WO2023037878A1 - 冷延鋼板およびその製造方法 - Google Patents
冷延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2023037878A1 WO2023037878A1 PCT/JP2022/031939 JP2022031939W WO2023037878A1 WO 2023037878 A1 WO2023037878 A1 WO 2023037878A1 JP 2022031939 W JP2022031939 W JP 2022031939W WO 2023037878 A1 WO2023037878 A1 WO 2023037878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- cold
- rolled steel
- rolling
- less
- Prior art date
Links
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 140
- 239000010959 steel Substances 0.000 claims abstract description 140
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 52
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 21
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 11
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 11
- 238000005096 rolling process Methods 0.000 claims description 73
- 238000001816 cooling Methods 0.000 claims description 60
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims description 50
- 239000001257 hydrogen Substances 0.000 claims description 50
- 238000005097 cold rolling Methods 0.000 claims description 48
- 238000010438 heat treatment Methods 0.000 claims description 42
- 230000000717 retained effect Effects 0.000 claims description 22
- 238000005098 hot rolling Methods 0.000 claims description 14
- 230000001186 cumulative effect Effects 0.000 claims description 12
- 229910052684 Cerium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000003507 refrigerant Substances 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000011572 manganese Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000010008 shearing Methods 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 4
- 229910001567 cementite Inorganic materials 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001887 electron backscatter diffraction Methods 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 208000016063 arterial thoracic outlet syndrome Diseases 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000988 reflection electron microscopy Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
Definitions
- the present disclosure relates to cold-rolled steel sheets and manufacturing methods thereof.
- Hydrogen embrittlement cracking is a phenomenon in which steel members, which are subjected to high stress during use, suddenly break due to hydrogen entering the steel from the environment. This phenomenon is also called delayed fracture from the mode of occurrence of fracture. Generally, it is known that hydrogen embrittlement cracking of steel sheets is more likely to occur as the tensile strength of steel sheets increases. It is believed that this is because the higher the tensile strength of the steel sheet, the greater the stress remaining in the steel sheet after part forming. This susceptibility to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.
- Patent Document 1 it has a predetermined chemical composition, and the value of the solid solution B amount solB [mass%] and the prior austenite grain size D ⁇ [ ⁇ m] in the steel is expressed by the formula (1): solB D ⁇ 0 .0010, and the area ratios are polygonal ferrite of 10% or less, bainite of 30% or less, retained austenite of 6% or less, and tempered martensite of 60% or more.
- the Fe carbide number density of 1 ⁇ 10 6 /mm 2 or more, the average dislocation density of the entire steel is 1.0 ⁇ 10 15 /m 2 or more and 2.0 ⁇ 10 16 /m 2 or less, and the effective grain
- An ultra-high-strength cold-rolled steel sheet having a tensile strength of 1300 MPa or more and excellent hydrogen embrittlement resistance is disclosed, which is characterized by having a steel structure with a diameter of 7.0 ⁇ m or less.
- Patent Document 2 discloses that tempered martensite and bainite have a predetermined chemical composition, a total area ratio of 95% or more and 100% or less to the entire structure of tempered martensite and bainite, and are distributed in the rolling direction and/or in a dotted pattern.
- One or more long axes composed of inclusion particles of 0.3 ⁇ m or more, and when the inclusion particles are composed of two or more, the distance between the inclusion particles is 30 ⁇ m or less, and the rolling direction Inclusion groups with total length exceeding 120 ⁇ m are 0.8/mm 2 or less, aspect ratio is 2.5 or less, and major axis is 0.20 ⁇ m or more and 2 ⁇ m or less, mainly composed of Fe
- the number of carbides is 3500/mm 2 or less, the number of carbides with a diameter of 10 to 50 nm distributed in the tempered martensite and/or the bainite is 0.7 ⁇ 10 7 /mm 2 or more, and prior ⁇ grains
- a cold-rolled steel sheet having an average grain size of 18 ⁇ m or less, a thickness of 0.5 to 2.6 mm, and a tensile strength of 1320 MPa or more is disclosed. Further, Patent Document 2 describes that with the above configuration, it is possible to obtain an ultra-high-strength cold-rolled steel sheet having a
- Patent Document 3 it has a predetermined chemical composition, and has a structure consisting of martensite: 90% or more and retained austenite: 0.5% or more in terms of area ratio to the entire structure, and the local Mn concentration is An ultra-high-strength steel sheet having an area ratio of 1.1 times or more of the total Mn content of 2% or more, a tensile strength of 1470 MPa or more, and excellent delayed fracture resistance at the cut edge. disclosed.
- Patent Document 4 describes an ultra-high-strength cold-rolled steel sheet having a predetermined chemical composition, a martensite single phase metal structure, a tensile strength of 980 MPa or more, and a flatness of 10 mm or less, and a method for producing the same. disclosed.
- Patent Document 5 discloses a method for producing a high-strength cold-rolled steel sheet having a metal structure with a predetermined chemical composition and a tempered martensite content of 65 area% or more.
- a secondary cooling step of cooling in seconds a tertiary cooling step of rapidly cooling from the secondary cooling stop temperature to room temperature at an average cooling rate of more than 100 ° C./s, and heating to a temperature range of 150 to 300 ° C. for 30 to 1500 seconds.
- a method for producing a high-strength cold-rolled steel sheet having an excellent steel sheet shape is disclosed, which includes a holding overaging treatment step in this order.
- JP 2016-50343 A WO2016/152163 JP 2016-153524 A JP 2011-202195 A JP 2013-227657 A
- Patent Documents 4 and 5 do not improve the shape of the steel sheet with the intention of improving the hydrogen embrittlement resistance of the sheared portion. not enough to improve.
- the "maximum warpage height" is used as an index for evaluating the quality of the steel plate shape. It has been found that the hydrogen embrittlement resistance of is not necessarily excellent.
- an object of the present invention is to provide a cold-rolled steel sheet with improved resistance to hydrogen embrittlement while having high tensile strength and total elongation.
- the present inventor believes that in order to improve the hydrogen embrittlement resistance of sheared parts, it is necessary to improve not the "maximum warpage height" of the steel sheet, but the "curvature”, which is the amount that indicates the degree of curvature of the curved surface. I found something. Then, as a result of examining a method of manufacturing a steel sheet necessary for improving the curvature of the steel sheet, the following findings were obtained. (1) In the hot rolling process, the edge portion is reheated after rough rolling. This suppresses fluctuations in the strength of the hot-rolled steel sheet in the width direction of the steel sheet. Furthermore, the steel sheet after finish rolling is wound up in an appropriate temperature range. As a result, the shape of the steel sheet after cold rolling is improved.
- the forward tension and the backward tension in each rolling stand when passing through the rolling rolls are set to an appropriate range according to the yield strength of the hot-rolled steel sheet before cold rolling and the reduction ratio in each rolling stand. to control. Furthermore, the cumulative cold rolling reduction is controlled within an appropriate range. This improves the shape of the steel sheet after cold rolling.
- the average cooling rate at 300 ° C. or less is limited to a predetermined range, gas is used as a coolant, and heat diffusion is prevented in the cooling process. Allow to cool to encourage. Furthermore, the average cooling rate between 300 and 700° C. and the cooling stop temperature must also be controlled within an appropriate range.
- the steel plate tension during cooling is controlled within an appropriate range. This improves the shape of the steel sheet after heat treatment. When all of the above requirements (1) to (3) are satisfied, a steel sheet with an excellent level of shape that could not be achieved by existing techniques can be obtained.
- the present invention has been realized based on the above findings, and is specifically as follows.
- FIG. 2 is a schematic diagram of shearing related to hydrogen embrittlement testing.
- C is an essential element for ensuring the strength of the steel sheet.
- the C content is made 0.16% or more.
- the C content may be 0.18% or more, 0.20% or more, or 0.22% or more.
- the C content should be 0.40% or less.
- the C content may be 0.37% or less, 0.33% or less, or 0.30% or less.
- Si silicon
- Si is an element that suppresses the formation of iron carbide and contributes to the improvement of strength and formability.
- the Si content should be 0.05% or more.
- the Si content may be 0.10% or more, 0.20% or more, or 0.40% or more.
- excessive addition may lower toughness, weldability, and hydrogen embrittlement resistance. Therefore, the Si content should be 2.00% or less.
- the Si content may be 1.60% or less, 1.30% or less, or 1.00% or less.
- Mn 0.50 to 4.00%
- Mn manganese
- Mn is a strong austenite stabilizing element, and is an effective element for increasing the strength of steel sheets.
- the Mn content is made 0.50% or more.
- the Mn content may be 0.80% or more, 1.00% or more, or 1.30% or more.
- excessive addition may deteriorate workability such as press formability, weldability, and hydrogen embrittlement resistance. Therefore, the Mn content should be 4.0% or less.
- the Mn content may be 3.0% or less, 2.5% or less, or 2.0% or less.
- Phosphorus (P) is a solid-solution-strengthening element that is effective in increasing the strength of steel sheets, but excessive addition degrades weldability and toughness. Therefore, the P content is limited to 0.050% or less.
- the P content is preferably 0.045% or less, 0.035% or less or 0.020% or less.
- the P content may be 0%, the lower limit is preferably set to 0.001% from the viewpoint of economy, because the cost of removing P increases in order to extremely reduce the P content.
- S sulfur
- S is an element contained as an impurity, and forms MnS in steel to deteriorate toughness and hole expansibility. Therefore, the S content is limited to 0.0100% or less as a range in which deterioration of toughness and hole expansibility is not remarkable.
- the S content is preferably 0.0050% or less, 0.0040% or less, or 0.0030% or less.
- the S content may be 0%, the lower limit is preferably set to 0.0001% from the viewpoint of economy, because desulfurization cost increases to extremely reduce the S content.
- Al 0.001 to 1.00%
- Al aluminum
- the Al content may be 0.005% or more, 0.01% or more, or 0.02% or more.
- the upper limit of the Al content is 1.00%.
- the Al content may be 0.80% or less, 0.60% or less, or 0.30% or less.
- N nitrogen
- nitrogen is an element contained as an impurity, and when the content is large, coarse nitrides are formed in the steel, which may deteriorate bendability and hole expandability. Therefore, the N content is limited to 0.0100% or less.
- the N content is preferably 0.0080% or less, 0.0060% or less or 0.0050% or less. Although the N content may be 0%, it is preferable to set the lower limit to 0.0001% from the viewpoint of economic efficiency, because the cost of removing N increases in order to extremely reduce the N content.
- O oxygen
- oxygen is an element contained as an impurity, and if the content is large, it may form coarse oxides in the steel, deteriorating bendability and hole expandability. Therefore, the O content is limited to 0.0100% or less.
- the O content is preferably 0.0080% or less, 0.0060% or less or 0.0050% or less. Although the O content may be 0%, the lower limit is preferably 0.0001% from the viewpoint of manufacturing costs.
- the basic chemical composition of the cold-rolled steel sheet according to the embodiment of the present invention and the slab used for its production are as described above. Furthermore, the cold-rolled steel sheet and slab may contain the following optional elements as necessary. In addition, the lower limit of the content when the arbitrary element is not included is 0%.
- Cr 0-2.00%, Mo: 0-1.00%, Cu: 0-1.00%, Ni: 0-1.00%, B: 0-0.0100%, Co: 0- 1.00%, W: 0-1.00%, Sn: 0-1.00%, Sb: 0-1.00%, Nb: 0-0.100%, Ti: 0-0.200% and V: 0 to 0.50%]
- Cr chromium
- Mo molybdenum
- Cu copper
- Ni nickel
- B boron
- Co cobalt
- W tungsten
- Sn tin
- Sb antimony
- Nb (niobium), Ti (titanium), and V (vanadium) are alloy carbide forming elements, and contribute to increasing the strength of the steel sheet by precipitating as fine carbides in the steel sheet. Therefore, one or more of these elements may be added as required. However, excessive addition of these elements saturates the effect, unnecessarily leading to an increase in cost.
- the contents are Cr: 0 to 2.00%, Mo: 0 to 1.00%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, B: 0 to 0.0100% , Co: 0-1.00%, W: 0-1.00%, Sn: 0-1.00%, Sb: 0-1.00%, Nb: 0-0.100%, Ti: 0- 0.200% and V: 0-0.50%.
- Each element may be 0.001% or more, 0.005% or more, or 0.010% or more.
- the B content may be 0.0001% or more or 0.0005% or more.
- Ca [Ca: 0-0.0100%, Mg: 0-0.0100%, Ce: 0-0.0100%, Zr: 0-0.0100%, La: 0-0.0100%, Hf: 0- 0.0100%, Bi: 0 to 0.0100% and REM other than Ce and La: 0 to 0.0100%]
- Ca (calcium), Mg (magnesium), Ce (cerium), Zr (zirconium), La (lanthanum), Hf (hafnium), and REMs (rare earth elements) other than Ce and La are used to finely disperse inclusions in steel.
- Bismuth (Bi) is an element that contributes to reducing the microsegregation of substitutional alloying elements such as Mn and Si in steel.
- each element may be added, if necessary, because they each contribute to the improvement of the workability of the steel sheet. However, excessive addition causes deterioration of ductility. Therefore, the upper limit of its content is 0.0100%. Moreover, each element may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
- the balance other than the above elements consists of Fe and impurities.
- Impurities are components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when cold-rolled steel sheets are industrially manufactured.
- the desired tensile strength can be obtained by using mainly martensite (as-quenched martensite + tempered martensite).
- the area ratio of martensite is set to 90.0 to 99.5%, and the ratio of tempered martensite to the total martensite is set to 80 to 100%.
- the lower limit of the area ratio of martensite is preferably 93.0% or more, more preferably 95.0% or more.
- the upper limit of the area ratio of martensite may be 99.0% or less or 98.0% or less.
- the lower limit of the ratio of tempered martensite to all martensite is preferably 85% or more, more preferably 90% or more.
- the upper limit of the proportion of tempered martensite in the total martensite may be 98% or less or 95% or less.
- the area ratio of ferrite is set to 0 to 5%.
- the upper limit of the area ratio of ferrite is preferably 4% or less, preferably 2% or less, and ideally 0%.
- the area ratio of retained austenite is set to 0.5 to 7.0%.
- the lower limit of the area ratio of retained austenite is preferably 1.0% or more, and may be 2.0% or more.
- the upper limit of the area ratio of retained austenite is preferably 6.0% or less, and may be 5.0% or less or 4.0% or less.
- the steel structure may contain residual structures in addition to martensite, ferrite and retained austenite. Bainite, for example, can be exemplified as the residual structure. The area ratio of the remaining tissue is exemplified as 0 to 9.5%.
- the area ratio of each structure other than retained austenite is evaluated by SEM-EBSD method (electron beam backscatter diffraction method) and SEM secondary electron image observation.
- SEM-EBSD method electron beam backscatter diffraction method
- SEM secondary electron image observation First, a sample is collected by using a plate thickness section parallel to the rolling direction of the steel sheet as an observation surface, and the observation surface is mechanically polished to a mirror finish, and then electrolytically polished.
- SEM-EBSD method for a total area of 3000 ⁇ m 2 or more in one or more observation fields in the range of 1/8 thickness to 3/8 thickness centering on 1/4 thickness from the surface of the steel plate on the observation surface Crystal structure and orientation analysis are performed by "OIM Analysys 7.0" manufactured by TSL is used for analysis of data obtained by the EBSD method. Also, the distance between scores (step) is set to 0.03 to 0.20 ⁇ m. A grain boundary map is obtained with the boundary having a crystal orientation difference of 15 degrees or more as the grain boundary. Next, the same sample is subjected to nital etching. After that, a secondary electron image is taken using an FE-SEM for the same field of view as the field of view for crystal orientation analysis by EBSD.
- crystal grains in which neither the substructure nor the iron-based carbide are recognized and the crystal structure is BCC are judged to be ferrite.
- crystal grains in which a substructure is observed and iron-based carbides are precipitated in a single variant, or crystal grains in which iron-based carbides are not observed are judged to be bainite.
- crystal grains in which cementite is precipitated in lamellar form are judged to be pearlite.
- perlite is not included in the present invention.
- the remainder is judged to be martensite and retained austenite. By subtracting the area ratio of retained austenite, which will be described later, from the area ratio of the remainder, the area ratio of martensite is obtained.
- crystal grains in which substructures are recognized and two or more iron-based carbides precipitated in multiple variants are recognized in the secondary electron image are judged to be tempered martensite.
- the area ratio of retained austenite is calculated by measurement using X-rays. That is, mechanical polishing and chemical polishing are performed to remove the steel plate from the plate surface to the depth of 1/4 position in the plate thickness direction. Diffraction peaks of (200), (211) of the bcc phase and (200), (220), (311) of the fcc phase obtained using MoK ⁇ 1 rays as characteristic X-rays for the polished sample From the integrated intensity ratio of , the structure fraction of retained austenite is calculated, and this is defined as the area ratio of retained austenite.
- the cold-rolled steel sheet according to the embodiment of the present invention has a high strength, for example, a high strength of 1470 MPa or more, but has a very high flatness. Also in , the end face properties of the sheared portion are very good, and as a result, excellent hydrogen embrittlement resistance can be achieved.
- a steel sheet shape having such a high degree of flatness in the present invention is defined using the maximum value of the curvature 1/R corresponding to the reciprocal of the curvature radius R (mm). More specifically, the maximum value of the curvature 1/R in the present invention is defined by the following formula (1) using two principal curvatures ⁇ 1 and ⁇ 2 on the curved surface.
- the maximum value of the curvature 1/R is controlled to 0.010 or less.
- the curvature in the present invention is the larger absolute value of the principal curvatures ⁇ 1 and ⁇ 2 on the curved surface.
- the principal curvatures ⁇ 1 , ⁇ 2 are measured using a common shape measuring machine and estimated from three-dimensional geometric data with reduced measurement noise.
- ATOS 3D scanner manufactured by GOM can be used for measurement.
- the curvature distribution in the cold-rolled steel sheet is obtained by measuring each point in an area of the entire width of the cold-rolled steel sheet and the length of 300 mm.
- the term "full width” refers to the length of the steel sheet in the direction perpendicular to the longitudinal direction of the cold-rolled steel sheet (cold-rolled coil).
- the maximum value of curvature distribution measured in this manner is 0.010 or less. For example, if the cold-rolled steel sheet is warped or wavy and the maximum value of the curvature distribution exceeds 0.010, an angle will be formed between the punch and the cold-rolled steel sheet during shearing, and the sheared part will be damaged. As a result, the hydrogen embrittlement resistance of the sheared portion deteriorates.
- the maximum value of curvature 1/R may be, for example, 0.008 or less, 0.006 or less, 0.004 or less, or 0.002 or less.
- the lower limit is not particularly limited, but the maximum value of the curvature 1/R is, for example, 0.0005 or more, 0.0006 or more, 0.0007 or more, 0.0008 or more, 0.0009 or more, or 0.001 or more. good too.
- a very high flatness can be achieved in spite of the high strength of 1470 MPa or more, and the extremely high flatness exceeding 1800 MPa as specifically shown in the examples. Even with very high tensile strengths, it is possible to achieve flatness with a maximum value of curvature 1/R of 0.001. Therefore, for lower tensile strengths, e.g. closer to 1470 MPa, one skilled in the art will further reduce the maximum value of curvature 1/R, e.g. It will be readily appreciated that flatness can be achieved.
- the measurement of the curvature distribution described above is not limited to any specific conditions regarding the timing of measurement and the like. Alternatively, it may be performed on as-manufactured cold-rolled steel sheets that have not undergone any specific mechanical flattening treatment. For example, in the case of a conventional cold-rolled steel sheet having a very high tensile strength of 1470 MPa or more, the maximum value of the curvature 1/R described above is controlled to 0.010 or less even if the flattening treatment is simply performed with a leveler or the like. is extremely difficult.
- a slab having a predetermined chemical composition is used to produce a cold-rolled steel sheet by appropriately controlling the conditions of the hot rolling process, the cold rolling process, and the heat treatment process, as will be described later in detail.
- the coating layer does not particularly affect the measurement of the curvature distribution. performed for
- TS Tensile strength
- TS tensile strength
- TS tensile strength
- TS tensile strength
- the upper limit is not particularly limited, for example, the tensile strength may be 2000 MPa or less, 1900 MPa or less, or 1800 MPa or less.
- total elongation (El) According to the cold-rolled steel sheet according to the embodiment of the present invention, high total elongation (El) can be achieved, and more specifically, total elongation of 6.0% or more can be achieved.
- the total elongation is preferably 7.0% or more, more preferably 8.0% or more.
- the upper limit is not particularly limited, for example, the total elongation may be 20.0% or less or 15.0% or less.
- the tensile strength and total elongation of the cold-rolled steel sheet were obtained by collecting a JIS No. 5 tensile test piece from a direction perpendicular to the rolling direction of the steel sheet in the atmosphere at room temperature (25 ° C.), and specified in JIS Z 2241: 2011. It is measured by a tensile test.
- [Hole expansion ratio ( ⁇ )] According to the cold-rolled steel sheet according to the embodiment of the present invention, high hole expansibility can be achieved, and more specifically, a hole expansibility ( ⁇ ) of 20% or more can be achieved.
- the hole expansion rate is preferably 25% or more, more preferably 30% or more.
- the upper limit is not particularly limited, for example, the hole expansion ratio may be 80.0% or less or 70.0% or less.
- the hole expansion rate ( ⁇ ) is measured according to the Japan Iron and Steel Federation standard "JFS T 1001:1996 hole expansion test method".
- a cold-rolled steel sheet according to an embodiment of the present invention is characterized in that cracks do not occur in a hydrogen embrittlement test by the following method. Shearing is performed by the method shown in FIG. A sample of T (thickness) x 50W (width) x 50L (length) (unit: mm) is taken from the steel plate so as to include the portion where the maximum value of curvature 1/R is obtained. The shear angle ⁇ is 1 degree, and the clearance CL is 0.15 ⁇ T. A plate pressing pressure of at least 1 ton or more is applied. After cutting the above sample by shearing, the steel plate on the product side (plate holding side) is heat-treated at 170° C. for 10 minutes.
- the steel plate is immersed in an aqueous solution of ammonium thiocyanate at room temperature with a concentration of 0.3 g/L for 48 hours to introduce the generated hydrogen into the steel plate. After that, the sheared surface is observed with a microscope or the like to evaluate the presence or absence of cracks.
- Heat treatment at 170° C. for 10 minutes simulates heat treatment such as paint baking treatment.
- a cold-rolled steel sheet according to an embodiment of the present invention has a thickness of, for example, 0.5 to 3.0 mm.
- the plate thickness may be 0.6 mm or more, 0.8 mm or more, or 1.0 mm or more.
- the plate thickness may be 2.8 mm or less, 2.6 mm or less, or 2.3 mm or less.
- a cold-rolled steel sheet according to an embodiment of the present invention has a width of, for example, 500 mm or more.
- the plate width may be 700 mm or more, 800 mm or more, or 900 mm or more.
- the upper limit of the plate width is not particularly limited, the plate width may be 2000 mm or less, 1800 mm or less, 1600 mm or less, 1400 mm or less, 1300 mm or less, 1200 mm or less, or 1100 mm or less.
- the cold-rolled steel sheet according to the embodiment of the present invention may have a coating layer on both sides or one side, preferably both sides.
- the plating layer is typically exemplified by an electrogalvanizing layer, a hot-dip galvanizing layer, or an alloyed hot-dip galvanizing layer.
- These galvanized layers may have any composition known to those skilled in the art, and may contain additive elements such as Al and Mg in addition to Zn.
- the amount of the plating layer to be deposited is not particularly limited, and may be a general amount of deposition.
- Rough rolling is performed on the heated slab before finish rolling.
- Rough rolling conditions are not particularly limited, but it is preferable to carry out rough rolling so that the total rolling reduction is 60% or more at 1050°C. If the total rolling reduction is less than 60%, recrystallization during hot rolling becomes insufficient, which may lead to heterogeneity in the structure of the hot-rolled steel sheet.
- the above total rolling reduction may be, for example, 90% or less.
- the width edge portion of the steel sheet that has completed rough rolling is reheated so that the temperature (Te) of the width edge portion is higher than the temperature (Tc) of the width center portion by 10 to 150°C.
- the width edge portion is hardened more than the width center portion because the subsequent cooling rate is higher in the width edge portion than in the width center portion.
- a shape defect called “middle elongation” occurs in which the width center portion is elongated compared to the width edge portion.
- the curvature in the final product is degraded.
- the width edge portion is excessively heated, the width edge portion becomes excessively soft, resulting in a shape defect called "ear wave" in which the edge portion extends from the center portion in the subsequent cold rolling process.
- the edge is heated so that the temperature of the width edge portion is 10 to 150° C.
- Heating (reheating) of the width edge portion can be performed by any suitable means known to those skilled in the art and is not particularly limited, but can be performed using an edge heater, for example.
- finish rolling After reheating the edge portion, finish rolling is performed.
- the conditions are not particularly limited. desirable.
- the finish rolling entry temperature is lower than 950°C
- the finish rolling exit temperature is lower than 850°C, or the total rolling reduction is higher than 95%
- the texture of the hot rolled steel sheet develops, so the final product sheet Anisotropy in may become apparent.
- the finish rolling entry temperature exceeds 1050 ° C.
- the finish rolling exit temperature exceeds 1000 ° C., or the total rolling reduction is less than 70%
- the crystal grain size of the hot rolled steel sheet becomes coarse, and the final This may cause coarsening of the product plate structure.
- the shape of the steel sheet after cold rolling can be improved by coiling the steel sheet after finish rolling at a coiling temperature of 450 to 650°C. If the coiling temperature is lower than 450°C, the strength of the hot-rolled steel sheet increases, and the shape of the steel sheet after cold rolling deteriorates. On the other hand, if the coiling temperature exceeds 650° C., cementite coarsens and undissolved cementite remains, which may impair workability.
- pickling After hot rolling, if necessary, pickling is performed to remove scales.
- the pickling method should just follow a conventional method.
- pretreatment such as skin pass rolling or shot blasting may be performed before pickling.
- the cold rolling process includes cold rolling the obtained hot rolled steel sheet using a tandem mill consisting of N (N ⁇ 3) rolling stands, and the cumulative cold rolling reduction is A cold rolling process is performed that is 30% or more and satisfies the following equations (2) and (3).
- Equation (2) means that the value increases when a large reduction is applied in a state where the difference between the forward tension/flow stress and the rear tension/flow stress is large.
- the difference between the forward tension/flow stress and the rear tension/flow stress should be reduced.
- the left side of formula (2) is 3.0 or more, the shape of the steel sheet after cold rolling deteriorates significantly, and the curvature of the final product no longer satisfies formula (1).
- the lower limit is not particularly limited, for example, the left side of Equation (2) may be 0.1 or more or 0.2 or more.
- Formula (2) is one preferable index for realizing stable cold rolling without rolling defects such as slip by well balancing the tension and the yield strength of the hot-rolled steel sheet before and after each rolling stand. Therefore, in order to realize such stable cold rolling, it is possible to use other control methods instead of the control method according to equation (2).
- the cumulative cold rolling reduction ratio 30% or more in order to obtain a good steel plate shape with high flatness. If the cumulative cold rolling reduction is less than 30%, the shape of the steel sheet after cold rolling is not sufficiently improved, and as a result the curvature of the final product does not satisfy the formula (1).
- the cumulative cold rolling reduction may be 40% or more or 50% or more. Although the upper limit is not particularly limited, since excessive reduction causes an excessive rolling load and increases the burden on the cold rolling mill, the cumulative cold rolling reduction may be 75% or less or 70% or less.
- the obtained cold-rolled steel sheet is subjected to a predetermined heat treatment in the heat treatment step.
- a predetermined heat treatment in order to sufficiently promote austenitization, heating is performed at Ac 3° C. or higher for 10 seconds or longer. If the heating temperature is less than Ac3°C or the holding time is less than 10 seconds, the austenitization is not sufficient, so the desired steel structure mainly composed of martensite cannot be obtained, and sufficient strength cannot be obtained. . On the other hand, if the heating temperature exceeds 950° C. or the holding time exceeds 500 seconds, the crystal grain size will become coarse, and in addition, fuel costs will increase and equipment will be damaged.
- Ac3 (°C) is calculated by the following formula.
- T1 110 to 250° C.
- the cooling stop temperature may be 120°C or higher and/or may be 220°C or lower.
- Average cooling rate between 300-700°C: 20-150°C/s By controlling the average cooling rate between 300 to 700 ° C. (average cooling rate 1) in the range of 20 to 150 ° C./s, it is possible to suppress the increase in temperature deviation in the steel plate, so the curvature of the steel plate can be reduced. improvement is possible. If the average cooling rate in the above section is less than 20°C/s, the martensite fraction becomes low and the desired tensile strength cannot be obtained. On the other hand, if it exceeds 150° C./s, the curvature of the steel sheet is deteriorated due to an increase in the temperature deviation within the steel sheet. It should be noted that the average cooling rate in the present invention is a rate including the cooling time described later.
- Average cooling rate between T1 and 300°C: 1.0 to 20°C/s and refrigerant: gas By setting the average cooling rate between T1 and 300°C (average cooling rate 2) to 1.0 to 20°C/s, and using a gas (for example, nitrogen gas) as a refrigerant for relatively gentle cooling, Since an increase in temperature deviation in the steel sheet can be suppressed, the curvature of the steel sheet can be improved. If the average cooling rate in the section is less than 1.0° C./s, the martensite fraction becomes low, making it impossible to obtain the desired tensile strength. On the other hand, if it exceeds 20° C./s, the curvature of the steel sheet deteriorates due to an increase in the temperature deviation within the steel sheet. Moreover, it is necessary to use a gas as the coolant from the viewpoint of reliably suppressing an increase in the temperature deviation within the steel sheet.
- a gas for example, nitrogen gas
- Ms (°C) is calculated by the following formula. The mass % of the element concerned is substituted for the symbol of the element in the following formula. 0% by mass is substituted for elements that are not contained.
- Ms (°C) 561-474 x C-33 x Mn-17 x Cr-21 x Mo-7.5 x Si + 10 x Co
- the cold-rolled steel sheet obtained by the cold-rolled steel sheet manufacturing method according to the embodiment of the present invention may be subjected to a post-process such as a plating process for forming a coating layer on one or both sides of the cold-rolled steel sheet.
- a post-process such as a plating process can be performed by a conventional method.
- steel having the chemical composition shown in Table 1 was cast to produce a slab.
- the balance other than the components shown in Table 1 is Fe and impurities.
- These slabs were subjected to hot rolling including rough rolling and finish rolling under the conditions shown in Table 2 to produce hot rolled steel sheets. Heating (reheating) of the width edge portion after rough rolling was performed using an edge heater.
- the hot-rolled steel sheet was pickled to remove surface scales, and cold-rolled under the conditions shown in Table 2 using a tandem mill consisting of five rolling stands.
- the sheet thickness after cold rolling was 1.6 mm, and the sheet width was 1000 mm.
- the obtained cold-rolled steel sheets were heat-treated under the conditions shown in Table 2. Cooling between the cooling stop temperature T1 and 300° C. was carried out at a predetermined average cooling rate (average cooling rate 2 in Table 2) using nitrogen gas (water in Comparative Example 24) as a coolant.
- JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction of the steel sheet in the air at room temperature (25°C), and a tensile test was performed in accordance with JIS Z 2241:2011. Tensile strength (TS) and total elongation (El) were measured. In addition, the "JFS T 1001: 1996 hole expansion test method" of the Japan Iron and Steel Federation standard was performed to measure the hole expansion rate ( ⁇ ).
- the maximum value of curvature 1/R was determined as follows. First, cold-rolled steel sheets, which have not been subjected to a specific mechanical flattening process, are measured at each point in an area of full width x 300 mm length using an ATOS 3D scanner manufactured by GOM. Curvature distribution in the steel plate was obtained. Next, in the curvature distribution thus measured, the larger absolute value of the principal curvatures ⁇ 1 and ⁇ 2 was determined as the maximum value of the curvature 1/R.
- the hydrogen embrittlement resistance was evaluated by the hydrogen embrittlement test using the shearing shown in Fig. 1. Specifically, first, a sample of T (thickness) ⁇ 50W (width) ⁇ 50L (length) (unit: mm) was taken from the steel plate so as to include a portion where the maximum value of curvature 1/R was obtained. . The shear angle ⁇ was 1 degree, the clearance CL was 0.15 ⁇ T, and the plate pressing pressure was 1 ton or more. After cutting the above sample by shearing, the steel plate on the product side (plate holding side) was heat-treated at 170° C. for 10 minutes.
- the steel sheet was immersed in an aqueous ammonium thiocyanate solution having a concentration of 0.3 g/L and a concentration of 3 g/L at room temperature for 48 hours to introduce hydrogen into the steel sheet.
- the sheared surface was observed with a microscope to evaluate the presence or absence of cracks. Those in which cracks were observed at 0.3 g / L were x (failed), cracks were not observed at 0.3 g / L, but cracks were observed at 3 g / L, ⁇ (accepted), 0 3 g/L and 3 g/L were evaluated as ⁇ (accepted) when cracks were not observed.
- Comparative Example 2 the maximum value of the curvature 1/R increased and the hydrogen embrittlement resistance deteriorated because the expression (2) was not satisfied in the cold rolling process.
- Comparative Examples 3 and 12 the difference between the temperature of the width edge portion and the temperature of the width center portion of the steel plate after rough rolling was not appropriate in the hot rolling process, so the maximum value of the curvature 1/R increased, and the hydrogen resistance increased. Embrittlement properties decreased.
- Comparative Example 4 since the cumulative cold rolling reduction was low in the cold rolling process, the maximum value of the curvature 1/R was increased and the hydrogen embrittlement resistance was lowered.
- Comparative Example 5 since the cooling stop temperature T1 was low in the heat treatment step, retained austenite was not sufficiently formed, and El decreased.
- Examples 1, 20 to 22, and 25 to 44 of the present invention by having a predetermined chemical composition and steel structure and further controlling the maximum value of the curvature 1/R to 0.010 or less, , a cold-rolled steel sheet having high tensile strength and total elongation and improved hydrogen embrittlement resistance could be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
(1)熱間圧延工程において、粗圧延後にエッジ部の再加熱を行う。これにより鋼板幅方向での熱延鋼板強度の変動が抑制される。さらに、仕上げ圧延後の鋼板を適切な温度範囲で巻き取る。その結果、冷間圧延後の鋼板形状が改善する。
(2)冷間圧延工程において、圧延ロールを通過する際の各圧延スタンドにおける前方張力と後方張力を、冷延前の熱延鋼板の降伏強度と各圧延スタンドにおける圧下率に応じて適切な範囲に制御する。さらに、累積の冷延圧下率を適切な範囲に制御する。これにより、冷間圧延後の鋼板形状が改善する。
(3)冷間圧延工程後の熱処理工程における加熱保持後の冷却処理において、300℃以下の平均冷却速度を所定の範囲に制限し、冷媒として気体を使用し、かつ、冷却処理において熱拡散を促すための放冷を施す。さらに、300~700℃の間の平均冷却速度および冷却停止温度も適切な範囲に制御する必要がある。加えて、冷却処理中の鋼板張力を適正な範囲に制御する。これにより、熱処理後の鋼板形状が改善する。
上記(1)~(3)の要件を全て満足した場合、既存技術では達成できなかった水準の形状に優れる鋼板が得られる。
(1)質量%で、
C :0.16~0.40%、
Si:0.05~2.00%、
Mn:0.50~4.00%、
P :0.050%以下、
S :0.0100%以下、
Al:0.001~1.00%、
N :0.0100%以下、
O :0.0050%以下、
Cr:0~2.00%、
Mo:0~1.00%、
Cu:0~1.00%、
Ni:0~1.00%、
B :0~0.0100%、
Co:0~1.00%、
W :0~1.00%、
Sn:0~1.00%、
Sb:0~1.00%、
Nb:0~0.100%、
Ti:0~0.200%、
V :0~0.50%、
Ca:0~0.0100%、
Mg:0~0.0100%、
Ce:0~0.0100%、
Zr:0~0.0100%、
La:0~0.0100%、
Hf:0~0.0100%、
Bi:0~0.0100%、
Ce、La以外のREM:0~0.0100%、ならびに
残部:Feおよび不純物からなる化学組成を有し、
表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、面積%で、
マルテンサイト:90.0~99.5%、
フェライト:0~5%、
残留オーステナイト:0.5~7.0%、および
残部:ベイナイト
であり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%であり、
全幅×長さ300mmの領域を形状測定することにより得られ、下記式(1)で表される曲率1/Rの最大値が0.010以下であり、
引張強度が1470MPa以上であることを特徴とする、冷延鋼板。
ρ1およびρ2:曲面上の主曲率
(2)前記化学組成が、質量%で、
Cr:0.001~2.00%、
Mo:0.001~1.00%、
Cu:0.001~1.00%、
Ni:0.001~1.00%、
B :0.0001~0.0100%、
Co:0.001~1.00%、
W :0.001~1.00%、
Sn:0.001~1.00%、
Sb:0.001~1.00%、
Nb:0.001~0.100%、
Ti:0.001~0.200%、
V :0.001~0.50%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
Ce:0.0001~0.0100%、
Zr:0.0001~0.0100%、
La:0.0001~0.0100%、
Hf:0.0001~0.0100%、
Bi:0.0001~0.0100%、および
Ce、La以外の REM:0.0001~0.0100%
からなる群より選択される1種または2種以上を含むことを特徴とする、上記(1)に記載の冷延鋼板。
(3)前記冷延鋼板をせん断加工し、次いで170℃で10分間の熱処理を与えた後に濃度0.3g/Lのチオシアン酸アンモニウム水溶液に48時間浸漬する水素脆化試験において、せん断加工面に割れが発生しないことを特徴とする、上記(1)または(2)に記載の冷延鋼板。
(4)表面に電気亜鉛めっき層、溶融亜鉛めっき層、合金化溶融亜鉛めっき層のいずれかを有する、上記(1)~(3)のいずれか一項に記載の冷延鋼板。
(5)(A)上記(1)または(2)に記載の化学組成を有するスラブを粗圧延および仕上げ圧延することを含み、以下の(A1)~(A3)の条件を満足する熱間圧延工程、
(A1)スラブ加熱温度が1150℃以上であること、
(A2)粗圧延後の鋼板の幅エッジ部の温度が幅センター部の温度よりも10~150℃高くなるように幅エッジ部を加熱すること、
(A3)巻取温度が450~650℃であること
(B)得られた熱延鋼板をN基(N≧3)の圧延スタンドからなるタンデムミルを用いて冷間圧延することを含む冷間圧延工程であって、累積の冷延圧下率が30%以上であり、かつ以下の式(2)および(3)を満足する冷間圧延工程、
Pbk:k番目の圧延スタンドにおける後方張力
Pfk:k番目の圧延スタンドにおける前方張力
σk-1:k-1番目の圧延スタンドを通過した後の鋼板の流動応力
σk:k番目の圧延スタンドを通過した後の鋼板の流動応力
σ0:熱延鋼板の降伏強度
εk:k番目の圧延スタンドを通過した後の累積ひずみ
(C)得られた冷延鋼板を熱処理することを含み、以下の(C1)~(C3)の条件を満足する熱処理工程
(C1)冷延鋼板をAc3~950℃で10秒~500秒間保持すること(加熱保持)、
(C2)以下の(i)~(v)を満足する冷却処理を実施すること、
(i)冷却停止温度T1が110~250℃であること、
(ii)300~700℃の間の平均冷却速度が20~150℃/sであること、
(iii)T1~300℃の間の平均冷却速度が1.0~20℃/sであり、かつ、冷媒として気体を使用すること、
(iv)Ms~700℃の間、およびT1~Ms未満の間に、各々0.5s以上の放冷を少なくとも1回実施すること、
(v)冷延鋼板に適用される張力が5~20MPaであること
(C3)200~300℃の間で100~1000秒間保持すること(低温保持)
を含むことを特徴とする、上記(1)~(3)のいずれか一項に記載の冷延鋼板の製造方法。
まず、本発明の実施形態に係る鋼板の化学組成を上述のように限定した理由について説明する。なお、本明細書において化学組成を規定する「%」は特に断りのない限り全て「質量%」である。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値および上限値として含む意味で使用される。
C(炭素)は、鋼板強度確保のために必須の元素である。このような効果を十分に得るために、C含有量は0.16%以上とする。C含有量は0.18%以上、0.20%以上または0.22%以上であってもよい。一方、Cを過度に含有すると、プレス成形性等の加工性や溶接性、さらには耐水素脆化特性が低下する場合がある。このため、C含有量は0.40%以下とする。C含有量は0.37%以下、0.33%以下または0.30%以下であってもよい。
Si(ケイ素)は、鉄炭化物の生成を抑制し、強度と成形性の向上に寄与する元素である。これらの効果を十分に得るために、Si含有量は0.05%以上とする。Si含有量は0.10%以上、0.20%以上または0.40%以上であってもよい。一方、過度の添加は靭性や溶接性、さらには耐水素脆化特性が低下する場合がある。従って、Si含有量は2.00%以下とする。Si含有量は1.60%以下、1.30%以下または1.00%以下であってもよい。
Mn(マンガン)は強力なオーステナイト安定化元素であり、鋼板の高強度化に有効な元素である。このような効果を十分に得るために、Mn含有量は0.50%以上とする。Mn含有量は0.80%以上、1.00%以上または1.30%以上であってもよい。一方、過度の添加はプレス成形性等の加工性や溶接性、さらには耐水素脆化特性を劣化させる場合がある。従って、Mn含有量は4.0%以下とする。Mn含有量は3.0%以下、2.5%以下または2.0%以下であってもよい。
P(リン)は固溶強化元素であり、鋼板の高強度化に有効な元素であるが、過度の添加は溶接性および靱性を劣化させる。従って、P含有量は0.050%以下と制限する。P含有量は、好ましくは0.045%以下、0.035%以下または0.020%以下である。P含有量は0%であってもよいが、P含有量を極度に低減させるには、脱Pコストが高くなるため、経済性の観点から下限を0.001%とすることが好ましい。
S(硫黄)は不純物として含有される元素であり、鋼中でMnSを形成して靱性や穴広げ性を劣化させる。したがって、靱性や穴広げ性の劣化が顕著でない範囲として、S含有量を0.0100%以下と制限する。S含有量は、好ましくは0.0050%以下、0.0040%以下または0.0030%以下である。S含有量は0%であってもよいが、S含有量を極度に低減させるには、脱硫コストが高くなるため、経済性の観点から下限を0.0001%とすることが好ましい。
Al(アルミニウム)は、鋼の脱酸のため少なくとも0.001%を添加する。Al含有量は0.005%以上、0.01%以上または0.02%以上であってもよい。一方、Alを過剰に添加しても効果が飽和し徒にコスト上昇を招くばかりか、鋼の変態温度を上昇させ熱間圧延時の負荷を増大させ、結果として鋼板の機械特性を低下させる場合がある。従ってAl含有量は1.00%を上限とする。Al含有量は0.80%以下、0.60%以下または0.30%以下であってもよい。
N(窒素)は不純物として含有される元素であり、その含有量が多いと鋼中に粗大な窒化物を形成して曲げ性や穴広げ性を劣化させる場合がある。したがって、N含有量は0.0100%以下と制限する。N含有量は、好ましくは0.0080%以下、0.0060%以下または0.0050%以下である。N含有量は0%であってもよいが、N含有量を極度に低減させるには、脱Nコストが高くなるため、経済性の観点から下限を0.0001%とすることが好ましい。
O(酸素)は不純物として含有される元素であり、その含有量が多いと鋼中に粗大な酸化物を形成して曲げ性や穴広げ性を劣化させる場合がある。従って、O含有量は0.0100%以下と制限する。O含有量は、好ましくは0.0080%以下、0.0060%以下または0.0050%以下である。O含有量は0%であってもよいが、製造コストの観点から、下限を0.0001%とすることが好ましい。
Cr(クロム)、Mo(モリブデン)、Cu(銅)、Ni(ニッケル)、B(ホウ素)、Co(コバルト)、W(タングステン)、Sn(錫)およびSb(アンチモン)はいずれも鋼の焼入れ性を高めて鋼板の高強度化に有効な元素である。また、Nb(ニオブ)、Ti(チタン)およびV(バナジウム)は合金炭化物生成元素であり、鋼板中に微細な炭化物として析出することで鋼板の高強度化に寄与する元素である。このため、必要に応じてこれらの元素のうち1種または2種以上を添加してもよい。しかしこれらの元素を過度に添加すると効果が飽和し徒にコストの増大を招く。従って、その含有量はCr:0~2.00%、Mo:0~1.00%、Cu:0~1.00%、Ni:0~1.00%、B:0~0.0100%、Co:0~1.00%、W:0~1.00%、Sn:0~1.00%、Sb:0~1.00%、Nb:0~0.100%、Ti:0~0.200%およびV:0~0.50%とする。各元素は0.001%以上、0.005%以上または0.010%以上であってもよい。とりわけ、B含有量は0.0001%以上または0.0005%以上であってもよい。
Ca(カルシウム)、Mg(マグネシウム)、Ce(セリウム)、Zr(ジルコニウム)、La(ランタン)、Hf(ハフニウム)およびCe、La以外のREM(希土類元素)は鋼中介在物の微細分散化に寄与する元素であり、Bi(ビスマス)は鋼中におけるMn、Si等の置換型合金元素のミクロ偏析を軽減する元素である。それぞれ鋼板の加工性向上に寄与することから、必要に応じてこれらの元素のうち1種または2種以上を添加してもよい。ただし過度の添加は延性の劣化を引き起こす。従ってその含有量は0.0100%を上限とする。また、各元素は0.0001%以上、0.0005%以上または0.0010%以上であってもよい。
次に、本発明の実施形態に係る冷延鋼板の鋼組織について説明する。
冷延鋼板の表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織は、面積%で、マルテンサイト:90.0~99.5%、フェライト:0~5%、残留オーステナイト:0.5~7.0%、および残部:ベイナイトであり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%である。
残留オーステナイト以外の各組織の面積率は、SEM-EBSD法(電子線後方散乱回折法)およびSEM二次電子像観察により評価する。まず、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を機械研磨し鏡面に仕上げた後、電解研磨を行う。次いで、観察面における鋼板の表面から1/4厚を中心とした1/8厚~3/8厚の範囲の一つないし複数の観察視野において、合計で3000μm2以上の面積についてSEM-EBSD法により結晶構造および方位解析を行う。EBSD法により得られたデータの解析にはTSL社製の「OIM Analysys 7.0」を用いる。また、評点間距離(step)は0.03~0.20μmとする。結晶方位差が15度以上となる境界を粒界として結晶粒界マップを得る。次に、同一試料についてナイタールエッチングを施す。その後、EBSDによる結晶方位解析を行った視野と同一視野について、FE-SEMを用いて二次電子像を撮影する。このとき、予めビッカース圧痕などで目印をつけておくとよい。最後に、前記結晶粒界マップと二次電子像を重ね合わせる。方位差15度以上の粒界に囲まれた個々の結晶粒について、以下の基準に基づき組織分類を行う。
本発明の実施形態に係る冷延鋼板では、高強度、例えば1470MPa以上の高強度であるにもかかわらず、非常に高い平坦度を有することで、例えば打ち抜きパンチによって冷延鋼板をせん断加工した場合においても、せん断加工部の端面性状が非常に良好であり、その結果として優れた耐水素脆化特性を達成することができる。本発明におけるこのような高い平坦度を有する鋼板形状は、曲率半径R(mm)の逆数に相当する曲率1/Rの最大値を用いて規定される。より具体的には、本発明における曲率1/Rの最大値は、曲面上の2つの主曲率ρ1、ρ2を用いて以下の式(1)により定義され、本発明に係る実施形態では当該曲率1/Rの最大値が0.010以下に制御される。
本発明の実施形態に係る冷延鋼板によれば、優れた機械的特性、例えば1470MPa以上の引張強度(TS)を達成することができる。引張強度は1490MPa以上が好ましく、1500MPa以上がより好ましい。上限は特に限定されないが、例えば引張強度は2000MPa以下、1900MPa以下または1800MPa以下であってもよい。
本発明の実施形態に係る冷延鋼板によれば、高い全伸び(El)を達成することができ、より具体的には6.0%以上の全伸びを達成することができる。全伸びは7.0%以上が好ましく、8.0%以上がより好ましい。上限は特に限定されないが、例えば全伸びは20.0%以下または15.0%以下であってもよい。ここで、冷延鋼板の引張強度および全伸びは、室温(25℃)大気中で、鋼板の圧延方向に直角な方向からJIS5号引張試験片を採取し、JIS Z 2241:2011で規定された引張試験により測定する。
本発明の実施形態に係る冷延鋼板によれば、高い穴広げ性を達成することができ、より具体的には20%以上の穴広げ率(λ)を達成することができる。穴広げ率は、25%以上が好ましく、30%以上がより好ましい。上限は特に限定されないが、例えば穴広げ率は80.0%以下または70.0%以下であってもよい。穴広げ率(λ)は、日本鉄鋼連盟規格の「JFS T 1001:1996 穴広げ試験方法」により測定する。
本発明の実施形態に係る冷延鋼板は、以下の方法による水素脆化試験において割れが発生しないことを特徴とする。せん断加工は図1に示す方法により行う。曲率1/Rの最大値が得られる箇所を含むように鋼板からT(厚さ)×50W(幅)×50L(長さ)(単位:mm)のサンプルを採取する。シャー角θは1度、クリアランスCLは0.15×Tとする。板押さえ圧は少なくとも1ton以上負荷する。上記のサンプルをせん断加工にて切断後、製品側(板押さえ側)の鋼板について170℃、10分の熱処理を行う。その後、濃度0.3g/Lの常温のチオシアン酸アンモニウム水溶液に48時間浸漬し、発生した水素を鋼板に導入する。その後、せん断加工面をマイクロスコープ等で観察し、亀裂の有無を評価する。170℃で10分間の熱処理は、塗装焼き付け処理等の熱処理を模擬したものである。
本発明の実施形態に係る冷延鋼板は、例えば0.5~3.0mmの板厚を有する。特に限定されないが、板厚は0.6mm以上、0.8mm以上または1.0mm以上であってもよい。同様に、板厚は2.8mm以下、2.6mm以下または2.3mm以下であってもよい。
本発明の実施形態に係る冷延鋼板は、例えば500mm以上の板幅を有する。特に限定されないが、板幅は700mm以上、800mm以上または900mm以上であってもよい。板幅の上限は特に限定されないが、板幅は2000mm以下、1800mm以下、1600mm以下、1400mm以下、1300mm以下、1200mm以下又は1100mm以下であってもよい。
本発明の実施形態に係る冷延鋼板は、両面または片面、好ましくは両面に、めっき層を有していてもよい。めっき層としては、電気亜鉛めっき層、溶融亜鉛めっき層または合金化溶融亜鉛めっき層が代表的に例示される。これらの亜鉛めっき層は、当業者に公知の任意の組成を有するものであってよく、Zn以外にもAlやMg等の添加元素を含んでいてよい。また、当該めっき層の付着量は、特に制限されず一般的な付着量であってよい。
次に、本発明の実施形態に係る冷延鋼板の製造方法について説明する。以下の説明は、本発明の実施形態に係る冷延鋼板を製造するための特徴的な方法の例示を意図するものであって、当該冷延鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
まず、熱間圧延工程について説明する。
熱間圧延工程では、冷延鋼板に関して上で説明した化学組成と同じ化学組成を有するスラブが熱間圧延前に加熱され、次いで粗圧延および仕上げ圧延が施される。スラブの加熱温度は、ホウ化物や炭化物などを十分溶解するため、1150℃以上とすることが必要であり、1200℃以上が好ましい。なお使用する鋼スラブは、製造性の観点から連続鋳造法にて鋳造することが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。
加熱されたスラブに対し、仕上げ圧延の前に粗圧延を行う。粗圧延条件は特に限定されないが、1050℃で総圧下率が60%以上となるように実施することが好ましい。総圧下率が60%未満であると、熱間圧延中の再結晶が不十分となるため、熱延鋼板組織の不均質化につながる場合がある。上記の総圧下率は、例えば、90%以下であってもよい。
粗圧延を完了した鋼板に対して、幅エッジ部の温度(Te)が幅センター部の温度(Tc)よりも10~150℃高くなるように幅エッジ部を再加熱する。このような再加熱を施すことで、幅方向における熱延鋼板の強度変動を抑制して幅方向において強度がより均一な熱延鋼板を製造することができる。このため、その後の冷間圧延工程において幅方向全体にわたって均一な圧延を実施することができ、冷間圧延後の鋼板形状をより改善することが可能となる。このような再加熱を施さない場合、幅センター部より幅エッジ部の方がその後の冷却速度が大きいため、幅センター部より幅エッジ部の方が硬質化する。その結果、その後の冷間圧延工程において、幅エッジ部と比べて幅センター部が延伸する「中伸び」と呼ばれる形状不良が生じる。その結果、最終製品における曲率が悪化する。一方、幅エッジ部を過剰に加熱してしまうと幅エッジ部が過剰に軟質化するため、その後の冷間圧延工程においてエッジ部がセンター部より延伸する「耳波」と呼ばれる形状不良が生じる。これらの形状不良を回避するため、幅エッジ部の温度が幅センター部の温度より10~150℃高くなるようエッジを加熱する。好ましくは20~100℃であり、より好ましくは40~90℃である。幅エッジ部の加熱(再加熱)は、当業者に公知に任意の適切な手段によって実施することができ特に限定されないが、例えばエッジヒーターを用いて実施することが可能である。
エッジ部を再加熱した後、仕上げ圧延を行う。その条件は特に限定されないが、仕上げ圧延入側温度が950~1050℃、仕上げ圧延出側温度が850~1000℃、および総圧下率が70~95%の条件を満足する範囲で実施されことが望ましい。仕上げ圧延入側温度が950℃を下回るか、仕上げ圧延出側温度が850℃を下回るか、または総圧下率が95%を上回った場合、熱延鋼板の集合組織が発達するため、最終製品板における異方性が顕在化する場合がある。一方、仕上げ圧延入側温度が1050℃を上回るか、仕上げ圧延出側温度が1000℃を上回るか、または総圧下率が70%を下回った場合、熱延鋼板の結晶粒径が粗大化し、最終製品板組織の粗大化を引き起こす場合がある。
本方法では、仕上げ圧延後の鋼板を450~650℃の巻取温度で巻き取ることで、冷間圧延後の鋼板形状を改善することができる。巻取温度が450℃を下回る場合、熱延鋼板が高強度化するため、冷間圧延後の鋼板形状が悪化する。一方、巻取温度が650℃を上回る場合、セメンタイトが粗大化し、未溶解のセメンタイトが残存するために加工性を損なう場合がある。
熱間圧延後は必要に応じて酸洗を行い、スケールを除去する。酸洗方法は常法に従えばよい。また、熱延コイルの形状矯正ないし酸洗性向上のため、酸洗前にスキンパス圧延やショットブラスト処理等の前処理を行っても差し支えない。
次に、冷間圧延工程について説明する
本方法では、得られた熱延鋼板をN基(N≧3)の圧延スタンドからなるタンデムミルを用いて冷間圧延することを含む冷間圧延工程であって、累積の冷延圧下率が30%以上であり、かつ以下の式(2)および(3)を満足する冷間圧延工程が実施される。
Pbk:k番目の圧延スタンドにおける後方張力
Pfk:k番目の圧延スタンドにおける前方張力
σk-1:k-1番目の圧延スタンドを通過した後の鋼板の流動応力
σk:k番目の圧延スタンドを通過した後の鋼板の流動応力
σ0:熱延鋼板の降伏強度
εk:k番目の圧延スタンドを通過した後の累積ひずみ
次に、熱処理工程について説明する。
得られた冷延鋼板は熱処理工程において所定の熱処理に供される。まず、オーステナイト化を十分進めるため、Ac3℃以上で10秒以上の加熱を行う。加熱温度がAc3℃未満であるかまたは保持時間が10秒未満であると、オーステナイト化が十分でないために、マルテンサイトを主体とする所望の鋼組織が得られず、十分な強度が得られない。一方、加熱温度が950℃を上回るかまたは保持時間が500秒を超えると、結晶粒径が粗大化することに加え、燃料コストの増大や設備の損傷を招く。Ac3(℃)は次の式により計算する。下記式における元素記号には当該元素の質量%を代入する。含有しない元素については0質量%を代入する。
Ac3(℃)=912-230.5×C+31.6×Si-20.4×Mn-39.8×Cu-18.1×Ni-14.8×Cr+16.8×Mo+100.0×Al
加熱後は110~250℃の範囲まで冷却する。T1が110℃を下回る場合、残留オーステナイトが面積率で0.5%を下回り、全伸びが低下する。一方、250℃を上回る場合、マルテンサイトに占める焼き戻しマルテンサイトの割合が80%よりも小さくなり、結果として耐水素脆化特性が低下する。冷却停止温度は120℃以上であってもよく、および/または220℃以下であってもよい。
300~700℃の間の平均冷却速度(平均冷却速度1)を20~150℃/sの範囲に制御することで、鋼板内の温度偏差の増大を抑制することができるので、鋼板の曲率を改善することが可能となる。上記区間の平均冷却速度が20℃/sを下回る場合、マルテンサイト分率が低くなり、所望の引張強度を得ることができなくなる。一方、150℃/sを上回る場合、鋼板内の温度偏差が増大することにより鋼板の曲率が悪化する。なお、本発明における平均冷却速度とは、後述する放冷時間を含む速度である。
T1~300℃の間の平均冷却速度(平均冷却速度2)を1.0~20℃/sとし、かつ冷媒として気体(例えば窒素ガス)を使用して比較的穏やかな冷却とすることで、鋼板内の温度偏差の増大を抑制することができるので、鋼板の曲率を改善することが可能となる。上記区間の平均冷却速度が1.0℃/sを下回る場合、マルテンサイト分率が低くなり、所望の引張強度を得ることができなくなる。一方、20℃/sを上回る場合、鋼板内の温度偏差が増大することにより鋼板の曲率が悪化する。また、冷媒には鋼板内の温度偏差の増大を確実に抑制する観点から気体を使用する必要がある。
Ms~700℃の間およびT1~Ms未満の間の各区間において冷却を一時停止し、0.5s以上の放冷を行う。この処理により鋼板内の伝熱を促し、鋼板内の温度ムラを改善することで鋼板の曲率を改善することができる。Ms(℃)は次の式により計算する。下記式における元素記号には当該元素の質量%を代入する。含有しない元素については0質量%を代入する。
Ms(℃)=561-474×C-33×Mn-17×Cr-21×Mo-7.5×Si+10×Co
上記冷却工程の間、冷延鋼板にかかる適用される張力は6~20MPaに制限する必要がある。このような範囲に張力を制御することで、冷延鋼板の平坦度を向上させることができ、最終的に得られる冷延鋼板の曲率を改善することが可能となる。一方、当該張力が上記範囲外の場合、冷延鋼板の曲率が悪化する。この張力は8MPa以上であってもよい。同様に、この張力は16MPa以下であってもよい。
冷却停止温度T1まで冷却した後は200~300℃の間で100~1000秒間保持を行う。これにより未変態のオーステナイトに炭素を分配させて残留オーステナイトを得ることができる。温度が200℃未満または保持時間が100秒未満の場合、所望の残留オーステナイト量が得られない。一方、温度が300℃を上回るかまたは保持時間が1000秒を上回る場合、所望の鋼組織が得られず、その結果として所望の引張強度および全伸びが得られない。
Claims (5)
- 質量%で、
C :0.16~0.40%、
Si:0.05~2.00%、
Mn:0.50~4.00%、
P :0.050%以下、
S :0.0100%以下、
Al:0.001~1.00%、
N :0.0100%以下、
O :0.0050%以下、
Cr:0~2.00%、
Mo:0~1.00%、
Cu:0~1.00%、
Ni:0~1.00%、
B :0~0.0100%、
Co:0~1.00%、
W :0~1.00%、
Sn:0~1.00%、
Sb:0~1.00%、
Nb:0~0.100%、
Ti:0~0.200%、
V :0~0.50%、
Ca:0~0.0100%、
Mg:0~0.0100%、
Ce:0~0.0100%、
Zr:0~0.0100%、
La:0~0.0100%、
Hf:0~0.0100%、
Bi:0~0.0100%、
Ce、La以外のREM:0~0.0100%、ならびに
残部:Feおよび不純物からなる化学組成を有し、
表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、面積%で、
マルテンサイト:90.0~99.5%、
フェライト:0~5%、
残留オーステナイト:0.5~7.0%、および
残部:ベイナイト
であり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%であり、
全幅×長さ300mmの領域を形状測定することにより得られ、下記式(1)で表される曲率1/Rの最大値が0.010以下であり、
引張強度が1470MPa以上であることを特徴とする、冷延鋼板。
ρ1およびρ2:曲面上の主曲率 - 前記化学組成が、質量%で、
Cr:0.001~2.00%、
Mo:0.001~1.00%、
Cu:0.001~1.00%、
Ni:0.001~1.00%、
B :0.0001~0.0100%、
Co:0.001~1.00%、
W :0.001~1.00%、
Sn:0.001~1.00%、
Sb:0.001~1.00%、
Nb:0.001~0.100%、
Ti:0.001~0.200%、
V :0.001~0.50%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
Ce:0.0001~0.0100%、
Zr:0.0001~0.0100%、
La:0.0001~0.0100%、
Hf:0.0001~0.0100%、
Bi:0.0001~0.0100%、および
Ce、La以外の REM:0.0001~0.0100%
からなる群より選択される1種または2種以上を含むことを特徴とする、請求項1に記載の冷延鋼板。 - 前記冷延鋼板をせん断加工し、次いで170℃で10分間の熱処理を与えた後に濃度0.3g/Lのチオシアン酸アンモニウム水溶液に48時間浸漬する水素脆化試験において、せん断加工面に割れが発生しないことを特徴とする、請求項1または2に記載の冷延鋼板。
- 表面に電気亜鉛めっき層、溶融亜鉛めっき層、合金化溶融亜鉛めっき層のいずれかを有する、請求項1~3のいずれか一項に記載の冷延鋼板。
- (A)請求項1または2に記載の化学組成を有するスラブを粗圧延および仕上げ圧延することを含み、以下の(A1)~(A3)の条件を満足する熱間圧延工程、
(A1)スラブ加熱温度が1150℃以上であること、
(A2)粗圧延後の鋼板の幅エッジ部の温度が幅センター部の温度よりも10~150℃高くなるように幅エッジ部を加熱すること、
(A3)巻取温度が450~650℃であること
(B)得られた熱延鋼板をN基(N≧3)の圧延スタンドからなるタンデムミルを用いて冷間圧延することを含む冷間圧延工程であって、累積の冷延圧下率が30%以上であり、かつ以下の式(2)および(3)を満足する冷間圧延工程、
Pbk:k番目の圧延スタンドにおける後方張力
Pfk:k番目の圧延スタンドにおける前方張力
σk-1:k-1番目の圧延スタンドを通過した後の鋼板の流動応力
σk:k番目の圧延スタンドを通過した後の鋼板の流動応力
σ0:熱延鋼板の降伏強度
εk:k番目の圧延スタンドを通過した後の累積ひずみ
(C)得られた冷延鋼板を熱処理することを含み、以下の(C1)~(C3)の条件を満足する熱処理工程
(C1)冷延鋼板をAc3~950℃で10秒~500秒間保持すること(加熱保持)、
(C2)以下の(i)~(v)を満足する冷却処理を実施すること、
(i)冷却停止温度T1が110~250℃であること、
(ii)300~700℃の間の平均冷却速度が20~150℃/sであること、
(iii)T1~300℃の間の平均冷却速度が1.0~20℃/sであり、かつ、冷媒として気体を使用すること、
(iv)Ms~700℃の間、およびT1~Ms未満の間に、各々0.5s以上の放冷を少なくとも1回実施すること、
(v)冷延鋼板に適用される張力が5~20MPaであること
(C3)200~300℃の間で100~1000秒間保持すること(低温保持)
を含むことを特徴とする、請求項1~3のいずれか一項に記載の冷延鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2024000959A MX2024000959A (es) | 2021-09-09 | 2022-08-24 | Lamina de acero laminada en frio y metodo para producir la misma. |
CN202280047647.2A CN117616144A (zh) | 2021-09-09 | 2022-08-24 | 冷轧钢板及其制造方法 |
JP2023546872A JPWO2023037878A1 (ja) | 2021-09-09 | 2022-08-24 | |
US18/566,434 US20240263288A1 (en) | 2021-09-09 | 2022-08-24 | Cold rolled steel sheet and method for producing same |
KR1020247004143A KR20240032929A (ko) | 2021-09-09 | 2022-08-24 | 냉연 강판 및 그 제조 방법 |
EP22867200.2A EP4400614A1 (en) | 2021-09-09 | 2022-08-24 | Cold-rolled steel sheet and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-146956 | 2021-09-09 | ||
JP2021146956 | 2021-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037878A1 true WO2023037878A1 (ja) | 2023-03-16 |
Family
ID=85506635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031939 WO2023037878A1 (ja) | 2021-09-09 | 2022-08-24 | 冷延鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240263288A1 (ja) |
EP (1) | EP4400614A1 (ja) |
JP (1) | JPWO2023037878A1 (ja) |
KR (1) | KR20240032929A (ja) |
CN (1) | CN117616144A (ja) |
MX (1) | MX2024000959A (ja) |
WO (1) | WO2023037878A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118459A1 (ja) * | 2010-03-24 | 2011-09-29 | Jfeスチール株式会社 | 超高強度冷延鋼板およびその製造方法 |
JP2013227657A (ja) | 2012-03-29 | 2013-11-07 | Kobe Steel Ltd | 鋼板形状に優れた高強度冷延鋼板の製造方法 |
JP2016050343A (ja) | 2014-08-29 | 2016-04-11 | 新日鐵住金株式会社 | 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法 |
JP2016153524A (ja) | 2015-02-13 | 2016-08-25 | 株式会社神戸製鋼所 | 切断端部での耐遅れ破壊特性に優れた超高強度鋼板 |
WO2020090302A1 (ja) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法 |
WO2021039776A1 (ja) * | 2019-08-30 | 2021-03-04 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6112261B2 (ja) | 2015-03-25 | 2017-04-12 | Jfeスチール株式会社 | 冷延鋼板およびその製造方法 |
-
2022
- 2022-08-24 MX MX2024000959A patent/MX2024000959A/es unknown
- 2022-08-24 KR KR1020247004143A patent/KR20240032929A/ko unknown
- 2022-08-24 EP EP22867200.2A patent/EP4400614A1/en active Pending
- 2022-08-24 JP JP2023546872A patent/JPWO2023037878A1/ja active Pending
- 2022-08-24 US US18/566,434 patent/US20240263288A1/en active Pending
- 2022-08-24 WO PCT/JP2022/031939 patent/WO2023037878A1/ja active Application Filing
- 2022-08-24 CN CN202280047647.2A patent/CN117616144A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011118459A1 (ja) * | 2010-03-24 | 2011-09-29 | Jfeスチール株式会社 | 超高強度冷延鋼板およびその製造方法 |
JP2011202195A (ja) | 2010-03-24 | 2011-10-13 | Jfe Steel Corp | 超高強度冷延鋼板およびその製造方法 |
JP2013227657A (ja) | 2012-03-29 | 2013-11-07 | Kobe Steel Ltd | 鋼板形状に優れた高強度冷延鋼板の製造方法 |
JP2016050343A (ja) | 2014-08-29 | 2016-04-11 | 新日鐵住金株式会社 | 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法 |
JP2016153524A (ja) | 2015-02-13 | 2016-08-25 | 株式会社神戸製鋼所 | 切断端部での耐遅れ破壊特性に優れた超高強度鋼板 |
WO2020090302A1 (ja) * | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法 |
WO2021039776A1 (ja) * | 2019-08-30 | 2021-03-04 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
Non-Patent Citations (1)
Title |
---|
"Special Report No. 36: Theory and Practice of Sheet Rolling", 2010, IRON AND STEEL INSTITUTE OF JAPAN, pages: 264 |
Also Published As
Publication number | Publication date |
---|---|
EP4400614A1 (en) | 2024-07-17 |
MX2024000959A (es) | 2024-02-09 |
KR20240032929A (ko) | 2024-03-12 |
CN117616144A (zh) | 2024-02-27 |
JPWO2023037878A1 (ja) | 2023-03-16 |
US20240263288A1 (en) | 2024-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11236412B2 (en) | Steel sheet and plated steel sheet | |
JP6791371B2 (ja) | 高強度冷延鋼板及びその製造方法 | |
JP6777272B1 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
KR102604112B1 (ko) | 용융 아연 도금 강판 및 그 제조 방법 | |
WO2021045168A1 (ja) | 鋼板 | |
US12077831B2 (en) | Steel sheet, member, and methods for producing them | |
JP6777274B1 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
US20220220577A1 (en) | High strength member, method for manufacturing high strength member, and method for manufacturing steel sheet for high strength member | |
EP3757242B1 (en) | High-strength steel sheet and manufacturing method therefor | |
US12071682B2 (en) | Steel sheet, member, and methods for producing them | |
EP3705592A1 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor | |
JPWO2017131054A1 (ja) | 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法 | |
KR102518159B1 (ko) | 용융 아연 도금 강판 및 그 제조 방법 | |
JP7464887B2 (ja) | 鋼板およびその製造方法 | |
US11365459B2 (en) | High strength cold rolled steel sheet and method of producing same | |
US12031203B2 (en) | Galvannealed steel sheet | |
WO2022102218A1 (ja) | 鋼板およびその製造方法 | |
WO2023037878A1 (ja) | 冷延鋼板およびその製造方法 | |
KR20230040349A (ko) | 열연 강판 | |
US20240052449A1 (en) | High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet | |
JP7193044B1 (ja) | 高強度鋼板およびその製造方法、ならびに、部材 | |
WO2024128245A1 (ja) | 鋼板および鋼板の製造方法 | |
WO2023153097A1 (ja) | 冷延鋼板およびその製造方法 | |
US20230295760A1 (en) | High-strength steel sheet | |
JP2022024998A (ja) | 高強度鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867200 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023546872 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317082383 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280047647.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/000959 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20247004143 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247004143 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401000793 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022867200 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022867200 Country of ref document: EP Effective date: 20240409 |