Nothing Special   »   [go: up one dir, main page]

WO2023022222A1 - 鋼材 - Google Patents

鋼材 Download PDF

Info

Publication number
WO2023022222A1
WO2023022222A1 PCT/JP2022/031349 JP2022031349W WO2023022222A1 WO 2023022222 A1 WO2023022222 A1 WO 2023022222A1 JP 2022031349 W JP2022031349 W JP 2022031349W WO 2023022222 A1 WO2023022222 A1 WO 2023022222A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
content
less
steel
concentration
Prior art date
Application number
PCT/JP2022/031349
Other languages
English (en)
French (fr)
Inventor
有祐 宮越
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/681,571 priority Critical patent/US20240271262A1/en
Priority to CN202280054737.4A priority patent/CN117836452A/zh
Priority to MX2024002154A priority patent/MX2024002154A/es
Priority to DE112022004050.5T priority patent/DE112022004050T5/de
Priority to JP2023542455A priority patent/JPWO2023022222A1/ja
Publication of WO2023022222A1 publication Critical patent/WO2023022222A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This disclosure relates to steel materials.
  • the manufacturing process for machine structural parts is as follows.
  • a descaling treatment for the purpose of removing scale from the steel material is performed on the steel material that has been spheroidized and annealed.
  • the steel is pickled.
  • Lubricating coating treatment is applied to the steel material after descaling treatment to apply a lubricant to the surface of the steel material.
  • a steel wire is manufactured by drawing a steel material to which a lubricant has been applied.
  • Steel wires are forged to produce intermediate products.
  • the intermediate product is subjected to heat treatment (such as thermal refining treatment) to manufacture a machine structural part. In some cases, the intermediate product after forging is cut.
  • processing such as wire drawing (cold drawing) may be performed before forging is performed.
  • a lubricating coating treatment is performed on the steel material before wire drawing.
  • a lubricating film treatment a lubricating film is formed on the surface of the steel material.
  • a chemical conversion coating is formed on the surface of steel.
  • soap metallic soap, etc.
  • Patent Document 1 Steel materials that can be used as materials for machine structural parts have been proposed in International Publication No. 2015/189978 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2013-237903 (Patent Document 2).
  • the steel material disclosed in Patent Document 1 has, in mass%, C: 0.005 to 0.60%, Si: 0.01 to 0.50%, Mn: 0.20 to 1.80%, Al: 0 .01 to 0.06%, P: 0.04% or less, S: 0.05% or less, N: 0.01% or less, Cr: 0 to 1.50%, Mo: 0 to 0.50%, It contains Ni: 0 to 1.00%, V: 0 to 0.50%, B: 0 to 0.0050%, Ti: 0 to 0.05%, and the balance consists of Fe and impurities.
  • the metallographic structure of this steel contains pearlite.
  • the value obtained by dividing the Mn content in atomic % contained in cementite in pearlite by the Mn content in atomic % contained in ferrite in pearlite is more than 0 and 5.0 or less.
  • the chemical composition and metallographic structure are controlled, and furthermore, the Mn distribution ratio with respect to cementite and ferrite in pearlite is adjusted.
  • Patent Document 1 describes that this can shorten the spheroidizing annealing treatment time.
  • the steel material for bolts disclosed in Patent Document 2 has, in mass%, C: 0.30 to 0.40%, Si: 0.01 to 0.40%, Mn: 0.10 to 1.0%, P : 0.030% or less, S: 0.030% or less, Al: 0.005-0.10%, Cr: 0.90-1.8%, Mo: 0.10-2.0%, N: 0.003 to 0.030%, Nb: 0 to 0.10%, the balance being Fe and impurities.
  • the number ratio of carbides having an equivalent circle diameter of 1.0 ⁇ m or more among carbides having an equivalent circle diameter of 0.5 ⁇ m or more is 10% or less. In this steel material, the number ratio of coarse carbides is reduced. Patent Document 2 describes that this allows the carbides to be sufficiently solid-dissolved during quenching, thereby reducing variations in the tensile strength of the bolt product.
  • Patent Documents 1 and 2 as the descaling treatment, the hydrogen embrittlement resistance of the steel material pickled before wire drawing, and the lubricating agent for the steel material in the lubricating film treatment before wire drawing Adhesion is not considered.
  • the object of the present disclosure is to provide a steel material with excellent hydrogen embrittlement resistance after pickling treatment for descaling and excellent lubricant adhesion.
  • the steel material according to the present disclosure has the following configuration.
  • the steel material according to the present disclosure has excellent hydrogen embrittlement resistance after pickling treatment for descaling, and also has excellent lubricant adhesion.
  • FIG. 1 is a diagram showing a region to be electrolyzed and removed by preliminary constant current electrolysis.
  • FIG. 2 is a diagram showing a region electrolyzed by constant current electrolysis after preliminary constant current electrolysis.
  • the inventors examined steel materials that can be applied as materials for machine structural parts, typified by cold forged parts such as bolts, from the viewpoint of chemical composition.
  • the present inventors further investigated and examined the factors that cause hydrogen embrittlement in the steel material after the pickling process when the steel material is subjected to the pickling process for the purpose of descaling. As a result, the present inventors obtained the following findings.
  • the following means can be considered from the viewpoint of chemical composition.
  • A) Increase the strength of the grains of steel. Specifically, the contents of Mn, P, and S, which are elements that segregate at grain boundaries and lower the grain boundary strength, are suppressed as much as possible.
  • the inventors of the present invention found that the chemical composition of steel material applicable to the material of mechanical structural parts is C: 0.30 to 0.50%, Si: 0.5% by mass %. 40% or less, Mn: 0.10-0.60%, P: 0.030% or less, S: 0.030% or less, Cr: 0.90-1.80%, Mo: 0.30-1.
  • the present inventors further investigated means for improving the hydrogen embrittlement resistance of steel materials after pickling treatment from the standpoints other than the chemical composition. As a result, the inventors obtained the following knowledge.
  • the steel portion of the surface layer region which is the region from the surface of the steel material to a depth of about 100 ⁇ m to 200 ⁇ m, is dissolved. Therefore, if excessive dissolution of the steel portion of the surface region can be suppressed, excessive generation of hydrogen can be suppressed.
  • Cr and Mo form dense oxides on the surface of the steel material.
  • oxides containing Cr and/or Mo are referred to as "specific oxides". If the specific oxide is formed on the surface of the steel material during the pickling treatment, it is possible to suppress direct contact of the acid solution with the surface layer of the steel material.
  • the specific oxide formed on the surface of the steel material further suppresses penetration of hydrogen generated on the surface of the steel material. Therefore, by setting the Cr concentration and the Mo concentration in the surface layer region of the steel material within appropriate ranges, it is possible to suppress the generation of hydrogen during the pickling treatment and the penetration of hydrogen into the steel material.
  • the Cr and Mo are contained in carbides and carbonitrides and are concentrated.
  • the Cr concentration in the extraction residue obtained by electrolyzing the surface layer region of the steel material having the above chemical composition by the electrolytic extraction method is defined as [Cr] (% by mass).
  • the Mo concentration in the extraction residue is defined as [Mo] (% by mass).
  • the main types of extraction residues (inclusions and precipitates) in the surface region are carbides and carbonitrides.
  • carbides and carbonitrides are also referred to as “carbides and the like”. Therefore, the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue in the surface layer region are indicators of the Cr concentration and Mo concentration in the carbide or the like.
  • the present inventors investigated and examined the relationship between the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue in the surface layer region and the hydrogen embrittlement resistance of the steel material after the pickling treatment. .
  • the total amount of Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue of the surface layer region is 10.0% or more in the steel material in which the content of each element in the chemical composition is within the above range, It was found that the hydrogen embrittlement resistance of the steel material after pickling is enhanced.
  • the present inventors further investigated the total amount of Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue of the surface region.
  • the total amount of Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue in the surface layer region is 10.0% or more, and , 30.0% or less, it is possible to achieve both excellent hydrogen embrittlement resistance of the steel material after the pickling treatment and excellent lubricant adhesion.
  • the steel material of this embodiment was completed based on the above technical concept.
  • the steel material of this embodiment has the following configuration.
  • [1] is steel, in % by mass, C: 0.30 to 0.50%, Si: 0.40% or less, Mn: 0.10-0.60%, P: 0.030% or less, S: 0.030% or less, Cr: 0.90 to 1.80%, Mo: 0.30 to 1.00%, Al: 0.005 to 0.100%, N: 0.003 to 0.030%, and the balance consists of Fe and impurities, After the region to a depth of 100 ⁇ 20 ⁇ m from the surface of the steel is electrolyzed and removed by preliminary constant current electrolysis, the region to a depth of 100 ⁇ 20 ⁇ m from the surface of the steel is further removed by constant current electrolysis.
  • the steel material according to [1] The number ratio RN of carbides with an equivalent circle diameter of 0.8 ⁇ m or more to the number of carbides with an equivalent circle diameter of 0.5 ⁇ m or more is 5 to 20%. steel.
  • the steel material of this embodiment satisfies the following feature 1 and feature 2.
  • the chemical composition is, in mass %, C: 0.30 to 0.50%, Si: 0.40% or less, Mn: 0.10 to 0.60%, P: 0.030% or less, S: 0.5%.
  • C 0.30-0.50% Carbon (C) enhances the hardenability of the steel material and enhances the strength of the steel material. If the C content is less than 0.30%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the C content exceeds 0.50%, the toughness of the steel material is lowered even if the content of other elements is within the range of the present embodiment. In this case, in the process of manufacturing cold forged parts using steel as a raw material, the cold forging cracking resistance of the steel deteriorates. Therefore, the C content is 0.30-0.50%. A preferred lower limit for the C content is 0.31%, more preferably 0.32%, and still more preferably 0.33%. A preferable upper limit of the C content is 0.48%, more preferably 0.46%, and still more preferably 0.44%.
  • Si 0.40% or less
  • Silicon (Si) is an impurity. Si lowers the toughness of the steel material. If the Si content exceeds 0.40%, even if the content of other elements is within the range of the present embodiment, the toughness of the steel material is significantly lowered, and the cold forging cracking resistance of the steel material is lowered. Therefore, the Si content is 0.40% or less. It is preferable that the Si content is as low as possible. However, excessive reduction of the Si content reduces productivity and increases manufacturing costs. Therefore, when considering normal industrial production, the lower limit of the Si content is preferably more than 0%, more preferably 0.01%, more preferably 0.02%, and still more preferably 0.03%. %. A preferable upper limit of the Si content is 0.38%, more preferably 0.36%, and still more preferably 0.34%.
  • Mn 0.10-0.60%
  • Manganese (Mn) deoxidizes steel. Mn further enhances the hardenability of the steel material and increases the strength of the steel material. If the Mn content is less than 0.10%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content exceeds 0.60%, even if the contents of other elements are within the range of the present embodiment, Mn excessively segregates at the grain boundaries and reduces the grain boundary strength. As a result, the hydrogen embrittlement resistance of the steel deteriorates. Therefore, the Mn content is 0.10-0.60%. A preferred lower limit for the Mn content is 0.12%, more preferably 0.14%, and still more preferably 0.16%. A preferable upper limit of the Mn content is 0.58%, more preferably 0.56%, and still more preferably 0.54%.
  • Phosphorus (P) is an impurity. P segregates at the grain boundaries of the steel material and lowers the grain boundary strength. If the P content exceeds 0.030%, even if the content of other elements is within the range of the present embodiment, the grain boundary strength will decrease, and the hydrogen embrittlement resistance of the steel material after the pickling treatment will occur. Decrease in properties. Therefore, the P content is 0.030% or less. The lower the P content is, the better. However, excessive reduction of the P content reduces productivity and increases manufacturing costs. Therefore, when considering normal industrial production, the preferable lower limit of the P content is more than 0%, more preferably 0.001%, more preferably 0.002%, and still more preferably 0.003%. %. A preferable upper limit of the P content is 0.028%, more preferably 0.026%, and still more preferably 0.024%.
  • S 0.030% or less Sulfur (S) is an impurity. S segregates at the grain boundaries of the steel material and lowers the grain boundary strength. If the S content exceeds 0.030%, the hydrogen embrittlement resistance of the pickled steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the S content is 0.030% or less. It is preferable that the S content is as low as possible. However, excessive reduction of the S content reduces productivity and increases manufacturing costs. Therefore, when considering normal industrial production, the preferred lower limit of the S content is more than 0%, more preferably 0.001%, more preferably 0.002%, still more preferably 0.003 %. A preferable upper limit of the S content is 0.028%, more preferably 0.026%, and still more preferably 0.024%.
  • Chromium (Cr) dissolves in carbides and forms specific oxides containing Cr and Mo on the steel material surface during pickling. Formation of this specific oxide suppresses generation of hydrogen due to excessive pickling. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. Cr further enhances the hardenability of the steel and increases the strength of the steel. If the Cr content is less than 0.90%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content exceeds 1.80%, even if the content of other elements is within the range of the present embodiment, the toughness of the steel material is lowered, and the cold forging cracking resistance of the steel material is lowered.
  • the Cr content is 0.90-1.80%.
  • a preferable lower limit of the Cr content is 0.91%, more preferably 0.92%, and still more preferably 0.93%.
  • a preferable upper limit of the Cr content is 1.75%, more preferably 1.70%, further preferably 1.65%.
  • Mo 0.30-1.00% Molybdenum (Mo) dissolves in carbides and forms specific oxides containing Cr and Mo on the surface of the steel during pickling. Formation of this specific oxide suppresses generation of hydrogen due to excessive pickling. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. Mo further enhances the hardenability of the steel material and enhances the strength of the steel material. If the Mo content is less than 0.30%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
  • the Mo content is 0.30-1.00%.
  • a preferable lower limit of the Mo content is 0.31%, more preferably 0.32%, and still more preferably 0.33%.
  • a preferable upper limit of the Mo content is 0.95%, more preferably 0.90%, and still more preferably 0.85%.
  • Al 0.005-0.100%
  • Aluminum (Al) deoxidizes steel. Al further combines with N to form Al nitrides. Al nitride suppresses coarsening of crystal grains due to the pinning effect. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. If the Al content is less than 0.005%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Al content exceeds 0.100%, coarse Al nitrides are formed even if the content of other elements is within the range of the present embodiment. Coarse Al nitride serves as a starting point for fracture.
  • the Al content is 0.005-0.100%.
  • a preferable lower limit of the Al content is 0.006%, more preferably 0.007%, and still more preferably 0.008%.
  • a preferable upper limit of the Al content is 0.090%, more preferably 0.080%, and still more preferably 0.070%.
  • the Al content means the total Al (Total-Al) content.
  • N 0.003-0.030%
  • Nitrogen (N) combines with Al to form nitrides.
  • Al nitride suppresses coarsening of crystal grains due to the pinning effect.
  • the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced.
  • the N content is less than 0.003%, the above effect cannot be sufficiently obtained even if the other element content is within the range of the present embodiment.
  • the N content exceeds 0.030%, coarse nitrides are formed even if the content of other elements is within the range of the present embodiment.
  • Coarse nitrides serve as starting points for fracture. Therefore, the cold forging cracking resistance of the steel material is lowered. Therefore, the N content is 0.003-0.030%.
  • a preferable lower limit of the N content is 0.004%, more preferably 0.005%, and still more preferably 0.006%.
  • a preferable upper limit of the N content is 0.029%, more preferably 0.028%, and still more preferably 0.027%.
  • the remainder of the chemical composition of the steel material of this embodiment consists of Fe and impurities.
  • the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when the steel material is industrially manufactured, and are within a range that does not adversely affect the steel material of the present embodiment. means acceptable.
  • the chemical composition of the steel material of the present embodiment may further contain one or more selected from the following Groups 1 to 5 in place of part of Fe.
  • Cu 0.40% or less Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%.
  • Cu forms a dense oxide during the pickling treatment. This suppresses generation of hydrogen due to excessive pickling. Therefore, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. If even a small amount of Cu is contained, the above effects can be obtained to some extent. However, if the Cu content exceeds 0.40%, descaling of the steel material after the pickling treatment becomes insufficient even if the content of other elements is within the range of the present embodiment. As a result, the lubricant adhesion of the steel is reduced.
  • the Cu content is 0-0.40%, and if included, the Cu content is 0.40% or less.
  • the lower limit of the Cu content is preferably over 0%, more preferably 0.01%, still more preferably 0.02%, still more preferably 0.03%.
  • a preferable upper limit of the Cu content is 0.35%, more preferably 0.30%, and still more preferably 0.25%.
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%.
  • Ni forms a dense oxide during the pickling treatment. This suppresses generation of hydrogen due to excessive pickling. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. If Ni is contained even in a small amount, the above effect can be obtained to some extent. However, if the Ni content exceeds 0.40%, descaling of the steel material after the pickling treatment becomes insufficient even if the content of other elements is within the range of the present embodiment. As a result, the lubricant adhesion of the steel is reduced.
  • the Ni content is 0 to 0.40%, and if included, the Ni content is 0.40% or less.
  • the lower limit of the Ni content is preferably over 0%, more preferably 0.01%, still more preferably 0.02%, still more preferably 0.03%.
  • a preferable upper limit of the Ni content is 0.35%, more preferably 0.30%, and still more preferably 0.25%.
  • V, Ti and Nb The chemical composition of the steel material of the present embodiment is further replaced by part of Fe, selected from the group consisting of V: 0.50% or less, Ti: 0.100% or less, and Nb: 0.100% or less. may contain one or more of the All of these elements are optional elements and may not be contained.
  • V, Ti, and Nb combine with C and N to form carbonitrides. These carbonitrides suppress coarsening of crystal grains due to the pinning effect. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced.
  • V, Ti and Nb are described below.
  • V 0.50% or less Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%.
  • V combines with C and N to form carbonitrides and suppress coarsening of crystal grains.
  • the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. If even a small amount of V is contained, the above effect can be obtained to some extent.
  • the V content exceeds 0.50%, coarse carbonitrides are formed even if the content of other elements is within the range of the present embodiment. Coarse carbonitrides serve as starting points for fracture. Therefore, the cold forging cracking resistance of the steel material is lowered.
  • the V content is 0 to 0.50%, and when included, the V content is 0.50% or less.
  • the lower limit of the V content is preferably over 0%, more preferably 0.01%, still more preferably 0.02%, still more preferably 0.03%.
  • a preferable upper limit of the V content is 0.45%, more preferably 0.40%, and still more preferably 0.35%.
  • Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%.
  • Ti When Ti is contained, that is, when the Ti content is more than 0%, Ti combines with C and N to form carbonitrides, suppressing grain coarsening. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. If even a small amount of Ti is contained, the above effect can be obtained to some extent. However, if the Ti content exceeds 0.100%, coarse carbonitrides are formed even if the content of other elements is within the range of the present embodiment. Coarse carbonitrides serve as starting points for fracture. Therefore, the cold forging cracking resistance of the steel material is lowered.
  • the Ti content is 0-0.100%, and if included, the Ti content is 0.100% or less.
  • the lower limit of the Ti content is preferably over 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Ti content is 0.080%, more preferably 0.060%, and still more preferably 0.040%.
  • the chemical composition of the steel material of the present embodiment may further contain B: 0.0100% or less instead of part of Fe.
  • B is an optional element and may not be contained.
  • the B content is 0 to 0.0100%, and if included, the B content is 0.0100% or less.
  • the lower limit of the B content is preferably over 0%, more preferably 0.0001%, still more preferably 0.0002%, still more preferably 0.0003%.
  • a preferable upper limit of the B content is 0.0080%, more preferably 0.0060%, and still more preferably 0.0040%.
  • the chemical composition of the steel material of the present embodiment may further contain W: 0.500% or less instead of part of Fe.
  • W is an optional element and may not be contained.
  • W 0.500% or less
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%.
  • W enhances the hardenability of the steel material and enhances the strength of the steel material. If even a small amount of W is contained, the above effect can be obtained to some extent.
  • the W content exceeds 0.500%, the toughness of the steel material is lowered, and the cold forging crack resistance of the steel material is lowered. Therefore, the W content is 0 to 0.500%, and when included, the W content is 0.500% or less.
  • a preferable lower limit of the W content is more than 0%, more preferably 0.005%, and still more preferably 0.010%.
  • a preferable upper limit of the W content is 0.480%, more preferably 0.460%, and still more preferably 0.440%.
  • the chemical composition of the steel material of the present embodiment further includes Ca: 0.010% or less, Mg: 0.100% or less, rare earth elements (REM): 0.100% or less, and Bi: 0% instead of part of Fe. .300% or less, Te: 0.300% or less, and Zr: 0.300% or less. All of these elements are optional elements and may not be contained. When included, Ca, Mg, REM, Bi, Te and Zr all enhance the machinability of the steel. Ca, Mg, REM, Bi, Te and Zr are described below.
  • Ca 0.010% or less Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%.
  • Ca enhances the machinability of the steel material. If even a little Ca is contained, the above effect can be obtained to some extent.
  • the Ca content is 0-0.010%, and when included, the Ca content is 0.010% or less.
  • a preferable lower limit of the Ca content is more than 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Ca content is 0.008%, more preferably 0.006%, and still more preferably 0.004%.
  • Mg 0.100% or less
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%.
  • Mg enhances the machinability of the steel material. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.100%, the hot ductility of the steel material is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Mg content is 0-0.100%, and if included, the Mg content is 0.100% or less.
  • a preferable lower limit of the Mg content is more than 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Mg content is 0.090%, more preferably 0.085%, and still more preferably 0.080%.
  • Rare earth elements 0.100% or less
  • Rare earth elements are optional elements and may not be contained. That is, the REM content may be 0%.
  • REM enhances the machinability of steel. The above effect can be obtained to some extent if REM is contained even in a small amount. However, if the REM content exceeds 0.100%, the hot ductility of the steel is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the REM content is 0-0.100%, and if included, the REM content is 0.100% or less.
  • a preferable lower limit of the REM content is more than 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferred upper limit for the REM content is 0.090%, more preferably 0.085%, and even more preferably 0.080%.
  • Bi 0.300% or less Bismuth (Bi) is an optional element and may not be contained. That is, the Bi content may be 0%. When Bi is contained, Bi enhances the machinability of the steel material. If even a little Bi is contained, the above effect can be obtained to some extent. However, if the Bi content exceeds 0.300%, the hot ductility of the steel is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Bi content is 0-0.300%, and if included, the Bi content is 0.300% or less. A preferable lower limit of the Bi content is more than 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%. A preferable upper limit of the Bi content is 0.280%, more preferably 0.260%, and still more preferably 0.240%.
  • Te 0.300% or less
  • Tellurium (Te) is an optional element and may not be contained. That is, the Te content may be 0%.
  • Te enhances the machinability of the steel material. If even a little Te is contained, the above effect can be obtained to some extent.
  • the Te content is 0-0.300%, and if included, the Te content is 0.300% or less.
  • the lower limit of the Te content is preferably over 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Te content is 0.280%, more preferably 0.260%, and still more preferably 0.240%.
  • Zr 0.300% or less
  • Zircon (Zr) is an optional element and may not be contained. That is, the Zr content may be 0%.
  • Zr enhances the machinability of the steel material. If even a small amount of Zr is contained, the above effect can be obtained to some extent.
  • the Zr content exceeds 0.300%, the hot ductility of the steel material is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Zr content is 0-0.300%, and if included, the Zr content is 0.300% or less.
  • the lower limit of the Zr content is preferably over 0%, more preferably 0.001%, still more preferably 0.002%, still more preferably 0.003%.
  • a preferable upper limit of the Zr content is 0.280%, more preferably 0.260%, and still more preferably 0.240%.
  • the chemical composition of the steel material of this embodiment can be measured by a well-known component analysis method (JIS G 0321:2017). Specifically, chips are collected from the R/2 portion of the steel material using a drill. Here, the R/2 portion means the central portion of the radius R of the steel material in a cross section perpendicular to the axial direction (rolling direction) of the steel material. The collected chips are dissolved in acid to obtain a solution. ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry) is performed on the solution to perform elemental analysis of the chemical composition. The C content and S content are obtained by a well-known high-frequency combustion method (combustion-infrared absorption method). The N content is determined using the well-known inert gas fusion-thermal conductivity method.
  • JIS G 0321:2017 well-known component analysis method
  • a region from the surface to a depth of 100 ⁇ 20 ⁇ m means a region between the surface and a depth of D ⁇ m from the surface.
  • a position at a depth of 100 ⁇ 20 ⁇ m from the surface means that the depth D from the surface is within the range of 80 to 120 ⁇ m.
  • FIG. 1 is a diagram showing a region to be electrolyzed and removed by preliminary constant-current electrolysis.
  • FIG. 2 is a diagram showing a region electrolyzed by constant current electrolysis after preliminary constant current electrolysis.
  • An extraction residue is obtained. That is, the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue described above are the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue obtained in the substantial surface region RE1.
  • the outermost layer region RE0 removed by preliminary constant-current electrolysis includes scales formed on the steel material surface and impurities adhering to the steel material surface. Therefore, the outermost surface layer region RE0 was not used to measure the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue, and the Cr concentration in the extraction residue in the substantial surface layer region RE1 where the influence of scale and impurities was extremely small. [Cr] and Mo concentration [Mo] are measured.
  • the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue in the outermost layer region RE0 are the Cr concentration [Cr] and Mo concentration in the extraction residue in the substantial surface layer region RE1 It is considered that almost the same numerical value as the Mo concentration [Mo] is obtained.
  • a method for measuring the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue will be described below.
  • Galvanostatic electrolysis was performed on the cut surface coated sample using a 10% AA-based solution (solution containing 10% acetylacetone, 1% tetramethylammonium chloride, and 89% methanol solution in volume fraction). implement.
  • preliminary constant-current electrolysis is performed to remove the outermost layer region RE0 of the sample steel.
  • the sample steel is immersed in an alcohol solution.
  • ultrasonic cleaning is performed to remove deposits on the surface of the sample steel material. The mass of the sample steel material from which deposits have been removed, that is, the mass of the sample steel material before the constant current electrolysis is measured.
  • the 10% AA-based solution used in this constant-current electrolysis and the alcohol solution used in subsequent ultrasonic cleaning are suction filtered through a filter with a mesh size of 0.2 ⁇ m to extract residues. That is, the extraction residue in the substantial surface layer region RE1 electrolyzed by the constant current electrolysis is obtained.
  • the extraction residue is dissolved in acid to obtain a solution.
  • a chemical elemental analysis using ICP-AES is performed on the solution to obtain the Cr mass in the extraction residue and the Mo mass in the extraction residue.
  • the Cr concentration [Cr] (% by mass) in the extraction residue is obtained by dividing the Cr mass by the total mass of the extraction residue.
  • the Mo mass is divided by the total mass of the extraction residue to obtain the Mo concentration [Mo] (% by mass) in the extraction residue.
  • F1 [Cr] + [Mo].
  • the extraction residue of the substantial surface layer region RE1 obtained by the method described above contains inclusions and precipitates. Precipitates include carbides, carbonitrides and nitrides. However, the main types of extraction residues are carbides and carbonitrides. Therefore, although F1 indicates the total amount of Cr concentration and Mo concentration in the extraction residue, F1 can actually be an index of Cr concentration and Mo concentration in carbides and carbonitrides. If the Cr concentration and Mo concentration in the carbides and carbonitrides are high, the Cr concentration and Mo concentration dissolved in the steel material are also considered to be high. Therefore, F1 is also an index of the concentration of Cr and Mo dissolved in the surface layer of the steel material.
  • F1 is less than 10.0, the total amount of Cr concentration and Mo concentration in the extraction residue of the steel material surface layer is insufficient. In this case, the dissolved Cr concentration and the dissolved Mo concentration in the surface layer of the steel are insufficient. Therefore, during the pickling treatment, the specific oxides containing Cr and Mo are not sufficiently formed on the surface of the steel material. Therefore, even if the content of each element in the chemical composition of the steel is within the above range, hydrogen is excessively generated on the surface of the steel by pickling, and the generated hydrogen tends to penetrate into the steel. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is lowered.
  • the total amount of Cr concentration and Mo concentration in the extraction residue of the surface layer of the steel is excessively high.
  • the solid solution Cr concentration and the solid solution Mo concentration in the surface layer of the steel material are too high. Therefore, during the pickling of the steel material, an excessive amount of specific oxides are formed on the surface of the steel material.
  • the lubricating coating reacts with Fe on the surface of the steel material to enhance adhesion to the surface of the steel material.
  • the specific oxide when the specific oxide is excessively generated on the steel material surface, the specific oxide makes it difficult for the lubricating coating to react with Fe on the steel material surface. As a result, the adhesion of the lubricant to the surface of the steel material is reduced.
  • the total amount of Cr concentration and Mo concentration in the extraction residue of the surface layer of the steel material is an appropriate amount.
  • the solid solution Cr concentration and the solid solution Mo concentration in the surface layer of the steel are also appropriate amounts. Therefore, an appropriate amount of specific oxide is formed on the surface of the steel material during the pickling treatment. As a result, the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced. Furthermore, during the pickling treatment, the specific oxide is not excessively formed on the surface of the steel material. Therefore, in the lubricating coating treatment before wire drawing, the lubricating coating tends to react with Fe on the surface of the steel material. As a result, the adhesion of the lubricating coating to the surface of the steel material increases, and the lubricant adherence of the steel material increases.
  • a preferable lower limit of F1 is 11.0, more preferably 12.0, and still more preferably 13.0.
  • a preferable upper limit of F1 is 29.0, more preferably 28.0, and still more preferably 27.0.
  • the steel material of the present embodiment Preferably, the steel material of the present embodiment further satisfies characteristics 1 and 2, and further satisfies characteristic 3. (Feature 3)
  • the ratio of the number of carbides having an equivalent circle diameter of 0.8 ⁇ m or more to the number of carbides having an equivalent circle diameter of 0.5 ⁇ m or more is 5 to 20%. Feature 3 will be described below.
  • RN coarse carbide number ratio RN
  • carbides having an equivalent circle diameter of 0.8 ⁇ m or more are defined as “coarse carbides”.
  • the number ratio of coarse carbides to the number of carbides having an equivalent circle diameter of 0.5 ⁇ m or more is defined as coarse carbide number ratio RN (%).
  • carbides with an equivalent circle diameter of 0.5 ⁇ m or more are substantially cementite (Fe 3 C), and other carbides (including carbonitrides) can be ignored.
  • the steel material satisfies the features 1 and 2, there is no particular limitation on the coarse carbide number ratio RN, and the hydrogen embrittlement resistance of the steel material after the pickling treatment is enhanced, as well as the lubricant adhesion.
  • the coarse carbide number ratio RN in the steel material that satisfies feature 1 and feature 2 is 5 to 20%. If the coarse carbide number ratio RN is 5% or more, the hydrogen embrittlement resistance of the steel material after the pickling treatment is further enhanced. Further, if the coarse carbide number ratio RN is 20% or less, the lubricant adhesion of the steel material is further enhanced. Therefore, the preferred coarse carbide number ratio RN is 5 to 20%. A more preferable lower limit of the coarse carbide number ratio RN is 6%, more preferably 7%, and still more preferably 8%. A more preferable upper limit of the coarse carbide number ratio RN is 19%, more preferably 18%, and still more preferably 17%.
  • the coarse carbide number ratio RN of the steel material can be measured by the following method.
  • the steel material is cut perpendicularly to the axial direction (rolling direction) of the steel material at six different positions in the longitudinal direction of the steel material, and six sample steel materials are collected.
  • a cross section perpendicular to the axial direction of the sample steel corresponds to the cross section of the steel.
  • a cut surface perpendicular to the axial direction of the surface of each sample steel material is used as an observation surface.
  • the viewing surface is etched with a picral etchant to reveal the carbide.
  • the observation area is the area from the surface of the steel material to a depth of 100 ⁇ m to 200 ⁇ m (substantial surface region RE1).
  • a scanning electron microscope is used to generate photographic images (secondary electron images) of any six fields of view at a magnification of 5000 out of the observation area.
  • the area of each field of view is 19 ⁇ m ⁇ 25 ⁇ m.
  • the chars are identified by contrast in the photographic image of each field. Calculate the equivalent circle diameter of the specified carbide.
  • carbides having an equivalent circle diameter of 0.5 ⁇ m or more are to be measured.
  • the number of carbides with an equivalent circle diameter of 0.5 ⁇ m or more and the number of carbides with an equivalent circle diameter of 0.8 ⁇ m or more (coarse carbides) in each field of view are determined.
  • the ratio (%) of the total number of coarse carbides with respect to the total number of carbides with an equivalent circle diameter of 0.5 ⁇ m or more in all fields of view (6 ⁇ 6 36 fields of view: total area 17400 ⁇ m 2 ), the coarse carbide number ratio RN (%).
  • the microstructure of the steel material according to this embodiment is not particularly limited.
  • the steel material of this embodiment is used as a material for mechanical structural parts. Then, heat treatment such as refining treatment is performed during the manufacturing process of the mechanical structural parts. In other words, the structure of the steel material used as the raw material undergoes a phase transformation due to heat treatment such as refining treatment. Therefore, as described above, the microstructure itself of the steel material used as the material for the machine structural parts is not particularly limited.
  • the microstructure of the steel material of this embodiment is, for example, a structure containing a BCC phase, which is a phase whose crystal structure is a body-centered cubic (BCC), and carbides arranged in the BCC phase. .
  • BCC structure A structure consisting of a BCC phase and carbides dispersed in the BCC phase is referred to herein as a "BCC structure.”
  • Carbide contained in the BCC structure is, for example, cementite.
  • the cementite may be lamellar cementite or spherical cementite.
  • Cementite may be present in the BCC phase in the form of dots.
  • Microstructures can be identified by the following methods.
  • a test piece including the R/2 portion is taken from a section perpendicular to the axial direction (rolling direction) of the steel material.
  • the surface corresponding to the cross section perpendicular to the axial direction of the steel material is used as the observation surface.
  • the observation surface is mirror-polished, the observation surface is etched using 2% nitric acid alcohol (nital etchant).
  • the R/2 portion in the etched observation surface is observed using a 400x optical microscope.
  • the area of the observation field is 500 ⁇ m ⁇ 500 ⁇ m.
  • the BCC phase and carbide can be identified from the contrast and morphology.
  • the steel material of this embodiment may be a steel bar or a wire rod.
  • the diameter of the steel material is not particularly limited.
  • the diameter of the steel material is, for example, 5-50 mm.
  • the steel material of this embodiment is excellent in hydrogen embrittlement resistance and lubricant adhesion after pickling treatment when descaling treatment is performed by pickling treatment. Therefore, it is suitable as a steel material for cold working applications such as wire drawing and cold forging. However, the steel material of this embodiment can of course be used for applications other than cold working applications.
  • An example of the steel manufacturing method according to the present embodiment includes the following steps.
  • (Step 1) Material preparation step (Step 2) Hot working step (Step 3) Descaling treatment step (Step 4) Spheroidizing annealing step Each step will be described below.
  • Step 1 Material preparation step
  • a material is prepared in which the content of each element in the chemical composition is within the range of the present embodiment.
  • the material is manufactured, for example, by the following method.
  • a molten steel whose chemical composition satisfies feature 1 is produced.
  • molten steel a raw material (slab or ingot) is produced by casting.
  • molten steel is used to produce a slab (bloom) by a well-known continuous casting method.
  • an ingot is produced by a well-known ingot casting method using molten steel.
  • Hot working is performed on the prepared material to produce an intermediate steel material.
  • hot rolling is performed as hot working, for example, there are the following methods.
  • the hot working process which is based on hot rolling, includes a rough rolling process in which a raw material is roughly rolled into a billet, and a finish rolling process in which the billet is finish-rolled into an intermediate steel material.
  • the rough rolling step includes the following steps. After heating the raw material (ingot or cast piece), it is bloomed using a blooming mill. If necessary, after blooming, it is further rolled by a continuous rolling mill to produce a billet. In a continuous rolling mill, horizontal roll stands and vertical roll stands are alternately arranged in a row. The raw material is rolled into a billet using grooves formed on rolling rolls of each stand of the continuous rolling mill.
  • the finish rolling process includes the following processes.
  • the billet is put into a heating furnace and heated.
  • the heated billet is subjected to finish rolling (hot rolling) in a row of finishing rolling mills to produce an intermediate steel product.
  • a finishing mill train includes a plurality of stands arranged in a row. Each stand includes multiple rolls arranged around the pass line.
  • a billet is rolled using grooves formed on rolling rolls of each stand to produce an intermediate steel material.
  • Step 3 Descaling treatment step
  • oxide scale formed on the surface of the intermediate steel material produced in the hot working step is removed.
  • the descaling process includes a pickling treatment process and a water washing process. Each step will be described below.
  • the intermediate steel material is immersed in an acid solution to remove oxide scale on the surface of the intermediate steel material.
  • the pickling treatment step is performed, for example, under the following conditions 1 to 3.
  • Condition 1 Acid solution temperature T1 (°C): 30 to 60°C
  • Condition 2 Hydrochloric acid concentration C1 (% by mass) of acidic solution: 5.0 to 20.0% by mass
  • Condition 3 Immersion time t1 (minutes) in acidic solution: 2.0 to 10.0 minutes
  • Conditions 1 to 3 are described below.
  • the amounts of Cr and Mo that migrate (diffuse) from the carbides in the intermediate steel material to the surface of the steel material and are absorbed by the oxide scale increase. Therefore, in the steel material, the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue become too low.
  • the surface of the intermediate steel material after the pickling process will: Oxidized scale is not sufficiently removed. Therefore, in the subsequent spheroidizing annealing, the oxide scale formed on the surface of the intermediate steel is insufficient. In this case, the amounts of Cr and Mo that migrate (diffuse) from the carbides in the intermediate steel material to the surface of the steel material and are absorbed by the oxide scale become insufficient. Therefore, in the steel material, the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue become too high.
  • the acid solution temperature T1 is 30 to 60° C.
  • the hydrochloric acid concentration C1 of the acid solution is 5.0 to 20.0% by mass
  • the immersion time t1 is 2.0 to 10.0 minutes, other production
  • the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue of the steel are within appropriate ranges.
  • a preferable lower limit of the acidic solution temperature T1 is 33°C, and a preferable upper limit is 57°C.
  • a preferable lower limit of the hydrochloric acid concentration C1 of the acidic solution is 5.3% by mass, and a preferable upper limit is 19.7% by mass.
  • a preferred lower limit for the immersion time t1 is 2.3 minutes, and a preferred upper limit is 9.7 minutes.
  • the intermediate steel material after the pickling treatment process is immersed in a water tank to remove the acid solution adhering to the surface of the intermediate steel material.
  • the washing process is performed under the following condition 4.
  • Condition 4 Immersion time tw in water tank: 1.0 to 5.0 minutes
  • the immersion time tw is too long, the acid solution remaining on the surface of the intermediate steel material after the pickling process will be insufficient.
  • the surface of the intermediate steel material is less likely to oxidize during the subsequent spheroidizing annealing process. Therefore, during spheroidizing annealing, it becomes difficult for Cr and Mo to migrate from the carbides in the intermediate steel material to the surface of the steel material. As a result, the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue of the steel become too high.
  • the immersion time tw in the water tank is 1.0 to 5.0 minutes, the Cr concentration [Cr] and Mo concentration [Mo] in the extraction residue of the steel are Appropriate range.
  • a preferable lower limit of the immersion time tw in the water tank is 1.3 minutes, and a preferable upper limit is 4.7 minutes.
  • the temperature of the water in the water tank is, for example, 10-50.degree.
  • the temperature of the water is normal temperature (5-35°C).
  • Step 4 Spheroidizing annealing step
  • the intermediate steel material after the descaling treatment process is subjected to spheroidizing annealing to produce the steel material of the present embodiment.
  • carbides typified by cementite are spheroidized to enhance the cold workability of the steel material.
  • the spheroidizing annealing step is performed, for example, under conditions 5 to 7 below.
  • Condition 6 Annealing temperature T2: 680-840°C
  • Condition 7 Annealing time t2: 0.1 to 3.0 hours
  • Conditions 5 to 7 will be described below.
  • a reducing gas is introduced into the atmosphere in order to suppress surface oxidation of the intermediate steel material during annealing.
  • the reducing gas is, for example, one or more selected from the group consisting of CO, H2 and hydrocarbon gases. If the reducing gas concentration in the atmosphere is too low compared to the oxygen concentration in the atmosphere, the surface of the intermediate steel material will be excessively oxidized. In this case, excessive Cr and Mo migrate from the carbides in the intermediate steel to the surface of the steel. As a result, the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue of the steel material become low.
  • Annealing temperature T2 in the spheroidizing annealing step is, for example, 680 to 840° C.
  • annealing time t2 is, for example, 0.1 to 3.0 hours. If the annealing temperature T2 and the annealing time t2 are within the ranges described above, the Cr concentration [Cr] and the Mo concentration [Mo] in the extraction residue of the steel are within appropriate ranges.
  • Preferred annealing temperature T2 and preferred annealing time t2 are as follows.
  • Annealing temperature T2 700-800°C
  • Annealing time t2 0.5 to 2.0 hours
  • the number of coarse carbides in the surface layer region of the steel material is The ratio RN becomes 5 to 20%.
  • the hydrogen embrittlement resistance of the steel material during pickling is further enhanced, and the lubricant adhesion is further enhanced.
  • the steel material according to the present embodiment is manufactured through the manufacturing process described above.
  • the steel material of the present embodiment is used as a material for structural machine parts.
  • descaling treatment including pickling treatment may be performed on the steel material during the manufacturing process of the structural machine component.
  • the descaling-treated steel material is subjected to lubricating coating treatment and then to wire drawing.
  • the steel material of the present embodiment is excellent after the pickling treatment. It is possible to achieve both excellent hydrogen embrittlement resistance and excellent lubricant adhesion.
  • the effect of one aspect of the steel material of this embodiment will be explained more specifically by way of examples.
  • the conditions in the following examples are examples of conditions adopted for confirming the feasibility and effect of the steel material of this embodiment. Therefore, the steel material of this embodiment is not limited to this one condition example.
  • “-" in Tables 1-1 and 1-2 means that the content of the corresponding element is 0% in significant figures (values up to the least significant digit) specified in the embodiment. In other words, it means that the corresponding element content is 0% when rounded off to the specified significant digits (values up to the least significant digit) in the above embodiment.
  • the Cu content specified in the present embodiment is specified by a numerical value up to the second decimal place. Therefore, for test number 1 in Table 1-1, it means that the measured Cu content was 0% when rounded to the third decimal place.
  • the Ni content specified in the present embodiment is specified by a numerical value up to the second decimal place.
  • test number 1 in Table 1-1 it means that the measured Ni content was 0% when rounded to the third decimal place.
  • Rounding off means rounding down if the digit (fraction) below the defined minimum digit is less than 5, and rounding up if it is 5 or more.
  • Blooms were manufactured by continuously casting each of the molten steels in Tables 1-1 and 1-2.
  • the bloom was subjected to hot working steps (rough rolling step and finish rolling step). Specifically, in the rough rolling step, after heating the bloom to 1200° C., hot rolling was performed to produce a billet having a cross-sectional shape of 160 mm ⁇ 160 mm.
  • the descaling process was performed on the intermediate steel.
  • Table 2 shows the temperature T1 (° C.) of the acid solution, the concentration C1 (mass %) of hydrochloric acid in the acid solution, and the immersion time t1 (minutes) of the acid solution in the pickling process.
  • Table 2 shows the immersion time tw (minutes) of the water tank in the water washing step. The temperature of the water in the water tank used in the washing process was 25°C.
  • a spheroidizing annealing process was performed on the steel bar after the descaling process.
  • Table 2 shows the gas concentration ratio RG, annealing temperature T2 (°C), and annealing time t2 (hours) in the spheroidizing annealing.
  • a steel material (steel bar) was manufactured by the manufacturing process described above. The diameter of the steel material was 10-40 mm.
  • test specimens with a diameter of 10 mm and a length of 500 mm were obtained by cutting perpendicularly to the axial direction (rolling direction) from four different locations in the steel material after the water washing process.
  • the shape of the test piece was JIS Z 2241:2011 stipulated No. 14A test piece.
  • the four specimens were divided into two groups of two (group 1 and group 2).
  • a tensile test was performed 1 hour after the completion of the water washing process.
  • the tensile test was performed on the group 1 test pieces in a state in which they may have been embrittled by hydrogen that has penetrated into the steel material during the pickling process.
  • the two test pieces of group 2 were left in the air at room temperature for 168 hours (one week) after the completion of the water washing step, and dehydrogenated from the test pieces. Then, a tensile test was performed on the test piece after dehydrogenation. That is, the specimens of Group 2 were subjected to the tensile test without the possibility of hydrogen embrittlement.
  • a tensile test conforming to JIS B 1051:2014 was carried out at room temperature (25°C) in the atmosphere to determine the tensile strength (MPa) of two test pieces. Then, the arithmetic mean value of the tensile strength (MPa) of the two pieces was defined as the tensile strength (MPa) of each group (group 1 or group 2). Specifically, the arithmetic mean value of the two tensile strengths of group 1 is defined as tensile strength 1 (MPa), and the arithmetic mean value of the tensile strengths of the two test pieces of group 2 is tensile strength 2 (MPa). defined as
  • a lubricating coating was applied to the steel material after the water washing process. Specifically, the steel material was subjected to chemical conversion treatment to form a phosphate coating on the surface of the steel material.
  • the bath temperature of the phosphate bath was 70° C., and the treatment time was 10 minutes.
  • the phosphate was zinc phosphate.
  • the steel material was immersed for 10 minutes in a soap treatment liquid containing a soap lubricant containing sodium stearate as a main component to adhere soap (metallic soap and unreacted soap) onto the phosphate coating.
  • Lubricants (soap and phosphate coating) were applied to the surface of the steel material through the above steps.
  • test pieces each having a diameter of 10 mm and a length of 200 mm were obtained by cutting perpendicularly to the axial direction from five different points in the axial direction of the steel material to which the lubricant was applied.
  • the total weight 1 of the five test pieces was determined.
  • the five test pieces were immersed in an aqueous chromic acid solution at 70° C. for 15 minutes to completely remove the lubricant.
  • the total weight 2 of the 5 test pieces after immersion was determined.
  • the value obtained by subtracting the total weight 2 from the total weight 1 was defined as the lubricant adhesion amount (g).
  • Evaluation A Lubricating adhesion amount LA is 10 g/m 2 or more Evaluation B: Lubricating adhesion amount LA is 8 to less than 10 g/m 2 Evaluation C: Lubricating adhesion amount LA is 6 to 8 g/m 2 Evaluation D: Lubricating adhesion amount LA is 4 to 6 g/m 2 or less Evaluation E: Lubricant adhesion amount LA is 2 to 4 g/m 2 or less Evaluation X: Lubricant adhesion amount LA is less than 2 g/m 2 Evaluation A to Evaluation E, excellent lubricant adhesion I decided. In the case of evaluation X, it was determined that the lubricant adhesion of the steel material was low. Table 2 shows the evaluation results.
  • test numbers 1 to 44 and 47 to 50 the coarse carbide number ratio RN was 5 to 20%. Therefore, compared with Test Nos. 45, 46, 51 and 52, they exhibited better hydrogen embrittlement resistance or better lubricant adhesion.
  • test number 54 The P content of test number 54 was too high. Therefore, the hydrogen embrittlement resistance of the steel material was low.
  • the S content of test number 55 was too high. Therefore, the hydrogen embrittlement resistance of the steel material was low.
  • test number 56 The Al content of test number 56 was too low. Therefore, the hydrogen embrittlement resistance of the steel material was low.
  • the N content of test number 57 was too low. Therefore, the hydrogen embrittlement resistance of the steel material was low.
  • test number 58 the temperature T1 of the acid solution in the pickling process was low. Therefore, the F1 value exceeded the upper limit of formula (1). As a result, the lubricant adhesion of the steel material was low.
  • test number 59 the hydrochloric acid concentration C1 of the acid solution in the pickling process was low. Therefore, the F1 value exceeded the upper limit of formula (1). As a result, the lubricant adhesion of the steel material was low.
  • test number 60 the immersion time t1 in the pickling process was short. Therefore, the F1 value exceeded the upper limit of formula (1). As a result, the lubricant adhesion of the steel material was low.
  • test number 61 the temperature T1 of the acid solution in the pickling process was high. Therefore, the F1 value was less than the lower limit of formula (1). As a result, the hydrogen embrittlement resistance of the steel material was low.
  • the acid solution had a high hydrochloric acid concentration C1 in the pickling process. Therefore, the F1 value was less than the lower limit of formula (1). As a result, the hydrogen embrittlement resistance of the steel material was low.
  • test number 63 the immersion time t1 in the pickling process was long. Therefore, the F1 value was less than the lower limit of formula (1). As a result, the hydrogen embrittlement resistance of the steel material was low.
  • test number 65 although the chemical composition was appropriate, the water washing time tw in the water washing process was too short. Therefore, F1 was less than the lower limit of Formula (1). As a result, the hydrogen embrittlement resistance of the steel material was low.
  • test number 66 Although the chemical composition was appropriate, the gas concentration ratio RG in the atmosphere in the spheroidizing annealing process was too high. Therefore, F1 exceeded the upper limit of formula (1). As a result, the lubricant adhesion of the steel material was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

酸洗処理が実施された後の耐水素脆化特性に優れ、かつ、潤滑剤付着性に優れる鋼材を提供する。本実施形態の鋼材は、質量%で、C:0.30~0.50%、Si:0.40%以下、Mn:0.10~0.60%、P:0.030%以下、S:0.030%以下、Cr:0.90~1.80%、Mo:0.30~1.00%、Al:0.005~0.100%、N:0.003~0.030%、及び、残部はFe及び不純物からなり、予備定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域を電解して除去した後、本定電流電気分解により鋼材の表面から100±20μm深さ位置までの領域をさらに電解して得られた抽出残渣中のCr濃度を[Cr](質量%)と定義し、抽出残渣中のMo濃度を[Mo](質量%)と定義したとき、式(1)を満たす。 10.0≦[Cr]+[Mo]≦30.0 (1)

Description

鋼材
 本開示は、鋼材に関する。
 ボルト等の冷間鍛造部品に代表される、機械構造用部品の製造工程は次のとおりである。例えば、球状化焼鈍された鋼材に対して、鋼材のスケールの除去を目的とした脱スケール処理を実施する。脱スケール処理では、鋼材に対して酸洗処理を実施する。脱スケール処理後の鋼材に対して、潤滑被膜処理を実施して、鋼材表面に潤滑剤を付与する。潤滑剤が付与された鋼材に対して、伸線加工を実施して、鋼線を製造する。鋼線を鍛造して中間品を製造する。中間品に対して熱処理(調質処理等)を実施して、機械構造用部品を製造する。鍛造後の中間品に対して切削加工が実施される場合もある。
 上述のとおり、機械構造用部品に用いられる鋼材では、寸法精度を高めるために、鍛造が実施される前に、伸線加工(冷間引抜加工)等の加工が実施される場合がある。伸線ダイスとの焼付きが発生するのを抑制するために、伸線加工前の鋼材には、潤滑被膜処理が実施される。潤滑被膜処理では、鋼材表面に潤滑被膜が形成される。例えば、鋼材の表面に化成処理被膜が形成される。さらに、化成処理被膜上に石けん(金属石けん等)が付着される。
 上述の製造工程において、脱スケール処理後であって潤滑被膜処理前の鋼材表面にスケールが残存している場合、潤滑被膜の付着量が不十分となる。つまり、鋼材の潤滑剤付着性が低下する。この場合、伸線加工時に焼付きが発生する。また、脱スケール処理では、酸洗処理が実施される。酸洗処理では鋼材表面に水素が発生する。酸洗処理時に発生した水素が鋼材内部に侵入すると、鋼材の耐水素脆化特性が低下する。したがって、脱スケール処理及びその後の伸線加工の実施が予定される、機械構造用部品用途の鋼材では、優れた耐水素脆化特性及び優れた潤滑剤付着性の両立が求められる。
 機械構造用部品の素材に適用可能な鋼材が、国際公開第2015/189978号(特許文献1)及び、特開2013-237903号公報(特許文献2)に提案されている。
 特許文献1に開示された鋼材は、質量%で、C:0.005~0.60%、Si:0.01~0.50%、Mn:0.20~1.80%、Al:0.01~0.06%、P:0.04%以下、S:0.05%以下、N:0.01%以下、Cr:0~1.50%、Mo:0~0.50%、Ni:0~1.00%、V:0~0.50%、B:0~0.0050%、Ti:0~0.05%を含有し、残部がFe及び不純物からなる。この鋼材の金属組織は、パーライトを含む。パーライト中のセメンタイトに含まれる原子%でのMn含有量を、パーライト中のフェライトに含まれる原子%でのMn含有量で割った値は、0超5.0以下である。この鋼材では、化学組成や金属組織を制御し、さらに、パーライト中のセメンタイト及びフェライトに関するMn分配比を調整する。これにより、球状化焼鈍処理時間を短縮できる、と特許文献1には記載されている。
 特許文献2に開示されたボルト用鋼材は、質量%で、C:0.30~0.40%、Si:0.01~0.40%、Mn:0.10~1.0%、P:0.030%以下、S:0.030%以下、Al:0.005~0.10%、Cr:0.90~1.8%、Mo:0.10~2.0%、N:0.003~0.030%、Nb:0~0.10%、残部がFe及び不純物からなる。鋼材中において、円相当径0.5μm以上の炭化物のうち円相当径1.0μm以上の炭化物の個数比率は10%以下である。この鋼材では、粗大な炭化物の個数比率を低減させる。これにより、焼入れ時に炭化物を十分固溶させ、ボルト製品の引張強さのばらつきを低減できる、と特許文献2には記載されている。
国際公開第2015/189978号 特開2013-237903号公報
 しかしながら、特許文献1及び特許文献2では、脱スケール処理として、伸線加工前に酸洗処理された鋼材の耐水素脆化特性、及び、伸線加工前の潤滑被膜処理での鋼材の潤滑剤付着性について検討されていない。
 本開示の目的は、脱スケールを目的とした酸洗処理後の耐水素脆化特性に優れ、かつ、潤滑剤付着性に優れた鋼材を提供することである。
 本開示による鋼材は、次の構成を有する。
 鋼材であって、
 質量%で、
 C:0.30~0.50%、
 Si:0.40%以下、
 Mn:0.10~0.60%、
 P:0.030%以下、
 S:0.030%以下、
 Cr:0.90~1.80%、
 Mo:0.30~1.00%、
 Al:0.005~0.100%、
 N:0.003~0.030%、及び、
 残部はFe及び不純物からなり、
 予備定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域を電解して除去した後、本定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域をさらに電解して得られた抽出残渣中のCr濃度を[Cr](質量%)と定義し、前記抽出残渣中のMo濃度を[Mo](質量%)と定義したとき、式(1)を満たす、
 鋼材。
 10.0≦[Cr]+[Mo]≦30.0 (1)
 本開示による鋼材は、脱スケールを目的とした酸洗処理後の耐水素脆化特性に優れ、かつ、潤滑剤付着性に優れる。
図1は、予備定電流電気分解により電解されて除去される領域を示す図である。 図2は、予備定電流電気分解後に、定電流電気分解により電解される領域を示す図である。
 初めに、本発明者らは、ボルト等の冷間鍛造部品に代表される、機械構造用部品の素材として適用可能な鋼材を、化学組成の観点から検討した。本発明者らはさらに、鋼材に対して、脱スケールを目的とした酸洗処理を実施した場合、酸洗処理後の鋼材で水素脆化が発生する要因について調査及び検討を行った。その結果、本発明者らは次の知見を得た。
 鋼材に対して酸洗処理を実施した場合、鋼材の表面が溶解する。そして、溶解に伴って鋼材表面に水素が発生する。鋼材表面で発生した水素が鋼材内部に侵入すれば、粒界に水素が集積する。その結果、酸洗処理後の鋼材において、水素脆化が発生する。
 このような酸洗処理後の鋼材の水素脆化を抑制するために、化学組成的観点から、以下の手段が考えられる。
 (A)鋼材の結晶粒の強度を高める。具体的には、粒界に偏析して粒界強度を下げる元素であるMn、P、Sの含有をなるべく抑制する。
 (B)鋼材の結晶粒の粗大化を抑制して、水素の局所的な集積の集中を抑制する。具体的には、AlNによるピンニング効果を利用する。そのため、Al及びNを適正量含有する。
 以上の技術思想を考慮して、本発明者らは、機械構造用部品の素材に適用可能な鋼材の化学組成として、質量%で、C:0.30~0.50%、Si:0.40%以下、Mn:0.10~0.60%、P:0.030%以下、S:0.030%以下、Cr:0.90~1.80%、Mo:0.30~1.00%、Al:0.005~0.100%、N:0.003~0.030%、Cu:0~0.40%、Ni:0~0.40%、V:0~0.50%、Ti:0~0.100%、Nb:0~0.100%、B:0~0.0100%、W:0~0.500%、Ca:0~0.010%、Mg:0~0.100%、希土類元素:0~0.100%、Bi:0~0.300%、Te:0~0.300%、Zr:0~0.300%、及び、残部はFe及び不純物からなる化学組成であれば、酸洗処理後の鋼材の水素脆化を抑制できると考えた。
 本発明者らはさらに、化学組成以外の観点から、酸洗処理後の鋼材の耐水素脆化特性を高める手段を検討した。その結果、本発明者らは、次の知見を得た。
 酸洗処理では、鋼材の表面から100μm深さ~200μm深さ程度までの領域である表層領域の鋼部分が溶解する。したがって、表層領域の鋼部分の過剰な溶解を抑制できれば、水素の過剰な発生が抑制される。ここで、酸洗処理時において、Cr及びMoは、鋼材表面に緻密な酸化物を形成する。本明細書において、Cr及び/又はMoを含有する酸化物を「特定酸化物」と称する。酸洗処理時において、特定酸化物が鋼材表面に形成されれば、酸性溶液が鋼材表層に直接接触するのを抑制できる。その結果、酸洗処理時において、表層領域の鋼部分の過剰な溶解が抑制され、水素の過剰な発生が抑制される。鋼材表面に形成された特定酸化物はさらに、鋼材表面で発生した水素の侵入を抑制する。したがって、鋼材の表層領域のCr濃度及びMo濃度を適切な範囲とすることにより、酸洗処理中の水素の発生及び水素の鋼材中への侵入を抑制できる。
 Cr及びMoは炭化物及び炭窒化物に含有され、濃化する。ここで、上述の化学組成の鋼材の表層領域を電解抽出法により電解して得られた抽出残渣中のCr濃度を、[Cr](質量%)と定義する。さらに、上記抽出残渣中のMo濃度を、[Mo](質量%)と定義する。表層領域の抽出残渣(介在物及び析出物)の主たる種類は炭化物及び炭窒化物である。以下、本明細書において、炭化物及び炭窒化物を「炭化物等」ともいう。したがって、表層領域の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]は、炭化物等中のCr濃度及びMo濃度の指標となる。
 そこで、本発明者らは、表層領域の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]と、酸洗処理後の鋼材の耐水素脆化特性との関係について調査及び検討を行った。その結果、化学組成中の各元素含有量が上述の範囲である鋼材において、表層領域の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の総量が10.0%以上であれば、酸洗処理後の鋼材の耐水素脆化特性が高まることを見出した。
 一方、表層領域の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の総量が過剰に高ければ、脱スケールを目的とした酸洗処理後であって、伸線加工前に実施される潤滑被膜処理において、潤滑被膜が鋼材に十分に付着しない場合があった。そこで、本発明者らは、酸洗処理後の鋼材の耐水素脆化特性を高めつつ、潤滑剤付着性も高める手段についてさらに検討を行った。そこで、本発明者らは、潤滑剤付着性が低下する要因について検討した。その結果、酸洗処理後の鋼材の表面に特定酸化物が過剰に形成されている場合、潤滑被膜が十分に付着しないことが判明した。
 以上の知見に基づいて、本発明者らは、表層領域の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の総量についてさらに検討を行った。その結果、化学組成中の各元素含有量が上述の範囲である鋼材において、表層領域の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の総量が10.0%以上であり、かつ、30.0%以下であれば、酸洗処理後の鋼材の優れた耐水素脆化特性と、優れた潤滑剤付着性との両立が可能となることを、本発明者らは見出した。
 本実施形態の鋼材は、上述の技術思想に基づいて完成したものである。本実施形態の鋼材は次の構成を有する。
 [1]
 鋼材であって、
 質量%で、
 C:0.30~0.50%、
 Si:0.40%以下、
 Mn:0.10~0.60%、
 P:0.030%以下、
 S:0.030%以下、
 Cr:0.90~1.80%、
 Mo:0.30~1.00%、
 Al:0.005~0.100%、
 N:0.003~0.030%、及び、
 残部はFe及び不純物からなり、
 予備定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域を電解して除去した後、本定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域をさらに電解して得られた抽出残渣中のCr濃度を[Cr](質量%)と定義し、前記抽出残渣中のMo濃度を[Mo](質量%)と定義したとき、式(1)を満たす、
 鋼材。
 10.0≦[Cr]+[Mo]≦30.0 (1)
 [2]
 [1]に記載の鋼材であって、
 円相当径が0.5μm以上の炭化物の個数に対する、円相当径が0.8μm以上の炭化物の個数割合RNは、5~20%である、
 鋼材。
 [3]
 [1]又は[2]に記載の鋼材であってさらに、
 Feの一部に代えて、
 Cu:0.40%以下、
 Ni:0.40%以下、
 V:0.50%以下、
 Ti:0.100%以下、
 Nb:0.100%以下、
 B:0.0100%以下、
 W:0.500%以下、
 Ca:0.010%以下、
 Mg:0.100%以下、
 希土類元素:0.100%以下、
 Bi:0.300%以下、
 Te:0.300%以下、及び、
 Zr:0.300%以下、
 からなる群から選択される1種以上を含有する、
 鋼材。
 以下、本実施形態による鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [本実施形態の鋼材の特徴]
 本実施形態の鋼材は、次の特徴1及び特徴2を満たす。
 (特徴1)
 化学組成が、質量%で、C:0.30~0.50%、Si:0.40%以下、Mn:0.10~0.60%、P:0.030%以下、S:0.030%以下、Cr:0.90~1.80%、Mo:0.30~1.00%、Al:0.005~0.100%、N:0.003~0.030%、Cu:0~0.40%、Ni:0~0.40%、V:0~0.50%、Ti:0~0.100%、Nb:0~0.100%、B:0~0.0100%、W:0~0.500%、Ca:0~0.010%、Mg:0~0.100%、希土類元素:0~0.100%、Bi:0~0.300%、Te:0~0.300%、Zr:0~0.300%、及び残部はFe及び不純物からなる。
 (特徴2)
 予備定電流電気分解により鋼材の表面から100±20μm深さ位置までの領域を電解して除去した後、本定電流電気分解により鋼材の表面から100±20μm深さ位置までの領域をさらに電解して得られた抽出残渣中のCr濃度を[Cr](質量%)と定義し、抽出残渣中のMo濃度を[Mo](質量%)と定義したとき、式(1)を満たす。
 10.0≦[Cr]+[Mo]≦30.0 (1)
 以下、特徴1及び特徴2について説明する。
 [(特徴1)化学組成について]
 本実施形態による鋼材の化学組成は、次の元素を含有する。
 C:0.30~0.50%
 炭素(C)は、鋼材の焼入れ性を高めて鋼材の強度を高める。C含有量が0.30%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、C含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下する。この場合、鋼材を素材として冷間鍛造部品を製造する工程において、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、C含有量は0.30~0.50%である。
 C含有量の好ましい下限は0.31%であり、さらに好ましくは0.32%であり、さらに好ましくは0.33%である。
 C含有量の好ましい上限は0.48%であり、さらに好ましくは0.46%であり、さらに好ましくは0.44%である。
 Si:0.40%以下
 シリコン(Si)は不純物である。Siは鋼材の靱性を低下する。Si含有量が0.40%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が顕著に低下し、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、Si含有量は0.40%以下である。
 Si含有量はなるべく低い方が好ましい。しかしながら、Si含有量の過剰な低減は、生産性を低下し、製造コストを高める。したがって、通常の工業生産を考慮した場合、Si含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
 Si含有量の好ましい上限は0.38%であり、さらに好ましくは0.36%であり、さらに好ましくは0.34%である。
 Mn:0.10~0.60%
 マンガン(Mn)は鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高めて鋼材の強度を高める。Mn含有量が0.10%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Mn含有量が0.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Mnが結晶粒界に過剰に偏析して、粒界強度を低下させる。その結果、鋼材の耐水素脆化特性が低下する。
 したがって、Mn含有量は0.10~0.60%である。
 Mn含有量の好ましい下限は0.12%であり、さらに好ましくは0.14%であり、さらに好ましくは0.16%である。
 Mn含有量の好ましい上限は0.58%であり、さらに好ましくは0.56%であり、さらに好ましくは0.54%である。
 P:0.030%以下
 リン(P)は不純物である。Pは鋼材の結晶粒界に偏析して、粒界強度を低下させる。P含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粒界強度の低下に起因して、酸洗処理後の鋼材の耐水素脆化特性が低下する。
 したがって、P含有量は0.030%以下である。
 P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、生産性を低下し、製造コストを高める。したがって、通常の工業生産を考慮した場合、P含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 P含有量の好ましい上限は0.028%であり、さらに好ましくは0.026%であり、さらに好ましくは0.024%である。
 S:0.030%以下
 硫黄(S)は不純物である。Sは鋼材の結晶粒界に偏析して、粒界強度を低下させる。S含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、酸洗処理後の鋼材の耐水素脆化特性が低下する。
 したがって、S含有量は0.030%以下である。
 S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は、生産性を低下し、製造コストを高める。したがって、通常の工業生産を考慮した場合、S含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 S含有量の好ましい上限は0.028%であり、さらに好ましくは0.026%であり、さらに好ましくは0.024%である。
 Cr:0.90~1.80%
 クロム(Cr)は、炭化物に固溶して、酸洗処理時において、Cr及びMoを含有する特定酸化物を鋼材表面に形成する。この特定酸化物の形成により、過剰酸洗による水素の発生が抑制される。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Crはさらに、鋼材の焼入れ性を高めて鋼材の強度を高める。Cr含有量が0.90%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Cr含有量が1.80%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下して、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、Cr含有量は0.90~1.80%である。
 Cr含有量の好ましい下限は0.91%であり、さらに好ましくは0.92%であり、さらに好ましくは0.93%である。
 Cr含有量の好ましい上限は1.75%であり、さらに好ましくは1.70%であり、さらに好ましくは1.65%である。
 Mo:0.30~1.00%
 モリブデン(Mo)は、炭化物に固溶して、酸洗処理時において、Cr及びMoを含有する特定酸化物を鋼材表面に形成する。この特定酸化物の形成により、過剰酸洗による水素の発生が抑制される。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Moはさらに、鋼材の焼入れ性を高めて鋼材の強度を高める。Mo含有量が0.30%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Mo含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靱性が低下して、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、Mo含有量は0.30~1.00%である。
 Mo含有量の好ましい下限は0.31%であり、さらに好ましくは0.32%であり、さらに好ましくは0.33%である。
 Mo含有量の好ましい上限は0.95%であり、さらに好ましくは0.90%であり、さらに好ましくは0.85%である。
 Al:0.005~0.100%
 アルミニウム(Al)は、鋼を脱酸する。Alはさらに、Nと結合してAl窒化物を形成する。Al窒化物は、ピンニング効果により結晶粒の粗大化を抑制する。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Al含有量が0.005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なAl窒化物が生成する。粗大なAl窒化物は破壊の起点となる。そのため、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、Al含有量は0.005~0.100%である。
 Al含有量の好ましい下限は0.006%であり、さらに好ましくは0.007%であり、さらに好ましくは0.008%である。
 Al含有量の好ましい上限は0.090%であり、さらに好ましくは0.080%であり、さらに好ましくは0.070%である。
 本実施形態の鋼材の化学組成において、Al含有量は、全Al(Total-Al)含有量を意味する。
 N:0.003~0.030%
 窒素(N)は、Alと結合して窒化物を形成する。Al窒化物は、ピンニング効果により結晶粒の粗大化を抑制する。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。N含有量が0.003%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、N含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が生成する。粗大な窒化物は破壊の起点となる。そのため、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、N含有量は0.003~0.030%である。
 N含有量の好ましい下限は0.004%であり、さらに好ましくは0.005%であり、さらに好ましくは0.006%である。
 N含有量の好ましい上限は0.029%であり、さらに好ましくは0.028%であり、さらに好ましくは0.027%である。
 本実施形態の鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、本実施形態の鋼材に悪影響を与えない範囲で許容されるものを意味する。
 不純物としては、上述の不純物(P、S)以外のあらゆる元素が挙げられる。不純物は1種だけであってもよいし、2種以上であってもよい。上述した不純物以外の他の不純物は、例えば、Sb、Co、Sn、Zn等である。これらの元素は、不純物として、例えば、次の含有量となる場合があり得る。Sb:0.01%以下、Co:0.01%以下、Sn:0.01%以下、Zn:0.01%以下。
 [任意元素(optional elements)について]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、次の第1群~第5群から選択される1種以上を含有してもよい。
 [第1群]
 Cu:0.40%以下、及び、
 Ni:0.40%以下、からなる群から選択される1種以上
 [第2群]
 V:0.50%以下、
 Ti:0.100%以下、及び、
 Nb:0.100%以下、からなる群から選択される1種以上
 [第3群]
 B:0.0100%以下
 [第4群]
 W:0.500%以下
 [第5群]
 Ca:0.010%以下、
 Mg:0.100%以下、
 希土類元素:0.100%以下、
 Bi:0.300%以下、
 Te:0.300%以下、及び、
 Zr:0.300%以下、からなる群から選択される1種以上
 以下、これらの任意元素について説明する。
 [第1群(Cu及びNi)]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Cu:0.40%以下、及び、Ni:0.40%以下、からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、含有されなくてもよい。含有される場合、Cu及びNiは、酸洗処理時において、緻密な酸化物を形成する。そのため、過剰酸洗による水素の発生が抑制される。その結果、本実施形態の鋼材の、酸洗処理時の耐水素脆化特性が高まる。以下、Cu及びNiについて説明する。
 Cu:0.40%以下
 銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。
 Cuが含有される場合、酸洗処理時において、Cuは緻密な酸化物を形成する。これにより、過剰酸洗による水素の発生が抑制される。そのため、酸洗処理後の鋼材の耐水素脆化特性が高まる。Cuが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Cu含有量が0.40%を超えれば、他の元素含有量が本実施形態の範囲内であっても、酸洗処理後の鋼材の脱スケールが不十分となる。その結果、鋼材の潤滑剤付着性が低下する。
 したがって、Cu含有量は0~0.40%であり、含有される場合、Cu含有量は0.40%以下である。
 Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
 Cu含有量の好ましい上限は0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%である。
 Ni:0.40%以下
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。
 Niが含有される場合、酸洗処理時において、Niは緻密な酸化物を形成する。これにより、過剰酸洗による水素の発生が抑制される。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Niが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ni含有量が0.40%を超えれば、他の元素含有量が本実施形態の範囲内であっても、酸洗処理後の鋼材の脱スケールが不十分となる。その結果、鋼材の潤滑剤付着性が低下する。
 したがって、Ni含有量は0~0.40%であり、含有される場合、Ni含有量は0.40%以下である。
 Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
 Ni含有量の好ましい上限は0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%である。
 [第2群(V、Ti及びNb)]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、V:0.50%以下、Ti:0.100%以下、及び、Nb:0.100%以下、からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、含有されなくてもよい。含有される場合、V、Ti、及びNbは、C及びNと結合して炭窒化物を形成する。これらの炭窒化物はピンニング効果により、結晶粒の粗大化を抑制する。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。以下、V、Ti及びNbについて説明する。
 V:0.50%以下
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。
 Vが含有される場合、VはC及びNと結合して炭窒化物を形成して、結晶粒の粗大化を抑制する。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Vが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、V含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な炭窒化物が生成する。粗大な炭窒化物は破壊の起点となる。そのため、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、V含有量は0~0.50%であり、含有される場合、V含有量は0.50%以下である。
 V含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.03%である。
 V含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
 Ti:0.100%以下
 チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。
 Tiが含有される場合、つまり、Ti含有量が0%超である場合、TiはC及びNと結合して炭窒化物を形成して、結晶粒の粗大化を抑制する。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Tiが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ti含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な炭窒化物が生成する。粗大な炭窒化物は破壊の起点となる。そのため、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、Ti含有量は0~0.100%であり、含有される場合、Ti含有量は0.100%以下である。
 Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Ti含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.040%である。
 Nb:0.100%以下
 ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。
 Nbが含有される場合、つまり、Nb含有量が0%超である場合、NbはC及びNと結合して炭窒化物を形成して、結晶粒の粗大化を抑制する。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Nb含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な炭窒化物が生成する。粗大な炭窒化物は破壊の起点となる。そのため、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、Nb含有量は0~0.100%であり、含有される場合、Nb含有量は0.100%以下である。
 Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Nb含有量の好ましい上限は0.080%であり、さらに好ましくは0.060%であり、さらに好ましくは0.040%である。
 [第3群(B)]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、B:0.0100%以下、を含有してもよい。Bは任意元素であり、含有されなくてもよい。
 B:0.0100%以下
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。
 Bが含有される場合、Bは鋼材の焼き入れ性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、B含有量が0.0100%を超えれば、鋼材の焼き入れ性は飽和し、製造コストが高くなる。さらに、他の元素含有量が本実施形態の範囲内であっても、粗大な窒化物が生成する。粗大な窒化物は破壊の起点となる。そのため、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、B含有量は0~0.0100%であり、含有される場合、B含有量は0.0100%以下である。
 B含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0003%である。
 B含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%である。
 [第4群(W)]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、W:0.500%以下、を含有してもよい。Wは任意元素であり、含有されなくてもよい。
 W:0.500%以下
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。
 Wが含有される場合、Wは、鋼材の焼入れ性を高めて鋼材の強度を高める。Wが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、W含有量が0.500%を超えれば、鋼材の靱性が低下して、鋼材の耐冷間鍛造割れ性が低下する。
 したがって、W含有量は0~0.500%であり、含有される場合、W含有量は0.500%以下である。
 W含有量の好ましい下限は0%超であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。
 W含有量の好ましい上限は0.480%であり、さらに好ましくは0.460%であり、さらに好ましくは0.440%である。
 [第4群(Ca、Mg、希土類元素、Bi、Te及びZr)]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、Ca:0.010%以下、Mg:0.100%以下、希土類元素(REM):0.100%以下、Bi:0.300%以下、Te:0.300%以下、及び、Zr:0.300%以下、からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、含有されなくてもよい。含有される場合、Ca、Mg、REM、Bi、Te及びZrはいずれも、鋼材の被削性を高める。以下、Ca、Mg、REM、Bi、Te及びZrについて説明する。
 Ca:0.010%以下
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。
 Caが含有される場合、Caは鋼材の被削性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ca含有量が0.010%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間延性が低下する。
 したがって、Ca含有量は0~0.010%であり、含有される場合、Ca含有量は0.010%以下である。
 Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Ca含有量の好ましい上限は0.008%であり、さらに好ましくは0.006%であり、さらに好ましくは0.004%である。
 Mg:0.100%以下
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。
 Mgが含有される場合、Mgは鋼材の被削性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Mg含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間延性が低下する。
 したがって、Mg含有量は0~0.100%であり、含有される場合、Mg含有量は0.100%以下である。
 Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Mg含有量の好ましい上限は0.090%であり、さらに好ましくは0.085%であり、さらに好ましくは0.080%である。
 希土類元素:0.100%以下
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。
 REMが含有される場合、REMは鋼材の被削性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、REM含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間延性が低下する。
 したがって、REM含有量は0~0.100%であり、含有される場合、REM含有量は0.100%以下である。
 REM含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 REM含有量の好ましい上限は0.090%であり、さらに好ましくは0.085%であり、さらに好ましくは0.080%である。
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素を意味する。また、本明細書におけるREM含有量とは、これら元素の合計含有量を意味する。
 Bi:0.300%以下
 ビスマス(Bi)は任意元素であり、含有されなくてもよい。つまり、Bi含有量は0%であってもよい。
 Biが含有される場合、Biは鋼材の被削性を高める。Biが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Bi含有量が0.300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間延性が低下する。
 したがって、Bi含有量は0~0.300%であり、含有される場合、Bi含有量は0.300%以下である。
 Bi含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Bi含有量の好ましい上限は0.280%であり、さらに好ましくは0.260%であり、さらに好ましくは0.240%である。
 Te:0.300%以下
 テルル(Te)は任意元素であり、含有されなくてもよい。つまり、Te含有量は0%であってもよい。
 Teが含有される場合、Teは鋼材の被削性を高める。Teが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Te含有量が0.300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間延性が低下する。
 したがって、Te含有量は0~0.300%であり、含有される場合、Te含有量は0.300%以下である。
 Te含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Te含有量の好ましい上限は0.280%であり、さらに好ましくは0.260%であり、さらに好ましくは0.240%である。
 Zr:0.300%以下
 ジルコン(Zr)は任意元素であり、含有されなくてもよい。つまり、Zr含有量は0%であってもよい。
 Zrが含有される場合、Zrは鋼材の被削性を高める。Zrが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Zr含有量が0.300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間延性が低下する。
 したがって、Zr含有量は0~0.300%であり、含有される場合、Zr含有量は0.300%以下である。
 Zr含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。
 Zr含有量の好ましい上限は0.280%であり、さらに好ましくは0.260%であり、さらに好ましくは0.240%である。
 [鋼材の化学組成の測定方法]
 本実施形態の鋼材の化学組成は、周知の成分分析法(JIS G 0321:2017)で測定できる。具体的には、ドリルを用いて、鋼材のR/2部から切粉を採取する。ここで、R/2部とは、鋼材の軸方向(圧延方向)に垂直な断面において、鋼材の半径Rの中央部分を意味する。採取された切粉を酸に溶解させて溶液を得る。溶液に対して、ICP-AES(Inductively Coupled Plasma Atomic Emission Spectrometry)を実施して、化学組成の元素分析を実施する。C含有量及びS含有量については、周知の高周波燃焼法(燃焼-赤外線吸収法)により求める。N含有量については、周知の不活性ガス溶融-熱伝導度法を用いて求める。
 [(特徴2)抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]について]
 本実施形態の鋼材ではさらに、予備定電流電気分解により鋼材の表面から100±20μm深さ位置までの領域を電解して除去した後、本定電流電気分解により鋼材の表面から100±20μm深さ位置までの領域をさらに電解して得られた抽出残渣中のCr濃度を[Cr](質量%)と定義し、抽出残渣中のMo濃度を[Mo](質量%)と定義したとき、式(1)を満たす。
 10.0≦[Cr]+[Mo]≦30.0 (1)
 ここで、「表面から100±20μm深さ位置までの領域」とは、表面と、表面からの深さDμmとの間の領域を意味する。「表面から100±20μm深さ位置」とは、表面からの深さDが80~120μmの範囲内であることを意味する。
 図1は、予備定電流電気分解により電解されて除去される領域を示す図である。図2は、予備定電流電気分解後に、定電流電気分解により電解される領域を示す図である。図1及び図2を参照して、初めに、予備定電流電気分解により鋼材10の表面SF0から深さD0(D0=80~120μm)の最表層領域RE0を電解して除去する。その後、図2を参照して、定電流電気分解により、最表層領域RE0が除去された後の鋼材10の表層SF1から深さD1(D1=80~120μm)の実質表層領域RE1を電解して抽出残渣を得る。つまり、上述の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]は、実質表層領域RE1で得られた抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]である。
 鋼材10のうち、予備定電流電気分解により除去される最表層領域RE0には、鋼材表面に形成されているスケールや、鋼材表面に付着している不純物を含む。そのため、最表層領域RE0は抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の測定には採用せず、スケール及び不純物の影響が極めて小さい実質表層領域RE1での抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]を測定する。なお、スケール及び不純物の影響がなければ、最表層領域RE0での抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]は、実質表層領域RE1での抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]とほぼ同じ数値が得られると考えられる。以下、抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の測定方法について説明する。
 [抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の測定方法]
 実質表層領域RE1の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]は次の方法で求める。
 鋼材を、鋼材の軸方向(圧延方向)に対して垂直に切断して、サンプル鋼材を採取する。サンプル鋼材の軸方向に垂直な断面は、鋼材の断面に相当する。サンプル鋼材の切断面に、絶縁性樹脂をコーティングする。
 切断面がコーティングされたサンプルに対して、10%AA系溶液(体積分率で10%アセチルアセトン、1%テトラメチルアンモニウムクロリド、89%メタノール溶液を含有する溶液)を用いて、定電流電気分解を実施する。
 初めに、サンプル鋼材の最表層領域RE0を除去するために、予備定電流電気分解を実施する。予備定電流電気分解は、常温(15~30℃)にて電流:1000mAでサンプル鋼材の表面SF0からD0=100±20μm深さ位置までの領域RE0を電解してサンプル鋼材から除去する。深さ位置の±20μmは許容誤差範囲である。予備定電流電気分解後、サンプル鋼材をアルコール溶液に浸漬する。そして、超音波洗浄を実施して、サンプル鋼材の表面の付着物を除去する。付着物が除去されたサンプル鋼材の質量、つまり、本定電流電気分解前のサンプル鋼材の質量を測定する。
 次に、サンプル鋼材の実質表層領域RE1に対して本定電流電気分解を実施する。具体的には、新しい10%AA系溶液を準備する。そして、新しい10%AA系溶液を用いて、常温にて、電流密度を30mA/cmに保持して、サンプル鋼材の表面SF1からD1=100±20μm深さ位置までの領域RE1を電解する。深さ位置の±20μmは許容誤差範囲である。電解された領域RE1の深さは、サンプル鋼材の比重を7.8g/cmとして、本定電流電気分解前後のサンプル鋼材の質量差(減少量)(g)、及び、サンプル鋼材の表面(断面を除く)の表面積から求める。本定電流電気分解後、サンプル鋼材をアルコール溶液に浸漬した後、超音波洗浄を実施して、サンプル鋼材表面の付着物を除去する。
 本定電流電気分解に用いた10%AA系溶液、及び、その後の超音波洗浄に用いたアルコール溶液を、メッシュサイズ0.2μmのフィルタで吸引ろ過して残渣を抽出する。つまり、本定電流電気分解により電解された実質表層領域RE1中の抽出残渣を得る。
 抽出残渣に対してICP-AESを用いた化学元素分析を実施する。具体的には、抽出残渣を酸に溶解させて溶液を得る。溶液に対してICP-AESを用いた化学元素分析を実施して、抽出残渣中のCr質量と、抽出残渣中のMo質量とを得る。具体的には、Cr質量を抽出残渣の総質量で除して、抽出残渣中のCr濃度[Cr](質量%)を得る。同様に、Mo質量を抽出残渣の総質量で除して、抽出残渣中のMo濃度[Mo](質量%)を得る。
 F1=[Cr]+[Mo]と定義する。上述の方法で得られる、実質表層領域RE1の抽出残渣は、介在物及び析出物を含む。析出物は炭化物、炭窒化物及び窒化物を含む。しかしながら、抽出残渣の主たる種類は炭化物及び炭窒化物である。したがって、F1は抽出残渣中のCr濃度及びMo濃度の総量を示しているものの、実質的には、F1は、炭化物及び炭窒化物中のCr濃度及びMo濃度の指標となり得る。炭化物及び炭窒化物中のCr濃度及びMo濃度が高ければ、鋼材中に固溶しているCr濃度及びMo濃度も高いと考えられる。したがって、F1は、鋼材の表層に固溶するCr濃度及びMo濃度の指標でもある。
 F1が10.0未満であれば、鋼材表層の抽出残渣中のCr濃度及びMo濃度の総量が不足している。この場合、鋼材の表層の固溶Cr濃度及び固溶Mo濃度が不足している。そのため、酸洗処理時において、鋼材表面に、Cr及びMoを含有する特定酸化物が十分に形成されない。そのため、鋼材の化学組成中の各元素含有量が上述の範囲内であっても、酸洗により鋼材表面で水素が過剰に発生し、発生した水素が鋼材内部に侵入しやすい。その結果、酸洗処理後の鋼材の耐水素脆化特性が低下する。
 一方、F1が30.0を超えれば、鋼材の表層の抽出残渣中のCr濃度及びMo濃度の総量が過剰に多い。この場合、鋼材の表層での固溶Cr濃度及び固溶Mo濃度が高すぎる。そのため、鋼材の酸洗時において、鋼材表面に、特定酸化物が過剰に多く形成される。この場合、酸洗処理後であって、伸線加工前の潤滑被膜処理において、潤滑被膜が鋼材表面に付着しにくい。具体的には、潤滑被膜は、鋼材表面のFeと反応して鋼材表面に対する密着性を高める。しかしながら、特定酸化物が鋼材表面に過剰に生成した場合、特定酸化物により、潤滑被膜が鋼材表面のFeと反応しにくくなる。そのため、鋼材表面への潤滑剤付着性が低下する。
 F1が10.0~30.0であれば、鋼材の表層の抽出残渣中のCr濃度及びMo濃度の総量が適切な量である。この場合、鋼材の表層での固溶Cr濃度及び固溶Mo濃度も適切な量である。そのため、酸洗処理時において、鋼材表面に特定酸化物が適切な量形成される。その結果、酸洗処理後の鋼材の耐水素脆化特性が高まる。さらに、酸洗処理時において、鋼材表面に特定酸化物が過剰に形成されない。そのため、伸線加工前の潤滑被膜処理において、潤滑被膜が鋼材表面のFeと反応しやすい。その結果、潤滑被膜の鋼材表面に対する密着性が高まり、鋼材の潤滑剤付着性が高まる。
 F1の好ましい下限は11.0であり、さらに好ましくは12.0であり、さらに好ましくは13.0である。
 F1の好ましい上限は29.0であり、さらに好ましくは28.0であり、さらに好ましくは27.0である。
 [本実施形態の鋼材の好ましい形態]
 好ましくは、本実施形態の鋼材はさらに、特徴1及び特徴2を満たし、さらに、特徴3を満たす。
 (特徴3)
 円相当径が0.5μm以上の炭化物の個数に対する、円相当径が0.8μm以上の炭化物の個数割合は、5~20%である。
 以下、特徴3について説明する。
 [(特徴3)好ましい粗大炭化物個数割合RNについて]
 鋼材中の炭化物のうち、円相当径が0.8μm以上の炭化物を「粗大炭化物」と定義する。円相当径が0.5μm以上の炭化物の個数に対する、粗大炭化物の個数割合を、粗大炭化物個数割合RN(%)と定義する。粗大炭化物個数割合RNは以下の式で定義できる。
 RN=粗大炭化物の個数/円相当径が0.5μm以上の炭化物の個数×100
 なお、特徴1及び特徴2を満たす鋼材において、円相当径が0.5μm以上の炭化物は、実質的にセメンタイト(FeC)であり、他の炭化物(炭窒化物も含む)は無視できる。
 鋼材が特徴1及び特徴2を満たせば、粗大炭化物個数割合RNに特に限定されず、酸洗処理後の鋼材の耐水素脆化特性が高まり、かつ、潤滑剤付着性も高まる。
 好ましくは、特徴1及び特徴2を満たす鋼材での粗大炭化物個数割合RNは5~20%である。粗大炭化物個数割合RNが5%以上であれば、酸洗処理後の鋼材の耐水素脆化特性がさらに高まる。また、粗大炭化物個数割合RNが20%以下であれば、鋼材の潤滑剤付着性がさらに高まる。したがって、好ましい粗大炭化物個数割合RNは5~20%である。
 粗大炭化物個数割合RNのさらに好ましい下限は6%であり、さらに好ましくは7%であり、さらに好ましくは8%である。
 粗大炭化物個数割合RNのさらに好ましい上限は19%であり、さらに好ましくは18%であり、さらに好ましくは17%である。
 [粗大炭化物個数割合RNの測定方法]
 鋼材の粗大炭化物個数割合RNは次の方法で測定できる。
 鋼材の長手方向の異なる6つの位置で、鋼材を、鋼材の軸方向(圧延方向)に垂直に切断し、6つのサンプル鋼材を採取する。サンプル鋼材の軸方向に垂直な断面は、鋼材の断面に相当する。各サンプル鋼材の表面のうち、軸方向に垂直な切断面を、観察面とする。観察面をピクラール腐食液でエッチングして、炭化物を現出させる。
 観察面のうち、鋼材表面から100μm~200μm深さ位置までの領域(実質表層領域RE1)を観察領域とする。観察領域のうち、走査型電子顕微鏡を用いて5000倍で任意の6視野の写真画像(二次電子像)を生成する。各視野の面積は19μm×25μmとする。
 各視野の写真画像において、コントラストにより、炭化物を特定する。特定された炭化物の円相当径を算出する。炭化物のうち、円相当径が0.5μm以上の炭化物を測定対象とする。各視野における、円相当径が0.5μm以上の炭化物の個数と、円相当径が0.8μm以上の炭化物(粗大炭化物)の個数とを求める。全ての視野(6×6=36視野:総面積17400μm)における、円相当径が0.5μm以上の炭化物の総個数に対する、粗大炭化物の総個数の割合(%)を、粗大炭化物個数割合RN(%)と定義する。
 [ミクロ組織について]
 本実施形態による鋼材のミクロ組織は特に限定されない。本実施形態の鋼材は、機械構造用部品の素材として用いられる。そして、機械構造用部品の製造工程中で、調質処理等の熱処理が施される。つまり、素材として用いられる鋼材の組織は、調質処理等の熱処理により、相変態する。そのため、上述のとおり、機械構造用部品の素材として用いられる鋼材のミクロ組織自体は特に限定されない。
 本実施形態の鋼材のミクロ組織は例えば、結晶構造が体心立方格子(BCC:Body-Centered Cubic)からなる相であるBCC相と、当該BCC相中に配置される炭化物とを含む組織である。本明細書では、BCC相及びそのBCC相の中に分散した炭化物からなる組織を、「BCC組織」と称する。BCC組織に含まれる炭化物は例えば、セメンタイトである。セメンタイトは、ラメラセメンタイトであってもよいし、球状セメンタイトであってもよい。BCC相中にセメンタイトが点列状に存在してもよい。
 [ミクロ組織の特定方法]
 ミクロ組織は、次の方法で特定することができる。鋼材の軸方向(圧延方向)に垂直な断面のうち、R/2部を含む試験片を採取する。試験片の表面のうち、鋼材の軸方向に垂直な断面に相当する表面を、観察面とする。
 観察面を鏡面研磨した後、2%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングする。エッチングされた観察面中のR/2部を、400倍の光学顕微鏡を用いて観察する。観察視野の面積は500μm×500μmとする。
 観察視野中のBCC組織で、BCC相と炭化物とは、コントラスト及び形態から特定することができる。
 [本実施形態の鋼材の形態、及び、好ましい用途について]
 本実施形態の鋼材は、棒鋼であってもよいし、線材であってもよい。鋼材の直径は特に限定されない。鋼材の直径は例えば、5~50mmである。
 本実施形態の鋼材は、酸洗処理により脱スケール処理を実施した場合の酸洗処理後の耐水素脆化特性と潤滑剤付着性とに優れる。そのため、伸線加工や冷間鍛造等に代表される、冷間加工用途の鋼材として好適である。ただし、本実施形態の鋼材は、冷間加工用途以外の用途にも当然に利用可能である。
 以上のとおり、本実施形態の鋼材は、上述の特徴1及び特徴2を満たす。そのため、酸洗処理時の鋼材の耐水素脆化特性に優れ、さらに、潤滑剤付着性に優れる。
 [鋼材の製造方法]
 本実施形態による鋼材の製造方法の一例を説明する。以降に説明する鋼材の製造方法は、本実施形態による鋼材を製造するための一例である。したがって、上述の構成を有する鋼材は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、本実施形態による鋼材の製造方法の好ましい一例である。
 本実施形態による鋼材の製造方法の一例は、次の工程を含む。
 (工程1)素材準備工程
 (工程2)熱間加工工程
 (工程3)脱スケール処理工程
 (工程4)球状化焼鈍工程
 以下、各工程について説明する。
 [(工程1)素材準備工程]
 素材準備工程では、化学組成中の各元素含有量が本実施形態の範囲内である素材を準備する。素材は例えば、次の方法により製造される。化学組成が特徴1を満たす溶鋼を製造する。溶鋼を用いて、鋳造法により素材(鋳片又はインゴット)を製造する。例えば、溶鋼を用いて周知の連続鋳造法により鋳片(ブルーム)を製造する。又は、溶鋼を用いて周知の造塊法によりインゴットを製造する。
 [(工程2)熱間加工工程]
 準備された素材に対して熱間加工を実施して、中間鋼材を製造する。熱間加工として、熱間圧延を実施する場合、例えば、次の方法がある。熱間圧延を前提とした熱間加工工程は、素材を粗圧延してビレットにする粗圧延工程と、ビレットを仕上げ圧延して中間鋼材にする仕上げ圧延工程とを含む。
 [粗圧延工程]
 粗圧延工程は例えば、次の工程を実施する。素材(インゴット又は鋳片)を加熱後、分塊圧延機を用いて分塊圧延する。必要に応じて、分塊圧延後に連続圧延機でさらに圧延して、ビレットを製造する。連続圧延機では、水平ロールスタンド、垂直ロールスタンドが交互に一列に配列されている。連続圧延機の各スタンドの圧延ロールに形成された孔型を用いて素材を圧延して、ビレットにする。
 [仕上げ圧延工程]
 仕上げ圧延工程は例えば、次の工程を実施する。ビレットを加熱炉に装入して加熱する。加熱されたビレットを用いて、仕上げ圧延機列で仕上げ圧延(熱間圧延)を実施して、中間鋼材を製造する。仕上げ圧延機列は、一列に配列された複数のスタンドを含む。各スタンドは、パスライン周りに配置された複数のロールを含む。各スタンドの圧延ロールに形成された孔型を用いてビレットを圧延して、中間鋼材を製造する。
 [(工程3)脱スケール処理工程]
 脱スケール処理工程では、熱間加工工程で製造された中間鋼材の表面に形成されている酸化スケールを除去する。脱スケール工程は、酸洗処理工程と、水洗工程とを含む。以下、各工程について説明する。
 [酸洗処理工程]
 酸洗処理工程では、中間鋼材を酸性溶液に浸漬して、中間鋼材表面の酸化スケールを除去する。酸洗処理工程は例えば、次の条件1~条件3で実施する。
 条件1:酸性溶液の温度T1(℃)   :30~60℃
 条件2:酸性溶液の塩酸濃度C1(質量%):5.0~20.0質量%
 条件3:酸性溶液での浸漬時間t1(分) :2.0~10.0分
 以下、条件1~条件3について説明する。
 [条件1~条件3:酸性溶液の温度T1、塩酸濃度C1、浸漬時間t1について]
 酸性溶液の温度T1が高すぎる場合、又は、酸性溶液の塩酸濃度C1が高すぎる場合、又は、酸性溶液での浸漬時間t1が長すぎる場合、酸洗処理工程後の中間鋼材の表面が酸の腐食により過剰に荒れて、凹凸が多くなる。この場合、中間鋼材の表面積が増大する。そのため、後工程の球状化焼鈍工程での加熱時に、中間鋼材の表面に形成される酸化スケールが厚くなる。酸化スケールが厚くなれば、中間鋼材中の炭化物から鋼材表面に移動(拡散)して酸化スケールに吸収されるCr量及びMo量が多くなる。そのため、鋼材において、抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が低くなりすぎる。
 一方、酸性溶液の温度T1が低すぎる場合、又は、酸性溶液の塩酸濃度C1が低すぎる場合、又は、酸性溶液での浸漬時間t1が短すぎる場合、酸洗処理工程後の中間鋼材表面において、酸化スケールが十分に除去されていない。そのため、後工程の球状化焼鈍において、中間鋼材の表面に形成される酸化スケールが不足する。この場合、中間鋼材中の炭化物から鋼材表面に移動(拡散)して酸化スケールに吸収されるCr量及びMo量が不十分となる。そのため、鋼材において、抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が高くなりすぎる。
 酸性溶液温度T1が30~60℃であり、酸性溶液の塩酸濃度C1が5.0~20.0質量%であり、浸漬時間t1が2.0~10.0分であれば、他の製造工程の条件を満たすことを前提として、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が適切な範囲となる。
 酸性溶液温度T1の好ましい下限は33℃であり、好ましい上限は57℃である。酸性溶液の塩酸濃度C1の好ましい下限は5.3質量%であり、好ましい上限は19.7質量%である。浸漬時間t1の好ましい下限は2.3分であり、好ましい上限は9.7分である。
 [水洗工程]
 水洗工程では、酸洗処理工程後の中間鋼材を水槽に浸漬して、中間鋼材の表面に付着している酸性溶液を除去する。水洗工程は例えば、次の条件4で実施する。
 条件4:水槽での浸漬時間tw:1.0~5.0分
 [条件4:浸漬時間twについて]
 水槽中での浸漬時間twが短すぎる場合、酸洗処理工程後の中間鋼材の表面に酸性溶液が過剰に残存する。この場合、後工程の球状化焼鈍時に、中間鋼材の表面が酸化しやすくなる。そのため、球状化焼鈍時において、中間鋼材中の炭化物からCr及びMoが過剰に鋼材表面に移動して、酸化する。その結果、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が低くなりすぎる。
 一方、浸漬時間twが長すぎる場合、酸洗処理工程後の中間鋼材の表面に残存する酸性溶液が不足する。この場合、後工程の球状化焼鈍処理工程時に、中間鋼材の表面が酸化しにくくなる。そのため、球状化焼鈍時において、中間鋼材中の炭化物から鋼材表面にCr及びMoが移動しにくくなる。その結果、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が高くなりすぎる。
 水槽での浸漬時間twが1.0~5.0分であれば、他の製造工程の条件を満たすことを前提として、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が適切な範囲となる。
 水槽での浸漬時間twの好ましい下限は1.3分であり、好ましい上限は4.7分である。なお、水槽中の水の温度は例えば、10~50℃である。好ましくは、水の温度は常温(5~35℃)である。
 [(工程4)球状化焼鈍工程]
 球状化焼鈍工程では、脱スケール処理工程後の中間鋼材に対して球状化焼鈍を実施して、本実施形態の鋼材を製造する。球状化焼鈍では、セメンタイトに代表される炭化物を球状化して、鋼材の冷間加工性を高める。球状化焼鈍工程は例えば、次の条件5~条件7で実施する。
 条件5:ガス濃度比RG=雰囲気中の還元性ガス濃度/酸素濃度:100~1000
 条件6:焼鈍温度T2:680~840℃
 条件7:焼鈍時間t2:0.1~3.0時間
 以下、条件5~条件7について説明する。
 [条件5:ガス濃度比RGについて]
 球状化焼鈍では、焼鈍中の中間鋼材の表面酸化を抑制するために、雰囲気中に還元性ガスを導入する。還元性ガスは例えば、CO、H及び炭化水素ガスからなる群から選択される1種以上である。雰囲気中の酸素濃度と比較して、雰囲気中の還元性ガス濃度が低すぎれば、中間鋼材の表面が過剰に酸化される。この場合、中間鋼材中の炭化物から鋼材表面にCr及びMoが過剰に移動する。その結果、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が低くなる。
 一方、雰囲気中の酸素濃度と比較して、雰囲気中の還元性ガス濃度が高すぎれば、中間鋼材表面の酸化が不足する。この場合、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が高くなる。
 雰囲気中の還元性ガス濃度の、雰囲気中の酸素濃度に対する比を、ガス濃度比RGと定義する。つまり、RGは次の式で示される。
 ガス濃度比RG=雰囲気中の還元性ガス濃度/酸素濃度
 ガス濃度比RGが100~1000であれば、他の製造工程の条件を満たすことを前提として、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が適切な範囲となる。
 [条件6及び条件7:焼鈍温度T2及び焼鈍時間t2について]
 球状化焼鈍工程での焼鈍温度T2は例えば、680~840℃であり、焼鈍時間t2は例えば、0.1~3.0時間である。焼鈍温度T2及び焼鈍時間t2が上述の範囲内であれば、鋼材の抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]が適切な範囲となる。
 好ましい焼鈍温度T2及び好ましい焼鈍時間t2は次のとおりである。
 焼鈍温度T2:700~800℃
 焼鈍時間t2:0.5~2.0時間
 焼鈍温度T2が700~800℃であり、かつ、焼鈍時間t2が0.5~2.0時間であれば、鋼材の表層領域での粗大炭化物個数割合RNが5~20%となる。この場合、酸洗時における鋼材の耐水素脆化特性がさらに高まり、かつ、潤滑剤付着性がさらに高まる。
 以上の製造工程により、本実施形態による鋼材が製造される。
 [本実施形態の鋼材が冷間加工される場合の製造工程について]
 本実施形態の鋼材が構造用機械部品の素材となる場合を想定する。この場合、構造用機械部品の製造工程中において、鋼材に対して酸洗処理を含む脱スケール処理が実施される場合がある。そして、脱スケール処理が実施された鋼材に対して、潤滑被膜処理が実施され、その後、伸線加工が実施される場合がある。本実施形態の鋼材に対して、上述の製造工程(酸洗処理を含む脱スケール処理、及び、その後の潤滑被膜処理)が実施されたとき、本実施形態の鋼材は、酸洗処理後の優れた耐水素脆化特性と、優れた潤滑剤付着性とを両立できる。
 実施例により本実施形態の鋼材の一態様の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の鋼材の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の鋼材はこの一条件例に限定されない。
 表1-1及び表1-2に示す化学組成を有する溶鋼を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1-1及び表1-2中の「-」は、対応する元素含有量が、実施形態に規定の有効数字(最小桁までの数値)において、0%であることを意味する。換言すれば、対応する元素含有量において、上述の実施形態で規定の有効数字(最小桁までの数値)での端数を四捨五入した場合に0%であることを意味する。
 例えば、本実施形態で規定されたCu含有量は小数第二位までの数値で規定されている。したがって、表1-1中の試験番号1では、測定されたCu含有量が、小数第三位で四捨五入した場合に、0%であったことを意味する。
 また、本実施形態で規定されたNi含有量は小数第二位までの数値で規定されている。したがって、表1-1中の試験番号1では、測定されたNi含有量が、小数第三位で四捨五入した場合に、0%であったことを意味する。
 なお、四捨五入とは、規定された最小桁の下の桁(端数)が5未満であれば切り捨て、5以上であれば切り上げることを意味する。
 表1-1及び1-2の各溶鋼を連続鋳造してブルームを製造した。ブルームに対して熱間加工工程(粗圧延工程及び仕上げ圧延工程)を実施した。具体的には、粗圧延工程では、ブルームを1200℃に加熱した後、熱間圧延を実施して、160mm×160mmの断面形状を有するビレットを製造した。
 仕上げ圧延工程では、ビレットを1200℃に加熱した後、熱間圧延を実施して、直径が10mmの棒鋼(中間鋼材)を製造した。熱間圧延後の中間鋼材を放冷した。
 中間鋼材に対して、脱スケール処理工程(酸洗処理工程及び水洗工程)を実施した。酸洗処理工程での酸性溶液の温度T1(℃)、酸性溶液中の塩酸濃度C1(質量%)、及び、酸洗溶液での浸漬時間t1(分)は表2に示すとおりであった。水洗工程での水槽の浸漬時間tw(分)は表2に示すとおりであった。なお、水洗工程で用いた水槽の水の温度は25℃であった。
Figure JPOXMLDOC01-appb-T000003
 脱スケール処理工程後の棒鋼に対して、球状化焼鈍処理工程を実施した。球状化焼鈍でのガス濃度比RG、焼鈍温度T2(℃)、焼鈍時間t2(時間)は表2に示すとおりであった。以上の製造工程により、鋼材(棒鋼)を製造した。鋼材の直径は10~40mmであった。
 [評価試験]
 各試験番号の鋼材に対して、次の評価試験を実施した。
 (試験1)鋼材の化学組成測定試験
 (試験2)抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]測定試験
 (試験3)粗大炭化物個数割合RN測定試験
 (試験4)ミクロ組織観察試験
 (試験5)耐水素脆化特性評価試験
 (試験6)潤滑剤付着性評価試験
 以下、試験1~試験6について説明する。
 [(試験1)鋼材の化学組成測定試験]
 上述の[鋼材の化学組成の測定方法]に記載の方法に基づいて、各試験番号の鋼材の化学組成を次の方法で求めた。測定の結果、いずれの試験番号の鋼材も表1-1及び1-2の化学組成のとおりであった。
 [(試験2)抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]測定試験]
 上述の[抽出残渣中のCr濃度[Cr]及びMo濃度[Mo]の測定方法]に記載の方法に基づいて、各試験番号の鋼材の表層領域のCr濃度[Cr](質量%)及びMo濃度[Mo](質量%)の総量であるF1(=[Cr]+[Mo])を求めた。求めたF1を表2に示す。
 [(試験3)粗大炭化物個数割合RN測定試験]
 上述の[粗大炭化物個数割合RNの測定方法]に記載の方法に基づいて、各試験番号の鋼材の粗大炭化物個数割合RN(%)を求めた。求めた粗大炭化物個数割合RNを表2に示す。
 [(試験4)ミクロ組織観察試験]
 上述の[ミクロ組織の特定方法]に記載の方法に基づいて、各試験番号の鋼材のミクロ組織観察を行った。その結果、いずれの試験番号においても、鋼材のミクロ組織は、炭化物が分散したBCC相からなる組織(BCC組織)であった。
 [(試験5)耐水素脆化特性評価試験]
 各試験番号の鋼材に対して、脱スケール処理工程を想定して、次の酸洗処理工程及び水洗工程を実施した。酸洗処理工程では、各試験番号の鋼材を、40℃の酸性溶液に5.0分浸漬した。酸性溶液中の塩酸濃度は、15.0質量%であった。水洗工程では、酸洗処理工程後の鋼材を25℃の水が貯留された水槽に1.0分浸漬した。
 水洗工程後の鋼材の軸方向(圧延方向)で異なる4箇所から、軸方向に垂直に切断して、直径10mm、長さ500mmの引張試験用の試験片を4本採取した。試験片の形状は、JIS Z 2241:2011に規定の14A号試験片とした。4本の試験片を2本ずつの2つのグループ(グループ1、グループ2)に分けた。
 グループ1の2本の試験片については、水洗工程完了から1時間経過後に引張試験を実施した。つまり、グループ1の試験片は、酸洗処理工程で鋼材中に侵入した水素により脆化している可能性がある状態で引張試験を実施した。一方、グループ2の2本の試験片については、水洗工程完了から168時間(1週間)、常温、大気中で放置して、試験片から脱水素した。そして、脱水素後の試験片に対して、引張試験を実施した。つまり、グループ2の試験片は、水素脆化の可能性のない状態で引張試験を実施した。
 いずれのグループにおいても、引張試験では、JIS B 1051:2014に準拠した引張試験を常温(25℃)、大気中で実施して、2本の試験片の引張強度(MPa)を求めた。そして、2本の引張強度(MPa)の算術平均値を、それぞれのグループ(グループ1又はグループ2)の引張強度(MPa)と定義した。具体的には、グループ1の2本の引張強度の算術平均値を引張強度1(MPa)と定義し、グループ2の2本の試験片の引張強度の算術平均値を引張強度2(MPa)と定義した。
 耐水素脆化指標HIを次の式で定義した。
 耐水素脆化指標HI=引張強度1/引張強度2
 得られた耐水素脆化指標HIに応じて、耐水素脆化特性を次のとおり評価した。
 評価S:耐水素脆化指標HIが0.95~1.00
 評価A:耐水素脆化指標HIが0.90~0.95未満
 評価B:耐水素脆化指標HIが0.85~0.90未満
 評価C:耐水素脆化指標HIが0.80~0.85未満
 評価D:耐水素脆化指標HIが0.75~0.80未満
 評価E:耐水素脆化指標HIが0.70~0.75未満
 評価X:耐水素脆化指標HIが0.70未満
 評価S~評価Eの場合、耐水素脆化特性に優れると判断した。一方、評価Xの場合、鋼材の耐水素脆化特性が低いと判断した。評価結果を表2に示す。
 [(試験6)潤滑剤付着性評価試験]
 各試験番号の潤滑剤付着性を、次の方法で評価した。
 各試験番号の鋼材に対して、脱スケール処理工程を想定して、次の酸洗処理工程及び水洗工程を実施した。酸洗処理工程では、各試験番号の鋼材を、40℃の酸性溶液に5.0分浸漬した。酸性溶液中の塩酸濃度は、15.0質量%であった。水洗工程では、酸洗処理工程後の鋼材を25℃の水が貯留された水槽に1.0分浸漬した。
 水洗工程後の鋼材に対して、潤滑被膜処理を実施した。具体的には、鋼材に対して化成処理を実施して、鋼材の表面にリン酸塩被膜を形成した。リン酸塩浴の浴温は70℃とし、処理時間は10分とした。リン酸塩はリン酸亜鉛とした。その後、ステアリン酸ナトリウムを主たる成分とした石けん潤滑剤を含有する石けん処理液に、鋼材を10分浸漬して、リン酸塩被膜上に石けん(金属石けん及び未反応石けん)を付着させた。以上の工程により、鋼材表面に潤滑剤(石けん及びリン酸塩被膜)を付与した。
 潤滑剤が付与された鋼材の軸方向で異なる5箇所から、軸方向に垂直に切断して、直径10mm、長さ200mmの試験片を5本採取した。初めに、5本の試験片の総重量1を求めた。次に、5本の試験片を、70℃のクロム酸水溶液に15分浸漬して、潤滑剤を完全に除去した。浸漬後の5本の試験片の総重量2を求めた。総重量1から総重量2を差分した値を、潤滑剤付着量(g)と定義した。潤滑剤付着量を、5本の試験片の切断面以外の表面の総面積(つまり、π×10mm×200mm×5(mm))で除して、単位面積あたりの潤滑付着量LA(g/m)を求めた。潤滑付着量LAに応じて、潤滑剤付着性を次のとおり評価した。
 評価A:潤滑付着量LAが10g/m以上
 評価B:潤滑付着量LAが8~10g/m未満
 評価C:潤滑付着量LAが6~8g/m未満
 評価D:潤滑付着量LAが4~6g/m未満
 評価E:潤滑付着量LAが2~4g/m未満
 評価X:潤滑付着量LAが2g/m未満
 評価A~評価Eの場合、潤滑剤付着性に優れると判断した。評価Xの場合、鋼材の潤滑剤付着性が低いと判断した。評価結果を表2に示す。
 [評価結果]
 表1-1、表1-2及び表2を参照して、試験番号1~52の鋼材の化学組成は適切であり、さらに、F1は式(1)を満たした。そのため、試験番号1~52の鋼材では、酸洗処理後の耐水素脆化特性に優れ、かつ、潤滑剤付着性にも優れた。
 試験番号1~44、47~50ではさらに、粗大炭化物個数割合RNが5~20%であった。そのため、試験番号45、46、51及び52と比較して、さらに優れた耐水素脆化特性又はさらに優れた潤滑剤付着性を示した。
 一方、試験番号53のMn含有量は高すぎた。そのため、鋼材の耐水素脆化特性が低かった。
 試験番号54のP含有量は高すぎた。そのため、鋼材の耐水素脆化特性が低かった。
 試験番号55のS含有量は高すぎた。そのため、鋼材の耐水素脆化特性が低かった。
 試験番号56のAl含有量は低すぎた。そのため、鋼材の耐水素脆化特性が低かった。
 試験番号57のN含有量は低すぎた。そのため、鋼材の耐水素脆化特性が低かった。
 試験番号58では、酸洗処理工程での酸性溶液の温度T1が低かった。そのため、F1値が式(1)の上限を超えた。その結果、鋼材の潤滑剤付着性が低かった。
 試験番号59では、酸洗処理工程での酸性溶液の塩酸濃度C1が低かった。そのため、F1値が式(1)の上限を超えた。その結果、鋼材の潤滑剤付着性が低かった。
 試験番号60では、酸洗処理工程での浸漬時間t1が短かった。そのため、F1値が式(1)の上限を超えた。その結果、鋼材の潤滑剤付着性が低かった。
 試験番号61では、酸洗処理工程での酸性溶液の温度T1が高かった。そのため、F1値が式(1)の下限未満であった。その結果、鋼材の耐水素脆化特性が低かった。
 試験番号62では、酸洗処理工程での酸性溶液の塩酸濃度C1が高かった。そのため、F1値が式(1)の下限未満であった。その結果、鋼材の耐水素脆化特性が低かった。
 試験番号63では、酸洗処理工程での浸漬時間t1が長かった。そのため、F1値が式(1)の下限未満であった。その結果、鋼材の耐水素脆化特性が低かった。
 試験番号64では、化学組成は適切であったものの、水洗工程での水洗時間twが長すぎた。そのため、F1が式(1)の上限を超えた。その結果、鋼材の潤滑剤付着性が低かった。
 試験番号65では、化学組成は適切であったものの、水洗工程での水洗時間twが短すぎた。そのため、F1が式(1)の下限未満であった。その結果、鋼材の耐水素脆化特性が低かった。
 試験番号66では、化学組成は適切であったものの、球状化焼鈍工程での雰囲気中のガス濃度比RGが高すぎた。そのため、F1が式(1)の上限を超えた。その結果、鋼材の潤滑剤付着性が低かった。
 試験番号67では、化学組成は適切であったものの、球状化焼鈍工程での雰囲気中のガス濃度比RGが低すぎた。そのため、F1が式(1)の下限未満であった。その結果、鋼材の耐水素脆化特性が低かった。
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (3)

  1.  鋼材であって、
     質量%で、
     C:0.30~0.50%、
     Si:0.40%以下、
     Mn:0.10~0.60%、
     P:0.030%以下、
     S:0.030%以下、
     Cr:0.90~1.80%、
     Mo:0.30~1.00%、
     Al:0.005~0.100%、
     N:0.003~0.030%、及び、
     残部はFe及び不純物からなり、
     予備定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域を電解して除去した後、本定電流電気分解により前記鋼材の表面から100±20μm深さ位置までの領域をさらに電解して得られた抽出残渣中のCr濃度を[Cr](質量%)と定義し、前記抽出残渣中のMo濃度を[Mo](質量%)と定義したとき、式(1)を満たす、
     鋼材。
     10.0≦[Cr]+[Mo]≦30.0 (1)
  2.  請求項1に記載の鋼材であって、
     円相当径が0.5μm以上の炭化物の個数に対する、円相当径が0.8μm以上の炭化物の個数割合は、5~20%である、
     鋼材。
  3.  請求項1又は請求項2に記載の鋼材であってさらに、
     Feの一部に代えて、
     Cu:0.40%以下、
     Ni:0.40%以下、
     V:0.50%以下、
     Ti:0.100%以下、
     Nb:0.100%以下、
     B:0.0100%以下、
     W:0.500%以下、
     Ca:0.010%以下、
     Mg:0.100%以下、
     希土類元素:0.100%以下、
     Bi:0.300%以下、
     Te:0.300%以下、及び、
     Zr:0.300%以下、
     からなる群から選択される1種以上を含有する、
     鋼材。
PCT/JP2022/031349 2021-08-20 2022-08-19 鋼材 WO2023022222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/681,571 US20240271262A1 (en) 2021-08-20 2022-08-19 Steel material
CN202280054737.4A CN117836452A (zh) 2021-08-20 2022-08-19 钢材
MX2024002154A MX2024002154A (es) 2021-08-20 2022-08-19 Material de acero.
DE112022004050.5T DE112022004050T5 (de) 2021-08-20 2022-08-19 Stahlmaterial
JP2023542455A JPWO2023022222A1 (ja) 2021-08-20 2022-08-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-134877 2021-08-20
JP2021134877 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023022222A1 true WO2023022222A1 (ja) 2023-02-23

Family

ID=85240629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031349 WO2023022222A1 (ja) 2021-08-20 2022-08-19 鋼材

Country Status (6)

Country Link
US (1) US20240271262A1 (ja)
JP (1) JPWO2023022222A1 (ja)
CN (1) CN117836452A (ja)
DE (1) DE112022004050T5 (ja)
MX (1) MX2024002154A (ja)
WO (1) WO2023022222A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047010A (ja) * 2009-08-27 2011-03-10 Kobe Steel Ltd 耐遅れ破壊性の改善された高強度ボルト及びその製造方法
JP2011117035A (ja) * 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd 高強度ボルト用鋼
JP2013237903A (ja) * 2012-05-16 2013-11-28 Nippon Steel & Sumitomo Metal Corp ボルト用鋼材
JP2019183218A (ja) * 2018-04-06 2019-10-24 日本製鉄株式会社 高圧水素容器、及び、高圧水素用鋼材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189978A1 (ja) 2014-06-13 2015-12-17 新日鐵住金株式会社 冷間鍛造用鋼材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047010A (ja) * 2009-08-27 2011-03-10 Kobe Steel Ltd 耐遅れ破壊性の改善された高強度ボルト及びその製造方法
JP2011117035A (ja) * 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd 高強度ボルト用鋼
JP2013237903A (ja) * 2012-05-16 2013-11-28 Nippon Steel & Sumitomo Metal Corp ボルト用鋼材
JP2019183218A (ja) * 2018-04-06 2019-10-24 日本製鉄株式会社 高圧水素容器、及び、高圧水素用鋼材

Also Published As

Publication number Publication date
CN117836452A (zh) 2024-04-05
US20240271262A1 (en) 2024-08-15
MX2024002154A (es) 2024-03-08
DE112022004050T5 (de) 2024-07-25
JPWO2023022222A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
JP6787483B2 (ja) マルテンサイトステンレス鋼材
EP3284841A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP6058439B2 (ja) 冷間加工性と加工後の表面硬さに優れる熱延鋼板
JP5440371B2 (ja) 熱処理用鋼板およびその製造方法
JP5070931B2 (ja) 圧延線材及びその製造方法
EP3401415A1 (en) Austenitic heat-resistant alloy and method for manufacturing same
KR102124914B1 (ko) 오스테나이트계 스테인리스강
JP7518342B2 (ja) 二相ステンレス鋼材
EP4023778B1 (en) Steel material suitable for use in sour environment
JP2011225897A (ja) 冷間鍛造用熱間圧延棒鋼または線材
EP3382050A1 (en) Steel, carburized steel component, and carburized steel component production method
JP7469696B2 (ja) 鋼素形材、及び、その製造方法
EP3492614A1 (en) Steel for machine structures
US11555232B2 (en) Austenitic stainless steel material
EP3480333A1 (en) Steel for mechanical structures
JP6642236B2 (ja) 冷間鍛造用鋼
WO2023022222A1 (ja) 鋼材
JP7428889B2 (ja) 鋼材
EP4411001A1 (en) Martensitic stainless steel pipe
JP2019218584A (ja) ボルト
JP7226083B2 (ja) 線材及び鋼線
JP7231136B1 (ja) 締結部材の素材として用いられる鋼材、及び、締結部材
KR20170121267A (ko) 열간 압연 봉선재, 부품 및 열간 압연 봉선재의 제조 방법
JP2017115190A (ja) 熱間圧延棒線材
JP7364993B1 (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280054737.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023542455

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401000993

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 112022004050

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22858539

Country of ref document: EP

Kind code of ref document: A1