Nothing Special   »   [go: up one dir, main page]

WO2023027374A1 - Magnetic drive device - Google Patents

Magnetic drive device Download PDF

Info

Publication number
WO2023027374A1
WO2023027374A1 PCT/KR2022/011572 KR2022011572W WO2023027374A1 WO 2023027374 A1 WO2023027374 A1 WO 2023027374A1 KR 2022011572 W KR2022011572 W KR 2022011572W WO 2023027374 A1 WO2023027374 A1 WO 2023027374A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnets
array
magnet
auxiliary
disposed
Prior art date
Application number
PCT/KR2022/011572
Other languages
French (fr)
Korean (ko)
Inventor
최태광
Original Assignee
최태광
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220096871A external-priority patent/KR20230029517A/en
Application filed by 최태광 filed Critical 최태광
Publication of WO2023027374A1 publication Critical patent/WO2023027374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a magnetic drive device.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a magnetic driving device capable of generating driving force more efficiently by using the magnetic force of a permanent magnet.
  • a magnetic driving device for solving the above problems controls the movement of the operating magnets by magnetically interacting with the operating magnets and the operating magnets, and provides a moving path to the operating magnets.
  • a magnetic driving device including array magnets provided, wherein the operation magnets include a first operation magnet and a second operation magnet spaced apart from each other along a width direction of a track, wherein the array magnets are arranged in a longitudinal direction of the track first array magnets arranged along the track and configured to magnetically interact with the first operation magnets, spaced apart from the first array magnets along the width direction of the track, and along the length direction of the track; and second array magnets arranged to magnetically interact with the second operation magnets.
  • the first array magnets and the second array magnets may be alternately disposed along the longitudinal direction of the track.
  • the first array magnets and the second array magnets may be disposed in plurality along the width direction of the track.
  • At least one of the array magnets and the operation magnets may be formed in at least one of a circular shape, a fan shape, a semicircular arc shape, and a polygonal shape.
  • the first operation magnet and the second operation magnet may magnetically interact, and the first array magnets and the second array magnets may magnetically interact.
  • the array magnets may include first auxiliary array magnets disposed facing the first array magnets with the first operation magnet as a center and configured to magnetically interact with the first operation magnets; and second auxiliary array magnets disposed to face the second array magnets with the second operation magnet as a center and configured to magnetically interact with the second operation magnets.
  • the first array magnets and the second array magnets may magnetically interact, and the first auxiliary array magnets and the second auxiliary array magnets may magnetically interact.
  • the operation magnet may include a third operation magnet disposed opposite to the first operation magnet along the width direction of the track; and fourth operation magnets disposed opposite to the second operation magnets along the width direction of the track, wherein the array magnets are disposed opposite to the first array magnets along the width direction of the track, third array magnets configured to magnetically interact with the third operation magnets; fourth array magnets disposed opposite to the second array magnets along the width direction of the track and configured to magnetically interact with the fourth operation magnets; third auxiliary array magnets disposed opposite to the first auxiliary array magnets along the width direction of the track and configured to magnetically interact with the third operation magnets; and fourth auxiliary array magnets disposed to face the second auxiliary array magnets along the width direction of the track and configured to magnetically interact with the fourth operation magnets.
  • the third array magnets and the fourth array magnets may magnetically interact, and the third auxiliary array magnets and the fourth auxiliary array magnets may magnetically interact.
  • a coil disposed between the first operating magnet and the second operating magnet and configured to be magnetized when a current is applied to control a magnetic flow between the first operating magnet and the second operating magnet may be further included.
  • the first operating magnet, the second operating magnet, and the coil may be disposed in plurality along the longitudinal direction of the moving body.
  • It may further include a magnetic control unit disposed between the first array magnet and the second array magnet and configured to control a flow of magnetism between the first array magnet and the second array magnet.
  • the magnetic control unit may include a pole piece assembly disposed on one side of the track; Accommodated in a part of the pole piece assembly and rotated between the first array magnet and the second array magnet to form a magnetic flow together with the first array magnet and the second array magnet, or a rotating magnet configured to form a magnetic closed loop together; a first coil installed on the pole piece assembly and configured to be magnetized when current is applied to rotate the rotating magnet; and a second coil disposed between the rotating magnet and the first array magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the first array magnet and the rotation magnet.
  • the method may further include operation assembling magnets coupled to the first operation magnet and the second operation magnet and configured to control magnetic field strengths of the first operation magnet and the second operation magnet.
  • the motion assembly magnets are attached to the first motion magnet and the second motion magnet along the width direction of the track, and the magnetization directions of the motion assembly magnets are the magnetization direction of the first motion magnet and the second motion magnet. It can be arranged perpendicular to the magnetization direction of .
  • the operation assembly magnets may include: a first operation assembly magnet disposed between the first operation magnet and the second operation magnet; a second motion assembly magnet disposed opposite to the first motion assembly magnet with the first motion magnet as a center; and a third operation assembly magnet arranged opposite to the first operation assembly magnet with the second operation magnet as a center.
  • the method may further include array assembly magnets coupled to the first array magnets and the second array magnets to control magnetic field intensities of the first array magnets and the second array magnets.
  • the array assembly magnets may include first array assembly magnets attached around the first array magnets and having a magnetization direction different from that of the first array magnets; and second array assembly magnets attached to the periphery of the second array magnets and having a magnetization direction different from that of the second array magnets.
  • At least a portion of the first array of magnets to be assembled and at least a portion of the second array of magnets are disposed to overlap, and at least a portion of the first array of magnets to be assembled overlaps with at least a portion of the second array of magnets to be assembled. may have the same magnetization direction.
  • a magnetic drive device for solving the above problems includes operating magnets; array magnets that magnetically interact with the operation magnets to control the movement of the operation magnets and provide a moving path to the operation magnets; and auxiliary array magnets disposed facing the array magnets around the operation magnets.
  • It may further include a track configured to support the array magnets and the auxiliary array magnets, and the array magnets and the auxiliary array magnets may magnetically interact with each other.
  • the track may be configured to connect a part where the array magnets are supported and another part where the auxiliary array magnets are supported.
  • the operation magnets may include a main operation magnet arranged on a part of the moving body and configured to magnetically interact with the array magnets; and an auxiliary magnet that is disposed on another part of the movable body and configured to magnetically interact with the main magnet and the auxiliary array magnets.
  • the operating magnets, the array magnets, and the auxiliary array magnets may be arranged in plurality along the width direction of the track to form a magnetic flow, respectively.
  • the method may further include a coil disposed between the main operating magnet and the auxiliary operating magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the main operating magnet and the auxiliary operating magnet.
  • a coil disposed between the array magnets and the auxiliary array magnets and configured to be magnetized when a current is applied to control a flow of magnetism between the array magnets and the auxiliary array magnets may be further included.
  • a magnetic drive device for solving the above problems includes operation magnets disposed on a moving body; and array magnets disposed on the track and configured to control the movement of the operation magnets by magnetically interacting with the operation magnets, wherein the track includes magnetic force sections in which the array magnets are arranged, and the magnetic force At least one blank section in which the array magnets are not arranged is formed between the sections.
  • Effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present invention.
  • FIG. 1 is a diagram schematically showing a state in which a magnetic driving device according to an embodiment of the present invention is applied to a transportation system.
  • FIG. 2 is a front view schematically illustrating a flow of magnetism formed between a plurality of operation magnets and a plurality of arrangement magnets according to an embodiment of the present invention.
  • FIG. 3 is a plan view schematically illustrating a flow of magnetism formed between a plurality of operation magnets and a plurality of arrangement magnets according to an embodiment of the present invention.
  • FIGS. 4A to 4C are diagrams schematically illustrating a process in which a plurality of operation magnets move forward while magnetically interacting with a plurality of array magnets according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a state in which a plurality of flows of magnetism are formed in a magnetic drive device according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a state in which at least two or more magnetic flows are formed in the magnetic drive device according to an embodiment of the present invention.
  • FIG. 7 schematically shows a flow of magnetism formed between the operating magnets and the arrangement magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a first state in an embodiment of the present invention. It is a front view.
  • FIGS. 8A to 8C are diagrams schematically illustrating a process in which the operation magnets are moved forward when a coil disposed between the first operation magnet and the second operation magnet is magnetized in a first state in an embodiment of the present invention.
  • FIG. 9 schematically shows the flow of magnetism formed between the operating magnets and the array magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a first state in an embodiment of the present invention. it is flat
  • FIG. 10 is a front view schematically illustrating a flow of magnetism formed between operating magnets and arrangement magnets when a coil disposed between a first operating magnet and a second operating magnet is demagnetized in an embodiment of the present invention.
  • 11A to 11C are diagrams schematically illustrating a process in which the operation magnets are moved forward when the coil disposed between the first operation magnet and the second operation magnet is demagnetized in an embodiment of the present invention.
  • FIG. 12 is a plan view schematically illustrating a flow of magnetism formed between the operating magnets and the arrangement magnets when a coil disposed between the first operating magnet and the second operating magnet is demagnetized in an embodiment of the present invention.
  • FIG. 13 schematically shows a flow of magnetism formed between the operating magnets and the array magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a second state in an embodiment of the present invention. It is a front view.
  • FIGS. 14A to 14C are diagrams schematically illustrating a process in which the operation magnets are moved forward when a coil disposed between a first operation magnet and a second operation magnet is magnetized in a second state in an embodiment of the present invention.
  • 16 is a plan view schematically illustrating a state in which coils disposed between the first and second operation magnets are alternately disposed along the longitudinal direction of the moving body in an embodiment of the present invention.
  • 17 is a plan view schematically illustrating a state in which coils disposed between the first and second operation magnets are continuously disposed along the longitudinal direction of the moving body in an embodiment of the present invention.
  • FIG. 18 is a front view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is magnetized in a first state in an embodiment of the present invention.
  • 19 is a plan view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is magnetized in a first state in an embodiment of the present invention.
  • 20 is a front view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is demagnetized in an embodiment of the present invention.
  • 21 is a front view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is magnetized in a second state in an embodiment of the present invention.
  • FIG. 22 is a front view schematically illustrating a flow of magnetism when a coil disposed on a track is magnetized in a first state in an embodiment of the present invention.
  • FIG. 23 is a plan view schematically illustrating a flow of magnetism when a coil disposed on a track is magnetized in a first state in an embodiment of the present invention.
  • 24 is a front view schematically illustrating a flow of magnetism when a coil disposed on a track is demagnetized in an embodiment of the present invention.
  • 25 is a front view schematically illustrating a flow of magnetism when a coil disposed on a track is magnetized in a second state in an embodiment of the present invention.
  • 26 is a front view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are magnetized in a first state in an embodiment of the present invention.
  • FIG. 27 is a plan view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are magnetized in a first state in an embodiment of the present invention.
  • FIG. 28 is a front view schematically showing the flow of magnetism when the first coil and the second coil disposed on the track are non-magnified in a first state in an embodiment of the present invention.
  • 29 is a front view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are magnetized in a second state in an embodiment of the present invention.
  • FIG. 30 is a front view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are demagnetized in a second state in an embodiment of the present invention.
  • 31 is a front view schematically showing the flow of magnetism between the motion magnets coupled to the motion assembly magnets and the arrangement magnets in an embodiment of the present invention.
  • 32 is a plan view schematically showing the flow of magnetism between the operation magnets coupled to the operation assembly magnets and the arrangement magnets in an embodiment of the present invention.
  • 33 is a front view schematically illustrating a flow of magnetism between motion magnets coupled to motion assembly magnets and arrangement magnets coupled to arrangement assembly magnets in an embodiment of the present invention.
  • 34 is a plan view schematically showing the flow of magnetism between the motion magnets coupled to the motion assembly magnets and the arrangement magnets coupled to the arrangement assembly magnets in an embodiment of the present invention.
  • 35 is a plan view schematically showing the flow of magnetism between operation magnet modules, array magnet modules, and a magnetic control unit of a magnetic drive device according to another embodiment of the present invention.
  • 36 is a diagram schematically illustrating a process in which the rotating magnet of the magnetic control unit rotates when the first coil and the second coil of the magnetic control unit are magnetized in a second state according to another embodiment of the present invention.
  • FIG. 37 is a diagram schematically illustrating a process in which a rotating magnet of a magnetic control unit rotates when the first coil and the second coil of the magnetic control unit are demagnetized in a second state according to another embodiment of the present invention.
  • first, second, etc. are used to describe various constituent elements, these constituent elements are not limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component mentioned below may also be the second component within the technical spirit of the present invention.
  • a magnetic drive device 100 includes operating magnets 110 and array magnets 120 .
  • One or more operating magnets 110 are disposed on a movable body V moving along a path set along a track T in the transport system 1 .
  • the operation magnets 110 may be coupled to the movable body V and spaced apart from the array magnets 120 while maintaining a certain distance therebetween.
  • the operating magnet 110 may be formed in a columnar shape. However, the shape of the operating magnet 110 is not necessarily limited thereto and may be changed into various shapes.
  • the number and magnitude of magnetic force of the operating magnets 110 may be determined according to the number, arrangement structure, and direction of magnetization of the array magnets 120 that magnetically interact with the operating magnets 110 .
  • the operation magnet 110 may be spaced apart from the array magnets 120 such that one of the N pole and the S pole faces the array magnets 120 .
  • the magnetization direction of the operation magnet 110 is disposed in the vertical direction D2 with respect to the direction D1 in which the operation magnet 110 moves, or at a predetermined angle with respect to the direction D1 in which the operation magnet 110 moves. It can be placed tilted.
  • the 'magnetization direction' is a direction indicated by a line connecting a point having the strongest N pole and a point having the strongest S pole, and is indicated by a large arrow in the drawings.
  • the magnetization direction of the motion magnet 110 disposed inclined with respect to the direction D1 in which the motion magnet 110 moves is in the direction D2 perpendicular to the direction D1 in which the motion magnet 110 moves. , it may be disposed at an angle of -90 or more and less than or equal to 90 degrees.
  • the magnetization direction of the operation magnet 110 may be disposed such that the N pole faces the array magnets 120 or the S pole faces the array magnets 120 .
  • the arrow-marked parts of the operating magnet 110 and the array magnets 120 mean magnetization directions, and the arrow-marked parts have higher magnetic flux densities than those not marked with arrows. can have
  • the array magnets 120 are continuously arranged along the track T, and magnetically interact with the motion magnets 110 disposed on the moving body V to affect the motion of the motion magnets 110. Accordingly, the movable body V may move along the track T through magnetic interaction between the operation magnet 110 and the arrangement magnets 120 .
  • the array magnets 120 form a plurality of magnetic force sections MS providing a moving path to the operation magnet 110 .
  • the array magnets 120 forming one magnetic section MS and the array magnets 120 forming other magnetic sections MS may have the same arrangement structure or different magnet arrangement structures. may be
  • the track T there are magnetic sections MS in which the array magnets 120 are arranged, and at least one blank section BS in which the array magnets 120 are not arranged between the magnetic sections MS. is formed
  • the operating magnet 110 passing through the magnetic force section MS passes through the blank section BS by inertia, and in the process of passing through the blank section BS, the array magnets disposed in the next magnetic force section MS By interacting magnetically with the s 120, the driving force can be amplified.
  • the operation magnet 110 may include a first operation magnet 111 and a second operation magnet 112 spaced apart from each other along the width direction D3 of the track T.
  • the array magnets 120 include the first array magnets 121 disposed along the longitudinal direction D1 of the track T and configured to magnetically interact with the first operation magnet 111, and the track ( It is spaced apart from the first array magnets 121 along the width direction D3 of the track T, and is disposed along the length direction D1 of the track T to magnetically interact with the second operation magnet 112. It may include second array magnets 122 configured to do so.
  • the first array magnets 121 and the second array magnets 122 may be alternately disposed along the longitudinal direction D1 of the track T.
  • first array magnets 121 and the second array magnets 122 may be disposed in plurality along the width direction D3 of the track T.
  • each divided part may be arranged to correspond to a column in which the array magnets are arranged.
  • the first operating magnets 111 may correspond to a row in which the first array magnets 121 are disposed
  • the second operating magnets 112 may correspond to a column in which the second array magnets 122 are disposed. there is.
  • the operation magnet 110 includes a third operation magnet 113 disposed opposite to the first operation magnet 111 along the width direction D3 of the track T, and the width of the track T.
  • a fourth operation magnet 114 disposed to face the second operation magnet 112 along the direction D3 may be further included.
  • the array magnets 120 are disposed to face the first array magnets 121 along the width direction D3 of the track T and are configured to magnetically interact with the third operation magnets 113.
  • the third array magnets 123 and the fourth array magnets 124 may be disposed in plurality along the width direction D3 of the track T, and of course, the track T They may be arranged alternately along the longitudinal direction D1.
  • the first array magnets 121, the second array magnets 122, the third array magnets 123, and the fourth array magnets 124 are mutually connected to each other in the width direction D3 of the track T. They may be arranged alternately along the longitudinal direction D1 of the tracks T so as not to overlap.
  • the operation magnets 111, 112, 113, and 114 sequentially interact and move with the array magnets 121, 122, 123, and 124 alternately disposed along the longitudinal direction D1 of the track T. do.
  • the present invention includes the first operating magnet 111 and the first array magnet 121, the third operating magnet 113 and the third array magnet 123, the second operating magnet 112 and the second array magnet ( 122), and as the fourth operation magnet 114 and the fourth array magnet 124 sequentially interact, driving force may be generated.
  • the driving force can be increased, and the straight-line force at a constant speed can be continuously secured.
  • the operation magnets 111, 112, 113, 114 and the array magnets 121, 122, 123, 124 have been described as being limited to a four-column structure, but it is not necessarily limited thereto, and the operation magnets (111, 112, 113, 114) and the array magnets (121, 122, 123, 124) may have various arrangement structures.
  • the array magnets 120 and the operation magnets 110 may be formed in a fan shape having an acute central angle.
  • the operation magnets 110 and the array magnets 120 are not necessarily formed in the above-described sector shape, but may be formed in various shapes such as an arc shape, an ellipse shape, a semicircular arc shape, and a polygonal shape.
  • the array magnets 120 may be spaced apart at regular intervals along the longitudinal direction of the track T so that magnetic interaction with the operation magnets 110 is possible continuously.
  • the arrangement structure of the array magnets 120 is not necessarily limited to this, and the array magnets 120 may be arranged to form an unarranged blank section BS between the plurality of magnetic sections MS.
  • the distance between the magnets may be gradually decreased or increased.
  • the magnetic drive device 100 may further include auxiliary array magnets 140 disposed opposite to the array magnets 120 with the operation magnet 110 as the center.
  • the first operation magnet 111 and the second operation magnet 112 may be configured to magnetically interact with each other.
  • the first array magnets 121 and the second array magnets 122 may be configured to magnetically interact.
  • the first operating magnet 111 magnetically interacts with the first array magnets 121 and the second operating magnet 112, and the second operating magnet 112 interacts with the first operating magnet 111.
  • the second array magnets 122 may interact magnetically.
  • the second array magnets 122 magnetically interact with the second operation magnets 112 and the first array magnets 121, and the first array magnets 121 are the second array magnets ( 122) and the first operating magnet 111 may interact magnetically.
  • the position of the polarity of the first operation magnet 111 and the position of the polarity of the second operation magnet 112 are opposite to each other, and the position of the polarity of the first array magnets 121 and the position of the second array magnets ( 122) may be disposed opposite to each other.
  • FIG. 4A when the magnetic interaction between the first operating magnet 111 and the first array magnet 121 starts, the above-described continuous flow of magnetism is generated, and as a result, FIG. 4B And as shown in FIG. 4C, the first operation magnet 111 and the second operation magnet 112 can move forward while performing magnetic interaction with the array magnets 121 and 122 disposed in the front. there is.
  • the array magnets 120 are disposed to face the first array magnets 121 with the first operation magnet 111 as the center, and magnetically interact with the first operation magnet 111 .
  • the first auxiliary array magnets 141 and the second operation magnets 112 are arranged to face the second array magnets 122, and magnetically interact with the second operation magnets 112.
  • Second auxiliary array magnets 142 may be further included.
  • the first array magnets 121 and the second array magnets 122 are configured to interact magnetically, and the first auxiliary array magnets 141 and the second auxiliary array magnets 142 magnetically interact with each other. can be configured to interact with each other.
  • the first operation magnet 111 magnetically interacts with the first array magnets 121 and the first auxiliary array magnets 141, and the first auxiliary array magnets 141 perform the first operation. It may magnetically interact with the magnet 111 and the second auxiliary array magnets 142 .
  • the second auxiliary array magnets 142 magnetically interact with the first auxiliary array magnets 141 and the second operation magnet 112, and the second operation magnet 112 is the second auxiliary array magnet.
  • magnetically interact with the magnets 142 and the second array magnets 122 magnetically interact with the second operation magnets 112 and the first array magnets 121, and the first array magnets 121 are the second array magnets ( 122) and the first operating magnet 111 may interact magnetically.
  • the position of the polarity of the first operation magnet 111 and the position of the polarity of the second operation magnet 112 are opposite to each other, and the position of the polarity of the first array magnets 121 and the position of the second array magnets ( 122) are disposed opposite to each other, and the polar positions of the first auxiliary array magnets 141 and the polar positions of the second auxiliary array magnets 141 may be opposite to each other.
  • the array magnets 120 are disposed to face the first auxiliary array magnets 141 along the width direction D3 of the track T, and are configured to magnetically interact with the third operation magnets 113. and the third auxiliary array magnets 143, which are opposite to the second auxiliary array magnets 142 along the width direction D3 of the track T, and magnetically interact with the fourth operation magnet 114. It may further include fourth auxiliary array magnets 144 configured to operate.
  • the third array magnets 123 and the fourth array magnets 124 are configured to interact magnetically
  • the third auxiliary array magnets 143 and the fourth auxiliary array magnets 144 are configured to magnetically interact with each other. can be configured to interact with each other.
  • the third operation magnet 113 magnetically interacts with the third arrangement magnets 123 and the third auxiliary arrangement magnets 143, and the third auxiliary arrangement magnets 143 perform the third operation. It may magnetically interact with the magnet 113 and the fourth auxiliary array magnets 144 . Also, the fourth auxiliary array magnets 144 magnetically interact with the third auxiliary array magnets 143 and the fourth operation magnet 114, and the fourth operation magnet 114 is the fourth auxiliary array magnet. 144 and the fourth array magnets 124 may interact magnetically. Also, the fourth array magnets 124 magnetically interact with the fourth operation magnets 114 and the third array magnets 123, and the third array magnets 123 interact with the fourth array magnets ( 124) and the third operating magnet 113 may interact magnetically.
  • the position of the polarity of the third operation magnet 113 and the position of the polarity of the fourth operation magnet 114 are opposite to each other, and the position of the polarity of the third array magnets 123 and the position of the fourth array magnets ( 124) may be disposed opposite to each other, and the polarity positions of the third auxiliary array magnets 143 and the polar positions of the fourth auxiliary array magnets 144 may be opposite to each other.
  • the kinetic force of the operation magnets 111, 112, 113, and 114 increases. can be maximized.
  • first array magnets 121 and the second array magnets 122 have different shapes
  • third array magnets 123 and the fourth array magnets 124 have different shapes.
  • the magnetic driving device 100 may be configured to form a magnetic flow through the track (T).
  • the magnetic driving device 100 includes an operating magnet 110, array magnets 120 configured to magnetically interact with the operating magnet 110, and an array magnet centering on the operating magnet 110.
  • Auxiliary array magnets 140 and array magnets 120 configured to face each other and magnetically interact with the operation magnets 110 and configured to support the auxiliary array magnets 140 It may include a track (T).
  • the array magnets 120 and the auxiliary array magnets 140 may be configured to interact magnetically.
  • a part where the array magnets 120 are supported and another part where the auxiliary array magnets 140 are supported are mutually exclusive. It can be configured to be connected.
  • the operation magnets 110 and the array magnets 120, the array magnets 120 and the auxiliary array magnets 140, and the auxiliary array magnets 140 and the operation magnets 110 interact sequentially, flow can be formed.
  • the operating magnet 120 may include a main operating magnet 110A and a secondary operating magnet 110B configured to magnetically interact with each other so as to maximize the magnetic flow.
  • the main operating magnet 110A may magnetically interact with the array magnets 120
  • the auxiliary operating magnet 110B may magnetically interact with the auxiliary array magnets 140 .
  • the main operation magnet 110A and the array magnets 120, the array magnets 120 and the auxiliary array magnets 140, the auxiliary array magnets 140 and the auxiliary operation magnets 110B, and the auxiliary operation magnets ( 110B) and the main operating magnet 110A may sequentially interact to form a magnetic flow.
  • the operation magnet 110, the array magnets 120, and the auxiliary array magnets 140 may be disposed in plurality along the width direction D3 of the track T.
  • the magnetic drive device 100 may further include a coil 150 .
  • the coil 150 may be disposed between the first and second operation magnets 111 and 112 along the width direction D3 of the track T.
  • the coil 150 may be magnetized when current is applied to control the flow of magnetism between the first and second operation magnets 111 and 112 .
  • the coil 150 when current is applied to the coil 150 , the coil 150 is magnetized in a first state to increase the flow of magnetism between the first and second operation magnets 111 and 112 .
  • a part of the coil 150 toward the first operation magnet 111 magnetically interacts with the first operation magnet 111
  • the coil toward the second operation magnet 112 ( 150) may mean a state in which another part can magnetically interact with the second operation magnet 112.
  • a part of the coil 150 facing the first operating magnet 111 is magnetized to the S pole
  • the other part of the coil 150 facing the second operating magnet 112 is magnetized to the N pole.
  • the direction of the polarity of the coil 150 is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the first and second operation magnets 111 and 112.
  • FIG. 8A when the coil 150 is magnetized in the first state and the magnetic interaction between the second operation magnet 112 and the second array magnet 122 starts, FIGS. 8B and 8C As shown in FIG. 9, a large magnetic flow is formed between the operation magnets 111 and 112 and the array magnets 121 and 122, and the moving speed of the operation magnets 111 and 112 moving forward can be increased.
  • the first array magnets 121 and the second array magnets 122 are alternately disposed along the longitudinal direction D1 of the track T, and the first operation magnets 111 and the second operation magnets 112 may be arranged parallel to each other along the width direction D3 of the track T.
  • the coil 150 is unmagnetized when the supply of current is cut off to maintain the flow of magnetism between the first and second operating magnets 111 and 112 . there is.
  • the non-magnetized coil 150 does not affect the magnetic flow between the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111. Therefore, between the second operating magnets 112, the second array magnets 122, the first array magnets 121, and the first operating magnets 111, the magnetic flow generated due to the magnetic interaction between the permanent magnets only can be maintained.
  • the moving speed of the moving object V does not further increase or decrease due to the flow of magnetism between the permanent magnets, and can be maintained constant.
  • FIG. 11A when the coil 150 is demagnetized and the magnetic interaction between the second operation magnet 112 and the second array magnet 122 starts, FIGS. 11B, 11C, and 12 As shown in , a magnetic flow is formed between the operation magnets 111 and 112 and the array magnets 121 and 122, so that the moving speed of the operation magnets 111 and 112 moving forward is kept constant. It can be.
  • the first array magnets 121 and the second array magnets 122 are alternately disposed along the longitudinal direction D1 of the track T, and the first operation magnets 111 and the second operation magnets 112 may be arranged parallel to each other along the width direction D3 of the track T.
  • the coil 150 when a current is applied, the coil 150 is magnetized in a second state and blocks the flow of magnetism between the first and second operation magnets 111 and 112 .
  • a part of the coil 150 facing the first operating magnet 111 cannot magnetically interact with the first operating magnet 111, and the coil facing the second operating magnet 112
  • Another part of 150 may mean a state in which magnetic interaction with the second operation magnet 112 is impossible.
  • the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities.
  • a part of the coil 150 facing the first operating magnet 111 is magnetized to the N pole and the other part of the coil 150 facing the second operating magnet 112 is magnetized to the S pole.
  • the direction of the polarity of the coil 150 is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the first and second operation magnets 111 and 112.
  • FIG. 14A when the coil 150 is magnetized in the second state and the magnetic interaction between the second operation magnet 112 and the second array magnet 122 starts, FIGS. 14B and 14C 15, the flow of magnetism between the first operating magnet 111 and the second operating magnet 112 is blocked, and the magnetic flow between the second operating magnet 112 and the second array magnet 122 is blocked. Only flow and magnetic flow between the first array magnet 121 and the first operation magnet 111 are generated, so that the movement speed of the operation magnets 111 and 112 moving forward can be reduced.
  • the first array magnets 121 and the second array magnets 122 are alternately disposed along the longitudinal direction D1 of the track T, and the first operation magnets 111 and the second operation magnets 112 may be arranged parallel to each other along the width direction D3 of the track T.
  • a plurality of first operation magnets 111 and second operation magnets 112 may be disposed along the longitudinal direction D1 of the movable body V.
  • a plurality of coils 150 disposed between the first operating magnet 111 and the second operating magnet 112 may be disposed along the longitudinal direction D1 of the moving body V.
  • the plurality of coils 150 alternate with a pair of operation magnets (first operation magnet 111 and second operation magnet 112) arranged in plurality along the longitudinal direction D1 of the movable body V. can be placed.
  • some of the pair of operating magnets 111 and 112 generate a magnetic flow greater than the magnetic flow generated between the permanent magnets by the coil 150, and the other part generates a magnetic flow between the permanent magnets. flow can occur.
  • the plurality of coils 150 include a pair of operation magnets (first operation magnets 111 and second operation magnets 111) arranged in plurality along the longitudinal direction D1 of the moving body V.
  • the operation magnets 112 may be continuously arranged to correspond to all of them.
  • all the pair of operating magnets 111 and 112 can generate a magnetic flow greater than the magnetic flow generated by the coil 150 between the permanent magnets.
  • the coil 150 may be disposed between the main magnet 110A and the auxiliary magnet 110B along a direction D2 perpendicular to the direction D1 in which the movable body V moves. .
  • the coil 150 may be magnetized when current is applied to control the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
  • the coil 150 when a current is applied, the coil 150 is magnetized in a first state to increase the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
  • a portion of the coil 150 toward the main magnet 110A magnetically interacts with the main magnet 110A
  • a portion of the coil 150 toward the auxiliary magnet 110B interacts with the main magnet 110A. It may mean a state in which another part can magnetically interact with the auxiliary operating magnet 110B.
  • a part of the coil 150 facing the main operating magnet 110A is magnetized to the N pole and another part of the coil 150 facing the auxiliary operating magnet 110B is magnetized to the S pole.
  • the direction of the polarity of 150 is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the main operating magnet 110A and the auxiliary operating magnet 110B.
  • the main operating magnet 110A and the auxiliary operating magnet 110B are disposed in plurality along the moving direction D1 of the moving body V, and the array magnets 120 and the auxiliary array
  • the magnets 140 may be alternately arranged along the longitudinal direction D1 of the track T.
  • the coil 150 is demagnetized to maintain the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
  • the non-magnetized coil 150 does not affect the magnetic flow between the main operating magnet 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operating magnet 110B, and thus the main operating magnet Only the magnetic flow generated by the magnetic interaction between the permanent magnets can be maintained between the 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operation magnet 110B.
  • the moving speed of the moving object V does not further increase or decrease due to the flow of magnetism between the permanent magnets, and can be maintained constant.
  • the coil 150 when a current is applied, the coil 150 is magnetized in a second state and blocks the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
  • a part of the coil 150 facing the main operating magnet 110A cannot magnetically interact with the main operating magnet 110A
  • the coil 150 facing the auxiliary operating magnet 110B Another part of may mean a state in which magnetically interacting with the auxiliary operating magnet (110B) is not possible.
  • the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities.
  • a portion of the coil 150 toward the main operating magnet 110A is magnetized to the S pole, and another portion of the coil 150 toward the auxiliary operating magnet 110B is magnetized to the N pole.
  • the direction of the polarity of (150) is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the first and second operation magnets 111 and 112.
  • the coil 150 may be installed on the track T and disposed between the array magnets 120 and the auxiliary array magnets 140 .
  • the coil 150 may be magnetized when current is applied to control the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140 .
  • the coil 150 when current is applied to the coil 150, the coil 150 is magnetized in a first state to increase the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140.
  • a portion of the coil 150 toward the array magnet 120 magnetically interacts with the alignment magnet 120, and another portion of the coil 150 toward the auxiliary alignment magnet 140.
  • This may mean a state capable of magnetically interacting with the auxiliary array magnets 140.
  • a portion of the coil 150 toward the array magnet 120 is magnetized to the S pole, and another portion of the coil 150 toward the auxiliary array magnet 140 is magnetized to the N pole, but the coil ( The direction of the polarity of 150) is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the array magnets 120 and the auxiliary array magnets 140.
  • the main operation magnet 110A and the auxiliary operation magnet 110B may be alternately arranged along the moving direction D1 of the moving body V.
  • a plurality of tracks T are disposed along the moving direction D1 of the moving body V, and the plurality of tracks T include array magnets 120 and auxiliary array magnets 140 respectively. It may be arranged alternately along the moving direction (D1) of.
  • the array magnets and the auxiliary array magnets 140 may be alternately disposed along the longitudinal direction D1 of the track T.
  • the coil 150 when supply of current is cut off, the coil 150 is demagnetized and can maintain the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140 .
  • the non-magnetized coil 150 does not affect the magnetic flow between the main operating magnet 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operating magnet 110B, and thus the main operating magnet Only the magnetic flow generated by the magnetic interaction between the permanent magnets can be maintained between the 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operation magnet 110B.
  • the moving speed of the moving object V does not further increase or decrease due to the flow of magnetism between the permanent magnets, and can be maintained constant.
  • the coil 150 when a current is applied, the coil 150 is magnetized in a second state and can block the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140 .
  • the part of the coil 150 facing the array magnet 120 cannot magnetically interact with the array magnet 120, and the other part of the coil 150 facing the auxiliary array magnet 140
  • This may mean a state in which a part cannot magnetically interact with the auxiliary array magnet 140
  • the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities.
  • the coil 150 facing the array magnet 120 is magnetized to the N pole and the other part of the coil 150 facing the auxiliary array magnet 140 is magnetized to the S pole, but the coil ( The direction of the polarity of 150) is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the array magnets 120 and the auxiliary array magnets 140.
  • the magnetic drive device 100 may further include a magnetic control unit 160 .
  • the magnetic control unit 160 is disposed between the first array magnets 121 and the second array magnets 122, and generates magnetic force to control the magnetic field between the first array magnets 121 and the second array magnets 122. It can be configured to control the flow.
  • the magnetic control unit 160 may include a pole piece assembly 161 , a rotating magnet 162 , a first coil 163 and a second coil 164 .
  • the pole piece assembly 161 is disposed on one side of the track T, and may be made of a ferromagnetic material such as iron to form a magnetic flow when the first coil 163 is magnetized.
  • the pole piece assembly 161 may include a plurality of pole piece members arranged to face each other around the rotating magnet 162 .
  • the plurality of pole piece members may be directly connected to each other or connected to each other through a separate magnetic body or permanent magnet.
  • a predetermined space in which the rotating magnet 162 is rotatably accommodated without interfering with the pole piece members may be secured between the plurality of pole piece members.
  • the rotating magnet 162 is accommodated in a part of the pole piece assembly 161, and when the first coil 150 is magnetized, it is rotated between the first array magnet 121 and the second array magnet 122 to achieve the first array. It may be configured to form a magnetic flow together with the magnet 121 and the second array magnet 122 or to form a magnetic closed loop together with the pole piece assembly 161 .
  • the rotating magnet 162 forms a magnetic flow between the first array magnet 121 and the second array magnet 122 together with the first array magnet 121 and the second array magnet 122. between the first array magnet 121 and the second array magnet 122 and the second position where a magnetic closed loop can be formed together with the pole piece assembly 161.
  • a portion of the rotating magnet 162 rotated to the first position is disposed to face the first array magnet 121, and another portion having a polarity different from that of the first portion faces the second array magnet 122. can be arranged to do so.
  • a portion of the rotating magnet 162 rotated to the second position may be disposed toward the first coil 163 and another portion may be disposed toward the moving body V.
  • the first coil 163 may be installed in the pole piece assembly 161 and may be magnetized in a first state or a second state when current is applied to rotate the rotating magnet 162 .
  • the rotating magnet 162 when a current is applied to the first coil 163 and the first coil 163 is magnetized in a first state, a repulsive force acts between the rotating magnet 162 and the first coil 163, and thus the rotating magnet ( 162 is rotated to the first position, and a magnetic flow may be formed between the first array magnet 121 and the second array magnet 122 . Then, when a current is applied to the first coil 163 and the first coil 163 is magnetized in a second state different from the first state, an attractive force acts between the rotating magnet 162 and the first coil 163, Accordingly, the rotating magnet 162 is rotated to the second position, and a magnetic closed loop may be formed in the pole piece assembly 161 . At this time, the track T and the pole piece assembly 161 may serve as an electromagnet.
  • the second coil 164 is wound around the track T and disposed between the rotating magnet and the first array magnet 121, and when a current is applied, it is magnetized in the first or second state to form the first array magnet 121 and the second coil 164. It may be configured to control the flow of magnetism between the rotating magnets 162.
  • the second coil 164 may be magnetized in the same state as the first coil 163 .
  • the second coil 164 connects the first array magnet 121 and the second array magnet 122.
  • the magnetic flow between the first array magnet 121 and the second array magnet 122 may be increased by being magnetized in a first state to enable magnetic interaction between the magnets.
  • the second coil 164 connects the first array magnet 121 and the second It is magnetized in the second state so that magnetic interaction between the array magnets 122 is impossible, and the flow of magnetism between the first array magnets 121 and the second array magnets 122 can be blocked.
  • the second coil 164 When the first coil 163 is magnetized in the first state and the rotating magnet 162 rotates to the first position, the second coil 164 generates a magnetic field between the first array magnet 121 and the second array magnet 122. It is magnetized in a first state so that a positive interaction is possible, and the flow of magnetism between the first array magnets 121 and the second array magnets 122 can be increased.
  • the first operation magnet 111 and the second operation magnet 112 are alternately disposed along the longitudinal direction D1 of the moving body V, and the track T moves along the moving direction D1 of the moving body V. may be arranged in multiples.
  • the first array magnets 121, the second array magnets 122, and the magnetic control unit 160 may be disposed on the plurality of tracks T, respectively.
  • the supply of current to the first coil 163 and the second coil 164 is cut off and the first coil 163 and the second coil 164 are magnetized.
  • the rotating magnet 162 maintains the rotated state in the first position, and thus the magnetic field between the first operating magnet 111 and the second operating magnet 112 is maintained. flow can be maintained.
  • the non-magnetized first coil 163 does not affect the rotating magnet 162 rotated to the first position
  • the non-magnetized second coil 164 causes the second operating magnet 112, the second array Since it does not affect the magnetic flow between the magnet 122, the first array magnet 121, and the first operation magnet 111, the second operation magnet 112, the second array magnet 122, and the rotating magnet ( 162), only the magnetic flow generated by the magnetic interaction between the permanent magnets may be maintained between the first array magnets 121 and the first operation magnets 111.
  • the supply of current to the first coil 163 and the second coil 164 is cut off so that the first coil 163 and the second coil 164 are
  • the rotating magnet 162 maintains the rotated state in the second position, and thus the magnetic field between the first and second operating magnets 111 and 112 is maintained. The flow of can remain blocked.
  • the moving speed of the moving body V can be maintained in a reduced state.
  • the magnetic driving device 100 may further include motion assembly magnets 170 .
  • the motion assembly magnets 170 are coupled to the first motion magnet 111 and the second motion magnet 112 to control the strength of the magnetic fields of the first motion magnet 111 and the second motion magnet 112. can
  • the motion assembly magnets 170 may be attached to the first motion magnet 111 and the second motion magnet 112 along the width direction D3 of the track T.
  • the motion assembly magnets 170 may have a linearly arranged structure.
  • the motion assembling magnets 170 are the first motion magnets 111 and the second motion magnets 170, the first motion magnet 111 and the second motion magnet 112 so that the strength of the magnetic field between them can be increased. It may have a magnetization direction different from the magnetization direction of the operating magnet 112 .
  • the magnetization directions of the motion assembly magnets 170 may be arranged perpendicular to the magnetization directions of the first motion magnets 111 and the second motion magnets 112 .
  • the magnetization direction of the motion assembly magnets 170 may be a direction parallel to a second direction (horizontal direction) that is perpendicular to the first direction.
  • the motion assembly magnets 170 are first motion assembly magnets 171 disposed between the first motion magnets 111 and the second motion magnets 112 and the first motion assembly magnets 111 are centered on the first motion.
  • a second operation assembly magnet 172 disposed opposite to the assembly magnet 171 and a third operation assembly magnet 173 disposed opposite to the first operation assembly magnet 171 around the second operation magnet 112 can include
  • a part of the first operating magnet 111 facing the first array magnet 121 has an S pole and a part of the second operating magnet 112 facing the second array magnet 122 has a N pole
  • a part of the first motion assembly magnet 171 facing the second motion magnet 112 has an N pole
  • another part of the first motion assembly magnet 171 facing the first motion magnet 111 has an S pole.
  • a part of the second motion assembly magnet 172 facing the first motion magnet 111 may have an S pole
  • another part of the second motion assembly magnet 172 facing the outer space may have an N pole.
  • a part of the third motion assembly magnet 173 facing the first motion magnet 111 may have an N pole
  • another part of the third motion assembly magnet 173 facing the outer space may have an S pole.
  • the magnetic flux of the first operating magnet 111 and the second operating magnet 112 is ejected very strongly, so that the second operating magnet 112, the second array magnet 122, the first array magnet 121 and the A very strong magnetic flow can be formed between the first operation magnets 111.
  • directions of the polarities of the above-described first operating magnets 111, second operating magnets 112, first array magnets 121, second array magnets 122, and operation assembly magnets 170 are for reference only. This is only an example for convenience, and the polarity The direction is not necessarily limited thereto and may be changed as needed.
  • the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111 sequentially form a strong magnetic flow.
  • the moving body (V) can make a strong straight motion.
  • the first array magnets 121 and the second array magnets 122 may be alternately disposed along the longitudinal direction D1 of the track T.
  • the magnetic driving device 100 may further include array assembly magnets 180 .
  • the array assembly magnets 180 are coupled to the first array magnets 121 and the second array magnets 122 to control the strength of the magnetic fields of the first array magnets 121 and the second array magnets 122.
  • the array assembly magnets 180 are attached around the first array magnets 121 and have a magnetization direction different from that of the first array magnets 121; Second array assembly magnets 182 attached to the circumference of the array magnet 122 and having a magnetization direction different from that of the second array magnet 122 may be included.
  • the magnetizing directions of the first array magnets 181 and the second array magnets 182 are relative to the magnetization directions of the first array magnets 121 and the second array magnets 122 Can be placed vertically.
  • the first array assembly magnets 181 may be a direction parallel to the second direction (horizontal direction) that is perpendicular to the first direction.
  • the first array assembly magnets 181 and the second array assembly magnets 182 include the first assembly magnets AM1 attached to the outer surface of the magnet along the circumference of the magnet on the track T, respectively; 1 may include second assembly magnets AM2 attached between the assembly magnets AM1.
  • a part of the first array magnet 121 facing the first operating magnet 111 has the N pole and a part of the second array magnet 122 facing the second operating magnet 112 has the S pole, 1.
  • a part of the first array assembly magnets 181 facing the array magnet 121 has an N pole, and a part of the second array assembly magnets 182 facing the second array magnet 122 has a S pole.
  • the directions of the polarities of all the magnets described above are only examples for convenience of explanation, and the directions of the polarities of the magnets are not necessarily limited thereto and may be changed as needed.
  • the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111 sequentially form a strong magnetic flow.
  • the moving body (V) can make a strong straight motion.
  • the first array magnets 121 and the second array magnets 122 may be alternately disposed along the longitudinal direction D1 of the track T.
  • first array assembly magnets 181 attached to the circumference of the first array magnets 121 and the second array assembly magnets 182 attached to the circumference of the second array magnets 122 Some parts may be arranged to overlap.
  • At this time, at least a portion of the first array of magnets for assembly 181 and at least a portion of the second array of magnets for assembly 182, which are arranged to overlap each other, may have the same magnetization direction.
  • the array magnets 121 and 122 are fixed and the operation magnets 111 and 112 are movable, but it is not necessarily limited thereto, and the operation magnets 111 and 112 All of the array magnets 121 and 122 are disposed in a movable state, and when one of them is converted to a fixed state, the other may be converted to a movable state.
  • FIG. 35 is a plan view schematically showing the flow of magnetism between operation magnet modules, array magnet modules, and a magnetic control unit of a magnetic drive device according to another embodiment of the present invention
  • FIG. 36 is a plan view showing another embodiment of the present invention.
  • 37 schematically shows a process in which the first coil and the second coil of the magnetic control unit are magnetized to the second state and the rotating magnet of the magnetic control unit rotates
  • FIG. 37 is a magnetic control unit according to another embodiment of the present invention. It is a diagram schematically illustrating a process in which the rotating magnet of the magnetic control unit rotates when the first coil and the second coil of the magnetic control unit are non-magnified in the second state.
  • the magnetic driving device 200 includes operating magnets 210 installed on a moving body V, arrangement magnets 220 installed on a track T, and an arrangement A magnetic control unit 230 disposed between the magnets 220 and configured to generate magnetic force to control the flow of magnetism between the array magnets 220 may be included.
  • the operation magnets 210 may include a first operation magnet 211 and a second operation magnet 212 spaced apart from each other along the width direction D3 of the track T. As shown in FIG. 35, based on the width direction D3, the second operation magnet 212 is an operation magnet disposed on the left side in the drawing, and the first operation magnet 211 is disposed on the right side in the drawing. It can be a magnet.
  • the magnetization directions of the first and second operation magnets 211 and 212 are arranged in a vertical direction D2 with respect to the direction D1 in which the first and second operation magnets 211 and 212 are moved. Or, it may be disposed inclined at a predetermined angle with respect to the longitudinal direction (D1).
  • the 'magnetization direction' is a direction indicated by a line connecting a point having the strongest N pole and a point having the strongest S pole, and is indicated by a large arrow in the drawings.
  • the array magnets 220 are continuously arranged along the track T and may magnetically interact with the first and second operation magnets 211 and 212 installed on the moving body V. Accordingly, the array magnets 220 may magnetically interact with the first and second operation magnets 211 and 212 to move the movable body V along the track T.
  • the array magnets 220 may include a first array magnet 221 and a second array magnet 222 spaced apart from each other along the width direction D3 of the track T. As shown in FIG. 35, based on the width direction D3, the second array magnet 222 is an array magnet disposed on the left side in the drawing, and the first array magnet 221 is disposed on the right side in the drawing. It can be a magnet.
  • the magnetic control unit 230 is disposed between the first array magnets 221 and the second array magnets 222, and generates a magnetic force to generate a magnetic force between the first array magnets 221 and the second array magnets 222. It can be configured to control the flow.
  • the magnetic control unit 230 may include a first coil 231 , a second coil 232 and a rotating magnet 233 .
  • the first coil 231 is wound around the track T disposed on the right side of the drawing and is disposed between the rotating magnet 233 and the first array magnet 221, and is magnetized in the first or second state when current is applied thereto. It may be configured to control the flow of magnetism between the first array magnet 221 and the rotating magnet 233.
  • a part of the first coil 231 that faces the first array magnet 221 magnetically interacts with the first array magnet 221 and faces the rotating magnet 233. 1 may mean a state in which another part of the coil 231 can magnetically interact with the rotating magnet 233 .
  • a part of the first coil 231 facing the first array magnet 221 may be magnetized to the N pole, and another part of the first coil 231 facing the rotating magnet 233 may be magnetized to the S pole.
  • the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities.
  • a part of the first coil 231 facing the first array magnet 221 is magnetized to the S pole, and the other part of the first coil 231 facing the rotating magnet 233 is magnetized to the N pole. It may be magnetized.
  • the second coil 232 is wound around the track T disposed on the left side of the drawing and is disposed between the rotating magnet 233 and the second array magnet 222, and is magnetized in the first or second state when current is applied thereto. It may be configured to control the flow of magnetism between the second array magnet 222 and the rotating magnet 233.
  • a part of the second coil 232 that faces the second array magnet 222 magnetically interacts with the second array magnet 222 and faces the rotating magnet 233. 2
  • This may mean a state in which another part of the coil 232 can magnetically interact with the rotating magnet 233 .
  • a part of the second coil 232 facing the second array magnet 222 may be magnetized to the S pole, and another part of the second coil 232 facing the rotating magnet 233 may be magnetized to the N pole.
  • a part of the first coil 231 facing the second array magnet 222 cannot magnetically interact with the second array magnet 222, and the rotating magnet
  • This may mean a state in which the other part of the second coil 232 facing 233 cannot magnetically interact with the rotating magnet 233 .
  • the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities.
  • a part of the second coil 232 facing the second array magnet 222 is magnetized to the N pole, and the other part of the second coil 232 facing the rotating magnet 233 is magnetized to the S pole. It may be magnetized.
  • the rotating magnet 233 is accommodated between the tracks T, and when the first coil 231 and the second coil 232 are magnetized, it is rotated to form the first array magnet 221 and the second array magnet 222. It is rotated between the first array magnets 221 and the second array magnets 222 to form a magnetic flow.
  • the rotating magnet 233 forms a magnetic flow between the first array magnets 221 and the second array magnets 222 together with the first array magnets 221 and the second array magnets 222. It can be rotated to a first position where it can, and a second position where it cannot magnetically interact with the first array magnets 221 and the second array magnets 222.
  • a portion of the rotating magnet 233 rotated to the first position is disposed toward the first array magnet 221 and the first coil 231, and a polarity different from that of the portion.
  • Another part having may be arranged to face the second array magnet 222 and the second coil 232 .
  • the rotating magnet 233 rotated to the second position is disposed so that a part (the left part in the drawing) faces the first array magnet 221 and the first coil 231, and the other A part (right part in the drawing) may be disposed to face the second array magnet 222 and the second coil 232 .
  • the first coil 231 and the second coil 232 may be in a state in which current is not applied. Accordingly, a portion of the rotating magnet 233 is disposed to face the first coil 231 and the first array magnet 221, and the other portion faces the second coil 232 and the second array magnet 222. It can be placed facing up.
  • current may be applied to the first coil 231 and the second coil 232 so that the first coil 231 and the second coil 232 are magnetized in a second state. That is, a portion of the first coil 231 facing the first array magnet 221 may be magnetized to the S pole, and a portion facing the rotating magnet 233 may be magnetized to the N pole. In addition, a portion of the second coil 232 facing the second array magnet 222 may be magnetized to the N pole, and a portion facing the rotating magnet 233 may be magnetized to the S pole. Accordingly, the rotating magnet 233 may be rotated to the second position. thus.
  • the moving speed of the moving body V may decrease.
  • the rotating magnet 233 has a part facing the first array magnet 221 and the first coil 231 and the other part facing the second array magnet 222 and the second coil 232. can rotate Thus, the rotating magnet 233 can be rotated to the first position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Toys (AREA)

Abstract

Disclosed is a magnetic drive device, which can generate a driving force by using the magnetic force of a permanent magnet. A magnetic drive device according to an embodiment of the present invention comprises operation magnets and array magnets which magnetically interact with the operation magnets so as to control the movement of the operation magnets, and which provide a moving route to the operation magnets.

Description

자기 구동 장치magnetic drive
본 발명은 자기 구동 장치에 관한 것이다.The present invention relates to a magnetic drive device.
산업이 발달함에 따라 에너지 고갈 및 환경오염으로 인한 문제들이 발생되고 있고, 이로 인해 대체 에너지에 대한 관심이 높아지고 있다.As the industry develops, problems caused by energy depletion and environmental pollution are occurring, and as a result, interest in alternative energy is increasing.
특히, 자동차 등과 같은 운송수단의 경우 대부분 화석연료를 이용하여 동력을 발생시키는 엔진이 적용됨에 따라, 환경오염의 발생을 최소화하고, 높은 에너지 효율을 갖는 대체 에너지에 대한 필요가 더 시급한 실정이다.In particular, as engines that generate power using fossil fuels are applied to vehicles such as automobiles, there is an urgent need for alternative energy that minimizes environmental pollution and has high energy efficiency.
이와 같은 문제점을 해결하기 위하여 종래에는 연료전지와 엔진을 이용하여 동력을 발생시키는 하이브리드(hybrid) 방식의 동력 장치 및 전기 자동차가 개발된 바 있다.In order to solve this problem, conventionally, a hybrid type power unit and an electric vehicle generating power using a fuel cell and an engine have been developed.
그러나 하이브리드 방식의 동력 장치는 여전히 화석연료를 필요로 함에 따라, 환경오염을 개선시킬 수 있을 정도로 획기적인 고연비를 만족시키기는 힘든 실정이다. 그리고 전기 자동차의 경우 배터리 충전을 위한 인프라가 충분히 구축되어 있지 않고, 배터리의 출력 및 안전성에 관한 문제들이 빈번히 발생되고 있다.However, as the hybrid-type power unit still requires fossil fuel, it is difficult to satisfy the epoch-making high fuel efficiency that can improve environmental pollution. In addition, in the case of an electric vehicle, infrastructure for charging the battery is not sufficiently established, and problems related to the output and safety of the battery frequently occur.
따라서 효율적으로 동력을 발생시킬 수 있는 동력 장치의 개발이 절실히 요구되고 있다.Therefore, there is an urgent need to develop a power device that can efficiently generate power.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 영구자석의 자기력을 이용하여 보다 효율적으로 구동력을 발생시킬 수 있는 자기 구동 장치를 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a magnetic driving device capable of generating driving force more efficiently by using the magnetic force of a permanent magnet.
본 발명의 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the tasks mentioned above, and other tasks not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일실시예에 따른 자기 구동 장치는 동작자석들 및 상기 동작자석들과 자기적으로 상호작용하여 상기 동작자석들의 움직임을 제어하고, 상기 동작자석들에 이동경로를 제공하는 배열자석들을 포함하는 자기 구동 장치로서, 상기 동작자석들은, 트랙의 폭 방향을 따라 이격 배치된 제1 동작자석과, 제2 동작자석을 포함하고, 상기 배열자석들은, 상기 트랙의 길이 방향을 따라 배치되어 상기 제1 동작자석과 자기적으로 상호작용하도록 구성되는 제1 배열자석들과, 상기 트랙의 폭 방향을 따라 상기 제1 배열자석들과 이격 배치되고, 상기 트랙의 길이 방향을 따라 배치되어 상기 제2 동작자석과 자기적으로 상호작용하도록 구성되는 제2 배열자석들을 포함한다.A magnetic driving device according to an embodiment of the present invention for solving the above problems controls the movement of the operating magnets by magnetically interacting with the operating magnets and the operating magnets, and provides a moving path to the operating magnets. A magnetic driving device including array magnets provided, wherein the operation magnets include a first operation magnet and a second operation magnet spaced apart from each other along a width direction of a track, wherein the array magnets are arranged in a longitudinal direction of the track first array magnets arranged along the track and configured to magnetically interact with the first operation magnets, spaced apart from the first array magnets along the width direction of the track, and along the length direction of the track; and second array magnets arranged to magnetically interact with the second operation magnets.
상기 제1 배열자석들과 상기 제2 배열자석들은 상기 트랙의 길이 방향을 따라 교번 배치될 수 있다.The first array magnets and the second array magnets may be alternately disposed along the longitudinal direction of the track.
상기 제1 배열자석들과, 상기 제2 배열자석들은 각각 상기 트랙의 폭 방향을 따라 복수로 배치될 수 있다.The first array magnets and the second array magnets may be disposed in plurality along the width direction of the track.
상기 배열자석들과, 상기 동작자석들 중 적어도 하나는, 원형 형상, 부채꼴 형상, 반원호 형상 및 다각 형상 중 적어도 어느 하나의 형상으로 형성될 수 있다.At least one of the array magnets and the operation magnets may be formed in at least one of a circular shape, a fan shape, a semicircular arc shape, and a polygonal shape.
상기 제1 동작자석과 상기 제2 동작자석은 자기적으로 상호작용하고, 상기 제1 배열자석들과 상기 제2 배열자석들은 자기적으로 상호작용할 수 있다.The first operation magnet and the second operation magnet may magnetically interact, and the first array magnets and the second array magnets may magnetically interact.
상기 배열자석들은, 상기 제1 동작자석을 중심으로 상기 제1 배열자석들에 대향 배치되고, 상기 제1 동작자석과 자기적으로 상호작용하도록 구성되는 제1 보조 배열자석들; 및 상기 제2 동작자석을 중심으로 상기 제2 배열자석들에 대향 배치되고, 상기 제2 동작자석과 자기적으로 상호작용하도록 구성되는 제2 보조 배열자석들을 더 포함할 수 있다.The array magnets may include first auxiliary array magnets disposed facing the first array magnets with the first operation magnet as a center and configured to magnetically interact with the first operation magnets; and second auxiliary array magnets disposed to face the second array magnets with the second operation magnet as a center and configured to magnetically interact with the second operation magnets.
상기 제1 배열자석들과 상기 제2 배열자석들은 자기적으로 상호작용하고, 상기 제1 보조 배열자석들과 상기 제2 보조 배열자석들은 자기적으로 상호작용할 수 있다.The first array magnets and the second array magnets may magnetically interact, and the first auxiliary array magnets and the second auxiliary array magnets may magnetically interact.
상기 동작자석은, 상기 트랙의 폭 방향을 따라 상기 제1 동작자석에 대향 배치되는 제3 동작자석; 및 상기 트랙의 폭 방향을 따라 상기 제2 동작자석에 대향 배치되는 제4 동작자석을 더 포함하고, 상기 배열자석들은, 상기 트랙의 폭 방향을 따라 상기 제1 배열자석들에 대향 배치되고, 상기 제3 동작자석과 자기적으로 상호작용하도록 구성되는 제3 배열자석들; 상기 트랙의 폭 방향을 따라 상기 제2 배열자석들에 대향 배치되고, 상기 제4 동작자석과 자기적으로 상호작용하도록 구성되는 제4 배열자석들; 상기 트랙의 폭 방향을 따라 상기 제1 보조 배열자석들에 대향 배치되고, 상기 제3 동작자석과 자기적으로 상호작용하도록 구성되는 제3 보조 배열자석들; 및 상기 트랙의 폭 방향을 따라 상기 제2 보조 배열자석들에 대향 배치되고, 상기 제4 동작자석과 자기적으로 상호작용하도록 구성되는 제4 보조 배열자석들을 더 포함할 수 있다.The operation magnet may include a third operation magnet disposed opposite to the first operation magnet along the width direction of the track; and fourth operation magnets disposed opposite to the second operation magnets along the width direction of the track, wherein the array magnets are disposed opposite to the first array magnets along the width direction of the track, third array magnets configured to magnetically interact with the third operation magnets; fourth array magnets disposed opposite to the second array magnets along the width direction of the track and configured to magnetically interact with the fourth operation magnets; third auxiliary array magnets disposed opposite to the first auxiliary array magnets along the width direction of the track and configured to magnetically interact with the third operation magnets; and fourth auxiliary array magnets disposed to face the second auxiliary array magnets along the width direction of the track and configured to magnetically interact with the fourth operation magnets.
상기 제3 배열자석들과 상기 제4 배열자석들은 자기적으로 상호작용하고, 상기 제3 보조 배열자석들과 상기 제4 보조 배열자석들은 자기적으로 상호작용할 수 있다.The third array magnets and the fourth array magnets may magnetically interact, and the third auxiliary array magnets and the fourth auxiliary array magnets may magnetically interact.
상기 제1 동작자석과 상기 제2 동작자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 제1 동작자석과 상기 제2 동작자석 사이의 자기의 흐름을 제어하도록 구성되는 코일을 더 포함할 수 있다.A coil disposed between the first operating magnet and the second operating magnet and configured to be magnetized when a current is applied to control a magnetic flow between the first operating magnet and the second operating magnet may be further included. .
상기 제1 동작자석과 상기 제2 동작자석 및 상기 코일은 이동체의 길이방향을 따라 복수로 배치될 수 있다.The first operating magnet, the second operating magnet, and the coil may be disposed in plurality along the longitudinal direction of the moving body.
상기 제1 배열자석과 상기 제2 배열자석 사이에 배치되고, 상기 제1 배열자석과 상기 제2 배열자석 사이의 자기의 흐름을 제어하도록 구성되는 자기 제어 유닛을 더 포함할 수 있다.It may further include a magnetic control unit disposed between the first array magnet and the second array magnet and configured to control a flow of magnetism between the first array magnet and the second array magnet.
상기 자기 제어 유닛은, 상기 트랙의 일 측에 배치되는 폴피스 조립체; 상기 폴피스 조립체의 일부분에 수용되고, 상기 제1 배열자석과 상기 제2 배열자석 사이에서 회전되어 상기 제1 배열자석 및 상기 제2 배열자석과 함께 자기의 흐름을 형성하거나, 상기 폴피스 조립체와 함께 자기 폐루프를 형성하도록 구성되는 회전자석; 상기 폴피스 조립체에 설치되고, 전류가 인가되면 자화되어 상기 회전자석을 회전시키도록 구성되는 제1 코일; 및 상기 회전 자석과 상기 제1 배열자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 제1 배열자석과 상기 회전자석 사이의 자기의 흐름을 제어하도록 구성되는 제2 코일을 포함할 수 있다.The magnetic control unit may include a pole piece assembly disposed on one side of the track; Accommodated in a part of the pole piece assembly and rotated between the first array magnet and the second array magnet to form a magnetic flow together with the first array magnet and the second array magnet, or a rotating magnet configured to form a magnetic closed loop together; a first coil installed on the pole piece assembly and configured to be magnetized when current is applied to rotate the rotating magnet; and a second coil disposed between the rotating magnet and the first array magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the first array magnet and the rotation magnet.
상기 제1 동작자석과 상기 제2 동작자석에 결합되어 상기 제1 동작자석과 상기 제2 동작자석의 자계의 세기를 제어하도록 구성되는 동작조립자석들을 더 포함할 수 있다.The method may further include operation assembling magnets coupled to the first operation magnet and the second operation magnet and configured to control magnetic field strengths of the first operation magnet and the second operation magnet.
상기 동작조립자석들은 상기 트랙의 폭방향을 따라 상기 제1 동작자석과 상기 제2 동작자석에 부착되고, 상기 동작조립자석들의 착자방향은, 상기 제1 동작자석의 착자방향 및 상기 제2 동작자석의 착자방향에 대하여 수직으로 배치될 수 있다.The motion assembly magnets are attached to the first motion magnet and the second motion magnet along the width direction of the track, and the magnetization directions of the motion assembly magnets are the magnetization direction of the first motion magnet and the second motion magnet. It can be arranged perpendicular to the magnetization direction of .
상기 동작조립자석들은, 상기 제1 동작자석과 상기 제2 동작자석 사이에 배치되는 제1 동작조립자석; 상기 제1 동작자석을 중심으로 상기 제1 동작조립자석에 대향 배치되는 제2 동작조립자석; 및 상기 제2 동작자석을 중심으로 상기 제1 동작조립자석에 대향 배치되는 제3 동작조립자석을 포함할 수 있다.The operation assembly magnets may include: a first operation assembly magnet disposed between the first operation magnet and the second operation magnet; a second motion assembly magnet disposed opposite to the first motion assembly magnet with the first motion magnet as a center; and a third operation assembly magnet arranged opposite to the first operation assembly magnet with the second operation magnet as a center.
상기 제1 배열자석과 상기 제2 배열자석에 결합되어 상기 제1 배열자석과 상기 제2 배열자석의 자계의 세기를 제어하도록 구성되는 배열조립자석들을 더 포함할 수 있다.The method may further include array assembly magnets coupled to the first array magnets and the second array magnets to control magnetic field intensities of the first array magnets and the second array magnets.
상기 배열조립자석들은, 상기 제1 배열자석의 둘레에 부착되고, 제1 배열자석의 착자방향과 다른 착자방향을 가지는 제1 배열조립자석들; 및 상기 제2 배열자석의 둘레에 부착되고, 제2 배열자석의 착자방향과 다른 착자방향을 가지는 제2 배열조립자석들을 포함할 수 있다.The array assembly magnets may include first array assembly magnets attached around the first array magnets and having a magnetization direction different from that of the first array magnets; and second array assembly magnets attached to the periphery of the second array magnets and having a magnetization direction different from that of the second array magnets.
상기 제1 배열조립자석들의 적어도 일부분과, 상기 제2 배열조립자석들 적어도 일부분은 중첩되도록 배치되고, 중첩되도록 배치되는 상기 제1 배열조립자석들의 적어도 일부분과, 상기 제2 배열조립자석들 적어도 일부분은 동일한 착자방향을 가질 수 있다.At least a portion of the first array of magnets to be assembled and at least a portion of the second array of magnets are disposed to overlap, and at least a portion of the first array of magnets to be assembled overlaps with at least a portion of the second array of magnets to be assembled. may have the same magnetization direction.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 자기 구동 장치는 동작자석들; 상기 동작자석들과 자기적으로 상호작용하여 상기 동작자석들의 움직임을 제어하고, 상기 동작자석들에 이동경로를 제공하는 배열자석들; 및 상기 동작자석들을 중심으로 상기 배열자석들에 대향 배치되는 보조 배열자석들을 포함한다.A magnetic drive device according to another embodiment of the present invention for solving the above problems includes operating magnets; array magnets that magnetically interact with the operation magnets to control the movement of the operation magnets and provide a moving path to the operation magnets; and auxiliary array magnets disposed facing the array magnets around the operation magnets.
상기 배열자석들과, 상기 보조 배열자석들을 지지하도록 구성되는 트랙을 더 포함하고, 상기 배열자석들과 상기 보조 배열자석들은 자기적으로 상호작용하도록 구성될 수 있다.It may further include a track configured to support the array magnets and the auxiliary array magnets, and the array magnets and the auxiliary array magnets may magnetically interact with each other.
상기 트랙은 상기 배열자석들이 지지되는 일부분과, 상기 보조 배열자석들이 지지되는 다른 일부분을 서로 연결하도록 구성될 수 있다.The track may be configured to connect a part where the array magnets are supported and another part where the auxiliary array magnets are supported.
상기 동작자석들은, 이동체의 일부분에 배치되어 상기 배열자석들과 자기적으로 상호작용하도록 구성되는 주 동작자석; 및 상기 이동체의 다른 일부분에 배치되어 상기 주 동작자석 및 상기 보조 배열자석들과 자기적으로 상호작용하도록 구성되는 보조 동작자석을 포함할 수 있다.The operation magnets may include a main operation magnet arranged on a part of the moving body and configured to magnetically interact with the array magnets; and an auxiliary magnet that is disposed on another part of the movable body and configured to magnetically interact with the main magnet and the auxiliary array magnets.
상기 동작자석들, 상기 배열자석들 및 상기 보조 배열자석들은 상기 트랙의 폭 방향을 따라 복수로 배치되어, 각각 자기의 흐름을 형성하도록 구성될 수 있다.The operating magnets, the array magnets, and the auxiliary array magnets may be arranged in plurality along the width direction of the track to form a magnetic flow, respectively.
상기 주 동작자석과 상기 보조 동작자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 주 동작자석과 상기 보조 동작자석 사이의 자기의 흐름을 제어하도록 구성되는 코일을 더 포함할 수 있다.The method may further include a coil disposed between the main operating magnet and the auxiliary operating magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the main operating magnet and the auxiliary operating magnet.
상기 배열자석과 상기 보조 배열자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 배열자석과 상기 보조 배열자석 사이의 자기의 흐름을 제어하도록 구성되는 코일을 더 포함할 수 있다.A coil disposed between the array magnets and the auxiliary array magnets and configured to be magnetized when a current is applied to control a flow of magnetism between the array magnets and the auxiliary array magnets may be further included.
상기 과제를 해결하기 위한 본 발명의 또 다른 실시예에 따른 자기 구동 장치는 이동체에 배치되는 동작자석들; 및 트랙에 배치되고, 상기 동작자석들과 자기적으로 상호작용하여 상기 동작자석들의 움직임을 제어하도록 구성되는 배열자석들을 포함하고, 상기 트랙에는, 상기 배열자석들이 배열된 자력구간들과, 상기 자력구간들 사이에 상기 배열자석들이 미배열된 적어도 하나의 공백구간이 형성된다.A magnetic drive device according to another embodiment of the present invention for solving the above problems includes operation magnets disposed on a moving body; and array magnets disposed on the track and configured to control the movement of the operation magnets by magnetically interacting with the operation magnets, wherein the track includes magnetic force sections in which the array magnets are arranged, and the magnetic force At least one blank section in which the array magnets are not arranged is formed between the sections.
본 발명의 실시예에 따르면, 영구자석 간의 인력 및 척력을 이용하여 운동에너지를 발생시킴으로써, 환경오염의 발생을 최소화하고, 높은 에너지 효율의 구동력을 얻을 수 있다.According to an embodiment of the present invention, by generating kinetic energy using attractive and repulsive forces between permanent magnets, it is possible to minimize the occurrence of environmental pollution and obtain a driving force with high energy efficiency.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 발명 내에 포함되어 있다.Effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present invention.
도 1은 본 발명의 실시예에 따른 자기 구동 장치가 운송 시스템에 적용된 상태를 개략적으로 나타낸 도면이다.1 is a diagram schematically showing a state in which a magnetic driving device according to an embodiment of the present invention is applied to a transportation system.
도 2는 본 발명의 실시예에 따른 복수의 동작자석과, 복수의 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 정면도이다.2 is a front view schematically illustrating a flow of magnetism formed between a plurality of operation magnets and a plurality of arrangement magnets according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 복수의 동작자석과, 복수의 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 평면도이다.3 is a plan view schematically illustrating a flow of magnetism formed between a plurality of operation magnets and a plurality of arrangement magnets according to an embodiment of the present invention.
도 4a 내지 도 4c는 본 발명의 실시예에 따른 복수의 동작자석이 복수의 배열자석들과 자기적으로 상호작용하면서 전방으로 이동되는 과정을 개략적으로 나타낸 도면이다.4A to 4C are diagrams schematically illustrating a process in which a plurality of operation magnets move forward while magnetically interacting with a plurality of array magnets according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 자기 구동 장치에 복수의 자기의 흐름이 형성된 상태를 개략적으로 나타낸 도면이다.5 is a diagram schematically showing a state in which a plurality of flows of magnetism are formed in a magnetic drive device according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 자기 구동 장치에 적어도 둘 이상의 자기의 흐름이 형성된 상태를 개략적으로 나타낸 도면이다.6 is a diagram schematically showing a state in which at least two or more magnetic flows are formed in the magnetic drive device according to an embodiment of the present invention.
도 7은 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 제1 상태로 자화될 경우 동작자석들과, 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 정면도이다.7 schematically shows a flow of magnetism formed between the operating magnets and the arrangement magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a first state in an embodiment of the present invention. It is a front view.
도 8a 내지 8c는 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 제1 상태로 자화될 경우 동작자석들이 전방으로 이동되는 과정을 개략적으로 나타낸 도면이다.8A to 8C are diagrams schematically illustrating a process in which the operation magnets are moved forward when a coil disposed between the first operation magnet and the second operation magnet is magnetized in a first state in an embodiment of the present invention.
도 9는 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 제1 상태로 자화될 경우 동작자석들과, 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 평면도이다.9 schematically shows the flow of magnetism formed between the operating magnets and the array magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a first state in an embodiment of the present invention. it is flat
도 10은 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 비자화될 경우 동작자석들과, 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 정면도이다.FIG. 10 is a front view schematically illustrating a flow of magnetism formed between operating magnets and arrangement magnets when a coil disposed between a first operating magnet and a second operating magnet is demagnetized in an embodiment of the present invention.
도 11a 내지 도 11c는 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 비자화될 경우 동작자석들이 전방으로 이동되는 과정을 개략적으로 나타낸 도면이다.11A to 11C are diagrams schematically illustrating a process in which the operation magnets are moved forward when the coil disposed between the first operation magnet and the second operation magnet is demagnetized in an embodiment of the present invention.
도 12는 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 비자화될 경우 동작자석들과, 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 평면도이다.12 is a plan view schematically illustrating a flow of magnetism formed between the operating magnets and the arrangement magnets when a coil disposed between the first operating magnet and the second operating magnet is demagnetized in an embodiment of the present invention.
도 13은 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 제2 상태로 자화될 경우 동작자석들과, 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 정면도이다.13 schematically shows a flow of magnetism formed between the operating magnets and the array magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a second state in an embodiment of the present invention. It is a front view.
도 14a 내지 14c는 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 제2 상태로 자화될 경우 동작자석들이 전방으로 이동되는 과정을 개략적으로 나타낸 도면이다.14A to 14C are diagrams schematically illustrating a process in which the operation magnets are moved forward when a coil disposed between a first operation magnet and a second operation magnet is magnetized in a second state in an embodiment of the present invention.
도 15는 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 제2 상태로 자화될 경우 동작자석들과, 배열자석들 사이에 형성되는 자기의 흐름을 개략적으로 나타낸 평면도이다.15 schematically shows the flow of magnetism formed between the operating magnets and the array magnets when a coil disposed between the first operating magnet and the second operating magnet is magnetized in a second state in an embodiment of the present invention. it is flat
도 16은 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 이동체의 길이방향을 따라 교번 배치된 상태를 개략적으로 나타낸 평면도이다.16 is a plan view schematically illustrating a state in which coils disposed between the first and second operation magnets are alternately disposed along the longitudinal direction of the moving body in an embodiment of the present invention.
도 17은 본 발명의 실시예에서 제1 동작자석과 제2 동작자석 사이에 배치된 코일이 이동체의 길이방향을 따라 연속적으로 배치된 상태를 개략적으로 나타낸 평면도이다.17 is a plan view schematically illustrating a state in which coils disposed between the first and second operation magnets are continuously disposed along the longitudinal direction of the moving body in an embodiment of the present invention.
도 18은 본 발명의 실시예에서 주 동작자석과 보조 동작자석 사이에 배치된 코일이 제1 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.18 is a front view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is magnetized in a first state in an embodiment of the present invention.
도 19는 본 발명의 실시예에서 주 동작자석과 보조 동작자석 사이에 배치된 코일이 제1 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 평면도이다.19 is a plan view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is magnetized in a first state in an embodiment of the present invention.
도 20은 본 발명의 실시예에서 주 동작자석과 보조 동작자석 사이에 배치된 코일이 비자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.20 is a front view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is demagnetized in an embodiment of the present invention.
도 21은 본 발명의 실시예에서 주 동작자석과 보조 동작자석 사이에 배치된 코일이 제2 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.21 is a front view schematically illustrating a flow of magnetism when a coil disposed between a main operating magnet and an auxiliary operating magnet is magnetized in a second state in an embodiment of the present invention.
도 22는 본 발명의 실시예에서 트랙에 배치된 코일이 제1 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.22 is a front view schematically illustrating a flow of magnetism when a coil disposed on a track is magnetized in a first state in an embodiment of the present invention.
도 23은 본 발명의 실시예에서 트랙에 배치된 코일이 제1 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 평면도이다.23 is a plan view schematically illustrating a flow of magnetism when a coil disposed on a track is magnetized in a first state in an embodiment of the present invention.
도 24는 본 발명의 실시예에서 트랙에 배치된 코일이 비자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.24 is a front view schematically illustrating a flow of magnetism when a coil disposed on a track is demagnetized in an embodiment of the present invention.
도 25는 본 발명의 실시예에서 트랙에 배치된 코일이 제2 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.25 is a front view schematically illustrating a flow of magnetism when a coil disposed on a track is magnetized in a second state in an embodiment of the present invention.
도 26은 본 발명의 실시예에서 트랙에 배치된 제1 코일과 제2 코일이 제1 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.26 is a front view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are magnetized in a first state in an embodiment of the present invention.
도 27은 본 발명의 실시예에서 트랙에 배치된 제1 코일과 제2 코일이 제1 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 평면도이다.27 is a plan view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are magnetized in a first state in an embodiment of the present invention.
도 28은 본 발명의 실시예에서 트랙에 배치된 제1 코일과 제2 코일이 제1 상태에서 비자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.28 is a front view schematically showing the flow of magnetism when the first coil and the second coil disposed on the track are non-magnified in a first state in an embodiment of the present invention.
도 29는 본 발명의 실시예에서 트랙에 배치된 제1 코일과 제2 코일이 제2 상태로 자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.29 is a front view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are magnetized in a second state in an embodiment of the present invention.
도 30은 본 발명의 실시예에서 트랙에 배치된 제1 코일과 제2 코일이 제2 상태에서 비자화될 경우 자기의 흐름을 개략적으로 나타낸 정면도이다.30 is a front view schematically illustrating a flow of magnetism when a first coil and a second coil disposed on a track are demagnetized in a second state in an embodiment of the present invention.
도 31은 본 발명의 실시예에서 동작조립자석들에 결합된 동작자석들과 배열자석들 간의 자기의 흐름을 개략적으로 나타낸 정면도이다.31 is a front view schematically showing the flow of magnetism between the motion magnets coupled to the motion assembly magnets and the arrangement magnets in an embodiment of the present invention.
도 32는 본 발명의 실시예에서 동작조립자석들에 결합된 동작자석들과 배열자석들 간의 자기의 흐름을 개략적으로 나타낸 평면도이다.32 is a plan view schematically showing the flow of magnetism between the operation magnets coupled to the operation assembly magnets and the arrangement magnets in an embodiment of the present invention.
도 33은 본 발명의 실시예에서 동작조립자석들에 결합된 동작자석들과 배열조립자석들에 결합된 배열자석들 간의 자기의 흐름을 개략적으로 나타낸 정면도이다.33 is a front view schematically illustrating a flow of magnetism between motion magnets coupled to motion assembly magnets and arrangement magnets coupled to arrangement assembly magnets in an embodiment of the present invention.
도 34는 본 발명의 실시예에서 동작조립자석들에 결합된 동작자석들과 배열조립자석들에 결합된 배열자석들 간의 간의 자기의 흐름을 개략적으로 나타낸 평면도이다.34 is a plan view schematically showing the flow of magnetism between the motion magnets coupled to the motion assembly magnets and the arrangement magnets coupled to the arrangement assembly magnets in an embodiment of the present invention.
도 35는 본 발명의 다른 실시예에 따른 자기 구동 장치의 동작자석모듈들과 배열자석모듈들과 자기제어유닛 사이의 자기의 흐름을 개략적으로 나타낸 평면도이다.35 is a plan view schematically showing the flow of magnetism between operation magnet modules, array magnet modules, and a magnetic control unit of a magnetic drive device according to another embodiment of the present invention.
도 36은 본 발명의 다른 실시예에 따른 자기제어유닛의 제1 코일 및 제2 코일이 제2 상태로 자화되어 자기제어유닛의 회전자석이 회전하는 과정을 개략적으로 나타내는 도면이다.36 is a diagram schematically illustrating a process in which the rotating magnet of the magnetic control unit rotates when the first coil and the second coil of the magnetic control unit are magnetized in a second state according to another embodiment of the present invention.
도 37은 본 발명의 다른 실시예에 따른 자기제어유닛의 제1 코일 및 제2 코일이 제2 상태에서 비자화될 경우 자기제어유닛의 회전자석이 회전하는 과정을 개략적으로 나타내는 도면이다. 37 is a diagram schematically illustrating a process in which a rotating magnet of a magnetic control unit rotates when the first coil and the second coil of the magnetic control unit are demagnetized in a second state according to another embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형상으로 구현될 것이며, 단지 본 발명의 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention, and methods of achieving them, will become clear with reference to the detailed description of the following embodiments taken in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different shapes, only the embodiments of the present invention will make the disclosure of the present invention complete, and common in the art to which the present invention belongs. It is provided to completely inform those who have knowledge of the scope of the invention, and the present invention is only defined by the scope of the claims.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 면적, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 제한되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 발명 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.Since the shape, area, ratio, angle, number, etc. disclosed in the drawings for explaining the embodiments of the present invention are exemplary, the present invention is not limited to the matters shown. Like reference numbers designate like elements throughout the specification. In addition, in describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. When 'includes', 'has', 'consists', etc. mentioned in the present invention is used, other parts may be added unless 'only' is used. In the case where a component is expressed in the singular, the case including the plural is included unless otherwise explicitly stated.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다. In interpreting the components, even if there is no separate explicit description, it is interpreted as including the error range.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.In the case of a description of a positional relationship, for example, 'on top of', 'on top of', 'at the bottom of', 'next to', etc. Or, unless 'directly' is used, one or more other parts may be located between the two parts.
또한 제1, 제2 등이 다양한 구성 요소들을 서술하기 위해서 사용되나, 이들 구성 요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성 요소를 다른 구성 요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성 요소는 본 발명의 기술적 사상 내에서 제2 구성 요소일 수도 있다.In addition, although first, second, etc. are used to describe various constituent elements, these constituent elements are not limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component mentioned below may also be the second component within the technical spirit of the present invention.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Like reference numbers designate like elements throughout the specification.
도면에서 나타난 각 구성의 면적 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 면적 및 두께에 반드시 한정되는 것은 아니다.The area and thickness of each component shown in the drawings is shown for convenience of description, and the present invention is not necessarily limited to the area and thickness of the illustrated component.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시할 수도 있다.Each feature of the various embodiments of the present invention can be partially or entirely combined or combined with each other, technically various interlocking and driving are possible, and each embodiment can be implemented independently of each other or can be implemented together in a related relationship. may be
이하에서는 첨부된 도면을 참조하여 본 발명의 다양한 실시예들을 상세히 설명한다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 자기 구동 장치(100)는 동작자석들(110)과 배열자석들(120)을 포함한다.Referring to FIGS. 1 and 2 , a magnetic drive device 100 according to an embodiment of the present invention includes operating magnets 110 and array magnets 120 .
동작자석들(110)은 운송 시스템(1)에서 트랙(T)을 따라 설정된 경로를 이동하는 이동체(V)에 하나 이상 배치된다.One or more operating magnets 110 are disposed on a movable body V moving along a path set along a track T in the transport system 1 .
동작자석들(110)은 이동체(V)에 결합되어 배열자석들(120)로부터 일정 간격을 유지한 상태로 이격 배치될 수 있다.The operation magnets 110 may be coupled to the movable body V and spaced apart from the array magnets 120 while maintaining a certain distance therebetween.
동작자석(110)은 기둥 형상으로 형성될 수 있다. 그러나, 동작자석(110)의 형상은 반드시 이에 한정되는 것은 아니며, 다양한 형상으로 변경될 수 있다.The operating magnet 110 may be formed in a columnar shape. However, the shape of the operating magnet 110 is not necessarily limited thereto and may be changed into various shapes.
동작자석(110)은 동작자석(110)과 자기적으로 상호작용하는 배열자석들(120)의 개수, 배열 구조, 착자 방향 등에 따라 그 개수 및 자기력의 크기가 결정될 수 있다.The number and magnitude of magnetic force of the operating magnets 110 may be determined according to the number, arrangement structure, and direction of magnetization of the array magnets 120 that magnetically interact with the operating magnets 110 .
동작자석(110)은 N극과 S극 중 어느 하나의 극이 배열자석들(120)을 향하도록 배열자석들(120)로부터 이격 배치될 수 있다.The operation magnet 110 may be spaced apart from the array magnets 120 such that one of the N pole and the S pole faces the array magnets 120 .
동작자석(110)의 착자 방향은 동작자석(110)이 이동되는 방향(D1)에 대하여 수직방향(D2)으로 배치되거나, 동작자석(110)이 이동되는 방향(D1)에 대하여 소정의 각도로 기울어지게 배치될 수 있다.The magnetization direction of the operation magnet 110 is disposed in the vertical direction D2 with respect to the direction D1 in which the operation magnet 110 moves, or at a predetermined angle with respect to the direction D1 in which the operation magnet 110 moves. It can be placed tilted.
여기서 '착자 방향'이란, 가장 강한 N극을 띄는 지점과 가장 강한 S극을 띄는 지점을 연결한 선이 가리키는 방향으로서, 도면들에서는 큰 화살표로 도시되었다.Here, the 'magnetization direction' is a direction indicated by a line connecting a point having the strongest N pole and a point having the strongest S pole, and is indicated by a large arrow in the drawings.
이때, 동작자석(110)이 이동되는 방향(D1)에 대하여 기울어지게 배치된 동작자석(110)의 착자 방향은, 동작자석(110)이 이동되는 방향(D1)에 대한 수직방향(D2)에 대해서, -90 이상 90도 이하의 각도를 이루어 기울어져 배치될 수 있다.At this time, the magnetization direction of the motion magnet 110 disposed inclined with respect to the direction D1 in which the motion magnet 110 moves is in the direction D2 perpendicular to the direction D1 in which the motion magnet 110 moves. , it may be disposed at an angle of -90 or more and less than or equal to 90 degrees.
동작자석(110)의 착자 방향은 N극이 배열자석들(120)을 향하도록 배치되거나, S극이 배열자석들(120)을 향하도록 배치될 수 있다.The magnetization direction of the operation magnet 110 may be disposed such that the N pole faces the array magnets 120 or the S pole faces the array magnets 120 .
앞서 정의했듯이, 도면에서 동작자석(110)과 배열자석들(120)에 화살표로 표현된 부분은 착자 방향을 의미하고, 화살표로 표현된 부분은 화살표로 표현되지 않은 부분에 비하여 더 큰 자속밀도를 가질 수 있다.As defined above, in the drawings, the arrow-marked parts of the operating magnet 110 and the array magnets 120 mean magnetization directions, and the arrow-marked parts have higher magnetic flux densities than those not marked with arrows. can have
배열자석들(120)은 트랙(T)을 따라 연속적으로 배치되고, 이동체(V)에 배치된 동작자석(110)과 자기적으로 상호작용하여 동작자석(110)의 움직임에 영향을 미친다. 이에 따라, 이동체(V)는 동작자석(110)과 배열자석들(120) 간의 자기적인 상호작용을 통해 트랙(T)을 따라 이동할 수 있다.The array magnets 120 are continuously arranged along the track T, and magnetically interact with the motion magnets 110 disposed on the moving body V to affect the motion of the motion magnets 110. Accordingly, the movable body V may move along the track T through magnetic interaction between the operation magnet 110 and the arrangement magnets 120 .
배열자석들(120)은 동작자석(110)에 이동경로를 제공하는 복수의 자력구간(MS)을 형성한다.The array magnets 120 form a plurality of magnetic force sections MS providing a moving path to the operation magnet 110 .
하나의 자력구간(MS)을 형성하는 배열자석들(120)과, 다른 자력구간들(MS)을 형성하는 배열자석들(120)은, 동일한 배열 구조를 가지거나, 서로 다른 자석 배열 구조를 가질 수도 있다.The array magnets 120 forming one magnetic section MS and the array magnets 120 forming other magnetic sections MS may have the same arrangement structure or different magnet arrangement structures. may be
이때, 트랙(T)에는 배열자석들(120)이 배열된 자력구간들(MS)과, 자력구간들(MS) 사이에 배열자석들(120)이 미배열된 적어도 하나의 공백구간(BS)이 형성된다.At this time, in the track T, there are magnetic sections MS in which the array magnets 120 are arranged, and at least one blank section BS in which the array magnets 120 are not arranged between the magnetic sections MS. is formed
따라서, 자력구간(MS)을 통과한 동작자석(110)은 관성에 의해 공백구간(BS)을 통과하게 되고, 공백구간(BS)을 통과하는 과정에서 다음 자력구간(MS)에 배치된 배열자석들(120)과 자기적으로 상호작용하게 되어 추진력이 증폭될 수 있다.Therefore, the operating magnet 110 passing through the magnetic force section MS passes through the blank section BS by inertia, and in the process of passing through the blank section BS, the array magnets disposed in the next magnetic force section MS By interacting magnetically with the s 120, the driving force can be amplified.
도 2 내지 도 4를 참조하면, 동작자석(110)은, 트랙(T)의 폭 방향(D3)을 따라 이격 배치된 제1 동작자석(111)과, 제2 동작자석(112)을 포함할 수 있다.2 to 4, the operation magnet 110 may include a first operation magnet 111 and a second operation magnet 112 spaced apart from each other along the width direction D3 of the track T. can
배열자석들(120)은, 트랙(T)의 길이 방향(D1)을 따라 배치되어 제1 동작자석(111)과 자기적으로 상호작용하도록 구성되는 제1 배열자석들(121)과, 트랙(T)의 폭 방향(D3)을 따라 제1 배열자석들(121)과 이격 배치되고, 트랙(T)의 길이 방향(D1)을 따라 배치되어 제2 동작자석(112)과 자기적으로 상호작용하도록 구성되는 제2 배열자석들(122)을 포함할 수 있다.The array magnets 120 include the first array magnets 121 disposed along the longitudinal direction D1 of the track T and configured to magnetically interact with the first operation magnet 111, and the track ( It is spaced apart from the first array magnets 121 along the width direction D3 of the track T, and is disposed along the length direction D1 of the track T to magnetically interact with the second operation magnet 112. It may include second array magnets 122 configured to do so.
이때, 제1 배열자석들(121)과 제2 배열자석들(122)은 트랙(T)의 길이 방향(D1)을 따라 교번 배치될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 may be alternately disposed along the longitudinal direction D1 of the track T.
또한, 제1 배열자석들(121)과 제2 배열자석들(122)은 트랙(T)의 폭 방향(D3)을 따라 각각 복수로 배치될 수도 있다.Also, the first array magnets 121 and the second array magnets 122 may be disposed in plurality along the width direction D3 of the track T.
또한, 제1 동작자석(111)과, 제2 동작자석(112)이 각각 복수로 파츠로 분할된 구조를 가질 경우, 분할된 각 파츠는 배열자석이 배치된 열에 대응되도록 배치될 수 있다. 예를 들어, 제1 동작자석(111)은 제1 배열자석들(121)이 배치된 열에 대응되고, 제2 동작자석(112)은 제2 배열자석들(122)이 배치된 열에 대응될 수 있다.Also, when the first operating magnet 111 and the second operating magnet 112 each have a structure divided into a plurality of parts, each divided part may be arranged to correspond to a column in which the array magnets are arranged. For example, the first operating magnets 111 may correspond to a row in which the first array magnets 121 are disposed, and the second operating magnets 112 may correspond to a column in which the second array magnets 122 are disposed. there is.
도 5를 참조하면, 동작자석(110)은 트랙(T)의 폭 방향(D3)을 따라 제1 동작자석(111)에 대향 배치되는 제3 동작자석(113)과, 트랙(T)의 폭 방향(D3)을 따라 제2 동작자석(112)에 대향 배치되는 제4 동작자석(114)을 더 포함할 수 있다.Referring to FIG. 5 , the operation magnet 110 includes a third operation magnet 113 disposed opposite to the first operation magnet 111 along the width direction D3 of the track T, and the width of the track T. A fourth operation magnet 114 disposed to face the second operation magnet 112 along the direction D3 may be further included.
그리고, 배열자석들(120)은 트랙(T)의 폭 방향(D3)을 따라 제1 배열자석들(121)에 대향 배치되고, 제3 동작자석(113)과 자기적으로 상호작용하도록 구성되는 제3 배열자석들(123)과, 트랙(T)의 폭 방향(D3)을 따라 제2 배열자석들(122)에 대향 배치되고, 제4 동작자석(114)과 자기적으로 상호작용하도록 구성되는 제4 배열자석들(124)을 더 포함할 수 있다.And, the array magnets 120 are disposed to face the first array magnets 121 along the width direction D3 of the track T and are configured to magnetically interact with the third operation magnets 113. Arranged to face the third array magnets 123 and the second array magnets 122 along the width direction D3 of the track T, and magnetically interact with the fourth operation magnet 114 It may further include fourth array magnets 124 to be.
예를 들어, 제3 배열자석들(123)과, 제4 배열자석들(124)은 각각 트랙(T)의 폭 방향(D3)을 따라 복수로 배치될 수 있음은 물론, 트랙(T)의 길이 방향(D1)을 따라 교번 배치될 수도 있다.For example, the third array magnets 123 and the fourth array magnets 124 may be disposed in plurality along the width direction D3 of the track T, and of course, the track T They may be arranged alternately along the longitudinal direction D1.
이에, 제1 배열자석들(121), 제2 배열자석들(122), 제3 배열자석들(123) 및 제4 배열자석들(124)은 트랙(T)의 폭 방향(D3)으로 서로 중첩되지 않도록, 트랙(T)의 길이 방향(D1)을 따라 교번 배치될 수 있다.Accordingly, the first array magnets 121, the second array magnets 122, the third array magnets 123, and the fourth array magnets 124 are mutually connected to each other in the width direction D3 of the track T. They may be arranged alternately along the longitudinal direction D1 of the tracks T so as not to overlap.
따라서, 동작자석들(111, 112, 113, 114)은 트랙(T)의 길이방향(D1)을 따라 교번 배치된 배열자석들(121, 122, 123, 124)과 순차적으로 상호작용하면서 이동하게 된다.Accordingly, the operation magnets 111, 112, 113, and 114 sequentially interact and move with the array magnets 121, 122, 123, and 124 alternately disposed along the longitudinal direction D1 of the track T. do.
즉, 본 발명은 제1 동작자석(111)과 제1 배열자석(121), 제3 동작자석(113)과 제3 배열자석(123), 제2 동작자석(112)과 제2 배열자석(122), 그리고 제4 동작자석(114)과 제4 배열자석(124)이 순차적으로 상호작용함에 따라 구동력이 발생될 수 있다. 그리고, 상술한 하나의 사이클이 반복적으로 이루어짐에 따라 구동력이 증대될 수 있고, 지속적으로 일정한 속도의 직진력을 확보할 수 있다.That is, the present invention includes the first operating magnet 111 and the first array magnet 121, the third operating magnet 113 and the third array magnet 123, the second operating magnet 112 and the second array magnet ( 122), and as the fourth operation magnet 114 and the fourth array magnet 124 sequentially interact, driving force may be generated. In addition, as the above-described one cycle is repeatedly performed, the driving force can be increased, and the straight-line force at a constant speed can be continuously secured.
본 실시예에서는 동작자석들(111, 112, 113, 114)과 배열자석들(121, 122, 123, 124)을 각각 4열 구조로 한정하여 설명하였으나, 반드시 이에 한정되는 것은 아니며, 동작자석들(111, 112, 113, 114)과 배열자석들(121, 122, 123, 124)은 다양한 배열 구조를 가질 수 있다.In this embodiment, the operation magnets 111, 112, 113, 114 and the array magnets 121, 122, 123, 124 have been described as being limited to a four-column structure, but it is not necessarily limited thereto, and the operation magnets (111, 112, 113, 114) and the array magnets (121, 122, 123, 124) may have various arrangement structures.
한편, 배열자석들(120)과, 동작자석들(110) 중 적어도 하나는 중심각이 예각을 이루는 부채꼴 형상으로 형성될 수 있다. 그러나, 동작자석들(110)과 배열자석들(120)은 반드시 상술한 부채꼴 형상으로 형성되는 것은 아니며, 원호 형상, 타원 형상, 반원호 형상 및 다각 형상 등 다양한 형상으로 형성될 수 있다.Meanwhile, at least one of the array magnets 120 and the operation magnets 110 may be formed in a fan shape having an acute central angle. However, the operation magnets 110 and the array magnets 120 are not necessarily formed in the above-described sector shape, but may be formed in various shapes such as an arc shape, an ellipse shape, a semicircular arc shape, and a polygonal shape.
도 1 및 도 4를 참조하면, 배열자석들(120)은 동작자석(110)과 연속적으로 자기적인 상호작용이 가능할 수 있도록 트랙(T)의 길이방향을 따라 등간격으로 이격 배치될 수 있다.Referring to FIGS. 1 and 4 , the array magnets 120 may be spaced apart at regular intervals along the longitudinal direction of the track T so that magnetic interaction with the operation magnets 110 is possible continuously.
그러나, 배열자석들(120)의 배열 구조는 반드시 이에 한정되는 것은 아니며, 복수의 자력구간(MS) 사이에 배열자석(120)이 미배열된 공백구간(BS)을 형성하도록 배치될 수 있고, 자석들 간의 간격이 점차 감소지거나, 증가되도록 배치될 수도 있다.However, the arrangement structure of the array magnets 120 is not necessarily limited to this, and the array magnets 120 may be arranged to form an unarranged blank section BS between the plurality of magnetic sections MS. The distance between the magnets may be gradually decreased or increased.
도 6을 참조하면, 자기 구동 장치(100)는 동작자석(110)을 중심으로 배열자석들(120)에 대향 배치되는 보조 배열자석들(140)을 더 포함할 수 있다.Referring to FIG. 6 , the magnetic drive device 100 may further include auxiliary array magnets 140 disposed opposite to the array magnets 120 with the operation magnet 110 as the center.
한편, 도 2 및 도 3을 참조하면, 제1 동작자석(111)과 제2 동작자석(112)은 자기적으로 상호작용하도록 구성될 수 있다. 그리고, 제1 배열자석들(121)과 제2 배열자석들(122)은 자기적으로 상호작용하도록 구성될 수 있다. Meanwhile, referring to FIGS. 2 and 3 , the first operation magnet 111 and the second operation magnet 112 may be configured to magnetically interact with each other. Also, the first array magnets 121 and the second array magnets 122 may be configured to magnetically interact.
더 자세하게는, 제1 동작자석(111)은 제1 배열자석들(121) 및 제2 동작자석(112)과 자기적으로 상호작용하고, 제2 동작자석(112)은 제1 동작자석(111) 및 제2 배열자석들(122)과 자기적으로 상호작용할 수 있다. 그리고, 제2 배열자석들(122)은 제2 동작자석(112) 및 제1 배열자석들(121)과 자기적으로 상호작용하고, 제1 배열자석들(121)은 제2 배열자석들(122) 및 제1 동작자석(111)과 자기적으로 상호작용할 수 있다.More specifically, the first operating magnet 111 magnetically interacts with the first array magnets 121 and the second operating magnet 112, and the second operating magnet 112 interacts with the first operating magnet 111. ) and the second array magnets 122 may interact magnetically. Further, the second array magnets 122 magnetically interact with the second operation magnets 112 and the first array magnets 121, and the first array magnets 121 are the second array magnets ( 122) and the first operating magnet 111 may interact magnetically.
즉, 제1 동작자석(111)의 극성의 위치와 제2 동작자석(112)의 극성의 위치는 서로 반대로 배치되고, 제1 배열자석들(121)의 극성의 위치와 제2 배열자석들(122)의 극성의 위치는 서로 반대로 배치될 수 있다.That is, the position of the polarity of the first operation magnet 111 and the position of the polarity of the second operation magnet 112 are opposite to each other, and the position of the polarity of the first array magnets 121 and the position of the second array magnets ( 122) may be disposed opposite to each other.
따라서, 제1 동작자석(111)에서 제2 동작자석(112)으로, 제2 동작자석(112)에서 제2 배열자석(122)으로, 제2 배열자석(122)에서 제1 배열자석(121)으로, 제1 배열자석(121)에서 제1 동작자석(111)으로 강력한 자기의 흐름이 연속적으로 형성된다. Therefore, from the first operating magnet 111 to the second operating magnet 112, from the second operating magnet 112 to the second array magnet 122, and from the second array magnet 122 to the first array magnet 121 ), a strong magnetic flow is continuously formed from the first array magnet 121 to the first operation magnet 111.
이에 따라, 도 4a에 도시된 바와 같이, 제1 동작자석(111)과 제1 배열자석(121) 간의 자기적인 상호작용이 시작되면, 상술한 연속적인 자기의 흐름이 발생되고, 이로 인해 도 4b 및 도 4c에 도시된 바와 같이, 제1 동작자석(111) 및 제2 동작자석(112)이 전방에 배치된 배열자석들(121, 122)과 자기적인 상호작용을 수행하면서 전방으로 이동될 수 있다.Accordingly, as shown in FIG. 4A, when the magnetic interaction between the first operating magnet 111 and the first array magnet 121 starts, the above-described continuous flow of magnetism is generated, and as a result, FIG. 4B And as shown in FIG. 4C, the first operation magnet 111 and the second operation magnet 112 can move forward while performing magnetic interaction with the array magnets 121 and 122 disposed in the front. there is.
이때, 제1 동작자석(111) 및 제1 배열자석(121) 간의 자기적인 상호작용과, 제2 동작자석(112) 및 제2 배열자석(122) 간의 자기적인 상호작용 시 더 큰 자기력이 작용하게 되어 동작자석들의 운동력이 증대될 수 있다.At this time, when the magnetic interaction between the first operation magnet 111 and the first array magnet 121 and the magnetic interaction between the second operation magnet 112 and the second array magnet 122, a greater magnetic force acts. As a result, the kinetic force of the motion magnets can be increased.
도 5를 참조하면, 배열자석들(120)은 제1 동작자석(111)을 중심으로 제1 배열자석들(121)에 대향 배치되고, 제1 동작자석(111)과 자기적으로 상호작용하도록 구성되는 제1 보조 배열자석들(141)과, 제2 동작자석(112)을 중심으로 제2 배열자석들(122)에 대향 배치되고, 제2 동작자석(112)과 자기적으로 상호작용하도록 구성되는 제2 보조 배열자석들(142)을 더 포함할 수 있다.Referring to FIG. 5 , the array magnets 120 are disposed to face the first array magnets 121 with the first operation magnet 111 as the center, and magnetically interact with the first operation magnet 111 . The first auxiliary array magnets 141 and the second operation magnets 112 are arranged to face the second array magnets 122, and magnetically interact with the second operation magnets 112. Second auxiliary array magnets 142 may be further included.
이때, 제1 배열자석들(121)과 제2 배열자석들(122)은 자기적으로 상호작용하도록 구성되고, 제1 보조 배열자석들(141)과 제2 보조 배열자석들(142)은 자기적으로 상호작용하도록 구성될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 are configured to interact magnetically, and the first auxiliary array magnets 141 and the second auxiliary array magnets 142 magnetically interact with each other. can be configured to interact with each other.
구체적으로, 제1 동작자석(111)은 제1 배열자석들(121) 및 제1 보조 배열자석들(141)과 자기적으로 상호작용하고, 제1 보조 배열자석들(141)은 제1 동작자석(111) 및 제2 보조 배열자석들(142)과 자기적으로 상호작용할 수 있다. 그리고, 제2 보조 배열자석들(142)은 제1 보조 배열자석들(141) 및 제2 동작자석(112)과 자기적으로 상호작용하고, 제2 동작자석(112)은 제2 보조 배열자석들(142) 및 제2 배열자석들(122)과 자기적으로 상호작용할 수 있다. 그리고, 제2 배열자석들(122)은 제2 동작자석(112) 및 제1 배열자석들(121)과 자기적으로 상호작용하고, 제1 배열자석들(121)은 제2 배열자석들(122) 및 제1 동작자석(111)과 자기적으로 상호작용할 수 있다.Specifically, the first operation magnet 111 magnetically interacts with the first array magnets 121 and the first auxiliary array magnets 141, and the first auxiliary array magnets 141 perform the first operation. It may magnetically interact with the magnet 111 and the second auxiliary array magnets 142 . And, the second auxiliary array magnets 142 magnetically interact with the first auxiliary array magnets 141 and the second operation magnet 112, and the second operation magnet 112 is the second auxiliary array magnet. magnetically interact with the magnets 142 and the second array magnets 122 . Further, the second array magnets 122 magnetically interact with the second operation magnets 112 and the first array magnets 121, and the first array magnets 121 are the second array magnets ( 122) and the first operating magnet 111 may interact magnetically.
즉, 제1 동작자석(111)의 극성의 위치와 제2 동작자석(112)의 극성의 위치는 서로 반대로 배치되고, 제1 배열자석들(121)의 극성의 위치와 제2 배열자석들(122)의 극성의 위치는 서로 반대로 배치되며, 제1 보조 배열자석들(141)의 극성의 위치와 제2 보조 배열자석들(141)의 극성의 위치는 서로 반대로 배치될 수 있다. That is, the position of the polarity of the first operation magnet 111 and the position of the polarity of the second operation magnet 112 are opposite to each other, and the position of the polarity of the first array magnets 121 and the position of the second array magnets ( 122) are disposed opposite to each other, and the polar positions of the first auxiliary array magnets 141 and the polar positions of the second auxiliary array magnets 141 may be opposite to each other.
따라서, 제1 동작자석(111)에서 제1 보조 배열자석(141)으로, 제1 보조 배열자석(141)에서 제2 보조 배열자석(142)으로, 제2 보조 배열자석(142)에서 제2 동작자석(112)으로, 제2 동작자석(112)에서 제2 배열자석(122)으로, 제2 배열자석(122)에서 제1 배열자석(121)으로, 제1 배열자석(121)에서 제1 동작자석(111)으로 강력한 자기의 흐름이 연속적으로 형성된다. 이에, 제1 동작자석(111)과 제2 동작자석(112)에 큰 자기력이 작용하게 되어 운동력이 증대될 수 있다.Therefore, from the first operation magnet 111 to the first auxiliary arrangement magnet 141, from the first auxiliary arrangement magnet 141 to the second auxiliary arrangement magnet 142, from the second auxiliary arrangement magnet 142 to the second From the operation magnet 112, from the second operation magnet 112 to the second array magnet 122, from the second array magnet 122 to the first array magnet 121, from the first array magnet 121 A strong magnetic flow is continuously formed with one operation magnet (111). Accordingly, a large magnetic force acts on the first operation magnet 111 and the second operation magnet 112, so that the kinetic force can be increased.
또한, 배열자석들(120)은 트랙(T)의 폭 방향(D3)을 따라 제1 보조 배열자석들(141)에 대향 배치되고, 제3 동작자석(113)과 자기적으로 상호작용하도록 구성되는 제3 보조 배열자석들(143)과, 트랙(T)의 폭 방향(D3)을 따라 제2 보조 배열자석들(142)에 대향 배치되고, 제4 동작자석(114)과 자기적으로 상호작용하도록 구성되는 제4 보조 배열자석들(144)을 더 포함할 수 있다.In addition, the array magnets 120 are disposed to face the first auxiliary array magnets 141 along the width direction D3 of the track T, and are configured to magnetically interact with the third operation magnets 113. and the third auxiliary array magnets 143, which are opposite to the second auxiliary array magnets 142 along the width direction D3 of the track T, and magnetically interact with the fourth operation magnet 114. It may further include fourth auxiliary array magnets 144 configured to operate.
이때, 제3 배열자석들(123)과 제4 배열자석들(124)은 자기적으로 상호작용하도록 구성되고, 제3 보조 배열자석들(143)과 제4 보조 배열자석들(144)은 자기적으로 상호작용하도록 구성될 수 있다.At this time, the third array magnets 123 and the fourth array magnets 124 are configured to interact magnetically, and the third auxiliary array magnets 143 and the fourth auxiliary array magnets 144 are configured to magnetically interact with each other. can be configured to interact with each other.
구체적으로, 제3 동작자석(113)은 제3 배열자석들(123) 및 제3 보조 배열자석들(143)과 자기적으로 상호작용하고, 제3 보조 배열자석들(143)은 제3 동작자석(113) 및 제4 보조 배열자석들(144)과 자기적으로 상호작용할 수 있다. 그리고, 제4 보조 배열자석들(144)은 제3 보조 배열자석들(143) 및 제4 동작자석(114)과 자기적으로 상호작용하고, 제4 동작자석(114)은 제4 보조 배열자석들(144) 및 제4 배열자석들(124)과 자기적으로 상호작용할 수 있다. 그리고, 제4 배열자석들(124)은 제4 동작자석(114) 및 제3 배열자석들(123)과 자기적으로 상호작용하고, 제3 배열자석들(123)은 제4 배열자석들(124) 및 제3 동작자석(113)과 자기적으로 상호작용할 수 있다.Specifically, the third operation magnet 113 magnetically interacts with the third arrangement magnets 123 and the third auxiliary arrangement magnets 143, and the third auxiliary arrangement magnets 143 perform the third operation. It may magnetically interact with the magnet 113 and the fourth auxiliary array magnets 144 . Also, the fourth auxiliary array magnets 144 magnetically interact with the third auxiliary array magnets 143 and the fourth operation magnet 114, and the fourth operation magnet 114 is the fourth auxiliary array magnet. 144 and the fourth array magnets 124 may interact magnetically. Also, the fourth array magnets 124 magnetically interact with the fourth operation magnets 114 and the third array magnets 123, and the third array magnets 123 interact with the fourth array magnets ( 124) and the third operating magnet 113 may interact magnetically.
이때, 제3 동작자석(113)의 극성의 위치와 제4 동작자석(114)의 극성의 위치는 서로 반대로 배치되고, 제3 배열자석들(123)의 극성의 위치와 제4 배열자석들(124)의 극성의 위치는 서로 반대로 배치되며, 제3 보조 배열자석들(143)의 극성의 위치와 제4 보조 배열자석들(144)의 극성의 위치는 서로 반대로 배치될 수 있다. At this time, the position of the polarity of the third operation magnet 113 and the position of the polarity of the fourth operation magnet 114 are opposite to each other, and the position of the polarity of the third array magnets 123 and the position of the fourth array magnets ( 124) may be disposed opposite to each other, and the polarity positions of the third auxiliary array magnets 143 and the polar positions of the fourth auxiliary array magnets 144 may be opposite to each other.
따라서, 제3 동작자석(113)에서 제3 보조 배열자석(143)으로, 제3 보조 배열자석(143)에서 제4 보조 배열자석(144)으로, 제4 보조 배열자석(144)에서 제4 동작자석(114)으로, 제4 동작자석(114)에서 제4 배열자석(124)으로, 제4 배열자석(124)에서 제3 배열자석(123)으로, 제3 배열자석(123)에서 제3 동작자석(113)으로 강력한 자기의 흐름이 연속적으로 형성된다. Therefore, from the third operation magnet 113 to the third auxiliary arrangement magnet 143, from the third auxiliary arrangement magnet 143 to the fourth auxiliary arrangement magnet 144, from the fourth auxiliary arrangement magnet 144 to the fourth To the operation magnet (114), from the fourth operation magnet (114) to the fourth array magnet (124), from the fourth array magnet (124) to the third array magnet (123), from the third array magnet (123) 3 A strong magnetic flow is continuously formed by the operating magnet (113).
즉, 본 발명은 트랙(T)의 폭 방향(D3)을 따라 일 측과 타 측에서 각각 강력한 자기의 흐름이 연속적으로 형성됨에 따라, 동작자석들(111, 112, 113, 114)의 운동력이 극대화될 수 있다.That is, in the present invention, as strong magnetic flows are continuously formed on one side and the other side along the width direction D3 of the track T, the kinetic force of the operation magnets 111, 112, 113, and 114 increases. can be maximized.
예를 들어, 제1 배열자석들(121)과, 제2 배열자석들(122)은 서로 다른 형상을 가지며, 제3 배열자석들(123)과 제4 배열자석들(124)은 서로 다른 형상을 가질 수 있다.For example, the first array magnets 121 and the second array magnets 122 have different shapes, and the third array magnets 123 and the fourth array magnets 124 have different shapes. can have
한편, 자기 구동 장치(100)는 트랙(T)을 통해 자기의 흐름을 형성하도록 구성될 수도 있다.On the other hand, the magnetic driving device 100 may be configured to form a magnetic flow through the track (T).
도 6을 참조하면, 자기 구동 장치(100)는 동작자석(110), 동작자석(110)과 자기적으로 상호작용하도록 구성되는 배열자석들(120), 동작자석(110)을 중심으로 배열자석들(120)에 대향 배치되어 동작자석(110)과 자기적으로 상호작용하도록 구성되는 보조 배열자석들(140) 및 배열자석들(120)과, 보조 배열자석들(140)을 지지하도록 구성되는 트랙(T)을 포함할 수 있다.Referring to FIG. 6 , the magnetic driving device 100 includes an operating magnet 110, array magnets 120 configured to magnetically interact with the operating magnet 110, and an array magnet centering on the operating magnet 110. Auxiliary array magnets 140 and array magnets 120 configured to face each other and magnetically interact with the operation magnets 110 and configured to support the auxiliary array magnets 140 It may include a track (T).
이때, 배열자석들(120)과 보조 배열자석들(140)은 자기적으로 상호작용하도록 구성될 수 있다.At this time, the array magnets 120 and the auxiliary array magnets 140 may be configured to interact magnetically.
즉, 배열자석들(120)과 보조 배열자석들(140)을 지지하는 트랙(T)은 배열자석들(120)이 지지되는 일부분과, 보조 배열자석들(140)이 지지되는 다른 일부분이 서로 연결되도록 구성될 수 있다.That is, in the track T supporting the array magnets 120 and the auxiliary array magnets 140, a part where the array magnets 120 are supported and another part where the auxiliary array magnets 140 are supported are mutually exclusive. It can be configured to be connected.
이에, 동작자석(110)과 배열자석들(120), 배열자석들(120)과 보조 배열자석들(140), 보조 배열자석들(140)과 동작자석(110)이 순차적으로 상호작용하여 자기의 흐름이 형성될 수 있다.Accordingly, the operation magnets 110 and the array magnets 120, the array magnets 120 and the auxiliary array magnets 140, and the auxiliary array magnets 140 and the operation magnets 110 interact sequentially, flow can be formed.
이때, 동작자석(120)은 자기의 흐름을 극대화할 수 있도록, 자기적으로 상호작용하도록 구성되는 주 동작자석(110A)과, 보조 동작자석(110B)을 포함할 수 있다.At this time, the operating magnet 120 may include a main operating magnet 110A and a secondary operating magnet 110B configured to magnetically interact with each other so as to maximize the magnetic flow.
주 동작자석(110A)은 배열자석들(120)과 자기적으로 상호작용하고, 보조 동작자석(110B)은 보조 배열자석들(140)과 자기적으로 상호작용할 수 있다.The main operating magnet 110A may magnetically interact with the array magnets 120 , and the auxiliary operating magnet 110B may magnetically interact with the auxiliary array magnets 140 .
따라서, 주 동작자석(110A)과 배열자석들(120), 배열자석들(120)과 보조 배열자석들(140), 보조 배열자석들(140)과 보조 동작자석(110B), 보조 동작자석(110B)과 주 동작자석(110A)이 순차적으로 상호작용하여 자기의 흐름이 형성될 수 있다.Therefore, the main operation magnet 110A and the array magnets 120, the array magnets 120 and the auxiliary array magnets 140, the auxiliary array magnets 140 and the auxiliary operation magnets 110B, and the auxiliary operation magnets ( 110B) and the main operating magnet 110A may sequentially interact to form a magnetic flow.
한편, 동작자석(110), 배열자석들(120) 및 보조 배열자석들(140)은 트랙(T)의 폭 방향(D3)을 따라 복수로 배치될 수 있다.Meanwhile, the operation magnet 110, the array magnets 120, and the auxiliary array magnets 140 may be disposed in plurality along the width direction D3 of the track T.
이에, 강력한 자기의 흐름을 형성하여 구동력을 극대화할 수 있다.Thus, it is possible to maximize the driving force by forming a strong magnetic flow.
이처럼, 본 발명의 실시예에 따르면, 영구자석 간의 인력 및 척력을 이용하여 운동에너지를 발생시킴으로써, 환경오염의 발생을 최소화하고, 높은 에너지 효율의 구동력을 얻을 수 있다.As such, according to an embodiment of the present invention, by generating kinetic energy using attractive and repulsive forces between permanent magnets, it is possible to minimize the occurrence of environmental pollution and obtain a driving force with high energy efficiency.
도 7을 참조하면, 자기 구동 장치(100)는 코일(150)을 더 포함할 수 있다.Referring to FIG. 7 , the magnetic drive device 100 may further include a coil 150 .
코일(150)은 트랙(T)의 폭 방향(D3)을 따라 제1 동작자석(111)과 제2 동작자석(112) 사이에 배치될 수 있다.The coil 150 may be disposed between the first and second operation magnets 111 and 112 along the width direction D3 of the track T.
코일(150)은 전류가 인가되면 자화되어 제1 동작자석(111)과 제2 동작자석(112) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The coil 150 may be magnetized when current is applied to control the flow of magnetism between the first and second operation magnets 111 and 112 .
도 7 내지 도 9를 참조하면, 코일(150)은 전류가 인가되면 제1 상태로 자화되어 제1 동작자석(111)과 제2 동작자석(112) 사이의 자기의 흐름을 증대시킬 수 있다.Referring to FIGS. 7 to 9 , when current is applied to the coil 150 , the coil 150 is magnetized in a first state to increase the flow of magnetism between the first and second operation magnets 111 and 112 .
예를 들어, 제1 상태는 제1 동작자석(111)을 향하는 코일(150)의 일부분이 제1 동작자석(111)과 자기적으로 상호작용하고, 제2 동작자석(112)을 향하는 코일(150)의 다른 일부분이 제2 동작자석(112)과 자기적으로 상호작용할 수 있는 상태를 의미할 수 있다. 도면에서는 제1 동작자석(111)을 향하는 코일(150)의 일부분이 S극으로 자화되고, 제2 동작자석(112)을 향하는 코일(150)의 다른 일부분이 N극으로 자화된 것으로 도시되어 있으나, 코일(150)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 제1 동작자석(111)과 제2 동작자석(112)의 극성 및 착자된 방향에 따라 변경될 수도 있다.For example, in the first state, a part of the coil 150 toward the first operation magnet 111 magnetically interacts with the first operation magnet 111, and the coil toward the second operation magnet 112 ( 150) may mean a state in which another part can magnetically interact with the second operation magnet 112. In the drawing, it is shown that a part of the coil 150 facing the first operating magnet 111 is magnetized to the S pole, and the other part of the coil 150 facing the second operating magnet 112 is magnetized to the N pole. , The direction of the polarity of the coil 150 is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the first and second operation magnets 111 and 112.
따라서, 코일(150)이 제1 상태로 자화되면, 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 간의 연속적인 자기의 흐름에, 전류에 의한 자기의 흐름이 더해지게 되고, 이를 통해 강력한 자기의 흐름이 형성되어 이동체(V)의 이동속도가 증가하게 된다.Therefore, when the coil 150 is magnetized in the first state, the continuous magnetic field between the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111 A flow of magnetism by current is added to the flow, and through this, a strong magnetic flow is formed to increase the moving speed of the moving body (V).
즉, 도 8a에 도시된 바와 같이, 코일(150)이 제1 상태로 자화되고 제2 동작자석(112)과 제2 배열자석(122) 간의 자기적인 상호작용이 시작되면, 도 8b 및 도 8c, 도 9에 도시된 바와 같이, 동작자석들(111, 112)과 배열자석들(121, 122) 사이에 큰 자기의 흐름이 형성되어 전방으로 이동중인 동작자석들(111, 112)의 이동속도가 증가될 수 있다.That is, as shown in FIG. 8A, when the coil 150 is magnetized in the first state and the magnetic interaction between the second operation magnet 112 and the second array magnet 122 starts, FIGS. 8B and 8C As shown in FIG. 9, a large magnetic flow is formed between the operation magnets 111 and 112 and the array magnets 121 and 122, and the moving speed of the operation magnets 111 and 112 moving forward can be increased.
이때, 제1 배열자석(121)들과 제2 배열자석(122)들은 트랙(T)의 길이방향(D1)을 따라 교번 배치되고, 제1 동작자석(111)과 제2 동작자석(112)은 트랙(T)의 폭방향(D3)을 따라 서로 평행하게 배치될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 are alternately disposed along the longitudinal direction D1 of the track T, and the first operation magnets 111 and the second operation magnets 112 may be arranged parallel to each other along the width direction D3 of the track T.
도 10 내지 도 12를 참조하면, 코일(150)은 전류의 공급이 차단되면 비자화되어(unmagnetized) 제1 동작자석(111)과 제2 동작자석(112) 사이의 자기의 흐름을 유지시킬 수 있다.Referring to FIGS. 10 to 12 , the coil 150 is unmagnetized when the supply of current is cut off to maintain the flow of magnetism between the first and second operating magnets 111 and 112 . there is.
즉, 비자화된 코일(150)은 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 간의 자기적인 흐름에 영향을 주지 않고, 이에 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 사이에는 영구자석들 간의 자기적인 상호작용으로 인해 발생되는 자기의 흐름만이 유지될 수 있다.That is, the non-magnetized coil 150 does not affect the magnetic flow between the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111. Therefore, between the second operating magnets 112, the second array magnets 122, the first array magnets 121, and the first operating magnets 111, the magnetic flow generated due to the magnetic interaction between the permanent magnets only can be maintained.
따라서, 코일(150)이 비자화되면, 영구자석들끼리의 자기의 흐름으로 인해 이동중인 이동체(V)의 이동속도가 더 증가하거나, 더 감소되지 않고, 일정하게 유지될 수 있다.Therefore, when the coil 150 is demagnetized, the moving speed of the moving object V does not further increase or decrease due to the flow of magnetism between the permanent magnets, and can be maintained constant.
즉, 도 11a에 도시된 바와 같이, 코일(150)이 비자화되고 제2 동작자석(112)과 제2 배열자석(122) 간의 자기적인 상호작용이 시작되면, 도 11b 및 도 11c, 도 12에 도시된 바와 같이, 동작자석들(111, 112)과 배열자석들(121, 122)끼리의 자기의 흐름이 형성되어 전방으로 이동중인 동작자석들(111, 112)의 이동속도가 일정하게 유지될 수 있다.That is, as shown in FIG. 11A, when the coil 150 is demagnetized and the magnetic interaction between the second operation magnet 112 and the second array magnet 122 starts, FIGS. 11B, 11C, and 12 As shown in , a magnetic flow is formed between the operation magnets 111 and 112 and the array magnets 121 and 122, so that the moving speed of the operation magnets 111 and 112 moving forward is kept constant. It can be.
이때, 제1 배열자석(121)들과 제2 배열자석(122)들은 트랙(T)의 길이방향(D1)을 따라 교번 배치되고, 제1 동작자석(111)과 제2 동작자석(112)은 트랙(T)의 폭방향(D3)을 따라 서로 평행하게 배치될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 are alternately disposed along the longitudinal direction D1 of the track T, and the first operation magnets 111 and the second operation magnets 112 may be arranged parallel to each other along the width direction D3 of the track T.
도 13 내지 도 15를 참조하면, 코일(150)은 전류가 인가되면 제2 상태로 자화되어 제1 동작자석(111)과 제2 동작자석(112) 사이의 자기의 흐름을 차단할 수 있다.Referring to FIGS. 13 to 15 , when a current is applied, the coil 150 is magnetized in a second state and blocks the flow of magnetism between the first and second operation magnets 111 and 112 .
예를 들어, 제2 상태는 제1 동작자석(111)을 향하는 코일(150)의 일부분이 제1 동작자석(111)과 자기적으로 상호작용할 수 없고, 제2 동작자석(112)을 향하는 코일(150)의 다른 일부분이 제2 동작자석(112)과 자기적으로 상호작용할 수 없는 상태를 의미할 수 있다. 여기서, 자기적으로 상호작용할 수 없는 상태는 동일 극성끼리의 작용으로 인해 전류의 흐름이 발생할 수 없는 상태를 의미한다. 도면에서는 제1 동작자석(111)을 향하는 코일(150)의 일부분이 N극으로 자화되고, 제2 동작자석(112)을 향하는 코일(150)의 다른 일부분이 S극으로 자화된 것으로 도시되어 있으나, 코일(150)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 제1 동작자석(111)과 제2 동작자석(112)의 극성 및 착자된 방향에 따라 변경될 수도 있다.For example, in the second state, a part of the coil 150 facing the first operating magnet 111 cannot magnetically interact with the first operating magnet 111, and the coil facing the second operating magnet 112 Another part of 150 may mean a state in which magnetic interaction with the second operation magnet 112 is impossible. Here, the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities. In the drawing, it is shown that a part of the coil 150 facing the first operating magnet 111 is magnetized to the N pole and the other part of the coil 150 facing the second operating magnet 112 is magnetized to the S pole. , The direction of the polarity of the coil 150 is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the first and second operation magnets 111 and 112.
따라서, 코일(150)이 제2 상태로 자화되면, 제1 동작자석(111)과 제2 동작자석(112) 간의 자기의 흐름이 차단되고, 이에 제2 동작자석(112)과 제2 배열자석(122) 간의 자기의 흐름과, 제1 배열자석(121)과 제1 동작자석(111) 간의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 된다.Therefore, when the coil 150 is magnetized in the second state, the flow of magnetism between the first operating magnet 111 and the second operating magnet 112 is blocked, and thus the second operating magnet 112 and the second array magnet Only the flow of magnetism between the 122 and the flow of magnetism between the first array magnet 121 and the first operation magnet 111 is generated, so that the moving speed of the moving body V decreases.
즉, 도 14a에 도시된 바와 같이, 코일(150)이 제2 상태로 자화되고 제2 동작자석(112)과 제2 배열자석(122) 간의 자기적인 상호작용이 시작되면, 도 14b 및 도 14c, 도 15에 도시된 바와 같이, 제1 동작자석(111)과 제2 동작자석(112) 간의 자기의 흐름이 차단되고, 제2 동작자석(112)과 제2 배열자석(122) 간의 자기의 흐름 및 제1 배열자석(121)과 제1 동작자석(111) 간의 자기의 흐름만이 발생되어 전방으로 이동중인 동작자석들(111, 112)의 이동속도가 감소될 수 있다.That is, as shown in FIG. 14A, when the coil 150 is magnetized in the second state and the magnetic interaction between the second operation magnet 112 and the second array magnet 122 starts, FIGS. 14B and 14C 15, the flow of magnetism between the first operating magnet 111 and the second operating magnet 112 is blocked, and the magnetic flow between the second operating magnet 112 and the second array magnet 122 is blocked. Only flow and magnetic flow between the first array magnet 121 and the first operation magnet 111 are generated, so that the movement speed of the operation magnets 111 and 112 moving forward can be reduced.
이때, 제1 배열자석(121)들과 제2 배열자석(122)들은 트랙(T)의 길이방향(D1)을 따라 교번 배치되고, 제1 동작자석(111)과 제2 동작자석(112)은 트랙(T)의 폭방향(D3)을 따라 서로 평행하게 배치될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 are alternately disposed along the longitudinal direction D1 of the track T, and the first operation magnets 111 and the second operation magnets 112 may be arranged parallel to each other along the width direction D3 of the track T.
도 16을 참조하면, 제1 동작자석(111)과 제2 동작자석(112)은 이동체(V)의 길이방향(D1)을 따라 복수로 배치될 수 있다.Referring to FIG. 16 , a plurality of first operation magnets 111 and second operation magnets 112 may be disposed along the longitudinal direction D1 of the movable body V.
또한, 제1 동작자석(111)과 제2 동작자석(112) 사이에 배치되는 코일(150)은 이동체(V)의 길이방향(D1)을 따라 복수로 배치될 수 있다.In addition, a plurality of coils 150 disposed between the first operating magnet 111 and the second operating magnet 112 may be disposed along the longitudinal direction D1 of the moving body V.
이때, 복수의 코일(150)은 이동체(V)의 길이방향(D1)을 따라 복수로 배치된 한 쌍의 동작자석들(제1 동작자석(111)과 제2 동작자석(112))에 교번 배치될 수 있다. At this time, the plurality of coils 150 alternate with a pair of operation magnets (first operation magnet 111 and second operation magnet 112) arranged in plurality along the longitudinal direction D1 of the movable body V. can be placed.
이에, 한 쌍의 동작자석들(111, 112) 중 일부는 코일(150)에 의해 영구자석들 간에 발생되는 자기의 흐름보다 더 큰 자기의 흐름을 발생시키고, 다른 일부는 영구자석들 간의 자기의 흐름을 발생시킬 수 있다.Accordingly, some of the pair of operating magnets 111 and 112 generate a magnetic flow greater than the magnetic flow generated between the permanent magnets by the coil 150, and the other part generates a magnetic flow between the permanent magnets. flow can occur.
한편, 복수의 코일(150)은 도 17에 도시된 바와 같이, 이동체(V)의 길이방향(D1)을 따라 복수로 배치된 한 쌍의 동작자석들(제1 동작자석(111)과 제2 동작자석(112))에 모두 대응되도록 연속 배치될 수도 있다.Meanwhile, as shown in FIG. 17, the plurality of coils 150 include a pair of operation magnets (first operation magnets 111 and second operation magnets 111) arranged in plurality along the longitudinal direction D1 of the moving body V. The operation magnets 112 may be continuously arranged to correspond to all of them.
이에, 모든 한 쌍의 동작자석들(111, 112)은 코일(150)에 의해 영구자석들 간에 발생되는 자기의 흐름보다 더 큰 자기의 흐름을 발생시킬 수 있다.Thus, all the pair of operating magnets 111 and 112 can generate a magnetic flow greater than the magnetic flow generated by the coil 150 between the permanent magnets.
도 18을 참조하면, 코일(150)은 이동체(V)가 이동되는 방향(D1)에 대한 수직방향(D2)을 따라 주 동작자석(110A)과 보조 동작자석(110B) 사이에 배치될 수 있다.Referring to FIG. 18 , the coil 150 may be disposed between the main magnet 110A and the auxiliary magnet 110B along a direction D2 perpendicular to the direction D1 in which the movable body V moves. .
코일(150)은 전류가 인가되면 자화되어 주 동작자석(110A)과 보조 동작자석(110B) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The coil 150 may be magnetized when current is applied to control the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
도 18 및 도 19를 참조하면, 코일(150)은 전류가 인가되면 제1 상태로 자화되어 주 동작자석(110A)과 보조 동작자석(110B) 사이의 자기의 흐름을 증대시킬 수 있다.Referring to FIGS. 18 and 19 , when a current is applied, the coil 150 is magnetized in a first state to increase the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
예를 들어, 제1 상태는 주 동작자석(110A)을 향하는 코일(150)의 일부분이 주 동작자석(110A)과 자기적으로 상호작용하고, 보조 동작자석(110B)을 향하는 코일(150)의 다른 일부분이 보조 동작자석(110B)과 자기적으로 상호작용할 수 있는 상태를 의미할 수 있다. 도면에서는 주 동작자석(110A)을 향하는 코일(150)의 일부분이 N극으로 자화되고, 보조 동작자석(110B)을 향하는 코일(150)의 다른 일부분이 S극으로 자화된 것으로 도시되어 있으나, 코일(150)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 주 동작자석(110A)과 보조 동작자석(110B)의 극성 및 착자된 방향에 따라 변경될 수도 있다.For example, in the first state, a portion of the coil 150 toward the main magnet 110A magnetically interacts with the main magnet 110A, and a portion of the coil 150 toward the auxiliary magnet 110B interacts with the main magnet 110A. It may mean a state in which another part can magnetically interact with the auxiliary operating magnet 110B. In the drawing, it is shown that a part of the coil 150 facing the main operating magnet 110A is magnetized to the N pole and another part of the coil 150 facing the auxiliary operating magnet 110B is magnetized to the S pole. The direction of the polarity of 150 is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the main operating magnet 110A and the auxiliary operating magnet 110B.
따라서, 코일(150)이 제1 상태로 자화되면, 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 간의 연속적인 자기의 흐름에, 전류에 의한 자기의 흐름이 더해지게 되고, 이를 통해 강력한 자기의 흐름이 형성되어 이동체(V)의 이동속도가 증가하게 된다.Therefore, when the coil 150 is magnetized in the first state, the continuous magnetic flow between the main operating magnet 110A, the array magnet 120, the auxiliary array magnet 140 and the auxiliary operating magnet 110B, and the current A magnetic flow is added, and through this, a strong magnetic flow is formed to increase the moving speed of the moving body (V).
즉, 코일(150)이 제1 상태로 자화되고 주 동작자석(110A)과 배열자석(120) 간의 자기적인 상호작용이 시작되면, 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 사이에 큰 자기의 흐름이 형성되어 전방으로 이동중인 이동체(V)의 이동속도가 증가될 수 있다.That is, when the coil 150 is magnetized in the first state and the magnetic interaction between the main operation magnet 110A and the array magnet 120 starts, the main operation magnet 110A, the array magnet 120, and the auxiliary array magnet A large flow of magnetism is formed between the 140 and the auxiliary operating magnet 110B, so that the moving speed of the moving object V moving forward can be increased.
이때, 도 19에 도시된 바와 같이, 주 동작자석(110A)과 보조 동작자석(110B)은 이동체(V)의 이동방향(D1)을 따라 복수로 배치되고, 배열자석들(120)과 보조 배열자석들(140)은 트랙(T)의 길이방향(D1)을 따라 교번 배치될 수 있다.At this time, as shown in FIG. 19, the main operating magnet 110A and the auxiliary operating magnet 110B are disposed in plurality along the moving direction D1 of the moving body V, and the array magnets 120 and the auxiliary array The magnets 140 may be alternately arranged along the longitudinal direction D1 of the track T.
도 20을 참조하면, 코일(150)은 전류의 공급이 차단되면 비자화되어 주 동작자석(110A)과 보조 동작자석(110B) 사이의 자기의 흐름을 유지시킬 수 있다.Referring to FIG. 20 , when the supply of current is cut off, the coil 150 is demagnetized to maintain the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
즉, 비자화된 코일(150)은 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 간의 자기적인 흐름에 영향을 주지 않고, 이에 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 사이에는 영구자석들 간의 자기적인 상호작용으로 인해 발생되는 자기의 흐름만이 유지될 수 있다.That is, the non-magnetized coil 150 does not affect the magnetic flow between the main operating magnet 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operating magnet 110B, and thus the main operating magnet Only the magnetic flow generated by the magnetic interaction between the permanent magnets can be maintained between the 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operation magnet 110B.
따라서, 코일(150)이 비자화되면, 영구자석들끼리의 자기의 흐름으로 인해 이동중인 이동체(V)의 이동속도가 더 증가하거나, 더 감소되지 않고, 일정하게 유지될 수 있다.Therefore, when the coil 150 is demagnetized, the moving speed of the moving object V does not further increase or decrease due to the flow of magnetism between the permanent magnets, and can be maintained constant.
즉, 코일(150)이 비자화되고 주 동작자석(110A)과 배열자석(120) 간의 자기적인 상호작용이 시작되면, 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 간의 자기의 흐름만이 형성되어 전방으로 이동중인 이동체(V)의 이동속도가 일정하게 유지될 수 있다.That is, when the coil 150 is demagnetized and the magnetic interaction between the main operation magnet 110A and the array magnet 120 starts, the main operation magnet 110A, the array magnet 120, and the auxiliary array magnet 140 And only the flow of magnetism between the auxiliary operating magnets 110B is formed so that the moving speed of the moving object V moving forward can be maintained constant.
도 21을 참조하면, 코일(150)은 전류가 인가되면 제2 상태로 자화되어 주 동작자석(110A)과 보조 동작자석(110B) 사이의 자기의 흐름을 차단할 수 있다.Referring to FIG. 21 , when a current is applied, the coil 150 is magnetized in a second state and blocks the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B.
예를 들어, 제2 상태는 주 동작자석(110A)을 향하는 코일(150)의 일부분이 주 동작자석(110A)과 자기적으로 상호작용할 수 없고, 보조 동작자석(110B)을 향하는 코일(150)의 다른 일부분이 보조 동작자석(110B)과 자기적으로 상호작용할 수 없는 상태를 의미할 수 있다. 여기서, 자기적으로 상호작용할 수 없는 상태는 동일 극성끼리의 작용으로 인해 전류의 흐름이 발생할 수 없는 상태를 의미한다. 도면에서는 주 동작자석(110A)을 향하는 코일(150)의 일부분이 S극으로 자화되고, 보조 동작자석(110B)을 향하는 코일(150)의 다른 일부분이 N극으로 자화된 것으로 도시되어 있으나, 코일(150)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 제1 동작자석(111)과 제2 동작자석(112)의 극성 및 착자된 방향에 따라 변경될 수도 있다.For example, in the second state, a part of the coil 150 facing the main operating magnet 110A cannot magnetically interact with the main operating magnet 110A, and the coil 150 facing the auxiliary operating magnet 110B Another part of may mean a state in which magnetically interacting with the auxiliary operating magnet (110B) is not possible. Here, the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities. In the drawing, a portion of the coil 150 toward the main operating magnet 110A is magnetized to the S pole, and another portion of the coil 150 toward the auxiliary operating magnet 110B is magnetized to the N pole. The direction of the polarity of (150) is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the first and second operation magnets 111 and 112.
따라서, 코일(150)이 제2 상태로 자화되면, 주 동작자석(110A)과 보조 동작자석(110B) 간의 자기의 흐름이 차단되고, 이에 주 동작자석(110A)과 배열자석(120) 간의 자기의 흐름과, 보조 동작자석(110B)과 보조 배열자석(140) 간의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 된다.Therefore, when the coil 150 is magnetized in the second state, the flow of magnetism between the main operating magnet 110A and the auxiliary operating magnet 110B is blocked, and thus the magnetic flow between the main operating magnet 110A and the array magnet 120 is blocked. Only the flow of the magnetic field between the auxiliary operating magnet 110B and the auxiliary array magnet 140 is generated, so that the moving speed of the moving object V decreases.
즉, 코일(150)이 제2 상태로 자화되고 주 동작자석(110A)과 배열자석(120) 간의 자기적인 상호작용이 시작되면, 주 동작자석(110A)과 보조 동작자석(110B) 간의 자기의 흐름이 차단되고, 주 동작자석(110A)과 배열자석(120) 간의 자기의 흐름 및 보조 동작자석(110B)과 보조 배열자석(140) 간의 자기의 흐름만이 발생되어 전방으로 이동중인 동작자석들(110A, 110B)의 이동속도가 감소될 수 있다.That is, when the coil 150 is magnetized in the second state and the magnetic interaction between the main operating magnet 110A and the array magnet 120 starts, the magnetic interaction between the main operating magnet 110A and the auxiliary operating magnet 110B begins. The flow is blocked, and only the magnetic flow between the main operating magnet 110A and the array magnet 120 and the magnetic flow between the auxiliary operating magnet 110B and the auxiliary array magnet 140 are generated, so that the operating magnets moving forward The moving speed of (110A, 110B) may be reduced.
도 22를 참조하면, 코일(150)은 트랙(T)에 설치되어 배열자석(120)과 보조 배열자석(140) 사이에 배치될 수도 있다.Referring to FIG. 22 , the coil 150 may be installed on the track T and disposed between the array magnets 120 and the auxiliary array magnets 140 .
코일(150)은 전류가 인가되면 자화되어 배열자석(120)과 보조 배열자석(140) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The coil 150 may be magnetized when current is applied to control the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140 .
도 22 및 도 23을 참조하면, 코일(150)은 전류가 인가되면 제1 상태로 자화되어 배열자석(120)과 보조 배열자석(140) 사이의 자기의 흐름을 증대시킬 수 있다.Referring to FIGS. 22 and 23 , when current is applied to the coil 150, the coil 150 is magnetized in a first state to increase the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140.
예를 들어, 제1 상태는 배열자석(120)을 향하는 코일(150)의 일부분이 배열자석(120)과 자기적으로 상호작용하고, 보조 배열자석(140)을 향하는 코일(150)의 다른 일부분이 보조 배열자석(140)과 자기적으로 상호작용할 수 있는 상태를 의미할 수 있다. 도면에서는 배열자석(120)을 향하는 코일(150)의 일부분이 S극으로 자화되고, 보조 배열자석(140)을 향하는 코일(150)의 다른 일부분이 N극으로 자화된 것으로 도시되어 있으나, 코일(150)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 배열자석(120)과 보조 배열자석(140)의 극성 및 착자된 방향에 따라 변경될 수도 있다.For example, in the first state, a portion of the coil 150 toward the array magnet 120 magnetically interacts with the alignment magnet 120, and another portion of the coil 150 toward the auxiliary alignment magnet 140. This may mean a state capable of magnetically interacting with the auxiliary array magnets 140. In the drawing, a portion of the coil 150 toward the array magnet 120 is magnetized to the S pole, and another portion of the coil 150 toward the auxiliary array magnet 140 is magnetized to the N pole, but the coil ( The direction of the polarity of 150) is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the array magnets 120 and the auxiliary array magnets 140.
따라서, 코일(150)이 제1 상태로 자화되면, 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 간의 연속적인 자기의 흐름에, 전류에 의한 자기의 흐름이 더해지게 되고, 이를 통해 강력한 자기의 흐름이 형성되어 이동체(V)의 이동속도가 증가하게 된다.Therefore, when the coil 150 is magnetized in the first state, the continuous magnetic flow between the main operating magnet 110A, the array magnet 120, the auxiliary array magnet 140 and the auxiliary operating magnet 110B, and the current A magnetic flow is added, and through this, a strong magnetic flow is formed to increase the moving speed of the moving body (V).
즉, 코일(150)이 제1 상태로 자화되고 주 동작자석(110A)과 배열자석(120) 간의 자기적인 상호작용이 시작되면, 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 사이에 큰 자기의 흐름이 형성되어 전방으로 이동중인 이동체(V)의 이동속도가 증가될 수 있다.That is, when the coil 150 is magnetized in the first state and the magnetic interaction between the main operation magnet 110A and the array magnet 120 starts, the main operation magnet 110A, the array magnet 120, and the auxiliary array magnet A large flow of magnetism is formed between the 140 and the auxiliary operating magnet 110B, so that the moving speed of the moving object V moving forward can be increased.
이때, 도 23에 도시된 바와 같이, 주 동작자석(110A)과 보조 동작자석(110B)은 이동체(V)의 이동방향(D1)을 따라 교번 배치될 수 있다. 그리고, 트랙(T)은 이동체(V)의 이동방향(D1)을 따라 복수로 배치되고, 복수의 트랙(T)에는 각각 배열자석들(120)과 보조 배열자석(140)들이 이동체(V)의 이동방향(D1)을 따라 교번 배치될 수 있다. At this time, as shown in FIG. 23 , the main operation magnet 110A and the auxiliary operation magnet 110B may be alternately arranged along the moving direction D1 of the moving body V. In addition, a plurality of tracks T are disposed along the moving direction D1 of the moving body V, and the plurality of tracks T include array magnets 120 and auxiliary array magnets 140 respectively. It may be arranged alternately along the moving direction (D1) of.
배열자석들과 보조 배열자석(140)들은 트랙(T)의 길이방향(D1)을 따라 교번 배치될 수 있다.The array magnets and the auxiliary array magnets 140 may be alternately disposed along the longitudinal direction D1 of the track T.
도 24를 참조하면, 코일(150)은 전류의 공급이 차단되면 비자화되어 배열자석(120)과 보조 배열자석(140) 사이의 자기의 흐름을 유지시킬 수 있다.Referring to FIG. 24 , when supply of current is cut off, the coil 150 is demagnetized and can maintain the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140 .
즉, 비자화된 코일(150)은 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 간의 자기적인 흐름에 영향을 주지 않고, 이에 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 사이에는 영구자석들 간의 자기적인 상호작용으로 인해 발생되는 자기의 흐름만이 유지될 수 있다.That is, the non-magnetized coil 150 does not affect the magnetic flow between the main operating magnet 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operating magnet 110B, and thus the main operating magnet Only the magnetic flow generated by the magnetic interaction between the permanent magnets can be maintained between the 110A, the array magnet 120, the auxiliary array magnet 140, and the auxiliary operation magnet 110B.
따라서, 코일(150)이 비자화되면, 영구자석들끼리의 자기의 흐름으로 인해 이동중인 이동체(V)의 이동속도가 더 증가하거나, 더 감소되지 않고, 일정하게 유지될 수 있다.Therefore, when the coil 150 is demagnetized, the moving speed of the moving object V does not further increase or decrease due to the flow of magnetism between the permanent magnets, and can be maintained constant.
즉, 코일(150)이 비자화되고 주 동작자석(110A)과 배열자석(120) 간의 자기적인 상호작용이 시작되면, 주 동작자석(110A), 배열자석(120), 보조 배열자석(140) 및 보조 동작자석(110B) 간의 자기의 흐름만이 형성되어 전방으로 이동중인 이동체(V)의 이동속도가 일정하게 유지될 수 있다.That is, when the coil 150 is demagnetized and the magnetic interaction between the main operation magnet 110A and the array magnet 120 starts, the main operation magnet 110A, the array magnet 120, and the auxiliary array magnet 140 And only the flow of magnetism between the auxiliary operating magnets 110B is formed so that the moving speed of the moving object V moving forward can be maintained constant.
도 25를 참조하면, 코일(150)은 전류가 인가되면 제2 상태로 자화되어 배열자석(120)과 보조 배열자석(140) 사이의 자기의 흐름을 차단할 수 있다.Referring to FIG. 25 , when a current is applied, the coil 150 is magnetized in a second state and can block the flow of magnetism between the array magnet 120 and the auxiliary array magnet 140 .
예를 들어, 제2 상태는 배열자석(120)을 향하는 코일(150)의 일부분이 배열자석(120)과 자기적으로 상호작용할 수 없고, 보조 배열자석(140)을 향하는 코일(150)의 다른 일부분이 보조 배열자석(140)과 자기적으로 상호작용할 수 없는 상태를 의미할 수 있다. 여기서, 자기적으로 상호작용할 수 없는 상태는 동일 극성끼리의 작용으로 인해 전류의 흐름이 발생할 수 없는 상태를 의미한다. 도면에서는 배열자석(120)을 향하는 코일(150)의 일부분이 N극으로 자화되고, 보조 배열자석(140)을 향하는 코일(150)의 다른 일부분이 S극으로 자화된 것으로 도시되어 있으나, 코일(150)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 배열자석(120)과 보조 배열자석(140)의 극성 및 착자된 방향에 따라 변경될 수도 있다.For example, in the second state, the part of the coil 150 facing the array magnet 120 cannot magnetically interact with the array magnet 120, and the other part of the coil 150 facing the auxiliary array magnet 140 This may mean a state in which a part cannot magnetically interact with the auxiliary array magnet 140 . Here, the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities. In the drawing, it is shown that a part of the coil 150 facing the array magnet 120 is magnetized to the N pole and the other part of the coil 150 facing the auxiliary array magnet 140 is magnetized to the S pole, but the coil ( The direction of the polarity of 150) is not necessarily limited thereto and may be changed according to the polarities and magnetized directions of the array magnets 120 and the auxiliary array magnets 140.
따라서, 코일(150)이 제2 상태로 자화되면, 배열자석(120)과 보조 배열자석(140) 간의 자기의 흐름이 차단되고, 이에 주 동작자석(110A)과 배열자석(120) 간의 자기의 흐름과, 보조 동작자석(110B)과 보조 배열자석(140) 간의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 된다.Therefore, when the coil 150 is magnetized in the second state, the flow of magnetism between the array magnets 120 and the auxiliary array magnets 140 is blocked, and therefore, the flow of magnetism between the main operation magnet 110A and the array magnets 120 is blocked. Only the current and the magnetic flow between the auxiliary operation magnet 110B and the auxiliary array magnet 140 are generated, so that the moving speed of the moving body V decreases.
즉, 코일(150)이 제2 상태로 자화되고 주 동작자석(110A)과 배열자석(120) 간의 자기적인 상호작용이 시작되면, 배열자석(120)과 보조 배열자석(140) 간의 자기의 흐름이 차단되고, 주 동작자석(110A)과 배열자석(120) 간의 자기의 흐름 및 보조 동작자석(110B)과 보조 배열자석(140) 간의 자기의 흐름만이 발생되어 전방으로 이동중인 이동체(V)의 이동속도가 감소될 수 있다.That is, when the coil 150 is magnetized in the second state and the magnetic interaction between the main operation magnet 110A and the array magnet 120 starts, the magnetic flow between the array magnet 120 and the auxiliary array magnet 140 is blocked, and only the magnetic flow between the main operating magnet 110A and the array magnet 120 and the magnetic flow between the auxiliary operating magnet 110B and the auxiliary array magnet 140 are generated, so that the moving body V moving forward movement speed may be reduced.
도 26 및 도 27을 참조하면, 자기 구동 장치(100)는 자기 제어 유닛(160)을 더 포함할 수 있다.Referring to FIGS. 26 and 27 , the magnetic drive device 100 may further include a magnetic control unit 160 .
자기 제어 유닛(160)은 제1 배열자석(121)과 제2 배열자석(122) 사이에 배치되고, 자기력을 발생시켜 제1 배열자석(121)과 제2 배열자석(122) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The magnetic control unit 160 is disposed between the first array magnets 121 and the second array magnets 122, and generates magnetic force to control the magnetic field between the first array magnets 121 and the second array magnets 122. It can be configured to control the flow.
자기 제어 유닛(160)은 폴피스 조립체(161), 회전자석(162), 제1 코일(163) 및 제2 코일(164)을 포함할 수 있다.The magnetic control unit 160 may include a pole piece assembly 161 , a rotating magnet 162 , a first coil 163 and a second coil 164 .
폴피스 조립체(161)는 트랙(T)의 일 측에 배치되고, 제1 코일(163)이 자화될 경우 자기의 흐름을 형성할 수 있도록 철과 같은 강자성체로 구성될 수 있다.The pole piece assembly 161 is disposed on one side of the track T, and may be made of a ferromagnetic material such as iron to form a magnetic flow when the first coil 163 is magnetized.
예를 들어, 폴피스 조립체(161)는 회전자석(162)을 중심으로 상호 대향 배치되는 복수의 폴피스 부재를 포함할 수 있다. 이때, 복수의 폴피스 부재는 서로 직접적으로 연결되거나, 별도의 자성체 혹은 영구자석을 통해 서로 연결될 수 있다. 또한, 복수의 폴피스 부재 사이에는 회전자석(162)이 폴피스 부재들과 간섭되지 않고 회전 가능하게 수용되는 소정의 공간이 확보될 수 있다.For example, the pole piece assembly 161 may include a plurality of pole piece members arranged to face each other around the rotating magnet 162 . At this time, the plurality of pole piece members may be directly connected to each other or connected to each other through a separate magnetic body or permanent magnet. In addition, a predetermined space in which the rotating magnet 162 is rotatably accommodated without interfering with the pole piece members may be secured between the plurality of pole piece members.
회전자석(162)은 폴피스 조립체(161)의 일부분에 수용되고, 재1 코일(150)이 자화될 경우 제1 배열자석(121)과 제2 배열자석(122) 사이에서 회전되어 제1 배열자석(121) 및 제2 배열자석(122)과 함께 자기의 흐름을 형성하거나, 폴피스 조립체(161)와 함께 자기 폐루프를 형성하도록 구성될 수 있다.The rotating magnet 162 is accommodated in a part of the pole piece assembly 161, and when the first coil 150 is magnetized, it is rotated between the first array magnet 121 and the second array magnet 122 to achieve the first array. It may be configured to form a magnetic flow together with the magnet 121 and the second array magnet 122 or to form a magnetic closed loop together with the pole piece assembly 161 .
구체적으로, 회전자석(162)은, 제1 배열자석(121)과 제2 배열자석(122) 사이에서 제1 배열자석(121) 및 제2 배열자석(122)과 함께 자기의 흐름을 형성할 수 있는 제1 위치와, 제1 배열자석(121)과 제2 배열자석(122) 사이에서 폴피스 조립체(161)와 함께 자기 폐루프를 형성할 수 있는 제2 위치로 회전될 수 있다.Specifically, the rotating magnet 162 forms a magnetic flow between the first array magnet 121 and the second array magnet 122 together with the first array magnet 121 and the second array magnet 122. between the first array magnet 121 and the second array magnet 122 and the second position where a magnetic closed loop can be formed together with the pole piece assembly 161.
예를 들어, 제1 위치로 회전된 회전자석(162)은, 일부분이 제1 배열자석(121)을 향하도록 배치되고, 일부분과 다른 극성을 가지는 다른 일부분이 제2 배열자석(122)을 향하도록 배치될 수 있다. 그리고, 제2 위치로 회전된 회전자석(162)은, 일부분이 제1 코일(163)을 향하도록 배치되고, 다른 일부분이 이동체(V)를 향하도록 배치될 수 있다.For example, a portion of the rotating magnet 162 rotated to the first position is disposed to face the first array magnet 121, and another portion having a polarity different from that of the first portion faces the second array magnet 122. can be arranged to do so. Also, a portion of the rotating magnet 162 rotated to the second position may be disposed toward the first coil 163 and another portion may be disposed toward the moving body V.
제1 코일(163)은 폴피스 조립체(161)에 설치되고, 전류가 인가되면 제1 상태 또는 제2 상태로 자화되어 회전자석(162)을 회전시키도록 구성될 수 있다.The first coil 163 may be installed in the pole piece assembly 161 and may be magnetized in a first state or a second state when current is applied to rotate the rotating magnet 162 .
구체적으로, 제1 코일(163)에 전류가 인가되어 제1 코일(163)이 제1 상태로 자화되면 회전자석(162)과 제1 코일(163) 사이에 척력이 작용하고, 이에 회전자석(162)은 제1 위치로 회전되어, 제1 배열자석(121)과 제2 배열자석(122) 사이에는 자기의 흐름이 형성될 수 있다. 그리고, 제1 코일(163)에 전류가 인가되어 제1 코일(163)이 제1 상태와 다른 제2 상태로 자화되면 회전자석(162)과 제1 코일(163) 사이에 인력이 작용하고, 이에 회전자석(162)은 제2 위치로 회전되어, 폴피스 조립체(161)에는 자기 폐루프가 형성될 수 있다. 이때, 트랙(T)과 폴피스 조립체(161)는 전자석(電磁石)의 역할을 수행할 수 있다.Specifically, when a current is applied to the first coil 163 and the first coil 163 is magnetized in a first state, a repulsive force acts between the rotating magnet 162 and the first coil 163, and thus the rotating magnet ( 162 is rotated to the first position, and a magnetic flow may be formed between the first array magnet 121 and the second array magnet 122 . Then, when a current is applied to the first coil 163 and the first coil 163 is magnetized in a second state different from the first state, an attractive force acts between the rotating magnet 162 and the first coil 163, Accordingly, the rotating magnet 162 is rotated to the second position, and a magnetic closed loop may be formed in the pole piece assembly 161 . At this time, the track T and the pole piece assembly 161 may serve as an electromagnet.
제2 코일(164)은 트랙(T)에 감겨 회전 자석과 제1 배열자석(121) 사이에 배치되고, 전류가 인가되면 제1 상태 또는 제2 상태로 자화되어 제1 배열자석(121)과 회전자석(162) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The second coil 164 is wound around the track T and disposed between the rotating magnet and the first array magnet 121, and when a current is applied, it is magnetized in the first or second state to form the first array magnet 121 and the second coil 164. It may be configured to control the flow of magnetism between the rotating magnets 162.
제2 코일(164)은 제1 코일(163)과 동일한 상태로 자화될 수 있다.The second coil 164 may be magnetized in the same state as the first coil 163 .
따라서, 제1 코일(163)이 제1 상태로 자화되어 회전자석(162)이 제1 위치로 회전되면, 제2 코일(164)은 제1 배열자석(121)과 제2 배열자석(122) 간의 자기적인 상호작용이 가능하도록 제1 상태로 자화되어 제1 배열자석(121)과 제2 배열자석(122) 사이의 자기의 흐름을 증대시킬 수 있다. 그리고, 제1 코일(163)이 제1 상태와 다른 제2 상태로 자화되어 회전자석(162)이 제2 위치로 회전되면, 제2 코일(164)은 제1 배열자석(121)과 제2 배열자석(122) 간의 자기적인 상호작용이 불가능하도록 제2 상태로 자화되어 제1 배열자석(121)과 제2 배열자석(122) 사이의 자기의 흐름을 차단할 수 있다.Therefore, when the first coil 163 is magnetized in the first state and the rotating magnet 162 rotates to the first position, the second coil 164 connects the first array magnet 121 and the second array magnet 122. The magnetic flow between the first array magnet 121 and the second array magnet 122 may be increased by being magnetized in a first state to enable magnetic interaction between the magnets. Then, when the first coil 163 is magnetized in a second state different from the first state and the rotating magnet 162 is rotated to the second position, the second coil 164 connects the first array magnet 121 and the second It is magnetized in the second state so that magnetic interaction between the array magnets 122 is impossible, and the flow of magnetism between the first array magnets 121 and the second array magnets 122 can be blocked.
이하에서는 도 26 내지 도 30을 참조하여, 자기의 흐름을 제어하는 과정에 대해서 설명한다.Hereinafter, a process of controlling the magnetic flow will be described with reference to FIGS. 26 to 30 .
도 26 및 도 27을 참조하면, 제1 코일(163)에 전류가 인가되어 제1 코일(163)이 제1 상태로 자화되면 회전자석(162)과 제1 코일(163) 사이에 척력이 작용하고, 이에 회전자석(162)은 제1 위치로 회전되어, 제1 배열자석(121)과 제2 배열자석(122) 사이에는 자기의 흐름이 형성될 수 있다.26 and 27, when a current is applied to the first coil 163 and the first coil 163 is magnetized in a first state, a repulsive force acts between the rotating magnet 162 and the first coil 163. Accordingly, the rotating magnet 162 is rotated to the first position, and a magnetic flow may be formed between the first array magnet 121 and the second array magnet 122 .
제1 코일(163)이 제1 상태로 자화되어 회전자석(162)이 제1 위치로 회전되면, 제2 코일(164)은 제1 배열자석(121)과 제2 배열자석(122) 간의 자기적인 상호작용이 가능하도록 제1 상태로 자화되어 제1 배열자석(121)과 제2 배열자석(122) 사이의 자기의 흐름을 증대시킬 수 있다.When the first coil 163 is magnetized in the first state and the rotating magnet 162 rotates to the first position, the second coil 164 generates a magnetic field between the first array magnet 121 and the second array magnet 122. It is magnetized in a first state so that a positive interaction is possible, and the flow of magnetism between the first array magnets 121 and the second array magnets 122 can be increased.
따라서, 제1 코일(163)과 제2 코일(164)이 제1 상태로 자화되면, 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 간의 연속적인 자기의 흐름에, 전류에 의한 자기의 흐름이 더해지게 되고, 이를 통해 강력한 자기의 흐름이 형성되어 이동체(V)의 이동속도가 증가하게 된다.Therefore, when the first coil 163 and the second coil 164 are magnetized in the first state, the second operation magnet 112, the second array magnet 122, the first array magnet 121 and the first operation magnet A current-induced magnetic flow is added to the continuous magnetic flow between the magnets 111, and through this, a strong magnetic flow is formed, thereby increasing the moving speed of the moving body (V).
이때, 제1 동작자석(111)과 제2 동작자석(112)은 이동체(V)의 길이방향(D1)을 따라 교번 배치되고, 트랙(T)은 이동체(V)의 이동방향(D1)을 따라 복수로 배치될 수 있다. 그리고, 복수의 트랙(T)에는 각각 제1 배열자석(121), 제2 배열자석(122) 및 자기 제어 유닛(160)이 배치될 수 있다.At this time, the first operation magnet 111 and the second operation magnet 112 are alternately disposed along the longitudinal direction D1 of the moving body V, and the track T moves along the moving direction D1 of the moving body V. may be arranged in multiples. In addition, the first array magnets 121, the second array magnets 122, and the magnetic control unit 160 may be disposed on the plurality of tracks T, respectively.
도 28을 참조하면, 제1 코일(163)과 제2 코일(164)이 제1 상태로 자화된 상태에서 제1 코일(163) 및 제2 코일(164)에 전류의 공급이 차단되어 제1 코일(163) 및 제2 코일(164)이 비자화되면, 회전자석(162)은 제1 위치로 회전된 상태를 유지하고 이에 제1 동작자석(111)과 제2 동작자석(112) 사이의 자기의 흐름이 유지될 수 있다.Referring to FIG. 28 , in a state in which the first coil 163 and the second coil 164 are magnetized in the first state, the supply of current to the first coil 163 and the second coil 164 is cut off and the first coil 163 and the second coil 164 are magnetized. When the coil 163 and the second coil 164 are demagnetized, the rotating magnet 162 maintains the rotated state in the first position, and thus the magnetic field between the first operating magnet 111 and the second operating magnet 112 is maintained. flow can be maintained.
즉, 비자화된 제1 코일(163)은 제1 위치로 회전된 회전자석(162)에 영향을 주지 않고, 비자화된 제2 코일(164)은 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 간의 자기적인 흐름에 영향을 주지 않으므로, 이에 제2 동작자석(112), 제2 배열자석(122), 회전자석(162), 제1 배열자석(121) 및 제1 동작자석(111) 사이에는 영구자석들 간의 자기적인 상호작용으로 인해 발생되는 자기의 흐름만이 유지될 수 있다.That is, the non-magnetized first coil 163 does not affect the rotating magnet 162 rotated to the first position, and the non-magnetized second coil 164 causes the second operating magnet 112, the second array Since it does not affect the magnetic flow between the magnet 122, the first array magnet 121, and the first operation magnet 111, the second operation magnet 112, the second array magnet 122, and the rotating magnet ( 162), only the magnetic flow generated by the magnetic interaction between the permanent magnets may be maintained between the first array magnets 121 and the first operation magnets 111.
따라서, 제1 코일(163)과 제2 코일(164)이 제1 상태로 자화된 상태에서 비자화되면, 제2 동작자석(112), 제2 배열자석(122), 회전자석(162), 제1 배열자석(121) 및 제1 동작자석(111) 간의 자기의 흐름만이 유지되어 이동 중인 이동체(V)의 이동속도가 더 증가하거나, 더 감소되지 않고, 일정하게 유지될 수 있다.Therefore, when the first coil 163 and the second coil 164 are demagnetized from the first magnetized state, the second operating magnet 112, the second array magnet 122, the rotating magnet 162, Only the magnetic flow between the first array magnet 121 and the first operation magnet 111 is maintained, so that the moving speed of the moving object V does not further increase or decrease, but can be maintained constant.
도 29를 참조하면, 제1 코일(163) 및 제2 코일(164)에 전류가 인가되어 제1 코일(163) 및 제2 코일(164)이 제2 상태로 자화되면, 회전자석(162)과 제1 코일(163) 사이에 인력이 작용하고, 회전자석(162)과 제1 코일(163) 사이에 척력이 작용하게 된다. 이에, 제1 위치에 배치된 회전자석(162)은 제2 위치로 회전되고, 이를 통해 폴피스 조립체(161)와 회전자석(162) 사이에는 자기 폐루프가 형성될 수 있다.Referring to FIG. 29 , when a current is applied to the first coil 163 and the second coil 164 so that the first coil 163 and the second coil 164 are magnetized in the second state, the rotating magnet 162 An attractive force acts between the first coil 163 and a repulsive force acts between the rotating magnet 162 and the first coil 163 . Accordingly, the rotating magnet 162 disposed at the first position is rotated to the second position, and through this, a magnetic closed loop may be formed between the pole piece assembly 161 and the rotating magnet 162 .
또한, 제2 코일(164)이 제2 상태로 자화됨에 따라, 제1 배열자석(121)과 제2 배열자석(122) 간의 자기적인 상호작용이 불가능하게 되고, 이에 제1 배열자석(121)과 제2 배열자석(122) 사이의 자기의 흐름을 차단할 수 있다.In addition, as the second coil 164 is magnetized in the second state, magnetic interaction between the first array magnets 121 and the second array magnets 122 becomes impossible, and thus the first array magnets 121 and the flow of magnetism between the second array magnet 122 may be blocked.
따라서, 제1 코일(163)과 제2 코일(164)이 제2 상태로 자화되면, 제1 배열자석(121)과 제2 배열자석(122) 간의 자기의 흐름은 차단되고, 제2 동작자석(112)과 제2 배열자석(122) 간의 자기의 흐름 및 제1 동작자석(111)과 제1 배열자석(121) 간의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 된다.Therefore, when the first coil 163 and the second coil 164 are magnetized in the second state, the flow of magnetism between the first array magnet 121 and the second array magnet 122 is blocked, and the second operation magnet Only the magnetic flow between the 112 and the second array magnet 122 and the magnetic flow between the first operating magnet 111 and the first array magnet 121 are generated, so that the moving speed of the moving body V decreases. .
도 30을 참조하면, 제1 코일(163)과 제2 코일(164)이 제2 상태로 자화된 상태에서 제1 코일(163) 및 제2 코일(164)에 전류의 공급이 차단되어 제1 코일(163) 및 제2 코일(164)이 비자화되면, 회전자석(162)은 제2 위치로 회전된 상태를 유지하고 이에 제1 동작자석(111)과 제2 동작자석(112) 사이의 자기의 흐름이 차단된 상태로 유지될 수 있다.Referring to FIG. 30 , in a state in which the first coil 163 and the second coil 164 are magnetized in the second state, the supply of current to the first coil 163 and the second coil 164 is cut off so that the first coil 163 and the second coil 164 are When the coil 163 and the second coil 164 are demagnetized, the rotating magnet 162 maintains the rotated state in the second position, and thus the magnetic field between the first and second operating magnets 111 and 112 is maintained. The flow of can remain blocked.
즉, 비자화된 제1 코일(163) 및 제2 코일(164)은 제2 위치로 회전된 회전자석(162)에 영향을 주지 않으므로, 폴피스 조립체(161)와 회전자석(162) 사이에는 지속적으로 자기 폐루프가 유지되고, 이에 제2 동작자석(112)과 제2 배열자석(122) 간의 자기의 흐름과, 제1 동작자석(111)과 제1 배열자석(121) 간의 자기의 흐름만이 유지될 수 있다.That is, since the non-magnified first coil 163 and the second coil 164 do not affect the rotating magnet 162 rotated to the second position, there is a gap between the pole piece assembly 161 and the rotating magnet 162. A magnetic closed loop is continuously maintained, and thus, the flow of magnetism between the second operating magnet 112 and the second array magnet 122 and the flow of magnetism between the first operating magnet 111 and the first array magnet 121 only can be maintained.
이에 따라, 이동체(V)의 이동속도가 감소된 상태로 유지될 수 있다.Accordingly, the moving speed of the moving body V can be maintained in a reduced state.
도 31 및 도 32를 참조하면, 자기 구동 장치(100)는 동작조립자석들(170)을 더 포함할 수 있다.Referring to FIGS. 31 and 32 , the magnetic driving device 100 may further include motion assembly magnets 170 .
동작조립자석들(170)은 제1 동작자석(111)과 제2 동작자석(112)에 결합되어 제1 동작자석(111)과 제2 동작자석(112)의 자계의 세기를 제어하도록 구성될 수 있다.The motion assembly magnets 170 are coupled to the first motion magnet 111 and the second motion magnet 112 to control the strength of the magnetic fields of the first motion magnet 111 and the second motion magnet 112. can
동작조립자석들(170)은 트랙(T)의 폭방향(D3)을 따라 제1 동작자석(111)과 제2 동작자석(112)에 부착될 수 있다.The motion assembly magnets 170 may be attached to the first motion magnet 111 and the second motion magnet 112 along the width direction D3 of the track T.
즉, 동작조립자석들(170)은 선형 배열되는 구조를 가질 수 있다.That is, the motion assembly magnets 170 may have a linearly arranged structure.
동작조립자석들(170)은 동작조립자석들(170), 제1 동작자석(111) 및 제2 동작자석(112) 간의 자기장의 세기가 증대될 수 있도록 제1 동작자석(111) 및 제2 동작자석(112)의 착자방향과 다른 착자방향을 가질 수 있다.The motion assembling magnets 170 are the first motion magnets 111 and the second motion magnets 170, the first motion magnet 111 and the second motion magnet 112 so that the strength of the magnetic field between them can be increased. It may have a magnetization direction different from the magnetization direction of the operating magnet 112 .
동작조립자석들(170)의 착자방향은, 제1 동작자석(111)의 착자방향 및 제2 동작자석(112)의 착자방향에 대하여 수직으로 배치될 수 있다.The magnetization directions of the motion assembly magnets 170 may be arranged perpendicular to the magnetization directions of the first motion magnets 111 and the second motion magnets 112 .
예를 들어, 제1 동작자석(111)의 착자방향 및 제2 동작자석(112)의 착자방향이 제1 방향(수직방향)과 평행한 방향일 경우, 동작조립자석들(170)의 착자방향은 제1 방향에 대하여 수직되는 방향인 제2 방향(수평방향)과 평행한 방향일 수 있다.For example, when the magnetization direction of the first motion magnet 111 and the magnetization direction of the second motion magnet 112 are parallel to the first direction (vertical direction), the magnetization direction of the motion assembly magnets 170 may be a direction parallel to a second direction (horizontal direction) that is perpendicular to the first direction.
동작조립자석들(170)은 제1 동작자석(111)과 제2 동작자석(112) 사이에 배치되는 제1 동작조립자석(171)과, 제1 동작자석(111)을 중심으로 제1 동작조립자석(171)에 대향 배치되는 제2 동작조립자석(172)과, 제2 동작자석(112)을 중심으로 제1 동작조립자석(171)에 대향 배치되는 제3 동작조립자석(173)을 포함할 수 있다.The motion assembly magnets 170 are first motion assembly magnets 171 disposed between the first motion magnets 111 and the second motion magnets 112 and the first motion assembly magnets 111 are centered on the first motion. A second operation assembly magnet 172 disposed opposite to the assembly magnet 171 and a third operation assembly magnet 173 disposed opposite to the first operation assembly magnet 171 around the second operation magnet 112 can include
즉, 제1 배열자석(121)을 향하는 제1 동작자석(111)의 일부분이 S극을 띄고, 제2 배열자석(122)을 향하는 제2 동작자석(112)의 일부분이 N극을 띄는 경우, 제2 동작자석(112)을 향하는 제1 동작조립자석(171)의 일부분은 N극을 띄고, 제1 동작자석(111)을 향하는 제1 동작조립자석(171)의 다른 일부분은 S극을 띌 수 있다. 그리고, 제1 동작자석(111)을 향하는 제2 동작조립자석(172)의 일부분은 S극을 띄고, 외부공간을 향하는 제2 동작조립자석(172)의 다른 일부분은 N극을 띌 수 있다. 또한, 제1 동작자석(111)을 향하는 제3 동작조립자석(173)의 일부분은 N극을 띄고, 외부공간을 향하는 제3 동작조립자석(173)의 다른 일부분은 S극을 띌 수 있다. That is, when a part of the first operating magnet 111 facing the first array magnet 121 has an S pole and a part of the second operating magnet 112 facing the second array magnet 122 has a N pole , A part of the first motion assembly magnet 171 facing the second motion magnet 112 has an N pole, and another part of the first motion assembly magnet 171 facing the first motion magnet 111 has an S pole. can be seen In addition, a part of the second motion assembly magnet 172 facing the first motion magnet 111 may have an S pole, and another part of the second motion assembly magnet 172 facing the outer space may have an N pole. In addition, a part of the third motion assembly magnet 173 facing the first motion magnet 111 may have an N pole, and another part of the third motion assembly magnet 173 facing the outer space may have an S pole.
이에 따라, 제1 동작자석(111)과 제2 동작자석(112)의 자속이 매우 강하게 분출되어 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 사이에 매우 강한 자기의 흐름이 형성될 수 있다. 참고로 상술한 제1 동작자석(111), 제2 동작자석(112), 제1 배열자석(121), 제2 배열자석(122) 및 동작조립자석들(170)의 극성의 방향은 설명의 편의를 위한 일 실시예일 뿐, 제1 동작자석(111), 제2 동작자석(112), 제1 배열자석(121), 제2 배열자석(122) 및 동작조립자석들(170)의 극성의 방향은 반드시 이에 한정되는 것은 아니며 필요에 따라 변경될 수도 있다.Accordingly, the magnetic flux of the first operating magnet 111 and the second operating magnet 112 is ejected very strongly, so that the second operating magnet 112, the second array magnet 122, the first array magnet 121 and the A very strong magnetic flow can be formed between the first operation magnets 111. For reference, directions of the polarities of the above-described first operating magnets 111, second operating magnets 112, first array magnets 121, second array magnets 122, and operation assembly magnets 170 are for reference only. This is only an example for convenience, and the polarity The direction is not necessarily limited thereto and may be changed as needed.
따라서, 도 32에 도시된 바와 같이, 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111)이 순차적으로 강한 자기의 흐름을 형성하게 되어 이동체(V)가 강한 직진운동을 할 수 있게된다.Therefore, as shown in FIG. 32, the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111 sequentially form a strong magnetic flow. As a result, the moving body (V) can make a strong straight motion.
이때, 제1 배열자석들(121)과 제2 배열자석들(122)은 트랙(T)의 길이방향(D1)을 따라 교번 배치될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 may be alternately disposed along the longitudinal direction D1 of the track T.
도 33 및 도 34를 참조하면, 자기 구동 장치(100)는 배열조립자석들(180)을 더 포함할 수 있다.Referring to FIGS. 33 and 34 , the magnetic driving device 100 may further include array assembly magnets 180 .
배열조립자석들(180)은 제1 배열자석(121)과 제2 배열자석(122)에 결합되어 제1 배열자석(121)과 제2 배열자석(122)의 자계의 세기를 제어하도록 구성될 수 있다.The array assembly magnets 180 are coupled to the first array magnets 121 and the second array magnets 122 to control the strength of the magnetic fields of the first array magnets 121 and the second array magnets 122. can
배열조립자석들(180)은 제1 배열자석(121)의 둘레에 부착되고, 제1 배열자석(121)의 착자방향과 다른 착자방향을 가지는 제1 배열조립자석들(181)과, 제2 배열자석(122)의 둘레에 부착되고, 제2 배열자석(122)의 착자방향과 다른 착자방향을 가지는 제2 배열조립자석들(182)을 포함할 수 있다.The array assembly magnets 180 are attached around the first array magnets 121 and have a magnetization direction different from that of the first array magnets 121; Second array assembly magnets 182 attached to the circumference of the array magnet 122 and having a magnetization direction different from that of the second array magnet 122 may be included.
제1 배열조립자석들(181)의 착자방향과, 제2 배열조립자석들(182)의 착자방향은 제1 배열자석(121)의 착자방향 및 제2 배열자석(122)의 착자방향에 대하여 수직으로 배치될 수 있다. The magnetizing directions of the first array magnets 181 and the second array magnets 182 are relative to the magnetization directions of the first array magnets 121 and the second array magnets 122 Can be placed vertically.
예를 들어, 제1 배열자석(121)의 착자방향 및 제2 배열자석(122)의 착자방향이 제1 방향(수직방향)과 평행한 방향일 경우, 제1 배열조립자석들(181)의 착자방향 및 제2 배열조립자석들(182)의 착자방향은 제1 방향에 대하여 수직되는 방향인 제2 방향(수평방향)과 평행한 방향일 수 있다.For example, when the magnetization directions of the first array magnets 121 and the magnetization directions of the second array magnets 122 are parallel to the first direction (vertical direction), the first array assembly magnets 181 The magnetization direction and the magnetization direction of the second array assembly magnets 182 may be a direction parallel to the second direction (horizontal direction) that is perpendicular to the first direction.
제1 배열조립자석들(181)과, 제2 배열조립자석들(182)은, 각각 트랙(T) 상에서 자석의 둘레를 따라 자석의 외면에 부착되는 제1 조립자석들(AM1)과, 제1 조립자석들(AM1) 사이에 부착되는 제2 조립자석들(AM2)을 포함할 수 있다.The first array assembly magnets 181 and the second array assembly magnets 182 include the first assembly magnets AM1 attached to the outer surface of the magnet along the circumference of the magnet on the track T, respectively; 1 may include second assembly magnets AM2 attached between the assembly magnets AM1.
제1 동작자석(111)을 향하는 제1 배열자석(121)의 일부분이 N극을 띄고, 제2 동작자석(112)을 향하는 제2 배열자석(122)의 일부분이 S극을 띄는 경우, 제1 배열자석(121)을 향하는 제1 배열조립자석들(181)의 일부분은 N극을 띄고, 제2 배열자석(122)을 향하는 제2 배열조립자석들(182)의 일부분은 S극을 띌 수 있다.If a part of the first array magnet 121 facing the first operating magnet 111 has the N pole and a part of the second array magnet 122 facing the second operating magnet 112 has the S pole, 1. A part of the first array assembly magnets 181 facing the array magnet 121 has an N pole, and a part of the second array assembly magnets 182 facing the second array magnet 122 has a S pole. can
이에 따라, 제1 배열자석(121)과 제2 배열자석(122)의 자속이 매우 강하게 분출되어 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111) 사이에 매우 강한 자기의 흐름이 형성될 수 있다. 참고로 상술한 모든 자석들의 극성의 방향은 설명의 편의를 위한 일 실시예일 뿐, 자석들의 극성의 방향은 반드시 이에 한정되는 것은 아니며 필요에 따라 변경될 수도 있다.Accordingly, magnetic fluxes of the first array magnets 121 and the second array magnets 122 are ejected very strongly, and thus the second operation magnets 112, the second array magnets 122, the first array magnets 121 and the second array magnets 121 are ejected. A very strong magnetic flow can be formed between the first operation magnets 111. For reference, the directions of the polarities of all the magnets described above are only examples for convenience of explanation, and the directions of the polarities of the magnets are not necessarily limited thereto and may be changed as needed.
따라서, 도 34에 도시된 바와 같이, 제2 동작자석(112), 제2 배열자석(122), 제1 배열자석(121) 및 제1 동작자석(111)이 순차적으로 강한 자기의 흐름을 형성하게 되어 이동체(V)가 강한 직진운동을 할 수 있게된다.Therefore, as shown in FIG. 34, the second operation magnet 112, the second array magnet 122, the first array magnet 121, and the first operation magnet 111 sequentially form a strong magnetic flow. As a result, the moving body (V) can make a strong straight motion.
이때, 제1 배열자석들(121)과 제2 배열자석들(122)은 트랙(T)의 길이방향(D1)을 따라 교번 배치될 수 있다.At this time, the first array magnets 121 and the second array magnets 122 may be alternately disposed along the longitudinal direction D1 of the track T.
그리고, 제1 배열자석(121)의 둘레에 부착되는 제1 배열조립자석들(181)의 적어도 일부분과, 제2 배열자석(122)의 둘레에 부착되는 제2 배열조립자석들(182) 적어도 일부분은 중첩되도록 배치될 수 있다.And, at least a portion of the first array assembly magnets 181 attached to the circumference of the first array magnets 121 and the second array assembly magnets 182 attached to the circumference of the second array magnets 122 Some parts may be arranged to overlap.
이때, 중첩되도록 배치되는 제1 배열조립자석들(181)의 적어도 일부분과, 제2 배열조립자석들(182) 적어도 일부분은 동일한 착자방향을 가질 수 있다.At this time, at least a portion of the first array of magnets for assembly 181 and at least a portion of the second array of magnets for assembly 182, which are arranged to overlap each other, may have the same magnetization direction.
한편, 본 실시예에서는 배열자석들(121, 122)이 고정되고, 동작자석들(111, 112)이 이동 가능한 것으로 설명하고 있으나, 반드시 이에 한정되는 것은 아니며, 동작자석들(111, 112)과 배열자석들(121, 122)은 모두 이동 가능한 상태로 배치되고, 이들 중 어느 한 쪽이 고정상태로 전환될 경우, 다른 한 쪽이 이동 가능한 상태로 전환될 수 있다.Meanwhile, in this embodiment, it is described that the array magnets 121 and 122 are fixed and the operation magnets 111 and 112 are movable, but it is not necessarily limited thereto, and the operation magnets 111 and 112 All of the array magnets 121 and 122 are disposed in a movable state, and when one of them is converted to a fixed state, the other may be converted to a movable state.
도 35는 본 발명의 다른 실시예에 따른 자기 구동 장치의 동작자석모듈들과 배열자석모듈들과 자기제어유닛 사이의 자기의 흐름을 개략적으로 나타낸 평면도이고, 도 36은 본 발명의 다른 실시예에 따른 자기제어유닛의 제1 코일 및 제2 코일이 제2 상태로 자화되어 자기제어유닛의 회전자석이 회전하는 과정을 개략적으로 나타내는 도면이고, 도 37은 본 발명의 다른 실시예에 따른 자기제어유닛의 제1 코일 및 제2 코일이 제2 상태에서 비자화될 경우 자기제어유닛의 회전자석이 회전하는 과정을 개략적으로 나타내는 도면이다.35 is a plan view schematically showing the flow of magnetism between operation magnet modules, array magnet modules, and a magnetic control unit of a magnetic drive device according to another embodiment of the present invention, and FIG. 36 is a plan view showing another embodiment of the present invention. 37 schematically shows a process in which the first coil and the second coil of the magnetic control unit are magnetized to the second state and the rotating magnet of the magnetic control unit rotates, and FIG. 37 is a magnetic control unit according to another embodiment of the present invention. It is a diagram schematically illustrating a process in which the rotating magnet of the magnetic control unit rotates when the first coil and the second coil of the magnetic control unit are non-magnified in the second state.
도 35 내지 도 37을 참조하면, 다른 실시예에 따른 자기 구동 장치(200)는 이동체(V)에 설치되는 동작자석들(210), 트랙(T)에 설치되는 배열자석들(220) 및 배열자석들(220) 사이에 배치되고 자기력을 발생시켜 배열자석들(220) 사이의 자기의 흐름을 제어하도록 구성되는 자기제어유닛(230)을 포함할 수 있다.35 to 37, the magnetic driving device 200 according to another embodiment includes operating magnets 210 installed on a moving body V, arrangement magnets 220 installed on a track T, and an arrangement A magnetic control unit 230 disposed between the magnets 220 and configured to generate magnetic force to control the flow of magnetism between the array magnets 220 may be included.
동작자석들(210)은 트랙(T)의 폭 방향(D3)을 따라 이격 배치된 제1 동작자석(211)과, 제2 동작자석(212)을 포함할 수 있다. 도 35에 도시된 바와 같이, 폭 방향(D3)을 기준으로, 제2 동작자석(212)이 도면상 좌측에 배치된 동작자석이고, 제1 동작자석(211)이 도면상 우측에 배치된 동작자석일 수 있다. The operation magnets 210 may include a first operation magnet 211 and a second operation magnet 212 spaced apart from each other along the width direction D3 of the track T. As shown in FIG. 35, based on the width direction D3, the second operation magnet 212 is an operation magnet disposed on the left side in the drawing, and the first operation magnet 211 is disposed on the right side in the drawing. It can be a magnet.
제1 동작자석(211) 및 제2 동작자석(212)의 착자 방향은 제1 동작자석(211) 및 제2 동작자석(212)이 이동되는 방향(D1)에 대하여 수직방향(D2)으로 배치되거나, 길이방향(D1)에 대하여 소정의 각도로 기울어지게 배치될 수 있다. 여기서 '착자 방향'이란, 가장 강한 N극을 띄는 지점과 가장 강한 S극을 띄는 지점을 연결한 선이 가리키는 방향으로서, 도면들에서는 큰 화살표로 도시되었다.The magnetization directions of the first and second operation magnets 211 and 212 are arranged in a vertical direction D2 with respect to the direction D1 in which the first and second operation magnets 211 and 212 are moved. Or, it may be disposed inclined at a predetermined angle with respect to the longitudinal direction (D1). Here, the 'magnetization direction' is a direction indicated by a line connecting a point having the strongest N pole and a point having the strongest S pole, and is indicated by a large arrow in the drawings.
배열자석들(220)은 트랙(T)을 따라 연속적으로 배치되고, 이동체(V)에 설치된 제1 동작자석(211) 및 제2 동작자석(212)과 자기적으로 상호작용할 수 있다. 이에, 배열자석들(220)이 제1 동작자석(211) 및 제2 동작자석(212)과 자기적으로 상호작용하여 이동체(V)를 트랙(T)을 따라 이동시킬 수 있다. The array magnets 220 are continuously arranged along the track T and may magnetically interact with the first and second operation magnets 211 and 212 installed on the moving body V. Accordingly, the array magnets 220 may magnetically interact with the first and second operation magnets 211 and 212 to move the movable body V along the track T.
배열자석들(220)은 트랙(T)의 폭 방향(D3)을 따라 이격 배치된 제1 배열자석(221)과, 제2 배열자석(222)을 포함할 수 있다. 도 35에 도시된 바와 같이, 폭 방향(D3)을 기준으로, 제2 배열자석(222)이 도면상 좌측에 배치된 배열자석이고, 제1 배열자석(221)이 도면상 우측에 배치된 배열자석일 수 있다. The array magnets 220 may include a first array magnet 221 and a second array magnet 222 spaced apart from each other along the width direction D3 of the track T. As shown in FIG. 35, based on the width direction D3, the second array magnet 222 is an array magnet disposed on the left side in the drawing, and the first array magnet 221 is disposed on the right side in the drawing. It can be a magnet.
자기제어유닛(230)은 제1 배열자석(221)과 제2 배열자석(222) 사이에 배치되고, 자기력을 발생시켜 제1 배열자석(221)과 제2 배열자석(222) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The magnetic control unit 230 is disposed between the first array magnets 221 and the second array magnets 222, and generates a magnetic force to generate a magnetic force between the first array magnets 221 and the second array magnets 222. It can be configured to control the flow.
자기제어유닛(230)은 제1 코일(231), 제2 코일(232) 및 회전자석(233)을 포함할 수 있다.The magnetic control unit 230 may include a first coil 231 , a second coil 232 and a rotating magnet 233 .
제1 코일(231)은 도면상 우측에 배치된 트랙(T)에 감겨 회전자석(233)과 제1 배열자석(221) 사이에 배치되고, 전류가 인가되면 제1 상태 또는 제2 상태로 자화되어 제1 배열자석(221)과 회전자석(233) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The first coil 231 is wound around the track T disposed on the right side of the drawing and is disposed between the rotating magnet 233 and the first array magnet 221, and is magnetized in the first or second state when current is applied thereto. It may be configured to control the flow of magnetism between the first array magnet 221 and the rotating magnet 233.
상술한 바와 같이, 제1 상태는 제1 배열자석(221)을 향하는 제1 코일(231)의 일부분이 제1 배열자석(221)과 자기적으로 상호작용하고, 회전자석(233)을 향하는 제1 코일(231)의 다른 일부분이 회전자석(233)과 자기적으로 상호작용할 수 있는 상태를 의미할 수 있다. 제1 배열자석(221)을 향하는 제1 코일(231)의 일부분이 N극으로 자화되고, 회전자석(233)을 향하는 제1 코일(231)의 다른 일부분이 S극으로 자화된 것일 수 있다. As described above, in the first state, a part of the first coil 231 that faces the first array magnet 221 magnetically interacts with the first array magnet 221 and faces the rotating magnet 233. 1 may mean a state in which another part of the coil 231 can magnetically interact with the rotating magnet 233 . A part of the first coil 231 facing the first array magnet 221 may be magnetized to the N pole, and another part of the first coil 231 facing the rotating magnet 233 may be magnetized to the S pole.
따라서, 제1 코일(231)이 제1 상태로 자화되면, 전류에 의한 자기의 흐름이 더해지게 되고, 이를 통해 강력한 자기의 흐름이 형성되어 이동체(V)의 이동속도가 증가하게 될 수 있다.Therefore, when the first coil 231 is magnetized in the first state, a flow of magnetism by current is added, and through this, a strong flow of magnetism is formed, and thus the moving speed of the moving body V may increase.
반면, 제2 상태는 도 36에 도시된 바와 같이, 제1 배열자석(221)을 향하는 제1 코일(231)의 일부분이 제1 배열자석(221)과 자기적으로 상호작용할 수 없고, 회전자석(233)을 향하는 제1 코일(231)의 다른 일부분이 회전자석(233)과 자기적으로 상호작용할 수 없는 상태를 의미할 수 있다. 여기서, 자기적으로 상호작용할 수 없는 상태는 동일 극성끼리의 작용으로 인해 전류의 흐름이 발생할 수 없는 상태를 의미한다. 도 36을 참조하면, 제1 배열자석(221)을 향하는 제1 코일(231)의 일부분이 S극으로 자화되고, 회전자석(233)을 향하는 제1 코일(231)의 다른 일부분이 N극으로 자화된 것일 수 있다.On the other hand, in the second state, as shown in FIG. 36, a portion of the first coil 231 facing the first array magnet 221 cannot magnetically interact with the first array magnet 221, and the rotating magnet This may mean a state in which another part of the first coil 231 facing 233 cannot magnetically interact with the rotating magnet 233 . Here, the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities. Referring to FIG. 36, a part of the first coil 231 facing the first array magnet 221 is magnetized to the S pole, and the other part of the first coil 231 facing the rotating magnet 233 is magnetized to the N pole. It may be magnetized.
따라서, 제1 코일(231)이 제2 상태로 자화되면, 제1 배열자석(221)과 제1 동작자석(211) 사이의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 될 수 있다.Therefore, when the first coil 231 is magnetized in the second state, only a magnetic flow is generated between the first array magnet 221 and the first operation magnet 211, thereby reducing the moving speed of the moving body V. It can be.
제2 코일(232)은 도면상 좌측에 배치된 트랙(T)에 감겨 회전자석(233)과 제2 배열자석(222) 사이에 배치되고, 전류가 인가되면 제1 상태 또는 제2 상태로 자화되어 제2 배열자석(222)과 회전자석(233) 사이의 자기의 흐름을 제어하도록 구성될 수 있다.The second coil 232 is wound around the track T disposed on the left side of the drawing and is disposed between the rotating magnet 233 and the second array magnet 222, and is magnetized in the first or second state when current is applied thereto. It may be configured to control the flow of magnetism between the second array magnet 222 and the rotating magnet 233.
상술한 바와 같이, 제1 상태는 제2 배열자석(222)을 향하는 제2 코일(232)의 일부분이 제2 배열자석(222)과 자기적으로 상호작용하고, 회전자석(233)을 향하는 제2 코일(232)의 다른 일부분이 회전자석(233)과 자기적으로 상호작용할 수 있는 상태를 의미할 수 있다. 제2 배열자석(222)을 향하는 제2 코일(232)의 일부분이 S극으로 자화되고, 회전자석(233)을 향하는 제2 코일(232)의 다른 일부분이 N극으로 자화된 것일 수 있다. As described above, in the first state, a part of the second coil 232 that faces the second array magnet 222 magnetically interacts with the second array magnet 222 and faces the rotating magnet 233. 2 This may mean a state in which another part of the coil 232 can magnetically interact with the rotating magnet 233 . A part of the second coil 232 facing the second array magnet 222 may be magnetized to the S pole, and another part of the second coil 232 facing the rotating magnet 233 may be magnetized to the N pole.
따라서, 제2 코일(232)이 제1 상태로 자화되면, 전류에 의한 자기의 흐름이 더해지게 되고, 이를 통해 강력한 자기의 흐름이 형성되어 이동체(V)의 이동속도가 증가하게 될 수 있다.Accordingly, when the second coil 232 is magnetized in the first state, a flow of magnetism by current is added, and through this, a strong flow of magnetism is formed, so that the moving speed of the moving body V may increase.
반면, 제2 상태는 도 36에 도시된 바와 같이, 제2 배열자석(222)을 향하는 제1 코일(231)의 일부분이 제2 배열자석(222)과 자기적으로 상호작용할 수 없고, 회전자석(233)을 향하는 제2 코일(232)의 다른 일부분이 회전자석(233)과 자기적으로 상호작용할 수 없는 상태를 의미할 수 있다. 여기서, 자기적으로 상호작용할 수 없는 상태는 동일 극성끼리의 작용으로 인해 전류의 흐름이 발생할 수 없는 상태를 의미한다. 도 36을 참조하면, 제2 배열자석(222)을 향하는 제2 코일(232)의 일부분이 N극으로 자화되고, 회전자석(233)을 향하는 제2 코일(232)의 다른 일부분이 S극으로 자화된 것일 수 있다.On the other hand, in the second state, as shown in FIG. 36, a part of the first coil 231 facing the second array magnet 222 cannot magnetically interact with the second array magnet 222, and the rotating magnet This may mean a state in which the other part of the second coil 232 facing 233 cannot magnetically interact with the rotating magnet 233 . Here, the state in which magnetic interaction is impossible means a state in which current flow cannot occur due to the action of the same polarities. Referring to FIG. 36, a part of the second coil 232 facing the second array magnet 222 is magnetized to the N pole, and the other part of the second coil 232 facing the rotating magnet 233 is magnetized to the S pole. It may be magnetized.
따라서, 제2 코일(232)이 제2 상태로 자화되면, 제2 배열자석(222)과 제2 동작자석(212) 사이의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 될 수 있다.Therefore, when the second coil 232 is magnetized in the second state, only a magnetic flow is generated between the second array magnet 222 and the second operation magnet 212, thereby reducing the moving speed of the moving body V. It can be.
회전자석(233)은 트랙(T) 사이에 수용되고, 제1 코일(231) 및 제2 코일(232)이 자화될 경우, 회전되어 제1 배열자석(221)과 제2 배열자석(222) 사이에서 회전되어 제1 배열자석(221) 및 제2 배열자석(222)과 함께 자기의 흐름을 형성할 수 있다.The rotating magnet 233 is accommodated between the tracks T, and when the first coil 231 and the second coil 232 are magnetized, it is rotated to form the first array magnet 221 and the second array magnet 222. It is rotated between the first array magnets 221 and the second array magnets 222 to form a magnetic flow.
보다 구체적으로, 회전자석(233)은 제1 배열자석(221)과 제2 배열자석(222) 사이에서 제1 배열자석(221) 및 제2 배열자석(222)과 함께 자기의 흐름을 형성할 수 있는 제1 위치와, 제1 배열자석(221)과 제2 배열자석(222)과 자기적 상호작용할 수 없는 제2 위치로 회전될 수 있다.More specifically, the rotating magnet 233 forms a magnetic flow between the first array magnets 221 and the second array magnets 222 together with the first array magnets 221 and the second array magnets 222. It can be rotated to a first position where it can, and a second position where it cannot magnetically interact with the first array magnets 221 and the second array magnets 222.
도 35를 참조하면, 제1 위치로 회전된 회전자석(233)은 일부분(도면상 우측부분)이 제1 배열자석(221) 및 제1 코일(231)을 향하도록 배치되고, 일부분과 다른 극성을 가지는 다른 일부분(도면상 좌측부분)이 제2 배열자석(222) 및 제2 코일(232)을 향하도록 배치될 수 있다. Referring to FIG. 35, a portion of the rotating magnet 233 rotated to the first position (right portion in the drawing) is disposed toward the first array magnet 221 and the first coil 231, and a polarity different from that of the portion. Another part (left part in the drawing) having may be arranged to face the second array magnet 222 and the second coil 232 .
반면, 도 36을 참조하면, 제2 위치로 회전된 회전자석(233)은, 일부분(도면상 좌측부분)이 제1 배열자석(221) 및 제1 코일(231)을 향하도록 배치되고, 다른 일부분(도면상 우측부분)이 제2 배열자석(222) 및 제2 코일(232)을 향하도록 배치될 수 있다. On the other hand, referring to FIG. 36, the rotating magnet 233 rotated to the second position is disposed so that a part (the left part in the drawing) faces the first array magnet 221 and the first coil 231, and the other A part (right part in the drawing) may be disposed to face the second array magnet 222 and the second coil 232 .
이하에서는, 도 35 내지 도 37을 참조하여, 자기의 흐름을 제어하는 과정에 대해서 설명한다.Hereinafter, a process of controlling the magnetic flow will be described with reference to FIGS. 35 to 37 .
도 35를 참조하면, 제1 코일(231) 및 제2 코일(232)은 전류가 인가되지 않은 상태일 수 있다. 이에, 회전자석(233)은 그 일부분이 제1 코일(231) 및 제1 배열자석(221)을 향하도록 배치되고, 그 다른 일부분이 제2 코일(232) 및 제2 배열자석(222)을 향하도록 배치될 수 있다.Referring to FIG. 35 , the first coil 231 and the second coil 232 may be in a state in which current is not applied. Accordingly, a portion of the rotating magnet 233 is disposed to face the first coil 231 and the first array magnet 221, and the other portion faces the second coil 232 and the second array magnet 222. It can be placed facing up.
도 36을 참조하면, 제1 코일(231) 및 제2 코일(232)이 제2 상태로 자화되도록, 제1 코일(231) 및 제2 코일(232)에 전류가 인가될 수 있다. 즉, 제1 코일(231)은 제1 배열자석(221)을 향하는 일부분이 S극으로 자화되고, 회전자석(233)을 향하는 다른 일부분이 N극으로 자화될 수 있다. 또한, 제2 코일(232)은 제2 배열자석(222)을 향하는 일부분이 N극으로 자화되고, 회전자석(233)을 향하는 다른 일부분이 S극으로 자화될 수 있다. 이에, 회전자석(233)이 제2 위치로 회전될 수 있다. 따라서. 제1 배열자석(221)과 회전자석(233) 및 제2 배열자석(222) 사이에 전류의 흐름이 발생할 수 없어 자기흐름이 단절되므로, 제1 배열자석(221)과 제1 동작자석(211) 사이의 자기의 흐름 및 제2 배열자석(222)과 제2 동작자석(212) 사이의 자기의 흐름만이 발생되어 이동체(V)의 이동속도가 감소하게 될 수 있다. Referring to FIG. 36 , current may be applied to the first coil 231 and the second coil 232 so that the first coil 231 and the second coil 232 are magnetized in a second state. That is, a portion of the first coil 231 facing the first array magnet 221 may be magnetized to the S pole, and a portion facing the rotating magnet 233 may be magnetized to the N pole. In addition, a portion of the second coil 232 facing the second array magnet 222 may be magnetized to the N pole, and a portion facing the rotating magnet 233 may be magnetized to the S pole. Accordingly, the rotating magnet 233 may be rotated to the second position. thus. Since current flow cannot occur between the first array magnet 221, the rotating magnet 233, and the second array magnet 222, and the magnetic flow is cut off, the first array magnet 221 and the first operation magnet 211 ) and between the second array magnets 222 and the second operation magnets 212, the moving speed of the moving body V may decrease.
도 37을 참조하면, 제1 코일(231) 및 제2 코일(232)에 인가되는 전류의 공급을 중단시킬 수 있다. 이에, 제1 코일(231) 및 제2 코일(232)은 제2 상태에서 비자화될 수 있다. 이에 따라, 회전자석(233)은 그 일부분이 제1 배열자석(221) 및 제1 코일(231)을 향하도록, 다른 일부분이 제2 배열자석(222) 및 제2 코일(232)을 향하도록 회전할 수 있다. 따라서, 회전자석(233)이 제1 위치로 회전될 수 있다.Referring to FIG. 37 , supply of current applied to the first coil 231 and the second coil 232 may be stopped. Accordingly, the first coil 231 and the second coil 232 may be non-magnified in the second state. Accordingly, the rotating magnet 233 has a part facing the first array magnet 221 and the first coil 231 and the other part facing the second array magnet 222 and the second coil 232. can rotate Thus, the rotating magnet 233 can be rotated to the first position.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 제한하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 제한되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 제한적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and may be variously modified and implemented without departing from the technical spirit of the present invention. . Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The protection scope of the present invention should be construed according to the claims below, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.

Claims (27)

  1. 동작자석들 및 상기 동작자석들과 자기적으로 상호작용하여 상기 동작자석들의 움직임을 제어하고, 상기 동작자석들에 이동경로를 제공하는 배열자석들을 포함하는 자기 구동 장치로서,A magnetic driving device including operating magnets and array magnets that magnetically interact with the operating magnets to control the movement of the operating magnets and provide a movement path to the operating magnets,
    상기 동작자석들은,The operating magnets,
    트랙의 폭 방향을 따라 이격 배치된 제1 동작자석과, 제2 동작자석을 포함하고,Including first operation magnets and second operation magnets spaced apart from each other along the width direction of the track,
    상기 배열자석들은, The array magnets,
    상기 트랙의 길이 방향을 따라 배치되어 상기 제1 동작자석과 자기적으로 상호작용하도록 구성되는 제1 배열자석들과, 상기 트랙의 폭 방향을 따라 상기 제1 배열자석들과 이격 배치되고, 상기 트랙의 길이 방향을 따라 배치되어 상기 제2 동작자석과 자기적으로 상호작용하도록 구성되는 제2 배열자석들을 포함하는, 자기 구동 장치.first array magnets disposed along the length direction of the track and configured to magnetically interact with the first operation magnets, and disposed spaced apart from the first array magnets along the width direction of the track; and second array magnets disposed along the length direction of the second array magnets configured to magnetically interact with the second operation magnets.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 배열자석들과 상기 제2 배열자석들은 상기 트랙의 길이 방향을 따라 교번 배치되는, 자기 구동 장치.The first array magnets and the second array magnets are alternately disposed along the longitudinal direction of the track.
  3. 제2항에 있어서,According to claim 2,
    상기 제1 배열자석들과, 상기 제2 배열자석들은 각각 상기 트랙의 폭 방향을 따라 복수로 배치되는, 자기 구동 장치.The first array magnets and the second array magnets are disposed in plurality along the width direction of the track, respectively.
  4. 제1항에 있어서,According to claim 1,
    상기 배열자석들과, 상기 동작자석들 중 적어도 하나는, 원호 형상, 부채꼴 형상, 반원호 형상 및 다각 형상 중 적어도 어느 하나의 형상으로 형성되는, 자기 구동 장치.At least one of the array magnets and the operation magnets is formed in at least one of a circular arc shape, a fan shape, a semicircular arc shape, and a polygonal shape.
  5. 동작자석들; motion magnets;
    상기 동작자석들과 자기적으로 상호작용하여 상기 동작자석들의 움직임을 제어하고, 상기 동작자석들에 이동경로를 제공하는 배열자석들; 및array magnets that magnetically interact with the operation magnets to control the movement of the operation magnets and provide a moving path to the operation magnets; and
    상기 동작자석들을 중심으로 상기 배열자석들에 대향 배치되는 보조 배열자석들을 포함하는, 자기 구동 장치.and auxiliary array magnets arranged opposite to the array magnets with the operation magnets as a center.
  6. 제1항에 있어서,According to claim 1,
    상기 제1 동작자석과 상기 제2 동작자석은 자기적으로 상호작용하고,The first operation magnet and the second operation magnet magnetically interact,
    상기 제1 배열자석들과 상기 제2 배열자석들은 자기적으로 상호작용하는, 자기 구동 장치.wherein the first array magnets and the second array magnets magnetically interact with each other.
  7. 제1항에 있어서,According to claim 1,
    상기 배열자석들은,The array magnets,
    상기 제1 동작자석을 중심으로 상기 제1 배열자석들에 대향 배치되고, 상기 제1 동작자석과 자기적으로 상호작용하도록 구성되는 제1 보조 배열자석들; 및first auxiliary array magnets disposed to face the first array magnets with the first operation magnet as a center and configured to magnetically interact with the first operation magnet; and
    상기 제2 동작자석을 중심으로 상기 제2 배열자석들에 대향 배치되고, 상기 제2 동작자석과 자기적으로 상호작용하도록 구성되는 제2 보조 배열자석들을 더 포함하는, 자기 구동 장치.and second auxiliary array magnets disposed facing the second array magnets with the second operation magnet as a center and configured to magnetically interact with the second operation magnet.
  8. 제7항에 있어서,According to claim 7,
    상기 제1 배열자석들과 상기 제2 배열자석들은 자기적으로 상호작용하고,The first array magnets and the second array magnets magnetically interact,
    상기 제1 보조 배열자석들과 상기 제2 보조 배열자석들은 자기적으로 상호작용하는, 자기 구동 장치.wherein the first auxiliary array magnets and the second auxiliary array magnets magnetically interact with each other.
  9. 제7항에 있어서,According to claim 7,
    상기 동작자석은,The operating magnet,
    상기 트랙의 폭 방향을 따라 상기 제1 동작자석에 대향 배치되는 제3 동작자석; 및a third operation magnet disposed to face the first operation magnet along the width direction of the track; and
    상기 트랙의 폭 방향을 따라 상기 제2 동작자석에 대향 배치되는 제4 동작자석을 더 포함하고,Further comprising a fourth operating magnet disposed opposite to the second operating magnet along the width direction of the track;
    상기 배열자석들은,The array magnets,
    상기 트랙의 폭 방향을 따라 상기 제1 배열자석들에 대향 배치되고, 상기 제3 동작자석과 자기적으로 상호작용하도록 구성되는 제3 배열자석들;third array magnets disposed opposite to the first array magnets along the width direction of the track and configured to magnetically interact with the third operation magnets;
    상기 트랙의 폭 방향을 따라 상기 제2 배열자석들에 대향 배치되고, 상기 제4 동작자석과 자기적으로 상호작용하도록 구성되는 제4 배열자석들;fourth array magnets disposed opposite to the second array magnets along the width direction of the track and configured to magnetically interact with the fourth operation magnets;
    상기 트랙의 폭 방향을 따라 상기 제1 보조 배열자석들에 대향 배치되고, 상기 제3 동작자석과 자기적으로 상호작용하도록 구성되는 제3 보조 배열자석들; 및third auxiliary array magnets disposed opposite to the first auxiliary array magnets along the width direction of the track and configured to magnetically interact with the third operation magnets; and
    상기 트랙의 폭 방향을 따라 상기 제2 보조 배열자석들에 대향 배치되고, 상기 제4 동작자석과 자기적으로 상호작용하도록 구성되는 제4 보조 배열자석들을 더 포함하는, 자기 구동 장치.and fourth auxiliary array magnets disposed opposite to the second auxiliary array magnets along the width direction of the track and configured to magnetically interact with the fourth operation magnets.
  10. 제9항에 있어서,According to claim 9,
    상기 제3 배열자석들과 상기 제4 배열자석들은 자기적으로 상호작용하고,The third array magnets and the fourth array magnets magnetically interact,
    상기 제3 보조 배열자석들과 상기 제4 보조 배열자석들은 자기적으로 상호작용하는, 자기 구동 장치.wherein the third auxiliary array magnets and the fourth auxiliary array magnets magnetically interact with each other.
  11. 제5항에 있어서,According to claim 5,
    상기 배열자석들과, 상기 보조 배열자석들을 지지하도록 구성되는 트랙을 더 포함하고,Further comprising a track configured to support the array magnets and the auxiliary array magnets;
    상기 배열자석들과 상기 보조 배열자석들은 자기적으로 상호작용하도록 구성되는, 자기 구동 장치.wherein the array magnets and the auxiliary array magnets are configured to magnetically interact.
  12. 제11항에 있어서,According to claim 11,
    상기 트랙은 상기 배열자석들이 지지되는 일부분과, 상기 보조 배열자석들이 지지되는 다른 일부분을 서로 연결하도록 구성되는, 자기 구동 장치.wherein the track is configured to connect a part where the array magnets are supported and another part where the auxiliary array magnets are supported to each other.
  13. 제12항에 있어서,According to claim 12,
    상기 동작자석들은,The operating magnets,
    이동체의 일부분에 배치되어 상기 배열자석들과 자기적으로 상호작용하도록 구성되는 주 동작자석; 및a main operating magnet disposed on a part of the moving body and configured to magnetically interact with the array magnets; and
    상기 이동체의 다른 일부분에 배치되어 상기 주 동작자석 및 상기 보조 배열자석들과 자기적으로 상호작용하도록 구성되는 보조 동작자석을 포함하는, 자기 구동 장치.and an auxiliary operating magnet disposed on another part of the movable body and configured to magnetically interact with the main operating magnet and the auxiliary array magnets.
  14. 제12항에 있어서,According to claim 12,
    상기 동작자석들, 상기 배열자석들 및 상기 보조 배열자석들은 상기 트랙의 폭 방향을 따라 복수로 배치되어, 각각 자기의 흐름을 형성하도록 구성되는, 자기 구동 장치.wherein the operation magnets, the array magnets, and the auxiliary array magnets are arranged in plurality along the width direction of the track to form magnetic flows, respectively.
  15. 제1항에 있어서,According to claim 1,
    상기 제1 동작자석과 상기 제2 동작자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 제1 동작자석과 상기 제2 동작자석 사이의 자기의 흐름을 제어하도록 구성되는 코일을 더 포함하는, 자기 구동 장치.and a coil disposed between the first and second operation magnets and configured to be magnetized when a current is applied to control a flow of magnetism between the first and second operation magnets. drive.
  16. 제15항에 있어서,According to claim 15,
    상기 제1 동작자석과 상기 제2 동작자석 및 상기 코일은 이동체의 길이방향을 따라 복수로 배치되는, 자기 구동 장치.The first operating magnet, the second operating magnet, and the coil are disposed in plurality along a longitudinal direction of the moving body.
  17. 제13항에 있어서,According to claim 13,
    상기 주 동작자석과 상기 보조 동작자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 주 동작자석과 상기 보조 동작자석 사이의 자기의 흐름을 제어하도록 구성되는 코일을 더 포함하는, 자기 구동 장치.and a coil disposed between the main operating magnet and the auxiliary operating magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the main operating magnet and the auxiliary operating magnet.
  18. 제13항에 있어서,According to claim 13,
    상기 배열자석과 상기 보조 배열자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 배열자석과 상기 보조 배열자석 사이의 자기의 흐름을 제어하도록 구성되는 코일을 더 포함하는, 자기 구동 장치.and a coil disposed between the array magnet and the auxiliary array magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the array magnet and the auxiliary array magnet.
  19. 제1항에 있어서,According to claim 1,
    상기 제1 배열자석과 상기 제2 배열자석 사이에 배치되고, 상기 제1 배열자석과 상기 제2 배열자석 사이의 자기의 흐름을 제어하도록 구성되는 자기 제어 유닛을 더 포함하는, 자기 구동 장치.and a magnetic control unit disposed between the first array magnet and the second array magnet and configured to control a flow of magnetism between the first array magnet and the second array magnet.
  20. 제19항에 있어서,According to claim 19,
    상기 자기 제어 유닛은,The magnetic control unit,
    상기 트랙의 일 측에 배치되는 폴피스 조립체;a pole piece assembly disposed on one side of the track;
    상기 폴피스 조립체의 일부분에 수용되고, 상기 제1 배열자석과 상기 제2 배열자석 사이에서 회전되어 상기 제1 배열자석 및 상기 제2 배열자석과 함께 자기의 흐름을 형성하거나, 상기 폴피스 조립체와 함께 자기 폐루프를 형성하도록 구성되는 회전자석;Accommodated in a part of the pole piece assembly and rotated between the first array magnet and the second array magnet to form a magnetic flow together with the first array magnet and the second array magnet, or a rotating magnet configured to form a magnetic closed loop together;
    상기 폴피스 조립체에 설치되고, 전류가 인가되면 자화되어 상기 회전자석을 회전시키도록 구성되는 제1 코일; 및a first coil installed on the pole piece assembly and configured to be magnetized when current is applied to rotate the rotating magnet; and
    상기 회전 자석과 상기 제1 배열자석 사이에 배치되고, 전류가 인가되면 자화되어 상기 제1 배열자석과 상기 회전자석 사이의 자기의 흐름을 제어하도록 구성되는 제2 코일을 포함하는, 자기 구동 장치.and a second coil disposed between the rotating magnet and the first array magnet and configured to be magnetized when a current is applied to control a flow of magnetism between the first array magnet and the rotating magnet.
  21. 제1항에 있어서,According to claim 1,
    상기 제1 동작자석과 상기 제2 동작자석에 결합되어 상기 제1 동작자석과 상기 제2 동작자석의 자계의 세기를 제어하도록 구성되는 동작조립자석들을 더 포함하는, 자기 구동 장치.and motion assembly magnets coupled to the first motion magnet and the second motion magnet and configured to control magnetic field strengths of the first motion magnet and the second motion magnet.
  22. 제21항에 있어서,According to claim 21,
    상기 동작조립자석들은 상기 트랙의 폭방향을 따라 상기 제1 동작자석과 상기 제2 동작자석에 부착되고, The motion assembly magnets are attached to the first motion magnet and the second motion magnet along the width direction of the track,
    상기 동작조립자석들의 착자방향은, 상기 제1 동작자석의 착자방향 및 상기 제2 동작자석의 착자방향에 대하여 수직으로 배치되는, 자기 구동 장치.The magnetic drive device of claim 1 , wherein the magnetization directions of the motion assembly magnets are perpendicular to the magnetization directions of the first motion magnet and the magnetization directions of the second motion magnet.
  23. 제22항에 있어서,According to claim 22,
    상기 동작조립자석들은,The motion assembly magnets,
    상기 제1 동작자석과 상기 제2 동작자석 사이에 배치되는 제1 동작조립자석;a first motion assembly magnet disposed between the first motion magnet and the second motion magnet;
    상기 제1 동작자석을 중심으로 상기 제1 동작조립자석에 대향 배치되는 제2 동작조립자석; 및a second motion assembly magnet arranged opposite to the first motion assembly magnet with the first motion assembly magnet as a center; and
    상기 제2 동작자석을 중심으로 상기 제1 동작조립자석에 대향 배치되는 제3 동작조립자석을 포함하는, 자기 구동 장치.and a third motion assembly magnet disposed opposite to the first motion assembly magnet with the second motion magnet as a center.
  24. 제21항에 있어서,According to claim 21,
    상기 제1 배열자석과 상기 제2 배열자석에 결합되어 상기 제1 배열자석과 상기 제2 배열자석의 자계의 세기를 제어하도록 구성되는 배열조립자석들을 더 포함하는, 자기 구동 장치.and array assembly magnets coupled to the first array magnets and the second array magnets to control magnetic field strengths of the first array magnets and the second array magnets.
  25. 제24항에 있어서,The method of claim 24,
    상기 배열조립자석들은, The array assembly magnets,
    상기 제1 배열자석의 둘레에 부착되고, 제1 배열자석의 착자방향과 다른 착자방향을 가지는 제1 배열조립자석들; 및first array assembly magnets attached to the periphery of the first array magnets and having a magnetization direction different from that of the first array magnets; and
    상기 제2 배열자석의 둘레에 부착되고, 제2 배열자석의 착자방향과 다른 착자방향을 가지는 제2 배열조립자석들을 포함하는, 자기 구동 장치.and second array assembly magnets attached to the periphery of the second array magnets and having a magnetization direction different from that of the second array magnets.
  26. 제25항에 있어서,According to claim 25,
    상기 제1 배열조립자석들의 적어도 일부분과, 상기 제2 배열조립자석들 적어도 일부분은 중첩되도록 배치되고,At least a portion of the first array magnets and at least a portion of the second array magnets are disposed to overlap each other;
    중첩되도록 배치되는 상기 제1 배열조립자석들의 적어도 일부분과, 상기 제2 배열조립자석들 적어도 일부분은 동일한 착자방향을 가지는, 자기 구동 장치.At least a portion of the first array of magnets to be assembled and at least a portion of the second array of magnets to overlap each other have the same magnetization direction.
  27. 이동체에 배치되는 동작자석들; 및motion magnets disposed on the moving body; and
    트랙에 배치되고, 상기 동작자석들과 자기적으로 상호작용하여 상기 동작자석들의 움직임을 제어하도록 구성되는 배열자석들을 포함하고,Array magnets arranged on the track and configured to magnetically interact with the motion magnets to control the movement of the motion magnets;
    상기 트랙에는, 상기 배열자석들이 배열된 자력구간들과, 상기 자력구간들 사이에 상기 배열자석들이 미배열된 적어도 하나의 공백구간이 형성되는, 자기 구동 장치.The magnetic drive device of claim 1 , wherein magnetic sections in which the array magnets are arranged and at least one blank section in which the array magnets are not arranged are formed between the magnetic sections.
PCT/KR2022/011572 2021-08-24 2022-08-04 Magnetic drive device WO2023027374A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0111828 2021-08-24
KR20210111828 2021-08-24
KR10-2022-0096871 2022-08-03
KR1020220096871A KR20230029517A (en) 2021-08-24 2022-08-03 Magnetic drive device

Publications (1)

Publication Number Publication Date
WO2023027374A1 true WO2023027374A1 (en) 2023-03-02

Family

ID=85323255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011572 WO2023027374A1 (en) 2021-08-24 2022-08-04 Magnetic drive device

Country Status (1)

Country Link
WO (1) WO2023027374A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044998A (en) * 2003-05-02 2003-06-09 김재성 Perpetua mobilia Using Permanence magnet
JP3144956U (en) * 2008-07-09 2008-09-18 重雄 山崎 Magnetic propulsion device
KR101038981B1 (en) * 2009-08-19 2011-06-03 박정일 power conversion equipment using magnetic shield and permanent magnet
KR20190031133A (en) * 2017-09-15 2019-03-25 최태광 Magnetic force control device and magnetic substance holding device using the same
KR20210070183A (en) * 2019-12-04 2021-06-14 최태광 Magnetic drive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030044998A (en) * 2003-05-02 2003-06-09 김재성 Perpetua mobilia Using Permanence magnet
JP3144956U (en) * 2008-07-09 2008-09-18 重雄 山崎 Magnetic propulsion device
KR101038981B1 (en) * 2009-08-19 2011-06-03 박정일 power conversion equipment using magnetic shield and permanent magnet
KR20190031133A (en) * 2017-09-15 2019-03-25 최태광 Magnetic force control device and magnetic substance holding device using the same
KR20210070183A (en) * 2019-12-04 2021-06-14 최태광 Magnetic drive device

Similar Documents

Publication Publication Date Title
WO2012039548A1 (en) Magnet holder including a combination of a permanent magnet and an electromagnet
WO2017191927A1 (en) Dual camera module and method for controlling the same
WO2011155809A2 (en) Compact camera actuator and compact stereo-scopic image photographing device
WO2019168342A1 (en) Lens driving device
WO2019199129A1 (en) Lens assembly
WO2016126061A1 (en) Lens drive apparatus and camera module including same
WO2019235825A1 (en) Interior permanent magnet motor
WO2019225977A1 (en) Information output apparatus
WO2019045439A1 (en) Lens driving device, and camera module and optical device including same
WO2019177390A1 (en) Lens driving device, and camera module and optical device including same
WO2023027374A1 (en) Magnetic drive device
WO2022245055A1 (en) Actuator device
WO2022231219A1 (en) Arc extinguishing unit and air circuit breaker comprising same
WO2022139156A1 (en) Motor assembly
WO2021112428A1 (en) Magnetic driving apparatus
WO2017188766A1 (en) Information output apparatus
WO2019045305A1 (en) Stator and motor including same
WO2021125526A1 (en) Dual and multiple air gap rotary device
WO2017078387A1 (en) Power generation apparatus
WO2019107829A1 (en) Motor
WO2021187774A1 (en) Arc extinuishing assembly and circuit breaker comprising same
WO2022085985A1 (en) Consequent pole-type interior permanent magnet synchronous motor
WO2021177675A1 (en) Arc extinguishing assembly
WO2023113357A1 (en) Magnetic drive device
WO2021261731A1 (en) Magnetic bearing having coaxial eddy-current displacement sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861585

Country of ref document: EP

Kind code of ref document: A1