Nothing Special   »   [go: up one dir, main page]

WO2023037878A1 - 冷延鋼板およびその製造方法 - Google Patents

冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2023037878A1
WO2023037878A1 PCT/JP2022/031939 JP2022031939W WO2023037878A1 WO 2023037878 A1 WO2023037878 A1 WO 2023037878A1 JP 2022031939 W JP2022031939 W JP 2022031939W WO 2023037878 A1 WO2023037878 A1 WO 2023037878A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
cold
rolled steel
rolling
less
Prior art date
Application number
PCT/JP2022/031939
Other languages
English (en)
French (fr)
Inventor
卓史 横山
智史 広瀬
裕之 鶴岡
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2024000959A priority Critical patent/MX2024000959A/es
Priority to CN202280047647.2A priority patent/CN117616144A/zh
Priority to JP2023546872A priority patent/JPWO2023037878A1/ja
Priority to US18/566,434 priority patent/US20240263288A1/en
Priority to KR1020247004143A priority patent/KR20240032929A/ko
Priority to EP22867200.2A priority patent/EP4400614A1/en
Publication of WO2023037878A1 publication Critical patent/WO2023037878A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc

Definitions

  • the present disclosure relates to cold-rolled steel sheets and manufacturing methods thereof.
  • Hydrogen embrittlement cracking is a phenomenon in which steel members, which are subjected to high stress during use, suddenly break due to hydrogen entering the steel from the environment. This phenomenon is also called delayed fracture from the mode of occurrence of fracture. Generally, it is known that hydrogen embrittlement cracking of steel sheets is more likely to occur as the tensile strength of steel sheets increases. It is believed that this is because the higher the tensile strength of the steel sheet, the greater the stress remaining in the steel sheet after part forming. This susceptibility to hydrogen embrittlement cracking (delayed fracture) is called hydrogen embrittlement resistance.
  • Patent Document 1 it has a predetermined chemical composition, and the value of the solid solution B amount solB [mass%] and the prior austenite grain size D ⁇ [ ⁇ m] in the steel is expressed by the formula (1): solB D ⁇ 0 .0010, and the area ratios are polygonal ferrite of 10% or less, bainite of 30% or less, retained austenite of 6% or less, and tempered martensite of 60% or more.
  • the Fe carbide number density of 1 ⁇ 10 6 /mm 2 or more, the average dislocation density of the entire steel is 1.0 ⁇ 10 15 /m 2 or more and 2.0 ⁇ 10 16 /m 2 or less, and the effective grain
  • An ultra-high-strength cold-rolled steel sheet having a tensile strength of 1300 MPa or more and excellent hydrogen embrittlement resistance is disclosed, which is characterized by having a steel structure with a diameter of 7.0 ⁇ m or less.
  • Patent Document 2 discloses that tempered martensite and bainite have a predetermined chemical composition, a total area ratio of 95% or more and 100% or less to the entire structure of tempered martensite and bainite, and are distributed in the rolling direction and/or in a dotted pattern.
  • One or more long axes composed of inclusion particles of 0.3 ⁇ m or more, and when the inclusion particles are composed of two or more, the distance between the inclusion particles is 30 ⁇ m or less, and the rolling direction Inclusion groups with total length exceeding 120 ⁇ m are 0.8/mm 2 or less, aspect ratio is 2.5 or less, and major axis is 0.20 ⁇ m or more and 2 ⁇ m or less, mainly composed of Fe
  • the number of carbides is 3500/mm 2 or less, the number of carbides with a diameter of 10 to 50 nm distributed in the tempered martensite and/or the bainite is 0.7 ⁇ 10 7 /mm 2 or more, and prior ⁇ grains
  • a cold-rolled steel sheet having an average grain size of 18 ⁇ m or less, a thickness of 0.5 to 2.6 mm, and a tensile strength of 1320 MPa or more is disclosed. Further, Patent Document 2 describes that with the above configuration, it is possible to obtain an ultra-high-strength cold-rolled steel sheet having a
  • Patent Document 3 it has a predetermined chemical composition, and has a structure consisting of martensite: 90% or more and retained austenite: 0.5% or more in terms of area ratio to the entire structure, and the local Mn concentration is An ultra-high-strength steel sheet having an area ratio of 1.1 times or more of the total Mn content of 2% or more, a tensile strength of 1470 MPa or more, and excellent delayed fracture resistance at the cut edge. disclosed.
  • Patent Document 4 describes an ultra-high-strength cold-rolled steel sheet having a predetermined chemical composition, a martensite single phase metal structure, a tensile strength of 980 MPa or more, and a flatness of 10 mm or less, and a method for producing the same. disclosed.
  • Patent Document 5 discloses a method for producing a high-strength cold-rolled steel sheet having a metal structure with a predetermined chemical composition and a tempered martensite content of 65 area% or more.
  • a secondary cooling step of cooling in seconds a tertiary cooling step of rapidly cooling from the secondary cooling stop temperature to room temperature at an average cooling rate of more than 100 ° C./s, and heating to a temperature range of 150 to 300 ° C. for 30 to 1500 seconds.
  • a method for producing a high-strength cold-rolled steel sheet having an excellent steel sheet shape is disclosed, which includes a holding overaging treatment step in this order.
  • JP 2016-50343 A WO2016/152163 JP 2016-153524 A JP 2011-202195 A JP 2013-227657 A
  • Patent Documents 4 and 5 do not improve the shape of the steel sheet with the intention of improving the hydrogen embrittlement resistance of the sheared portion. not enough to improve.
  • the "maximum warpage height" is used as an index for evaluating the quality of the steel plate shape. It has been found that the hydrogen embrittlement resistance of is not necessarily excellent.
  • an object of the present invention is to provide a cold-rolled steel sheet with improved resistance to hydrogen embrittlement while having high tensile strength and total elongation.
  • the present inventor believes that in order to improve the hydrogen embrittlement resistance of sheared parts, it is necessary to improve not the "maximum warpage height" of the steel sheet, but the "curvature”, which is the amount that indicates the degree of curvature of the curved surface. I found something. Then, as a result of examining a method of manufacturing a steel sheet necessary for improving the curvature of the steel sheet, the following findings were obtained. (1) In the hot rolling process, the edge portion is reheated after rough rolling. This suppresses fluctuations in the strength of the hot-rolled steel sheet in the width direction of the steel sheet. Furthermore, the steel sheet after finish rolling is wound up in an appropriate temperature range. As a result, the shape of the steel sheet after cold rolling is improved.
  • the forward tension and the backward tension in each rolling stand when passing through the rolling rolls are set to an appropriate range according to the yield strength of the hot-rolled steel sheet before cold rolling and the reduction ratio in each rolling stand. to control. Furthermore, the cumulative cold rolling reduction is controlled within an appropriate range. This improves the shape of the steel sheet after cold rolling.
  • the average cooling rate at 300 ° C. or less is limited to a predetermined range, gas is used as a coolant, and heat diffusion is prevented in the cooling process. Allow to cool to encourage. Furthermore, the average cooling rate between 300 and 700° C. and the cooling stop temperature must also be controlled within an appropriate range.
  • the steel plate tension during cooling is controlled within an appropriate range. This improves the shape of the steel sheet after heat treatment. When all of the above requirements (1) to (3) are satisfied, a steel sheet with an excellent level of shape that could not be achieved by existing techniques can be obtained.
  • the present invention has been realized based on the above findings, and is specifically as follows.
  • FIG. 2 is a schematic diagram of shearing related to hydrogen embrittlement testing.
  • C is an essential element for ensuring the strength of the steel sheet.
  • the C content is made 0.16% or more.
  • the C content may be 0.18% or more, 0.20% or more, or 0.22% or more.
  • the C content should be 0.40% or less.
  • the C content may be 0.37% or less, 0.33% or less, or 0.30% or less.
  • Si silicon
  • Si is an element that suppresses the formation of iron carbide and contributes to the improvement of strength and formability.
  • the Si content should be 0.05% or more.
  • the Si content may be 0.10% or more, 0.20% or more, or 0.40% or more.
  • excessive addition may lower toughness, weldability, and hydrogen embrittlement resistance. Therefore, the Si content should be 2.00% or less.
  • the Si content may be 1.60% or less, 1.30% or less, or 1.00% or less.
  • Mn 0.50 to 4.00%
  • Mn manganese
  • Mn is a strong austenite stabilizing element, and is an effective element for increasing the strength of steel sheets.
  • the Mn content is made 0.50% or more.
  • the Mn content may be 0.80% or more, 1.00% or more, or 1.30% or more.
  • excessive addition may deteriorate workability such as press formability, weldability, and hydrogen embrittlement resistance. Therefore, the Mn content should be 4.0% or less.
  • the Mn content may be 3.0% or less, 2.5% or less, or 2.0% or less.
  • Phosphorus (P) is a solid-solution-strengthening element that is effective in increasing the strength of steel sheets, but excessive addition degrades weldability and toughness. Therefore, the P content is limited to 0.050% or less.
  • the P content is preferably 0.045% or less, 0.035% or less or 0.020% or less.
  • the P content may be 0%, the lower limit is preferably set to 0.001% from the viewpoint of economy, because the cost of removing P increases in order to extremely reduce the P content.
  • S sulfur
  • S is an element contained as an impurity, and forms MnS in steel to deteriorate toughness and hole expansibility. Therefore, the S content is limited to 0.0100% or less as a range in which deterioration of toughness and hole expansibility is not remarkable.
  • the S content is preferably 0.0050% or less, 0.0040% or less, or 0.0030% or less.
  • the S content may be 0%, the lower limit is preferably set to 0.0001% from the viewpoint of economy, because desulfurization cost increases to extremely reduce the S content.
  • Al 0.001 to 1.00%
  • Al aluminum
  • the Al content may be 0.005% or more, 0.01% or more, or 0.02% or more.
  • the upper limit of the Al content is 1.00%.
  • the Al content may be 0.80% or less, 0.60% or less, or 0.30% or less.
  • N nitrogen
  • nitrogen is an element contained as an impurity, and when the content is large, coarse nitrides are formed in the steel, which may deteriorate bendability and hole expandability. Therefore, the N content is limited to 0.0100% or less.
  • the N content is preferably 0.0080% or less, 0.0060% or less or 0.0050% or less. Although the N content may be 0%, it is preferable to set the lower limit to 0.0001% from the viewpoint of economic efficiency, because the cost of removing N increases in order to extremely reduce the N content.
  • O oxygen
  • oxygen is an element contained as an impurity, and if the content is large, it may form coarse oxides in the steel, deteriorating bendability and hole expandability. Therefore, the O content is limited to 0.0100% or less.
  • the O content is preferably 0.0080% or less, 0.0060% or less or 0.0050% or less. Although the O content may be 0%, the lower limit is preferably 0.0001% from the viewpoint of manufacturing costs.
  • the basic chemical composition of the cold-rolled steel sheet according to the embodiment of the present invention and the slab used for its production are as described above. Furthermore, the cold-rolled steel sheet and slab may contain the following optional elements as necessary. In addition, the lower limit of the content when the arbitrary element is not included is 0%.
  • Cr 0-2.00%, Mo: 0-1.00%, Cu: 0-1.00%, Ni: 0-1.00%, B: 0-0.0100%, Co: 0- 1.00%, W: 0-1.00%, Sn: 0-1.00%, Sb: 0-1.00%, Nb: 0-0.100%, Ti: 0-0.200% and V: 0 to 0.50%]
  • Cr chromium
  • Mo molybdenum
  • Cu copper
  • Ni nickel
  • B boron
  • Co cobalt
  • W tungsten
  • Sn tin
  • Sb antimony
  • Nb (niobium), Ti (titanium), and V (vanadium) are alloy carbide forming elements, and contribute to increasing the strength of the steel sheet by precipitating as fine carbides in the steel sheet. Therefore, one or more of these elements may be added as required. However, excessive addition of these elements saturates the effect, unnecessarily leading to an increase in cost.
  • the contents are Cr: 0 to 2.00%, Mo: 0 to 1.00%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, B: 0 to 0.0100% , Co: 0-1.00%, W: 0-1.00%, Sn: 0-1.00%, Sb: 0-1.00%, Nb: 0-0.100%, Ti: 0- 0.200% and V: 0-0.50%.
  • Each element may be 0.001% or more, 0.005% or more, or 0.010% or more.
  • the B content may be 0.0001% or more or 0.0005% or more.
  • Ca [Ca: 0-0.0100%, Mg: 0-0.0100%, Ce: 0-0.0100%, Zr: 0-0.0100%, La: 0-0.0100%, Hf: 0- 0.0100%, Bi: 0 to 0.0100% and REM other than Ce and La: 0 to 0.0100%]
  • Ca (calcium), Mg (magnesium), Ce (cerium), Zr (zirconium), La (lanthanum), Hf (hafnium), and REMs (rare earth elements) other than Ce and La are used to finely disperse inclusions in steel.
  • Bismuth (Bi) is an element that contributes to reducing the microsegregation of substitutional alloying elements such as Mn and Si in steel.
  • each element may be added, if necessary, because they each contribute to the improvement of the workability of the steel sheet. However, excessive addition causes deterioration of ductility. Therefore, the upper limit of its content is 0.0100%. Moreover, each element may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities are components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when cold-rolled steel sheets are industrially manufactured.
  • the desired tensile strength can be obtained by using mainly martensite (as-quenched martensite + tempered martensite).
  • the area ratio of martensite is set to 90.0 to 99.5%, and the ratio of tempered martensite to the total martensite is set to 80 to 100%.
  • the lower limit of the area ratio of martensite is preferably 93.0% or more, more preferably 95.0% or more.
  • the upper limit of the area ratio of martensite may be 99.0% or less or 98.0% or less.
  • the lower limit of the ratio of tempered martensite to all martensite is preferably 85% or more, more preferably 90% or more.
  • the upper limit of the proportion of tempered martensite in the total martensite may be 98% or less or 95% or less.
  • the area ratio of ferrite is set to 0 to 5%.
  • the upper limit of the area ratio of ferrite is preferably 4% or less, preferably 2% or less, and ideally 0%.
  • the area ratio of retained austenite is set to 0.5 to 7.0%.
  • the lower limit of the area ratio of retained austenite is preferably 1.0% or more, and may be 2.0% or more.
  • the upper limit of the area ratio of retained austenite is preferably 6.0% or less, and may be 5.0% or less or 4.0% or less.
  • the steel structure may contain residual structures in addition to martensite, ferrite and retained austenite. Bainite, for example, can be exemplified as the residual structure. The area ratio of the remaining tissue is exemplified as 0 to 9.5%.
  • the area ratio of each structure other than retained austenite is evaluated by SEM-EBSD method (electron beam backscatter diffraction method) and SEM secondary electron image observation.
  • SEM-EBSD method electron beam backscatter diffraction method
  • SEM secondary electron image observation First, a sample is collected by using a plate thickness section parallel to the rolling direction of the steel sheet as an observation surface, and the observation surface is mechanically polished to a mirror finish, and then electrolytically polished.
  • SEM-EBSD method for a total area of 3000 ⁇ m 2 or more in one or more observation fields in the range of 1/8 thickness to 3/8 thickness centering on 1/4 thickness from the surface of the steel plate on the observation surface Crystal structure and orientation analysis are performed by "OIM Analysys 7.0" manufactured by TSL is used for analysis of data obtained by the EBSD method. Also, the distance between scores (step) is set to 0.03 to 0.20 ⁇ m. A grain boundary map is obtained with the boundary having a crystal orientation difference of 15 degrees or more as the grain boundary. Next, the same sample is subjected to nital etching. After that, a secondary electron image is taken using an FE-SEM for the same field of view as the field of view for crystal orientation analysis by EBSD.
  • crystal grains in which neither the substructure nor the iron-based carbide are recognized and the crystal structure is BCC are judged to be ferrite.
  • crystal grains in which a substructure is observed and iron-based carbides are precipitated in a single variant, or crystal grains in which iron-based carbides are not observed are judged to be bainite.
  • crystal grains in which cementite is precipitated in lamellar form are judged to be pearlite.
  • perlite is not included in the present invention.
  • the remainder is judged to be martensite and retained austenite. By subtracting the area ratio of retained austenite, which will be described later, from the area ratio of the remainder, the area ratio of martensite is obtained.
  • crystal grains in which substructures are recognized and two or more iron-based carbides precipitated in multiple variants are recognized in the secondary electron image are judged to be tempered martensite.
  • the area ratio of retained austenite is calculated by measurement using X-rays. That is, mechanical polishing and chemical polishing are performed to remove the steel plate from the plate surface to the depth of 1/4 position in the plate thickness direction. Diffraction peaks of (200), (211) of the bcc phase and (200), (220), (311) of the fcc phase obtained using MoK ⁇ 1 rays as characteristic X-rays for the polished sample From the integrated intensity ratio of , the structure fraction of retained austenite is calculated, and this is defined as the area ratio of retained austenite.
  • the cold-rolled steel sheet according to the embodiment of the present invention has a high strength, for example, a high strength of 1470 MPa or more, but has a very high flatness. Also in , the end face properties of the sheared portion are very good, and as a result, excellent hydrogen embrittlement resistance can be achieved.
  • a steel sheet shape having such a high degree of flatness in the present invention is defined using the maximum value of the curvature 1/R corresponding to the reciprocal of the curvature radius R (mm). More specifically, the maximum value of the curvature 1/R in the present invention is defined by the following formula (1) using two principal curvatures ⁇ 1 and ⁇ 2 on the curved surface.
  • the maximum value of the curvature 1/R is controlled to 0.010 or less.
  • the curvature in the present invention is the larger absolute value of the principal curvatures ⁇ 1 and ⁇ 2 on the curved surface.
  • the principal curvatures ⁇ 1 , ⁇ 2 are measured using a common shape measuring machine and estimated from three-dimensional geometric data with reduced measurement noise.
  • ATOS 3D scanner manufactured by GOM can be used for measurement.
  • the curvature distribution in the cold-rolled steel sheet is obtained by measuring each point in an area of the entire width of the cold-rolled steel sheet and the length of 300 mm.
  • the term "full width” refers to the length of the steel sheet in the direction perpendicular to the longitudinal direction of the cold-rolled steel sheet (cold-rolled coil).
  • the maximum value of curvature distribution measured in this manner is 0.010 or less. For example, if the cold-rolled steel sheet is warped or wavy and the maximum value of the curvature distribution exceeds 0.010, an angle will be formed between the punch and the cold-rolled steel sheet during shearing, and the sheared part will be damaged. As a result, the hydrogen embrittlement resistance of the sheared portion deteriorates.
  • the maximum value of curvature 1/R may be, for example, 0.008 or less, 0.006 or less, 0.004 or less, or 0.002 or less.
  • the lower limit is not particularly limited, but the maximum value of the curvature 1/R is, for example, 0.0005 or more, 0.0006 or more, 0.0007 or more, 0.0008 or more, 0.0009 or more, or 0.001 or more. good too.
  • a very high flatness can be achieved in spite of the high strength of 1470 MPa or more, and the extremely high flatness exceeding 1800 MPa as specifically shown in the examples. Even with very high tensile strengths, it is possible to achieve flatness with a maximum value of curvature 1/R of 0.001. Therefore, for lower tensile strengths, e.g. closer to 1470 MPa, one skilled in the art will further reduce the maximum value of curvature 1/R, e.g. It will be readily appreciated that flatness can be achieved.
  • the measurement of the curvature distribution described above is not limited to any specific conditions regarding the timing of measurement and the like. Alternatively, it may be performed on as-manufactured cold-rolled steel sheets that have not undergone any specific mechanical flattening treatment. For example, in the case of a conventional cold-rolled steel sheet having a very high tensile strength of 1470 MPa or more, the maximum value of the curvature 1/R described above is controlled to 0.010 or less even if the flattening treatment is simply performed with a leveler or the like. is extremely difficult.
  • a slab having a predetermined chemical composition is used to produce a cold-rolled steel sheet by appropriately controlling the conditions of the hot rolling process, the cold rolling process, and the heat treatment process, as will be described later in detail.
  • the coating layer does not particularly affect the measurement of the curvature distribution. performed for
  • TS Tensile strength
  • TS tensile strength
  • TS tensile strength
  • TS tensile strength
  • the upper limit is not particularly limited, for example, the tensile strength may be 2000 MPa or less, 1900 MPa or less, or 1800 MPa or less.
  • total elongation (El) According to the cold-rolled steel sheet according to the embodiment of the present invention, high total elongation (El) can be achieved, and more specifically, total elongation of 6.0% or more can be achieved.
  • the total elongation is preferably 7.0% or more, more preferably 8.0% or more.
  • the upper limit is not particularly limited, for example, the total elongation may be 20.0% or less or 15.0% or less.
  • the tensile strength and total elongation of the cold-rolled steel sheet were obtained by collecting a JIS No. 5 tensile test piece from a direction perpendicular to the rolling direction of the steel sheet in the atmosphere at room temperature (25 ° C.), and specified in JIS Z 2241: 2011. It is measured by a tensile test.
  • [Hole expansion ratio ( ⁇ )] According to the cold-rolled steel sheet according to the embodiment of the present invention, high hole expansibility can be achieved, and more specifically, a hole expansibility ( ⁇ ) of 20% or more can be achieved.
  • the hole expansion rate is preferably 25% or more, more preferably 30% or more.
  • the upper limit is not particularly limited, for example, the hole expansion ratio may be 80.0% or less or 70.0% or less.
  • the hole expansion rate ( ⁇ ) is measured according to the Japan Iron and Steel Federation standard "JFS T 1001:1996 hole expansion test method".
  • a cold-rolled steel sheet according to an embodiment of the present invention is characterized in that cracks do not occur in a hydrogen embrittlement test by the following method. Shearing is performed by the method shown in FIG. A sample of T (thickness) x 50W (width) x 50L (length) (unit: mm) is taken from the steel plate so as to include the portion where the maximum value of curvature 1/R is obtained. The shear angle ⁇ is 1 degree, and the clearance CL is 0.15 ⁇ T. A plate pressing pressure of at least 1 ton or more is applied. After cutting the above sample by shearing, the steel plate on the product side (plate holding side) is heat-treated at 170° C. for 10 minutes.
  • the steel plate is immersed in an aqueous solution of ammonium thiocyanate at room temperature with a concentration of 0.3 g/L for 48 hours to introduce the generated hydrogen into the steel plate. After that, the sheared surface is observed with a microscope or the like to evaluate the presence or absence of cracks.
  • Heat treatment at 170° C. for 10 minutes simulates heat treatment such as paint baking treatment.
  • a cold-rolled steel sheet according to an embodiment of the present invention has a thickness of, for example, 0.5 to 3.0 mm.
  • the plate thickness may be 0.6 mm or more, 0.8 mm or more, or 1.0 mm or more.
  • the plate thickness may be 2.8 mm or less, 2.6 mm or less, or 2.3 mm or less.
  • a cold-rolled steel sheet according to an embodiment of the present invention has a width of, for example, 500 mm or more.
  • the plate width may be 700 mm or more, 800 mm or more, or 900 mm or more.
  • the upper limit of the plate width is not particularly limited, the plate width may be 2000 mm or less, 1800 mm or less, 1600 mm or less, 1400 mm or less, 1300 mm or less, 1200 mm or less, or 1100 mm or less.
  • the cold-rolled steel sheet according to the embodiment of the present invention may have a coating layer on both sides or one side, preferably both sides.
  • the plating layer is typically exemplified by an electrogalvanizing layer, a hot-dip galvanizing layer, or an alloyed hot-dip galvanizing layer.
  • These galvanized layers may have any composition known to those skilled in the art, and may contain additive elements such as Al and Mg in addition to Zn.
  • the amount of the plating layer to be deposited is not particularly limited, and may be a general amount of deposition.
  • Rough rolling is performed on the heated slab before finish rolling.
  • Rough rolling conditions are not particularly limited, but it is preferable to carry out rough rolling so that the total rolling reduction is 60% or more at 1050°C. If the total rolling reduction is less than 60%, recrystallization during hot rolling becomes insufficient, which may lead to heterogeneity in the structure of the hot-rolled steel sheet.
  • the above total rolling reduction may be, for example, 90% or less.
  • the width edge portion of the steel sheet that has completed rough rolling is reheated so that the temperature (Te) of the width edge portion is higher than the temperature (Tc) of the width center portion by 10 to 150°C.
  • the width edge portion is hardened more than the width center portion because the subsequent cooling rate is higher in the width edge portion than in the width center portion.
  • a shape defect called “middle elongation” occurs in which the width center portion is elongated compared to the width edge portion.
  • the curvature in the final product is degraded.
  • the width edge portion is excessively heated, the width edge portion becomes excessively soft, resulting in a shape defect called "ear wave" in which the edge portion extends from the center portion in the subsequent cold rolling process.
  • the edge is heated so that the temperature of the width edge portion is 10 to 150° C.
  • Heating (reheating) of the width edge portion can be performed by any suitable means known to those skilled in the art and is not particularly limited, but can be performed using an edge heater, for example.
  • finish rolling After reheating the edge portion, finish rolling is performed.
  • the conditions are not particularly limited. desirable.
  • the finish rolling entry temperature is lower than 950°C
  • the finish rolling exit temperature is lower than 850°C, or the total rolling reduction is higher than 95%
  • the texture of the hot rolled steel sheet develops, so the final product sheet Anisotropy in may become apparent.
  • the finish rolling entry temperature exceeds 1050 ° C.
  • the finish rolling exit temperature exceeds 1000 ° C., or the total rolling reduction is less than 70%
  • the crystal grain size of the hot rolled steel sheet becomes coarse, and the final This may cause coarsening of the product plate structure.
  • the shape of the steel sheet after cold rolling can be improved by coiling the steel sheet after finish rolling at a coiling temperature of 450 to 650°C. If the coiling temperature is lower than 450°C, the strength of the hot-rolled steel sheet increases, and the shape of the steel sheet after cold rolling deteriorates. On the other hand, if the coiling temperature exceeds 650° C., cementite coarsens and undissolved cementite remains, which may impair workability.
  • pickling After hot rolling, if necessary, pickling is performed to remove scales.
  • the pickling method should just follow a conventional method.
  • pretreatment such as skin pass rolling or shot blasting may be performed before pickling.
  • the cold rolling process includes cold rolling the obtained hot rolled steel sheet using a tandem mill consisting of N (N ⁇ 3) rolling stands, and the cumulative cold rolling reduction is A cold rolling process is performed that is 30% or more and satisfies the following equations (2) and (3).
  • Equation (2) means that the value increases when a large reduction is applied in a state where the difference between the forward tension/flow stress and the rear tension/flow stress is large.
  • the difference between the forward tension/flow stress and the rear tension/flow stress should be reduced.
  • the left side of formula (2) is 3.0 or more, the shape of the steel sheet after cold rolling deteriorates significantly, and the curvature of the final product no longer satisfies formula (1).
  • the lower limit is not particularly limited, for example, the left side of Equation (2) may be 0.1 or more or 0.2 or more.
  • Formula (2) is one preferable index for realizing stable cold rolling without rolling defects such as slip by well balancing the tension and the yield strength of the hot-rolled steel sheet before and after each rolling stand. Therefore, in order to realize such stable cold rolling, it is possible to use other control methods instead of the control method according to equation (2).
  • the cumulative cold rolling reduction ratio 30% or more in order to obtain a good steel plate shape with high flatness. If the cumulative cold rolling reduction is less than 30%, the shape of the steel sheet after cold rolling is not sufficiently improved, and as a result the curvature of the final product does not satisfy the formula (1).
  • the cumulative cold rolling reduction may be 40% or more or 50% or more. Although the upper limit is not particularly limited, since excessive reduction causes an excessive rolling load and increases the burden on the cold rolling mill, the cumulative cold rolling reduction may be 75% or less or 70% or less.
  • the obtained cold-rolled steel sheet is subjected to a predetermined heat treatment in the heat treatment step.
  • a predetermined heat treatment in order to sufficiently promote austenitization, heating is performed at Ac 3° C. or higher for 10 seconds or longer. If the heating temperature is less than Ac3°C or the holding time is less than 10 seconds, the austenitization is not sufficient, so the desired steel structure mainly composed of martensite cannot be obtained, and sufficient strength cannot be obtained. . On the other hand, if the heating temperature exceeds 950° C. or the holding time exceeds 500 seconds, the crystal grain size will become coarse, and in addition, fuel costs will increase and equipment will be damaged.
  • Ac3 (°C) is calculated by the following formula.
  • T1 110 to 250° C.
  • the cooling stop temperature may be 120°C or higher and/or may be 220°C or lower.
  • Average cooling rate between 300-700°C: 20-150°C/s By controlling the average cooling rate between 300 to 700 ° C. (average cooling rate 1) in the range of 20 to 150 ° C./s, it is possible to suppress the increase in temperature deviation in the steel plate, so the curvature of the steel plate can be reduced. improvement is possible. If the average cooling rate in the above section is less than 20°C/s, the martensite fraction becomes low and the desired tensile strength cannot be obtained. On the other hand, if it exceeds 150° C./s, the curvature of the steel sheet is deteriorated due to an increase in the temperature deviation within the steel sheet. It should be noted that the average cooling rate in the present invention is a rate including the cooling time described later.
  • Average cooling rate between T1 and 300°C: 1.0 to 20°C/s and refrigerant: gas By setting the average cooling rate between T1 and 300°C (average cooling rate 2) to 1.0 to 20°C/s, and using a gas (for example, nitrogen gas) as a refrigerant for relatively gentle cooling, Since an increase in temperature deviation in the steel sheet can be suppressed, the curvature of the steel sheet can be improved. If the average cooling rate in the section is less than 1.0° C./s, the martensite fraction becomes low, making it impossible to obtain the desired tensile strength. On the other hand, if it exceeds 20° C./s, the curvature of the steel sheet deteriorates due to an increase in the temperature deviation within the steel sheet. Moreover, it is necessary to use a gas as the coolant from the viewpoint of reliably suppressing an increase in the temperature deviation within the steel sheet.
  • a gas for example, nitrogen gas
  • Ms (°C) is calculated by the following formula. The mass % of the element concerned is substituted for the symbol of the element in the following formula. 0% by mass is substituted for elements that are not contained.
  • Ms (°C) 561-474 x C-33 x Mn-17 x Cr-21 x Mo-7.5 x Si + 10 x Co
  • the cold-rolled steel sheet obtained by the cold-rolled steel sheet manufacturing method according to the embodiment of the present invention may be subjected to a post-process such as a plating process for forming a coating layer on one or both sides of the cold-rolled steel sheet.
  • a post-process such as a plating process can be performed by a conventional method.
  • steel having the chemical composition shown in Table 1 was cast to produce a slab.
  • the balance other than the components shown in Table 1 is Fe and impurities.
  • These slabs were subjected to hot rolling including rough rolling and finish rolling under the conditions shown in Table 2 to produce hot rolled steel sheets. Heating (reheating) of the width edge portion after rough rolling was performed using an edge heater.
  • the hot-rolled steel sheet was pickled to remove surface scales, and cold-rolled under the conditions shown in Table 2 using a tandem mill consisting of five rolling stands.
  • the sheet thickness after cold rolling was 1.6 mm, and the sheet width was 1000 mm.
  • the obtained cold-rolled steel sheets were heat-treated under the conditions shown in Table 2. Cooling between the cooling stop temperature T1 and 300° C. was carried out at a predetermined average cooling rate (average cooling rate 2 in Table 2) using nitrogen gas (water in Comparative Example 24) as a coolant.
  • JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction of the steel sheet in the air at room temperature (25°C), and a tensile test was performed in accordance with JIS Z 2241:2011. Tensile strength (TS) and total elongation (El) were measured. In addition, the "JFS T 1001: 1996 hole expansion test method" of the Japan Iron and Steel Federation standard was performed to measure the hole expansion rate ( ⁇ ).
  • the maximum value of curvature 1/R was determined as follows. First, cold-rolled steel sheets, which have not been subjected to a specific mechanical flattening process, are measured at each point in an area of full width x 300 mm length using an ATOS 3D scanner manufactured by GOM. Curvature distribution in the steel plate was obtained. Next, in the curvature distribution thus measured, the larger absolute value of the principal curvatures ⁇ 1 and ⁇ 2 was determined as the maximum value of the curvature 1/R.
  • the hydrogen embrittlement resistance was evaluated by the hydrogen embrittlement test using the shearing shown in Fig. 1. Specifically, first, a sample of T (thickness) ⁇ 50W (width) ⁇ 50L (length) (unit: mm) was taken from the steel plate so as to include a portion where the maximum value of curvature 1/R was obtained. . The shear angle ⁇ was 1 degree, the clearance CL was 0.15 ⁇ T, and the plate pressing pressure was 1 ton or more. After cutting the above sample by shearing, the steel plate on the product side (plate holding side) was heat-treated at 170° C. for 10 minutes.
  • the steel sheet was immersed in an aqueous ammonium thiocyanate solution having a concentration of 0.3 g/L and a concentration of 3 g/L at room temperature for 48 hours to introduce hydrogen into the steel sheet.
  • the sheared surface was observed with a microscope to evaluate the presence or absence of cracks. Those in which cracks were observed at 0.3 g / L were x (failed), cracks were not observed at 0.3 g / L, but cracks were observed at 3 g / L, ⁇ (accepted), 0 3 g/L and 3 g/L were evaluated as ⁇ (accepted) when cracks were not observed.
  • Comparative Example 2 the maximum value of the curvature 1/R increased and the hydrogen embrittlement resistance deteriorated because the expression (2) was not satisfied in the cold rolling process.
  • Comparative Examples 3 and 12 the difference between the temperature of the width edge portion and the temperature of the width center portion of the steel plate after rough rolling was not appropriate in the hot rolling process, so the maximum value of the curvature 1/R increased, and the hydrogen resistance increased. Embrittlement properties decreased.
  • Comparative Example 4 since the cumulative cold rolling reduction was low in the cold rolling process, the maximum value of the curvature 1/R was increased and the hydrogen embrittlement resistance was lowered.
  • Comparative Example 5 since the cooling stop temperature T1 was low in the heat treatment step, retained austenite was not sufficiently formed, and El decreased.
  • Examples 1, 20 to 22, and 25 to 44 of the present invention by having a predetermined chemical composition and steel structure and further controlling the maximum value of the curvature 1/R to 0.010 or less, , a cold-rolled steel sheet having high tensile strength and total elongation and improved hydrogen embrittlement resistance could be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

所定の化学組成を有し、鋼組織が、面積%で、マルテンサイト:90.0~99.5%、フェライト:0~5%、残留オーステナイト:0.5~7.0%、および残部:ベイナイトであり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%であり、全幅×長さ300mmの領域を形状測定することにより得られ、下記式(1)で表される曲率1/Rの最大値が0.010以下であり、引張強度が1470MPa以上であることを特徴とする、冷延鋼板。

Description

冷延鋼板およびその製造方法
 本開示は、冷延鋼板およびその製造方法に関する。
 近年、地球温暖化対策に伴う温室効果ガス排出量規制の観点から自動車の燃費向上が求められており、車体の軽量化と衝突安全性確保のために高強度鋼板の適用がますます拡大しつつある。特に最近では、引張強度が980MPa以上の超高強度鋼板や、さらにより高い引張強度を有する超高強度鋼板のニーズが高まりつつある。また、車体の中でも防錆性を要求される部位には表面に溶融亜鉛めっきを施した高強度溶融亜鉛めっき鋼板が求められる。
 しかしながら、このような高い引張強度を有する超高強度鋼板を自動車用部材として適用する場合、そのプレス成形性もさることながら、鋼板の水素脆化割れを解決する必要がある。
 水素脆化割れとは、使用状況下において高い応力が作用している鋼部材が、環境から鋼中に侵入した水素に起因して、突然破壊する現象である。この現象は、破壊の発生形態から、遅れ破壊とも呼称される。一般に、鋼板の水素脆化割れは、鋼板の引張強度が上昇するほど発生し易くなることが知られている。これは、鋼板の引張強度が高いほど、部品成形後に鋼板に残留する応力が増大するためであると考えられている。この水素脆化割れ(遅れ破壊)に対する感受性のことを耐水素脆化特性と呼称する。
 これまでにも鋼板の耐水素脆化特性を改善しようとする試みが、種々、なされている。
 例えば、特許文献1には、所定の化学組成を有し、鋼中の固溶B量solB[質量%]及び旧オーステナイト粒径Dγ[μm]の値が式(1):solB・Dγ≧0.0010の関係を満たし、さらに、面積率で、ポリゴナルフェライトが10%以下、ベイナイトが30%以下、残留オーステナイトが6%以下、焼き戻しマルテンサイトが60%以上であり、焼き戻しマルテンサイト中のFe炭化物の個数密度が1×106/mm2以上で、鋼全体の平均転位密度が1.0×1015/m2以上、2.0×1016/m2以下で、有効結晶粒径が7.0μm以下である鋼組織を有することを特徴とする、引張強度が1300MPa以上で耐水素脆化特性に優れた超高強度冷延鋼板が開示されている。
 特許文献2には、所定の成分組成を有し、焼き戻しマルテンサイトおよびベイナイトの組織全体に対する面積率が合計で95%以上100%以下であり、圧延方向に伸展および/または点列状に分布した1個以上の長軸:0.3μm以上の介在物粒子により構成され、該介在物粒子が2個以上で構成される場合には該介在物粒子間の距離が30μm以下であり、圧延方向における全長が120μm超である介在物群が0.8個/mm2以下であり、アスペクト比が2.5以下であり、長軸が0.20μm以上2μm以下である、Feを主成分とする炭化物が3500個/mm2以下であり、前記焼き戻しマルテンサイトおよび/または前記ベイナイトの内部に分布する直径10~50nmの炭化物が0.7×107個/mm2以上であり、旧γ粒の平均粒径が18μm以下である組織を有し、板厚が0.5~2.6mmであり、引張強度が1320MPa以上である、冷延鋼板が開示されている。また、特許文献2では、上記の構成によれば、耐水素脆性に優れた1300MPa以上の引張強度を有する超高強度冷延鋼板を得ることができると記載されている。
 特許文献3には、所定の成分組成を有し、全組織に対する面積率で、マルテンサイト:90%以上、残留オーステナイト:0.5%以上からなる組織を有し、局所のMn濃度が、鋼板全体のMn含有量の1.1倍以上となる領域が、面積率で2%以上存在し、引張強度が1470MPa以上である、切断端部での耐遅れ破壊特性に優れた超高強度鋼板が開示されている。
 しかし、要求レベルが高くなる近年、高い引張強度および全伸びを有しつつも、さらなる耐水素脆化特性の改善が求められている。特に、せん断加工部の耐水素脆化特性の改善が求められているのが現状である。
 本発明者はせん断加工部の耐水素脆化特性改善に鋭意取り組んだ結果、以下の指針を得た。鋼板の形状が良好であるほど、すなわち鋼板が平坦であるほど、せん断加工部の耐水素脆化特性が優れることを見出した。これは、平坦でない鋼板をせん断加工すると、せん断加工時に打ち抜きパンチと鋼板の間に角度がついてしまい、せん断加工部の損傷が大きくなるためと考えられる。
 これに関連して、高強度鋼板の形状を改善する技術としては、例えば以下の文献がある。
 特許文献4には、所定の化学組成を有し、金属組織がマルテンサイト単相で、引張強さが980MPa以上、鋼板の平坦度が10mm以下である超高強度冷延鋼板およびその製造方法が開示されている。
 特許文献5には、所定の成分組成を有し、焼戻しマルテンサイトが65面積%以上である金属組織を有する高強度冷延鋼板の製造方法であって、前記成分組成を満足する鋼材をオーステナイト単相域で15~600秒間加熱して焼鈍する焼鈍工程と、焼鈍後、650~800℃の温度域における一次冷却停止温度まで平均冷却速度10℃/秒以下(0℃/秒を含まない)で徐冷する一次冷却工程と、前記一次冷却停止温度から下記式(1)で算出されるMs点の温度以上、500℃以下の温度域における二次冷却停止温度まで平均冷却速度20~100℃/秒で冷却する二次冷却工程と、前記二次冷却停止温度から室温まで平均冷却速度100℃/秒超で急冷する三次冷却工程と、150~300℃の温度域に加熱し、30~1500秒間保持する過時効処理工程とをこの順で含むことを特徴とする鋼板形状に優れた高強度冷延鋼板の製造方法が開示されている。
特開2016-50343号公報 国際公開第2016/152163号 特開2016-153524号公報 特開2011-202195号公報 特開2013-227657号公報
 しかしながら、上記特許文献4および5に開示された技術は、せん断加工部の耐水素脆化特性の改善を意図して鋼板形状を改善したものではなかったため、せん断加工部の耐水素脆化特性を改善するには不十分であった。上記特許文献4および5では鋼板形状の良否を評価する指標として「最大反り高さ」を用いているが、「最大反り高さ」が上記特許文献の範囲内であったとしても、せん断加工部の耐水素脆化特性は必ずしも優れないことが分かった。
 そこで、本発明は、高い引張強度および全伸びを有しつつ、耐水素脆化特性が改善された冷延鋼板を提供することを目的とする。
 本発明者は、せん断加工部の耐水素脆化特性を改善するには、鋼板の「最大反り高さ」ではなく、曲面の曲がり具合を表す量である「曲率」を改善することが必要であることを見出した。そして、鋼板の曲率を改善するために必要な鋼板の製造方法を検討した結果、以下の知見を得た。
 (1)熱間圧延工程において、粗圧延後にエッジ部の再加熱を行う。これにより鋼板幅方向での熱延鋼板強度の変動が抑制される。さらに、仕上げ圧延後の鋼板を適切な温度範囲で巻き取る。その結果、冷間圧延後の鋼板形状が改善する。
 (2)冷間圧延工程において、圧延ロールを通過する際の各圧延スタンドにおける前方張力と後方張力を、冷延前の熱延鋼板の降伏強度と各圧延スタンドにおける圧下率に応じて適切な範囲に制御する。さらに、累積の冷延圧下率を適切な範囲に制御する。これにより、冷間圧延後の鋼板形状が改善する。
 (3)冷間圧延工程後の熱処理工程における加熱保持後の冷却処理において、300℃以下の平均冷却速度を所定の範囲に制限し、冷媒として気体を使用し、かつ、冷却処理において熱拡散を促すための放冷を施す。さらに、300~700℃の間の平均冷却速度および冷却停止温度も適切な範囲に制御する必要がある。加えて、冷却処理中の鋼板張力を適正な範囲に制御する。これにより、熱処理後の鋼板形状が改善する。
 上記(1)~(3)の要件を全て満足した場合、既存技術では達成できなかった水準の形状に優れる鋼板が得られる。
 本発明は上記知見に基づき実現したものであり、具体的には以下の通りである。
 (1)質量%で、
 C :0.16~0.40%、
 Si:0.05~2.00%、
 Mn:0.50~4.00%、
 P :0.050%以下、
 S :0.0100%以下、
 Al:0.001~1.00%、
 N :0.0100%以下、
 O :0.0050%以下、
 Cr:0~2.00%、
 Mo:0~1.00%、
 Cu:0~1.00%、
 Ni:0~1.00%、
 B :0~0.0100%、
 Co:0~1.00%、
 W :0~1.00%、
 Sn:0~1.00%、
 Sb:0~1.00%、
 Nb:0~0.100%、
 Ti:0~0.200%、
 V :0~0.50%、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 Ce:0~0.0100%、
 Zr:0~0.0100%、
 La:0~0.0100%、
 Hf:0~0.0100%、
 Bi:0~0.0100%、
 Ce、La以外のREM:0~0.0100%、ならびに
 残部:Feおよび不純物からなる化学組成を有し、
 表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、面積%で、
 マルテンサイト:90.0~99.5%、
 フェライト:0~5%、
 残留オーステナイト:0.5~7.0%、および
 残部:ベイナイト
であり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%であり、
 全幅×長さ300mmの領域を形状測定することにより得られ、下記式(1)で表される曲率1/Rの最大値が0.010以下であり、
 引張強度が1470MPa以上であることを特徴とする、冷延鋼板。
Figure JPOXMLDOC01-appb-M000004
 1/R:曲率
 ρ1およびρ2:曲面上の主曲率
 (2)前記化学組成が、質量%で、
 Cr:0.001~2.00%、
 Mo:0.001~1.00%、
 Cu:0.001~1.00%、
 Ni:0.001~1.00%、
 B :0.0001~0.0100%、
 Co:0.001~1.00%、
 W :0.001~1.00%、
 Sn:0.001~1.00%、
 Sb:0.001~1.00%、
 Nb:0.001~0.100%、
 Ti:0.001~0.200%、
 V :0.001~0.50%、
 Ca:0.0001~0.0100%、
 Mg:0.0001~0.0100%、
 Ce:0.0001~0.0100%、
 Zr:0.0001~0.0100%、
 La:0.0001~0.0100%、
 Hf:0.0001~0.0100%、
 Bi:0.0001~0.0100%、および
 Ce、La以外の REM:0.0001~0.0100%
からなる群より選択される1種または2種以上を含むことを特徴とする、上記(1)に記載の冷延鋼板。
 (3)前記冷延鋼板をせん断加工し、次いで170℃で10分間の熱処理を与えた後に濃度0.3g/Lのチオシアン酸アンモニウム水溶液に48時間浸漬する水素脆化試験において、せん断加工面に割れが発生しないことを特徴とする、上記(1)または(2)に記載の冷延鋼板。
 (4)表面に電気亜鉛めっき層、溶融亜鉛めっき層、合金化溶融亜鉛めっき層のいずれかを有する、上記(1)~(3)のいずれか一項に記載の冷延鋼板。
 (5)(A)上記(1)または(2)に記載の化学組成を有するスラブを粗圧延および仕上げ圧延することを含み、以下の(A1)~(A3)の条件を満足する熱間圧延工程、
  (A1)スラブ加熱温度が1150℃以上であること、
  (A2)粗圧延後の鋼板の幅エッジ部の温度が幅センター部の温度よりも10~150℃高くなるように幅エッジ部を加熱すること、
  (A3)巻取温度が450~650℃であること
 (B)得られた熱延鋼板をN基(N≧3)の圧延スタンドからなるタンデムミルを用いて冷間圧延することを含む冷間圧延工程であって、累積の冷延圧下率が30%以上であり、かつ以下の式(2)および(3)を満足する冷間圧延工程、
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 Rk:k番目の圧延スタンドにおける圧下率
 Pbk:k番目の圧延スタンドにおける後方張力
 Pfk:k番目の圧延スタンドにおける前方張力
 σk-1:k-1番目の圧延スタンドを通過した後の鋼板の流動応力
 σk:k番目の圧延スタンドを通過した後の鋼板の流動応力
 σ0:熱延鋼板の降伏強度
 εk:k番目の圧延スタンドを通過した後の累積ひずみ
 (C)得られた冷延鋼板を熱処理することを含み、以下の(C1)~(C3)の条件を満足する熱処理工程
  (C1)冷延鋼板をAc3~950℃で10秒~500秒間保持すること(加熱保持)、
  (C2)以下の(i)~(v)を満足する冷却処理を実施すること、
   (i)冷却停止温度T1が110~250℃であること、
   (ii)300~700℃の間の平均冷却速度が20~150℃/sであること、
   (iii)T1~300℃の間の平均冷却速度が1.0~20℃/sであり、かつ、冷媒として気体を使用すること、
   (iv)Ms~700℃の間、およびT1~Ms未満の間に、各々0.5s以上の放冷を少なくとも1回実施すること、
   (v)冷延鋼板に適用される張力が5~20MPaであること
  (C3)200~300℃の間で100~1000秒間保持すること(低温保持)
を含むことを特徴とする、上記(1)~(3)のいずれか一項に記載の冷延鋼板の製造方法。
 本発明によれば、1470MPa以上の引張強度かつ高い全伸びを有しつつ、耐水素脆化特性が改善された冷延鋼板を提供することができる。
水素脆化試験に関連するせん断加工の模式図である。
『化学組成』
 まず、本発明の実施形態に係る鋼板の化学組成を上述のように限定した理由について説明する。なお、本明細書において化学組成を規定する「%」は特に断りのない限り全て「質量%」である。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値および上限値として含む意味で使用される。
[C:0.16~0.40%]
 C(炭素)は、鋼板強度確保のために必須の元素である。このような効果を十分に得るために、C含有量は0.16%以上とする。C含有量は0.18%以上、0.20%以上または0.22%以上であってもよい。一方、Cを過度に含有すると、プレス成形性等の加工性や溶接性、さらには耐水素脆化特性が低下する場合がある。このため、C含有量は0.40%以下とする。C含有量は0.37%以下、0.33%以下または0.30%以下であってもよい。
[Si:0.05~2.00%]
 Si(ケイ素)は、鉄炭化物の生成を抑制し、強度と成形性の向上に寄与する元素である。これらの効果を十分に得るために、Si含有量は0.05%以上とする。Si含有量は0.10%以上、0.20%以上または0.40%以上であってもよい。一方、過度の添加は靭性や溶接性、さらには耐水素脆化特性が低下する場合がある。従って、Si含有量は2.00%以下とする。Si含有量は1.60%以下、1.30%以下または1.00%以下であってもよい。
[Mn:0.50~4.00%]
 Mn(マンガン)は強力なオーステナイト安定化元素であり、鋼板の高強度化に有効な元素である。このような効果を十分に得るために、Mn含有量は0.50%以上とする。Mn含有量は0.80%以上、1.00%以上または1.30%以上であってもよい。一方、過度の添加はプレス成形性等の加工性や溶接性、さらには耐水素脆化特性を劣化させる場合がある。従って、Mn含有量は4.0%以下とする。Mn含有量は3.0%以下、2.5%以下または2.0%以下であってもよい。
[P:0.050%以下]
 P(リン)は固溶強化元素であり、鋼板の高強度化に有効な元素であるが、過度の添加は溶接性および靱性を劣化させる。従って、P含有量は0.050%以下と制限する。P含有量は、好ましくは0.045%以下、0.035%以下または0.020%以下である。P含有量は0%であってもよいが、P含有量を極度に低減させるには、脱Pコストが高くなるため、経済性の観点から下限を0.001%とすることが好ましい。
[S:0.0100%以下]
 S(硫黄)は不純物として含有される元素であり、鋼中でMnSを形成して靱性や穴広げ性を劣化させる。したがって、靱性や穴広げ性の劣化が顕著でない範囲として、S含有量を0.0100%以下と制限する。S含有量は、好ましくは0.0050%以下、0.0040%以下または0.0030%以下である。S含有量は0%であってもよいが、S含有量を極度に低減させるには、脱硫コストが高くなるため、経済性の観点から下限を0.0001%とすることが好ましい。
[Al:0.001~1.00%]
 Al(アルミニウム)は、鋼の脱酸のため少なくとも0.001%を添加する。Al含有量は0.005%以上、0.01%以上または0.02%以上であってもよい。一方、Alを過剰に添加しても効果が飽和し徒にコスト上昇を招くばかりか、鋼の変態温度を上昇させ熱間圧延時の負荷を増大させ、結果として鋼板の機械特性を低下させる場合がある。従ってAl含有量は1.00%を上限とする。Al含有量は0.80%以下、0.60%以下または0.30%以下であってもよい。
[N:0.0100%以下]
 N(窒素)は不純物として含有される元素であり、その含有量が多いと鋼中に粗大な窒化物を形成して曲げ性や穴広げ性を劣化させる場合がある。したがって、N含有量は0.0100%以下と制限する。N含有量は、好ましくは0.0080%以下、0.0060%以下または0.0050%以下である。N含有量は0%であってもよいが、N含有量を極度に低減させるには、脱Nコストが高くなるため、経済性の観点から下限を0.0001%とすることが好ましい。
[O:0.0050%以下]
 O(酸素)は不純物として含有される元素であり、その含有量が多いと鋼中に粗大な酸化物を形成して曲げ性や穴広げ性を劣化させる場合がある。従って、O含有量は0.0100%以下と制限する。O含有量は、好ましくは0.0080%以下、0.0060%以下または0.0050%以下である。O含有量は0%であってもよいが、製造コストの観点から、下限を0.0001%とすることが好ましい。
 本発明の実施形態に係る冷延鋼板およびその製造に用いるスラブの基本化学組成は上記のとおりである。さらに、当該冷延鋼板およびスラブは、必要に応じて以下の任意元素を含有してもよい。なお、当該任意元素を含有させない場合の含有量の下限は0%である。
[Cr:0~2.00%、Mo:0~1.00%、Cu:0~1.00%、Ni:0~1.00%、B:0~0.0100%、Co:0~1.00%、W:0~1.00%、Sn:0~1.00%、Sb:0~1.00%、Nb:0~0.100%、Ti:0~0.200%およびV:0~0.50%]
 Cr(クロム)、Mo(モリブデン)、Cu(銅)、Ni(ニッケル)、B(ホウ素)、Co(コバルト)、W(タングステン)、Sn(錫)およびSb(アンチモン)はいずれも鋼の焼入れ性を高めて鋼板の高強度化に有効な元素である。また、Nb(ニオブ)、Ti(チタン)およびV(バナジウム)は合金炭化物生成元素であり、鋼板中に微細な炭化物として析出することで鋼板の高強度化に寄与する元素である。このため、必要に応じてこれらの元素のうち1種または2種以上を添加してもよい。しかしこれらの元素を過度に添加すると効果が飽和し徒にコストの増大を招く。従って、その含有量はCr:0~2.00%、Mo:0~1.00%、Cu:0~1.00%、Ni:0~1.00%、B:0~0.0100%、Co:0~1.00%、W:0~1.00%、Sn:0~1.00%、Sb:0~1.00%、Nb:0~0.100%、Ti:0~0.200%およびV:0~0.50%とする。各元素は0.001%以上、0.005%以上または0.010%以上であってもよい。とりわけ、B含有量は0.0001%以上または0.0005%以上であってもよい。
[Ca:0~0.0100%、Mg:0~0.0100%、Ce:0~0.0100%、Zr:0~0.0100%、La:0~0.0100%、Hf:0~0.0100%、Bi:0~0.0100%およびCe、La以外のREM:0~0.0100%]
 Ca(カルシウム)、Mg(マグネシウム)、Ce(セリウム)、Zr(ジルコニウム)、La(ランタン)、Hf(ハフニウム)およびCe、La以外のREM(希土類元素)は鋼中介在物の微細分散化に寄与する元素であり、Bi(ビスマス)は鋼中におけるMn、Si等の置換型合金元素のミクロ偏析を軽減する元素である。それぞれ鋼板の加工性向上に寄与することから、必要に応じてこれらの元素のうち1種または2種以上を添加してもよい。ただし過度の添加は延性の劣化を引き起こす。従ってその含有量は0.0100%を上限とする。また、各元素は0.0001%以上、0.0005%以上または0.0010%以上であってもよい。
 本発明の実施形態に係る冷延鋼板において、上述の元素以外の残部は、Feおよび不純物からなる。不純物とは、冷延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
『冷延鋼板の鋼組織』
 次に、本発明の実施形態に係る冷延鋼板の鋼組織について説明する。
[マルテンサイト:90.0~99.5%、フェライト:0~5%、残留オーステナイト:0.5~7.0%、残部:ベイナイト、および全マルテンサイトに占める焼き戻しマルテンサイトの割合:80~100%]
 冷延鋼板の表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織は、面積%で、マルテンサイト:90.0~99.5%、フェライト:0~5%、残留オーステナイト:0.5~7.0%、および残部:ベイナイトであり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%である。
 マルテンサイト(焼入れままマルテンサイト+焼き戻しマルテンサイト)を主体とすることで、所望の引張強度を得ることが可能となる。一方、マルテンサイトのうち、焼入れままマルテンサイトが多く、焼き戻しマルテンサイトが少ないと、耐水素脆化特性が悪化する。よって、マルテンサイトの面積率は90.0~99.5%とし、全マルテンサイトに占める焼き戻しマルテンサイトの割合は80~100%とする。マルテンサイトの面積率の下限は、93.0%以上が好ましく、95.0%以上がより好ましい。マルテンサイトの面積率の上限は、99.0%以下または98.0%以下であってもよい。全マルテンサイトに占める焼き戻しマルテンサイトの割合の下限は、85%以上が好ましく、90%以上がより好ましい。全マルテンサイトに占める焼き戻しマルテンサイトの割合の上限は、98%以下または95%以下であってもよい。
 フェライトは5%を超えると、所望の引張強度を得ることが困難となる。また、マルテンサイト主体組織において、軟質組織であるフェライトが存在すると、組織の不均一性が増すため水素脆化割れが助長される。よって、フェライトの面積率は、0~5%とする。フェライトの面積率の上限は、4%以下が好ましく、2%以下が好ましく、理想的には0%である。
 残留オーステナイトを鋼組織に含むと、TRIP(変態誘起塑性:TRansformation-Induced Plasticity)効果により加工硬化率が上昇するため、延性が改善する(つまり、全伸びが高くなる)。一方で、残留オーステナイトを過剰に含む場合、耐水素脆化特性が悪化する。よって、残留オーステナイトの面積率は、0.5~7.0%とする。残留オーステナイトの面積率の下限は、1.0%以上が好ましく、2.0%以上であってもよい。残留オーステナイトの面積率の上限は、6.0%以下が好ましく、5.0%以下または4.0%以下であってもよい。
 鋼組織には、マルテンサイト、フェライトおよび残留オーステナイト以外に、残部組織を含んでいてもよい。残部組織としては、例えば、ベイナイトが例示できる。残部組織の面積率は、0~9.5%が例示される。
[各組織の面積率の測定方法]
 残留オーステナイト以外の各組織の面積率は、SEM-EBSD法(電子線後方散乱回折法)およびSEM二次電子像観察により評価する。まず、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を機械研磨し鏡面に仕上げた後、電解研磨を行う。次いで、観察面における鋼板の表面から1/4厚を中心とした1/8厚~3/8厚の範囲の一つないし複数の観察視野において、合計で3000μm2以上の面積についてSEM-EBSD法により結晶構造および方位解析を行う。EBSD法により得られたデータの解析にはTSL社製の「OIM Analysys 7.0」を用いる。また、評点間距離(step)は0.03~0.20μmとする。結晶方位差が15度以上となる境界を粒界として結晶粒界マップを得る。次に、同一試料についてナイタールエッチングを施す。その後、EBSDによる結晶方位解析を行った視野と同一視野について、FE-SEMを用いて二次電子像を撮影する。このとき、予めビッカース圧痕などで目印をつけておくとよい。最後に、前記結晶粒界マップと二次電子像を重ね合わせる。方位差15度以上の粒界に囲まれた個々の結晶粒について、以下の基準に基づき組織分類を行う。
 二次電子像において、下部組織、鉄系炭化物ともに認められず、かつ、結晶構造がBCCである結晶粒は、フェライトと判断する。二次電子像において、下部組織が認められ、かつ、鉄系炭化物が単一のバリアントで析出している結晶粒、または鉄系炭化物が認められない結晶粒は、ベイナイトであると判断する。二次電子像において、セメンタイトがラメラ状に析出している結晶粒は、パーライトと判断する。但し、本発明においては、原則、パーライトは含まれない。残部をマルテンサイトおよび残留オーステナイトと判断する。残部の面積率から後述する残留オーステナイトの面積率を差し引くことにより、マルテンサイトの面積率が求められる。残部の内、二次電子像において、下部組織が認められ、かつ、複数のバリアントで析出している鉄系炭化物が二個以上認められる結晶粒は、焼き戻しマルテンサイトであると判断する。
 残留オーステナイトの面積率は、X線を用いた測定により算出される。すなわち、鋼板の板面から板厚方向に深さ1/4位置までを機械研磨および化学研磨により除去する。そして、研磨後の試料に対して特性X線としてMoKα1線を用いて得られた、bcc相の(200)、(211)およびfcc相の(200)、(220)、(311)の回折ピークの積分強度比から、残留オーステナイトの組織分率を算出し、これを、残留オーステナイトの面積率とする。
[曲率1/Rの最大値:0.010以下]
 本発明の実施形態に係る冷延鋼板では、高強度、例えば1470MPa以上の高強度であるにもかかわらず、非常に高い平坦度を有することで、例えば打ち抜きパンチによって冷延鋼板をせん断加工した場合においても、せん断加工部の端面性状が非常に良好であり、その結果として優れた耐水素脆化特性を達成することができる。本発明におけるこのような高い平坦度を有する鋼板形状は、曲率半径R(mm)の逆数に相当する曲率1/Rの最大値を用いて規定される。より具体的には、本発明における曲率1/Rの最大値は、曲面上の2つの主曲率ρ1、ρ2を用いて以下の式(1)により定義され、本発明に係る実施形態では当該曲率1/Rの最大値が0.010以下に制御される。
Figure JPOXMLDOC01-appb-M000007
 ここで、本発明における曲率とは、曲面上の主曲率ρ1、ρ2の絶対値のうち、より大きな値である。主曲率ρ1、ρ2は、一般的な形状測定機を用いて測定され、かつ測定ノイズを抑えた3次元幾何学データから評価される。例えば、代表的な形状測定機として、GOM社製 ATOS 3Dスキャナを用いて測定することができる。冷延鋼板の全幅×300mm長さのエリアの各点について測定することで、冷延鋼板内の曲率分布を得る。本発明において、「全幅」とは、冷延鋼板(冷延コイル)の長手方向に垂直な方向における鋼板の長さをいうものである。本発明により得られる冷延鋼板は、このようにして測定された曲率分布の最大値が0.010以下である。例えば、冷延鋼板が反ったり、波打ったりして曲率分布の最大値が0.010を上回る場合、せん断加工時に打ち抜きパンチと冷延鋼板の間に角度がついてしまい、せん断加工部の損傷が大きくなると考えられ、その結果としてせん断加工部の耐水素脆性が劣化する。曲率1/Rの最大値は、例えば0.008以下、0.006以下、0.004以下または0.002以下であってもよい。下限値は特に限定されないが、曲率1/Rの最大値は、例えば0.0005以上、0.0006以上、0.0007以上、0.0008以上、0.0009以上または0.001以上であってもよい。本発明の実施形態によれば、上記のとおり、1470MPa以上の高強度であるにもかかわらず、非常に高い平坦度を達成することができ、実施例において具体的に示すように1800MPaを超える非常に高い引張強度の場合でさえ、曲率1/Rの最大値が0.001の平坦度を達成することが可能である。したがって、当業者であれば、より低い引張強度、例えば1470MPaにより近い引張強度の場合には、曲率1/Rの最大値をさらに低減して、例えば曲率1/Rの最大値が0.0005の平坦度を実現できることを容易に理解するであろう。
 上記の曲率分布の測定は、測定時期等について特定の条件に何ら限定されるものではなく、例えば製造後にレベラー等を用いた平坦化処理を行った冷延鋼板に対して行ってもよいし、または特定の機械的な平坦化処理を行っていない製造直後の冷延鋼板に対して行ってもよい。例えば1470MPa以上の非常に高い引張強度を有する従来の冷延鋼板の場合、レベラー等で単に平坦化処理を行っても、上で説明した曲率1/Rの最大値を0.010以下に制御することは極めて困難である。本発明の実施形態では、所定の化学組成を有するスラブを用いて、後で詳しく説明するように、熱間圧延工程、冷間圧延工程および熱処理工程の各条件を適切に制御して冷延鋼板を製造することで、このような高い平坦度の達成を可能としたものである。また、冷延鋼板がめっき層を有している場合、めっき層は曲率分布の測定に特に影響しないため、上記曲率分布の測定は、めっき層を剥がすことなく、めっき層を備えた冷延鋼板に対して行われる。
 次に、本発明の実施形態に係る冷延鋼板の機械的特性等について説明する。
[引張強度(TS)]
 本発明の実施形態に係る冷延鋼板によれば、優れた機械的特性、例えば1470MPa以上の引張強度(TS)を達成することができる。引張強度は1490MPa以上が好ましく、1500MPa以上がより好ましい。上限は特に限定されないが、例えば引張強度は2000MPa以下、1900MPa以下または1800MPa以下であってもよい。
[全伸び(El)]
 本発明の実施形態に係る冷延鋼板によれば、高い全伸び(El)を達成することができ、より具体的には6.0%以上の全伸びを達成することができる。全伸びは7.0%以上が好ましく、8.0%以上がより好ましい。上限は特に限定されないが、例えば全伸びは20.0%以下または15.0%以下であってもよい。ここで、冷延鋼板の引張強度および全伸びは、室温(25℃)大気中で、鋼板の圧延方向に直角な方向からJIS5号引張試験片を採取し、JIS Z 2241:2011で規定された引張試験により測定する。
[穴広げ率(λ)]
 本発明の実施形態に係る冷延鋼板によれば、高い穴広げ性を達成することができ、より具体的には20%以上の穴広げ率(λ)を達成することができる。穴広げ率は、25%以上が好ましく、30%以上がより好ましい。上限は特に限定されないが、例えば穴広げ率は80.0%以下または70.0%以下であってもよい。穴広げ率(λ)は、日本鉄鋼連盟規格の「JFS T 1001:1996 穴広げ試験方法」により測定する。
[水素脆化試験による評価]
 本発明の実施形態に係る冷延鋼板は、以下の方法による水素脆化試験において割れが発生しないことを特徴とする。せん断加工は図1に示す方法により行う。曲率1/Rの最大値が得られる箇所を含むように鋼板からT(厚さ)×50W(幅)×50L(長さ)(単位:mm)のサンプルを採取する。シャー角θは1度、クリアランスCLは0.15×Tとする。板押さえ圧は少なくとも1ton以上負荷する。上記のサンプルをせん断加工にて切断後、製品側(板押さえ側)の鋼板について170℃、10分の熱処理を行う。その後、濃度0.3g/Lの常温のチオシアン酸アンモニウム水溶液に48時間浸漬し、発生した水素を鋼板に導入する。その後、せん断加工面をマイクロスコープ等で観察し、亀裂の有無を評価する。170℃で10分間の熱処理は、塗装焼き付け処理等の熱処理を模擬したものである。
[板厚]
 本発明の実施形態に係る冷延鋼板は、例えば0.5~3.0mmの板厚を有する。特に限定されないが、板厚は0.6mm以上、0.8mm以上または1.0mm以上であってもよい。同様に、板厚は2.8mm以下、2.6mm以下または2.3mm以下であってもよい。
[板幅]
 本発明の実施形態に係る冷延鋼板は、例えば500mm以上の板幅を有する。特に限定されないが、板幅は700mm以上、800mm以上または900mm以上であってもよい。板幅の上限は特に限定されないが、板幅は2000mm以下、1800mm以下、1600mm以下、1400mm以下、1300mm以下、1200mm以下又は1100mm以下であってもよい。
[めっき層]
 本発明の実施形態に係る冷延鋼板は、両面または片面、好ましくは両面に、めっき層を有していてもよい。めっき層としては、電気亜鉛めっき層、溶融亜鉛めっき層または合金化溶融亜鉛めっき層が代表的に例示される。これらの亜鉛めっき層は、当業者に公知の任意の組成を有するものであってよく、Zn以外にもAlやMg等の添加元素を含んでいてよい。また、当該めっき層の付着量は、特に制限されず一般的な付着量であってよい。
<製造方法>
 次に、本発明の実施形態に係る冷延鋼板の製造方法について説明する。以下の説明は、本発明の実施形態に係る冷延鋼板を製造するための特徴的な方法の例示を意図するものであって、当該冷延鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
『(A)熱間圧延工程』
 まず、熱間圧延工程について説明する。
[スラブ加熱温度:1150℃以上]
 熱間圧延工程では、冷延鋼板に関して上で説明した化学組成と同じ化学組成を有するスラブが熱間圧延前に加熱され、次いで粗圧延および仕上げ圧延が施される。スラブの加熱温度は、ホウ化物や炭化物などを十分溶解するため、1150℃以上とすることが必要であり、1200℃以上が好ましい。なお使用する鋼スラブは、製造性の観点から連続鋳造法にて鋳造することが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。
[粗圧延]
 加熱されたスラブに対し、仕上げ圧延の前に粗圧延を行う。粗圧延条件は特に限定されないが、1050℃で総圧下率が60%以上となるように実施することが好ましい。総圧下率が60%未満であると、熱間圧延中の再結晶が不十分となるため、熱延鋼板組織の不均質化につながる場合がある。上記の総圧下率は、例えば、90%以下であってもよい。
[幅エッジ部の温度が幅センター部の温度より10~150℃高くなるように幅エッジ部を加熱する]
 粗圧延を完了した鋼板に対して、幅エッジ部の温度(Te)が幅センター部の温度(Tc)よりも10~150℃高くなるように幅エッジ部を再加熱する。このような再加熱を施すことで、幅方向における熱延鋼板の強度変動を抑制して幅方向において強度がより均一な熱延鋼板を製造することができる。このため、その後の冷間圧延工程において幅方向全体にわたって均一な圧延を実施することができ、冷間圧延後の鋼板形状をより改善することが可能となる。このような再加熱を施さない場合、幅センター部より幅エッジ部の方がその後の冷却速度が大きいため、幅センター部より幅エッジ部の方が硬質化する。その結果、その後の冷間圧延工程において、幅エッジ部と比べて幅センター部が延伸する「中伸び」と呼ばれる形状不良が生じる。その結果、最終製品における曲率が悪化する。一方、幅エッジ部を過剰に加熱してしまうと幅エッジ部が過剰に軟質化するため、その後の冷間圧延工程においてエッジ部がセンター部より延伸する「耳波」と呼ばれる形状不良が生じる。これらの形状不良を回避するため、幅エッジ部の温度が幅センター部の温度より10~150℃高くなるようエッジを加熱する。好ましくは20~100℃であり、より好ましくは40~90℃である。幅エッジ部の加熱(再加熱)は、当業者に公知に任意の適切な手段によって実施することができ特に限定されないが、例えばエッジヒーターを用いて実施することが可能である。
[仕上げ圧延]
 エッジ部を再加熱した後、仕上げ圧延を行う。その条件は特に限定されないが、仕上げ圧延入側温度が950~1050℃、仕上げ圧延出側温度が850~1000℃、および総圧下率が70~95%の条件を満足する範囲で実施されことが望ましい。仕上げ圧延入側温度が950℃を下回るか、仕上げ圧延出側温度が850℃を下回るか、または総圧下率が95%を上回った場合、熱延鋼板の集合組織が発達するため、最終製品板における異方性が顕在化する場合がある。一方、仕上げ圧延入側温度が1050℃を上回るか、仕上げ圧延出側温度が1000℃を上回るか、または総圧下率が70%を下回った場合、熱延鋼板の結晶粒径が粗大化し、最終製品板組織の粗大化を引き起こす場合がある。
[巻取温度:450~650℃]
 本方法では、仕上げ圧延後の鋼板を450~650℃の巻取温度で巻き取ることで、冷間圧延後の鋼板形状を改善することができる。巻取温度が450℃を下回る場合、熱延鋼板が高強度化するため、冷間圧延後の鋼板形状が悪化する。一方、巻取温度が650℃を上回る場合、セメンタイトが粗大化し、未溶解のセメンタイトが残存するために加工性を損なう場合がある。
[酸洗]
 熱間圧延後は必要に応じて酸洗を行い、スケールを除去する。酸洗方法は常法に従えばよい。また、熱延コイルの形状矯正ないし酸洗性向上のため、酸洗前にスキンパス圧延やショットブラスト処理等の前処理を行っても差し支えない。
『(B)冷間圧延工程』
 次に、冷間圧延工程について説明する
[N基(N≧3)の圧延スタンドからなるタンデムミルを用いた冷間圧延]
 本方法では、得られた熱延鋼板をN基(N≧3)の圧延スタンドからなるタンデムミルを用いて冷間圧延することを含む冷間圧延工程であって、累積の冷延圧下率が30%以上であり、かつ以下の式(2)および(3)を満足する冷間圧延工程が実施される。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 Rk:k番目の圧延スタンドにおける圧下率
 Pbk:k番目の圧延スタンドにおける後方張力
 Pfk:k番目の圧延スタンドにおける前方張力
 σk-1:k-1番目の圧延スタンドを通過した後の鋼板の流動応力
 σk:k番目の圧延スタンドを通過した後の鋼板の流動応力
 σ0:熱延鋼板の降伏強度
 εk:k番目の圧延スタンドを通過した後の累積ひずみ
 本発明における冷間圧延工程では、上記式(2)を満足するように、各圧延スタンドにおける圧下率、前方張力/流動応力、後方張力/流動応力をコントロールする必要がある。タンデムミル中の各圧延スタンドにおける前方張力や後方張力は一般的に測定されているパラメータであり、例えば「特別報告書No.36 板圧延の理論と実際(改訂版) 社団法人 日本鉄鋼協会 生産技術部門 圧延理論部会編,2010,p.264」に記されるように冷間圧延中の鋼板に検出ロールを配置し、垂直方向の荷重から張力を測定することができる。また、冷間圧延中の鋼板の流動応力は式(3)で与えられる。ここでσ0は第一スタンド通過前の鋼板の流動応力、すなわち熱延鋼板の降伏強度である。σ0は熱延鋼板の幅センター部から圧延方向に沿ってJIS5号引張試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行うことにより得られる。式(2)は前方張力/流動応力と後方張力/流動応力の差が大きい状態で、大きな圧下を施すと、値が大きくなることを意味する。式(2)を小さくするためには、前方張力/流動応力と後方張力/流動応力の差を小さくする必要がある。前方張力/流動応力と後方張力/流動応力の差を小さくして式(2)を満足させることで、圧延ロールに対して鋼板が滑る現象、いわゆるスリップの発生などを確実に抑制することができ、より安定な冷間圧延の実現が可能となる。その結果として冷間圧延後の鋼板形状を改善することができる。
 式(2)の左辺が3.0以上となる場合、冷間圧延後の鋼板形状が著しく悪化し、最終製品における曲率が式(1)を満たさなくなる。式(2)の左辺は小さいほど好ましく、例えば2.5未満あるいは2.0未満が望ましく、1.0未満だと更に好ましい。下限は特に限定されないが、例えば、式(2)の左辺は0.1以上または0.2以上であってもよい。式(2)は、各圧延スタンドの前後で張力と熱延鋼板の降伏強度をうまくバランスさせて、スリップ等の圧延不良のない安定な冷間圧延を実現するための1つの好ましい指標である。したがって、このような安定な冷間圧延を実現するために、式(2)による制御方法に代えて他の制御方法を利用することも可能である。
 冷間圧延工程では、式(2)を満足することに加えて、累積の冷延圧下率を30%以上とすることも平坦度の高い良好な鋼板形状を得る上で重要である。累積の冷延圧下率が30%未満であると、冷間圧延後の鋼板形状が十分には改善されず、結果として最終製品における曲率が式(1)を満たさなくなる。累積の冷延圧下率は40%以上または50%以上であってもよい。上限は特に限定されないが、過度の圧下は圧延荷重が過大となり、冷延ミルの負担が増すことから、例えば累積の冷延圧下率は75%以下または70%以下であってもよい。
『(C)熱処理工程』
 次に、熱処理工程について説明する。
[加熱保持:Ac3~950℃で10秒~500秒間保持]
 得られた冷延鋼板は熱処理工程において所定の熱処理に供される。まず、オーステナイト化を十分進めるため、Ac3℃以上で10秒以上の加熱を行う。加熱温度がAc3℃未満であるかまたは保持時間が10秒未満であると、オーステナイト化が十分でないために、マルテンサイトを主体とする所望の鋼組織が得られず、十分な強度が得られない。一方、加熱温度が950℃を上回るかまたは保持時間が500秒を超えると、結晶粒径が粗大化することに加え、燃料コストの増大や設備の損傷を招く。Ac3(℃)は次の式により計算する。下記式における元素記号には当該元素の質量%を代入する。含有しない元素については0質量%を代入する。
 Ac3(℃)=912-230.5×C+31.6×Si-20.4×Mn-39.8×Cu-18.1×Ni-14.8×Cr+16.8×Mo+100.0×Al
[冷却停止温度T1:110~250℃]
 加熱後は110~250℃の範囲まで冷却する。T1が110℃を下回る場合、残留オーステナイトが面積率で0.5%を下回り、全伸びが低下する。一方、250℃を上回る場合、マルテンサイトに占める焼き戻しマルテンサイトの割合が80%よりも小さくなり、結果として耐水素脆化特性が低下する。冷却停止温度は120℃以上であってもよく、および/または220℃以下であってもよい。
[300~700℃の間の平均冷却速度:20~150℃/s]
 300~700℃の間の平均冷却速度(平均冷却速度1)を20~150℃/sの範囲に制御することで、鋼板内の温度偏差の増大を抑制することができるので、鋼板の曲率を改善することが可能となる。上記区間の平均冷却速度が20℃/sを下回る場合、マルテンサイト分率が低くなり、所望の引張強度を得ることができなくなる。一方、150℃/sを上回る場合、鋼板内の温度偏差が増大することにより鋼板の曲率が悪化する。なお、本発明における平均冷却速度とは、後述する放冷時間を含む速度である。
[T1~300℃の間の平均冷却速度:1.0~20℃/sおよび冷媒:気体]
 T1~300℃の間の平均冷却速度(平均冷却速度2)を1.0~20℃/sとし、かつ冷媒として気体(例えば窒素ガス)を使用して比較的穏やかな冷却とすることで、鋼板内の温度偏差の増大を抑制することができるので、鋼板の曲率を改善することが可能となる。上記区間の平均冷却速度が1.0℃/sを下回る場合、マルテンサイト分率が低くなり、所望の引張強度を得ることができなくなる。一方、20℃/sを上回る場合、鋼板内の温度偏差が増大することにより鋼板の曲率が悪化する。また、冷媒には鋼板内の温度偏差の増大を確実に抑制する観点から気体を使用する必要がある。
[Ms~700℃の間、およびT1~Ms未満の間に、各々0.5s以上の放冷を少なくとも1回実施]
 Ms~700℃の間およびT1~Ms未満の間の各区間において冷却を一時停止し、0.5s以上の放冷を行う。この処理により鋼板内の伝熱を促し、鋼板内の温度ムラを改善することで鋼板の曲率を改善することができる。Ms(℃)は次の式により計算する。下記式における元素記号には当該元素の質量%を代入する。含有しない元素については0質量%を代入する。
 Ms(℃)=561-474×C-33×Mn-17×Cr-21×Mo-7.5×Si+10×Co
[冷延鋼板に適用される張力:5~20MPa]
 上記冷却工程の間、冷延鋼板にかかる適用される張力は6~20MPaに制限する必要がある。このような範囲に張力を制御することで、冷延鋼板の平坦度を向上させることができ、最終的に得られる冷延鋼板の曲率を改善することが可能となる。一方、当該張力が上記範囲外の場合、冷延鋼板の曲率が悪化する。この張力は8MPa以上であってもよい。同様に、この張力は16MPa以下であってもよい。
[低温保持:200~300℃の間で100~1000秒間保持]
 冷却停止温度T1まで冷却した後は200~300℃の間で100~1000秒間保持を行う。これにより未変態のオーステナイトに炭素を分配させて残留オーステナイトを得ることができる。温度が200℃未満または保持時間が100秒未満の場合、所望の残留オーステナイト量が得られない。一方、温度が300℃を上回るかまたは保持時間が1000秒を上回る場合、所望の鋼組織が得られず、その結果として所望の引張強度および全伸びが得られない。
 本発明の実施形態に係る冷延鋼板の製造方法により得られた冷延鋼板に対して、当該冷延鋼板の片面または両面にめっき層を形成するめっき工程等の後工程を実施してもよい。めっき工程等の後工程は常法により行うことができる。
 以下、本発明の実施形態に係る冷延鋼板の実施例を説明する。実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例である。本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 まず、表1に示す化学組成を有する鋼を鋳造し、スラブを作製した。表1に示す成分以外の残部はFeおよび不純物である。これらのスラブを表2に示す条件で粗圧延および仕上げ圧延を含む熱間圧延を行い、熱延鋼板を製造した。粗圧延後の幅エッジ部の加熱(再加熱)はエッジヒーターを用いて実施した。次いで、熱延鋼板を酸洗し、表面のスケールを除去し、5基の圧延スタンドからなるタンデムミルを用いて表2に示す条件で冷間圧延を行った。冷間圧延後の板厚はいずれも1.6mmであり、板幅は1000mmであった。最後に、得られた冷延鋼板に対し表2に示す条件で熱処理を実施した。冷却停止温度T1~300℃の間の冷却は、冷媒として窒素ガス(比較例24は水)を使用して所定の平均冷却速度(表2中の平均冷却速度2)となるように実施した。
 このようにして得られた鋼板において、室温(25℃)大気中で、鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行い、引張強度(TS)および全伸び(El)を測定した。また、日本鉄鋼連盟規格の「JFS T 1001:1996 穴広げ試験方法」を行い、穴広げ率(λ)を測定した。
 曲率1/Rの最大値は以下のようにして決定した。まず、特定の機械的な平坦化処理を行っていない製造直後の冷延鋼板に対し、GOM社製 ATOS 3Dスキャナを用いて、全幅×300mm長さのエリアの各点について測定することで冷延鋼板内の曲率分布を得た。次いで、このようにして測定された曲率分布において主曲率ρ1、ρ2の絶対値のうち、より大きい方を曲率1/Rの最大値として決定した。
 耐水素脆化特性は、図1に示すせん断加工を利用した水素脆化試験によって評価した。具体的には、まず、曲率1/Rの最大値が得られる箇所を含むように鋼板からT(厚さ)×50W(幅)×50L(長さ)(単位:mm)のサンプルを採取した。シャー角θは1度、クリアランスCLは0.15×Tとし、板押さえ圧は1ton以上負荷した。上記のサンプルをせん断加工にて切断後、製品側(板押さえ側)の鋼板について170℃、10分の熱処理を行った。その後、濃度0.3g/Lおよび濃度3g/Lの常温のチオシアン酸アンモニウム水溶液に48時間浸漬し、水素を鋼板に導入した。その後、せん断加工面をマイクロスコープで観察し、亀裂の有無を評価した。0.3g/Lにおいて亀裂が認められたものは×(不合格)、0.3g/Lでは亀裂が認められなかったが、3g/Lでは亀裂が認められたものは〇(合格)、0.3g/L、3g/Lともに亀裂が認められなかったものは◎(合格)と判定した。
 TSが1470MPa以上でかつElが6.0%以上であり、さらに耐水素脆化特性が合格である場合を、高い引張強度および全伸びを有しつつ、耐水素脆化特性が改善された冷延鋼板として評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表3を参照すると、比較例2では、冷間圧延工程において式(2)を満足しなかったために曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例3および12では、熱間圧延工程において粗圧延後の鋼板の幅エッジ部の温度と幅センター部の温度の差が適切でなかったために曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例4では、冷間圧延工程において累積の冷延圧下率が低かったために曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例5では、熱処理工程において冷却停止温度T1が低かったために残留オーステナイトが十分に生成せず、Elが低下した。比較例6では、熱処理工程において300~700℃の間の平均冷却速度(平均冷却速度1)が遅かったためにマルテンサイトが十分に生成せず、TSが低下した。比較例7では、熱処理工程においてT1~300℃の間の平均冷却速度(平均冷却速度2)が速かったために曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例8および19では、熱処理工程において冷延鋼板に適用される張力が適切でなかったために曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例9、10および23では、熱処理工程において低温保持の温度または時間が適切でなかったために所望の鋼組織が得られず、TSおよび/またはElが低下した。比較例11では、熱処理工程において加熱保持の温度が低かったためにマルテンサイトが十分に生成せず、TSが低下した。
 比較例13では、熱処理工程においてT1が高かったためにマルテンサイトに占める焼き戻しマルテンサイトの割合が小さくなり、耐水素脆化特性が低下した。比較例14では、熱処理工程において平均冷却速度1が速かったために鋼板内の温度偏差が増大し、その結果として曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例15では、熱処理工程において平均冷却速度2が遅かったためにマルテンサイトが十分に生成せず、TSが低下した。比較例16では、熱間圧延工程において巻取温度が低かったために熱延鋼板が高強度化したと考えられる。その結果、冷間圧延後の鋼板形状が悪化し、耐水素脆化特性が低下した。比較例17および18では、熱処理工程においてMs~700℃の間またはT1~Ms未満の間で適切な放冷を行わなかったために鋼板内で温度ムラが生じたものと考えられる。その結果、曲率1/Rの最大値が高くなり、耐水素脆化特性が低下した。比較例24では、熱処理工程においてT1~300℃の間の冷却を冷媒として水を使用して実施したため、平均冷却速度2が速くなり、またT1~Ms未満の間で適切な放冷も行われなかった。その結果として鋼板内の温度偏差が増大し、曲率1/Rの最大値が高くなって耐水素脆化特性が低下した。比較例45では、Si含有量が低かったために残留オーステナイトが十分に生成せず、Elが低下した。比較例46では、Mn含有量が低かったためにマルテンサイトが十分に生成せず、TSが低下した。比較例47では、C含有量が低かったためにTSが低下した。比較例48~50では、C、MnまたはSi含有量が高かったために耐水素脆化特性が低下した。
 これとは対照的に、本発明例1、20~22および25~44では、所定の化学組成および鋼組織を有し、さらに曲率1/Rの最大値を0.010以下に制御することにより、高い引張強度および全伸びを有しつつ、耐水素脆化特性が改善された冷延鋼板を得ることができた。

Claims (5)

  1.  質量%で、
     C :0.16~0.40%、
     Si:0.05~2.00%、
     Mn:0.50~4.00%、
     P :0.050%以下、
     S :0.0100%以下、
     Al:0.001~1.00%、
     N :0.0100%以下、
     O :0.0050%以下、
     Cr:0~2.00%、
     Mo:0~1.00%、
     Cu:0~1.00%、
     Ni:0~1.00%、
     B :0~0.0100%、
     Co:0~1.00%、
     W :0~1.00%、
     Sn:0~1.00%、
     Sb:0~1.00%、
     Nb:0~0.100%、
     Ti:0~0.200%、
     V :0~0.50%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     Ce:0~0.0100%、
     Zr:0~0.0100%、
     La:0~0.0100%、
     Hf:0~0.0100%、
     Bi:0~0.0100%、
     Ce、La以外のREM:0~0.0100%、ならびに
     残部:Feおよび不純物からなる化学組成を有し、
     表面から1/4厚を中心とした1/8厚~3/8厚の範囲における鋼組織が、面積%で、
     マルテンサイト:90.0~99.5%、
     フェライト:0~5%、
     残留オーステナイト:0.5~7.0%、および
     残部:ベイナイト
    であり、かつ全マルテンサイトに占める焼き戻しマルテンサイトの割合が80~100%であり、
     全幅×長さ300mmの領域を形状測定することにより得られ、下記式(1)で表される曲率1/Rの最大値が0.010以下であり、
     引張強度が1470MPa以上であることを特徴とする、冷延鋼板。
    Figure JPOXMLDOC01-appb-M000001
     1/R:曲率
     ρ1およびρ2:曲面上の主曲率
  2.  前記化学組成が、質量%で、
     Cr:0.001~2.00%、
     Mo:0.001~1.00%、
     Cu:0.001~1.00%、
     Ni:0.001~1.00%、
     B :0.0001~0.0100%、
     Co:0.001~1.00%、
     W :0.001~1.00%、
     Sn:0.001~1.00%、
     Sb:0.001~1.00%、
     Nb:0.001~0.100%、
     Ti:0.001~0.200%、
     V :0.001~0.50%、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     Ce:0.0001~0.0100%、
     Zr:0.0001~0.0100%、
     La:0.0001~0.0100%、
     Hf:0.0001~0.0100%、
     Bi:0.0001~0.0100%、および
     Ce、La以外の REM:0.0001~0.0100%
    からなる群より選択される1種または2種以上を含むことを特徴とする、請求項1に記載の冷延鋼板。
  3.  前記冷延鋼板をせん断加工し、次いで170℃で10分間の熱処理を与えた後に濃度0.3g/Lのチオシアン酸アンモニウム水溶液に48時間浸漬する水素脆化試験において、せん断加工面に割れが発生しないことを特徴とする、請求項1または2に記載の冷延鋼板。
  4.  表面に電気亜鉛めっき層、溶融亜鉛めっき層、合金化溶融亜鉛めっき層のいずれかを有する、請求項1~3のいずれか一項に記載の冷延鋼板。
  5.  (A)請求項1または2に記載の化学組成を有するスラブを粗圧延および仕上げ圧延することを含み、以下の(A1)~(A3)の条件を満足する熱間圧延工程、
      (A1)スラブ加熱温度が1150℃以上であること、
      (A2)粗圧延後の鋼板の幅エッジ部の温度が幅センター部の温度よりも10~150℃高くなるように幅エッジ部を加熱すること、
      (A3)巻取温度が450~650℃であること
     (B)得られた熱延鋼板をN基(N≧3)の圧延スタンドからなるタンデムミルを用いて冷間圧延することを含む冷間圧延工程であって、累積の冷延圧下率が30%以上であり、かつ以下の式(2)および(3)を満足する冷間圧延工程、
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     Rk:k番目の圧延スタンドにおける圧下率
     Pbk:k番目の圧延スタンドにおける後方張力
     Pfk:k番目の圧延スタンドにおける前方張力
     σk-1:k-1番目の圧延スタンドを通過した後の鋼板の流動応力
     σk:k番目の圧延スタンドを通過した後の鋼板の流動応力
     σ0:熱延鋼板の降伏強度
     εk:k番目の圧延スタンドを通過した後の累積ひずみ
     (C)得られた冷延鋼板を熱処理することを含み、以下の(C1)~(C3)の条件を満足する熱処理工程
      (C1)冷延鋼板をAc3~950℃で10秒~500秒間保持すること(加熱保持)、
      (C2)以下の(i)~(v)を満足する冷却処理を実施すること、
       (i)冷却停止温度T1が110~250℃であること、
       (ii)300~700℃の間の平均冷却速度が20~150℃/sであること、
       (iii)T1~300℃の間の平均冷却速度が1.0~20℃/sであり、かつ、冷媒として気体を使用すること、
       (iv)Ms~700℃の間、およびT1~Ms未満の間に、各々0.5s以上の放冷を少なくとも1回実施すること、
       (v)冷延鋼板に適用される張力が5~20MPaであること
      (C3)200~300℃の間で100~1000秒間保持すること(低温保持)
    を含むことを特徴とする、請求項1~3のいずれか一項に記載の冷延鋼板の製造方法。
PCT/JP2022/031939 2021-09-09 2022-08-24 冷延鋼板およびその製造方法 WO2023037878A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2024000959A MX2024000959A (es) 2021-09-09 2022-08-24 Lamina de acero laminada en frio y metodo para producir la misma.
CN202280047647.2A CN117616144A (zh) 2021-09-09 2022-08-24 冷轧钢板及其制造方法
JP2023546872A JPWO2023037878A1 (ja) 2021-09-09 2022-08-24
US18/566,434 US20240263288A1 (en) 2021-09-09 2022-08-24 Cold rolled steel sheet and method for producing same
KR1020247004143A KR20240032929A (ko) 2021-09-09 2022-08-24 냉연 강판 및 그 제조 방법
EP22867200.2A EP4400614A1 (en) 2021-09-09 2022-08-24 Cold-rolled steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-146956 2021-09-09
JP2021146956 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023037878A1 true WO2023037878A1 (ja) 2023-03-16

Family

ID=85506635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031939 WO2023037878A1 (ja) 2021-09-09 2022-08-24 冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20240263288A1 (ja)
EP (1) EP4400614A1 (ja)
JP (1) JPWO2023037878A1 (ja)
KR (1) KR20240032929A (ja)
CN (1) CN117616144A (ja)
MX (1) MX2024000959A (ja)
WO (1) WO2023037878A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118459A1 (ja) * 2010-03-24 2011-09-29 Jfeスチール株式会社 超高強度冷延鋼板およびその製造方法
JP2013227657A (ja) 2012-03-29 2013-11-07 Kobe Steel Ltd 鋼板形状に優れた高強度冷延鋼板の製造方法
JP2016050343A (ja) 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
JP2016153524A (ja) 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
WO2020090302A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法
WO2021039776A1 (ja) * 2019-08-30 2021-03-04 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6112261B2 (ja) 2015-03-25 2017-04-12 Jfeスチール株式会社 冷延鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118459A1 (ja) * 2010-03-24 2011-09-29 Jfeスチール株式会社 超高強度冷延鋼板およびその製造方法
JP2011202195A (ja) 2010-03-24 2011-10-13 Jfe Steel Corp 超高強度冷延鋼板およびその製造方法
JP2013227657A (ja) 2012-03-29 2013-11-07 Kobe Steel Ltd 鋼板形状に優れた高強度冷延鋼板の製造方法
JP2016050343A (ja) 2014-08-29 2016-04-11 新日鐵住金株式会社 耐水素脆化特性に優れた超高強度冷延鋼板およびその製造方法
JP2016153524A (ja) 2015-02-13 2016-08-25 株式会社神戸製鋼所 切断端部での耐遅れ破壊特性に優れた超高強度鋼板
WO2020090302A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法
WO2021039776A1 (ja) * 2019-08-30 2021-03-04 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Special Report No. 36: Theory and Practice of Sheet Rolling", 2010, IRON AND STEEL INSTITUTE OF JAPAN, pages: 264

Also Published As

Publication number Publication date
EP4400614A1 (en) 2024-07-17
MX2024000959A (es) 2024-02-09
KR20240032929A (ko) 2024-03-12
CN117616144A (zh) 2024-02-27
JPWO2023037878A1 (ja) 2023-03-16
US20240263288A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
US11236412B2 (en) Steel sheet and plated steel sheet
JP6791371B2 (ja) 高強度冷延鋼板及びその製造方法
JP6777272B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR102604112B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
WO2021045168A1 (ja) 鋼板
US12077831B2 (en) Steel sheet, member, and methods for producing them
JP6777274B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
US20220220577A1 (en) High strength member, method for manufacturing high strength member, and method for manufacturing steel sheet for high strength member
EP3757242B1 (en) High-strength steel sheet and manufacturing method therefor
US12071682B2 (en) Steel sheet, member, and methods for producing them
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JPWO2017131054A1 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
KR102518159B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
JP7464887B2 (ja) 鋼板およびその製造方法
US11365459B2 (en) High strength cold rolled steel sheet and method of producing same
US12031203B2 (en) Galvannealed steel sheet
WO2022102218A1 (ja) 鋼板およびその製造方法
WO2023037878A1 (ja) 冷延鋼板およびその製造方法
KR20230040349A (ko) 열연 강판
US20240052449A1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet
JP7193044B1 (ja) 高強度鋼板およびその製造方法、ならびに、部材
WO2024128245A1 (ja) 鋼板および鋼板の製造方法
WO2023153097A1 (ja) 冷延鋼板およびその製造方法
US20230295760A1 (en) High-strength steel sheet
JP2022024998A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546872

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202317082383

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280047647.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/000959

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20247004143

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004143

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401000793

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022867200

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867200

Country of ref document: EP

Effective date: 20240409