Nothing Special   »   [go: up one dir, main page]

WO2023000541A1 - 一种高镍三元电极复合材料及其制备方法和锂离子电池 - Google Patents

一种高镍三元电极复合材料及其制备方法和锂离子电池 Download PDF

Info

Publication number
WO2023000541A1
WO2023000541A1 PCT/CN2021/128142 CN2021128142W WO2023000541A1 WO 2023000541 A1 WO2023000541 A1 WO 2023000541A1 CN 2021128142 W CN2021128142 W CN 2021128142W WO 2023000541 A1 WO2023000541 A1 WO 2023000541A1
Authority
WO
WIPO (PCT)
Prior art keywords
ternary electrode
composite material
nickel
tungsten
electrode composite
Prior art date
Application number
PCT/CN2021/128142
Other languages
English (en)
French (fr)
Inventor
吴浩
郑江峰
张晨
高琦
黄仁忠
张颖
王苗
Original Assignee
广东佳纳能源科技有限公司
清远佳致新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东佳纳能源科技有限公司, 清远佳致新材料研究院有限公司 filed Critical 广东佳纳能源科技有限公司
Publication of WO2023000541A1 publication Critical patent/WO2023000541A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of cathode materials for lithium-ion batteries, in particular, to a high-nickel ternary electrode composite material, a preparation method thereof, and a lithium-ion battery.
  • Nickel-rich layered nickel-cobalt-manganese oxide cathode material (LiNi x Co y Mnz O 2 , x > 0.5) is currently considered to be the most commercially valuable cathode for lithium-ion batteries due to its relatively high capacity and reasonable price. one of the materials. In addition, these materials can be charged to a higher voltage of 4.5V, which can further increase the energy density of nickel-rich cathode materials. Under the premise of not changing the manufacturing process of the existing lithium-ion battery, the higher charge cut-off voltage makes it more attractive. However, nickel-rich cathode materials undergo irreversible phase transitions and the charge-transfer resistance increases continuously during cycling. At high temperature, this phenomenon will be more prominent.
  • Ni-rich cathode materials Another serious issue limiting the large-scale application of Ni-rich cathode materials is the decomposition of electrolyte and harmful side reactions at the cathode/electrolyte interface (CEI) at high cut-off voltages. This degradation process can be exacerbated or accelerated at high temperature, resulting in the loss of active lithium and the decrease in capacity after long-term cycling. Therefore, the widespread use of high-voltage Ni-rich cathode materials remains challenging.
  • CEI cathode/electrolyte interface
  • the residual alkali can basically be controlled within an acceptable range by one sintering, but when the Ni content is ⁇ 80%, additional treatment and multiple sinterings are required for the material.
  • additional treatment and multiple sinterings are required for the material.
  • the side reaction between the active material and the electrolyte is also an important factor affecting the performance of NCMs.
  • LiPF 6 is the most used lithium salt. Studies have shown that when the temperature exceeds 50 °C, LiPF 6 in the electrolyte will decompose. In commercial electrolytes, it is impossible to completely remove water, and trace amounts of water will cause LiPF 6 to decompose to generate HF. HF corrosion causes the dissolution of the positive electrode material to intensify, and the dissolved metal ions gather on the surface of the positive and negative electrodes. As the electrochemical reaction proceeds, the metal ions on the surface of the negative electrode are reduced to simple metals, which poses a safety hazard. The metal ions near the positive electrode may form non-electrochemically active species such as Ni-O, Co-O, and Mn-O, which is not conducive to electron transport.
  • the first purpose of the present application is to provide a high-nickel ternary electrode composite material to completely or partially solve the above problems.
  • the high-nickel ternary electrode composite material includes a tungsten-doped ternary electrode material and a coated Aluminum oxide on the outer surface of the tungsten-doped ternary electrode material; the molecular formula of the tungsten-doped ternary electrode material is: LiNi x Co y Mn z W (1-xyz) O 2 , wherein, 0.5 ⁇ x ⁇ 0.9, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 1-xyz>0.
  • the aluminum oxide material coated on the surface can reduce the impact of the electrolyte corrosion of the active material caused by high temperature, so that the high-nickel ternary electrode composite material can be used in The electrochemical performance at high temperature and high voltage is enhanced and improved.
  • the second purpose of the present application is to provide a method for preparing the high-nickel ternary electrode composite material, which has a convenient and simple process flow.
  • the third purpose of the present application is to provide a lithium-ion battery comprising the positive electrode made of the high-nickel ternary electrode composite material, which has obvious advantages in first-time efficiency and long-term cycle retention.
  • a high-nickel ternary electrode composite material provided by the present application includes a tungsten-doped ternary electrode material and alumina coated on the outer surface of the tungsten-doped ternary electrode material;
  • the molecular formula of the tungsten-doped ternary electrode material is: LiNi x Co y Mnz W (1-xyz) O 2 , wherein, 0.5 ⁇ x ⁇ 0.9, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, 1 -xyz>0.
  • the high-valence tungsten element is evenly doped in the high-nickel ternary electrode material, which increases the structural stability of the high-nickel positive electrode material, and at the same time reduces the degree of mixing of Li + /Ni 2+ cations.
  • Nickel mixed discharge has a better inhibitory effect. This stabilizing effect favors the transport kinetics of Li + and thus provides excellent electrochemical performance.
  • the alumina coating can prevent the positive electrode surface from directly contacting the electrolyte and form a physical barrier, thereby improving the cycle stability of the electrode material.
  • the surface coating layer can reduce the occurrence of side reactions that affect the interfacial properties of the CEI layer.
  • a kind of preparation method of described high-nickel ternary electrode composite material provided by the application comprises the following steps:
  • step (b) Mixing the tungsten-doped ternary electrode material obtained in step (a) with alumina, and then sintering to obtain the high-nickel ternary electrode composite material.
  • the precursor material of the tungsten-doped ternary electrode material is compounded and sintered with the lithium source compound, and then coated with alumina.
  • the method has the advantages of convenience and simplicity.
  • step (a) the precursor of the tungsten-doped ternary electrode material is prepared by co-precipitation method, which specifically includes the following steps:
  • the co-precipitation method enables tungsten ions to be distributed more uniformly in the high-nickel ternary positive electrode material, and the suppression effect on lithium-nickel mixing is better.
  • the inert gas includes nitrogen and/or a rare gas
  • the rare gas includes helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe).
  • the mixing is carried out by stirring, and the stirring speed is 200 ⁇ 600r/min, including but not limited to any of 200r/min, 300r/min, 400r/min, 500r/min, 600r/min
  • the point value of one or any range value between the two, the choice of 200-600rpm is mainly to improve the uniform mixing of the coprecipitation reaction and prevent particle stickiness. On the other hand, it is to improve the kinetic conditions of the reaction and accelerate the diffusion and reaction. rate.
  • the precipitation agent includes at least one of lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate and potassium carbonate, more preferably, the concentration of the precipitation agent solution is 6 ⁇ 12mol /L, including but not limited to the point value of any one of 6mol/L, 8mol/L, 9mol/L, 10mol/L, 12mol/L or the range value between any two, provided in the examples of this application
  • the precipitating agent is a commonly used precipitating agent, which is easy to obtain and saves cost.
  • the complexing agent includes at least one of ammonia water, oxalic acid, citric acid and disodium edetate.
  • the complexing agent provided in the embodiment of the present application is a commonly used complexing agent, which is easy to obtain and saves cost. More preferably, the concentration of the complexing agent solution is 5 ⁇ 9mol/L, including but not limited to any one point value in 5mol/L, 6mol/L, 7mol/L, 8mol/L, 9mol/L Or any range value between the two, the concentration range of the complexing agent provided by the embodiment of the present application can improve the volume of the high-nickel ternary electrode composite material particles and increase the reaction rate.
  • the temperature of the reaction system is 50-80°C, including but not limited to the point value of any one of 50°C, 60°C, 65°C, 70°C, 80°C or any two between range values, the reaction temperature provided by the examples of the present application can promote the reaction and improve the kinetic conditions of the reaction.
  • the pH of the reaction system is 9.0 ⁇ 11.0, including but not limited to the point value of any one of 9, 9.5, 10, 10.5, 11 or the range value between any two,
  • the pH value range provided in the examples of the present application can increase the sedimentation rate and improve the sphericity of the surface of the ternary material particles.
  • the total concentration of metal ions is 0.5 ⁇ 2.0mol/L, including but not limited to The point value of any one of 0.5mol/L, 1mol/L, 1.5mol/L, 2mol/L or the range value between any two, the range of metal ions provided in the examples of this application can reduce the concentration of metal salts The precipitation rate of crystals can be improved, and the utilization rate of equipment can be improved.
  • the nickel source comprises at least one of nickel sulfate, nickel chlorate, nickel nitrate salt or nickel acetate;
  • the cobalt source comprises at least one of cobalt sulfate, cobalt chlorate, cobalt nitrate or cobalt acetate;
  • the manganese source includes at least one of manganese sulfate, manganese chlorate, manganese nitrate or manganese acetate.
  • the molar concentration of tungsten in the solution of the tungsten source, is 0.01 ⁇ 0.1mol/L, including but not limited to 0.01mol/L, 0.05mol/L, 0.08mol/L, 0.1 Either a point value in mol/L or a range value in between.
  • the tungsten source includes at least one of sodium tungstate, calcium tungstate and ammonium metatungstate, more preferably sodium tungstate, the sodium ions introduced by sodium tungstate are more convenient for later treatment.
  • the lithium source compound in step (a), includes at least one of lithium carbonate, lithium hydroxide, lithium peroxide, lithium acetate and lithium nitrate.
  • the added amount of the lithium source compound is 1% to 10% more than the theoretical molar amount of the lithium element in the molecular formula LiNix Co y Mnz W (1-xyz) O 2 , theoretically the ternary precursor and the lithium salt It is a reaction with a stoichiometric ratio of 1:1, that is, the addition amount is a point value of any one of 101%, 105%, 108%, and 110% of the theoretical molar amount or a range value between any two, the embodiment of the present application
  • the theoretical molar excess of lithium element provided is 1% ⁇ 10%, which can supplement the loss in the sintering process, thereby improving the electrochemical performance of the product, especially the charge and discharge capacity and cycle performance of the battery.
  • the sintering process specifically includes: first pre-sintering at 300-600°C, and then sintering at 800-1000°C.
  • pre-burn at 300 ⁇ 600°C such as 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C
  • 3 ⁇ 7h such as 3, 4, 5, 6, 7h
  • 800-1000°C such as 800°C, 850°C, 900°C, 950°C, 1000°C
  • 10-30h such as 10, 15, 20, 25, 30h
  • the mass of the alumina is 1% to 3% of the mass of the tungsten-doped ternary electrode material, such as 2%.
  • the quality range of tungsten-doped ternary electrode materials can be modified to the product.
  • a uniform coating layer can be obtained by coating by solvent diffusion, and the mixing process specifically includes: under the condition of a volatile solvent, Mix the tungsten-doped ternary electrode material with the alumina, and stir to completely volatilize the volatile solvent before the sintering. Since the volatile solvent absorbs heat, it is easy to cause The local heat is not uniform. In order to further increase the sintering rate, the volatile solvent needs to be completely volatilized.
  • the volatile solvent includes at least one of deionized water, ethanol and ethylene glycol.
  • the temperature of the mixture system is 50-80°C, which can improve the removal rate of volatile solvents and save costs, including but not limited to 50°C, 60°C, 65°C, 70°C, 80°C A point value of any one of °C or a range value between any two.
  • the stirring is ultrasonic stirring to achieve a more uniform degree of dispersion.
  • the sintering temperature is 300-500°C, including but not limited to any one of 300°C, 350°C, 400°C, 450°C, and 500°C.
  • this temperature can meet the reaction requirements.
  • the sintering time is 5-10 hours, such as 5, 6, 7, 9, 10 hours, because the solid phase reaction decomposition and diffusion rate are slow, this sintering time can increase the sintering rate.
  • a lithium-ion battery provided by the present application includes a positive electrode prepared from the high-nickel ternary electrode composite material.
  • the cycle life and capacity retention rate of the battery at high temperature and high voltage are improved, and the rate performance is also improved.
  • the high-nickel ternary electrode composite material provided by this application while tungsten-doped to reduce the impact of lithium-nickel mixing, the surface-coated alumina material can reduce the electrolyte corrosion caused by high temperature.
  • the electrochemical performance of the high-nickel ternary electrode composite material under high temperature and high voltage is improved and improved.
  • the preparation method of the high-nickel ternary electrode composite material provided by this application has a convenient and simple process flow, and the obtained composite material has uniform particle size distribution and high sphericity.
  • the lithium-ion battery provided by this application has obvious advantages in both first-time efficiency and long-term cycle retention rate.
  • This example provides a LiNi 0.8 Co 0.1 Mn 0.08 W 0.02 O 2 composite material coated with 2wt% alumina on the surface.
  • the composite material is prepared by the following method:
  • This example provides a LiNi 0.8 Co 0.1 Mn 0.08 W 0.02 O 2 composite material coated with 1 wt% alumina on the surface.
  • the preparation method adopted by the composite material is basically the same as that in Example 1, except that the coating amount of alumina is adjusted.
  • This example provides a LiNi 0.8 Co 0.1 Mn 0.08 W 0.02 O 2 composite material coated with 3wt% alumina on the surface.
  • the composite material is prepared by the following method:
  • This example provides a LiNi 0.8 Co 0.1 Mn 0.08 W 0.02 O 2 composite material coated with 2wt% alumina on the surface.
  • the composite material is prepared by the following method:
  • Comparative Example 1 provides a LiNi 0.8 Co 0.1 Mn 0.1 O 2 composite material coated with 2wt% alumina on the surface.
  • the preparation method of the composite material is basically the same as in Example 1, except that sodium tungstate is not added during the co-precipitation process.
  • Comparative Example 1 provides a LiNi 0.8 Co 0.1 Mn 0.1 O 2 composite material without a coating layer on the surface.
  • the preparation method of the composite material is basically the same as that of Example 1, except that step (3) and coating step are not included.
  • the electrode materials provided in Examples 1-4 and Comparative Examples 1-2 were used as positive electrode materials to assemble a button battery and perform electrochemical performance tests.
  • the lithium metal sheet was used as the negative electrode to assemble a button battery, and the electrochemical test was carried out with the blue electric test system (the cut-off potential of charge and discharge was 2.75-4.3V).
  • the experimental results are shown in Table 1.
  • Example 1 190.5 94.1 90.7
  • Example 2 189.3 92.7 90.3
  • Example 3 188.7 91.5 89.5
  • Example 4 187.6 91.1 86.8 Comparative example 1 187.1 90.2 87.1 Comparative example 2 185.5 88.7 84.7
  • the high-nickel ternary cathode material coated with alumina and doped with tungsten has a higher first-time efficiency and long-term cycle retention than the cathode material with tungsten-doped or surface-coated alumina alone. have obvious advantages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供了一种高镍三元电极复合材料及其制备方法和锂离子电池,包括钨掺杂的三元电极材料以及包覆在所述钨掺杂的三元电极材料外表面的氧化铝;所述钨掺杂的三元电极材料的分子式为:LiNi xCo yMn zW (1-x-y-z)O 2,其中,0.5≤x≤0.9,0≤y≤0.5,0≤z≤0.5,1-x-y-z>0。该材料在钨掺杂实现减轻锂镍混排影响的同时,表面包覆的氧化铝材料可降低由高温导致的电解液腐蚀活性材料所带来的影响,使该高镍三元电极复合材料在高温和高电压下的电化学性能得到提高与改善。

Description

一种高镍三元电极复合材料及其制备方法和锂离子电池
本申请要求于2021年07月19日在中国专利局提交的、申请号为202110811277.2、申请名称为“一种高镍三元电极复合材料及其制备方法和锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池用正极材料技术领域,具体而言,涉及一种高镍三元电极复合材料及其制备方法和锂离子电池。
背景技术
蓬勃发展的储能市场一直在大力推动研发先进的锂离子电池,尤其正极材料的研发是实现高能量密度和低成本前景的关键。在目前使用的嵌脱反应正极中,层状氧化物,特别是基于LiNiO 2的层状氧化物,作为最有前景的候选材料之一,而得到了广泛关注。
富镍层状镍钴锰氧化物正极材料(LiNi xCo yMn zO 2,x>0.5)由于其相对较高的容量和合理的价格而被认为是目前最具商业价值的锂离子电池正极材料之一。另外,这些材料可以充电至更高的4.5V电压,这可以进一步提高富镍正极材料的能量密度。在不改变现有的锂离子电池的制造工艺的前提下,更高的充电截止电压使其具有更大吸引力。但是,富镍正极材料会发生不可逆的相变,并且在循环过程中电荷转移电阻会不断增加。在高温下,这种现象会更加突出。限制了富镍正极材料大规模应用的另一个严重问题是电解质的分解和高截止电压下正极/电解质界面(CEI)上的有害副反应。这种降解过程在高温下会加剧或加速,导致活性锂的损失和长时间循环后容量的下降。因此,高压富镍正极材料的广泛使用仍然具有挑战性。
这是由于Li +(0.076 nm)与Ni 2+(0.069 nm)的离子半径十分接近,因此,晶格中的Li +与Ni 2+很容易互换位置,生成非化学计量比的结构,即发生Li/Ni混排现象。Ni 2+进入锂离子层后能够阻断L i+的传输路径,减少可以参加充放电循环的Li+的数量,导致材料比容量降低。
在三元材料制备和存储过程中,由于Ni 2+的不稳定性,其表面容易形成例如LiOH和Li 2CO 3之类的碱性物质(可称为“残碱”),残碱对三元材料的使用和性能均有不利影响。LiOH会使pH升高,导致匀浆过程中容易形成“果冻”而无法涂布。Li 2CO 3造成水含量超标,同时还导致电池循环过程产气体,影响安全性能。当Ni含量≤60%时,通过一次烧结基本可以将残碱控制在可接受的范围内,但是当Ni含量≥80%时,则需对材料进行额外处理和多次烧结。除残碱外,活性材料与电解液之间的副反应也是影响NCM性能的重要因素。
技术问题
现阶段商业化的电解液中,使用最多的锂盐为LiPF 6。有研究表明,当温度超过50℃时,电解液中的LiPF 6会发生分解。在商业化的电解液中,不可能完全把水去除,微量水会导致LiPF 6分解生成HF。HF侵蚀致使正极材料溶解加剧,溶解后的金属离子聚集在正负极极片表面。随着电化学反应的进行,负极表面的金属离子被还原为金属单质,造成安全隐患。而正极附近的金属离子则有可能形成Ni-O、Co-O、Mn-O等非电化学活性物质,不利于电子传输。
技术解决方案
本申请的第一目的在于提供一种高镍三元电极复合材料,以完全或部分解决上述问题,所述的高镍三元电极复合材料,包括钨掺杂的三元电极材料以及包覆在所述钨掺杂的三元电极材料外表面的氧化铝;所述钨掺杂的三元电极材料的分子式为:LiNi xCo yMn zW (1-x-y-z)O 2,其中,0.5≤x≤0.9,0≤y≤0.5,0≤z≤0.5,1-x-y-z>0。该材料在钨掺杂实现减轻锂镍混排影响的同时,表面包覆的氧化铝材料可降低由高温导致的电解液腐蚀活性材料所带来的影响,使该高镍三元电极复合材料在高温和高电压下的电化学性能得到提高与改善。
本申请的第二目的在于提供一种所述的高镍三元电极复合材料的制备方法,该方法工艺流程方便、简单。
本申请的第三目的在于提供一种包括所述的高镍三元电极复合材料制备的正极的锂离子电池,该锂离子电池在首次效率和长循环保持率上均具有明显优势。
为了实现本申请的上述目的,特采用以下技术方案:
本申请所提供的一种高镍三元电极复合材料,包括钨掺杂的三元电极材料以及包覆在所述钨掺杂的三元电极材料外表面的氧化铝;
所述钨掺杂的三元电极材料的分子式为:LiNi xCo yMn zW (1-x-y-z)O 2,其中,0.5≤x≤0.9,0≤y≤0.5,0≤z≤0.5,1-x-y-z>0。
根据申请,将高价态的钨元素在高镍三元电极材料中均匀掺杂,增加了高镍正极材料的结构稳定性,同时并降低了Li +/Ni 2+阳离子的混排程度,对锂镍混排具有较好的抑制效果。这种稳定作用有利于Li +的传输动力学,因此可提供优异的电化学性能。氧化铝包覆层可以防止正极表面直接与电解质接触,形成物理屏障,从而改善了电极材料的循环稳定性。此外,表面包覆层可以减少副反应的发生,从而影响CEI层的界面性能。
本申请所提供的一种所述的高镍三元电极复合材料的制备方法,包括以下步骤:
(a)、将钨掺杂的三元电极材料的前驱体与锂源化合物混均后,烧结得到钨掺杂的三元电极材料;
(b)、将步骤(a)得到的所述钨掺杂的三元电极材料与氧化铝混匀后,烧结得到所述高镍三元电极复合材料。
根据申请,先将钨掺杂的三元电极材料的前驱体材料与锂源化合物复合烧结后,再包覆氧化铝。该方法具有方便、简单等优点。
在本申请一些优选的实施方式中,在步骤(a)中,所述钨掺杂的三元电极材料的前驱体采用共沉淀法制备得到,具体包括以下步骤:
在惰性气体保护下,将含有镍源、钴源、锰源的混合溶液、钨源溶液、沉淀剂溶液和络合剂溶液以滴加的方式进行混合,经过沉淀、陈化、洗涤和干燥后,得到所述钨掺杂的三元电极材料的前驱体。
根据申请,采用共沉淀法使得钨离子得以在高镍三元正极材料中实现更加均匀地分布,对锂镍混排的抑制效果更佳。
优选地,所述惰性气体包括氮气和/或稀有气体,所述稀有气体包括氦气(He)、氖气(Ne)、氩气(Ar)、氪气(Kr)、氙气(Xe)。
优选地,采用搅拌的方式进行所述混合,所述搅拌的转速为200~600r/min,包括但不限于200r/min、300r/min、400r/min、500r/min、600r/min中的任意一者的点值或任意两者之间的范围值,选择200-600rpm主要是提高共沉淀反应混合均匀,不发生颗粒粘黏,另一方面是为了改善反应的动力学条件,加快扩散和反应速率。
优选地,所述沉淀剂包括氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和碳酸钾中的至少一种,更优选地,所述沉淀剂溶液的浓度为6~12mol/L,包括但不限于6mol/L、8mol/L、9mol/L、10mol/L、12mol/L中的任意一者的点值或任意两者之间的范围值,本申请实施例提供的沉淀剂为常用沉淀剂,易于获得,节约成本。
优选地,所述络合剂包括氨水、草酸、柠檬酸和乙二胺四乙酸二钠中的至少一种,本申请实施例提供的络合剂为常用络合剂,易于获得,节约成本,更优选地,所述络合剂溶液的浓度为5~9mol/L,包括但不限于5mol/L、6mol/L、7mol/L、8mol/L、9mol/L中的任意一者的点值或任意两者之间的范围值,本申请实施例提供的络合剂的浓度范围可改善高镍三元电极复合材料颗粒的体积,以及提高反应速率。
优选地,所述混合的过程中,反应体系的温度为50~80℃,包括但不限于50℃、60℃、65℃、70℃、80℃中的任意一者的点值或任意两者之间的范围值,本申请实施例提供的反应温度可促进反应的进行,且改善反应的动力学条件。
优选地,所述混合的过程中,反应体系的pH=9.0~11.0,包括但不限于9、9.5、10、10.5、11中的任意一者的点值或任意两者之间的范围值,本申请实施例提供的PH值范围,可提高沉淀率,且可提高三元材料颗粒表面的球形度。
在本申请一些优选的实施方式中,在步骤(a)中,所述含有镍源、钴源、锰源的混合溶液中,金属离子的总浓度为0.5~2.0mol/L,包括但不限于0.5mol/L、1mol/L、1.5mol/L、2mol/L中的任意一者的点值或任意两者之间的范围值,本申请实施例提供的金属离子的范围,可减低金属盐晶体的析出率,且可提高设备的利用率。
优选地,所述镍源包括硫酸镍、氯酸镍、硝酸镍盐或醋酸镍中的至少一种;
优选地,所述钴源包括硫酸钴、氯酸钴、硝酸钴或醋酸钴中的至少一种;
优选地,所述锰源包括硫酸锰、氯酸锰、硝酸锰或醋酸锰中的至少一种。
在本申请一些优选的实施方式中,所述钨源的溶液中,钨的摩尔浓度为0.01~0.1mol/L,包括但不限于0.01mol/L、0.05mol/L、0.08mol/L、0.1mol/L中的任意一者的点值或任意两者之间的范围值。
优选地,所述钨源包括钨酸钠、钨酸钙和偏钨酸铵中的至少一种,更优选为钨酸钠,钨酸钠引入的钠离子在后期更方便处理。
在本申请一些优选的实施方式中,在步骤(a)中,所述锂源化合物包括碳酸锂、氢氧化锂、过氧化锂、乙酸锂和硝酸锂中的至少一种。
优选地,所述锂源化合物的添加量比分子式LiNi xCo yMn zW (1-x-y-z)O 2中锂元素的理论摩尔量过量1%~10%,理论上三元前驱体和锂盐是化学计量比1:1反应,即添加量为理论摩尔量的101%、105%、108%、110%中的任意一者的点值或任意两者之间的范围值,本申请实施例提供的锂元素的理论摩尔量过量1%~10%,可补充烧结过程中的损失量,进而提高产品电化学性能,尤其可提高电池的充放电容量和循环性能。
在本申请一些优选的实施方式中,在步骤(a)中,所述烧结的过程,具体包括:先在300~600℃下预烧,再在800~1000℃烧结。
优选地,先在300~600℃(例如300℃、350℃、400℃、450℃、500℃、550℃、600℃)下预烧3~7h(例如3、4、5、6、7h),再升温至800~1000℃(例如800℃、850℃、900℃、950℃、1000℃)烧结10~30h(例如10、15、20、25、30h),本申请实施例提供的两阶段烧结方法,对本产品进行处理,可提高烧结率,且可改善产品的性能。
在本申请一些优选的实施方式中,在步骤(b)中,所述氧化铝的质量为所述钨掺杂的三元电极材料质量的1%~3%,例如2%,本申请实施例提供的钨掺杂的三元电极材料质量范围可对产品进行改性。
在本申请一些优选的实施方式中,在步骤(b)中,通过溶剂扩散进行包覆的方式能得到均匀的包覆层,所述混匀的过程具体包括:在可挥发性溶剂条件下,将所述钨掺杂的三元电极材料与所述氧化铝混匀,并在所述烧结之前,搅拌将所述可挥发性溶剂完全挥发,由于可挥发性溶剂吸热,容易造成烧结过程中局部热量不均匀,为进一步提高烧结率,需要将可挥发溶剂完全挥发掉。
优选地,所述可挥发性溶剂包括去离子水、乙醇和乙二醇中的至少一种。
优选地,所述搅拌的过程中,混合物体系的温度为50~80℃,可提高可挥发性溶剂去除率,且节约成本,包括但不限于50℃、60℃、65℃、70℃、80℃中的任意一者的点值或任意两者之间的范围值。
优选地,所述搅拌为超声搅拌,实现更均匀的分散程度。
在本申请一些优选的实施方式中,在步骤(b)中,所述烧结的温度为300~500℃,包括但不限于300℃、350℃、400℃、450℃、500℃中的任意一者的点值或任意两者之间的范围值,由于烧结第一阶段主要发生分解反应,形成氧化物,此温度可满足反应要求。
优选地,所述烧结的时间为5~10h,例如5、6、7、9、10h,由于固相反应分解和扩散速率较慢,此烧结时间可提高烧结率。
本申请所提供的一种锂离子电池,包括所述的高镍三元电极复合材料制备得到的正极。该电池在高温和高电压下的循环寿命与容量保持率均得到提高,倍率性能也得到了改善。
有益效果
与现有技术相比,本申请的有益效果为:
(1)本申请所提供的高镍三元电极复合材料,在钨掺杂实现减轻锂镍混排影响的同时,表面包覆的氧化铝材料可降低由高温导致的电解液腐蚀活性材料所带来的影响,使该高镍三元电极复合材料在高温和高电压下的电化学性能得到提高与改善。
(2)本申请所提供的高镍三元电极复合材料的制备方法,工艺流程方便、简单,所得到的复合材料粒度分布均匀,球形度高。
(3)本申请所提供的锂离子电池,在首次效率和长循环保持率上均具有明显优势。
本发明的实施方式
下面将结合具体实施方式对本申请的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本申请一部分实施例,而不是全部的实施例,仅用于说明本申请,而不应视为限制本申请的范围。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供了一种表面包覆2wt%氧化铝的LiNi 0.8Co 0.1Mn 0.08W 0.02O 2复合材料。
该复合材料采用以下方法制备得到:
(1)在连续搅拌反应釜中加入适量纯水作为底液,以氮气作为保护气氛,加热温度至70℃,调节搅拌桨的转速为400r/min。采用氢氧化钠为沉淀剂,氨水为络合剂的氢氧化盐共沉淀法,将54.84kg六水硫酸镍、7.87kg七水硫酸钴和3.78kg一水硫酸锰溶于280L去离子水中,得到浓度为1.0mol/L的混合盐溶液,以5L/h的流速泵入连续搅拌的反应釜中。将1.64kg的钨酸钠溶于280L去离子水中,溶液浓度为0.25mol/L,以0.4L/h的流速泵入连续搅拌的反应釜中。同时将氢氧化钠(浓度为10mol/L)和氨水(浓度为7mol/L)的溶液缓慢滴加到连续搅拌的反应釜中,氢氧化钠溶液的流速为1.5L/h,氨水溶液的流速为0.5L/h,控制溶液体系的pH值为10。共沉淀反应后,陈化24h,用去离子水洗涤4次,在110℃温度下烘干,即得到钨掺杂的高镍三元电极材料前驱体。
(2)将10g钨掺杂的高镍三元正极材料前驱体与4.20g碳酸锂按(Li的物质的量与理论用量相比过量5%)均匀混合,550℃预烧结6h,然后升温至950℃烧结10h,即得到钨掺杂的高镍三元电极材料。
(3)将5g钨掺杂的高镍三元电极材料和0.1g氧化铝(重量百分比为2wt%)分散在装有适量乙醇的容器中,在60℃下超声搅拌,直至溶剂完全挥发。然后通过350℃烧结9h获得氧化铝包覆及钨掺杂的高镍三元正极材料。
实施例2
本实施例提供了一种表面包覆1wt%氧化铝的LiNi 0.8Co 0.1Mn 0.08W 0.02O 2复合材料。
该复合材料采用的制备方法与实施例1的制备方法基本相同,只是调整了氧化铝的包覆量。
实施例3
本实施例提供了一种表面包覆3wt%氧化铝的LiNi 0.8Co 0.1Mn 0.08W 0.02O 2复合材料。
该复合材料采用以下方法制备得到:
(1)在连续搅拌反应釜中加入适量纯水作为底液,以氮气作为保护气氛,加热温度至50℃,调节搅拌桨的转速为200r/min。采用氢氧化钠为沉淀剂,氨水为络合剂的氢氧化盐共沉淀法,将按照摩尔比Ni:Co:Mn=0.8:0.1:0.08的比例配置硫酸镍、硫酸钴和硫酸锰的混合盐溶液(浓度为0.5mol/L)、钨酸钠的水溶液(浓度为0.01mol/L),以及氢氧化钠(浓度为6mol/L)和氨水(浓度为5mol/L)的溶液缓慢滴加到连续搅拌的反应釜中,控制溶液体系的pH值为9。经过沉淀、陈化、洗涤、烘干后,即得到钨掺杂的高镍三元电极材料前驱体。
(2)将钨掺杂的高镍三元正极材料前驱体与碳酸锂按锂与理论用量相比过量5%均匀混合,300℃预烧结7h,然后升温至800℃烧结30h,即得到钨掺杂的高镍三元电极材料。
(3)将制得钨掺杂的高镍三元电极材料和其质量3wt%的氧化铝分散在装有适量乙醇的容器中,在50℃下超声搅拌,直至溶剂完全挥发。然后通过300℃烧结7h获得氧化铝包覆及钨掺杂的高镍三元正极材料。
实施例4
本实施例提供了一种表面包覆2wt%氧化铝的LiNi 0.8Co 0.1Mn 0.08W 0.02O 2复合材料。
该复合材料采用以下方法制备得到:
(1)在连续搅拌反应釜中加入适量纯水作为底液,以氮气作为保护气氛,加热温度至80℃,调节搅拌桨的转速为600r/min。采用氢氧化钠为沉淀剂,氨水为络合剂的氢氧化盐共沉淀法,将按照摩尔比Ni:Co:Mn=0.8:0.1:0.08的比例配置硫酸镍、硫酸钴和硫酸锰的混合盐溶液(浓度为2mol/L)、钨酸钠的水溶液(浓度为0.1mol/L),以及氢氧化钠(浓度为12mol/L)和氨水(浓度为9mol/L)的溶液缓慢滴加到连续搅拌的反应釜中,控制溶液体系的pH值为11。经过沉淀、陈化、洗涤、烘干后,即得到钨掺杂的高镍三元电极材料前驱体。
(2)将钨掺杂的高镍三元正极材料前驱体与碳酸锂按锂与理论用量相比过量10%均匀混合,600℃预烧结3h,然后升温至1000℃烧结10h,即得到钨掺杂的高镍三元电极材料。
(3)将制得钨掺杂的高镍三元电极材料和其质量2wt%的氧化铝分散在装有适量乙醇的容器中,在80℃下超声搅拌,直至溶剂完全挥发。然后通过500℃烧结5h获得氧化铝包覆及钨掺杂的高镍三元正极材料。
对比例1
对比例1提供了一种表面包覆2wt%氧化铝的LiNi 0.8Co 0.1Mn 0.1O 2复合材料。
该复合材料的制备方法,与实施例1基本相同,只是在共沉淀过程中不添加钨酸钠。
对比例2
对比例1提供了一种表面无包覆层的LiNi 0.8Co 0.1Mn 0.1O 2复合材料。
该复合材料的制备方法,与实施例1基本相同,只是不包括步骤(3),不进行包覆的步骤。
试验例
将实施例1-4和对比例1-2所提供的电极材料作为正极材料组装成扣式电池并进行电化学性能测试。将正极材料分别与导电剂乙炔炭黑、粘结剂PVDF按照质量比8:1:1比例混合均匀,加入少量1-甲基-2吡络烷酮混合制成浆料均匀涂覆在铝箔上,烘干、裁剪制成正极极片。以金属锂片作为负极组装成扣式电池,采用蓝电测试系统进行电化学测试(充放电截止电位为2.75~4.3V)。实验结果如表1所示。
表1  电化学测试结果
  首次放电容量(mAh/g) 首次效率(%) 50次循环后容量保持率(%)
实施例1 190.5 94.1 90.7
实施例2 189.3 92.7 90.3
实施例3 188.7 91.5 89.5
实施例4 187.6 91.1 86.8
对比例1 187.1 90.2 87.1
对比例2 185.5 88.7 84.7
由实验结果可知,采用氧化铝包覆及钨掺杂的高镍三元正极材料相比于单独进行钨掺杂或是单独进行表面包覆氧化铝的正极材料,在首次效率和长循环保持率上都有明显优势。
尽管已用具体实施例来说明和描述了本申请,然而应意识到,以上各实施例仅用以说明本申请的技术方案,而非对其限制;本领域的普通技术人员应当理解:在不背离本申请的精神和范围的情况下,可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围;因此,这意味着在所附权利要求中包括属于本申请范围内的所有这些替换和修改。

Claims (20)

  1. 一种高镍三元电极复合材料,其特征在于,包括钨掺杂的三元电极材料以及包覆在所述钨掺杂的三元电极材料外表面的氧化铝;
    所述钨掺杂的三元电极材料的分子式为:LiNi xCo yMn zW (1-x-y-z)O 2,其中,0.5≤x≤0.9,0≤y≤0.5,0≤z≤0.5,1-x-y-z>0。
  2. 一种根据权利要求1所述的高镍三元电极复合材料的制备方法,其特征在于,包括以下步骤:
    (a)、将钨掺杂的三元电极材料的前驱体与锂源化合物混均后,烧结得到钨掺杂的三元电极材料;
    (b)、将步骤(a)得到的所述钨掺杂的三元电极材料与所述氧化铝混匀后,烧结得到所述高镍三元电极复合材料。
  3. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(a)中,所述钨掺杂的三元电极材料的前驱体采用共沉淀法制备得到,具体包括以下步骤:
    在惰性气体保护下,将含有镍源、钴源、锰源的混合溶液、钨源溶液、沉淀剂溶液和络合剂溶液以滴加的方式进行混合,经过沉淀、陈化、洗涤和干燥后,得到所述钨掺杂的三元电极材料的前驱体。
  4. 根据权利要求3所述的高镍三元电极复合材料的制备方法,其特征在于,所述惰性气体包括氮气和/或稀有气体;和/或
    采用搅拌的方式进行所述混合,所述搅拌的转速为200~600 r/min。
  5. 根据权利要求3所述的高镍三元电极复合材料的制备方法,其特征在于,所述沉淀剂包括氢氧化锂、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠和碳酸钾中的至少一种;和/或
    所述沉淀剂溶液的浓度为6~12mol/L。
  6. 根据权利要求3所述的高镍三元电极复合材料的制备方法,其特征在于,所述络合剂包括氨水、草酸、柠檬酸和乙二胺四乙酸二钠中的至少一种;和/或
    所述络合剂溶液的浓度为5~9mol/L。
  7. 根据权利要求3所述的高镍三元电极复合材料的制备方法,其特征在于,所述混合的过程中,反应体系的温度为50~80℃。
  8. 根据权利要求3所述的高镍三元电极复合材料的制备方法,其特征在于,所述混合的过程中,反应体系的pH=9.0~11.0。
  9. 根据权利要求3所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(a)中,所述含有镍源、钴源、锰源的混合溶液中,金属离子的总浓度为0.5~2.0mol/L。
  10. 根据权利要求9所述的高镍三元电极复合材料的制备方法,其特征在于,所述镍源包括硫酸镍、氯酸镍、硝酸镍和醋酸镍中的至少一种;和/或
    所述钴源包括硫酸钴、氯酸钴、硝酸钴和醋酸钴中的至少一种;和/或
    所述锰源包括硫酸锰、氯酸锰、硝酸锰和醋酸锰中的至少一种;和/或
    所述钨源包括钨酸钠、钨酸钙和偏钨酸铵中的至少一种。
  11. 根据权利要求9所述的高镍三元电极复合材料的制备方法,其特征在于,所述钨源的溶液中,钨的摩尔浓度为0.01~0.1mol/L。
  12. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(a)中,所述锂源化合物包括碳酸锂、氢氧化锂、过氧化锂、乙酸锂和硝酸锂中的至少一种。
  13. 根据权利要求12所述的高镍三元电极复合材料的制备方法,其特征在于,所述锂源化合物的添加量比分子式中锂元素的理论摩尔量过量1%~10%。
  14. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(a)中,所述烧结的过程,具体包括:先在300~600℃下预烧,再在800~1000℃烧结。
  15. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,先在300~600℃下预烧3~7h,再升温至800~1000℃烧结10~30h。
  16. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(b)中,所述氧化铝的质量为所述钨掺杂的三元电极材料质量的1%~3%。
  17. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(b)中,所述混匀的过程具体包括:在可挥发性溶剂条件下,将所述钨掺杂的三元电极材料与所述氧化铝混匀,并在所述烧结之前,搅拌将所述可挥发性溶剂完全挥发。
  18. 根据权利要求17所述的高镍三元电极复合材料的制备方法,其特征在于,所述可挥发性溶剂包括去离子水、乙醇和乙二醇中的至少一种;和/或
    所述搅拌的过程中,混合物体系的温度为50~80℃;和/或
    所述搅拌为超声搅拌。
  19. 根据权利要求2所述的高镍三元电极复合材料的制备方法,其特征在于,在步骤(b)中,所述烧结的温度为300~500℃;和/或
    所述烧结的时间为5~10h。
  20. 一种锂离子电池,其特征在于,包括如权利要求1所述的高镍三元电极复合材料或权利要求2-19任一项所述的高镍三元电极复合材料的制备方法制备得到的高镍三元电极复合材料的正极。
PCT/CN2021/128142 2021-07-19 2021-11-02 一种高镍三元电极复合材料及其制备方法和锂离子电池 WO2023000541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110811277.2A CN113594433B (zh) 2021-07-19 2021-07-19 一种高镍三元电极复合材料及其制备方法和锂离子电池
CN202110811277.2 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023000541A1 true WO2023000541A1 (zh) 2023-01-26

Family

ID=78248300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128142 WO2023000541A1 (zh) 2021-07-19 2021-11-02 一种高镍三元电极复合材料及其制备方法和锂离子电池

Country Status (2)

Country Link
CN (1) CN113594433B (zh)
WO (1) WO2023000541A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094067A (zh) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 三元正极材料、其制备方法及其用途
CN114094069A (zh) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 锂离子电池正极材料、其制备方法及其用途
CN114975935B (zh) * 2022-06-02 2024-02-13 长沙理工大学 一种钨修饰的高镍三元锂离子电池正极材料及其制备方法
CN115477336A (zh) * 2022-10-26 2022-12-16 荆门市格林美新材料有限公司 一种改性三元前驱体及其制备方法和应用
CN115792095B (zh) * 2023-02-01 2023-06-27 山东海科创新研究院有限公司 一种正极活性材料表面残碱的非水检测方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075437A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN109065880A (zh) * 2018-06-26 2018-12-21 彩虹集团新能源股份有限公司 一种高电压单晶三元材料及其制备方法
CN110574194A (zh) * 2017-11-06 2019-12-13 株式会社Lg化学 尖晶石结构的锂锰基正极活性材料和包含所述正极活性材料的正极和锂二次电池
CN112018341A (zh) * 2019-05-28 2020-12-01 天津国安盟固利新材料科技股份有限公司 一种高容量高镍正极材料及其制备方法
CN112349892A (zh) * 2020-09-24 2021-02-09 惠州亿纬创能电池有限公司 一种包覆改性的高镍正极材料及其制备方法和用途
CN112447967A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN113363497A (zh) * 2021-06-29 2021-09-07 惠州亿纬锂能股份有限公司 一种三元材料、制备方法及电池
CN113651373A (zh) * 2021-10-19 2021-11-16 河南科隆新能源股份有限公司 一种均匀多孔结构的正极材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186138B (zh) * 2019-07-02 2022-06-28 巴斯夫杉杉电池材料(宁乡)有限公司 含w高镍三元正极材料及其制备方法
CN110854370A (zh) * 2019-11-22 2020-02-28 四川新锂想能源科技有限责任公司 一种高镍镍钴锰酸锂正极材料的制备方法
CN111384392B (zh) * 2020-03-13 2021-02-19 江门市科恒实业股份有限公司 一种高镍低钴型耐高压三元正极材料及其制备方法
CN111453778A (zh) * 2020-04-13 2020-07-28 浙江帕瓦新能源股份有限公司 一种掺钨的三元前驱体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170075437A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN110574194A (zh) * 2017-11-06 2019-12-13 株式会社Lg化学 尖晶石结构的锂锰基正极活性材料和包含所述正极活性材料的正极和锂二次电池
CN109065880A (zh) * 2018-06-26 2018-12-21 彩虹集团新能源股份有限公司 一种高电压单晶三元材料及其制备方法
CN112018341A (zh) * 2019-05-28 2020-12-01 天津国安盟固利新材料科技股份有限公司 一种高容量高镍正极材料及其制备方法
CN112447967A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
CN112349892A (zh) * 2020-09-24 2021-02-09 惠州亿纬创能电池有限公司 一种包覆改性的高镍正极材料及其制备方法和用途
CN113363497A (zh) * 2021-06-29 2021-09-07 惠州亿纬锂能股份有限公司 一种三元材料、制备方法及电池
CN113651373A (zh) * 2021-10-19 2021-11-16 河南科隆新能源股份有限公司 一种均匀多孔结构的正极材料及其制备方法

Also Published As

Publication number Publication date
CN113594433A (zh) 2021-11-02
CN113594433B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2023000541A1 (zh) 一种高镍三元电极复合材料及其制备方法和锂离子电池
CN109659542B (zh) 一种核壳结构的高电压钴酸锂正极材料及其制备方法
WO2021159618A1 (zh) 一种高功率型的锂离子电池用正极材料及其制备方法
EP3557668A1 (en) Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery
CN110668509B (zh) 一种硒包覆的高镍三元层状正极材料及其制备方法
WO2022048346A1 (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
EP3965188A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
CN111211305B (zh) 一种pda辅助金属氧化物包覆的高镍三元层状正极材料及其制备方法
CN113851633B (zh) 一种磷酸铌包覆的铌掺杂高镍三元正极材料及其制备方法
CN114005978B (zh) 一种无钴正极材料及其制备方法和应用
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN113479944A (zh) 一种改性高镍三元正极材料的制备方法
CN106784790A (zh) 一种镍钴锰酸锂三元正极材料的制备方法
WO2024046508A1 (zh) 一种钴梯度高镍三元正极材料及其制备方法、锂离子电池
WO2024178920A1 (zh) 三元正极材料及其制备方法和二次电池
CN110137464B (zh) 钼酸钒锂包覆富锂镍钴锰氧化物正极材料、正极极片及其制备方法与锂电池
CN115832257A (zh) 一种磷酸锰铁锂正极材料、制备方法及其应用
WO2023185548A1 (zh) 一种改性磷酸锰铁锂正极材料及其制备方法和应用
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN111933914B (zh) 五氧化二钒与rGO共包覆梯度三元正极材料及制备方法
CN114094080A (zh) 一种单晶型富锂层状-尖晶石复合正极材料及其制备方法
WO2024164930A1 (zh) 电池
CN109860566B (zh) 一种改性镍钴锰酸锂正极材料的制备方法
CN116845191A (zh) 一种自补锂型三元材料、制备方法及应用
CN109879332B (zh) 一种富锂锰基正极材料前驱体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950779

Country of ref document: EP

Kind code of ref document: A1