WO2023084787A1 - 変化点検知装置、変化点検知方法及びプログラム - Google Patents
変化点検知装置、変化点検知方法及びプログラム Download PDFInfo
- Publication number
- WO2023084787A1 WO2023084787A1 PCT/JP2021/041966 JP2021041966W WO2023084787A1 WO 2023084787 A1 WO2023084787 A1 WO 2023084787A1 JP 2021041966 W JP2021041966 W JP 2021041966W WO 2023084787 A1 WO2023084787 A1 WO 2023084787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- data
- cluster
- devices
- change point
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 61
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 230000007704 transition Effects 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 43
- 238000004364 calculation method Methods 0.000 claims description 14
- 125000004122 cyclic group Chemical group 0.000 abstract 2
- 230000002123 temporal effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 12
- 230000000737 periodic effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 239000000284 extract Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003657 Likelihood-ratio test Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013450 outlier detection Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000005654 stationary process Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/258—Data format conversion from or to a database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/283—Multi-dimensional databases or data warehouses, e.g. MOLAP or ROLAP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/285—Clustering or classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Definitions
- the present disclosure relates to a change point detection device, a change point detection method, and a program.
- system state is the operating state of the system represented by quantitative variables such as "number of accesses” and "number of users”.
- Non-Patent Literatures 1 to 4 are known as techniques for detecting change points in time-series data to which correct labels regarding the occurrence positions of change points are not assigned.
- Non-Patent Document 1 proposes a method of calculating the degree of change by evaluating the distance between subspaces composed of partial time series using the subspace method.
- a matrix is generated by bundling partial time series (time windows extracted from the time series) for each of the past period and the current period, and characteristic patterns are extracted by singular value decomposition. is a method of evaluating the distance of
- Non-Patent Document 2 proposes a method of estimating the probability distribution of a new section based on data observed after the previous change point using a probability model. This is a method of detecting a change point by estimating the probability distribution of the run length from the last change point (elapsed time to the next change point) based on Bayesian theory.
- Bayesian theory is a theory that indicates that "the possibility of something happening can be roughly estimated using the frequency of occurrence of that event in the past.”
- Non-Patent Document 3 proposes a method of classifying time-series data using clustering and determining that a change has occurred when a new observed value does not match any existing cluster. This is a method of determining whether or not the Euclidean distance between a new observed value and the centroid of an existing cluster exceeds the radius of the cluster for all existing clusters, and detecting it as a change point if it exceeds all.
- Non-Patent Document 4 Online change detection based on two-stage learning in Non-Patent Document 4 is a type of likelihood ratio test that determines whether there is a significant difference in the probability density of two consecutive sections based on the likelihood ratio.
- the probability density function based on the same autoregressive model is calculated from the smoothed outlier score series calculated up to the previous point.
- a logarithmic loss function under the probability density function is calculated for an outlier score calculated from newly observed data after learning, and a smoothed value is used as a change point score.
- Non-Patent Document 5 is a method of classifying the state of time-series data using clustering and then tracing the clusters assigned to each time point along the time axis to extract cluster transitions between different clusters. Furthermore, this calculates the appearance frequency of each cluster transition pattern in the past fixed period, and detects as non-stationary fluctuation when the appearance frequency of the newly observed cluster transition pattern in the past period is below a preset threshold. The method.
- Non-Patent Document 1 has the limitation that the time series to be detected must be a stationary process. In other words, it is necessary to satisfy the weak stationarity that the expected value and autocovariance of the target time series are constant regardless of time.
- Non-Patent Document 2 has the restriction that the time series to be detected must be independently and identically distributed (iid: independently and identically distributed). In other words, it is necessary that the data at each point in the time series follow the same probability distribution independently of each other.
- many of the time-series data observed in many systems, such as network systems show periodic fluctuations such as hourly fluctuations, day-of-week fluctuations, and monthly fluctuations. Therefore, it is not possible to apply change point detection technology that is subject to constraints such as the stationarity constraint and the iid constraint.
- the change point detection technique by clustering proposed by Non-Patent Document 3 and the online change detection technique based on two-stage learning proposed by Non-Patent Document 4 are not subject to constraints such as stationarity constraints and iid constraints on the target time series. It is considered promising in terms of However, the change point detection technology based on clustering proposed by Non-Patent Document 3 classifies snapshot data extracted from time-series data at each point in time, and determines whether or not the classified state differs from the existing state. and does not consider the time axis. In other words, in time-series data in which state changes follow a certain pattern, such as time-series data showing periodic fluctuations observed in many systems, this time-change pattern changes at a certain moment. In this case, this change point cannot be detected.
- Non-Patent Document 4 is based on an autoregressive model, so it can be said that it takes into consideration the time axis. Therefore, it is also promising for time-series data whose time-varying patterns change at certain moments.
- an autoregression model for time-series data in which multiple types of periodic fluctuations with different periods, such as hourly fluctuations, day-of-the-week fluctuations, and monthly fluctuations, coexist.
- Non-Patent Document 5 is based on clustering in which the target time series is not restricted, and is a technology that considers the time axis by a method of tracking cluster transitions in the direction of the time axis. is.
- this technology is a technology that detects cluster transition patterns whose frequency of appearance calculated over a certain period of time in the past falls below a preset threshold as unsteady fluctuations, and that individual cluster transitions are in an abnormal state compared to past results. (low appearance frequency) or not, and does not detect a change point that can be said to be the beginning of a continuous abnormal state.
- the present invention has been made in view of the above points.
- the purpose is to detect the time point of occurrence as a change point when some change occurs.
- the invention according to claim 1 provides time-series data representing a system state at each point in time of a system composed of one or more devices, wherein the number of devices constituting the system x the
- a time window generating unit that generates transformed data by transforming data into data of the dimension of x time window length; and a detection unit that detects a change point when the value exceeds the change point detection device.
- time-series data representing the system state at each point in time of a system (S) composed of one or more devices is used to change the point of occurrence when any change occurs in the system state.
- a change point detection device 10 capable of detecting points will be described.
- the "system state” is the operating state of the system represented by quantitative variables such as "number of accesses" and "number of users”.
- FIG. 1 is a diagram showing an example of the functional configuration of the change point detection device according to this embodiment.
- the change point detection device 10 includes an input unit 11, a time window generation unit 12, a period setting unit 13, a clustering unit 14, a cluster transition series generation unit 15, It has a cluster transition tensor calculation unit 16 , a change point score calculation unit 17 , a detection unit 18 and an output unit 19 .
- the ⁇ devices'' in the ⁇ number of devices'' and ⁇ status of devices'' shown below indicate the devices constituting the system to be subjected to change point detection by the change point detection device 10.
- the input unit 11 is time-series data representing the system state at each point in time of the system (S) composed of one or more devices, which constitutes the system (S) (representing the number of devices ⁇ device state Number of items) Enter time-series data consisting of dimensional data.
- the time window generation unit 12 divides the time-series data input by the input unit 11 into fixed-length time windows, and converts the data at each time point from the (number of devices x number of items) dimensional data into (number of devices x number of items x time window length)-dimensional data to generate converted data and perform intermediate output.
- the period setting unit 13 extracts the time series data of the preset past period and the current period from the (number of devices x number of items x time window length) time series data generated by the time window generation unit 12. , intermediate output.
- the clustering unit 14 classifies the (number of devices ⁇ number of items ⁇ time window length) dimensional data at each time point constituting the time-series data of the past period and the current period extracted by the period setting unit 13 by a clustering method. , intermediate output.
- the cluster transition series creation unit 15 traces the clusters assigned by the clustering unit 14 to the (number of devices ⁇ number of items ⁇ time window length)-dimensional data at each point in the past period and the current period in the direction of the time axis. and the current period, a series of cluster transitions between different clusters is created, and at the same time, each cluster constituting this cluster transition series is assigned a stay period in the cluster, and an intermediate output is performed.
- the cluster transition tensor calculation unit 16 extracts cluster transitions of a preset fixed length from the cluster transition sequence created by the cluster transition sequence creation unit 15, and then calculates the appearance of each cluster transition pattern in the past period and the current period. Calculate the probability, set the above cluster transition length (length of cluster transition) as the rank (that is, dimension), have the unique value of all clusters that appeared in the past period and the current period in each dimension index, cluster transition pattern A cluster transition tensor whose value is the probability of occurrence of is calculated for each of the past period and the current period, and an intermediate output is performed.
- the change point score calculation unit 17 calculates the degree of change from the past period to the current period based on the cluster transition tensors of the past period and the current period calculated by the cluster transition tensor calculation unit 16, and calculates the degree of change from the past period to the current period. Calculate the distance of the cluster transition tensor in the period and perform the intermediate output.
- the detection unit 18 detects a change point when the change point score calculated by the change point score calculation unit 17 exceeds a preset threshold. That is, the detection unit 18 detects a change point when the change point score of the system state calculated based on the data (converted data) at each time exceeds a preset threshold value.
- the output unit 19 outputs the change points detected by the detection unit 18 .
- FIG. 2 is a flowchart showing an example of change point detection processing according to the present embodiment.
- M is the number of devices that make up the system (S)
- K is the number of data items representing the system state at each point in time
- N is the number of observation points of the time-series data. Assume that series data is configured.
- each element of the M ⁇ K dimensional data at each point in time is K observed values representing the states of the M devices at that point in time.
- Step S11 First, the input unit 11 inputs time-series data composed of N pieces of M ⁇ K (the number of devices ⁇ the number of items) dimensional data. That is, if Xn is the M ⁇ K-dimensional data at time n , the input unit 11 inputs time-series data ⁇ X 1 , . . . , X N ⁇ .
- Step S14 Next, the clustering unit 14 constructs time-series data of the past period of length (e1-s1+1) extracted in step S13 and the current period of length (e2-s2+1) (e1- s1+e2-s2+2) pieces of M ⁇ K ⁇ W (number of devices ⁇ number of items ⁇ time window length) dimensional data are classified by a clustering method to obtain a cluster series corresponding to the time series data. Specifically, when the cluster to which the M ⁇ K ⁇ W-dimensional data Y n at the point in time n belongs is C n , the clustering unit 14 uses the time-series data ⁇ Y s1 , . A cluster sequence ⁇ C s2 , . . .
- C e2 ⁇ is obtained from the cluster sequence ⁇ C s1 , .
- clustering is a process of classifying (e1-s1+e2-s2+2) pieces of M ⁇ K ⁇ W dimensional data into the same cluster based on the mutual distance.
- a cluster series is obtained by arranging the clusters assigned to each M ⁇ K ⁇ W dimensional data in chronological order.
- a hierarchical method e.g., shortest distance method, longest distance method, group average method, Ward method, etc.
- a non-hierarchical method e.g., K-Means method, etc.
- Step S15 Next, the cluster transition sequence creation unit 15 generates M ⁇ K ⁇ W (number of devices ⁇ number of items ⁇ time window length) dimensions at each point in the past period [s1, e1] and the current period [s2, e2].
- the clusters assigned to the data in step S14 are tracked in the time axis direction, and for each of the past period and the current period, a series of cluster transitions between different clusters is created, and for each cluster that constitutes this cluster transition series Gives the length of stay in the cluster.
- a cluster sequence ⁇ C s1 , . . . , C e1 ⁇ obtained from time-series data ⁇ Y s1 , .
- Step S16 Next, the cluster transition tensor calculation unit 16 extracts cluster transitions of a preset fixed length L from the cluster transition sequence created in step S15, and extracts each cluster transition in the past period and the current period.
- the occurrence probability of the pattern is calculated, the cluster transition length L is defined as the rank (dimension), the unique value of all clusters that have appeared in the past period and the current period are held in the index of each dimension, and the appearance probability of the cluster transition pattern is the value.
- the cluster transition tensor calculation unit 16 collects the (I-(L-1)) cluster transitions for each pattern, calculates the appearance probability, and calculates an L-dimensional cluster transition tensor based on this.
- the appearance probability of a cluster transition pattern is a value obtained by dividing the appearance frequency of the cluster transition pattern by the total appearance frequency of all cluster transition patterns.
- a value weighted by the length of stay of the cluster transition pattern may be used as the frequency of appearance of the cluster transition pattern.
- the cluster transition tensor can be represented by a 3 ⁇ 3 array, and if the appearance probability of the cluster transition pattern ⁇ is 0.1, the index of the first axis (the first element of the cluster transition pattern) is the value ⁇ , An appearance probability of 0.1 is stored in the array element whose index on the second axis (the second element of the cluster transition pattern) takes the value ⁇ .
- Step S17 Next, the change point score calculation unit 17 calculates the cluster transition tensor in the past period as the degree of change from the past period to the current period based on the cluster transition tensor in the past period and the current period calculated in step S16. and the distance of the cluster transition tensor in the current period.
- M in the following inter-tensor distance is the number of unique values of all clusters appearing in the past period and the current period.
- Step S18 Next, the detection unit 18 detects a change point when the change point score calculated in step S17 exceeds a preset threshold. That is, the detection unit 18 detects a change point when the change point score of the system state calculated based on the data (converted data) at each time exceeds a preset threshold value.
- Step S19 Finally, the output unit 19 outputs the change point detected in step S18.
- FIG. 3 is a hardware configuration diagram of the change point detection device.
- the change point detection device 10 has a processor 101, a memory 102, an auxiliary storage device 103, a connection device 104, a communication device 105, and a drive device .
- Each piece of hardware constituting the change point detection device 10 is interconnected via a bus 107 .
- the processor 101 plays the role of a control unit that controls the entire change point detection device 10, and has various computing devices such as a CPU (Central Processing Unit).
- the processor 101 reads various programs onto the memory 102 and executes them.
- the processor 101 may include a GPGPU (General-purpose computing on graphics processing units).
- the memory 102 has main storage devices such as ROM (Read Only Memory) and RAM (Random Access Memory).
- the processor 101 and the memory 102 form a so-called computer, and the processor 101 executes various programs read onto the memory 102, thereby realizing various functions of the computer.
- the auxiliary storage device 103 stores various programs and various information used when the various programs are executed by the processor 101 .
- connection device 104 is a connection device that connects an external device (eg, the display device 110, the operation device 111) and the change point detection device 10.
- the communication device 105 is a communication device for transmitting and receiving various information to and from other devices.
- the drive device 106 is a device for setting the recording medium 130 .
- the recording medium 130 here includes media for optically, electrically, or magnetically recording information such as CD-ROMs (Compact Disc Read-Only Memory), flexible discs, magneto-optical discs, and the like.
- the recording medium 130 may also include a semiconductor memory that electrically records information, such as a ROM (Read Only Memory) and a flash memory.
- auxiliary storage device 103 Various programs to be installed in the auxiliary storage device 103 are installed by, for example, setting the distributed recording medium 130 in the drive device 106 and reading the various programs recorded in the recording medium 130 by the drive device 106. be done. Alternatively, various programs installed in the auxiliary storage device 103 may be installed by being downloaded from the network via the communication device 105 .
- the change point detection device 10 uses the time-series data representing the system state at each point in time of the system (S) configured by one or more devices, When a change occurs, the point of occurrence can be detected as a change point.
- the change point detection device 10 since the change point detection device 10 according to the present embodiment is based on the premise of classifying the system state at each point in time using a clustering method, data that does not satisfy the stationarity constraint or the iid constraint, such as showing periodic fluctuations, can also be used. It can target time-series data including Furthermore, the change point detection device 10 according to the present embodiment considers the state transition of the system (S) with the passage of time (that is, the transition of the cluster to which the system state belongs and the stay period at each point in time). The periodic variation of S) is modeled, and changes including changes in time-varying patterns, such as changes in periodic variation, can be detected.
- S state transition of the system
- the periodic variation of S is modeled, and changes including changes in time-varying patterns, such as changes in periodic variation, can be detected.
- the present invention is not limited to the above-described embodiments, and may be configured or processed (operations) as described below.
- the change point detection device 10 can be realized by a computer and a program, but it is also possible to record this program on a (non-temporary) recording medium or provide it through a network such as the Internet.
- a change point detection device comprising a processor, The processor Time-series data representing the system state at each point in time of a system composed of one or more devices, composed of data of dimensions of the number of devices constituting the system x the number of items representing the state of the device an input step for inputting time series data; a time window generation step of generating converted data by converting the time-series data at each time point from data of dimensions of number of devices ⁇ number of items to data of dimensions of number of devices ⁇ number of items ⁇ time window length; a detection step of detecting a change point when the change point score of the system state calculated based on the conversion data at each time point exceeds a preset threshold value; A change point detector that performs
- the change point detection device according to additional item 1,
- the processor a clustering step of classifying the dimensional data of the number of devices x number of items x time window length at each time point constituting the time-series data for a preset past period and current period by a clustering method;
- the clusters assigned to the dimensional data of the number of devices x number of items x time window length are tracked in the time axis direction, and for each of the past period and the current period, a series of cluster transitions between different clusters is created, and a cluster transition sequence creating step of assigning a stay period in the cluster to each cluster constituting a cluster transition sequence;
- After extracting cluster transitions of a preset fixed length from the series of cluster transitions the probability of occurrence of each cluster transition pattern in the past period and the current period is calculated, and the length of the cluster transition is used as a dimension, and the past A cluster transition tensor that has a unique value of all clusters appearing in the period and the current period in each dimension index and calculates
- Appendix 4 A non-transitory recording medium in which a program for causing a computer to execute the method according to claim 3 is recorded.
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
まず、本実施形態に係る変化点検知装置10の機能構成について、図1を参照しながら説明する。図1は、本実施形態に係る変化点検知装置の機能構成の一例を示す図である。
次に、本実施形態に係る変化点検知処理(手順)について、図2を参照しながら説明する。図2は、本実施形態に係る変化点検知処理の一例を示すフローチャートである。
(Σl=1 LΣm=1 M(d2 i1,・・・,iL-d1 i1,・・・,iL)2/ML)1/2
なお、下記テンソル間距離におけるMは、過去期間と現在期間を通じて出現したすべてのクラスタのユニーク値の個数である。
続いて、図3を用いて、変化点検知装置10のハードウェア構成について説明する。図3は、変化点検知装置のハードウェア構成図である。
以上のように、本実施形態に係る変化点検知装置10は、1つ又は複数の装置で構成されるシステム(S)の各時点におけるシステム状態を表す時系列データを用いて、システム状態に何らかの変化が発生した際に、その発生時点を変化点として検知することができる。
本発明は上述の実施形態に限定されるものではなく、以下に示すような構成又は処理(動作)であってもよい。
本実施形態は、以下に示すように表現することが可能である。
プロセッサを有する変化点検知装置であって、
前記プロセッサは、
1つ又は複数の装置で構成されるシステムの各時点におけるシステム状態を表す時系列データであって、前記システムを構成する装置数×前記装置の状態を表す項目数の次元のデータで構成される時系列データを入力する入力ステップと、
前記各時点における前記時系列データを装置数×項目数の次元のデータから、装置数×項目数×時間窓長の次元のデータに変換することで変換データを生成する時間窓生成ステップと、
前記各時点における前記変換データに基づいて算出された前記システム状態の変化点スコアがあらかじめ設定された閾値を超えた場合に変化点として検知する検知ステップと、
を実行する変化点検知装置。
付記項1に記載の変化点検知装置であって、
前記プロセッサは、
あらかじめ設定された過去期間と現在期間の前記時系列データを構成する各時点の装置数×項目数×時間窓長の次元データをクラスタリング手法により状態分類するクラスタリングステップと、
前記装置数×項目数×時間窓長の次元データに対し割り当てられたクラスタを時間軸方向に追跡し、過去期間と現在期間のそれぞれについて、異なるクラスタ間におけるクラスタ遷移の系列を作成すると共に、当該クラスタ遷移の系列を構成する各クラスタに対し当該クラスタにおける滞在期間を付与するクラスタ遷移系列作成ステップと、
前記クラスタ遷移の系列から、あらかじめ設定された固定長のクラスタ遷移を抽出した上で、過去期間と現在期間における各クラスタ遷移パターンの出現確率を算出し、前記クラスタ遷移の長さを次元とし、過去期間と現在期間に出現したすべてのクラスタのユニーク値を各次元のインデックスに持ち、前記各クラスタ遷移パターンの出現確率を値に持つクラスタ遷移テンソルを過去期間と現在期間のそれぞれについて算出するクラスタ遷移テンソル算出ステップと、
過去期間と現在期間それぞれについて算出された前記クラスタ遷移テンソルに基づき、過去期間から現在期間にかけての変化度として、過去期間における前記クラスタ遷移テンソルと現在期間における前記クラスタ遷移テンソルの距離を算出する変化点スコア算出ステップと、
を実行する変化点検知装置。
1つ又は複数の装置で構成されるシステムの各時点におけるシステム状態を表す時系列データであって、前記システムを構成する装置数×前記装置の状態を表す項目数の次元のデータで構成される時系列データを入力する入力手順と、
前記各時点における前記時系列データを装置数×項目数の次元のデータから、装置数×項目数×時間窓長の次元のデータに変換することで変換データを生成する時間窓生成手順と、
前記各時点における前記変換データに基づいて算出された前記システム状態の変化点スコアがあらかじめ設定された閾値を超えた場合に変化点として検知する検知手順と、
をコンピュータが実行する変化点検知方法。
コンピュータに、付記項3に記載の方法を実行させるプログラムが記録された非一時的記録媒体。
11 入力部
12 時間窓生成部
13 期間設定部
14 クラスタリング部
15 クラスタ遷移系列作成部
16 クラスタ遷移テンソル算出部
17 変化点スコア算出部
18 検知部
19 出力部
Claims (4)
- 1つ又は複数の装置で構成されるシステムの各時点におけるシステム状態を表す時系列データであって、前記システムを構成する装置数×前記装置の状態を表す項目数の次元のデータで構成される時系列データを入力する入力部と、
前記各時点における前記時系列データを装置数×項目数の次元のデータから、装置数×項目数×時間窓長の次元のデータに変換することで変換データを生成する時間窓生成部と、
前記各時点における前記変換データに基づいて算出された前記システム状態の変化点スコアがあらかじめ設定された閾値を超えた場合に変化点として検知する検知部と、
を有する変化点検知装置。 - 請求項1に記載の変化点検知装置であって、
あらかじめ設定された過去期間と現在期間の前記時系列データを構成する各時点の装置数×項目数×時間窓長の次元データをクラスタリング手法により状態分類するクラスタリング部と、
前記装置数×項目数×時間窓長の次元データに対し割り当てられたクラスタを時間軸方向に追跡し、過去期間と現在期間のそれぞれについて、異なるクラスタ間におけるクラスタ遷移の系列を作成すると共に、当該クラスタ遷移の系列を構成する各クラスタに対し当該クラスタにおける滞在期間を付与するクラスタ遷移系列作成部と、
前記クラスタ遷移の系列から、あらかじめ設定された固定長のクラスタ遷移を抽出した上で、過去期間と現在期間における各クラスタ遷移パターンの出現確率を算出し、前記クラスタ遷移の長さを次元とし、過去期間と現在期間に出現したすべてのクラスタのユニーク値を各次元のインデックスに持ち、前記各クラスタ遷移パターンの出現確率を値に持つクラスタ遷移テンソルを過去期間と現在期間のそれぞれについて算出するクラスタ遷移テンソル算出部と、
過去期間と現在期間それぞれについて算出された前記クラスタ遷移テンソルに基づき、過去期間から現在期間にかけての変化度として、過去期間における前記クラスタ遷移テンソルと現在期間における前記クラスタ遷移テンソルの距離を算出する変化点スコア算出部と、
を有する変化点検知装置。 - 1つ又は複数の装置で構成されるシステムの各時点におけるシステム状態を表す時系列データであって、前記システムを構成する装置数×前記装置の状態を表す項目数の次元のデータで構成される時系列データを入力する入力手順と、
前記各時点における前記時系列データを装置数×項目数の次元のデータから、装置数×項目数×時間窓長の次元のデータに変換することで変換データを生成する時間窓生成手順と、
前記各時点における前記変換データに基づいて算出された前記システム状態の変化点スコアがあらかじめ設定された閾値を超えた場合に変化点として検知する検知手順と、
をコンピュータが実行する変化点検知方法。 - コンピュータに、請求項3に記載の方法を実行させるプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/702,548 US20240411780A1 (en) | 2021-11-15 | 2021-11-15 | Change-point detection apparatus, change-point detection method and program |
PCT/JP2021/041966 WO2023084787A1 (ja) | 2021-11-15 | 2021-11-15 | 変化点検知装置、変化点検知方法及びプログラム |
JP2023559393A JPWO2023084787A1 (ja) | 2021-11-15 | 2021-11-15 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/041966 WO2023084787A1 (ja) | 2021-11-15 | 2021-11-15 | 変化点検知装置、変化点検知方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023084787A1 true WO2023084787A1 (ja) | 2023-05-19 |
Family
ID=86335495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/041966 WO2023084787A1 (ja) | 2021-11-15 | 2021-11-15 | 変化点検知装置、変化点検知方法及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240411780A1 (ja) |
JP (1) | JPWO2023084787A1 (ja) |
WO (1) | WO2023084787A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116340796A (zh) * | 2023-05-22 | 2023-06-27 | 平安科技(深圳)有限公司 | 时序数据分析方法、装置、设备及存储介质 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012204894A (ja) * | 2011-03-24 | 2012-10-22 | Toshiba Corp | 情報推薦装置 |
-
2021
- 2021-11-15 JP JP2023559393A patent/JPWO2023084787A1/ja active Pending
- 2021-11-15 US US18/702,548 patent/US20240411780A1/en active Pending
- 2021-11-15 WO PCT/JP2021/041966 patent/WO2023084787A1/ja active Application Filing
Non-Patent Citations (2)
Title |
---|
KASUGA, AKIRA ET AL.: "Method for Detecting Explicit Structural Changes in Time Series Data", IEICE TECHNICAL REPORT, vol. 115, no. 337, 27 November 2015 (2015-11-27), pages 51 - 55, XP009545609, ISSN: 0913-5685 * |
WANG TENG; LU GUOLIANG; YAN PENG; LU CHANGHOU: "Multidimensional Analysis of Time Series for Condition Monitoring of Rotating Machinery", 2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), IEEE, 16 August 2017 (2017-08-16), pages 210 - 214, XP033269827, DOI: 10.1109/SDPC.2017.47 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116340796A (zh) * | 2023-05-22 | 2023-06-27 | 平安科技(深圳)有限公司 | 时序数据分析方法、装置、设备及存储介质 |
CN116340796B (zh) * | 2023-05-22 | 2023-12-22 | 平安科技(深圳)有限公司 | 时序数据分析方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023084787A1 (ja) | 2023-05-19 |
US20240411780A1 (en) | 2024-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Unsupervised deep anomaly detection for multi-sensor time-series signals | |
Fulcher | Feature-based time-series analysis | |
CN112154418B (zh) | 异常检测 | |
Behera et al. | Multiscale deep bidirectional gated recurrent neural networks based prognostic method for complex non-linear degradation systems | |
Laxhammar et al. | Online learning and sequential anomaly detection in trajectories | |
Wu et al. | A weighted deep domain adaptation method for industrial fault prognostics according to prior distribution of complex working conditions | |
CN111914873A (zh) | 一种两阶段云服务器无监督异常预测方法 | |
Zhao et al. | A novel multivariate time-series anomaly detection approach using an unsupervised deep neural network | |
CN117041017B (zh) | 数据中心的智能运维管理方法及系统 | |
Wu et al. | Combining OC-SVMs with LSTM for detecting anomalies in telemetry data with irregular intervals | |
CN112101420A (zh) | 一种相异模型下Stacking集成算法的异常用电用户识别方法 | |
Xu et al. | Generative adversarial networks with AdaBoost ensemble learning for anomaly detection in high-speed train automatic doors | |
Qin et al. | CSCAD: Correlation structure-based collective anomaly detection in complex system | |
WO2023084787A1 (ja) | 変化点検知装置、変化点検知方法及びプログラム | |
CN118133435A (zh) | 基于svr与聚类的复杂航天器在轨异常检测方法 | |
JP5826892B1 (ja) | 変化点検出装置、変化点検出方法、及びコンピュータプログラム | |
CN117454165A (zh) | 一种网络模型的训练方法、电机温度预测方法及相关设备 | |
CN117807470A (zh) | 用于无监督时间序列异常检测的多重校准单分类方法 | |
Ho et al. | Graph anomaly detection in time series: A survey | |
Wang et al. | Forecast-based multi-aspect framework for multivariate time-series anomaly detection | |
CN116401537A (zh) | 基于多任务的网络多元时间流量序列异常检测方法及装置 | |
Zeng et al. | Detecting anomalies in satellite telemetry data based on causal multivariate temporal convolutional network | |
Dhanalakshmi et al. | Predicting the Price of Stock Using Deep Learning Algorithms | |
Senyukova et al. | Ensemble decomposition learning for optimal utilization of implicitly encoded knowledge in biomedical applications | |
Du et al. | Sailfish: a fast Bayesian change point detection framework with gaussian process for time series |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21964140 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023559393 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18702548 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21964140 Country of ref document: EP Kind code of ref document: A1 |