Nothing Special   »   [go: up one dir, main page]

WO2023029374A1 - 耐高温半芳香聚酰胺、其制备方法、组合物和成型品 - Google Patents

耐高温半芳香聚酰胺、其制备方法、组合物和成型品 Download PDF

Info

Publication number
WO2023029374A1
WO2023029374A1 PCT/CN2022/074277 CN2022074277W WO2023029374A1 WO 2023029374 A1 WO2023029374 A1 WO 2023029374A1 CN 2022074277 W CN2022074277 W CN 2022074277W WO 2023029374 A1 WO2023029374 A1 WO 2023029374A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
acid
diacid
polyamide resin
diamine
Prior art date
Application number
PCT/CN2022/074277
Other languages
English (en)
French (fr)
Inventor
冯梧桐
赵元博
刘修才
Original Assignee
上海凯赛生物技术股份有限公司
Cibt美国公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术股份有限公司, Cibt美国公司 filed Critical 上海凯赛生物技术股份有限公司
Priority to EP22862525.7A priority Critical patent/EP4368656A4/en
Priority to MX2024001970A priority patent/MX2024001970A/es
Priority to JP2024507898A priority patent/JP2024530197A/ja
Publication of WO2023029374A1 publication Critical patent/WO2023029374A1/zh
Priority to US18/432,799 priority patent/US20240174806A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the invention belongs to the field of polymer materials, and in particular relates to a high-temperature-resistant semi-aromatic polyamide.
  • the long carbon chain semi-aromatic polyamide Due to its high heat resistance, dimensional stability, good mechanical strength and melt processability, high temperature resistant polyamide is widely used in electronic devices, peripheral parts of automobile engines and aerospace and other fields. Among them, the long carbon chain semi-aromatic polyamide is particularly important.
  • the rigid benzene ring structure endows the material with excellent dimensional stability and mechanical strength, and the long carbon chain structure with less internal rotation hindrance endows the material with better toughness and lower water absorption.
  • the long carbon chain semi-aromatic polyamide has a large number of entanglements and poor melt fluidity, which brings great difficulties to the melt discharge stage of the one-step polymerization process and the injection molding of the finished product.
  • the methods for improving the fluidity of polymers are mostly considered from the following aspects: 1) reducing the molecular weight of the polymer; 2) adding a flow modifier; 3) increasing the processing temperature; 4) increasing the shear rate or shear stress .
  • the reduction of polymer molecular weight can greatly reduce the melt viscosity of the polymer and increase the melt fluidity, but at the same time it will also greatly reduce the mechanical properties of the material; adding flow For melt blending of modifiers and polyamides, compatibility issues between additives and the matrix, precipitation of additives, and odor issues must also be considered; increasing the processing temperature can increase the fluidity of polyamide melts, but high temperature resistance
  • the processing window of polyamide is narrow, and excessively high processing temperature will also cause problems such as high-temperature aging degradation, cross-linking and gel generation, and further increase the difficulty of melt processing; polyamide melt is a pseudoplastic fluid, and its surface The apparent viscosity will decrease with the increase of shear rate or shear stress,
  • Patent CN101200591B discloses a fast-flowing high-temperature-resistant nylon composite material, by introducing 0.1 to 10 wt% of a flow modifier (such as silicone compounds, montanic acid derivatives, Polymer wax lubricants, etc.) to improve its fluidity, the flow modifier is treated with a coupling agent and then blended and granulated with the polyamide matrix to increase its compatibility.
  • a flow modifier such as silicone compounds, montanic acid derivatives, Polymer wax lubricants, etc.
  • Patent CN1368994A discloses a polyamide composition with high fluidity, by adding 0.5-20wt% polyamide oligomers with a higher melting point than the high molecular weight polyamide matrix to the high molecular weight polyamide matrix to improve the performance of the high molecular weight polyamide fluidity.
  • Polyamide oligomers (average molecular weight not exceeding 5000g/mol) are equivalent to plasticizers to play a certain role in plasticizing compared to high molecular weight polyamides, and have good compatibility with high molecular weight polyamide matrix, but
  • the disadvantage of this method is that two kinds of polyamides need to be prepared separately and then melt blended, and the process is relatively complicated.
  • Patent CN101798456B discloses a nylon composite material with a star-branched structure, by introducing 0.05-5wt% star-branching agent containing at least 3 reactive functional groups (such as tricarboxybenzenesulfonic acid, Triaminotriphenylmethane, trihydroxypropylene oxide, etc.) to improve its fluidity, the star branching agent acts as a plasticizer and at the same time makes the molecules move in a rolling motion, thereby improving the fluidity of polyamide injection molding processing, but it does not give it. Provide specific data on liquidity improvement.
  • the disadvantage of this method is that the introduction of the branching agent makes the polyamide matrix partially cross-linked. Moderate cross-linking helps to improve the mechanical properties of the material, but cross-linking will also greatly reduce the melt fluidity. How to make a difference between the two Finding a balance is difficult.
  • the invention provides a high temperature resistant semi-aromatic polyamide resin and a preparation method thereof.
  • the polymerized monomers of the polyamide resin include diamine monomers and diacid monomers, the diamine monomers include diamine monomers A1 and diamine monomers A2, and the diacid monomers include diacid monomers B1 and diacid monomer B2,
  • the number of carbon atoms C A1 of the diamine monomer A1 and the number of carbon atoms C A2 of the diamine monomer A2 satisfy: C A1 -C A2 ⁇ 4, and the diacid monomer B1 is selected from the group with 7 to 7 carbon atoms.
  • Aromatic dicarboxylic acids and derivatives thereof, the diacid monomer B2 is selected from aliphatic dicarboxylic acids with 4-18 carbon atoms.
  • derivatives of aromatic dicarboxylic acids with 7 to 12 carbon atoms include esterified products of aromatic dicarboxylic acids with 7 to 12 carbon atoms, further including dimethyl terephthalate and isophthalic acid Dimethyl formate.
  • the diamine monomer is simply referred to as diamine.
  • C A1 is used to indicate the number of carbon atoms of diamine A1
  • C A2 is used to indicate the number of carbon atoms of diamine A2.
  • Both C A1 and C A2 are integers.
  • the difference between C A1 -C A2 is an integer.
  • the number of carbon atoms (C) of the diamine monomer A1 and the diamine monomer A2 satisfies:
  • the diamine monomer A1 includes: 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine One or more of amine, 1,12-dodecanediamine, 1,13-tridecanediamine and 1,14-tetradecanediamine.
  • the diamine monomer A2 includes: 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexamethylenediamine, 1,7-heptanediamine, One or more of 1,8-octanediamine, 1,9-nonanediamine and 1,10-decanediamine.
  • the diamine monomer A1 is selected from diamines with 8-14 carbon atoms, and further selected from diamines with 4-11 carbon atoms.
  • the diamine monomer A2 is selected from diamines with 4-10 carbon atoms, and further selected from diamines with 4-7 carbon atoms.
  • the diacid monomer B1 includes: one or more of terephthalic acid, dimethyl terephthalate, isophthalic acid, and dimethyl isophthalate.
  • the diacid monomer B2 includes: 1,4-butanedioic acid, 1,5-pentanedioic acid, 1,6-hexanedioic acid, 1,7-pimelic acid, 1, 8-suberic acid, 1,9-azelaic acid, 1,10-sebacic acid, 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,13-tridecanedioic acid acid, 1,14-tetradecanedioic acid, 1,15-pentadecanedioic acid, 1,16-hexadecanedioic acid, 1,17-heptadecanedioic acid and 1,18-octadecanedioic acid one or more of acids.
  • the ratio of the sum of the amounts of the diamine monomer A2 and the diacid monomer B2 to the sum of the amounts of all polymerized monomers is (0.040-0.099):1.
  • the ratio of the amount of the diamine monomer to the diacid monomer is (1.01 ⁇ 1.03):1.
  • the diamine and/or diacid may be a diamine and/or diacid derived from chemical sources or biomass, preferably a diamine and/or diacid derived from biomass.
  • the polyamide resin comprises a diamine unit and a diacid unit formed after the polymerization reaction of the diamine monomer and the diacid monomer, and the total weight of the diamine unit and the diacid unit accounts for 97% of the polyamide resin. % or more, further 99% or more.
  • the polyamide resin may contain additives at a content of 0.01% to 3%.
  • the additives include but are not limited to any one or two or more of end-capping agents, catalysts, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystallization nucleating agents, fluorescent whitening agents and antistatic agents The combination.
  • the antioxidant is selected from one or more of phenolic antioxidants, inorganic phosphate antioxidants, phosphite antioxidants and carbon free radical scavenger antioxidants.
  • the catalyst is selected from one or more of potassium hypophosphite, sodium hypophosphite, calcium hypophosphite, magnesium hypophosphite and zinc hypophosphite.
  • the blocking agent is selected from one or more of acetic acid, benzoic acid and cyclohexanecarboxylic acid.
  • Long-chain semi-aromatic polyamides have deviations in melt fluidity due to the entanglement between long chains.
  • the present invention introduces the third comonomer (amine monomer A2) and the fourth comonomer (acid monomer B2) for copolymerization.
  • copolyamides have better fluidity than copolyamides with a difference in the number of carbon atoms less than 4 (that is, C A1 -C A2 ⁇ 4), and the greater the difference , the greater the degree of randomness of the polymer chain, the less interchain entanglement, and the better the fluidity of the copolyamide.
  • the polyamine content in the polyamide resin is 0.8wt% or less, further 0.5wt% or less, further 0.2wt% or less, further 0, and the polyamine is selected from the group consisting of One or more of thioether polyamine compounds, polyethyleneimine and polyaminopolyetheramine. Further, the number average molecular weight of the polyamine is 2500-5000 g/mol.
  • a small amount of polyamine and copolyamide can also be selected for in-situ polymerization.
  • the introduction of an appropriate amount of polyamines causes a small amount of chemical bonding between the polymer chains of the copolyamide, which further improves the tensile strength, bending strength and impact strength of the material.
  • the relative viscosity of the polyamide resin is 1.8-2.6, further 2.0-2.5.
  • the polyamide resin has a melting point of 265-315°C, further 271-310°C.
  • the tensile strength of the polyamide resin is 65-105 MPa, further 75-95 MPa.
  • the flexural strength of the polyamide resin is 80-140 MPa, further 90-125 MPa.
  • the flow length of the polyamide resin is greater than or equal to 600 mm, further greater than or equal to 850 mm.
  • the present invention also provides a kind of preparation method of high temperature resistant semi-aromatic polyamide resin, comprises the following steps:
  • nylon salt is also called nylon salt.
  • the nylon salt is a salt formed by the reaction between polymerized monomers (diamine monomer A1, diamine monomer A2, diacid monomer B1, diacid monomer B2), and polyamide is obtained from the nylon salt through polycondensation reaction.
  • the method includes: 1) heating the aqueous solution of polyamide salt to 120-140°C, concentrating the drain water, and then raising the temperature to 240-255°C for reaction; and
  • the method includes step a) before step 1): adding diamine monomer A1, diamine monomer A2, diacid monomer B1 and diacid monomer B2 into water, and raising the temperature to 70-95 °C, optionally at 70-95 °C for 0.5-3 hours to form an aqueous solution of polyamide salt;
  • the method includes step a) before step 1): adding diamine monomer A1, diamine monomer A2, diacid monomer B1 and diacid monomer B2 into water, heating up to 70-90 °C, optionally at 70-90 °C for 0.5-3 hours to form an aqueous solution of polyamide salt;
  • the heating process of step a) is carried out in nitrogen or inert gas atmosphere.
  • the inert gas includes one or more of argon or helium.
  • step a) is 0.5-2 hours.
  • Step 1) The drain water is concentrated until the concentration of the polyamide salt is 40wt%-80wt%, further 55wt%-65wt%.
  • the time for the reaction in step 1) is 0.5 to 2 hours, further 1 to 1.5 hours.
  • Step 1) During the reaction, the pressure is maintained at 2.0-3.5 MPa, further at 2.5-3 MPa.
  • step 2) the depressurization of the exhaust gas reduces the pressure in the reaction system to 0-0.1 MPa (gauge pressure), further to 0-0.02 MPa (gauge pressure).
  • the pressure in the present invention refers to gauge pressure.
  • Step 2 The temperature of the reaction system is 295-335° C. after the depressurization is completed.
  • the method also includes step 3): vacuuming treatment: vacuuming to a vacuum degree below -0.02MPa, further -0.05MPa to -0.1MPa,
  • the time for maintaining the vacuum degree is 0-300s, further 0-90s, further 5-90s, further 5-50s.
  • the method also includes step 4): discharging, and pelletizing the strands.
  • the method includes adding additives at any stage of step a), step 1), step 2), optional step 3) and optional step 4), and the additive accounts for 0.01% of the total mass of the monomer ⁇ 3%
  • the additives include but are not limited to any one of end-capping agents, catalysts, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystallization nucleating agents, fluorescent whitening agents and antistatic agents or a combination of two or more.
  • the capping agent includes any one of C2-C16 aliphatic carboxylic acids and C7-C10 aromatic carboxylic acids and combinations thereof.
  • the structure of the aliphatic carboxylic acid end-capping agent is a monobasic acid with a straight chain, a branched chain or a cyclic structure, and a saturated monobasic acid with a straight chain, a branched chain or a cyclic structure.
  • the catalyst includes phosphate, hypophosphite, further includes alkali metal and/or alkaline earth metal phosphate, alkali metal and/or alkaline earth metal hypophosphite, further includes potassium hypophosphite, hypophosphite One or a combination of two or more of sodium phosphate, calcium hypophosphite, and magnesium hypophosphite.
  • the antioxidant is selected from one or more of phenolic antioxidants, inorganic phosphate antioxidants, phosphite antioxidants and carbon free radical scavenger antioxidants combination.
  • the strand cutting described in step 4) can be carried out by water cooling, and the temperature of the cooling water is, for example, 10-30°C.
  • the preparation method of described high temperature resistant semi-aromatic copolyamide comprises the following steps:
  • step a) and step 1) to step 4) have the same further limitations as described above.
  • the present invention also provides a composition comprising the high temperature resistant semi-aromatic polyamide resin described in any one of the above.
  • the present invention also provides a molded product, which is prepared from the high-temperature-resistant semi-aromatic polyamide resin or composition described in any one of the above-mentioned materials.
  • the implementation of the present invention has at least the following advantages:
  • the one-step condensation polymerization process of the high-temperature-resistant semi-aromatic polyamide of the present invention is easy to melt and discharge, and has good fluidity and stability of the melt.
  • the melting point test method refers to the standard ISO 11357-3, and the heating rate is 20°C/min.
  • Concentrated sulfuric acid method with Ubbelohde viscometer Accurately weigh 0.5 ⁇ 0.0002g of the dried polyamide sample, add 50mL concentrated sulfuric acid (96%) to dissolve, measure and record the concentrated sulfuric acid flow time t in a constant temperature water bath at 25 ⁇ 0.02°C 0 and the polyamide solution flow through time t.
  • t the flow time of the polyamide solution
  • t 0 the flow time of the solvent concentrated sulfuric acid
  • Bending test refers to standard ISO-178, test condition: 2mm/min;
  • the impact test is tested according to the standard ISO 180.
  • the antioxidant used in the embodiment is antioxidant H10
  • the end-capping agent is acetic acid
  • the catalyst is sodium hypophosphite.
  • "%" in the present invention and the examples represent the mass percentage relative to the total amount of monomers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明提供一种耐高温半芳香聚酰胺树脂、其制备方法、组合物和成型品。所述聚酰胺树脂的聚合单体包括二胺单体和二酸单体,所述二胺单体包括二胺单体A1和二胺单体A2,所述二酸单体包括二酸单体B1和二酸单体B2,所述二胺单体A1的碳原子数CA1与二胺单体A2的碳原子数CA2满足:CA1-CA2≥4,二酸单体B1选自碳原子数为7~12的芳香族二羧酸及其衍生物,二酸单体B2选自碳原子数为4~18的脂肪族二羧酸。本发明的聚酰胺树脂具有更好的流动性,高分子链的无规程度越大,链间的缠结越少,共聚酰胺的流动性越好。本发明的耐高温半芳香聚酰胺的一步法缩合聚合工艺,熔融出料容易,熔体的流动性和稳定性好。

Description

耐高温半芳香聚酰胺、其制备方法、组合物和成型品 技术领域
本发明属于高分子材料领域,具体涉及一种耐高温半芳香聚酰胺。
背景技术
耐高温聚酰胺因其具有较高的耐热性、尺寸稳定性、良好的力学强度和可熔融加工性,被广泛应用于电子器件、汽车发动机周边部件和航空航天等领域。其中,长碳链半芳香聚酰胺尤为重要,刚性苯环结构赋予了材料优异的尺寸稳定性和力学强度,内旋转位阻较小的长碳链结构赋予了材料较好的韧性和较低的吸水率。而长碳链半芳香聚酰胺分子链之间大量缠结、熔体流动性较差,给一步法聚合工艺的熔融出料阶段和成品的注射成型带来很大的困难。
目前,改善聚合物流动性的方法多从以下几个方面考虑:1)降低聚合物的分子量;2)加入流动改性剂;3)提高加工温度;4)增大剪切速率或剪切应力。但以上几种方法都存在不可避免的问题:聚合物分子量的降低能够大幅度降低聚合物的熔体粘度、增大熔体流动性,但同时也会使材料的机械性能大幅度下降;加入流动改性剂与聚酰胺进行熔融共混,也要考虑助剂与基体的相容性问题、助剂的析出和气味问题等;提高加工温度可以增大聚酰胺熔体的流动性,但耐高温聚酰胺的加工窗口较窄,过高的加工温度也会带来高温老化降解、交联产生凝胶等问题,进一步增大熔融加工的困难;聚酰胺熔体是一种假塑性流体,其表观粘度会随剪切速率或剪切应力的增大而降低,但剪切速率过高、剪切力太强也会使材料发生机械降解。
专利CN101200591B公布了一种快速流动的耐高温尼龙复合材料,通过向流动性较差的半芳香聚酰胺基体中引入0.1~10wt%的流动改性剂(如硅酮类化合物、褐煤酸衍生物、高分子蜡类润滑剂等)来改善其流动性,流动改性剂用偶联剂处理后与聚酰胺基体进行共混造粒以增加其相容性。流动改性剂具有优异的外部和内部润滑 作用,能够有效降低聚酰胺基体与加工设备以及聚酰胺分子链之间的摩擦力。专利CN1368994A公布了一种高流动性聚酰胺组合物,通过向高分子量聚酰胺基体中添加0.5-20wt%的比高分子量聚酰胺基体熔点更高的聚酰胺低聚物来改善高分子量聚酰胺的流动性。聚酰胺低聚物(平均分子量不超过5000g/mol)相对于高分子量聚酰胺来说相当于增塑剂起到一定的增塑作用,同时与高分子量聚酰胺基体具有良好的相容性,但该方法的缺点是需要分别制备两种聚酰胺再进行熔融共混,工艺较为复杂。专利CN101798456B公布了一种具有星型支化结构的尼龙复合材料,通过向聚酰胺基体中引入0.05-5wt%的含有至少3个反应性官能团的星型支化剂(如三羧基苯磺酸、三氨基三苯甲烷、三羟基环氧丙烷等)来改善其流动性,星型支化剂充当塑化剂的同时使分子呈滚动式运动,进而提高聚酰胺注塑加工流动性,但并未给出具体的流动性改善的相关数据。该方法的缺点是支化剂的引入使得聚酰胺基体发生部分交联,适度交联有助于改善材料的力学性能,但交联也会使熔体流动性大幅度降低,如何在二者之间找到平衡是一个难点。
目前,专利已公开的改善聚酰胺流动性的方法多从共混角度入手,通过双螺杆熔融挤出向聚酰胺基体中引入小分子或高分子润滑剂、与基体相同的低分子量聚酰胺、线性或支化结构的聚烯烃、液晶聚合物、星型支化剂等来改善聚酰胺熔体的流动性能。通过熔融共混的方法可以从一定程度上改善长碳链半芳香聚酰胺的熔融加工性能,但并不能从聚合的角度解决其一步法聚合的熔融出料问题。
发明内容
为解决现有技术和产品的不足,本发明提供了一种耐高温半芳香聚酰胺树脂及其制备方法。
所述聚酰胺树脂的聚合单体包括二胺单体和二酸单体,所述二胺单体包括二胺单体A1和二胺单体A2,所述二酸单体包括二酸单体B1和二酸单体B2,
其中,所述二胺单体A1的碳原子数C A1与二胺单体A2的碳原子数C A2满足:C A1-C A2≥4,二酸单体B1选自碳原子数为7~12的芳香族二羧酸及其衍生物,二 酸单体B2选自碳原子数为4~18的脂肪族二羧酸。
进一步地,碳原子数为7~12的芳香族二羧酸的衍生物包括碳原子数为7~12的芳香族二羧酸的酯化物,进一步包括对苯二甲酸二甲酯和间苯二甲酸二甲酯。
在本发明中,二胺单体简称为二胺。C A1用于表示二胺A1的碳原子数,类似地,C A2用于表示二胺A2的碳原子数。C A1和C A2均为整数。C A1-C A2的差值为整数。
于一些实施方式中,所述二胺单体A1与二胺单体A2的碳原子数(C)满足:
4≤C A1-C A2≤10。在本发明一些优选实施方式中,所述二胺单体A1包括:1,8-辛二胺、1,9-壬二胺、1,10-癸二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,13-十三烷二胺和1,14-十四烷二胺中的一种或多种。
在本发明一些优选实施方式中,所述二胺单体A2包括:1,4-丁二胺、1,5-戊二胺、1,6-己二胺、1,7-庚二胺、1,8-辛二胺、1,9-壬二胺和1,10-癸二胺中的一种或多种。
在本发明一些优选实施方式中,二胺单体A1选自碳原子数为8~14的二胺,进一步地选自碳原子数为4~11的二胺。
在本发明一些优选实施方式中,二胺单体A2选自碳原子数为4~10的二胺,进一步地选自碳原子数为4~7的二胺。
在本发明一些优选实施方式中,二酸单体B1包括:对苯二甲酸、对苯二甲酸二甲酯、间苯二甲酸、间苯二甲酸二甲酯中的一种或多种。
在本发明一些优选实施方式中,二酸单体B2包括:1,4-丁二酸、1,5-戊二酸、1,6-己二酸、1,7-庚二酸、1,8-辛二酸、1,9-壬二酸、1,10-癸二酸、1,11-十一烷二酸、1,12-十二烷二酸、1,13-十三烷二酸、1,14-十四烷二酸、1,15-十五烷二酸、1,16-十六烷二酸、1,17-十七烷二酸和1,18-十八烷二酸中的一种或多种。
在本发明一些优选实施方式中,所述二胺单体A2与二酸单体B2的物质的量之和与所有聚合单体的物质的量之和的比为(0.040~0.099):1。
在本发明一些优选实施方式中,所述二胺单体与二酸单体的物质的量之比为(1.01~1.03):1。
所述二胺和/或二酸可以为化学来源或者生物物质来源的二胺和/或二酸,优选为生物物质来源的二胺和/或二酸。
所述的聚酰胺树脂包括由所述二胺单体和二酸单体聚合反应后形成的二胺单元和二酸单元,所述二胺单元和二酸单元的总重量占聚酰胺树脂的97%以上,进一步为99%以上。所述聚酰胺树脂中可以含有添加剂,含量为0.01%~3%。
所述添加剂包括但不限于封端剂、催化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合。
进一步地,所述抗氧剂选自酚类抗氧剂、无机磷酸盐类抗氧剂、亚磷酸酯类抗氧剂和碳自由基捕获剂类抗氧剂中的一种或多种。所述催化剂选自次亚磷酸钾、次亚磷酸钠、次亚磷酸钙、次亚磷酸镁和次亚磷酸锌中的一种或多种。所述封端剂选自醋酸、苯甲酸和环己烷甲酸中的一种或多种。
长链半芳香族聚酰胺由于长链之间的相互缠结致使熔体流动性偏差。本发明引入第三共聚单体(胺单体A2)、第四共聚单体(酸单体B2)进行共聚,经大量实验发现,使用的两种二胺单体的碳原子数差值大于等于4(即C A1-C A2≥4)的共聚酰胺相对于碳原子数差值小于4(即C A1-C A2<4)的共聚酰胺来说具有更好的流动性,且差值越大,高分子链的无规程度越大,链间的缠结越少,共聚酰胺的流动性越好。
在本发明一些优选实施方式中,所述聚酰胺树脂中多胺的含量为0.8wt%以下,进一步为0.5wt%以下,进一步为0.2wt%以下,进一步为0,所述多胺选自含硫醚多胺化合物、聚乙烯亚胺和多氨基聚醚胺中的一种或多种。进一步地,所述多胺的数均分子量为2500~5000g/mol。
于一些实施方式中,聚酰胺树脂的制备过程中还可以选择引入少量的多胺与共聚酰胺进行原位聚合。于一些实施方式中,适量的多胺的引入使得共聚酰胺的高分子链间存在微量的化学键合,使得材料的拉伸强度、弯曲强度和冲击强度进一步提升。
进一步地,所述聚酰胺树脂的相对粘度为1.8~2.6,进一步为2.0~2.5。
进一步地,所述聚酰胺树脂的熔点为265~315℃,进一步为271~310℃。
进一步地,所述聚酰胺树脂的拉伸强度为65~105MPa,进一步为75~95MPa。
进一步地,所述聚酰胺树脂的弯曲强度为80~140MPa,进一步为90~125MPa。
进一步地,所述聚酰胺树脂的流长为大于等于600mm,进一步为大于等于850mm。
本发明还提供一种耐高温半芳香聚酰胺树脂的制备方法,包括下述步骤:
1)将聚酰胺盐的水溶液加热升温至120~140℃,排水浓缩,然后升温至230~260℃进行反应;和
2)排气降压。
本领域技术人员知晓,所述聚酰胺盐又称尼龙盐。尼龙盐是聚合单体(二胺单体A1、二胺单体A2、二酸单体B1、二酸单体B2)之间反应形成的盐,尼龙盐经过缩聚反应得到聚酰胺。
进一步地,所述方法包括:1)将聚酰胺盐的水溶液加热升温至120~140℃,排水浓缩,然后升温至240~255℃进行反应;和
2)排气降压。
进一步地,所述方法包括位于步骤1)之前的步骤a):将二胺单体A1、二胺单体A2、二酸单体B1和二酸单体B2加入到水中,升温至70~95℃,可选择地在70~95℃保温0.5~3h,形成聚酰胺盐的水溶液;
进一步地,所述方法包括位于步骤1)之前的步骤a):将二胺单体A1、二胺单体A2、二酸单体B1和二酸单体B2加入到水中,升温至70~90℃,可选择地在70~90℃保温0.5~3h,形成聚酰胺盐的水溶液;
步骤a)所述升温过程在氮气或惰性气体氛围中进行。所述惰性气体包括氩气或氦气中的一种或几种。
进一步地,步骤a)所述的保温时间为0.5~2h。
步骤1)所述排水浓缩至聚酰胺盐的浓度为40wt%~80wt%,进一步为55wt%~65wt%。
步骤1)所述反应进行的时间为0.5~2h,进一步为1~1.5h。
步骤1)所述反应进行过程中压力保持为2.0~3.5MPa,进一步为2.5~3MPa。
步骤2)所述排气降压使反应体系内压力降至0~0.1MPa(表压),进一步为 0~0.02MPa(表压)。
除非另有说明或者明显矛盾,本发明中的压力均指表压。
步骤2)所述降压结束后反应体系的温度为295~335℃。
进一步地,所述方法还包括步骤3):抽真空处理:抽真空至真空度为-0.02MPa以下,进一步为-0.05MPa至-0.1MPa,
可选择地,在该真空度保持的时间为0~300s,进一步为0~90s,更进一步为5~90s,更进一步为5~50s。
进一步地,所述方法还包括步骤4):出料,和拉条切粒。
进一步地,所述方法包括在步骤a)、步骤1)、步骤2)、可选择的步骤3)和可选择的步骤4)的任意阶段加入添加剂,所述添加剂占单体总质量的0.01%~3%,所述添加剂包括但不限于封端剂、催化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合。
进一步地,所述封端剂包括C2~C16的脂肪族羧酸和C7~C10的芳香族羧酸中任意一种及其组合。所述脂肪族羧酸封端剂的结构为直链、带有支链或含有环状结构的一元酸,进一步为直链、带有支链或含有环状结构的饱和的一元酸。
进一步地,所述催化剂包括磷酸盐、次亚磷酸盐,进一步包括碱金属和/或碱土金属的磷酸盐、碱金属和/或碱土金属的次亚磷酸盐,进一步包括次亚磷酸钾、次亚磷酸钠、次亚磷酸钙、次亚磷酸镁中的一种或两种以上的组合。
进一步地,所述抗氧剂选自酚类抗氧剂、无机磷酸盐类抗氧剂、亚磷酸酯类抗氧剂和碳自由基捕获剂类抗氧剂中的一种或两种以上的组合。
进一步地,步骤4)所述拉条切粒可采用水冷却的方式进行,冷却水的温度例如为10~30℃。
作为本发明的一个实施方式,所述耐高温半芳香族共聚酰胺的制备方法包括下述步骤:
a)将二胺单体A1、二胺单体A2、二酸单体B1和二酸单体B2加入到水中,升温至70~90℃,在70~90℃进行保温0.5~3h以形成聚酰胺盐的水溶液;
1)将所述聚酰胺盐的水溶液加热升温至120~140℃,排水浓缩至聚酰胺盐的浓 度为40wt%~80wt%,升温至240~255℃,压力保持为2.5~3MPa反应0.5~2h;
2)排气降压使反应体系内压力降至0~0.1MPa(表压),降压结束后反应体系的温度为295~335℃;
3)抽真空至真空度为-0.05MPa至-0.1MPa,保持该真空度的时间为0~300s;和
4)出料,和拉条切粒。
步骤a)以及步骤1)~步骤4)的参数具有同上文所述的进一步限定。
本发明还提供一种组合物,包括以上任一项的所述的耐高温半芳香聚酰胺树脂。
本发明还提供一种成型品,以上述任一项所述的耐高温半芳香聚酰胺树脂或组合物为原料制备得到。
与现有技术相比,本发明的实施,至少具有以下优势:
1、长链半芳香族聚酰胺由于长链之间的相互缠结致使熔体流动性偏差,本发明引入第三、四共聚单体进行共聚,经大量实验发现,使用的两种二胺单体的碳原子数差值大于等于4的共聚酰胺具有更好的流动性,且差值越大,高分子链的无规程度越大,链间的缠结越少,共聚酰胺的流动性越好。
2、本发明的耐高温半芳香聚酰胺的一步法缩合聚合工艺,熔融出料容易,熔体的流动性和稳定性好。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
熔点的测试方法参照标准ISO 11357-3,升温速率:20℃/min。
相对粘度η r的测试方法
乌氏粘度计浓硫酸法:准确称量干燥后的聚酰胺样品0.5±0.0002g,加入50mL浓硫酸(96%)溶解,在25±0.02℃恒温水浴槽中测量并记录浓硫酸流经时间t 0和聚酰胺溶液流经时间t。
相对粘度计算公式:
相对粘度η r=t/t 0
其中:t:聚酰胺溶液的流经时间;t 0:溶剂浓硫酸的流经时间。
力学性能测试方法
弯曲试验测试参照标准ISO-178,测试条件:2mm/min;
拉伸试验测试参照标准ISO-572-2,测试条件:50mm/min;
冲击试验测试参照标准ISO 180。
阿基米德螺旋线流动长度(简称流长)测试条件:温度为熔点之上25℃,注射压力为80bar。
实施例中所用抗氧剂为抗氧剂H10、封端剂为乙酸、催化剂为次亚磷酸钠。除非另有说明或者明显矛盾,本发明和实施例中的“%”均代表相对于单体总量的质量百分比。
实施例1
将9.28mol 1,9-壬二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为65wt%;再次升温至240℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为317℃;抽真空使真空度为-0.07MPa,抽真空时间为20s,得到共聚物熔 体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例2
将9.28mol 1,9-壬二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.8%的分子量为3000的聚乙烯亚胺、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为65wt%;再次升温至240℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为317℃;抽真空使真空度为-0.07MPa,抽真空时间为20s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例3
将9.28mol 1,9-壬二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.4%的分子量为3000的聚乙烯亚胺、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为65wt%;再次升温至240℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为317℃;抽真空使真空度为-0.07MPa,抽真空时间为20s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例4
将9.20mol 1,10-癸二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热 使反应体系升温至130℃,排水浓缩至浓度为60wt%;再次升温至245℃,压力保持2.6MPa反应1.2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为323℃;抽真空使真空度为-0.08MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例5
将9.21mol 1,11-十一烷二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至135℃,排水浓缩至浓度为70wt%;再次升温至245℃,压力保持3.0MPa反应1.5h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为309℃;抽真空使真空度为-0.06MPa,抽真空时间为30s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例6
将9.20mol 1,12-十二烷二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至140℃,排水浓缩至浓度为70wt%;再次升温至250℃,压力保持3.0MPa反应2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为308℃;抽真空使真空度为-0.09MPa,抽真空时间为30s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例7
将9.20mol 1,12-十二烷二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.8%的分子量为3000的聚乙烯亚胺、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至140℃,排水浓缩至浓度为70wt%;再次升温至250℃,压力保持3.0MPa反应2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为308℃;抽真空使真空度为-0.09MPa,抽真空时间为30s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例8
将9.23mol 1,13-十三烷二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至140℃,排水浓缩至浓度为70wt%;再次升温至255℃,压力保持3.0MPa反应2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为301℃;抽真空使真空度为-0.10MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例9
将9.23mol 1,13-十三烷二胺、9.10mol对苯二甲酸、0.90mol 1,6-己二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶 液;加热使反应体系升温至140℃,排水浓缩至浓度为70wt%;再次升温至255℃,压力保持3.0MPa反应2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为303℃;抽真空使真空度为-0.10MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例10
将9.76mol 1,10-癸二胺、9.48mol对苯二甲酸、0.52mol 1,5-戊二胺、0.52mol辛二酸、0.02%催化剂、0.3%抗氧剂、0.20%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为60wt%;再次升温至245℃,压力保持2.6MPa反应1.2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为334℃;抽真空使真空度为-0.08MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例11
将9.20mol 1,9-壬二胺、9.02mol对苯二甲酸、0.98mol 1,5-戊二胺、0.98mol 1,10-癸二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为65wt%;再次升温至240℃,压力保持2.5MPa反应1h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为313℃;抽真空使真空度为-0.07MPa,抽真空时间为20s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例12
将9.47mol 1,11-十一烷二胺、9.24mol对苯二甲酸、0.76mol 1,6-己二胺、0.76 mol 1,12-十二烷二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至135℃,排水浓缩至浓度为70wt%;再次升温至245℃,压力保持3.0MPa反应1.5h;排气降压使反应体系内压力降至0MPa(表压),降压结束后反应体系的温度为301℃;抽真空使真空度为-0.06MPa,抽真空时间为30s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
实施例13
将9.23mol 1,13-十三烷二胺、9.10mol对苯二甲酸、0.90mol 1,8-辛二胺、0.90mol己二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至140℃,排水浓缩至浓度为70wt%;再次升温至255℃,压力保持3.0MPa反应2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为298℃;抽真空使真空度为-0.10MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
对比例1
将9.23mol 1,13-十三烷二胺、9.10mol对苯二甲酸、0.90mol 1,12-十二烷二胺、0.90mol 1,12-十二烷二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至140℃,排水浓缩至浓度为70wt%;再次升温至255℃,压力保持3.0MPa反应2h;排气降压使反应体系内压力降至0.01MPa(表 压),降压结束后反应体系的温度为296℃;抽真空使真空度为-0.10MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
对比例2
将9.20mol 1,10-癸二胺、9.10mol对苯二甲酸、0.90mol 1,9-壬二胺、0.90mol1,12-十二烷二酸、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为60wt%;再次升温至245℃,压力保持2.6MPa反应1.2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为317℃;抽真空使真空度为-0.08MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
对比例3
将9.20mol 1,10-癸二胺、9.10mol对苯二甲酸、0.90mol 1,5-戊二胺、0.90mol己二酸、1.5%的分子量为3000的聚乙烯亚胺、0.03%催化剂、0.3%抗氧剂、0.24%封端剂与水混合均匀,搅拌速度设置为70rpm,氮气气氛中升温至90℃并于该温度保持1h,制得50wt%的尼龙盐溶液;加热使反应体系升温至130℃,排水浓缩至浓度为60wt%;再次升温至245℃,压力保持2.6MPa反应1.2h;排气降压使反应体系内压力降至0.01MPa(表压),降压结束后反应体系的温度为323℃;抽真空使真空度为-0.08MPa,抽真空时间为10s,得到共聚物熔体;将共聚物熔体进行拉条切粒,即得到所述耐高温半芳香聚酰胺。
表1
Figure PCTCN2022074277-appb-000001
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种耐高温半芳香聚酰胺树脂,其特征在于,所述聚酰胺树脂的聚合单体包括二胺单体和二酸单体,所述二胺单体包括二胺单体A1和二胺单体A2,所述二酸单体包括二酸单体B1和二酸单体B2,
    其中,所述二胺单体A1的碳原子数C A1与二胺单体A2的碳原子数C A2满足:C A1-C A2≥4,二酸单体B1选自碳原子数为7~12的芳香族二羧酸及其衍生物,二酸单体B2选自碳原子数为4~18的脂肪族二羧酸。
  2. 如权利要求1所述的耐高温半芳香聚酰胺树脂,其特征在于,
    所述二胺单体A1包括:1,8-辛二胺、1,9-壬二胺、1,10-癸二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,13-十三烷二胺和1,14-十四烷二胺中的一种或多种;和/或,
    所述二胺单体A2选自碳原子数为4~10的二胺,优选包括:1,4-丁二胺、1,5-戊二胺、1,6-己二胺、1,7-庚二胺、1,8-辛二胺、1,9-壬二胺和1,10-癸二胺中的一种或多种,所述二胺单体A2进一步地选自碳原子数为4~7的二胺;和/或,
    二酸单体B1包括:对苯二甲酸、对苯二甲酸二甲酯、间苯二甲酸和间苯二甲酸二甲酯中的一种或多种;和/或,
    二酸单体B2包括:1,4-丁二酸、1,5-戊二酸、1,6-己二酸、1,7-庚二酸、1,8-辛二酸、1,9-壬二酸、1,10-癸二酸、1,11-十一烷二酸、1,12-十二烷二酸、1,13-十三烷二酸、1,14-十四烷二酸、1,15-十五烷二酸、1,16-十六烷二酸、1,17-十七烷二酸和1,18-十八烷二酸中的一种或多种;和/或,
    聚酰胺树脂包括由所述二胺单体和二酸单体聚合反应后形成的二胺单元和二酸单元,所述二胺单元和二酸单元的总重量占聚酰胺树脂的97%以上,进一步为99%以上;和/或,
    所述聚酰胺树脂中多胺的含量为0.8%以下,进一步为0.5%以下,进一步为0.2%以下,进一步为0,所述多胺选自硫醚多胺化合物、聚乙烯亚胺和多氨基聚醚胺中的一种或多种;和/或,
    所述聚酰胺树脂中含有添加剂,含量为0.01%~3%,所述添加剂包括封端剂、催 化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合。
  3. 如权利要求1所述的耐高温半芳香聚酰胺树脂,其特征在于,
    所述二胺单体A2与二酸单体B2的物质的量之和与所有聚合单体的物质的量之和的比为(0.040~0.099):1;和/或,
    所述二胺单体与二酸单体的物质的量之比为(1.01~1.03):1。
  4. 如权利要求1~3中任一项所述的耐高温半芳香聚酰胺树脂,其特征在于,
    所述聚酰胺树脂的相对粘度为1.8~2.6,进一步为2.0~2.5;和/或,
    所述聚酰胺树脂的熔点为265~315℃,进一步为271~310℃;和/或,
    所述聚酰胺树脂的拉伸强度为65~105MPa,进一步为75~95MPa;和/或,
    所述聚酰胺树脂的弯曲强度为80~140MPa,进一步为90~125MPa;和/或,
    所述聚酰胺树脂的流长为大于或等于600mm,进一步为大于或等于850mm。
  5. 一种耐高温半芳香聚酰胺树脂的制备方法,其特征在于,包括下述步骤:
    1)将聚酰胺盐的水溶液加热升温至120~140℃,排水浓缩,然后升温至230~260℃进行反应;和
    2)排气降压。
  6. 根据权利要求5所述的方法,其特征在于,
    步骤1)所述排水浓缩至聚酰胺盐的浓度为40wt%~80wt%,进一步为55wt%~65wt%;和/或,
    步骤1)所述反应进行的时间为0.5~2h,进一步为1~1.5h;和/或,
    步骤1)所述反应进行过程中压力保持为2.0~3.5MPa,进一步为2.5~3MPa;和/或,
    步骤2)所述排气降压使反应体系内压力降至0~0.1MPa(表压),进一步为 0~0.02MPa(表压);和/或,
    步骤2)所述降压结束后反应体系的温度为295~335℃。
  7. 根据权利要求5所述的方法,其特征在于,所述方法包括位于步骤1)之前的步骤a):将二胺单体A1、二胺单体A2、二酸单体B1和二酸单体B2加入到水中,升温至70~95℃,可选择地在70~95℃保温0.5~3h,形成聚酰胺盐的水溶液;
    和/或,所述方法包括步骤3):抽真空处理:抽真空至真空度为-0.02MPa以下,进一步为-0.05MPa至-0.1MPa,可选择地,在该真空度保持的时间为0~300s,进一步为0~90s,更进一步为5~90s。
  8. 根据权利要求5或6或7所述的方法,其特征在于,包括在步骤a)、步骤1)、步骤2)和可选择的步骤3)的任意阶段加入添加剂,所述添加剂占单体总质量的0.01%~3%,所述添加剂包括但不限于封端剂、催化剂、阻燃剂、抗氧化剂、紫外线吸收剂、红外线吸收剂、结晶成核剂、荧光增白剂和抗静电剂中的任意一种或两种以上的组合。
  9. 一种组合物,其特征在于,包括权利要求1~4中任一项所述的耐高温半芳香聚酰胺树脂。
  10. 一种以权利要求1~4中任一项所述的耐高温半芳香聚酰胺树脂或权利要求9所述的组合物为原料制备得到的成型品。
PCT/CN2022/074277 2021-08-30 2022-01-27 耐高温半芳香聚酰胺、其制备方法、组合物和成型品 WO2023029374A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22862525.7A EP4368656A4 (en) 2021-08-30 2022-01-27 HIGH TEMPERATURE RESISTANT SEMI-AROMATIC POLYAMIDE AND PREPARATION METHOD THEREOF, COMPOSITION AND MOLDED ARTICLE
MX2024001970A MX2024001970A (es) 2021-08-30 2022-01-27 Resina de poliamida semi-aromatica resistente a alta temperatura y metodo de preparacion para la misma, composicion y producto de moldeo.
JP2024507898A JP2024530197A (ja) 2021-08-30 2022-01-27 耐高温性半芳香族ポリアミドおよびその調製方法、組成物並びに成形品
US18/432,799 US20240174806A1 (en) 2021-08-30 2024-02-05 High temperature resistant semi-aromatic polyamide resin, preparation method, composition and article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111003945.5A CN115725070B (zh) 2021-08-30 2021-08-30 耐高温半芳香聚酰胺、其制备方法、组合物和成型品
CN202111003945.5 2021-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/432,799 Continuation US20240174806A1 (en) 2021-08-30 2024-02-05 High temperature resistant semi-aromatic polyamide resin, preparation method, composition and article thereof

Publications (1)

Publication Number Publication Date
WO2023029374A1 true WO2023029374A1 (zh) 2023-03-09

Family

ID=85290725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074277 WO2023029374A1 (zh) 2021-08-30 2022-01-27 耐高温半芳香聚酰胺、其制备方法、组合物和成型品

Country Status (6)

Country Link
US (1) US20240174806A1 (zh)
EP (1) EP4368656A4 (zh)
JP (1) JP2024530197A (zh)
CN (2) CN118684877A (zh)
MX (1) MX2024001970A (zh)
WO (1) WO2023029374A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117777435A (zh) * 2023-08-22 2024-03-29 上海北冈新材料有限公司 半芳香共聚聚酰胺、半芳香聚酰胺组合物及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368994A (zh) 1999-06-04 2002-09-11 Dsm有限公司 具有改进的流动特性的高分子量聚酰胺组合物
CN101200591A (zh) 2006-12-15 2008-06-18 上海杰事杰新材料股份有限公司 一种快速流动的耐高温尼龙复合材料
CN101374884A (zh) * 2006-01-26 2009-02-25 帝斯曼知识产权资产管理有限公司 半结晶半芳族聚酰胺
CN101798456A (zh) 2009-12-29 2010-08-11 东莞市意普万工程塑料有限公司 一种具有星型支化结构的尼龙材料及其制备方法
CN103804682A (zh) * 2013-12-24 2014-05-21 金发科技股份有限公司 一种聚酰胺树脂及由其组成的聚酰胺组合物
CN106117549A (zh) * 2016-07-15 2016-11-16 珠海万通特种工程塑料有限公司 一种半芳香族共聚酰胺树脂和由其组成的聚酰胺模塑组合物
CN107759786A (zh) * 2017-10-13 2018-03-06 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
CN109517165A (zh) * 2017-09-18 2019-03-26 上海凯赛生物技术研发中心有限公司 一种半芳香族生物基聚酰胺及其制备方法
CN110028665A (zh) * 2018-01-12 2019-07-19 上海凯赛生物技术研发中心有限公司 一种高耐热性、低吸水率半芳香族聚酰胺及其制备方法
US20210040317A1 (en) * 2019-08-09 2021-02-11 Ems-Patent Ag Polyamide moulding compound and its use and mouldings manufactured from the moulding compound
CN112745497A (zh) * 2020-12-29 2021-05-04 南京开创新材料科技有限公司 一种半芳香族聚酰胺树脂及其制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378120A (zh) * 2018-12-27 2020-07-07 江苏瑞美福新材料有限公司 耐热聚酰胺材料及其制备方法
CN115612095A (zh) * 2021-07-15 2023-01-17 上海凯赛生物技术股份有限公司 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368994A (zh) 1999-06-04 2002-09-11 Dsm有限公司 具有改进的流动特性的高分子量聚酰胺组合物
CN101374884A (zh) * 2006-01-26 2009-02-25 帝斯曼知识产权资产管理有限公司 半结晶半芳族聚酰胺
CN101200591A (zh) 2006-12-15 2008-06-18 上海杰事杰新材料股份有限公司 一种快速流动的耐高温尼龙复合材料
CN101798456A (zh) 2009-12-29 2010-08-11 东莞市意普万工程塑料有限公司 一种具有星型支化结构的尼龙材料及其制备方法
CN103804682A (zh) * 2013-12-24 2014-05-21 金发科技股份有限公司 一种聚酰胺树脂及由其组成的聚酰胺组合物
CN106117549A (zh) * 2016-07-15 2016-11-16 珠海万通特种工程塑料有限公司 一种半芳香族共聚酰胺树脂和由其组成的聚酰胺模塑组合物
CN109517165A (zh) * 2017-09-18 2019-03-26 上海凯赛生物技术研发中心有限公司 一种半芳香族生物基聚酰胺及其制备方法
CN107759786A (zh) * 2017-10-13 2018-03-06 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
CN110028665A (zh) * 2018-01-12 2019-07-19 上海凯赛生物技术研发中心有限公司 一种高耐热性、低吸水率半芳香族聚酰胺及其制备方法
US20210040317A1 (en) * 2019-08-09 2021-02-11 Ems-Patent Ag Polyamide moulding compound and its use and mouldings manufactured from the moulding compound
CN112745497A (zh) * 2020-12-29 2021-05-04 南京开创新材料科技有限公司 一种半芳香族聚酰胺树脂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4368656A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117777435A (zh) * 2023-08-22 2024-03-29 上海北冈新材料有限公司 半芳香共聚聚酰胺、半芳香聚酰胺组合物及其制备方法与应用

Also Published As

Publication number Publication date
EP4368656A1 (en) 2024-05-15
EP4368656A4 (en) 2024-10-23
CN118684877A (zh) 2024-09-24
JP2024530197A (ja) 2024-08-16
CN115725070B (zh) 2024-10-29
MX2024001970A (es) 2024-03-01
CN115725070A (zh) 2023-03-03
US20240174806A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
TW523528B (en) Method for producing polyamides
TWI453233B (zh) 半結晶半芳香族的聚醯胺
CN110467724B (zh) 一种半芳香尼龙的制备方法
KR101469264B1 (ko) 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 제품
WO2010003277A1 (zh) 半芳香族聚酰胺及其低废水排放量的制备方法
WO2011097832A1 (zh) 一种长碳链半芳香耐高温聚酰胺的均聚物和共聚物及其合成方法
WO2020224378A1 (zh) 一种阻燃半芳香聚酰胺及其制备方法
CN109517165A (zh) 一种半芳香族生物基聚酰胺及其制备方法
WO2004092272A1 (en) Toughened nylon, the process of preparing it and its use
WO2023284285A1 (zh) 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品
CN113150269A (zh) 半芳香族聚酰胺共聚物及其制备
JP5871243B2 (ja) 半芳香族ポリアミド
WO2023029374A1 (zh) 耐高温半芳香聚酰胺、其制备方法、组合物和成型品
CN109575273A (zh) 一种耐高温半芳香共聚尼龙及其制备方法
CN107446129B (zh) 一种抗老化半芳香尼龙树脂的制备方法
JP2000336167A (ja) 延伸性に優れたポリアミド
EP2566909B1 (en) Process for preparing pa-4x, and pa-410 obtainable by the process
CN111995746B (zh) 生物基耐高温聚酰胺复合材料、其低温预缩聚制法及应用
CN113185688A (zh) 一种共聚酰胺及其制备方法
WO2022089674A1 (zh) 一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用
EP2940057B1 (en) Polyamide resin, preparation method therefor, and molded product including same
EP3697831B1 (en) Polyamide copolymer, process for preparation, and molded parts made thereof
CN113831727A (zh) 石墨烯改性聚酰胺复合材料及其制备方法
CN115010921B (zh) 一种分子量分布窄的高分子量半芳香族聚酰胺及其连续化制备方法
CN118684876A (zh) 半芳香族聚酰胺树脂、其制备方法、组合物和成型品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507898

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022862525

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022862525

Country of ref document: EP

Effective date: 20240209

NENP Non-entry into the national phase

Ref country code: DE