3 has a structure in which a large number of electrodes protrude from the main body. There is a risk that the electrodes on the forehead side may not be sufficiently fixed because the device is attached to the body, and in the device of Non-Patent Document 3, many wires from many electrodes protrude from the main body Therefore, the device of Non-Patent Document 3 also has a problem in durability.
  • the present invention is an electroencephalogram measurement device that can be worn on the head of a living body, and includes at least a central front side component, a left front side component, a right front side component, and a back side component, and has a left side when worn.
  • a housing portion having a curved shape so as to be arranged along the living body head from the head to the forehead to the right side of the head, and at least one measurement electrode fixed to the back side part and in contact with the forehead when worn.
  • a signal processing unit accommodated in the accommodation unit for processing electrical signals obtained through the measurement electrodes, at least two of a central front component, a left front component, a right front component, and a back component.
  • the number of measurement electrodes may be at least two or more.
  • the rigidity of the left front part and the right front part may be higher than the rigidity of the center front part.
  • the centers of the surfaces of the measurement electrodes that come into contact with the forehead when worn are on the left and right sides of each other by 40 mm or more and 90 mm or less along the shape of the back side part. may be spaced apart.
  • the contour of the surface of the measurement electrode that contacts the forehead when worn may have a circular shape with a diameter of 10 mm to 25 mm.
  • the signal processing section may be arranged between the left front side component and the back side component, or between the right front side component and the back side component.
  • the electroencephalogram measurement apparatus of the present invention By using the electroencephalogram measurement apparatus of the present invention, the risk of disconnection of the conductors connecting the electrodes and the signal processing unit is reduced, the durability is improved, and the user (test subject) wears the device comfortably. It can improve the quality of EEG signal.
  • FIG. 1 is a schematic diagram of an electroencephalogram measurement apparatus according to an embodiment of the present invention (a diagram viewed obliquely from the front of a user wearing the device);
  • FIG. 1 is a schematic diagram of an electroencephalogram measuring apparatus according to an embodiment of the present invention (viewed obliquely from behind the user wearing the device);
  • FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (a top view of a user wearing the device).
  • FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (viewed from below by a user wearing the device).
  • FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (viewed from the right ear side of a user wearing the device). 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (viewed from the left ear side of a user wearing the device).
  • FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (a form worn on a user's head). Schematic diagram of a wearing auxiliary band.
  • FIG. 3 is an exploded view (perspective view) when the housing section is disassembled into components.
  • FIG. 3 is an exploded view (perspective view) when the housing section is disassembled into components.
  • FIG. 3 is an exploded view (perspective view) when the housing section is disassembled into components.
  • FIG. 3 is an exploded view when the housing section is disassembled into each component (a top view of the user wearing the device);
  • 1 is a block diagram showing the configuration of an electroencephalogram measurement apparatus that is an embodiment of the present invention;
  • FIG. 2 is a block diagram showing the configuration of a data collection terminal device;
  • 4 is a flow chart showing the operation of the electroencephalogram measuring device and the data collection terminal device according to one embodiment of the present invention.
  • electroencephalogram measurement apparatus which is an exemplary embodiment of the present invention, will be described below with reference to the drawings.
  • the electroencephalogram measurement apparatus according to the present invention is not limited to the specific embodiments described below, and can be appropriately modified within the scope of the present invention.
  • Individual functions, elements, and the like included in the embodiments described later can be appropriately deleted or changed within the scope of the present invention (for example, in FIG.
  • the electroencephalogram measurement apparatus may be implemented without a communication unit by storing in a memory device), and arbitrary functions, elements, etc. not included in the embodiments may be added within the scope of the present invention. be.
  • the storage section is composed of four parts, namely, a central front part, a left front part, a right front part, and a back part.
  • the central front side part may be disassembled into two parts.
  • the material of each component of the housing part is an insulator, at least a part of each component is made of metal or the like as long as short circuits between electrodes and circuit elements do not occur. It may be configured including a conductive material.
  • Each component may be made of any material including silicon, rubber, plastic, resin, or may be made of any plurality of materials, and each component may be further divided into two or more parts. It may be decomposable.
  • all components related to the electroencephalogram measuring device can be made of any material and can be decomposed into any number of elements.
  • the number of measurement electrodes is described as 2, but the number of measurement electrodes can be changed to any number of 1 or more, such as 1 or 3 or more.
  • the position of the measuring electrode is arbitrary.
  • the number of reference electrodes and ground electrodes can also be changed arbitrarily (at least one of them need not be provided as long as the electroencephalogram measuring apparatus operates).
  • the attachment assisting band any band can be used without being limited to the mode shown in the embodiment, and the electroencephalogram measurement apparatus 1 can be implemented without using the attachment assisting band.
  • Various functional units that perform signal processing, etc., which will be described later, can be realized by any configuration such as an ASIC (application specific integrated circuit), an embedded system, a microcomputer, or the like.
  • Digital information processing may be performed by providing a processing unit (central processing unit), a memory device, or the like.
  • the user in the following embodiments may be any living creature including humans, and the size of the whole electroencephalogram measurement apparatus and the size of each component are also arbitrary.
  • FIG. 1 to 6 show an electroencephalogram measurement device according to an embodiment of the present invention from the front diagonally below (FIG. 1), the rear diagonally below (FIG. 2), the top (FIG. 3), and the bottom. 4, right ear side (FIG. 5), and left ear side (FIG. 6).
  • FIG. It is the schematic which shows the aspect with which the user's head was mounted
  • a reference electrode 8 placed inside (assumed to be made of an insulating material) (a reference electrode 8 is placed on each of the parts on both sides of the clip-like member, a total of two reference electrodes 8 being placed). , collectively referred to as a reference electrode 8 in the following description)) is held in contact with the ear by a clip-like member.
  • the size of the electroencephalogram measurement device 1 is arbitrary, but in one example, the height (length in the short side direction when the electroencephalogram measurement device 1 is viewed as shown in FIGS. 5 and 6) is 30 mm, and the width (Fig. 3. The length in the left-right direction when looking at the electroencephalogram measurement device 1 as shown in FIG.
  • the length in the vertical direction when looking at 1, and the length in the front-rear direction of the user when wearing it) can be 150 mm (excluding protrusions and legs).
  • the storage section When the electroencephalogram measurement device 1 is worn on the head, the storage section extends in a belt shape along the head toward the left and right auricles, and the left and right ends of the storage section extend toward the left and right ears, respectively. It will be located near the top of the via.
  • the curvature near the ends is smaller than the curvature at the central portion, and the thickness in the normal direction is the smallest at the approximately central portion of the accommodating portion. , the width in the vertical direction is also minimum.
  • the reference electrode 8 may be provided at one end in the longitudinal direction of the accommodating portion.
  • the electroencephalogram measurement device 1 includes a right front part 2, a central front part 3, a left front part 4, and a back part 5. When worn, the electroencephalogram measurement device 1 moves the user's head from the left head to the front head to the right head. and at least one measuring electrode 6, 7 (in this embodiment the measuring electrodes The number of measurement electrodes is set to 2, but as described above, the number of measurement electrodes may be any number of 1 or more.
  • a signal processing unit housed in the housing unit for processing.
  • the stiffness of at least two of the central front part 3, the left front part 4, the right front part 2 and the back part 5 are different from each other, in one example the stiffness of the right front part 2. and the left front part 4 are higher than the rigidity of the central front part 3 (more preferably, the rigidity of the right front part 2 and the left front part 4 are higher than the rigidity of the back part 5 material and shape of each part are selected. That is, the rigidity of the part can be appropriately set by selecting the material and cross-sectional shape of the part.
  • the circumferential length of the central front side part 3 is It may be about 30% to about 50% of the circumferential length of the electroencephalogram measurement device 1 (excluding protrusions and legs; the same shall apply hereinafter), and the circumferential length of the left front side component 4 is equal to the circumference of the electroencephalogram measurement device 1.
  • the circumferential length of the right front component 2 may be about 25% to about 35% of the circumferential length of the electroencephalogram measurement device 1 .
  • the circumferential length of the left front component 4 and the circumferential length of the right front component 2 may be equal to or different from each other.
  • the measurement electrode 6 is connected to the signal processing section 25 via a (covered) lead wire, and the measurement electrode 7 is also connected to the signal processing section 25 via a (covered) lead wire.
  • the electroencephalogram measuring device 1 further comprises a reference electrode 8 which is connected to the signal processor 25 via a (coated) reference electrode lead wire (conductor) 9 .
  • a ground electrode GND electrode
  • a reference potential in operation 1 can be applied, and this reference potential can be used as a reference for the potentials of the other electrodes.
  • the ground electrode is connected to the signal processor 25 via a (coated) conductor.
  • Each of these electrodes is configured to be separately connected to the signal processing section 25 to input an electrical signal to the signal processing section 25 (a (coated) lead wire extends separately from each electrode to perform signal processing). It is connected to a separate terminal of the part 25.
  • the risk of disconnection is reduced by wiring each (covered) lead wire so that the (covered) lead wire other than the reference electrode lead wire 9 passes only through the inside of the housing part. (There are cases where the ground electrode 24 is in contact with something other than the head, so wiring inside the housing is not essential.), and the electrodes are not short-circuited.
  • the material of each electrode is arbitrary, in one example, stainless steel, silver-silver chloride (Ag/AgCl), or silver can be used as the electrode material.
  • the shape of the measuring electrode 6 and the measuring electrode 7 is arbitrary, but in one example, the contour of the surface that contacts the user's forehead when worn (see FIG. 2) has a circular shape with a diameter of 10 mm to 25 mm. (This also applies to the case where three or more measurement electrodes are provided. Alternatively, appropriate adjustments may be made, such as providing a concave portion in a part of the circular shape.).
  • the shape of the surface that contacts the forehead (forehead) of the user when the measurement electrodes 6 and 7 are worn is also arbitrary. For example, as shown in FIGS.
  • the surface that contacts the forehead may be at least partially recessed from the user's point of view) or a convex surface (the surface that contacts the forehead is at least partially protruding from the user's point of view when wearing it).
  • a shape other than a convex surface the same applies to the case where three or more measurement electrodes are provided.
  • the measuring electrodes 6 and 7 are aligned along the shape of the back side part 5 (from the directions of FIGS. It is preferable to arrange the measuring electrodes 6 and 7 so that they are separated from each other by 40 mm or more and 90 mm or less to the left and right (along the curve drawn by the back side part 5 when viewed from above) (even if three or more measuring electrodes are provided, each measuring electrode may be spaced similarly).
  • the distance between the measurement electrodes 6 and 7 is preferably about 20% of the front temporal head circumference (the length of the head circumference on the front side of the center of both ears).
  • the user should wear the electroencephalogram measurement device 1 so that the midpoint between the center points of the surfaces that contact the head is positioned at the center of the forehead, that is, on (extended line of) the user's nasal bridge. is preferable), and as a result of measuring the frontal temporal circumference of a plurality of people, it is considered that the length of 20% of the frontal temporal circumference is generally within the range of 40 mm to 90 mm.
  • the positions Fp1 and Fp2 of the International 10-20 method may be used as an example of the positions of the measuring electrodes 6 and 7, the positions Fp1 and Fp2 of the International 10-20 method may be used.
  • a power button 10 is provided as an operation unit on the right front component 2, and when the user presses the power button 10, the operation of the electroencephalogram measurement device 1 is switched between on (operating state) and off (stopped state).
  • a display LED (light emitting diode) 11 is provided on the right front side component 2, and the lighting, extinguishing, blinking, and emission color are switched according to the operating state and charging state.
  • the right component 2 is also provided with a charging port (charging port) 12. By opening the charging port cover 13 and connecting the charging cable to the charging port 12, the lithium ion battery of the power supply unit 32 (see FIG. 13) can be charged. can be charged.
  • a (right) non-slip sheet 14 and a (left) anti-slip sheet 15 are provided at a position corresponding to the right front side part 2 and the left front side part 4, respectively, in the back side part 5.
  • an electroencephalogram measurement device 1 from being deviated from the head in a state of being worn on the head of a person.
  • any material can be used for the non-slip sheets 14 and 15, urethane, silicone, or the like can be used as the material for the non-slip sheets 14 and 15 in one example.
  • a (right) auxiliary band mounting hole 16 is provided at the end of the back side component 5 on the right front side component 2 side, and a (left) auxiliary band mounting hole 17 is provided at the end of the back side component 5 on the left front side component 4 side.
  • the ring-shaped member 20 in the shape of a rectangular ring attached to one end of the hook-and-loop fastener hook portion 21A side is turned sideways (the hook-and-loop fastener hook portions 21A and the hook-and-loop fastener loop portions 21B on both ends are
  • the ring-shaped member 20 is passed through the auxiliary band mounting hole 16, and the ring-shaped member 20 on the side of the hook-and-loop fastener hook portion 21A at the other end is turned sideways, and the ring-shaped member 20 is inserted into the auxiliary band mounting hole. 17, and the respective hook-and-loop fastener hook portions 21A are folded back and attached to the hook-and-loop fastener loop portions 21B).
  • FIGS. 9 to 12 are exploded views of the accommodation section when it is disassembled into components (FIGS. 9 to 11 are perspective views, and FIG. 12 is a top view of the user wearing the device). By dividing the front side part in this way, the user's wearing comfort is improved.
  • the circuit board is placed in the circuit board accommodation position 22 (the position of the circuit board is arbitrary, preferably between the left front component 4 and the back component 5 or between the right front component 2 and the back component 5).
  • the rigidity of the left front component 4 and the rigidity of the right front component 2 are higher than the rigidity of the central front component 3 and higher than the rigidity of the back component 5, such a circuit board arrangement
  • the circuit board is protected from impact by removing the
  • the right front part 2, the central front part 3, the left front part 4, and the back part 5 are manufactured by selecting materials, shapes, etc., so that at least two of them have different rigidity.
  • 2 and the left front part 4 are preferably made higher than the central front part 3 and the back part 5 respectively.
  • a reinforcing member can be used for screwing the central front part 3 and the back part 5 .
  • the term "rigidity" in this embodiment is defined by the Young's modulus (longitudinal elastic modulus) of the material and the geometrical moment of inertia due to the cross-sectional shape in the case of a member of a certain length. That is, under the premise that the length of the parts is the same, in the case of parts with the same cross-sectional shape, if the Young's modulus of the material of one part is higher than that of another part, or if the Young's modulus of the same Young's modulus In the case of material parts, if the area moment of inertia of one part is greater than the area moment of inertia of another part, then "the rigidity of one part is higher than the rigidity of another part".
  • the contribution of the Young's modulus due to the material to the rigidity of the part is greater than the geometrical moment of inertia due to the cross-sectional shape. That is, it is primarily through proper selection of materials for each part that a more suitable stiffness for each part is achieved.
  • the width in the plane direction (the direction of the plane that is approximately parallel to the back side part 5 when the housing part is formed) is about 1.8 mm
  • the width in the plane direction (strictly A sample with a thickness of about 0.1 mm in the direction perpendicular to the curved surface but approximately flat) is prepared and used as a test sample.
  • the materials of the right front part 2, the central front part 3, the left front part 4, and the back part 5 are arbitrary, and the Young's modulus values of these parts may be arbitrary values, but in one example,
  • the Young's modulus (tensile modulus) of the central front side part 3 is 49.5 MPa (megapascal) (manufactured by DuPont Toray Co., Ltd. Material: Thermoplastic polyester elastomer Hytrel (registered trademark) Grade: 4047N. The test method is JIS K7113-1995. compliant),
  • the Young's modulus (tensile modulus) of both the right front part 2 and the left front part 4 is 2550 MPa (megapascal) (Mitsubishi Engineering Co., Ltd.
  • PBT resin polybutylene terephthalate resin
  • NOVADURAN registered trademark grade : 5010R5.
  • the test method conforms to ISO 527-1, 527-2
  • the Young's modulus (tensile modulus) of the back side part is 1350 MPa (megapascal) (manufactured by Japan Polypropylene Corporation, material: PP (polypropylene) Novatec (registered trademark), grade: BC4BSW.
  • the test method conforms to JIS K7161 7162:1994).
  • Each part can be manufactured as follows (the physical properties of each material are the specification values published by the manufacturer, so the test methods are different, but the size relationship of Young's modulus remains unchanged even if the test method is unified).
  • the moment of inertia of area can be determined from the cross-sectional shape by a known formula.
  • the cross-sectional shape of the central front side part 3 has a smaller geometrical moment of inertia, and the rigidity is further reduced. can be done.
  • FIG. 13 is a block diagram showing the configuration of an electroencephalogram measurement device that is an embodiment of the present invention
  • FIG. 14 is a block diagram showing the configuration of a data collection terminal device.
  • electroencephalogram data obtained by measurement by the electroencephalogram measurement device 1 is transmitted from the electroencephalogram measurement device 1 to the data collection terminal device 33, and analysis processing of the electroencephalogram data, etc. are performed in the data collection terminal device 33.
  • the electroencephalogram measuring apparatus 1 shown in FIG. 13 includes N (N is a natural number of 1 or more) measuring electrodes 6 to 23 (if there is only one measuring electrode, the measuring electrode 23 is unnecessary), and REF It has an electrode (reference electrode) 8 , a GND electrode (ground electrode) 24 , a signal processing section 25 , a communication section 29 , an operation section 10 , a display LED 11 and a power supply section 32 .
  • each electrode is separately connected to the signal processing section 25 , and an electric signal from each electrode is input to the amplifier circuit 26 of the signal processing section 25 .
  • the signal processing unit 25 includes an amplifier circuit 26, an A/D converter (Analog-to-Digital Converter) 27, and a digital signal processing unit 28.
  • the amplifier circuit 26 is a circuit that amplifies biopotentials input as electrical signals from various electrodes, measures the potential difference between the measurement electrode 6 and the reference electrode 8, amplifies this potential difference, and converts it into an A/D signal.
  • Output to the converter 27, measure the potential difference between the measurement electrode 7 and the reference electrode 8, amplify the potential difference, and output to the A/D converter 27 (the number of measurement electrodes is 3 or more).
  • the A/D converter 27 is a conversion circuit that converts an analog signal into a digital signal. Output.
  • the digital signal processing unit 28 is composed of memory devices such as a CPU, RAM (Random Access Memory), ROM (Read Only Memory), etc., as described above, and the A/D converter 27
  • the digital signal processing unit 28 executes FFT (Fast Fourier Transformation) on the digital signal input from the A/D converter 27 by the CPU executing the program stored in the memory device.
  • FFT Fast Fourier Transformation
  • the communication unit 29 includes an antenna 30 and a communication circuit 31.
  • the communication circuit 31 transmits the digital signal input from the digital signal processing unit 28 to the data collection terminal device 33 via the antenna 30 .
  • the communication unit 29 wirelessly communicates with the communication unit 42 of the data collection terminal device 33 using a BLE (Bluetooth Low Energy) system.
  • BLE Bluetooth Low Energy
  • the operation unit 10 is the power button 10, and when the user presses the power button 10, the operation of the electroencephalogram measurement device 1 is switched between on (operating state) and off (stopped state).
  • the display LED 11 is switched between lighting, extinguishing, blinking, and emission color according to the operating state and charging state.
  • the power supply unit 32 includes a lithium ion battery, a circuit for supplying electric power to each part of the electroencephalogram measurement apparatus 1, and the like, and is arranged in the housing unit.
  • the data collection terminal device 33 shown in FIG. 1 The data collection terminal device 33 shown in FIG.
  • the control unit 34 includes a CPU 35 and a RAM 36 as temporary memory.
  • the CPU 35 processes the electroencephalogram measurement data received from the electroencephalogram measurement device 1 and performs various measurement processes (the above-described FFT is performed by the data collection terminal device).
  • a program for executing the FFT is stored in the storage section 37 as the measurement program 38).
  • the CPU 35 also executes and controls various operations of the data collection terminal device 33 by executing various programs 39 such as an OS (Operating System) and various applications stored in the storage unit 37 .
  • the storage unit 37 is a recording device equipped with a hard disk drive, SSD (Solid State Drive), etc., and stores the measurement program 38 and various programs 39 described above.
  • the storage unit 37 also stores measurement data 40 (analysis result data obtained by executing FFT processing, etc.) and various data 41 .
  • the communication unit 42 includes an antenna 43 and a communication circuit 44.
  • the communication circuit 44 performs data transmission/reception such as reception of electroencephalogram measurement data from the electroencephalogram measurement device 1 via the antenna 43 .
  • the communication unit 42 wirelessly communicates with the communication unit 31 of the electroencephalogram measurement device 1 using the BLE method.
  • the input/output unit 45 includes a keyboard 46 and a mouse 47 for the operator of the data collection terminal device 33 (person who analyzes electroencephalogram measurement data) to input commands and data to the data collection terminal device 33, and various displays.
  • a display device 48 liquid crystal display device, organic electroluminescence (EL: organic electroluminescence) display device, etc.
  • the input/output unit 45 may include an output device such as a speaker.
  • the power supply unit 49 includes a circuit or the like for receiving power from an external power supply to supply power to each unit of the data collection terminal device 33, and may include a battery such as a lithium ion battery.
  • FIG. 15 is a flow chart showing the operation of the electroencephalogram measurement device and the data collection terminal device according to one embodiment of the present invention.
  • the user (examination subject) of the electroencephalogram measurement apparatus 1 activates the electroencephalogram measurement apparatus 1 by continuously pressing the power button 10 for about 1 to 2 seconds (step S101). It is assumed that the data collection terminal device 33 has already started.
  • the electroencephalogram measurement device 1 is activated, on the condition that the BLE connection is enabled on the data collection terminal device 33 side, communication between the communication unit 29 of the electroencephalogram measurement device 1 and the communication unit 42 of the data collection terminal device 33 A BLE connection is established (step S102).
  • a user of the electroencephalogram measurement device 1 wears the electroencephalogram measurement device 1 on his or her head as shown in FIG. They are brought into symmetrical contact with each other from the center line of the ear, and the reference electrode 8 is brought into contact with their ear.
  • the electroencephalogram measurement apparatus 1 is provided with the ground electrode 24, the ground electrode 24 is brought into contact with the subject's head or body at an arbitrary position.
  • the potential difference between the potential of the measuring electrode 6 and the potential of the reference electrode 8 is amplified by the amplifier circuit 26, and the amplified analog signal is converted to a digital signal by the A/D converter 27, and the A/D
  • the digital signal generated by the conversion by the converter 27 is processed by the digital signal processing unit 28 (step S103), and the time change of the potential difference between the potential of the measurement electrode 6 and the potential of the reference electrode 8 generated thereby. is transmitted from the communication unit 29 of the electroencephalogram measurement device 1 to the communication unit 42 of the data collection terminal device 33 (step S104).
  • the potential difference between the potential of the measuring electrode 7 and the potential of the reference electrode 8 is amplified by the amplifier circuit 26, and the amplified analog signal is converted to a digital signal by the A/D converter 27, and the A/D converter
  • the digital signal generated by the conversion by 27 is processed by the digital signal processing unit 28 (step S103), and the time change of the potential difference generated thereby between the potential of the measurement electrode 7 and the potential of the reference electrode 8 is obtained.
  • the indicated digital signal is transmitted from the communication unit 29 of the electroencephalogram measurement device 1 to the communication unit 42 of the data collection terminal device 33 (step S104).
  • a digital signal indicating the temporal change in potential difference between the potential of each measurement electrode and the potential of the reference electrode 8 is generated and sent from the communication unit 29 of the electroencephalogram measurement apparatus 1 to the data collection terminal. It is transmitted to the communication unit 42 of the device 33 .
  • These processes on the side of the electroencephalogram measurement device 1 are performed at predetermined time intervals unless the electroencephalogram measurement device 1 is turned off by pressing the power button 10 of the electroencephalogram measurement device 1 again for about 1 to 2 seconds. It continues to be repeatedly performed (NO in the determination process of step S105).
  • each channel in one example, the potential difference between the potential of the measuring electrode 7 and the potential of the reference electrode 8 is the potential difference of the channel 1, and the potential of the measuring electrode 6 and the reference The potential difference between the electrode 8 and the potential difference of the channel 2) continues to be stored in the storage unit 37 as the measurement data 40.
  • the storage of the electroencephalogram data in the storage unit 37 is terminated, and the operator of the data collection terminal device 33 inputs The BLE connection between the electroencephalogram measurement device 1 and the data collection terminal device 33 is released (disconnected) in response to (disconnection of the communication connection with the electroencephalogram measurement device 1).
  • the power button 10 of the electroencephalogram measurement device 1 is pressed again for about 1 to 2 seconds to turn off the power of the electroencephalogram measurement device 1 (YES in the determination process of step S105), the operation of the electroencephalogram measurement device 1 is stopped. (Step S106)
  • an electroencephalogram measurement apparatus having the following configuration was manufactured and performance tests were conducted.
  • ⁇ Shape the shape shown in FIGS. 9 to 12
  • ⁇ Shape of forehead electrode Flat type, outline of contact surface is circular with a diameter of 15 mm
  • Thermoplastic polyester elastomer Hytrel (registered trademark) manufactured by Toray DuPont, grade: 4047N.
  • Young's modulus 49.5 MPa (test method conforms to JIS K7113-1995) (Right front part 2 and left front part 4) Mitsubishi Engineering PBT resin (polybutylene terephthalate resin) NOVADURAN (registered trademark) grade: 5010R5.
  • Young's modulus 2550 MPa (test method conforms to ISO 527-1, 527-2) (Back side part) Made by Japan Polypro Co., Ltd. Material: PP (polypropylene) Novatec (registered trademark) Grade: BC4BSW.
  • Young's modulus 1350 MPa (test method conforms to JIS K7161 7162: 1994)
  • the contact with the forehead electrode was compared with the prototype of the convex curved electrode (15 mm in diameter) and the concave curved electrode (20 mm in diameter).
  • the pinching strength of the ear electrode was improved compared to the prototype with a flat diameter of 11 mm, and the feeling of tightness around the temple was reduced and the pain was eliminated by selecting the above material.
  • the electroencephalogram measurement device of the example gave good results in terms of both the subject's wearing comfort and the consistency of the measurement results with the existing electroencephalogram measurement device.
  • the present invention can be used for electroencephalogram measurement in any industry, including medical equipment and research equipment.
  • electroencephalogram measurement device right front part 3 central front part 4 left front part 5 back part 6 (right) measurement electrode (forehead electrode) 7 (left side) measurement electrode (forehead electrode) 8 reference electrode (REF electrode, ear electrode) 9 (coated) reference electrode lead wire 10 power button (operator) 11 display LEDs 12 Charging port 13 Charging port lid 14 (Right side) Non-slip sheet 15 (Left side) Non-slip sheet 16 (Right side) Auxiliary band mounting hole 17 (Left side) Auxiliary band mounting hole 18 Human head 19 Attachment auxiliary band 20 Ring-shaped member 21A Velcro (hook) 21B hook-and-loop fastener (loop) 22 Circuit board accommodation position 23 Nth measurement electrode (N is 2 or more) 24 ground electrode (GND electrode) 25 signal processing unit 26 amplifier circuit 27 A/D (analog/digital) converter 28 digital signal processing unit 29 communication unit 30 antenna 31 communication circuit 32 power supply unit (lithium ion battery, etc.) 33 data collection terminal device 34 control

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A problem of the present invention is to provide a wearable brain wave measurement device having a structure capable of both improving durability and improving fitting feeling to contribute to improvement of the quality of a measured brain wave signal. The present invention provides a brain wave measurement device wearable on the head of a living body, the device comprising: a housing unit at least including a central front-side member, a left front-side member, a right front-side member, and a back-side member, the housing unit having a curved shape to be disposed, when worn, along the head of the living body from the left-side head to the right-side head via the front head; at least one measurement electrode fixed on the back-side member to be in contact with the front head when worn; and a signal processing unit housed in the housing unit for processing an electric signal obtained via the measurement electrode, wherein the rigidities of the at least two members of the central front-side member, the left front-side member, the right front-side member, and the back-side member are different each other.

Description

脳波計測装置Electroencephalogram measuring device
 本発明は脳波計測装置に関し、より詳細には、生体頭部に装着された状態で脳波を測定することができる脳波計測装置に関する。 The present invention relates to an electroencephalogram measurement device, and more particularly to an electroencephalogram measurement device that can measure electroencephalograms while attached to the head of a living body.
 人体等、生体の頭部に装着して脳波を測定するためのウェアラブルな脳波計測装置(ウェアラブル脳波計)としては、特許文献1(非特許文献1)、及び非特許文献2,3に記載の装置が知られている。特許文献1(非特許文献1)の脳波計測装置は前頭部側に2電極を備え、OuterバンドとInnerバンドとからなる2重バンド構造を有しているが、OuterバンドとInnerバンドとの各々は一体型の部品であり(特許文献1のFIG.16)、特許文献1(非特許文献1)の装置は装着感に問題を有する。非特許文献2の脳波計測装置は前頭部側に2電極を備えるヘアバンド型の装置であるが、当該装置はソフトな素材を用いたヘアバンド型であるために耐久性に問題を有し、また非特許文献2の装置においては断線等の故障のリスクが高いと考えられる。非特許文献3の脳波計測装置は本体から多数の電極が飛び出した構造を有しているが、当該装置は左側頭部から後頭部、右側頭部に沿って装置が配置されるように生体頭部に装着される構造をとっているために前頭部側の電極が十分に固定されない恐れがあり、また非特許文献3の装置においては多数の電極からの多数の配線が本体部分から突出しているため、非特許文献3の装置は耐久性にも問題を有する。 As a wearable electroencephalogram measurement device (wearable electroencephalograph) for measuring electroencephalograms by wearing it on the head of a living body such as a human body, Patent Document 1 (Non-Patent Document 1), Non-Patent Documents 2 and 3, device is known. The electroencephalogram measuring apparatus of Patent Document 1 (Non-Patent Document 1) has two electrodes on the frontal region side and has a double band structure consisting of an outer band and an inner band. Each is an integral part (FIG. 16 of Patent Document 1), and the device of Patent Document 1 (Non-Patent Document 1) has a problem with wearing comfort. The electroencephalogram measurement device of Non-Patent Document 2 is a hair band type device with two electrodes on the frontal side, but the device has a problem in durability because it is a hair band type using a soft material. In addition, the device of Non-Patent Document 2 is considered to have a high risk of failure such as disconnection. The electroencephalogram measurement device of Non-Patent Document 3 has a structure in which a large number of electrodes protrude from the main body. There is a risk that the electrodes on the forehead side may not be sufficiently fixed because the device is attached to the body, and in the device of Non-Patent Document 3, many wires from many electrodes protrude from the main body Therefore, the device of Non-Patent Document 3 also has a problem in durability.
 従来のウェアラブル脳波計としてはヘアバンド型などソフトな素材を用いている脳波計が主流であるが、それらは耐久性に劣り、それらにおける断線等の故障の頻度が高かった。これに対し、耐久性を上げるためにハードな素材で作製された筐体構造を有するウェアラブル脳波計が用いられる場合、人によって頭部の形状はさまざまに異なるため、全ての人の頭部に適合する脳波計を作製することは困難であり、したがって脳波計を装着することにより検査対象者(脳波測定を受ける者)が頭部に痛みを感じる場合があるという問題や、装着時に検査対象者の頭部に電極が十分に接触しない、或いは検査対象者が感じる痛みにより脳波に影響が出る等の原因により信号の質が安定しないという問題等がある。 Conventional wearable electroencephalographs, such as hairband-type electroencephalographs that use soft materials, are the mainstream, but they are inferior in durability and have a high frequency of breakdowns such as disconnection. On the other hand, if a wearable electroencephalograph with a housing structure made of hard materials is used to increase durability, it will be suitable for all people's heads because the shape of the head varies from person to person. It is difficult to produce an electroencephalograph that does so. There are problems such as unstable signal quality due to insufficient contact of the electrodes with the head, or effects on electroencephalograms due to pain felt by the subject.
米国特許第9867571号明細書U.S. Pat. No. 9,867,571
 以上に鑑み、本発明は、計測される脳波信号の質の向上に資するべく、耐久性の向上、及び、フィット感の向上を両立しうる構造を有するウェアラブルな脳波計測装置を提供することを課題とする。 In view of the above, it is an object of the present invention to provide a wearable electroencephalogram measurement device having a structure capable of achieving both improved durability and improved fit in order to contribute to the improvement of the quality of electroencephalogram signals to be measured. and
 上記課題を解決するべく、本発明は、生体頭部に装着可能な脳波計測装置であって、中央表側部品と、左表側部品と、右表側部品と、裏側部品とを少なくとも含み、装着時に左側頭部から前頭部、右側頭部へと生体頭部に沿って配置されるよう湾曲した形状を有する収容部と、裏側部品に固定され、装着時に前頭部に接触する少なくとも1つの測定電極と、測定電極を介して得られる電気信号を処理する、収容部内に収容された信号処理部とを備え、中央表側部品と、左表側部品と、右表側部品と、裏側部品とのうち少なくとも2つの部品の剛性が互いに異なる、脳波計測装置を提供する。 In order to solve the above problems, the present invention is an electroencephalogram measurement device that can be worn on the head of a living body, and includes at least a central front side component, a left front side component, a right front side component, and a back side component, and has a left side when worn. A housing portion having a curved shape so as to be arranged along the living body head from the head to the forehead to the right side of the head, and at least one measurement electrode fixed to the back side part and in contact with the forehead when worn. and a signal processing unit accommodated in the accommodation unit for processing electrical signals obtained through the measurement electrodes, at least two of a central front component, a left front component, a right front component, and a back component. To provide an electroencephalogram measuring device in which two parts have different rigidity.
 上記脳波計測装置において、測定電極の数は少なくとも2以上であってよい。 In the above electroencephalogram measurement device, the number of measurement electrodes may be at least two or more.
 上記脳波計測装置において、左表側部品及び前記右表側部品の剛性は、中央表側部品の剛性よりも高いものとしてよい。 In the above electroencephalogram measurement device, the rigidity of the left front part and the right front part may be higher than the rigidity of the center front part.
 上記脳波計測装置において、測定電極の数が2以上である場合、装着時に前頭部に接触する測定電極の面のそれぞれの中心は、裏側部品の形状に沿って40mm以上、90mm以下だけ互いに左右に離間していてよい。 In the above electroencephalogram measurement device, when the number of measurement electrodes is two or more, the centers of the surfaces of the measurement electrodes that come into contact with the forehead when worn are on the left and right sides of each other by 40 mm or more and 90 mm or less along the shape of the back side part. may be spaced apart.
 上記脳波計測装置において、装着時に前頭部に接触する測定電極の面の輪郭は、直径10mm~25mmの円形状を有するものであってよい。 In the above electroencephalogram measurement device, the contour of the surface of the measurement electrode that contacts the forehead when worn may have a circular shape with a diameter of 10 mm to 25 mm.
 上記脳波計測装置において、信号処理部は、左表側部品と裏側部品との間、又は右表側部品と裏側部品との間に配置されていてよい。 In the above electroencephalogram measurement device, the signal processing section may be arranged between the left front side component and the back side component, or between the right front side component and the back side component.
 本発明の脳波計測装置を用いることにより、電極と信号処理部とを接続する導線の断線等のリスクが低減し、耐久性が向上するとともに、ユーザ(検査対象者)の装着感が向上し測定できる脳波の信号の質を向上させることができる。 By using the electroencephalogram measurement apparatus of the present invention, the risk of disconnection of the conductors connecting the electrodes and the signal processing unit is reduced, the durability is improved, and the user (test subject) wears the device comfortably. It can improve the quality of EEG signal.
本発明の一実施形態である脳波計測装置の概略図(装着するユーザの前方斜め下から見た図)。1 is a schematic diagram of an electroencephalogram measurement apparatus according to an embodiment of the present invention (a diagram viewed obliquely from the front of a user wearing the device); FIG. 本発明の一実施形態である脳波計測装置の概略図(装着するユーザの後方斜め下から見た図)。1 is a schematic diagram of an electroencephalogram measuring apparatus according to an embodiment of the present invention (viewed obliquely from behind the user wearing the device); FIG. 本発明の一実施形態である脳波計測装置の概略図(装着するユーザの上から見た図)。FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (a top view of a user wearing the device). 本発明の一実施形態である脳波計測装置の概略図(装着するユーザの下から見た図)。FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (viewed from below by a user wearing the device). 本発明の一実施形態である脳波計測装置の概略図(装着するユーザの右耳側から見た図)。FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (viewed from the right ear side of a user wearing the device). 本発明の一実施形態である脳波計測装置の概略図(装着するユーザの左耳側から見た図)。1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (viewed from the left ear side of a user wearing the device). 本発明の一実施形態である脳波計測装置の概略図(ユーザの頭部に装着した態様)。FIG. 1 is a schematic diagram of an electroencephalogram measurement device that is an embodiment of the present invention (a form worn on a user's head). 装着補助バンドの概略図。Schematic diagram of a wearing auxiliary band. 収容部を各構成部品に分解した時の分解図(斜視図)。FIG. 3 is an exploded view (perspective view) when the housing section is disassembled into components. 収容部を各構成部品に分解した時の分解図(斜視図)。FIG. 3 is an exploded view (perspective view) when the housing section is disassembled into components. 収容部を各構成部品に分解した時の分解図(斜視図)。FIG. 3 is an exploded view (perspective view) when the housing section is disassembled into components. 収容部を各構成部品に分解した時の分解図(装着するユーザの上から見た図)。FIG. 3 is an exploded view when the housing section is disassembled into each component (a top view of the user wearing the device); 本発明の一実施形態である脳波計測装置の構成を示すブロック図。1 is a block diagram showing the configuration of an electroencephalogram measurement apparatus that is an embodiment of the present invention; FIG. データ収集端末装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a data collection terminal device; 本発明の一実施形態である脳波計測装置、及びデータ収集端末装置の動作を示すフローチャート。4 is a flow chart showing the operation of the electroencephalogram measuring device and the data collection terminal device according to one embodiment of the present invention.
 以下、本発明の例示的実施形態である脳波計測装置を、図面を参照しつつ説明する。ただし本発明による脳波計測装置が以下に説明する具体的態様に限定されるわけではなく、本発明の範囲内で適宜変更可能であることに留意する。後述の実施形態に含まれる個々の機能、要素等は本発明の範囲内で適宜削除・変更可能であるし(例えば後述の図13中、信号処理部にメモリデバイスを設けて脳波計測データを当該メモリデバイスに記憶することとして通信部を設けない態様で脳波計測装置を実施してもよい)、実施形態に含まれない任意の機能、要素等を本発明の範囲内で追加することも可能である。例えば、以下の実施形態においては、収容部が中央表側部品と、左表側部品と、右表側部品と、裏側部品との4つの部品から構成されるものとして説明するが、部品の数を4以上とする等、収容部の構成部品の数は任意に変更可能である(例えば中央表側部品が2つの部品に分解されてよい)。また収容部の各構成部品の材料は絶縁体とすることが好ましいが、各電極、回路要素間の短絡(ショート)等の問題が生じない範囲において、各構成部品の少なくとも一部が金属等の導電性材料を含んで構成されていてもよい。各構成部品は、シリコン、ゴム、プラスチック、樹脂をはじめとして任意の材料から作製されてよく、任意の複数の材料から作製されていてもよいし、個々の構成部品が更に2以上の部品へと分解可能であってもよい。収容部の構成部品に限らず、脳波計測装置に関するあらゆる構成要素は、特に言及がない限り任意の材料から作製することができるし任意の数の要素に分解可能であってよい。以下の実施形態においては測定電極の数が2であるとして説明するが、測定電極の数を1としたり、3以上としたりする等、測定電極の数は1以上の任意の数に変更可能であるし、測定電極の位置も任意である。参照電極、グラウンド電極の数も任意に変更可能である(脳波計測装置が動作する限りにおいてはそれらのうち少なくとも一方を設けなくてもよい)。装着補助バンドとしては実施形態に示す態様に限らず任意のバンドを用いることが可能であるし、装着補助バンドを用いなくても脳波計測装置1を実施可能である。信号処理等を行う後述の各種機能部は、ASIC(application specific integrated circuit:特定用途向け集積回路)、組み込みシステム、マイクロコンピュータ等、任意の構成により実現可能であるし、各種機能部にCPU(Central Processing Unit:中央処理装置)、メモリデバイス等を備えることでデジタル情報処理を行ってもよい。また以下の実施形態におけるユーザとは、人間をはじめとする任意の生物であってよく、脳波計測装置全体のサイズ、各構成要素のサイズも任意である。 An electroencephalogram measurement apparatus, which is an exemplary embodiment of the present invention, will be described below with reference to the drawings. However, it should be noted that the electroencephalogram measurement apparatus according to the present invention is not limited to the specific embodiments described below, and can be appropriately modified within the scope of the present invention. Individual functions, elements, and the like included in the embodiments described later can be appropriately deleted or changed within the scope of the present invention (for example, in FIG. The electroencephalogram measurement apparatus may be implemented without a communication unit by storing in a memory device), and arbitrary functions, elements, etc. not included in the embodiments may be added within the scope of the present invention. be. For example, in the following embodiments, it is assumed that the storage section is composed of four parts, namely, a central front part, a left front part, a right front part, and a back part. (For example, the central front side part may be disassembled into two parts). In addition, although it is preferable that the material of each component of the housing part is an insulator, at least a part of each component is made of metal or the like as long as short circuits between electrodes and circuit elements do not occur. It may be configured including a conductive material. Each component may be made of any material including silicon, rubber, plastic, resin, or may be made of any plurality of materials, and each component may be further divided into two or more parts. It may be decomposable. Unless otherwise specified, all components related to the electroencephalogram measuring device, not limited to the component parts of the housing section, can be made of any material and can be decomposed into any number of elements. In the following embodiments, the number of measurement electrodes is described as 2, but the number of measurement electrodes can be changed to any number of 1 or more, such as 1 or 3 or more. Also, the position of the measuring electrode is arbitrary. The number of reference electrodes and ground electrodes can also be changed arbitrarily (at least one of them need not be provided as long as the electroencephalogram measuring apparatus operates). As the attachment assisting band, any band can be used without being limited to the mode shown in the embodiment, and the electroencephalogram measurement apparatus 1 can be implemented without using the attachment assisting band. Various functional units that perform signal processing, etc., which will be described later, can be realized by any configuration such as an ASIC (application specific integrated circuit), an embedded system, a microcomputer, or the like. Digital information processing may be performed by providing a processing unit (central processing unit), a memory device, or the like. In addition, the user in the following embodiments may be any living creature including humans, and the size of the whole electroencephalogram measurement apparatus and the size of each component are also arbitrary.
 図1~図6は、本発明の一実施形態である脳波計測装置を、装着するユーザの前方斜め下から(図1)、後方斜め下から(図2)、上から(図3)、下から(図4)、右耳側から(図5)、左耳側から(図6)、それぞれ見たときの概略図であり、図7は、本発明の一実施形態である脳波計測装置をユーザの頭部に装着した態様を示す概略図である。図7に示すとおり、ユーザは左側頭部から前頭部、右側頭部へと、脳波計測装置1が自己の頭部に沿って配置されるよう脳波計測装置1を装着し、クリップ状の部材(絶縁体材料から形成されるとする)の内側に配置された参照電極8(クリップ状部材の両側の部品それぞれに参照電極8が配置されており、合計2つの参照電極8が配置されるが、以降の記載においてはまとめて参照電極8と呼ぶ。)が耳と接触するよう、クリップ状の部材で自己の耳を挟む。上述のとおり脳波計測装置1のサイズは任意であるが、一例においては高さ(図5,図6のように脳波計測装置1を見た時の短辺方向の長さ)30mm、幅(図3,図4のように脳波計測装置1を見た時の左右方向の長さであり、装着時のユーザにおける左右方向の長さ)190mm、奥行(図3,図4のように脳波計測装置1を見た時の縦方向の長さであり、装着時のユーザにおける前後方向の長さ)150mmとすることができる(突起、脚部分は除く)。
 脳波計測装置1は、頭部に装着した場合、収容部が、頭部に沿って左右の耳介に向けて帯状に延在しており、収容部の左右の端部は、それぞれ左右の耳介の上部付近に位置することになる。脳波計測装置1を上方から見ると、端部付近の曲率が中央部の曲率より小さい半円形状となっており、収容部の略中央部が、法線方向の厚さが最小となっており、上下方向の幅も最小となっている。参照電極8は、収容部の長手方向の一方側の端部に設けられてもよい。
1 to 6 show an electroencephalogram measurement device according to an embodiment of the present invention from the front diagonally below (FIG. 1), the rear diagonally below (FIG. 2), the top (FIG. 3), and the bottom. 4, right ear side (FIG. 5), and left ear side (FIG. 6). FIG. It is the schematic which shows the aspect with which the user's head was mounted|worn. As shown in FIG. 7, the user wears the electroencephalogram measuring device 1 so that the electroencephalogram measuring device 1 is arranged along the user's head from the left temporal region to the frontal region and then to the right temporal region. A reference electrode 8 placed inside (assumed to be made of an insulating material) (a reference electrode 8 is placed on each of the parts on both sides of the clip-like member, a total of two reference electrodes 8 being placed). , collectively referred to as a reference electrode 8 in the following description)) is held in contact with the ear by a clip-like member. As described above, the size of the electroencephalogram measurement device 1 is arbitrary, but in one example, the height (length in the short side direction when the electroencephalogram measurement device 1 is viewed as shown in FIGS. 5 and 6) is 30 mm, and the width (Fig. 3. The length in the left-right direction when looking at the electroencephalogram measurement device 1 as shown in FIG. This is the length in the vertical direction when looking at 1, and the length in the front-rear direction of the user when wearing it) can be 150 mm (excluding protrusions and legs).
When the electroencephalogram measurement device 1 is worn on the head, the storage section extends in a belt shape along the head toward the left and right auricles, and the left and right ends of the storage section extend toward the left and right ears, respectively. It will be located near the top of the via. When the electroencephalogram measurement device 1 is viewed from above, the curvature near the ends is smaller than the curvature at the central portion, and the thickness in the normal direction is the smallest at the approximately central portion of the accommodating portion. , the width in the vertical direction is also minimum. The reference electrode 8 may be provided at one end in the longitudinal direction of the accommodating portion.
 脳波計測装置1は、右表側部品2、中央表側部品3、左表側部品4、裏側部品5を含んで構成される、装着時に左側頭部から前頭部、右側頭部へとユーザの頭部に沿って配置されるよう湾曲した形状を有する収容部と、裏側部品5に固定され、装着時にユーザの前頭部に接触する少なくとも1つの測定電極6,7(本実施形態においては測定電極の数を2とするが、上述のとおり測定電極の数は1以上の任意の数であってよい)と、互いに左右に離間した測定電極6,7のうち少なくとも一方を介して得られる電気信号を処理する、収容部内に収容された信号処理部(後述の図13中の信号処理部25を参照)とを備える。後に詳しく説明するとおり、中央表側部品3と、左表側部品4と、右表側部品2と、裏側部品5とのうち少なくとも2つの部品の剛性は互いに異なり、一例においては、右表側部品2の剛性と左表側部品4との剛性が、中央表側部品3の剛性よりも高くなるよう(より好ましくは、右表側部品2の剛性と左表側部品4との剛性が、裏側部品5の剛性よりも高くなるよう)、各部品の材料、形状が選択される。すなわち、部品の剛性は、材料や、部品の断面形状を選択することによって、適切に設定することができる。なお、図1~図12は概略図であり、脳波計測装置1における各部の寸法等がこれら図面の例に限定されるわけではないが、一例において、中央表側部品3の周方向長さは、脳波計測装置1の周方向長さ(突起、脚部分は除く。以下同様)の約30%~約50%であってよく、左表側部品4の周方向長さは、脳波計測装置1の周方向長さの約25~約35%であってよく、右表側部品2の周方向長さは、脳波計測装置1の周方向長さの約25~約35%であってよい。左表側部品4の周方向長さと右表側部品2の周方向長さとは互いに等しくてもよいし、互いに異なっていてもよい。 The electroencephalogram measurement device 1 includes a right front part 2, a central front part 3, a left front part 4, and a back part 5. When worn, the electroencephalogram measurement device 1 moves the user's head from the left head to the front head to the right head. and at least one measuring electrode 6, 7 (in this embodiment the measuring electrodes The number of measurement electrodes is set to 2, but as described above, the number of measurement electrodes may be any number of 1 or more. a signal processing unit (see a signal processing unit 25 in FIG. 13 described later) housed in the housing unit for processing. As will be explained in more detail below, the stiffness of at least two of the central front part 3, the left front part 4, the right front part 2 and the back part 5 are different from each other, in one example the stiffness of the right front part 2. and the left front part 4 are higher than the rigidity of the central front part 3 (more preferably, the rigidity of the right front part 2 and the left front part 4 are higher than the rigidity of the back part 5 material and shape of each part are selected. That is, the rigidity of the part can be appropriately set by selecting the material and cross-sectional shape of the part. 1 to 12 are schematic diagrams, and the dimensions and the like of each part in the electroencephalogram measurement device 1 are not limited to the examples of these drawings, but in one example, the circumferential length of the central front side part 3 is It may be about 30% to about 50% of the circumferential length of the electroencephalogram measurement device 1 (excluding protrusions and legs; the same shall apply hereinafter), and the circumferential length of the left front side component 4 is equal to the circumference of the electroencephalogram measurement device 1. The circumferential length of the right front component 2 may be about 25% to about 35% of the circumferential length of the electroencephalogram measurement device 1 . The circumferential length of the left front component 4 and the circumferential length of the right front component 2 may be equal to or different from each other.
 測定電極6は、(被覆された)導線を介して信号処理部25と接続されており、測定電極7も、(被覆された)導線を介して信号処理部25と接続されている。脳波計測装置1は更に参照電極8を備え、参照電極8は、(被覆された)参照電極リード線(導線)9を介して信号処理部25に接続されている。その他、脳波計測装置1にグラウンド電極(GND電極)を設ける場合(後述の図13中、GND電極24。グラウンド電極をユーザの頭部、或いは身体の任意の位置に接触させることにより、脳波計測装置1の動作における基準電位を印加することができ、この基準電位を、その他の電極の電位の基準として用いることができる。)は、グラウンド電極が(被覆された)導線を介して信号処理部25と接続されている。なお、これらの各電極は別個に信号処理部25に接続されて電気信号を信号処理部25に入力するよう構成されており(各電極から別個に(被覆された)導線が延びて、信号処理部25の別個の端子に接続される。参照電極リード線9以外の(被覆された)導線は収容部の内部のみを通るように各(被覆された)導線を配線することにより断線リスクを低減させることができる(グラウンド電極24が頭部以外に接触する構成をとる場合等もあり、収容部内部で配線することは必須ではない)。)、各電極どうしが短絡状態にあるわけではないことに留意する。また各電極の材料は任意であるが、一例においてはステンレス、銀-塩化銀(Ag/AgCl)、又は銀を電極材料とすることができる。 The measurement electrode 6 is connected to the signal processing section 25 via a (covered) lead wire, and the measurement electrode 7 is also connected to the signal processing section 25 via a (covered) lead wire. The electroencephalogram measuring device 1 further comprises a reference electrode 8 which is connected to the signal processor 25 via a (coated) reference electrode lead wire (conductor) 9 . In addition, when a ground electrode (GND electrode) is provided in the electroencephalogram measurement apparatus 1 (GND electrode 24 in FIG. 13 described later). A reference potential in operation 1 can be applied, and this reference potential can be used as a reference for the potentials of the other electrodes.) The ground electrode is connected to the signal processor 25 via a (coated) conductor. is connected with Each of these electrodes is configured to be separately connected to the signal processing section 25 to input an electrical signal to the signal processing section 25 (a (coated) lead wire extends separately from each electrode to perform signal processing). It is connected to a separate terminal of the part 25. The risk of disconnection is reduced by wiring each (covered) lead wire so that the (covered) lead wire other than the reference electrode lead wire 9 passes only through the inside of the housing part. (There are cases where the ground electrode 24 is in contact with something other than the head, so wiring inside the housing is not essential.), and the electrodes are not short-circuited. Note Although the material of each electrode is arbitrary, in one example, stainless steel, silver-silver chloride (Ag/AgCl), or silver can be used as the electrode material.
 測定電極6と測定電極7との形状は任意であるが、一例においては、装着時にユーザの前頭部に接触する面(図2参照)の輪郭が、直径10mm~25mmの円形状を有するよう形成される(3以上の測定電極を設ける場合も同様。また円形状の一部に凹部を設ける等、適宜調整してもよい)。また測定電極6と測定電極7との装着時にユーザの前頭部(額)に接触する面の形状も任意であり、例えば図3,図4に示されるとおり平面としてもよいし、凹面(装着時のユーザからみて、前頭部に接触する面が少なくとも一部凹んでいる面)としてもよいし、凸面(装着時のユーザからみて、前頭部に接触する面が少なくとも一部出っ張っている面)としてもよいが、ユーザに良好な装着感を与えるためには凸面以外の形状とすることが好ましい(3以上の測定電極を設ける場合も同様)。測定電極6と測定電極7は、ユーザの前頭部に沿うような形状にすることにより、接触する面積が大きくなり、脳波の測定精度を向上させることが可能である。参照電極8、グラウンド電極24の形状、サイズも同様であってよく任意である。また、測定電極6,7の、装着時に前頭部に接触する面(図2参照)のそれぞれの中心が、裏側部品5の形状に沿って(図3,図4の方向から脳波計測装置1を見た時に、裏側部品5の描く曲線に沿って)40mm以上、90mm以下だけ互いに左右に離間するように測定電極6,7を配置することが好ましい(3以上の測定電極を設ける場合も、同様の間隔で各測定電極を配置してよい)。測定電極6,7の間隔としては、前側頭囲(頭囲のうち両耳中心よりも前側の長さ)の20%程度とすることが好ましく(更に、測定電極6,7の、装着時に前頭部に接触する面のそれぞれの中心点の中間点が前頭部の中央、すなわちユーザの鼻すじ線(の延長線)上の位置に位置するよう、ユーザは脳波計測装置1を装着することが好ましい)、複数の人間の前側頭囲を計測した結果として、前側頭囲の20%という長さは概ね40mm~90mmの範囲内に収まると考えられるからである。例えば、測定電極6と測定電極7の位置の一例として、国際10-20法のFp1、Fp2の位置でもよい。 The shape of the measuring electrode 6 and the measuring electrode 7 is arbitrary, but in one example, the contour of the surface that contacts the user's forehead when worn (see FIG. 2) has a circular shape with a diameter of 10 mm to 25 mm. (This also applies to the case where three or more measurement electrodes are provided. Alternatively, appropriate adjustments may be made, such as providing a concave portion in a part of the circular shape.). The shape of the surface that contacts the forehead (forehead) of the user when the measurement electrodes 6 and 7 are worn is also arbitrary. For example, as shown in FIGS. The surface that contacts the forehead may be at least partially recessed from the user's point of view) or a convex surface (the surface that contacts the forehead is at least partially protruding from the user's point of view when wearing it). However, in order to give the user a good wearing feeling, it is preferable to use a shape other than a convex surface (the same applies to the case where three or more measurement electrodes are provided). By shaping the measurement electrodes 6 and 7 so as to conform to the user's forehead, the area of contact is increased and the accuracy of electroencephalogram measurement can be improved. The shape and size of the reference electrode 8 and the ground electrode 24 may also be the same and are arbitrary. Also, the centers of the surfaces (see FIG. 2) of the measurement electrodes 6 and 7 that come into contact with the forehead when worn are aligned along the shape of the back side part 5 (from the directions of FIGS. It is preferable to arrange the measuring electrodes 6 and 7 so that they are separated from each other by 40 mm or more and 90 mm or less to the left and right (along the curve drawn by the back side part 5 when viewed from above) (even if three or more measuring electrodes are provided, each measuring electrode may be spaced similarly). The distance between the measurement electrodes 6 and 7 is preferably about 20% of the front temporal head circumference (the length of the head circumference on the front side of the center of both ears). The user should wear the electroencephalogram measurement device 1 so that the midpoint between the center points of the surfaces that contact the head is positioned at the center of the forehead, that is, on (extended line of) the user's nasal bridge. is preferable), and as a result of measuring the frontal temporal circumference of a plurality of people, it is considered that the length of 20% of the frontal temporal circumference is generally within the range of 40 mm to 90 mm. For example, as an example of the positions of the measuring electrodes 6 and 7, the positions Fp1 and Fp2 of the International 10-20 method may be used.
 右表側部品2には操作部として電源ボタン10が設けられており、ユーザが電源ボタン10を押下することにより脳波計測装置1の動作のオン(動作状態)とオフ(停止状態)が切り換えられる。また右表側部品2には表示LED(light emitting diode:発光ダイオード)11が設けられており、動作状態や充電状態に応じて点灯、消灯、点滅や発光色が切り換えられる。右側部品2には充電ポート(充電口)12も設けられており、充電ポートの蓋13を開いて充電ポート12に充電ケーブルを接続することにより、電源部32(図13参照)のリチウムイオン電池を充電することができる。裏側部品5のうち、右表側部品2に対応する位置には(右側)滑り止めシート14が、左表側部品4に対応する位置には(左側)滑り止めシート15がそれぞれ設けられており、ユーザの頭部に装着された状態において脳波計測装置1が頭部からずれることを防止する。滑り止めシート14,15の材料は任意であるが、一例においてはウレタン、シリコン等を滑り止めシート14,15の材料として用いることができる。また裏側部品5における右表側部品2側の端部には(右側)補助バンド取り付け孔16が、裏側部品5における左表側部品4側の端部には(左側)補助バンド取り付け孔17が、それぞれ設けられており、図8に示す装着補助バンド(ベルト)19の一端と他端とを補助バンド取り付け孔16,17にそれぞれ通して装着補助バンド19を脳波計測装置1に接続することにより(図8の装着補助バンド19中、一端の面ファスナーフック部21A側に取り付けられた長方形環の形状のリング状部材20を横に向けて(両端側の面ファスナーフック部21A、面ファスナーループ部21Bは曲げ可能であるとする)当該リング状部材20を補助バンド取り付け孔16に通し、他端の面ファスナーフック部21A側のリング状部材20を横に向けて当該リング状部材20を補助バンド取り付け孔17に通して、更にそれぞれの面ファスナーフック部21Aを折り返して面ファスナーループ部21Bに付着させる)、装着時における脳波計測装置1の位置の安定性を向上させることができる。 A power button 10 is provided as an operation unit on the right front component 2, and when the user presses the power button 10, the operation of the electroencephalogram measurement device 1 is switched between on (operating state) and off (stopped state). In addition, a display LED (light emitting diode) 11 is provided on the right front side component 2, and the lighting, extinguishing, blinking, and emission color are switched according to the operating state and charging state. The right component 2 is also provided with a charging port (charging port) 12. By opening the charging port cover 13 and connecting the charging cable to the charging port 12, the lithium ion battery of the power supply unit 32 (see FIG. 13) can be charged. can be charged. A (right) non-slip sheet 14 and a (left) anti-slip sheet 15 are provided at a position corresponding to the right front side part 2 and the left front side part 4, respectively, in the back side part 5. To prevent an electroencephalogram measurement device 1 from being deviated from the head in a state of being worn on the head of a person. Although any material can be used for the non-slip sheets 14 and 15, urethane, silicone, or the like can be used as the material for the non-slip sheets 14 and 15 in one example. A (right) auxiliary band mounting hole 16 is provided at the end of the back side component 5 on the right front side component 2 side, and a (left) auxiliary band mounting hole 17 is provided at the end of the back side component 5 on the left front side component 4 side. One end and the other end of an auxiliary mounting band (belt) 19 shown in FIG. 8, the ring-shaped member 20 in the shape of a rectangular ring attached to one end of the hook-and-loop fastener hook portion 21A side is turned sideways (the hook-and-loop fastener hook portions 21A and the hook-and-loop fastener loop portions 21B on both ends are The ring-shaped member 20 is passed through the auxiliary band mounting hole 16, and the ring-shaped member 20 on the side of the hook-and-loop fastener hook portion 21A at the other end is turned sideways, and the ring-shaped member 20 is inserted into the auxiliary band mounting hole. 17, and the respective hook-and-loop fastener hook portions 21A are folded back and attached to the hook-and-loop fastener loop portions 21B).
 図9~図12は、収容部を各構成部品に分解した時の分解図(図9~図11は斜視図。図12は装着するユーザの上から見た図)である。このように表側部品を分割構造とすることでユーザの装着感が向上する。図13に示す信号処理部25、通信部29は、一例においては回路基板上に各回路要素、素子等を配置することで構成され、左表側部品4と裏側部品5との間の空間内の回路基板収容位置22に当該回路基板が配置される(回路基板の位置は任意であり、好ましくは、左表側部品4と裏側部品5との間、又は右表側部品2と裏側部品5との間に配置される。左表側部品4の剛性と右表側部品2の剛性とを、中央表側部品3の剛性よりも高く裏側部品5の剛性よりも高くする態様においては、このような回路基板の配置をとることにより回路基板が衝撃から保護される。)。右表側部品2、中央表側部品3、左表側部品4、裏側部品5は、それらのうち少なくとも2つの部品の剛性が互いに異なるように材料、形状などを選択して作製され、特に、右表側部品2の剛性と左表側部品4の剛性とが、中央表側部品3の剛性よりも高く、また裏側部品5の剛性よりも高くなるよう各部品を作製することが好ましい。中央表側部品3及び裏側部品5のねじ止めのために補強部材を用いることができる。 FIGS. 9 to 12 are exploded views of the accommodation section when it is disassembled into components (FIGS. 9 to 11 are perspective views, and FIG. 12 is a top view of the user wearing the device). By dividing the front side part in this way, the user's wearing comfort is improved. In one example, the signal processing unit 25 and the communication unit 29 shown in FIG. The circuit board is placed in the circuit board accommodation position 22 (the position of the circuit board is arbitrary, preferably between the left front component 4 and the back component 5 or between the right front component 2 and the back component 5). In a mode in which the rigidity of the left front component 4 and the rigidity of the right front component 2 are higher than the rigidity of the central front component 3 and higher than the rigidity of the back component 5, such a circuit board arrangement The circuit board is protected from impact by removing the The right front part 2, the central front part 3, the left front part 4, and the back part 5 are manufactured by selecting materials, shapes, etc., so that at least two of them have different rigidity. 2 and the left front part 4 are preferably made higher than the central front part 3 and the back part 5 respectively. A reinforcing member can be used for screwing the central front part 3 and the back part 5 .
 なお、本実施形態における「剛性」とは、一定の長さの部材の場合に、材料のヤング率(縦弾性係数)、断面形状による断面二次モーメントによって定められるものである。すなわち、部品の長さが同じという前提の下では、同じ断面形状の部品同士の場合に或る部品の材料のヤング率が別の部品の材料のヤング率よりも高い場合や、同じヤング率の材料の部品同士の場合に或る部品の断面二次モーメントが別の部品の断面二次モーメントよりも大きい場合に、「或る部品の剛性が別の部品の剛性よりも高い」こととなる。ただし、本実施形態においては、断面形状に起因する断面二次モーメントより、材料に起因するヤング率の方の部品の剛性への寄与を大きくしている。すなわち、主として部品ごとの材料の適切な選択によって、部品ごとのより適切な剛性を達成するようにしている。ヤング率の測定方法としては、例えば右表側部品2を打ち抜いて面方向(収容部形成時に裏側部品5と概ね平行となる面の方向)の縦横の幅が約1.8mm、当該面方向(厳密には曲面だが近似的に平面とみなす)と垂直な方向の厚み約0.1mmのサンプルを作製してこれを試験サンプルとし、特許第6857784号明細書の段落[0118]に記載のように、島津製作所社製、島津精密万能試験機オートグラフAG-IS  MS型を用いて、20℃生理食塩液中にて引張試験を実施し、応力-伸び曲線から引張弾性率としてヤング率(MPa)を算出(引張速度は100mm/分)することにより、右表側部品2のヤング率を測定できる。中央表側部品3、左表側部品4、裏側部品5等、その他の部品のヤング率も同様に測定することができる(裏側部品5のサンプルにおける「面方向」は、例えば右表側部品2のサンプルの「面方向」と概ね平行となる面の方向としてよい)。右表側部品2、中央表側部品3、左表側部品4、裏側部品5の材料は任意であり、それら部品のヤング率の数値も任意の値であってよいが、一例においては、
 中央表側部品3のヤング率(引張弾性率)が49.5MPa(メガパスカル)であり(東レ・デュポン社製 材料:熱可塑性ポリエステルエラストマー ハイトレル(登録商標) グレード:4047N。試験方法はJIS K7113-1995準拠)、
 右表側部品2と左表側部品4とのヤング率(引張弾性率)が、いずれも2550MPa(メガパスカル)であり(三菱エンジニアリング社製 材料:PBT樹脂(ポリブチレンテレフタレート樹脂) ノバデュラン(登録商標) グレード:5010R5。試験方法はISO 527-1, 527-2準拠)、
 裏側部品のヤング率(引張弾性率)が1350MPa(メガパスカル)である(日本ポリプロ社製 材料:PP(ポリプロピレン) ノバテック(登録商標) グレード:BC4BSW。試験方法はJIS K7161 7162:1994準拠)
ように各部品を作製することができる(各材料の物性値はメーカー公表の仕様値であるため試験方法が互いに異なるが、ヤング率の大小関係は試験方法を統一しても不変である)。
 断面二次モーメントについては、断面形状から公知の公式によって求めることができる。収容部の略中央部に位置する中央表側部品3の法線方向の厚さを小さくすることにより、中央表側部品3の断面形状を断面二次モーメントがより小さいものとし、剛性をより小さくすることができる。
The term "rigidity" in this embodiment is defined by the Young's modulus (longitudinal elastic modulus) of the material and the geometrical moment of inertia due to the cross-sectional shape in the case of a member of a certain length. That is, under the premise that the length of the parts is the same, in the case of parts with the same cross-sectional shape, if the Young's modulus of the material of one part is higher than that of another part, or if the Young's modulus of the same Young's modulus In the case of material parts, if the area moment of inertia of one part is greater than the area moment of inertia of another part, then "the rigidity of one part is higher than the rigidity of another part". However, in this embodiment, the contribution of the Young's modulus due to the material to the rigidity of the part is greater than the geometrical moment of inertia due to the cross-sectional shape. That is, it is primarily through proper selection of materials for each part that a more suitable stiffness for each part is achieved. As a method for measuring the Young's modulus, for example, the right front part 2 is punched, the width in the plane direction (the direction of the plane that is approximately parallel to the back side part 5 when the housing part is formed) is about 1.8 mm, and the width in the plane direction (strictly A sample with a thickness of about 0.1 mm in the direction perpendicular to the curved surface but approximately flat) is prepared and used as a test sample. Using Shimadzu precision universal testing machine Autograph AG-IS MS type manufactured by Shimadzu Corporation, a tensile test was performed in physiological saline at 20 ° C. Young's modulus (MPa) was calculated as the tensile elastic modulus from the stress-elongation curve. The Young's modulus of the right front side component 2 can be measured by calculation (pulling speed is 100 mm/min). The Young's modulus of other parts such as the central front part 3, the left front part 4, the back part 5, etc. can be similarly measured (the "plane direction" in the sample of the back part 5 is, for example, the direction of the sample of the right front part 2). It may be the direction of a plane that is approximately parallel to the “plane direction”). The materials of the right front part 2, the central front part 3, the left front part 4, and the back part 5 are arbitrary, and the Young's modulus values of these parts may be arbitrary values, but in one example,
The Young's modulus (tensile modulus) of the central front side part 3 is 49.5 MPa (megapascal) (manufactured by DuPont Toray Co., Ltd. Material: Thermoplastic polyester elastomer Hytrel (registered trademark) Grade: 4047N. The test method is JIS K7113-1995. compliant),
The Young's modulus (tensile modulus) of both the right front part 2 and the left front part 4 is 2550 MPa (megapascal) (Mitsubishi Engineering Co., Ltd. Material: PBT resin (polybutylene terephthalate resin) NOVADURAN (registered trademark) grade : 5010R5.The test method conforms to ISO 527-1, 527-2),
The Young's modulus (tensile modulus) of the back side part is 1350 MPa (megapascal) (manufactured by Japan Polypropylene Corporation, material: PP (polypropylene) Novatec (registered trademark), grade: BC4BSW. The test method conforms to JIS K7161 7162:1994).
Each part can be manufactured as follows (the physical properties of each material are the specification values published by the manufacturer, so the test methods are different, but the size relationship of Young's modulus remains unchanged even if the test method is unified).
The moment of inertia of area can be determined from the cross-sectional shape by a known formula. By reducing the thickness in the normal direction of the central front side part 3 positioned substantially at the center of the housing portion, the cross-sectional shape of the central front side part 3 has a smaller geometrical moment of inertia, and the rigidity is further reduced. can be done.
 図13は、本発明の一実施形態である脳波計測装置の構成を示すブロック図であり、図14は、データ収集端末装置の構成を示すブロック図である。本実施形態においては、脳波計測装置1による測定で得られた脳波データが脳波計測装置1からデータ収集端末装置33へと送信されて、データ収集端末装置33において脳波データの解析処理等が行われるとする。 FIG. 13 is a block diagram showing the configuration of an electroencephalogram measurement device that is an embodiment of the present invention, and FIG. 14 is a block diagram showing the configuration of a data collection terminal device. In this embodiment, electroencephalogram data obtained by measurement by the electroencephalogram measurement device 1 is transmitted from the electroencephalogram measurement device 1 to the data collection terminal device 33, and analysis processing of the electroencephalogram data, etc. are performed in the data collection terminal device 33. and
 図13に示す脳波計測装置1は、N個(Nは1以上の自然数)の測定電極である測定電極6~測定電極23(測定電極が1つであれば測定電極23は不要)と、REF電極(参照電極)8と、GND電極(グラウンド電極)24と、信号処理部25と、通信部29と、操作部10と、表示LED11と、電源部32とを備える。既に述べたとおり各電極は別個に信号処理部25に接続されており、各電極からの電気信号が信号処理部25の増幅回路26に入力される。 The electroencephalogram measuring apparatus 1 shown in FIG. 13 includes N (N is a natural number of 1 or more) measuring electrodes 6 to 23 (if there is only one measuring electrode, the measuring electrode 23 is unnecessary), and REF It has an electrode (reference electrode) 8 , a GND electrode (ground electrode) 24 , a signal processing section 25 , a communication section 29 , an operation section 10 , a display LED 11 and a power supply section 32 . As already described, each electrode is separately connected to the signal processing section 25 , and an electric signal from each electrode is input to the amplifier circuit 26 of the signal processing section 25 .
 信号処理部25は、増幅回路26と、A/Dコンバータ(Analog-to-Digital Converter)27と、デジタル信号処理部28とを備える。増幅回路26は、各種電極からの電気信号として入力される生体電位を増幅する回路であり、測定電極6と参照電極8との間の電位差を測定し、この電位差を増幅した上でA/Dコンバータ27へと出力し、また測定電極7と参照電極8との間の電位差を測定し、この電位差を増幅した上でA/Dコンバータ27へと出力する等の処理を行う(測定電極の数が3以上のときも同様)。A/Dコンバータ27は、アナログ信号をデジタル信号に変換する変換回路であり、増幅回路26からアナログ信号として入力される上記各種の電位差をアナログ信号からデジタル信号に変換してデジタル信号処理部28に出力する。デジタル信号処理部28は、一例においては上述のとおりCPU、RAM(Random Access Memory:ランダムアクセスメモリ)、ROM(Read Only Memory:リードオンリーメモリ)等のメモリデバイス等から構成され、A/Dコンバータ27から入力されたデジタル信号を処理して、例えば測定電極6と参照電極8との間の電位差を数値として示すデジタル信号を生成したり、測定電極7と参照電極8との間の電位差を数値として示すデジタル信号を生成したりして(測定電極の数が3以上のときも同様)、それらデジタル信号を通信部29の通信回路31に出力する。またデジタル信号処理部28は、メモリデバイスに記憶されたプログラムをCPUが実行することにより、A/Dコンバータ27から入力されたデジタル信号に対してFFT(Fast Fourier Transformation:高速フーリエ変換)を実行する等の処理を行って、得られた結果を示すデジタル信号を通信部29の通信回路31に出力してもよい。 The signal processing unit 25 includes an amplifier circuit 26, an A/D converter (Analog-to-Digital Converter) 27, and a digital signal processing unit 28. The amplifier circuit 26 is a circuit that amplifies biopotentials input as electrical signals from various electrodes, measures the potential difference between the measurement electrode 6 and the reference electrode 8, amplifies this potential difference, and converts it into an A/D signal. Output to the converter 27, measure the potential difference between the measurement electrode 7 and the reference electrode 8, amplify the potential difference, and output to the A/D converter 27 (the number of measurement electrodes is 3 or more). The A/D converter 27 is a conversion circuit that converts an analog signal into a digital signal. Output. In one example, the digital signal processing unit 28 is composed of memory devices such as a CPU, RAM (Random Access Memory), ROM (Read Only Memory), etc., as described above, and the A/D converter 27 By processing the digital signal input from, for example, a digital signal indicating the potential difference between the measuring electrode 6 and the reference electrode 8 as a numerical value, or the potential difference between the measuring electrode 7 and the reference electrode 8 as a numerical value (similarly when the number of measurement electrodes is 3 or more), and outputs these digital signals to the communication circuit 31 of the communication unit 29 . In addition, the digital signal processing unit 28 executes FFT (Fast Fourier Transformation) on the digital signal input from the A/D converter 27 by the CPU executing the program stored in the memory device. A digital signal indicating the obtained result may be output to the communication circuit 31 of the communication unit 29 by performing such processing.
 通信部29は、アンテナ30と、通信回路31とを備える。通信回路31は、デジタル信号処理部28から入力されたデジタル信号を、アンテナ30を介してデータ収集端末装置33へと送信する。一例において、通信部29はBLE(Bluetooth Low Energy)方式でデータ収集端末装置33の通信部42と無線通信する。 The communication unit 29 includes an antenna 30 and a communication circuit 31. The communication circuit 31 transmits the digital signal input from the digital signal processing unit 28 to the data collection terminal device 33 via the antenna 30 . In one example, the communication unit 29 wirelessly communicates with the communication unit 42 of the data collection terminal device 33 using a BLE (Bluetooth Low Energy) system.
 操作部10は既に説明したとおり電源ボタン10であり、ユーザが電源ボタン10を押下することにより脳波計測装置1の動作のオン(動作状態)とオフ(停止状態)が切り換えられる。表示LED11は、動作状態や充電状態に応じて、その点灯、消灯、点滅や発光色が切り換えられる。電源部32は、リチウムイオン電池、及び脳波計測装置1の各部に電力供給するための回路等を含み、収容部内に配置されている。 As already described, the operation unit 10 is the power button 10, and when the user presses the power button 10, the operation of the electroencephalogram measurement device 1 is switched between on (operating state) and off (stopped state). The display LED 11 is switched between lighting, extinguishing, blinking, and emission color according to the operating state and charging state. The power supply unit 32 includes a lithium ion battery, a circuit for supplying electric power to each part of the electroencephalogram measurement apparatus 1, and the like, and is arranged in the housing unit.
 図14に示すデータ収集端末装置33は、制御部34と、記憶部37と、通信部42と、入出力部45と、電源部49とを備える。  The data collection terminal device 33 shown in FIG.
 制御部34は、CPU35と、一時メモリとしてRAM36とを備える。CPU35が記憶部37に記録された計測プログラム38を実行することにより、CPU35は、脳波計測装置1から受信した脳波測定データを処理して各種の計測処理を行う(上述のFFTをデータ収集端末装置33側で行う場合は、FFTを実行するためのプログラムが計測プログラム38として記憶部37に記憶される)。またCPU35は、記憶部37に記憶された、OS(Operating System:オペレーティングシステム)、各種アプリケーション等の各種プログラム39を実行することでデータ収集端末装置33の各種動作を実行、制御する。 The control unit 34 includes a CPU 35 and a RAM 36 as temporary memory. By executing the measurement program 38 recorded in the storage unit 37 by the CPU 35, the CPU 35 processes the electroencephalogram measurement data received from the electroencephalogram measurement device 1 and performs various measurement processes (the above-described FFT is performed by the data collection terminal device). When the measurement is performed on the 33 side, a program for executing the FFT is stored in the storage section 37 as the measurement program 38). The CPU 35 also executes and controls various operations of the data collection terminal device 33 by executing various programs 39 such as an OS (Operating System) and various applications stored in the storage unit 37 .
 記憶部37は、ハードディスクドライブ、SSD(Solid State Drive)等を備えた記録装置であり、上述の計測プログラム38、各種プログラム39を記憶する。また記憶部37は、計測データ40(FFT処理を実行して得られる解析結果のデータ等)、及び各種データ41を記憶する。 The storage unit 37 is a recording device equipped with a hard disk drive, SSD (Solid State Drive), etc., and stores the measurement program 38 and various programs 39 described above. The storage unit 37 also stores measurement data 40 (analysis result data obtained by executing FFT processing, etc.) and various data 41 .
 通信部42は、アンテナ43と、通信回路44とを備える。通信回路44は、脳波計測装置1からの脳波測定データの受信等のデータ送受信を、アンテナ43を介して行う。一例において、通信部42はBLE方式で脳波計測装置1の通信部31と無線通信する。 The communication unit 42 includes an antenna 43 and a communication circuit 44. The communication circuit 44 performs data transmission/reception such as reception of electroencephalogram measurement data from the electroencephalogram measurement device 1 via the antenna 43 . In one example, the communication unit 42 wirelessly communicates with the communication unit 31 of the electroencephalogram measurement device 1 using the BLE method.
 入出力部45は、データ収集端末装置33の操作者(脳波測定データの解析を行う者)がデータ収集端末装置33に命令やデータを入力するためのキーボード46、マウス47、及び各種表示を行うためのディスプレイ装置48(液晶ディスプレイ装置、有機エレクトロルミネッセンス(有機EL:organic electro-luminescence)ディスプレイ装置等)を備える。その他、入出力部45はスピーカー等の出力装置を備えてよい。 The input/output unit 45 includes a keyboard 46 and a mouse 47 for the operator of the data collection terminal device 33 (person who analyzes electroencephalogram measurement data) to input commands and data to the data collection terminal device 33, and various displays. A display device 48 (liquid crystal display device, organic electroluminescence (EL: organic electroluminescence) display device, etc.) is provided. In addition, the input/output unit 45 may include an output device such as a speaker.
 電源部49は、外部電源からの給電を受けてデータ収集端末装置33の各部に電力供給を行うための回路等を含み、リチウムイオン電池等のバッテリを備えていてもよい。 The power supply unit 49 includes a circuit or the like for receiving power from an external power supply to supply power to each unit of the data collection terminal device 33, and may include a battery such as a lithium ion battery.
 図15は、本発明の一実施形態である脳波計測装置、及びデータ収集端末装置の動作を示すフローチャートである。まず脳波計測装置1のユーザ(検査対象者)は、電源ボタン10を1~2秒程度の間、押下し続けることにより脳波計測装置1を起動させる(ステップS101)。なお、データ収集端末装置33は既に起動しているとする。脳波計測装置1が起動すると、データ収集端末装置33側でBLE接続が有効になっていることを条件として、脳波計測装置1の通信部29とデータ収集端末装置33の通信部42との間でBLE接続が確立される(ステップS102)。脳波計測装置1のユーザは、図7に示すとおり脳波計測装置1を自己の頭部に装着し、測定電極6,7を自己の前頭部に、好ましくは測定電極6,7の位置が頭部の中心線から互いに左右対称となるよう接触させるとともに、参照電極8を自己の耳に接触させる。また脳波計測装置1にグラウンド電極24が備えられている場合は、グラウンド電極24を自己の頭部、或いは身体の任意の位置に接触させる。 FIG. 15 is a flow chart showing the operation of the electroencephalogram measurement device and the data collection terminal device according to one embodiment of the present invention. First, the user (examination subject) of the electroencephalogram measurement apparatus 1 activates the electroencephalogram measurement apparatus 1 by continuously pressing the power button 10 for about 1 to 2 seconds (step S101). It is assumed that the data collection terminal device 33 has already started. When the electroencephalogram measurement device 1 is activated, on the condition that the BLE connection is enabled on the data collection terminal device 33 side, communication between the communication unit 29 of the electroencephalogram measurement device 1 and the communication unit 42 of the data collection terminal device 33 A BLE connection is established (step S102). A user of the electroencephalogram measurement device 1 wears the electroencephalogram measurement device 1 on his or her head as shown in FIG. They are brought into symmetrical contact with each other from the center line of the ear, and the reference electrode 8 is brought into contact with their ear. When the electroencephalogram measurement apparatus 1 is provided with the ground electrode 24, the ground electrode 24 is brought into contact with the subject's head or body at an arbitrary position.
 この状態において、測定電極6の電位と参照電極8の電位との間の電位差が増幅回路26で増幅されて、増幅されたアナログ信号がA/Dコンバータ27でデジタル信号に変換され、A/Dコンバータ27による変換で生成されたデジタル信号がデジタル信号処理部28により処理されて(ステップS103)、それにより生成される、測定電極6の電位と参照電極8の電位との間の電位差の時間変化を示すデジタル信号が、脳波計測装置1の通信部29からデータ収集端末装置33の通信部42へと送信される(ステップS104)。同様に、測定電極7の電位と参照電極8の電位との間の電位差が増幅回路26で増幅されて、増幅されたアナログ信号がA/Dコンバータ27でデジタル信号に変換され、A/Dコンバータ27による変換で生成されたデジタル信号がデジタル信号処理部28により処理されて(ステップS103)、それにより生成される、測定電極7の電位と参照電極8の電位との間の電位差の時間変化を示すデジタル信号が、脳波計測装置1の通信部29からデータ収集端末装置33の通信部42へと送信される(ステップS104)。測定電極が3以上の場合も、同様に各測定電極の電位と参照電極8の電位との間の電位差の時間変化を示すデジタル信号が生成されて脳波計測装置1の通信部29からデータ収集端末装置33の通信部42へと送信される。脳波計測装置1側でのこれらの処理は、脳波計測装置1の電源ボタン10が再度1~2秒程度押下され続けることにより脳波計測装置1が電源OFFとされない限り、所定の時間間隔をあけつつ繰り返し行われ続ける(ステップS105の判断処理におけるNO)。データ収集端末装置33の操作者の入力に応じてデータ収集端末装置33のCPU35により測定アプリケーション(計測プログラム38に含まれるとする)の実行が開始されると、計測プログラム38を実行するCPU35は、脳波計測装置1から受信したデジタル信号に基づき、各々のチャンネル(一例においては、測定電極7の電位と参照電極8の電位との間の電位差をチャンネル1の電位差とし、測定電極6の電位と参照電極8の電位との間の電位差をチャンネル2の電位差とする)の脳波データ(電位差の時間変化データ等)を計測データ40として記憶部37に記憶させ続ける。データ収集端末装置33の操作者の入力(ディスプレイ装置48上の計測終了ボタンのタップ)に応じて、脳波データの記憶部37への記憶は終了され、またデータ収集端末装置33の操作者の入力(脳波計測装置1との通信接続の解除)に応じて、脳波計測装置1とデータ収集端末装置33との間のBLE接続が解除(切断)される。脳波計測装置1の電源ボタン10が再度1~2秒程度押下され続けることにより脳波計測装置1が電源OFFとされると(ステップS105の判断処理におけるYES)、脳波計測装置1の動作は停止する(ステップS106) In this state, the potential difference between the potential of the measuring electrode 6 and the potential of the reference electrode 8 is amplified by the amplifier circuit 26, and the amplified analog signal is converted to a digital signal by the A/D converter 27, and the A/D The digital signal generated by the conversion by the converter 27 is processed by the digital signal processing unit 28 (step S103), and the time change of the potential difference between the potential of the measurement electrode 6 and the potential of the reference electrode 8 generated thereby. is transmitted from the communication unit 29 of the electroencephalogram measurement device 1 to the communication unit 42 of the data collection terminal device 33 (step S104). Similarly, the potential difference between the potential of the measuring electrode 7 and the potential of the reference electrode 8 is amplified by the amplifier circuit 26, and the amplified analog signal is converted to a digital signal by the A/D converter 27, and the A/D converter The digital signal generated by the conversion by 27 is processed by the digital signal processing unit 28 (step S103), and the time change of the potential difference generated thereby between the potential of the measurement electrode 7 and the potential of the reference electrode 8 is obtained. The indicated digital signal is transmitted from the communication unit 29 of the electroencephalogram measurement device 1 to the communication unit 42 of the data collection terminal device 33 (step S104). Similarly, when there are three or more measurement electrodes, a digital signal indicating the temporal change in potential difference between the potential of each measurement electrode and the potential of the reference electrode 8 is generated and sent from the communication unit 29 of the electroencephalogram measurement apparatus 1 to the data collection terminal. It is transmitted to the communication unit 42 of the device 33 . These processes on the side of the electroencephalogram measurement device 1 are performed at predetermined time intervals unless the electroencephalogram measurement device 1 is turned off by pressing the power button 10 of the electroencephalogram measurement device 1 again for about 1 to 2 seconds. It continues to be repeatedly performed (NO in the determination process of step S105). When the CPU 35 of the data collection terminal device 33 starts executing the measurement application (assumed to be included in the measurement program 38) in response to an input by the operator of the data collection terminal device 33, the CPU 35 executing the measurement program 38 Based on the digital signal received from the electroencephalogram measurement device 1, each channel (in one example, the potential difference between the potential of the measuring electrode 7 and the potential of the reference electrode 8 is the potential difference of the channel 1, and the potential of the measuring electrode 6 and the reference The potential difference between the electrode 8 and the potential difference of the channel 2) continues to be stored in the storage unit 37 as the measurement data 40. According to the input of the operator of the data collection terminal device 33 (the tap of the measurement end button on the display device 48), the storage of the electroencephalogram data in the storage unit 37 is terminated, and the operator of the data collection terminal device 33 inputs The BLE connection between the electroencephalogram measurement device 1 and the data collection terminal device 33 is released (disconnected) in response to (disconnection of the communication connection with the electroencephalogram measurement device 1). When the power button 10 of the electroencephalogram measurement device 1 is pressed again for about 1 to 2 seconds to turn off the power of the electroencephalogram measurement device 1 (YES in the determination process of step S105), the operation of the electroencephalogram measurement device 1 is stopped. (Step S106)
 本発明の脳波計測装置の実施例として、以下の構成の脳波計測装置を作製し、性能試験を行った。
(実施例の脳波計測装置)
・形状…図9~12に示す形状
・測定電極(額電極)の数…2つ(CH1,CH2)
・額電極の(接触面中心間の)間隔…60mm
・額電極の形状…平面型、接触面の輪郭は直径15mmの円形状
・参照電極(耳電極)の形状…凹型、接触面の輪郭は直径15mmの円形状
・収容部の各構成部品の材料
 (中央表側部品3)東レ・デュポン社製 熱可塑性ポリエステルエラストマー ハイトレル(登録商標) グレード:4047N。ヤング率49.5MPa(試験方法はJIS K7113-1995準拠)
 (右表側部品2と左表側部品4)三菱エンジニアリング社製 PBT樹脂(ポリブチレンテレフタレート樹脂) ノバデュラン(登録商標) グレード:5010R5。ヤング率2550MPa(試験方法はISO 527-1, 527-2準拠)
 (裏側部品)日本ポリプロ社製 材料:PP(ポリプロピレン) ノバテック(登録商標) グレード:BC4BSW。ヤング率1350MPa(試験方法はJIS K7161 7162:1994準拠)
As an example of the electroencephalogram measurement apparatus of the present invention, an electroencephalogram measurement apparatus having the following configuration was manufactured and performance tests were conducted.
(Electroencephalogram measurement device of the embodiment)
・Shape: the shape shown in FIGS. 9 to 12 ・Number of measurement electrodes (forehead electrodes): 2 (CH1, CH2)
・ Spacing between forehead electrodes (between the centers of the contact surfaces): 60 mm
・Shape of forehead electrode: Flat type, outline of contact surface is circular with a diameter of 15 mm ・Shape of reference electrode (ear electrode): Concave shape, outline of contact surface is circular with a diameter of 15 mm ・Materials of each component of the housing (Central front part 3) Thermoplastic polyester elastomer Hytrel (registered trademark) manufactured by Toray DuPont, grade: 4047N. Young's modulus 49.5 MPa (test method conforms to JIS K7113-1995)
(Right front part 2 and left front part 4) Mitsubishi Engineering PBT resin (polybutylene terephthalate resin) NOVADURAN (registered trademark) grade: 5010R5. Young's modulus 2550 MPa (test method conforms to ISO 527-1, 527-2)
(Back side part) Made by Japan Polypro Co., Ltd. Material: PP (polypropylene) Novatec (registered trademark) Grade: BC4BSW. Young's modulus 1350 MPa (test method conforms to JIS K7161 7162: 1994)
 上記構成の脳波計測装置を被験者が頭部に装着して装着感を確認したところ、額電極の当たりについては、凸型湾曲電極(直径15mm)、凹型湾曲電極(直径20mm)の試作品と比べて改善され、耳電極の挟み強度については、平型直径11mmの試作品と比べて改善され、こめかみ部のあたりについても上記材料を選択することにより締め付け感が低減し痛みが解消された。 When the test subject wore the electroencephalogram measurement device with the above configuration on his head and confirmed the fit, the contact with the forehead electrode was compared with the prototype of the convex curved electrode (15 mm in diameter) and the concave curved electrode (20 mm in diameter). The pinching strength of the ear electrode was improved compared to the prototype with a flat diameter of 11 mm, and the feeling of tightness around the temple was reduced and the pain was eliminated by selecting the above material.
 さらに、上記実施例の構成の脳波計測装置を用いて被験者の脳波計測試験を行い、既存の計測装置であるポリメイト(登録商標)(株式会社ミユキ技研)を用いて行った脳波計測試験との結果の一致性を検証した。両試験結果の相関係数を以下の表1~表4に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Furthermore, an electroencephalogram measurement test was performed on a subject using the electroencephalogram measurement apparatus configured in the above embodiment, and the result was compared with an electroencephalogram measurement test performed using an existing measurement apparatus, Polymate (registered trademark) (Miyuki Giken Co., Ltd.). We verified the consistency of The correlation coefficients of both test results are shown in Tables 1-4 below.
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
 以上のとおり、実施例の脳波計測装置においては被験者の装着感、既存の脳波計測装置との計測結果の一致性の両方において良好な結果が得られた。 As described above, the electroencephalogram measurement device of the example gave good results in terms of both the subject's wearing comfort and the consistency of the measurement results with the existing electroencephalogram measurement device.
 本発明は、医療機器、研究機器をはじめとする任意の産業での脳波計測のために利用可能である。 The present invention can be used for electroencephalogram measurement in any industry, including medical equipment and research equipment.
1        脳波計測装置
2        右表側部品
3        中央表側部品
4        左表側部品
5        裏側部品
6        (右側)測定電極(額電極)
7        (左側)測定電極(額電極)
8        参照電極(REF電極、耳電極)
9        (被覆された)参照電極リード線
10       電源ボタン(操作部)
11       表示LED
12       充電ポート
13       充電ポートの蓋
14       (右側)滑り止めシート
15       (左側)滑り止めシート
16       (右側)補助バンド取り付け孔
17       (左側)補助バンド取り付け孔
18       人体頭部
19       装着補助バンド
20       リング状部材
21A      面ファスナー(フック)
21B      面ファスナー(ループ)
22       回路基板収容位置
23       第Nの測定電極(Nは2以上)
24       グラウンド電極(GND電極)
25       信号処理部
26       増幅回路
27       A/D(アナログ/デジタル)コンバータ
28       デジタル信号処理部
29       通信部
30       アンテナ
31       通信回路
32       電源部(リチウムイオン電池等)
33       データ収集端末装置
34       制御部
35       CPU
36       RAM
37       記憶部
38       計測プログラム
39       各種プログラム
40       計測データ
41       各種データ
42       通信部
43       アンテナ
44       通信回路
45       入出力部
46       キーボード
47       マウス
48       ディスプレイ装置
49       電源部
1 electroencephalogram measurement device 2 right front part 3 central front part 4 left front part 5 back part 6 (right) measurement electrode (forehead electrode)
7 (left side) measurement electrode (forehead electrode)
8 reference electrode (REF electrode, ear electrode)
9 (coated) reference electrode lead wire 10 power button (operator)
11 display LEDs
12 Charging port 13 Charging port lid 14 (Right side) Non-slip sheet 15 (Left side) Non-slip sheet 16 (Right side) Auxiliary band mounting hole 17 (Left side) Auxiliary band mounting hole 18 Human head 19 Attachment auxiliary band 20 Ring-shaped member 21A Velcro (hook)
21B hook-and-loop fastener (loop)
22 Circuit board accommodation position 23 Nth measurement electrode (N is 2 or more)
24 ground electrode (GND electrode)
25 signal processing unit 26 amplifier circuit 27 A/D (analog/digital) converter 28 digital signal processing unit 29 communication unit 30 antenna 31 communication circuit 32 power supply unit (lithium ion battery, etc.)
33 data collection terminal device 34 control unit 35 CPU
36 RAMs
37 storage unit 38 measurement program 39 various programs 40 measurement data 41 various data 42 communication unit 43 antenna 44 communication circuit 45 input/output unit 46 keyboard 47 mouse 48 display device 49 power supply unit

Claims (6)

  1.  生体頭部に装着可能な脳波計測装置であって、
     中央表側部品と、左表側部品と、右表側部品と、裏側部品とを少なくとも含み、装着時に左側頭部から前頭部、右側頭部へと前記生体頭部に沿って配置されるよう湾曲した形状を有する収容部と、
     前記裏側部品に固定され、装着時に前記前頭部に接触する少なくとも1つの測定電極と、
     前記測定電極を介して得られる電気信号を処理する、前記収容部内に収容された信号処理部と
     を備え、
     前記中央表側部品と、前記左表側部品と、前記右表側部品と、前記裏側部品とのうち少なくとも2つの部品の剛性が互いに異なる、
     脳波計測装置。
    An electroencephalogram measurement device that can be attached to the head of a living body,
    It includes at least a central front part, a left front part, a right front part, and a back part, and is curved to be arranged along the living body head from the left temporal region to the frontal region to the right temporal region when worn. a container having a shape;
    at least one measurement electrode fixed to the back part and in contact with the forehead when worn;
    a signal processing unit accommodated in the accommodation unit for processing an electrical signal obtained through the measurement electrode;
    At least two of the central front side part, the left front side part, the right front side part, and the back side part have different rigidity,
    Electroencephalogram measurement device.
  2.  前記測定電極の数は少なくとも2以上である、請求項1に記載の脳波計測装置。 The electroencephalogram measurement device according to claim 1, wherein the number of said measurement electrodes is at least two.
  3.  前記左表側部品及び前記右表側部品の剛性は、前記中央表側部品の剛性よりも高い、請求項1又は2に記載の脳波計測装置。 The electroencephalogram measurement device according to claim 1 or 2, wherein the rigidity of the left front part and the right front part is higher than the rigidity of the central front part.
  4.  装着時に前記前頭部に接触する前記測定電極の面のそれぞれの中心は、前記裏側部品の形状に沿って40mm以上、90mm以下だけ互いに左右に離間している、請求項2乃至3のいずれか一項に記載の脳波計測装置。 4. Any one of claims 2 and 3, wherein the respective centers of the surfaces of the measurement electrodes that come into contact with the forehead when worn are laterally separated from each other by 40 mm or more and 90 mm or less along the shape of the back side part. The electroencephalogram measurement device according to item 1.
  5.  装着時に前記前頭部に接触する前記測定電極の面の輪郭は、直径10mm~25mmの円形状を有する、請求項1乃至4のいずれか一項に記載の脳波計測装置。 The electroencephalogram measurement device according to any one of claims 1 to 4, wherein the contour of the surface of the measurement electrode that contacts the forehead when worn has a circular shape with a diameter of 10 mm to 25 mm.
  6.  前記信号処理部は、前記左表側部品と前記裏側部品との間、又は前記右表側部品と前記裏側部品との間に配置される、請求項1乃至5のいずれか一項に記載の脳波計測装置。 The electroencephalogram measurement according to any one of claims 1 to 5, wherein the signal processing unit is arranged between the left front component and the back component or between the right front component and the back component. Device.
PCT/JP2022/033451 2021-09-07 2022-09-06 Brain wave measurement device WO2023038029A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3231722A CA3231722A1 (en) 2021-09-07 2022-09-06 Brain wave measurement device
JP2023539049A JP7429333B2 (en) 2021-09-07 2022-09-06 EEG measurement device
EP22867351.3A EP4400052A1 (en) 2021-09-07 2022-09-06 Brain wave measurement device
CN202280060596.7A CN117915837A (en) 2021-09-07 2022-09-06 Brain wave measuring device
JP2024010123A JP2024046663A (en) 2021-09-07 2024-01-26 Brain wave measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021145735 2021-09-07
JP2021-145735 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023038029A1 true WO2023038029A1 (en) 2023-03-16

Family

ID=85507639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033451 WO2023038029A1 (en) 2021-09-07 2022-09-06 Brain wave measurement device

Country Status (5)

Country Link
EP (1) EP4400052A1 (en)
JP (2) JP7429333B2 (en)
CN (1) CN117915837A (en)
CA (1) CA3231722A1 (en)
WO (1) WO2023038029A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095905A (en) * 2010-11-04 2012-05-24 Panasonic Corp Brain wave measurement system, method, and computer program
US9867571B2 (en) 2014-01-06 2018-01-16 Interaxon Inc. Wearable apparatus for brain sensors
CN109009100A (en) * 2018-07-26 2018-12-18 北京机械设备研究所 A kind of headgear assembly with forehead EEG Signals collecting function
CN110585551A (en) * 2019-09-24 2019-12-20 喜临门家具股份有限公司 Light awakening control system based on sleep staging
WO2020026880A1 (en) * 2018-08-02 2020-02-06 パナソニックIpマネジメント株式会社 Active electrode, electroencephalograph, control device, and control method
US20200306493A1 (en) * 2019-03-25 2020-10-01 Bose Corporation Smart relaxation mask
JP6857784B2 (en) 2019-02-26 2021-04-14 株式会社メニコン Polymer material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095905A (en) * 2010-11-04 2012-05-24 Panasonic Corp Brain wave measurement system, method, and computer program
US9867571B2 (en) 2014-01-06 2018-01-16 Interaxon Inc. Wearable apparatus for brain sensors
CN109009100A (en) * 2018-07-26 2018-12-18 北京机械设备研究所 A kind of headgear assembly with forehead EEG Signals collecting function
WO2020026880A1 (en) * 2018-08-02 2020-02-06 パナソニックIpマネジメント株式会社 Active electrode, electroencephalograph, control device, and control method
JP6857784B2 (en) 2019-02-26 2021-04-14 株式会社メニコン Polymer material
US20200306493A1 (en) * 2019-03-25 2020-10-01 Bose Corporation Smart relaxation mask
CN110585551A (en) * 2019-09-24 2019-12-20 喜临门家具股份有限公司 Light awakening control system based on sleep staging

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLUETOOTH WIRELESS BRAIN WAVE METER, 24 August 2021 (2021-08-24), Retrieved from the Internet <URL:http7/www.laxtha.com/ProductView.asp?Model=neuroNicle%20E2>
EMOTIV EPOC+, 24 August 2021 (2021-08-24), Retrieved from the Internet <URL:https://www.emotiv.com/epoc>
MEDITATION REIMAGINED INTRODUCING MUSE 2, 24 August 2021 (2021-08-24), Retrieved from the Internet <URL:https://choosemuse.com/muse-2>

Also Published As

Publication number Publication date
CA3231722A1 (en) 2023-03-16
CN117915837A (en) 2024-04-19
JP2024046663A (en) 2024-04-03
JP7429333B2 (en) 2024-02-07
EP4400052A1 (en) 2024-07-17
JPWO2023038029A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US10660537B2 (en) Headgear with displaceable sensors for electrophysiology measurement and training
CN205493819U (en) Wearable electrocardiograph detection apparatus
US20200085331A1 (en) Wearable electrocardiographic measurement device
US10335083B2 (en) Systems and methods for detecting and analyzing biosignals
US20190200925A1 (en) Wearable computing device
KR102361026B1 (en) Bioelectrical signal measuring apparatus
US20220218280A1 (en) Biological information monitoring system
KR101238192B1 (en) Ear attachable sensor-set and operating method of the same
JP2009530064A (en) Electrode and electrode headset
WO2016119664A1 (en) Wearable electrocardiographic detection device and wearable physiological detection device
CN110115567A (en) Multipurpose physiology-detecting system
EP3977933A1 (en) Biological information monitoring system
US20230148963A1 (en) Multi-body earpiece
KR20120121975A (en) Band type sensor-set and operating method of the same
US20200107741A1 (en) Electrodes and electrode units for gathering electroencephalographic data
WO2023038029A1 (en) Brain wave measurement device
WO2019225244A1 (en) Biological signal acquisition electrode, biological signal acquisition electrode pair, and biological signal measurement system
JP7219892B2 (en) headset
CN209003960U (en) Multipurpose physiology-detecting system
WO2024185805A1 (en) Brain wave measuring device and pad for brain wave measuring device
JP2019063290A (en) Apparatus and system for measuring brain activity
CN210204731U (en) Multipurpose physiological detection device
CN209391925U (en) Multipurpose physiology detection apparatus
CN209474599U (en) Multipurpose physiology-detecting system
WO2021256489A1 (en) Biological signal measurement device and biological signal measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539049

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18690010

Country of ref document: US

Ref document number: 202280060596.7

Country of ref document: CN

Ref document number: 3231722

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022867351

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867351

Country of ref document: EP

Effective date: 20240408