Nothing Special   »   [go: up one dir, main page]

WO2023074752A1 - Breaker - Google Patents

Breaker Download PDF

Info

Publication number
WO2023074752A1
WO2023074752A1 PCT/JP2022/039976 JP2022039976W WO2023074752A1 WO 2023074752 A1 WO2023074752 A1 WO 2023074752A1 JP 2022039976 W JP2022039976 W JP 2022039976W WO 2023074752 A1 WO2023074752 A1 WO 2023074752A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
contact
breaker
bimetal
arm portion
Prior art date
Application number
PCT/JP2022/039976
Other languages
French (fr)
Japanese (ja)
Inventor
友則 瀧口
Original Assignee
大塚テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚テクノ株式会社 filed Critical 大塚テクノ株式会社
Priority to JP2023556605A priority Critical patent/JP7558596B2/en
Priority to CN202280063277.1A priority patent/CN118120039A/en
Publication of WO2023074752A1 publication Critical patent/WO2023074752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting

Definitions

  • the present invention relates to a breaker that is built into an electric device such as a battery pack or a motor and cuts off the current when the temperature exceeds a preset temperature.
  • Equipment such as battery packs and motors can cut off the current when the temperature is abnormally high to improve safety.
  • circuit breakers are used that switch off the contacts by detecting the ambient temperature with a bimetal.
  • a battery pack containing a lithium-ion battery will become hot if it is charged or discharged under abnormal usage conditions. can be safely used by blocking
  • the temperature of motors, etc. can become abnormally high when overloaded or when an abnormal current flows, they can be safely used with a breaker that cuts off the current when the set temperature is exceeded.
  • FIGS. 13 and 14 show an ON state in which the bimetal 108 is not reversed and the movable contact 107 is in contact with the fixed contact 105
  • FIG. 14 shows an OFF state in which the bimetal 108 is reversed and the movable contact 107 is separated from the fixed contact 105. ing.
  • the bimetal 108 when the temperature exceeds the set temperature, the bimetal 108 is reversed to switch the contact from ON to OFF. In this state, the bimetal 108 is reversed and deformed so as to push up the movable contact metal plate 101 from below, thereby separating the movable contact 107 from the fixed contact 105 .
  • the temperature drops and the inverted bimetal 108 returns to its original shape the elasticity of the movable contact metal plate 101 brings the movable contact 107 into contact with the fixed contact 105 and switches it to the ON state.
  • the movable contact metal plate 101 elastically pushes the movable contact 107 against the fixed contact 105 in a state in which the bimetal 108 does not push up the movable contact metal plate 101, that is, in a non-inverted shape in which the bimetal 108 is not inverted. In this state, the movable contact 107 contacts the fixed contact 105 and the breaker is kept on.
  • the bimetal 108 when the ambient temperature exceeds the threshold value, the bimetal 108 is reversed to separate the movable contact 107 from the fixed contact 107 to switch to the OFF state.
  • the breaker with this structure switches the contact from on to off to cut off the current, cuts off the current, and gradually increases the ambient temperature.
  • the breaker When it cools down to the energization temperature at which it is energized, it returns the off-state contacts to the on-state.
  • the breaker is set to have a reset temperature lower than the temperature at which the current is interrupted, but it is required to have characteristics to reduce variations in the interrupt temperature and to start energization at an accurate temperature.
  • the bimetal 108 when the ambient temperature drops to the return temperature, the bimetal 108 returns to its non-inverted shape, but the bimetal is pushed in the return direction by the movable contact metal plate 101 until just before the return. That is, the reverse bimetal returns while being pressed by the movable contact metal plate. Since the reversing bimetal returns from the reversal shape to the non-reversing shape while being pushed by the movable contact metal plate, the temperature at which the bimetal returns from the reversing state to the non-reversing shape does not affect the force with which the movable contact metal plate pushes the bimetal. receive.
  • the movable contact metal plate has a protrusion for specifying the contact position with the bimetal.
  • the reversing bimetal pushes up the projection to separate the movable contact from the fixed contact and cut off the current.
  • This structure can specify the position where the bimetal pushes the movable contact metal plate, and can reduce the error of the return temperature for switching the contact from off to on.
  • the displacement of the projections especially the displacement of the projections in the vertical direction, increases the error of the return temperature. This is because the displacement of the projection in the vertical direction changes the force with which the inverted bimetal pushes the projection.
  • the present invention has been developed with the object of solving the above drawbacks, and an important object of the present invention is to restore the reversed bimetal to its original shape so that the contact that was in the off state is in the on state. To provide a breaker capable of reducing the error of the return temperature switched to .
  • the breaker of the present invention comprises a fixed contact metal plate having a fixed contact, a movable contact metal plate having a movable contact arranged at a position facing the fixed contact, and a position facing the movable contact metal plate. It has a bimetal that switches the movable contact from on to off due to temperature, a fixed contact metal plate, a movable contact metal plate, and a case that houses the bimetal in a fixed position.
  • the movable contact metal plate has an arm portion that is pushed by the reversing bimetal to separate the movable contact from the fixed contact, and a fixed portion that is fixed to the case.
  • the arm portion is elastically deformed by being pushed by the reversing bimetal and separates the movable contact from the fixed contact, and is separated from the deformable arm portion through a slit and connects the root portion to the fixed portion. It is divided into a fixed arm section.
  • the fixed arm portion has a contact portion that contacts the bimetal, and the contact portion is pushed by the reversing bimetal to switch the movable contact from on to off.
  • the above breaker has the feature that the reversed bimetal returns to its original shape and the contact that was in the OFF state is switched to the ON state, reducing the return temperature error.
  • FIG. 1 is a perspective view of a breaker according to Embodiment 1 of the present invention
  • FIG. FIG. 2 is an exploded perspective view of the breaker shown in FIG. 1
  • FIG. 2 is an exploded perspective view of the breaker shown in FIG. 1
  • FIG. 2 is a cross-sectional view taken along line AA of the breaker shown in FIG. 1, showing a contact ON state
  • FIG. 2 is a cross-sectional view taken along line AA of the breaker shown in FIG. 1, showing a contact OFF state
  • FIG. 2 is a cross-sectional perspective view taken along the line AA of the breaker shown in FIG. 1, showing a contact ON state
  • FIG. 2 is a cross-sectional perspective view taken along line AA of the breaker shown in FIG.
  • FIG. 2 is a side cross-sectional view taken along the line BB of the breaker shown in FIG. 1, showing a contact ON state;
  • FIG. 2 is a side cross-sectional view taken along the line BB of the breaker shown in FIG. 1, showing a contact OFF state;
  • 5 is an enlarged sectional view of a movable contact and a fixed contact of the breaker shown in FIG. 4;
  • FIG. FIG. 8 is an exploded perspective view of a breaker according to Embodiment 2;
  • FIG. 12 is a cross-sectional view showing a contact ON state of the breaker shown in FIG. 11;
  • FIG. 10 is a cross-sectional view showing an example of a conventional breaker in an ON state;
  • FIG. 10 is a cross-sectional view showing an example of a conventional breaker in an off state;
  • a breaker according to an embodiment of the present invention houses a fixed contact metal plate, a movable contact metal plate, and a bimetal at fixed positions in a case.
  • the fixed contact metal plate has a fixed contact
  • the movable contact metal plate has a movable contact at a position facing the fixed contact.
  • the bimetal is placed opposite the movable contact metal plate and reverses at a set temperature to switch the movable contact from on to off.
  • the movable contact metal plate has an arm portion that is pushed by the reversing bimetal to separate the movable contact from the fixed contact, and a fixed portion that is fixed to the case.
  • the arm portion is elastically deformed by being pushed by the reversing bimetal and separates the movable contact from the fixed contact, and is separated from the deformable arm portion through a slit and connects the root portion to the fixed portion. It is divided into a fixed arm section.
  • the fixed arm portion has a contact portion that contacts the bimetal, and the contact portion is pushed by the reversing bimetal to switch the movable contact from on to off.
  • the above breaker can reduce the error in the return temperature that returns the contact to ON. For this reason, this breaker has the advantage of being able to turn on the contact at an accurate temperature when the ambient temperature rises and the current is interrupted and then the temperature drops.
  • This excellent characteristic is achieved by separating the arm portion of the movable contact metal plate into a deformable arm portion having a movable contact at the tip and a fixed arm portion that does not deform. This is because the contact portion that is pushed by the reversed bimetal is provided and the contact portion is arranged at an accurate position, thereby preventing relative displacement between the bimetal and the contact portion.
  • the fixed arm section is separated from the deformable arm section through a slit, and the root section is connected to the fixed section.
  • the contact portion is provided on the fixed arm portion that does not deform together with the deformable arm portion, the contact portion can be prevented from being displaced in the vertical direction, and the error in the return temperature can be reduced.
  • the vertical positional deviation of the contact part provided on the arm changes the balance of the pressing force between the contact part and the bimetal, affecting the return temperature error. This is because the vertical displacement of the contact portion changes the pressing force for the contact portion to push down the reversing bimetal and return it to the non-reversing shape. Since the inverted bimetal is pressed by the elastic restoring force of the arm through the contact portion, it deforms from the inverted shape to the restored posture. As the force increases, the bimetal easily returns, and conversely, when the force with which the contact portion presses the bimetal weakens, it becomes difficult for the bimetal to return.
  • Bimetals that are easy to reset are reset with a small drop in the ambient temperature, so the reset temperature is high, and bimetals that are difficult to reset are reset when the ambient temperature drops sufficiently, so the reset temperature is low. For example, when the contact portion shifts downward, the inverted bimetal is deformed to approach a non-inverted shape and the return temperature decreases.
  • breakers with this structure are often used as protective elements built into electronic devices such as battery packs, so miniaturization is required. is.
  • a breaker that separates the arm portion into the deformable arm portion and the fixed arm portion and provides the contact portion on the fixed arm portion that is not deformed together with the deformable arm portion prevents the contact portion from being displaced in the vertical direction. Realize the feature that the return temperature can be set accurately.
  • a breaker according to another embodiment of the present invention can be provided with a convex portion on the deformed arm portion of the arm portion.
  • the convex portion is provided between the movable contact and the contact portion so as to protrude toward the bimetal.
  • the contact portion is provided on the fixed arm portion
  • the convex portion is provided on the deformable arm portion
  • the convex portion is provided between the movable contact and the contact portion
  • the contact portion and the convex portion are provided at both ends of the bimetal. can be contacted.
  • This breaker has a structure in which the contact part and the convex part are in contact with both ends of the bimetal. can be switched.
  • a breaker according to another embodiment of the present invention can be provided with a fixed arm portion extending in the longitudinal direction at the center portion in the width direction of the arm portion.
  • the contact portion that contacts the bimetal can be arranged at the optimum position, and the contact position between the contact portion and the bimetal can be arranged at the optimum position.
  • the length (L2) of the fixed arm portion can be set to 10% to 90% of the length (L1) of the arm portion. It can be arranged at the optimum position with the edge.
  • a breaker according to another embodiment of the present invention can be provided with a stopper convex portion on the inner surface of the case for limiting deformation of the fixed arm portion due to the pressing force of the bimetal.
  • This breaker has the feature that the deformation of the fixed arm portion can be more reliably prevented by the stopper convex portion, the displacement of the contact portion in the vertical direction can be further reduced, and the return temperature can be accurately set.
  • a breaker according to another embodiment of the present invention comprises a main body case to which a fixed contact metal plate is fixed, and a lid case having a closing plate that closes an opening of the main body case.
  • a stopper projection can be provided on the inner surface.
  • the contact portion can be a projection projecting from the fixed arm portion toward the bimetal.
  • a breaker 100 incorporated in the battery pack detects a temperature rise of a battery or the like with a bimetal and cuts off current. Since the temperature of the battery pack rises due to thermal runaway caused by being used in an abnormal state or caused by an internal short circuit of the battery, the breaker 100 is incorporated as a protective element to prevent the temperature rise of the battery. It can be used safely by detecting and cutting off the current.
  • the breaker 100 is often used as a protection element for battery packs, but the present invention does not specify the application of the breaker 100, but all applications, such as motors, that detect a temperature rise and cut off current. can be used for the breaker 100 used for (Breaker 100)
  • the breaker 100 shown in FIGS. 1 to 9 includes a case 1, a fixed contact metal plate 4 having a fixed contact 5 fixed to the case 1, and a movable contact at a position of the fixed contact metal plate 4 facing the fixed contact 5. 7 and is arranged between the movable contact metal plate 6 and the movable contact metal plate 6 and the fixed contact metal plate 4, which is partly fixed to the case 1 so that the movable contact 7 can move,
  • a bimetal 8 is provided for switching the movable contact metal plate 6 from ON to OFF by reversing from a non-reversed shape to a reversed shape when the temperature rises above a set temperature.
  • the breaker 100 When the ambient temperature is lower than the set temperature, as shown in FIGS. 4, 6 and 8, the breaker 100 is in a state in which the bimetal 8 is not deformed, i. When the ambient temperature exceeds the set temperature, the bimetal 8 separates the movable contact 7 from the fixed contact 5 and switches to the OFF state, as shown in FIGS. When the temperature drops to the return temperature, it switches from off to on.
  • the breaker 100 deforms the bimetal 8 from a non-reversed shape to a reversal shape at ambient temperature, and the reversing bimetal 8 deforms the movable contact metal plate 6 to move the movable contact 7 of the movable contact metal plate 6 from the fixed contact 5. Release to switch to OFF state.
  • the inverted bimetal 8 When the ambient temperature drops to a predetermined temperature, the inverted bimetal 8 is deformed into a non-inverted shape and does not press the arm portion 6A of the movable contact metal plate 6, thereby bringing the movable contact 7 into contact with the fixed contact 5. to return to the ON state.
  • the breaker 100 shown in FIGS. 4 to 9 incorporates a heater 9 for heating the bimetal 8.
  • the heater 9 is preferably a plate-shaped PTC heater, and is arranged between the bimetal 8 and the fixed contact metal plate 4 to heat the bimetal 8 from the rear surface.
  • a breaker 100 incorporating a heater 9 can heat the bimetal 8 with the heater 9 to keep the breaker 100 off.
  • This breaker 100 is provided with a circuit (not shown) that energizes the heater 9 in the off state, and the heater 9 heats the bimetal 8 to maintain the off state.
  • This breaker 100 is incorporated in a battery pack to further improve the safety of the battery pack.
  • the heater 9 is energized by the battery and can be kept in the OFF state. This is because the flowing current can be maintained in a cut-off state.
  • the heater 9 cannot be energized and the heater 9 cannot heat the bimetal 8. Even if the heater 9 returns to the ON state, the battery cannot be discharged in this state, so safety is not ensured. Secured.
  • the breaker 100 incorporating the heater 9 can detect an abnormality in the battery, turn on the heater 9, heat the bimetal 8 with the heater 9, and cut off the current of the battery.
  • the breaker 100 In a battery pack incorporating a breaker 100, the breaker 100 is connected in series with the unit cell, and the breaker 100 cuts off the current of the battery.
  • the breaker 100 which heats the bimetal 8 with the heater 9 and keeps it on, restores the bimetal 8 to its non-inverted shape when the battery is completely discharged, the battery stops supplying power to the heater 9, and the temperature drops below the restoration temperature. to switch the contact to the ON state. (Case 1)
  • the case 1 is composed of a main body case 1A and a lid case 1B made of plastic, and the lid case 1B is connected to the main body case 1A by ultrasonic welding or by bonding.
  • the case 1 fixes the fixed contact metal plate 4 and the movable contact metal plate 6 at fixed positions.
  • a fixed contact metal plate 4 is insert-molded and fixed to the bottom of the main body case 1A, and a movable contact metal plate 6 is sandwiched and fixed between the main body case 1A and the cover case 1B. , the opening of the main body case 1A is closed by the lid case 1B.
  • the main body case 1A is provided with a first outer wall 11A and a second outer wall 11B at both ends so as to protrude, and a bimetal 8 and a heater 9 are provided between the first outer wall 11A and the second outer wall 11B. is provided at a fixed position.
  • the bottom surface of a storage portion 20 provided in a main body case 1A is closed with a fixed contact metal plate 4, and the top surface of the storage portion 20 is closed with a lid case 1B connected thereto.
  • the main body case 1A is provided with a storage portion 20 in which the bimetal 8 is arranged inside the outer peripheral wall 10.
  • the outer peripheral wall 10 includes a pair of outer walls 11 consisting of a first outer wall 11A and a second outer wall 11B, and a pair of opposing walls 12 connecting both ends of the pair of outer walls 11.
  • the opposing walls 12 and the outer walls 11 A storage portion 20 is provided inside the .
  • the main body case 1A surrounds the storage portion 20 with the outer peripheral wall 10 and closes the bottom surface and the upper surface of the outer peripheral wall 10 .
  • the bottom surface of the housing portion 20 is closed by the bottom portion 13 and the fixed contact metal plate 4 integrally formed with the main body case 1A, and the top surface is closed by the cover case 1B connected to the main body case 1A. 20 is closed and hollow.
  • a fixed contact metal plate 4 is fixed to the body case 1A by insert molding. 3 to 9, the fixed contact metal plate 4 is fixed to the main body case 1A by insert molding so that the intermediate portion 4B is embedded in the first outer wall 11A. This fixed contact metal plate 4 is fixed to the main body case 1A in a state of penetrating the first outer wall 11A. 4X. (Bimetal 8)
  • the bimetal 8 is a laminate of metals having different coefficients of thermal expansion so as to deform and reverse when heated.
  • the bimetal 8 is arranged between the heater 9 and the arm portion 6A of the movable contact metal plate 6, reverses at a set temperature, separates the movable contact 7 from the fixed contact 5, and switches the breaker 100 to the OFF state.
  • the thickness (t) of the bimetal 8 is preferably set to 0.05 mm or more and 0.1 mm or less because the thickness of the bimetal 8 can be reduced to make the breaker 100 as a whole thinner.
  • the bimetal 8 has a shape that curves convexly at the center, and in a non-inverted state, that is, in a non-inverted shape, the central projecting portion is directed toward the arm portion 6A as shown in FIGS. It is held in a protruding posture.
  • the bimetal 8 is reversed and deformed into a reversed shape.
  • the reversed shape as shown in FIGS. It becomes the shape which presses the arm part 6A at both ends.
  • the bimetal 8 contacts the heater 9 with its center projection and presses the arm 6A with both ends to push up the arm 6A and separate the movable contact 7 from the fixed contact 5 to turn it off. (Movable contact metal plate 6)
  • the movable contact metal plate 6 is an elastically deformable metal plate, and has a fixed portion 6B fixed to the case 1 and an arm portion 6A having a movable contact 7 at its tip. As shown in FIGS. 4 to 9, the movable contact metal plate 6 has a fixing portion 6B fixed to the case 1 and an arm portion 6A disposed in a storage portion 20 provided in the case 1. FIG. The movable contact metal plate 6 has a fixed portion 6B fixed to the upper portion of the second outer wall 11B provided on the case 1 . In the movable contact metal plate 6, the outer end of the fixed portion 6B protrudes from the case 1 to form a connection terminal 6X.
  • the arm portion 6A has a movable contact 7 on the surface facing the fixed contact 5.
  • the movable contact metal plate 6 brings the movable contact 7 at the tip into contact with the fixed contact 5 to turn on the breaker 100.
  • the movable contact metal plate 6 is pushed by the bimetal 8. , the movable contact 7 is separated from the fixed contact 5 to turn off the breaker 100 .
  • the movable contact metal plate 6 has the arm portion 6A arranged above the bimetal 8 arranged in the storage portion 20, as shown in FIGS.
  • the movable contact metal plate 6 shown in the figure consists of one elastic metal plate that can be elastically deformed.
  • the thickness (d) of the movable contact metal plate 6 is specified in consideration of the current capacity. and Furthermore, the thickness (d) of the movable contact metal plate 6 is set to an optimum value in consideration of the maximum current capacity of the breaker 100, so it is preferably set to 0.1 mm or more and 0.5 mm or less.
  • the material of the movable contact metal plate 6 is specified in consideration of its elasticity and conductivity.
  • a Cu--Zr alloy or a Cu--Cr--Ag--Si alloy can be used.
  • the Cu--Zr alloy preferably contains 0.05 to 0.15 wt % of Zr in Cu as a base.
  • Cu--Cr--Ag--Si based alloy contains 0.01 to 5 wt%, preferably 0.01 to 2.5 wt% Cr and 0.01 to 5 wt%, preferably 0.01 It contains ⁇ 2.5 wt % Ag and 0.01-5 wt %, preferably 0.01-2.5 wt % Si.
  • the movable contact metal plate 6 is an elastic metal plate made of a copper alloy with a total content of Cr, Ag and Si of 0.5 to 3% by weight and an IACS of 78% to 84% (Material Performance Alloy and Composite (MATERION PERFORMANCE ALLOYS AND COMPOSITES USA) QMET 300 registered trademark). Furthermore, the elastic metal plate 6 is composed of a copper alloy containing Ni, P, Zn and Fe, a copper alloy containing Fe, P and Zn, a copper containing Cr and Mg and having an IACS of 75% or more. An elastic metal plate such as an alloy, a copper alloy containing 80% or more of IACS containing Zr, or a copper alloy containing 80% or more of IACS containing Sn can also be used.
  • IACS international annealed copper standard
  • the movable contact metal plate 6 has a movable contact 7 on a surface facing the fixed contact 5 at the tip of the arm portion 6A.
  • the movable contact 7 of the arm portion 6A shown in FIG. 10 is fixedly provided with a metal plate made of silver or a silver alloy in a region facing the fixed contact 5, thereby reducing the contact resistance with the fixed contact 5.
  • the movable contact 7 is, for example, seam-welded to join an Ag—Ni alloy having a thickness of 100 ⁇ m to 150 ⁇ m.
  • the bimetal 8 is not thermally deformed, the movable contact 7 comes into contact with the fixed contact 5 to turn on the arm 6A.
  • the movable contact 7 is separated from the fixed contact 5 and turned off.
  • the arm portion 6A of the movable contact metal plate 6 shown in the exploded perspective views of FIGS. 2 and 3 is separated into a deformable arm portion 6b and a fixed arm portion 6a via a slit 6c.
  • 6d is provided on the fixed arm portion 6a as a form of a contact portion, and a protrusion 6e protruding from the fixed arm portion 6a is provided.
  • the projections 6e and the projections 6d protrude toward both ends of the bimetal 8.
  • the arm portion 6A has a projection 6e on the root portion 6f side and a projection 6d between the movable contact 7 and the projection 6e.
  • the projection 6e and the projection 6d are arranged at contact positions on both ends of the bimetal 8.
  • the arm portion 6A is elastically deformed by being pushed up by the reversing bimetal 8 through the projection 6e and the convex portion 6d, thereby switching the movable contact 7 to the OFF state.
  • the arm portion 6A is pushed up by both end portions of the bimetal 8 via the projection 6e and the convex portion 6d.
  • the reverse bimetal 8 pushes up a specific position of the arm portion 6A via the projection 6e and the convex portion 6d to reliably switch the contact on and off.
  • the arm portion 6A is separated into a deformed arm portion 6b and a fixed arm portion 6a in order to reduce variations in the return temperature, that is, errors in the return temperature.
  • the fixed arm portion 6a is separated from the deformable arm portion 6b by a slit 6c so as not to be deformed together with the deformable arm portion 6b, and the root portion 6f is connected to the fixed portion 6B.
  • the fixed arm portion 6a has a protrusion 6e protruding toward the bimetal 8 at its tip.
  • the deformable arm portion 6b has a movable contact 7 arranged at a position facing the fixed contact 5, and a convex portion 6d provided between the movable contact 7 and the fixed portion 6B. It is arranged at a position in contact with the right end of the bimetal 8 in the drawing.
  • the arm portion 6A in FIGS. 2 and 3 has a fixed arm portion 6a extending in the longitudinal direction at the central portion in the width direction, and deformable arm portions 6b are arranged on both sides of the fixed arm portion 6a.
  • This arm portion 6A is provided with a projection 6e in the central portion so that the left and right deformation arm portions 6b can be elastically deformed into the same shape in good balance.
  • the fixed arm portion 6a has a length that allows the projection 6e to be arranged at the optimum position.
  • the length (L2) of the fixed arm portion 6a is, for example, 10% to 90%, preferably 20% to 80%, more preferably 25% to 75% of the total length (L1) of the arm portion 6A. can be arranged at the end of the bimetal 8 (left end in the figure).
  • the slit 6c of the arm portion 6A is provided between the fixed arm portion 6a and the deformable arm portion 6b to separate the fixed arm portion 6a from the deformable arm portion 6b so that they are not elastically deformed together.
  • the arm portion 6A is provided with slits 6c along the outer periphery of both side edges and the tip edge of the fixed arm portion 6a, and connects the base portion 6f to the fixed portion 6B.
  • the slit 6c separates the fixed arm portion 6a from the deformable arm portion 6b and has a gap of, for example, 0.1 to 0.3 mm that allows only the deformable arm portion 6b to be elastically deformed without deforming the fixed arm portion 6a.
  • the arm portion 6A of the breaker 100 becomes a current-carrying portion when the contact is in the ON state, the electric resistance can be reduced and heat generation due to Joule heat can be reduced.
  • the bimetal 8 which generates heat by Joule heat, heats the arm portion 6A, causing the adverse effect of reversing and interrupting the current before the ambient temperature rises to the set temperature.
  • the arm portion 6A can be made of a thick metal plate to reduce electrical resistance.
  • the breaker 100 having the arm portion 6A made of a thick metal plate requires the bimetal 8 to push up the arm portion 6A with a strong force to switch the contact to the OFF state, and the bimetal 8 needs to be thick.
  • deformation arm portions 6b are provided on both sides of a fixed arm portion 6a, and an arm portion 6A that deforms only the deformation arm portions 6b on both sides is deformed with a small upward force on both sides of the fixed arm portion 6a.
  • Two rows of narrow deformation regions 6g are arranged. Therefore, the movable contact metal plate 6 of this structure is made thicker to reduce the electric resistance of the arm portion 6A, while deforming the deformation region 6g by a small push-up of the bimetal 8 to turn the contact off.
  • the arm portion 6A locally increases the electrical resistance in this region, but by thickening the metal plate, the electrical resistance in other regions can be reduced.
  • the contact can be switched to the OFF state with a thin bimetal without increasing the pushing force of the bimetal 8 .
  • the lateral width (W4) of the deformation region 6g can be narrowed to reduce the push-up force of the bimetal 8, and the lateral width (W4) of the deformation region 6g can be widened. Overall electrical resistance can be reduced.
  • the width of the fixed arm portion 6a is an optimum value in consideration of the thickness of the metal plate used for the movable contact metal plate 6, the electrical resistance required of the arm portion 6A, and the pushing force required to switch the bimetal 8 to the ON state.
  • the width (W2) of the fixed arm portion 6a is preferably 20% to 70%, more preferably 30% to 50% of the width (W5) of the area where the fixed arm portion 6a is provided. set. (Lid case 1B)
  • the lid case 1B includes a closing plate 27a that closes the opening of the main body case 1A while covering the upper side of the arm portion 6A.
  • the closing plate 27a shown in the figure is fixed by insert-molding the laminated metal plate 24 into the connecting plastic 23.
  • the lid case 1B has a stopper projection 25 on the closing plate 27a.
  • the closing plate 27 a exposes the laminated metal plate 24 to the lower surface, and provides the stopper projection 25 on the surface of the laminated metal plate 24 .
  • the stopper convex portion 25 is arranged above the fixed arm portion 6a, and restricts or prevents deformation of the fixed arm portion 6a by being pushed by the bimetal 8. don't stop.
  • the stopper convex portion 25 is locally arranged above the fixed arm portion 6a so as not to restrict deformation of the deformation area 6g of the deformation arm portion 6b by being pushed upward by the bimetal 8. is not placed above the
  • the above-described lid case 1B closes the opening of the main body case 1A by fixing the outer peripheral edge of the connecting plastic 23 to the upper surface of the outer peripheral wall 10 of the main body case 1A.
  • the connecting plastic 23 of the lid case 1B is provided with an outer peripheral wall 27b protruding toward the main case 1A on the outer peripheral edge facing the outer peripheral wall 10 of the main case 1A.
  • the outer peripheral wall 27b of the connecting plastic 23 is fixed to the first outer wall 11A and the second outer wall 11B provided at both ends of the main body case 1A, and further fixed to the opposing wall 12. As shown in FIG.
  • the case 1 shown in FIGS. 5 to 9 includes connecting projections 15 and 17 and connecting recesses 16 and 18 that are fitted to each other in order to connect the lid case 1B and the main body case 1A while accurately positioning them.
  • the main body case 1A is provided with the connecting protrusion 15 that protrudes from the upper surface of the second outer wall 11B and penetrates through the fixed portion 6B of the movable contact metal plate 6 for positioning.
  • the lid case 1B is provided with a connecting concave portion 16 for guiding the connecting convex portion 15 at a position facing the connecting convex portion 15 at the end portion of the main body case 1A on the side of the second outer wall 11B.
  • the main body case 1A has connecting recesses 18 for guiding the connecting protrusions 17 on the upper surface of the outer peripheral wall 10 facing the connecting protrusions 17 .
  • connection protrusions 17 on both sides of the lid case 1B are guided by the connection recesses 18 of the main body case 1A, 2, a connecting projection 15 penetrating through the fixed portion 6B of the movable contact metal plate 6 is guided by a connecting recess 16 of the lid case 1B, so that the lid case 1B can be accurately positioned with respect to the main body case 1A. connected to
  • the lid case 1B and the main body case 1A which are connected in fixed positions via the connecting protrusions 15, 17 and the connecting recesses 16, 18, are ultrasonically welded to fix the connecting plastic 23 to the main body case 1A.
  • the lid case 1B shown in FIGS. 2 to 9 is located on the lower surface of the outer peripheral wall 27b of the connecting plastic 23 and on the surface facing the outer peripheral wall 10 of the main body case 1A, and is melted by ultrasonic vibration.
  • Article 28 is provided.
  • the illustrated lid case 1B is provided with a melting protrusion 28 protruding along the lower surface of the outer peripheral wall 27b.
  • the cover case 1B has a melting ridge 28 having a substantially U-shape when viewed from the bottom on the outer peripheral edge portion of the movable contact metal plate 6 except for the portion facing the fixed portion 6B.
  • the cover case 1B is connected to the main body case 1A at a fixed position via the connection protrusions 15 and 17 and the connection recesses 16 and 18, and the outer peripheral portion is ultrasonically vibrated to melt the protrusions 28. It is melted by frictional heat and welded to the outer peripheral wall 10 of the main body case 1A. Further, in the ultrasonically vibrated lid case 1B and main body case 13, the contact portions of the connecting projections 15, 17 and the connecting recesses 16, 18 connected to each other are also melted by frictional heat and welded to each other.
  • the case 1 can also be fixed by bonding the connecting plastic of the lid case 1 and the main body case 1, or by connecting them with a fitting structure or locking structure.
  • the breaker 100 of FIGS. 2 and 3 has a deformation limiting projection 26 on the lid case 1B.
  • the deformation limiting convex portion 26 is provided in order to limit the amount of deformation of the arm portion 6A when the bimetal 8 is pushed by the bimetal 8 in the OFF state in which the bimetal 8 is thermally deformed and the movable contact 7 is separated from the fixed contact 5. , ie, the movable contact 7 side, and protrudes toward the arm portion 6A.
  • the breaker 100 presses the distal end portion of the arm portion 6A downward, that is, toward the fixed contact 5 side with the deformation limiting protrusion 26, and can limit the deformation amount of the arm portion 6A pushed up by the inverted bimetal 8. For this reason, the breaker 100 having this structure prevents the reversed bimetal 8 from pushing up the arm portion 6A beyond the elastic limit and lowering the spring property. It has the advantage of being able to keep the contact resistance small by pressing with a contact pressure of .
  • the movable contact metal plate 6 has the fixed portion 6B fixed to the second outer wall 11B of the main body case 1A and the arm portion 6A arranged in the storage portion 20.
  • the breaker 100 shown in FIGS. 4 to 9 has the fixed portion 6B of the movable contact metal plate 6 fixed to the upper end surface of the second outer wall 11B.
  • the main body case 1A is provided with a step recess 21 on the upper end surface of the second outer wall 11B, which is one step lower than the upper surface of the outer peripheral wall 10. 6 is fitted with a fixed portion 6B and arranged at a fixed position.
  • FIG. 6 and 7 is provided with a connecting projection 15 that protrudes from the central portion of the step recess 21 and penetrates the fixed portion 6B of the movable contact metal plate 6.
  • a fixed portion 6B of the movable contact metal plate 6 is provided with a through hole 6F through which the connecting convex portion 15 is passed.
  • the connecting projection 15 shown in the figure has an oval horizontal cross-sectional shape so that the fixing portion 6B of the movable contact metal plate 6 can be arranged in the stepped recess 21 in an accurate posture.
  • positioning ribs 22 for positioning both sides of the movable contact metal plate 6 are formed at the upper end of the second outer wall 11B.
  • the movable contact metal plate 6 is provided with positioning recesses 6G for guiding the positioning ribs 22 on both sides of the fixed portion 6B.
  • the connecting projections 15 are inserted into the through holes 6F opened in the fixed portion 6B, and the positioning ribs 22 are guided by the positioning recesses 6G provided on both sides of the fixed portion 6B. It is arranged at a fixed position of the step recess 21 of the second outer wall 11B.
  • the movable contact metal plate 6 with the fixed portion 6B arranged in the stepped recess 21 is fixed to the second outer wall 11B by bonding, or sandwiched between the cover case 1B fixed to the main body case 1A, that is, the second
  • the bottom surface of the step recess 21 of the outer wall 11B and the facing surface of the lid case 1B are sandwiched from both upper and lower sides, and fixed to the fixed position of the case 1. As shown in FIG.
  • the movable contact metal plate 6 has a connection terminal 6X in an extended portion that is pulled out from the case 1 .
  • the connecting terminal 6X shown in the figure has its rear end portion bent in a stepped shape so as to be positioned substantially on the same plane as the connecting terminal 4X of the fixed contact metal plate 4 pulled out from the opposite end face of the case 1. As shown in FIG. (Fixed contact metal plate 4)
  • the fixed contact metal plate 4 is fixed to the main body case 1A by insert molding.
  • the fixed contact metal plate 4 closes the opening of the bottom portion 13 of the storage portion 20 with the tip portion 4A, and extends the intermediate portion 4B and part of the tip portion 4A from the bottom portion 13 of the storage portion 20 to the first outer wall of the main body case 1A. It is fixed to the body case 1A by insert molding so as to be embedded in the body case 11A.
  • the fixed contact metal plate 4 shown in FIG. 3 is provided with a stepped portion 4D so that the portion embedded in the first outer wall 11A is higher than the portion that closes the bottom of the housing portion 20, and the stepped portion 4D is provided with the main body case. It is embedded in the bottom portion 13 of 1A, the rear end side of the step portion 4D is exposed on the upper surface of the bottom portion 13, and this exposed portion serves as the fixed contact 5. As shown in FIG.
  • the fixed contact metal plate 4 can be used as a fixed contact 5 by providing a silver plating layer in the area facing the movable contact 7 to reduce the contact resistance.
  • the silver plating layer of fixed contact 5 is, for example, 5 ⁇ m.
  • the film thickness of the silver plating layer of the fixed contact 5 can be 3 ⁇ m to 20 ⁇ m, preferably 4 ⁇ m to 10 ⁇ m.
  • the fixed contact metal plate 4 has a connection terminal 4X that extends from the case 1 to the outside.
  • the fixed contact metal plate 4 shown in the figure has a portion extending from the case 1 to the outside, which is linearly pulled out from an intermediate portion 4B embedded in the case 1 to form a connection terminal 4X.
  • the contact resistance of the micro-breaker 100 which is extremely small as a whole, increases even if the contact positions of the contacts are slightly displaced. This is because the contact pressure between the movable contact 7 and the fixed contact 5 is weak, and the movable contact 7 and the fixed contact 5 are in contact with each other in an extremely narrow area in the ON state. Furthermore, the surfaces of the movable contact 7 and the fixed contact 5 of the breaker 100 are not always kept in a uniform state over the entire surfaces, and the surfaces at the non-contact position where they are not in constant contact are Contact resistance increases due to thin oxide films and the like.
  • the micro-breaker 100 employs an activation process for the purpose of reducing the contact resistance of the contacts.
  • the contact is activated by ultrasonic vibration while energized in the ON state.
  • the contact activated by this method reduces the contact resistance only when the movable contact 7 and the fixed contact 5 are in contact with each other at a specific position. . (Contact activation processing)
  • the micro-breaker 100 with weak contact pressure can reduce the contact resistance by activating the contacts in the assembled state.
  • the contact activation process is performed by ultrasonically vibrating the contacts of the assembled breaker 100 while energizing them.
  • the breaker 100 causes the movable contact 7 and the fixed contact 5 to collide with each other and ultrasonically vibrate in the separating direction. That is, the breaker 100 ultrasonically vibrates the fixed contact 5 and the movable contact 7 so that the fixed contact 5 and the movable contact 7 approach and collide with each other and relatively move away from each other.
  • the current of the contact under ultrasonic vibration is preferably 0.1 A to 100 A under resistive load. By increasing the contact current during ultrasonic vibration, the contacts are activated more effectively.
  • a load with an inductance that connects a coil in series with a resistor increases the current energy stored in the coil when the current is interrupted, so the contact current can be reduced to activate the contact. This is because the current energy stored in the coil is consumed, so that the contact discharge current becomes large. Therefore, the contact current is set to an optimum value considering the resistive load and the inductive load. Further, the breaker 100 has a characteristic that when the current of the contact is increased, it generates heat by Joule heat and switches itself to the off state. In order to activate the contacts with ultrasonic vibration, it is necessary to keep the movable contact 7 in an ON state in contact with the fixed contact 5 .
  • the time for ultrasonic vibration is shortened, and ultrasonic vibration is performed while the contact is in the ON state. Therefore, the method of applying a large current to the contact and subjecting it to ultrasonic vibration shortens the ultrasonic vibration time.
  • the time for ultrasonically vibrating the contact in the energized state shall be 0.1 milliseconds to 1 second.
  • the time of ultrasonic vibration can be increased to activate the contacts more effectively, but if it is too long, the silver plating layer of the contacts will be damaged. set.
  • contact activation by ultrasonic vibration is also affected by contact current, type of load, and amplitude of ultrasonic vibration. If the contact current and amplitude are large, the contact is activated more effectively in a short time. . Therefore, the ultrasonic vibration time is set to an optimum value within the above-described range, taking into consideration the contact current and the amplitude of the ultrasonic vibration.
  • the frequency for ultrasonically vibrating the contact is 20 KHz to 6 GHz, preferably 20 KHz to 1 GHz.
  • the frequency of the ultrasonic vibration is set to an optimum value in consideration of the thickness and length of the arm portion 6A and the resonance frequency of the arm portion 6A.
  • the amplitude for ultrasonically vibrating the breaker 100 is set to 0.01 ⁇ m to 100 ⁇ m.
  • the energy of the motion of the movable contact 7 colliding with the fixed contact 5 can be increased, and the distance between the movable contact 7 and the fixed contact 5 can be increased.
  • the amplitude with which the breaker 100 is ultrasonically vibrated affects the gap separating the movable contact 7 from the fixed contact 5 .
  • the interval at which the movable contact 7 is separated from the fixed contact 5 can be made larger than the amplitude of ultrasonic vibration of the breaker 100 by causing the arm portion 6A to resonate.
  • the movable contact 7 is fixed by setting the frequency for ultrasonically vibrating the breaker 100 to the resonance frequency of the arm portion 6A, the vicinity thereof, an integral multiple of the resonance frequency, or an integer fraction of the resonance frequency. A sufficient distance from the contact 5 allows effective activation.
  • the amplitude for ultrasonically vibrating the breaker 100 is set to a small value within a range where the contact can be activated. (Heater 9)
  • the heater 9 generates heat when energized and heats the bimetal 8 .
  • the heater 9 is a thick heater having an elliptical or rectangular facing surface, and electrodes are provided on the upper surface and the lower surface.
  • all heaters that can be energized to heat the bimetal 8 can be used.
  • a heater 9 having electrodes on its upper and lower surfaces has its lower surface in contact with the fixed contact metal plate 4 and its upper surface in contact with the arm portion 6A via the bimetal 8. As shown in FIG.
  • the breaker 100 is not necessarily limited to a structure with a built-in heater.
  • the bimetal 8 becomes higher than the set temperature and deforms, deforming the arm portion 6A and switching the contact to the OFF state, the bimetal 8 is heated and the breaker 100 is kept in the OFF state.
  • the temperature of the bimetal 8 drops to a predetermined temperature, the bimetal 8 and the arm portion 6A are restored to switch the breaker 100 to the ON state.
  • the fixed arm portion 6a is provided with the protrusion 6e as one form of the contact portion.
  • the present invention is not limited to the form in which the contact portion is provided with such protrusions, and may be configured without protrusions. That is, the contact portion does not necessarily have to be a protrusion projecting from the fixed arm portion, and for example, the flat surface of the fixed arm portion can be used as the contact portion.
  • FIGS. 11 and 12 Such an example is shown in FIGS. 11 and 12 as a breaker according to the second embodiment. In these figures, the same reference numerals are assigned to the same members as in the first embodiment, and detailed description thereof will be omitted as appropriate.
  • the fixed arm portion 6a' has a flat surface 6e' as the contact portion instead of the protrusion.
  • the inventors have confirmed that similar characteristics can be obtained with this configuration as well. (Built in the battery pack of the breaker 100)
  • the breaker 100 described above is incorporated in a battery pack, for example, and cuts off the current when the battery or the ambient temperature becomes high, or when the battery pack is used in an abnormal state.
  • a pair of connection terminals 6X and 4X drawn out from both ends of the case 1 are connected directly or via connection leads to battery terminals or a circuit board.
  • the connection terminals 6X and 4X are connected to connection leads and battery terminals by laser welding, for example.
  • the breaker 100 is arranged in a state where the case 1 is close to the surface of the battery or the circuit board, preferably in a thermally coupled state, and when the temperature of the battery or the ambient temperature rises, the built-in bimetal 8 is reversed to cut off the current. . (fixing the breaker to the circuit board)
  • the breaker described above can also be fixed by soldering to a circuit board or lead plate.
  • the connection terminals of the movable contact metal plate and the connection terminals of the fixed contact metal plate, which are pulled out from the case should be positioned on the bottom surface of the case, that is, on the same plane as the bottom surface of the main body case. fold into This breaker can be fixed by soldering connection terminals drawn out from both ends of the case to the circuit board.
  • This breaker can be soldered to a circuit board by placing the bottom of the case, that is, the bottom of the body case, on the circuit board.
  • the bimetal 8 is a rectangle of 2.2 mm ⁇ 2.4 mm, the thickness (t) is 0.05 mm, the inversion temperature is 85 ° C., and the return temperature is 30 ° C., A Cu—Zr alloy is used for the movable contact metal plate 6, and the thickness (d) of the movable contact metal plate 6 is 0.15 mm.
  • the length (L1) of the arm portion 6A is 4.5 mm
  • the maximum width (W1) is 2.1 mm
  • the length (L2) of the fixed arm portion 6a is 1.8 mm
  • the width (W2) is 0.5 mm
  • the gap (W3) of the slit 6c is 0.2 mm
  • a movable contact 7 is provided at the tip of the arm portion 6A, the movable contact 7 is made of a seam material (Ag-Ni) with a thickness of 120 ⁇ m
  • the fixed contact 5 is made of a 4.5 ⁇ m Ag plating layer, and the case 1 is 5.8 mm long, 2.8 mm wide, and 1.15 mm high.
  • the error of the return temperature of the breaker 100 is extremely small, 1/5 or less, and the contact can be returned to the ON state with extremely small variation in the return temperature. Furthermore, this breaker 100 uses a metal plate with a thickness of 0.15 mm for the movable contact metal plate 6, and can reduce the maximum current capacity to 13 A and the on-resistance to 1.5 m ⁇ at an ambient temperature of 60°C.
  • Example 2 The Cu—Zr alloy used in Example 1 had the following composition. Cu: 99.9 wt% Zr............0.1wt% [Example 2]
  • the breaker 100 having the same structure as that of the first embodiment except that the stopper protrusions 25 are provided on the closing plate 27a and provided with the stopper protrusions 25 on the closing plate 27a has a return temperature error of 1/6 or less of that of the conventional breaker 100. and more accurate.
  • Example 1 was repeated except that the movable contact metal plate 6 with a thickness of 0.1 mm was used without separating the arm portion 6A of the movable contact metal plate 6 into the fixed arm portion 6a and the deformable arm portion 6b.
  • a breaker 100 of Comparative Example 1 was manufactured. This breaker 100 has a return temperature error of 10° C. to 15° C., a maximum current capacity of 9 A at 60° C., and an ON resistance of 3 m ⁇ .
  • the breaker 100 of the first and second embodiments has the movable contact metal plate 6 separated into the fixed arm portion 6a and the deformed arm portion 6b, and the fixed arm portion 6a is provided with the protrusion 6e.
  • the error of the return temperature can be significantly reduced, and the maximum current capacity of the breaker 100 can be increased from 9A of the breaker 100 of the comparative example to 13A and 4A.
  • the movable contact metal plate 6 is made thicker
  • the arm portion 6A is used as the fixed arm portion 6a and the deformed arm portion 6b
  • the fixed arm portion 6a is provided with the protrusion 6e
  • the reversible bimetal 8 is deformed. Since only the arm portion 6b is deformed, the same bimetal 8 as in the comparative example can be used to accurately set the return temperature, increase the maximum current capacity, and reduce the on-resistance.
  • the present invention can be suitably employed as a breaker that can control with high accuracy the return temperature at which current is cut off when the ambient temperature rises and then when the ambient temperature drops and the current is turned on.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

The present invention reduces an error in the return temperature for returning to a state in which current is applied from a state in which current is cut off. Provided is a breaker in which a bi-metal that deforms between an inverted shape and a non-inverted shape with the ambient temperature deforms a movable contact metal plate and switches a contact on/off, wherein: the movable contact metal plate has an arm part at the tip of which is provided a movable contact and a fixed part which is fixed to a case; the arm part is provided with a deformable arm part which deforms with pressing by the bi-metal and a fixed arm part which is separated from the deformable arm part via a slit; and a contact part that determines the position of contact with the bi-metal is provided to the fixed arm part which does not move along with the deformable arm part.

Description

ブレーカbreaker
 本発明は、パック電池やモータ等の電気機器に内蔵されて、あらかじめ設定している温度よりも高くなると電流を遮断するブレーカに関する。 The present invention relates to a breaker that is built into an electric device such as a battery pack or a motor and cuts off the current when the temperature exceeds a preset temperature.
 パック電池やモータなどの機器は、温度が異常に高くなる状態で電流を遮断して安全性を向上できる。このことを目的として、周囲温度をバイメタルで検出して接点をオフに切り換えるブレーカが使用される。たとえば、リチウムイオン電池を内蔵するパック電池は、異常な使用状態で充放電されると温度が高くなるので、温度を検出して電流を遮断するブレーカを内蔵して、これで異常な高温では電流を遮断して安全に使用できる。また、モータ等は過負荷な状態や異常な電流が流れる状態で温度が異常に高くなることがあるので、設定温度を超えると電流を遮断するブレーカで安全に使用できる。 Equipment such as battery packs and motors can cut off the current when the temperature is abnormally high to improve safety. For this purpose, circuit breakers are used that switch off the contacts by detecting the ambient temperature with a bimetal. For example, a battery pack containing a lithium-ion battery will become hot if it is charged or discharged under abnormal usage conditions. can be safely used by blocking In addition, since the temperature of motors, etc., can become abnormally high when overloaded or when an abnormal current flows, they can be safely used with a breaker that cuts off the current when the set temperature is exceeded.
 このような用途に使用されるブレーカとして、周囲温度が設定温度よりも高くなるとバイメタルが反転し、反転するバイメタルが可動接点を固定接点から引き離して電流を遮断するブレーカが開発されている。(特許文献1参照) As a breaker used for such applications, a breaker has been developed in which the bimetal reverses when the ambient temperature rises above the set temperature, and the reversed bimetal pulls the movable contact away from the fixed contact to cut off the current. (See Patent Document 1)
 このブレーカを、図13と図14の断面図に示している。図13はバイメタル108が反転しない状態であって、可動接点107が固定接点105に接触するオン状態を示し、図14はバイメタル108が反転して可動接点107を固定接点105から離すオフ状態を示している。 This breaker is shown in the cross-sectional views of FIGS. 13 and 14. 13 shows an ON state in which the bimetal 108 is not reversed and the movable contact 107 is in contact with the fixed contact 105, and FIG. 14 shows an OFF state in which the bimetal 108 is reversed and the movable contact 107 is separated from the fixed contact 105. ing.
WO2017/154891WO2017/154891
 図13と図14に示すブレーカは、設定温度よりも高くなるとバイメタル108が反転して接点をオンからオフに切り換える。この状態で、バイメタル108は反転して可動接点金属板101を下から押し上げるように変形して、可動接点107を固定接点105から分離する。温度が低下して反転したバイメタル108がもとの形状に復帰すると、可動接点金属板101の弾性で可動接点107を固定接点105に接触させてオン状態に切り換える。可動接点金属板101は、バイメタル108で可動接点金属板101が押し上げられない状態、すなわちバイメタル108が反転していない非反転形状では、可動接点107を固定接点105に弾性的に押している。この状態では、可動接点107が固定接点105に接触してブレーカはオン状態に保持される。 In the breakers shown in FIGS. 13 and 14, when the temperature exceeds the set temperature, the bimetal 108 is reversed to switch the contact from ON to OFF. In this state, the bimetal 108 is reversed and deformed so as to push up the movable contact metal plate 101 from below, thereby separating the movable contact 107 from the fixed contact 105 . When the temperature drops and the inverted bimetal 108 returns to its original shape, the elasticity of the movable contact metal plate 101 brings the movable contact 107 into contact with the fixed contact 105 and switches it to the ON state. The movable contact metal plate 101 elastically pushes the movable contact 107 against the fixed contact 105 in a state in which the bimetal 108 does not push up the movable contact metal plate 101, that is, in a non-inverted shape in which the bimetal 108 is not inverted. In this state, the movable contact 107 contacts the fixed contact 105 and the breaker is kept on.
 以上のブレーカは、周囲温度が閾値を超えると、バイメタル108が反転して可動接点107を固定接点107から離してオフ状態に切り換える。この構造のブレーカは、周囲温度が上昇してあらかじめ設定している設定温度、すなわち電流の遮断温度を超えると接点をオンからオフに切り換えて電流を遮断し、電流を遮断して周囲温度が次第に低下して、通電する通電温度まで低下すると、オフ状態の接点をオン状態に復帰させる。ブレーカは、電流を遮断する温度よりも復帰温度を低く設定しているが、この遮断温度のばらつきを少なくして、また正確な温度で通電を開始する特性が要求される。 In the breaker described above, when the ambient temperature exceeds the threshold value, the bimetal 108 is reversed to separate the movable contact 107 from the fixed contact 107 to switch to the OFF state. When the ambient temperature rises and exceeds the preset set temperature, that is, the current cut-off temperature, the breaker with this structure switches the contact from on to off to cut off the current, cuts off the current, and gradually increases the ambient temperature. When it cools down to the energization temperature at which it is energized, it returns the off-state contacts to the on-state. The breaker is set to have a reset temperature lower than the temperature at which the current is interrupted, but it is required to have characteristics to reduce variations in the interrupt temperature and to start energization at an accurate temperature.
 以上のブレーカは、周囲温度が復帰温度まで低下すると、バイメタル108は非反転形状に復帰するが、復帰する直前まで、バイメタルは可動接点金属板101で復帰方向に押されている。すなわち、反転バイメタルは、可動接点金属板に押圧される状態で、復帰する。反転バイメタルは、可動接点金属板に押される状態で反転形状から非反転形状に復帰するので、バイメタルが反転状態から非反転形状に復帰する温度は、可動接点金属板がバイメタルを押す力に影響を受ける。可動接点金属板がバイメタルを押している力は、反転バイメタルを非反転方向に押しているので、可動接点金属板がバイメタルを押す力が強くなると、反転バイメタルは非反転形状に復帰しやすくなる。反対に可動接点金属板が反転バイメタルを押す力が小さくなると、反転バイメタルは復帰し難くなる。反転状態から非反転形状に復帰しやすいバイメタルは、少ない温度低下で復帰するので復帰温度は高くなり、反対に、反転状態から非反転し難いバイメタルは、周囲温度が充分に低下して復帰するので復帰温度は低くなる。 In the breaker described above, when the ambient temperature drops to the return temperature, the bimetal 108 returns to its non-inverted shape, but the bimetal is pushed in the return direction by the movable contact metal plate 101 until just before the return. That is, the reverse bimetal returns while being pressed by the movable contact metal plate. Since the reversing bimetal returns from the reversal shape to the non-reversing shape while being pushed by the movable contact metal plate, the temperature at which the bimetal returns from the reversing state to the non-reversing shape does not affect the force with which the movable contact metal plate pushes the bimetal. receive. The force by which the movable contact metal plate pushes the bimetal pushes the reversing bimetal in the non-reversing direction, so when the force of the moving contact metal plate pushing the bimetal increases, the reversing bimetal easily returns to the non-reversing shape. Conversely, when the force of the movable contact metal plate pushing the reversing bimetal becomes small, the reversing bimetal becomes difficult to return. A bimetal that easily recovers from an inverted state to a non-inverted shape will recover with a small temperature drop, so the recovery temperature will be high. Lower recovery temperature.
 可動接点金属板は、バイメタルとの接触位置を特定するための突起を設けている。この構造のブレーカは、反転するバイメタルが、突起を押し上げて、可動接点を固定接点から離して電流を遮断する。この構造は、バイメタルが可動接点金属板を押す位置を特定して、接点をオフからオンに切り換える復帰温度の誤差を少なくできる。しかしながら、この構造のブレーカは、突起の位置ずれ、とくに突起の上下方向の位置ずれが、復帰温度の誤差を大きくする。突起の上下方向の位置ずれが、反転したバイメタルが突起を押す力を変化させるからである。 The movable contact metal plate has a protrusion for specifying the contact position with the bimetal. In the breaker of this structure, the reversing bimetal pushes up the projection to separate the movable contact from the fixed contact and cut off the current. This structure can specify the position where the bimetal pushes the movable contact metal plate, and can reduce the error of the return temperature for switching the contact from off to on. However, in the breaker of this structure, the displacement of the projections, especially the displacement of the projections in the vertical direction, increases the error of the return temperature. This is because the displacement of the projection in the vertical direction changes the force with which the inverted bimetal pushes the projection.
 本発明は、さらに以上の欠点を解消することを目的に開発されたもので、本発明の大切な目的は、反転したバイメタルが元の形状に復帰して、オフ状態にあった接点がオン状態に切り換えられる復帰温度の誤差を少なくできるブレーカを提供することにある。 The present invention has been developed with the object of solving the above drawbacks, and an important object of the present invention is to restore the reversed bimetal to its original shape so that the contact that was in the off state is in the on state. To provide a breaker capable of reducing the error of the return temperature switched to .
 本発明のブレーカは、固定接点を有する固定接点金属板と、固定接点と対向する位置に可動接点を配置している可動接点金属板と、この可動接点金属板の対向位置に配置されて、設定温度で反転して可動接点をオンからオフに切り換えるバイメタルと、固定接点金属板と、可動接点金属板と、バイメタルを定位置に配置して収納しているケースとを備えている。可動接点金属板は、反転するバイメタルに押されて可動接点を固定接点から離すアーム部と、ケースに固定している固定部とを備える。アーム部は、反転するバイメタルに押されて弾性変形して、可動接点を固定接点から離す変形アーム部と、変形アーム部からスリットを介して切り離されて、付け根部を固定部に連結している固定アーム部とに分割している。固定アーム部は、バイメタルに接触する接触部を有し、接触部が反転するバイメタルに押されて、可動接点をオンからオフに切り換える。 The breaker of the present invention comprises a fixed contact metal plate having a fixed contact, a movable contact metal plate having a movable contact arranged at a position facing the fixed contact, and a position facing the movable contact metal plate. It has a bimetal that switches the movable contact from on to off due to temperature, a fixed contact metal plate, a movable contact metal plate, and a case that houses the bimetal in a fixed position. The movable contact metal plate has an arm portion that is pushed by the reversing bimetal to separate the movable contact from the fixed contact, and a fixed portion that is fixed to the case. The arm portion is elastically deformed by being pushed by the reversing bimetal and separates the movable contact from the fixed contact, and is separated from the deformable arm portion through a slit and connects the root portion to the fixed portion. It is divided into a fixed arm section. The fixed arm portion has a contact portion that contacts the bimetal, and the contact portion is pushed by the reversing bimetal to switch the movable contact from on to off.
 以上のブレーカは、反転したバイメタルが元の形状に復帰して、オフ状態にあった接点がオン状態に切り換えられる復帰温度の誤差を少なくできる特長がある。 The above breaker has the feature that the reversed bimetal returns to its original shape and the contact that was in the OFF state is switched to the ON state, reducing the return temperature error.
本発明の実施形態1にかかるブレーカの斜視図である。1 is a perspective view of a breaker according to Embodiment 1 of the present invention; FIG. 図1に示すブレーカの分解斜視図である。FIG. 2 is an exploded perspective view of the breaker shown in FIG. 1; 図1に示すブレーカの分解斜視図である。FIG. 2 is an exploded perspective view of the breaker shown in FIG. 1; 図1に示すブレーカの接点オン状態を示す中央A-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA of the breaker shown in FIG. 1, showing a contact ON state; 図1に示すブレーカの接点オフ状態を示す中央A-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA of the breaker shown in FIG. 1, showing a contact OFF state; 図1に示すブレーカの接点オン状態を示す中央A-A線断面斜視図である。FIG. 2 is a cross-sectional perspective view taken along the line AA of the breaker shown in FIG. 1, showing a contact ON state; 図1に示すブレーカの接点オフ状態を示す中央A-A線断面斜視図である。FIG. 2 is a cross-sectional perspective view taken along line AA of the breaker shown in FIG. 1, showing a contact OFF state; 図1に示すブレーカの接点オン状態を示す側部B-B線断面図である。FIG. 2 is a side cross-sectional view taken along the line BB of the breaker shown in FIG. 1, showing a contact ON state; 図1に示すブレーカの接点オフ状態を示す側部B-B線断面図である。FIG. 2 is a side cross-sectional view taken along the line BB of the breaker shown in FIG. 1, showing a contact OFF state; 図4に示すブレーカの可動接点と固定接点の拡大断面図である。5 is an enlarged sectional view of a movable contact and a fixed contact of the breaker shown in FIG. 4; FIG. 実施形態2にかかるブレーカの分解斜視図である。FIG. 8 is an exploded perspective view of a breaker according to Embodiment 2; 図11に示すブレーカの接点オン状態を示す断面図である。FIG. 12 is a cross-sectional view showing a contact ON state of the breaker shown in FIG. 11; 従来のブレーカのオン状態の一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of a conventional breaker in an ON state; 従来のブレーカのオフ状態の一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of a conventional breaker in an off state;
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。 The present invention will be described in detail below based on the drawings. In the following description, terms indicating specific directions and positions (e.g., "upper", "lower", and other terms including those terms) are used as necessary, but the use of these terms is These terms are used to facilitate understanding of the invention with reference to the drawings, and the technical scope of the invention is not limited by the meaning of these terms. Also, parts with the same reference numerals appearing in a plurality of drawings indicate the same or equivalent parts or members.
 さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。 Furthermore, the embodiments shown below are specific examples of the technical idea of the present invention, and the present invention is not limited to the following. In addition, unless there is a specific description, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention, but are intended to be examples. It is intended. In addition, the contents described in one embodiment and example can also be applied to other embodiments and examples. Also, the sizes and positional relationships of members shown in the drawings may be exaggerated for clarity of explanation.
 本発明の実施態様のブレーカは、固定接点金属板と可動接点金属板とバイメタルをケースの定位置に収納している。固定接点金属板は、固定接点を有し、可動接点金属板は固定接点と対向する位置に可動接点を配置している。バイメタルは、可動接点金属板の対向位置に配置されて、設定温度で反転して可動接点をオンからオフに切り換える。可動接点金属板は、反転するバイメタルに押されて可動接点を固定接点から離すアーム部と、ケースに固定している固定部とを備える。アーム部は、反転するバイメタルに押されて弾性変形して、可動接点を固定接点から離す変形アーム部と、変形アーム部からスリットを介して切り離されて、付け根部を固定部に連結している固定アーム部とに分割している。固定アーム部は、バイメタルに接触する接触部を有し、接触部が反転するバイメタルに押されて、可動接点がオンからオフに切り換える。 A breaker according to an embodiment of the present invention houses a fixed contact metal plate, a movable contact metal plate, and a bimetal at fixed positions in a case. The fixed contact metal plate has a fixed contact, and the movable contact metal plate has a movable contact at a position facing the fixed contact. The bimetal is placed opposite the movable contact metal plate and reverses at a set temperature to switch the movable contact from on to off. The movable contact metal plate has an arm portion that is pushed by the reversing bimetal to separate the movable contact from the fixed contact, and a fixed portion that is fixed to the case. The arm portion is elastically deformed by being pushed by the reversing bimetal and separates the movable contact from the fixed contact, and is separated from the deformable arm portion through a slit and connects the root portion to the fixed portion. It is divided into a fixed arm section. The fixed arm portion has a contact portion that contacts the bimetal, and the contact portion is pushed by the reversing bimetal to switch the movable contact from on to off.
 以上のブレーカは、接点をオンに復帰させる復帰温度の誤差を少なくできる。このため、このブレーカは、周囲温度が上昇して電流を遮断した後、温度が低下すると、正確な温度で接点をオンに復帰できる特長がある。この優れた特性は、可動接点金属板のアーム部を、先端に可動接点を設けている変形アーム部と、この変形アーム部とは、変形しない固定アーム部とに分離して、固定アーム部に反転バイメタルに押される接触部を設けて、接触部を正確な位置に配置して、バイメタルと接触部との相対的な位置ずれを防止しているからである。 The above breaker can reduce the error in the return temperature that returns the contact to ON. For this reason, this breaker has the advantage of being able to turn on the contact at an accurate temperature when the ambient temperature rises and the current is interrupted and then the temperature drops. This excellent characteristic is achieved by separating the arm portion of the movable contact metal plate into a deformable arm portion having a movable contact at the tip and a fixed arm portion that does not deform. This is because the contact portion that is pushed by the reversed bimetal is provided and the contact portion is arranged at an accurate position, thereby preventing relative displacement between the bimetal and the contact portion.
 固定アーム部は、スリットを介して変形アーム部から分離されて、付け根部を固定部に連結している。この構造のブレーカは、変形アーム部と一緒に変形しない固定アーム部に接触部を設けているので、接触部の上下方向の位置ずれを防止して、復帰温度の誤差を少なくすることができる。 The fixed arm section is separated from the deformable arm section through a slit, and the root section is connected to the fixed section. In the breaker of this structure, since the contact portion is provided on the fixed arm portion that does not deform together with the deformable arm portion, the contact portion can be prevented from being displaced in the vertical direction, and the error in the return temperature can be reduced.
 アーム部に設けている接触部の上下方向の位置ずれは、接触部とバイメタルの押圧力のバランスを変化させて、復帰温度の誤差に影響を与える。それは、接触部の上下方向の位置ずれが、接触部が反転バイメタルを押し下げて、非反転形状に復帰させる押圧力を変化させるからである。反転しているバイメタルは、接触部を介してアーム部の弾性復元力に押圧される状態で、反転形状から復帰姿勢に変形するので、接触部がバイメタルの接近方向に位置ずれすると、押圧力が強くなってバイメタルは復帰しやすく、反対に接触部がバイメタルを押圧する力が弱くなると、バイメタルは復帰し難くなる。復帰しやすいバイメタルは、周囲温度の低下が小さい状態で復帰するので復帰温度は高くなり、復帰し難いバイメタルは、周囲温度が十分な低下して復帰するので、復帰温度は低くなる。例えば接触部が下にずれると、反転したバイメタルが非反転形状に近づくように変形されて、復帰温度が低下する。 The vertical positional deviation of the contact part provided on the arm changes the balance of the pressing force between the contact part and the bimetal, affecting the return temperature error. This is because the vertical displacement of the contact portion changes the pressing force for the contact portion to push down the reversing bimetal and return it to the non-reversing shape. Since the inverted bimetal is pressed by the elastic restoring force of the arm through the contact portion, it deforms from the inverted shape to the restored posture. As the force increases, the bimetal easily returns, and conversely, when the force with which the contact portion presses the bimetal weakens, it becomes difficult for the bimetal to return. Bimetals that are easy to reset are reset with a small drop in the ambient temperature, so the reset temperature is high, and bimetals that are difficult to reset are reset when the ambient temperature drops sufficiently, so the reset temperature is low. For example, when the contact portion shifts downward, the inverted bimetal is deformed to approach a non-inverted shape and the return temperature decreases.
 ブレーカは、組み立て工程の種々の要因で接触部の上下方向は位置ずれする。とくに、この構造のブレーカは、電池パックなど電子機器に内蔵される保護素子に多用されることから、極めて小型化が要求されて、ブレーカの全体の厚さを数mm以下とする超小型のブレーカである。超小型のブレーカは、接触部の上下方向のわずかな位置ずれも復帰温度の誤差の原因となる。アーム部を変形アーム部と固定アーム部とに分離して、変形アーム部と共に変形しない固定アーム部に接触部を設けている以上のブレーカは、接触部の上下方向の位置ずれを防止して、復帰温度を正確にできる特長を実現する。 Due to various factors in the assembly process, the contact part of the breaker is displaced in the vertical direction. In particular, breakers with this structure are often used as protective elements built into electronic devices such as battery packs, so miniaturization is required. is. With ultra-compact breakers, even a slight displacement of the contact portion in the vertical direction causes an error in the return temperature. A breaker that separates the arm portion into the deformable arm portion and the fixed arm portion and provides the contact portion on the fixed arm portion that is not deformed together with the deformable arm portion prevents the contact portion from being displaced in the vertical direction. Realize the feature that the return temperature can be set accurately.
 本発明の他の実施形態にかかるブレーカは、アーム部の変形アーム部に凸部を設けることができる。凸部は、可動接点と接触部との間に、バイメタルに向かって突出して設けられる。このブレーカは、接触部を固定アーム部に設けて、凸部を変形アーム部に設けて、凸部を可動接点と接触部との間に設けて、接触部と凸部とをバイメタルの両端部に接触させることができる。 A breaker according to another embodiment of the present invention can be provided with a convex portion on the deformed arm portion of the arm portion. The convex portion is provided between the movable contact and the contact portion so as to protrude toward the bimetal. In this breaker, the contact portion is provided on the fixed arm portion, the convex portion is provided on the deformable arm portion, the convex portion is provided between the movable contact and the contact portion, and the contact portion and the convex portion are provided at both ends of the bimetal. can be contacted.
 このブレーカは、接触部と凸部をバイメタルの両端部に接触する構造として、反転するバイメタルが、接触部と凸部を介してアーム部の特定位置を押し上げて、可動接点を確実にオフ状態に切り換えできる。 This breaker has a structure in which the contact part and the convex part are in contact with both ends of the bimetal. can be switched.
 本発明の他の実施形態にかかるブレーカは、アーム部の幅方向の中央部に長手方向に伸びる固定アーム部を設けることができる。このブレーカは、バイメタルに接触する接触部を最適位置に配置して、接触部とバイメタルとの接触位置を最適位置に配置できる。 A breaker according to another embodiment of the present invention can be provided with a fixed arm portion extending in the longitudinal direction at the center portion in the width direction of the arm portion. With this breaker, the contact portion that contacts the bimetal can be arranged at the optimum position, and the contact position between the contact portion and the bimetal can be arranged at the optimum position.
 本発明の他の実施形態にかかるブレーカは、固定アーム部の長さ(L2)をアーム部の長さ(L1)の10%~90%とすることができ、この構造によって、接触部をバイメタル端部との最適位置に配置できる。 In a breaker according to another embodiment of the present invention, the length (L2) of the fixed arm portion can be set to 10% to 90% of the length (L1) of the arm portion. It can be arranged at the optimum position with the edge.
 本発明の他の実施形態にかかるブレーカは、バイメタルの押圧力による固定アーム部の変形を制限するストッパ凸部をケースの内面に設けることができる。このブレーカは、ストッパ凸部で固定アーム部の変形をより確実に阻止して、接触部の上下方向の位置ずれをさらに少なくして、復帰温度を正確にできる特長がある。 A breaker according to another embodiment of the present invention can be provided with a stopper convex portion on the inner surface of the case for limiting deformation of the fixed arm portion due to the pressing force of the bimetal. This breaker has the feature that the deformation of the fixed arm portion can be more reliably prevented by the stopper convex portion, the displacement of the contact portion in the vertical direction can be further reduced, and the return temperature can be accurately set.
 本発明の他の実施形態にかかるブレーカは、固定接点金属板を固定している本体ケースと、本体ケースの開口部を閉塞する閉塞プレートを備える蓋ケースとでケースを構成して、閉塞プレートの内面にストッパ凸部を設けることができる。 A breaker according to another embodiment of the present invention comprises a main body case to which a fixed contact metal plate is fixed, and a lid case having a closing plate that closes an opening of the main body case. A stopper projection can be provided on the inner surface.
 本発明の他の実施形態にかかるブレーカは、接触部を、固定アーム部からバイメタルに向かって突出する突起とすることができる。
[実施形態1]
In a breaker according to another embodiment of the present invention, the contact portion can be a projection projecting from the fixed arm portion toward the bimetal.
[Embodiment 1]
 図1~図3は、主として電池パックに内蔵されるブレーカ100を示している。電池パックに内蔵されるブレーカ100は、電池などの温度上昇をバイメタルで検出して電流を遮断する。電池パックは、異常な状態で使用され、あるいは電池の内部ショートなどが原因で発生する熱暴走で温度が上昇するので、ブレーカ100を保護素子として内蔵することにより、電池の温度上昇をブレーカ100で検出して電流を遮断して安全に使用できる。ブレーカ100は、電池パックの保護素子として多用されているが、本発明は、ブレーカ100の用途を特定するものではなく、たとえばモータ等のように温度上昇を検出して電流を遮断する全ての用途に使用するブレーカ100に利用できる。
(ブレーカ100)
1 to 3 mainly show a breaker 100 built in a battery pack. A breaker 100 incorporated in the battery pack detects a temperature rise of a battery or the like with a bimetal and cuts off current. Since the temperature of the battery pack rises due to thermal runaway caused by being used in an abnormal state or caused by an internal short circuit of the battery, the breaker 100 is incorporated as a protective element to prevent the temperature rise of the battery. It can be used safely by detecting and cutting off the current. The breaker 100 is often used as a protection element for battery packs, but the present invention does not specify the application of the breaker 100, but all applications, such as motors, that detect a temperature rise and cut off current. can be used for the breaker 100 used for
(Breaker 100)
 図1~図9に示すブレーカ100は、ケース1と、ケース1に固定している固定接点5を有する固定接点金属板4と、固定接点金属板4の固定接点5と対向する位置に可動接点7を有し、かつ可動接点7を可動できるようにケース1に一部を固定している可動接点金属板6と、可動接点金属板6と固定接点金属板4との間に配設され、設定温度よりも高くなると非反転形状から反転形状に反転して、可動接点金属板6をオンからオフに切り換えるバイメタル8とを備えている。 The breaker 100 shown in FIGS. 1 to 9 includes a case 1, a fixed contact metal plate 4 having a fixed contact 5 fixed to the case 1, and a movable contact at a position of the fixed contact metal plate 4 facing the fixed contact 5. 7 and is arranged between the movable contact metal plate 6 and the movable contact metal plate 6 and the fixed contact metal plate 4, which is partly fixed to the case 1 so that the movable contact 7 can move, A bimetal 8 is provided for switching the movable contact metal plate 6 from ON to OFF by reversing from a non-reversed shape to a reversed shape when the temperature rises above a set temperature.
 ブレーカ100は、周囲温度が設定温度よりも低い状態では、図4、図6及び図8に示すように、バイメタル8が変形しない状態、すなわち非反転形状にあって可動接点7を固定接点5に接触させてオン状態となり、周囲温度が設定温度を超えると、図5、図7及び図9に示すように、バイメタル8が可動接点7を固定接点5から離してオフ状態に切り換え、周囲温度が復帰温度まで低下するとオフからオンに切り換える。ブレーカ100は、周囲温度でバイメタル8を非反転形状から反転形状に変形させて、反転するバイメタル8が可動接点金属板6を変形して、可動接点金属板6の可動接点7を固定接点5から離してオフ状態に切り換える。反転したバイメタル8は、周囲温度が所定の温度まで低下すると、非反転形状に変形して、可動接点金属板6のアーム部6Aを押圧しない状態となって、可動接点7を固定接点5に接触してオン状態に復帰する。 When the ambient temperature is lower than the set temperature, as shown in FIGS. 4, 6 and 8, the breaker 100 is in a state in which the bimetal 8 is not deformed, i. When the ambient temperature exceeds the set temperature, the bimetal 8 separates the movable contact 7 from the fixed contact 5 and switches to the OFF state, as shown in FIGS. When the temperature drops to the return temperature, it switches from off to on. The breaker 100 deforms the bimetal 8 from a non-reversed shape to a reversal shape at ambient temperature, and the reversing bimetal 8 deforms the movable contact metal plate 6 to move the movable contact 7 of the movable contact metal plate 6 from the fixed contact 5. Release to switch to OFF state. When the ambient temperature drops to a predetermined temperature, the inverted bimetal 8 is deformed into a non-inverted shape and does not press the arm portion 6A of the movable contact metal plate 6, thereby bringing the movable contact 7 into contact with the fixed contact 5. to return to the ON state.
 さらに、図4~図9に示すブレーカ100は、バイメタル8を加温するヒーター9を内蔵している。ヒーター9は、好ましくは板状のPTCヒーターで、バイメタル8と固定接点金属板4との間に配設させて、バイメタル8を裏面から加温する。ヒーター9を内蔵するブレーカ100は、ヒーター9でバイメタル8を加温して、ブレーカ100をオフ状態に保持できる。このブレーカ100は、オフ状態においてヒーター9に通電する回路(図示せず)を設けて、ヒーター9でバイメタル8を加温して、オフ状態に保持できる。このブレーカ100は、電池パックに内蔵されて、電池パックの安全性をより向上できる。電池パックが異常な温度になってブレーカ100で電流を遮断した後、電池でヒーター9に通電して、オフ状態に保持できるので、電池が放電できる限りブレーカ100をオフ状態に保持して外部に流れる電流を遮断状態に保持できるからである。電池が完全に放電されると、ヒーター9に通電できなくなってヒーター9がバイメタル8を加温できなくなってオン状態に復帰しても、この状態では電池は放電できなくなっているので、安全性は確保される。さらに、ヒーター9を内蔵するブレーカ100は、電池の異常を検出してヒーター9に通電して、ヒーター9でバイメタル8を加熱して電池の電流を遮断することもできる。ブレーカ100を内蔵する電池パックは、素電池と直列にブレーカ100を接続して、ブレーカ100で電池の電流を遮断する。ヒーター9でバイメタル8を加熱してオン状態に保持するブレーカ100は、電池が完全に放電されて、電池がヒーター9に電力供給されなくなって、復帰温度以下になるとバイメタル8が非反転形状に復帰して接点をオン状態に切り換える。
(ケース1)
Furthermore, the breaker 100 shown in FIGS. 4 to 9 incorporates a heater 9 for heating the bimetal 8. As shown in FIG. The heater 9 is preferably a plate-shaped PTC heater, and is arranged between the bimetal 8 and the fixed contact metal plate 4 to heat the bimetal 8 from the rear surface. A breaker 100 incorporating a heater 9 can heat the bimetal 8 with the heater 9 to keep the breaker 100 off. This breaker 100 is provided with a circuit (not shown) that energizes the heater 9 in the off state, and the heater 9 heats the bimetal 8 to maintain the off state. This breaker 100 is incorporated in a battery pack to further improve the safety of the battery pack. After the battery pack reaches an abnormal temperature and the current is cut off by the breaker 100, the heater 9 is energized by the battery and can be kept in the OFF state. This is because the flowing current can be maintained in a cut-off state. When the battery is completely discharged, the heater 9 cannot be energized and the heater 9 cannot heat the bimetal 8. Even if the heater 9 returns to the ON state, the battery cannot be discharged in this state, so safety is not ensured. Secured. Furthermore, the breaker 100 incorporating the heater 9 can detect an abnormality in the battery, turn on the heater 9, heat the bimetal 8 with the heater 9, and cut off the current of the battery. In a battery pack incorporating a breaker 100, the breaker 100 is connected in series with the unit cell, and the breaker 100 cuts off the current of the battery. The breaker 100, which heats the bimetal 8 with the heater 9 and keeps it on, restores the bimetal 8 to its non-inverted shape when the battery is completely discharged, the battery stops supplying power to the heater 9, and the temperature drops below the restoration temperature. to switch the contact to the ON state.
(Case 1)
 ケース1は、プラスチック製の本体ケース1Aと蓋ケース1Bとからなり、本体ケース1Aに蓋ケース1Bを超音波溶着して連結し、あるいは接着して連結している。ケース1は、固定接点金属板4と可動接点金属板6を定位置に固定している。図のケース1は、本体ケース1Aの底部に固定接点金属板4をインサート成形して固定すると共に、本体ケース1Aと蓋ケース1Bとの間に可動接点金属板6を挟着状態で固定して、本体ケース1Aの開口部を蓋ケース1Bで閉塞している。本体ケース1Aは、両端部分に、第1の外壁11Aと第2の外壁11Bとを突出するように設けて、第1の外壁11Aと第2の外壁11Bとの間に、バイメタル8とヒーター9を定位置に配置する収納部20を設けている。図のケース1は、本体ケース1Aに設けている収納部20の底面を固定接点金属板4で閉塞して、連結する蓋ケース1Bで収納部20の上面を閉塞している。
(本体ケース1A)
The case 1 is composed of a main body case 1A and a lid case 1B made of plastic, and the lid case 1B is connected to the main body case 1A by ultrasonic welding or by bonding. The case 1 fixes the fixed contact metal plate 4 and the movable contact metal plate 6 at fixed positions. In the case 1 shown in the figure, a fixed contact metal plate 4 is insert-molded and fixed to the bottom of the main body case 1A, and a movable contact metal plate 6 is sandwiched and fixed between the main body case 1A and the cover case 1B. , the opening of the main body case 1A is closed by the lid case 1B. The main body case 1A is provided with a first outer wall 11A and a second outer wall 11B at both ends so as to protrude, and a bimetal 8 and a heater 9 are provided between the first outer wall 11A and the second outer wall 11B. is provided at a fixed position. In the illustrated case 1, the bottom surface of a storage portion 20 provided in a main body case 1A is closed with a fixed contact metal plate 4, and the top surface of the storage portion 20 is closed with a lid case 1B connected thereto.
(Main body case 1A)
 本体ケース1Aは、外周壁10の内側にバイメタル8を配置する収納部20を設けている。外周壁10は、第1の外壁11A及び第2の外壁11Bからなる一対の外壁11と、一対の外壁11の両端を連結している一対の対向壁12とからなり、対向壁12と外壁11の内側に収納部20を設けている。本体ケース1Aは、収納部20の周囲を外周壁10で囲み、外周壁10の底面と上面を閉塞している。収納部20の底面は、本体ケース1Aと一体的に成形している底部13や固定接点金属板4で閉塞し、上面は本体ケース1Aに連結している蓋ケース1Bで閉塞して、収納部20を閉塞された中空状としている。 The main body case 1A is provided with a storage portion 20 in which the bimetal 8 is arranged inside the outer peripheral wall 10. The outer peripheral wall 10 includes a pair of outer walls 11 consisting of a first outer wall 11A and a second outer wall 11B, and a pair of opposing walls 12 connecting both ends of the pair of outer walls 11. The opposing walls 12 and the outer walls 11 A storage portion 20 is provided inside the . The main body case 1A surrounds the storage portion 20 with the outer peripheral wall 10 and closes the bottom surface and the upper surface of the outer peripheral wall 10 . The bottom surface of the housing portion 20 is closed by the bottom portion 13 and the fixed contact metal plate 4 integrally formed with the main body case 1A, and the top surface is closed by the cover case 1B connected to the main body case 1A. 20 is closed and hollow.
 本体ケース1Aは、固定接点金属板4をインサート成形して固定している。図3~図9において、固定接点金属板4は中間部4Bを第1の外壁11Aに埋設するようにインサート成形して本体ケース1Aに固定している。この固定接点金属板4は、第1の外壁11Aを貫通する状態で本体ケース1Aに固定されて、ケース1の内部に露出する部分に固定接点5を設けて、外部に引き出される部分を接続端子4Xとしている。
(バイメタル8)
A fixed contact metal plate 4 is fixed to the body case 1A by insert molding. 3 to 9, the fixed contact metal plate 4 is fixed to the main body case 1A by insert molding so that the intermediate portion 4B is embedded in the first outer wall 11A. This fixed contact metal plate 4 is fixed to the main body case 1A in a state of penetrating the first outer wall 11A. 4X.
(Bimetal 8)
 バイメタル8は、加熱されると変形して反転するように、熱膨張率が異なる金属を積層したものである。バイメタル8は、ヒーター9と可動接点金属板6のアーム部6Aとの間に配設され、設定温度で反転して、可動接点7を固定接点5から離してブレーカ100をオフ状態に切り換える。バイメタル8は、薄くしてブレーカ100全体を薄くできるので、好ましくは厚さ(t)を0.05mm以上であって0.1mm以下とする。さらにバイメタル8は、中央凸に湾曲する形状であって、反転しない状態、すなわち、非反転形状においては、図4、図6、及び図8に示すように、中央突出部をアーム部6A側に突出させる姿勢に保持される。バイメタル8は、設定温度になると反転して反転形状に変形するが、反転形状では、図5、図7及び図9に示すように、中央突出部をヒーター9側に突出させる姿勢となって、両端部でアーム部6Aを押圧する形状となる。バイメタル8は、反転形状では、中央突出部をヒーター9に接触させると共に、両端部分でアーム部6Aを押圧して、アーム部6Aを押し上げて可動接点7を固定接点5から離してオフに切り換える。
(可動接点金属板6)
The bimetal 8 is a laminate of metals having different coefficients of thermal expansion so as to deform and reverse when heated. The bimetal 8 is arranged between the heater 9 and the arm portion 6A of the movable contact metal plate 6, reverses at a set temperature, separates the movable contact 7 from the fixed contact 5, and switches the breaker 100 to the OFF state. The thickness (t) of the bimetal 8 is preferably set to 0.05 mm or more and 0.1 mm or less because the thickness of the bimetal 8 can be reduced to make the breaker 100 as a whole thinner. Further, the bimetal 8 has a shape that curves convexly at the center, and in a non-inverted state, that is, in a non-inverted shape, the central projecting portion is directed toward the arm portion 6A as shown in FIGS. It is held in a protruding posture. When the temperature reaches the set temperature, the bimetal 8 is reversed and deformed into a reversed shape. In the reversed shape, as shown in FIGS. It becomes the shape which presses the arm part 6A at both ends. In the reversed shape, the bimetal 8 contacts the heater 9 with its center projection and presses the arm 6A with both ends to push up the arm 6A and separate the movable contact 7 from the fixed contact 5 to turn it off.
(Movable contact metal plate 6)
 可動接点金属板6は弾性変形する金属板で、ケース1に固定される固定部6Bと、先端に可動接点7を設けているアーム部6Aとを有する。可動接点金属板6は、図4~図9に示すように、固定部6Bをケース1に固定して、アーム部6Aをケース1に設けている収納部20に配設している。可動接点金属板6は、ケース1に設けている第2の外壁11Bの上部に固定部6Bを固定している。可動接点金属板6は、固定部6Bの外側端部をケース1から突出させて接続端子6Xとしている。 The movable contact metal plate 6 is an elastically deformable metal plate, and has a fixed portion 6B fixed to the case 1 and an arm portion 6A having a movable contact 7 at its tip. As shown in FIGS. 4 to 9, the movable contact metal plate 6 has a fixing portion 6B fixed to the case 1 and an arm portion 6A disposed in a storage portion 20 provided in the case 1. FIG. The movable contact metal plate 6 has a fixed portion 6B fixed to the upper portion of the second outer wall 11B provided on the case 1 . In the movable contact metal plate 6, the outer end of the fixed portion 6B protrudes from the case 1 to form a connection terminal 6X.
 アーム部6Aは、固定接点5との対向面に可動接点7を設けている。この可動接点金属板6は、バイメタル8の非反転形状では、先端部の可動接点7を固定接点5に接触させてブレーカ100をオン状態とし、バイメタル8の反転形状では、バイメタル8に押されて、可動接点7を固定接点5から離してブレーカ100をオフ状態とする。 The arm portion 6A has a movable contact 7 on the surface facing the fixed contact 5. In the non-inverted shape of the bimetal 8, the movable contact metal plate 6 brings the movable contact 7 at the tip into contact with the fixed contact 5 to turn on the breaker 100. In the inverted shape of the bimetal 8, the movable contact metal plate 6 is pushed by the bimetal 8. , the movable contact 7 is separated from the fixed contact 5 to turn off the breaker 100 .
 可動接点金属板6は、図4~図9に示すように、アーム部6Aを収納部20に配置されたバイメタル8の上方に配置している。図に示す可動接点金属板6は、弾性変形できる1枚の弾性金属板からなる。可動接点金属板6は、電流容量を考慮して厚さ(d)を特定するが、電池パックに内蔵されるマイクロブレーカ100にあっては、たとえば、0.08mm以上であって0.5mm以下とする。さらに、可動接点金属板6の厚さ(d)は、ブレーカ100の最大電流容量を考慮して最適値に設定するので、好ましくは0.1mm以上であって、0.5mm以下に設定する。 The movable contact metal plate 6 has the arm portion 6A arranged above the bimetal 8 arranged in the storage portion 20, as shown in FIGS. The movable contact metal plate 6 shown in the figure consists of one elastic metal plate that can be elastically deformed. The thickness (d) of the movable contact metal plate 6 is specified in consideration of the current capacity. and Furthermore, the thickness (d) of the movable contact metal plate 6 is set to an optimum value in consideration of the maximum current capacity of the breaker 100, so it is preferably set to 0.1 mm or more and 0.5 mm or less.
 可動接点金属板6は、弾性と導電性を考慮して材質を特定するが、たとえば、Cu-Zr系合金やCu-Cr-Ag-Si系合金が使用できる。Cu-Zr系合金は、母体となるCuに、好ましくは0.05~0.15wt%のZrを含有している。Cu-Cr-Ag-Si系合金は、母体となるCuに、0.01~5wt%、好ましくは0.01~2.5wt%のCrと、0.01~5wt%、好ましくは0.01~2.5wt%のAgと、0.01~5wt%、好ましくは0.01~2.5wt%のSiを含有している。さらに、可動接点金属板6は、CrとAgとSiの合計含有率を0.5~3重量%、IACSを78%~84%とする銅合金とする弾性金属板(マテリオン パーフォーマンス アロイズ アンド コンポジット社(MATERION PERFORMANCE ALLOYS AND COMPOSITES USA)のQMET 300 登録商標)とすることができる。さらにまた、弾性金属板6は、NiとPとZnとFeとを含有する銅合金、FeとPとZnとを含有する銅合金、CrとMgとを含有するIACSを75%以上とする銅合金、Zrを含有するIACSを80%以上とする銅合金、Snを含有するIACSを80%以上とする銅合金等の弾性金属板等も使用できる。 The material of the movable contact metal plate 6 is specified in consideration of its elasticity and conductivity. For example, a Cu--Zr alloy or a Cu--Cr--Ag--Si alloy can be used. The Cu--Zr alloy preferably contains 0.05 to 0.15 wt % of Zr in Cu as a base. Cu--Cr--Ag--Si based alloy contains 0.01 to 5 wt%, preferably 0.01 to 2.5 wt% Cr and 0.01 to 5 wt%, preferably 0.01 It contains ˜2.5 wt % Ag and 0.01-5 wt %, preferably 0.01-2.5 wt % Si. Further, the movable contact metal plate 6 is an elastic metal plate made of a copper alloy with a total content of Cr, Ag and Si of 0.5 to 3% by weight and an IACS of 78% to 84% (Material Performance Alloy and Composite (MATERION PERFORMANCE ALLOYS AND COMPOSITES USA) QMET 300 registered trademark). Furthermore, the elastic metal plate 6 is composed of a copper alloy containing Ni, P, Zn and Fe, a copper alloy containing Fe, P and Zn, a copper containing Cr and Mg and having an IACS of 75% or more. An elastic metal plate such as an alloy, a copper alloy containing 80% or more of IACS containing Zr, or a copper alloy containing 80% or more of IACS containing Sn can also be used.
 ただし、本明細書においてIACS[international annealed copper standerd]は、電気抵抗又は電気伝導度の基準として、国際的に採択された焼鈍標準軟銅(体積抵抗率を1.7241×10-2μΩm)の導電率を100%として規定する表記である。 However, in this specification, IACS [international annealed copper standard] refers to the conductivity of annealed standard annealed copper (volume resistivity of 1.7241 × 10 -2 μΩm) internationally adopted as a standard of electrical resistance or electrical conductivity. It is a notation that defines the rate as 100%.
 可動接点金属板6は、アーム部6Aの先端部であって固定接点5との対向面に可動接点7を設けている。図10に示すアーム部6Aの可動接点7は、固定接点5と対向する領域に銀、又は銀合金からなる金属板を固定して設けており、固定接点5との接触抵抗を低減させている。可動接点7は、例えば、厚さを100μm~150μmとするAg-Ni合金をシーム溶接して接合している。このアーム部6Aは、バイメタル8が熱変形しない状態では、可動接点7が固定接点5に接触してオン状態となり、バイメタル8が熱変形する状態では、バイメタル8に押圧されて弾性変形して、可動接点7が固定接点5から離れてオフ状態となる。 The movable contact metal plate 6 has a movable contact 7 on a surface facing the fixed contact 5 at the tip of the arm portion 6A. The movable contact 7 of the arm portion 6A shown in FIG. 10 is fixedly provided with a metal plate made of silver or a silver alloy in a region facing the fixed contact 5, thereby reducing the contact resistance with the fixed contact 5. . The movable contact 7 is, for example, seam-welded to join an Ag—Ni alloy having a thickness of 100 μm to 150 μm. When the bimetal 8 is not thermally deformed, the movable contact 7 comes into contact with the fixed contact 5 to turn on the arm 6A. The movable contact 7 is separated from the fixed contact 5 and turned off.
 図2と図3の分解斜視図に示す可動接点金属板6のアーム部6Aは、スリット6cを介して変形アーム部6bと固定アーム部6aとに分離して、変形アーム部6bには凸部6dを、固定アーム部6aには接触部の一形態として、固定アーム部6aから突出させた突起6eを設けている。突起6eと凸部6dは、バイメタル8の両端部に向かって突出する。アーム部6Aは、付け根部6f側に突起6eを、可動接点7と突起6eとの間に凸部6dを配置している。突起6eと凸部6dは、バイメタル8の両端部の接触位置に配置される。このアーム部6Aは、突起6eと凸部6dを介して反転するバイメタル8に押し上げられて弾性変形して、可動接点7をオフ状態に切り換える。アーム部6Aは、突起6eと凸部6dを介してバイメタル8の両端部で押し上げられる。このブレーカ100は、反転バイメタル8が突起6eと凸部6dを介してアーム部6Aの特定位置を押し上げて、接点を確実にオンオフに切り換える。 The arm portion 6A of the movable contact metal plate 6 shown in the exploded perspective views of FIGS. 2 and 3 is separated into a deformable arm portion 6b and a fixed arm portion 6a via a slit 6c. 6d is provided on the fixed arm portion 6a as a form of a contact portion, and a protrusion 6e protruding from the fixed arm portion 6a is provided. The projections 6e and the projections 6d protrude toward both ends of the bimetal 8. As shown in FIG. The arm portion 6A has a projection 6e on the root portion 6f side and a projection 6d between the movable contact 7 and the projection 6e. The projection 6e and the projection 6d are arranged at contact positions on both ends of the bimetal 8. As shown in FIG. The arm portion 6A is elastically deformed by being pushed up by the reversing bimetal 8 through the projection 6e and the convex portion 6d, thereby switching the movable contact 7 to the OFF state. The arm portion 6A is pushed up by both end portions of the bimetal 8 via the projection 6e and the convex portion 6d. In this breaker 100, the reverse bimetal 8 pushes up a specific position of the arm portion 6A via the projection 6e and the convex portion 6d to reliably switch the contact on and off.
 可動接点金属板6は、復帰温度のばらつき、すなわち復帰温度の誤差を少なくするために、アーム部6Aを変形アーム部6bと固定アーム部6aとに分離している。固定アーム部6aは、変形アーム部6bと一緒に変形しないように、変形アーム部6bからスリット6cで分離されて、付け根部6fを固定部6Bに連結している。固定アーム部6aは先端部に、バイメタル8に向かって突出する突起6eを設けている。変形アーム部6bは、固定接点5との対向位置に可動接点7を配置して、可動接点7と固定部6Bとの間に凸部6dを設けて、凸部6dをバイメタル8の端部(図においてバイメタル8の右側端部)に接触する位置に配置している。 In the movable contact metal plate 6, the arm portion 6A is separated into a deformed arm portion 6b and a fixed arm portion 6a in order to reduce variations in the return temperature, that is, errors in the return temperature. The fixed arm portion 6a is separated from the deformable arm portion 6b by a slit 6c so as not to be deformed together with the deformable arm portion 6b, and the root portion 6f is connected to the fixed portion 6B. The fixed arm portion 6a has a protrusion 6e protruding toward the bimetal 8 at its tip. The deformable arm portion 6b has a movable contact 7 arranged at a position facing the fixed contact 5, and a convex portion 6d provided between the movable contact 7 and the fixed portion 6B. It is arranged at a position in contact with the right end of the bimetal 8 in the drawing.
 図2と図3のアーム部6Aは、幅方向の中央部に長手方向に伸びる固定アーム部6aを設けて、固定アーム部6aの両側に変形アーム部6bを配置している。このアーム部6Aは、突起6eを中央部に設けて、左右の変形アーム部6bをバランスよく同じ形状に弾性変形できる。固定アーム部6aは、突起6eを最適位置に配置する長さとする。固定アーム部6aの長さ(L2)は、例えば長さをアーム部6A全長(L1)の10%~90%、好ましくは20%~80%、さらに好ましくは25%~75%として、突起6eをバイメタル8の端部(図において左端)に配置できる。 The arm portion 6A in FIGS. 2 and 3 has a fixed arm portion 6a extending in the longitudinal direction at the central portion in the width direction, and deformable arm portions 6b are arranged on both sides of the fixed arm portion 6a. This arm portion 6A is provided with a projection 6e in the central portion so that the left and right deformation arm portions 6b can be elastically deformed into the same shape in good balance. The fixed arm portion 6a has a length that allows the projection 6e to be arranged at the optimum position. The length (L2) of the fixed arm portion 6a is, for example, 10% to 90%, preferably 20% to 80%, more preferably 25% to 75% of the total length (L1) of the arm portion 6A. can be arranged at the end of the bimetal 8 (left end in the figure).
 アーム部6Aのスリット6cは、固定アーム部6aと変形アーム部6bとの間に設けられて、固定アーム部6aを変形アーム部6bから切り離して、一緒に弾性変形しない構造としている。アーム部6Aは、固定アーム部6aの両側縁と先端縁の外周に沿ってスリット6cを設けて、付け根部6fを固定部6Bに連結している。スリット6cは、固定アーム部6aを変形アーム部6bから分離して、固定アーム部6aを変形することなく、変形アーム部6bのみを弾性変形できる隙間、例えば0.1~0.3mmとしている。 The slit 6c of the arm portion 6A is provided between the fixed arm portion 6a and the deformable arm portion 6b to separate the fixed arm portion 6a from the deformable arm portion 6b so that they are not elastically deformed together. The arm portion 6A is provided with slits 6c along the outer periphery of both side edges and the tip edge of the fixed arm portion 6a, and connects the base portion 6f to the fixed portion 6B. The slit 6c separates the fixed arm portion 6a from the deformable arm portion 6b and has a gap of, for example, 0.1 to 0.3 mm that allows only the deformable arm portion 6b to be elastically deformed without deforming the fixed arm portion 6a.
 ブレーカ100のアーム部6Aは、接点のオン状態で通電部分となるので、電気抵抗を小さくしてジュール熱による発熱を少なくできる。ジュール熱で発熱するバイメタル8は、アーム部6Aを加熱して、周囲温度が設定温度まで上昇していない状態で反転して電流を遮断する弊害となる。アーム部6Aは、金属板を厚くして電気抵抗を小さくできる。しかしながら、アーム部6Aを厚い金属板とするブレーカ100は、バイメタル8が強い力でアーム部6Aを押し上げて接点をオフ状態に切り換える必要があり、バイメタル8を厚くする必要がある。 Since the arm portion 6A of the breaker 100 becomes a current-carrying portion when the contact is in the ON state, the electric resistance can be reduced and heat generation due to Joule heat can be reduced. The bimetal 8, which generates heat by Joule heat, heats the arm portion 6A, causing the adverse effect of reversing and interrupting the current before the ambient temperature rises to the set temperature. The arm portion 6A can be made of a thick metal plate to reduce electrical resistance. However, the breaker 100 having the arm portion 6A made of a thick metal plate requires the bimetal 8 to push up the arm portion 6A with a strong force to switch the contact to the OFF state, and the bimetal 8 needs to be thick.
 図2に示すように、固定アーム部6aの両側に変形アーム部6bを設けて、両側の変形アーム部6bのみを変形するアーム部6Aは、固定アーム部6aの両側に、小さい押し上げ力で変形する横幅の狭い2列の変形領域6gが配置される。したがって、この構造の可動接点金属板6は、金属板を厚くしてアーム部6Aの電気抵抗を小さくしながら、変形領域6gを変形して、バイメタル8の小さい押し上げで変形して接点をオフ状態に切り換えできる特長がある。アーム部6Aは、固定アーム部6aを設けることで、この領域の電気抵抗は局所的には増加するが、金属板を厚くすることで、他の領域の電気抵抗を小さくできるので、アーム部6A全体の実質的な電気抵抗は小さくしながら、バイメタル8の押し上げ力を強くすることなく、薄いバイメタルで接点をオフ状態に切り換えできる特長も実現できる。この構造のアーム部6Aは、厚い金属板を使用しながら、変形領域6gの横幅(W4)を狭くしてバイメタル8の押し上げ力を減少でき、また変形領域6gの横幅(W4)を広くして全体の電気抵抗を小さくできる。 As shown in FIG. 2, deformation arm portions 6b are provided on both sides of a fixed arm portion 6a, and an arm portion 6A that deforms only the deformation arm portions 6b on both sides is deformed with a small upward force on both sides of the fixed arm portion 6a. Two rows of narrow deformation regions 6g are arranged. Therefore, the movable contact metal plate 6 of this structure is made thicker to reduce the electric resistance of the arm portion 6A, while deforming the deformation region 6g by a small push-up of the bimetal 8 to turn the contact off. There is a feature that can be switched to By providing the fixed arm portion 6a, the arm portion 6A locally increases the electrical resistance in this region, but by thickening the metal plate, the electrical resistance in other regions can be reduced. While reducing the substantial electric resistance of the whole, it is also possible to realize the feature that the contact can be switched to the OFF state with a thin bimetal without increasing the pushing force of the bimetal 8 . In the arm portion 6A of this structure, while using a thick metal plate, the lateral width (W4) of the deformation region 6g can be narrowed to reduce the push-up force of the bimetal 8, and the lateral width (W4) of the deformation region 6g can be widened. Overall electrical resistance can be reduced.
 固定アーム部6aの横幅は、可動接点金属板6に使用する金属板の厚さと、アーム部6Aに要求される電気抵抗と、バイメタル8がオン状態に切り換えする押し上げ力とを考慮して最適値に設定されるが、固定アーム部6aの横幅(W2)は、好ましくは、固定アーム部6aを設けている領域の横幅(W5)の20%~70%、さらに好ましくは30%~50%に設定される。
(蓋ケース1B)
The width of the fixed arm portion 6a is an optimum value in consideration of the thickness of the metal plate used for the movable contact metal plate 6, the electrical resistance required of the arm portion 6A, and the pushing force required to switch the bimetal 8 to the ON state. However, the width (W2) of the fixed arm portion 6a is preferably 20% to 70%, more preferably 30% to 50% of the width (W5) of the area where the fixed arm portion 6a is provided. set.
(Lid case 1B)
 蓋ケース1Bは、図4~図9に示すように、アーム部6Aの上方をカバーする状態で、本体ケース1Aの開口部を閉塞する閉塞プレート27aを備える。図に示す閉塞プレート27aは、積層金属板24を連結プラスチック23にインサート成形して固定している。蓋ケース1Bは、閉塞プレート27aにストッパ凸部25を設けている。閉塞プレート27aは、積層金属板24を下面に露出させて、積層金属板24の表面にストッパ凸部25を設けている。ストッパ凸部25は、固定アーム部6aの上方に配置されて、バイメタル8に押されて固定アーム部6aが変形するのを制限し、あるいは阻止するが、変形領域6gが上に変形するのは阻止しない。ストッパ凸部25は、変形アーム部6bの変形領域6gがバイメタル8に上に押されて変形するのを制限しないように、固定アーム部6aの上方に局所的に配置されて、変形アーム部6bの上方には配置されない。 As shown in FIGS. 4 to 9, the lid case 1B includes a closing plate 27a that closes the opening of the main body case 1A while covering the upper side of the arm portion 6A. The closing plate 27a shown in the figure is fixed by insert-molding the laminated metal plate 24 into the connecting plastic 23. As shown in FIG. The lid case 1B has a stopper projection 25 on the closing plate 27a. The closing plate 27 a exposes the laminated metal plate 24 to the lower surface, and provides the stopper projection 25 on the surface of the laminated metal plate 24 . The stopper convex portion 25 is arranged above the fixed arm portion 6a, and restricts or prevents deformation of the fixed arm portion 6a by being pushed by the bimetal 8. don't stop. The stopper convex portion 25 is locally arranged above the fixed arm portion 6a so as not to restrict deformation of the deformation area 6g of the deformation arm portion 6b by being pushed upward by the bimetal 8. is not placed above the
 以上の蓋ケース1Bは、連結プラスチック23の外周縁部を本体ケース1Aの外周壁10の上面に固定して、本体ケース1Aの開口部を閉塞する。蓋ケース1Bの連結プラスチック23は、図2と図3に示すように、本体ケース1Aの外周壁10と対向する外周縁部に、本体ケース1A側に突出する外周壁27bを備えている。連結プラスチック23の外周壁27bは、本体ケース1Aの両端部に設けている第1の外壁11Aと第2の外壁11Bに固定され、さらに対向壁12に固定される。 The above-described lid case 1B closes the opening of the main body case 1A by fixing the outer peripheral edge of the connecting plastic 23 to the upper surface of the outer peripheral wall 10 of the main body case 1A. As shown in FIGS. 2 and 3, the connecting plastic 23 of the lid case 1B is provided with an outer peripheral wall 27b protruding toward the main case 1A on the outer peripheral edge facing the outer peripheral wall 10 of the main case 1A. The outer peripheral wall 27b of the connecting plastic 23 is fixed to the first outer wall 11A and the second outer wall 11B provided at both ends of the main body case 1A, and further fixed to the opposing wall 12. As shown in FIG.
 図5~図9に示すケース1は、蓋ケース1Bと本体ケース1Aとを正確に位置決めしながら連結するために、互いに嵌合する連結凸部15、17と連結凹部16、18とを備えている。本体ケース1Aは、前述のように、第2の外壁11Bの上面において、可動接点金属板6の固定部6Bを貫通して位置決めする連結凸部15を突出して設けている。蓋ケース1Bは、本体ケース1Aの第2の外壁11B側の端部において、この連結凸部15と対向する位置に、連結凸部15を案内する連結凹部16を設けている。さらに、図2と図3に示す蓋ケース1Bは、本体ケース1Aの第1の外壁11A側の端部の両側において、外周壁27bの下面から本体ケース1Aに向かって突出する連結凸部17を設けている。本体ケース1Aは、図2と図3に示すように、これらの連結凸部17と対向する外周壁10の上面に、連結凸部17を案内する連結凹部18を設けている。 The case 1 shown in FIGS. 5 to 9 includes connecting projections 15 and 17 and connecting recesses 16 and 18 that are fitted to each other in order to connect the lid case 1B and the main body case 1A while accurately positioning them. there is As described above, the main body case 1A is provided with the connecting protrusion 15 that protrudes from the upper surface of the second outer wall 11B and penetrates through the fixed portion 6B of the movable contact metal plate 6 for positioning. The lid case 1B is provided with a connecting concave portion 16 for guiding the connecting convex portion 15 at a position facing the connecting convex portion 15 at the end portion of the main body case 1A on the side of the second outer wall 11B. Furthermore, the lid case 1B shown in FIGS. 2 and 3 has connecting protrusions 17 projecting from the lower surface of the outer peripheral wall 27b toward the main body case 1A on both sides of the end portion of the main body case 1A on the side of the first outer wall 11A. are provided. As shown in FIGS. 2 and 3, the main body case 1A has connecting recesses 18 for guiding the connecting protrusions 17 on the upper surface of the outer peripheral wall 10 facing the connecting protrusions 17 .
 以上のケース1は、本体ケース1Aの第1の外壁11A側の端部において、蓋ケース1Bの両側の連結凸部17が本体ケース1Aの連結凹部18に案内されると共に、本体ケース1Aの第2の外壁11B側の端部において、可動接点金属板6の固定部6Bを貫通する連結凸部15が蓋ケース1Bの連結凹部16に案内されて、蓋ケース1Bが本体ケース1Aの正確な位置に連結される。 In the case 1 described above, at the end of the main body case 1A on the side of the first outer wall 11A, the connection protrusions 17 on both sides of the lid case 1B are guided by the connection recesses 18 of the main body case 1A, 2, a connecting projection 15 penetrating through the fixed portion 6B of the movable contact metal plate 6 is guided by a connecting recess 16 of the lid case 1B, so that the lid case 1B can be accurately positioned with respect to the main body case 1A. connected to
 連結凸部15、17と連結凹部16、18を介して定位置に連結される蓋ケース1Bと本体ケース1Aは、超音波溶着して連結プラスチック23が本体ケース1Aに固定される。図2~図9に示す蓋ケース1Bは、連結プラスチック23の外周壁27bの下面であって、本体ケース1Aの外周壁10との対向面に位置して、超音波振動で溶融される溶融凸条28を設けている。図の蓋ケース1Bは、外周壁27bの下面に沿って溶融凸条28を突出して設けている。この蓋ケース1Bは、可動接点金属板6の固定部6Bと対向する部分を除く外周縁部に、底面視略コ字状の溶融凸条28を設けている。この蓋ケース1Bは、前述の連結凸部15、17と連結凹部16、18とを介して本体ケース1Aの定位置に連結する状態で、外周部を超音波振動させて、溶融凸条28を摩擦熱で溶融させて本体ケース1Aの外周壁10に溶着させる。さらに、超音波振動される蓋ケース1Bと本体ケース13は、互いに連結された連結凸部15、17と連結凹部16、18の接触部分も摩擦熱で溶融されて互いに溶着される。ただ、ケース1は、蓋ケース1の連結プラスチックと本体ケース1とを接着して、あるいは嵌着構造や係止構造で連結して固定することもできる。 The lid case 1B and the main body case 1A, which are connected in fixed positions via the connecting protrusions 15, 17 and the connecting recesses 16, 18, are ultrasonically welded to fix the connecting plastic 23 to the main body case 1A. The lid case 1B shown in FIGS. 2 to 9 is located on the lower surface of the outer peripheral wall 27b of the connecting plastic 23 and on the surface facing the outer peripheral wall 10 of the main body case 1A, and is melted by ultrasonic vibration. Article 28 is provided. The illustrated lid case 1B is provided with a melting protrusion 28 protruding along the lower surface of the outer peripheral wall 27b. The cover case 1B has a melting ridge 28 having a substantially U-shape when viewed from the bottom on the outer peripheral edge portion of the movable contact metal plate 6 except for the portion facing the fixed portion 6B. The cover case 1B is connected to the main body case 1A at a fixed position via the connection protrusions 15 and 17 and the connection recesses 16 and 18, and the outer peripheral portion is ultrasonically vibrated to melt the protrusions 28. It is melted by frictional heat and welded to the outer peripheral wall 10 of the main body case 1A. Further, in the ultrasonically vibrated lid case 1B and main body case 13, the contact portions of the connecting projections 15, 17 and the connecting recesses 16, 18 connected to each other are also melted by frictional heat and welded to each other. However, the case 1 can also be fixed by bonding the connecting plastic of the lid case 1 and the main body case 1, or by connecting them with a fitting structure or locking structure.
 さらに、図2と図3のブレーカ100は、蓋ケース1Bに変形制限凸部26を設けている。変形制限凸部26は、バイメタル8が熱変形して可動接点7が固定接点5から離れるオフ状態において、アーム部6Aがバイメタル8に押されて変形する変形量を制限するために、アーム部6Aの先端部、すなわち可動接点7側を下方に押圧する位置にあって、アーム部6A側に突出している。このブレーカ100は、アーム部6Aの先端部を変形制限凸部26で下向きに、すなわち固定接点5側に押圧して、アーム部6Aが反転したバイメタル8に押し上げられて変形する量を制限できる。このため、この構造のブレーカ100は、反転したバイメタル8がアーム部6Aを弾性限界を超えるように押し上げてバネ性を低下させるのを防止して、復帰後において可動接点7を固定接点5に所定の接触圧で押圧して接触抵抗を小さく保持できる特長がある。 Furthermore, the breaker 100 of FIGS. 2 and 3 has a deformation limiting projection 26 on the lid case 1B. The deformation limiting convex portion 26 is provided in order to limit the amount of deformation of the arm portion 6A when the bimetal 8 is pushed by the bimetal 8 in the OFF state in which the bimetal 8 is thermally deformed and the movable contact 7 is separated from the fixed contact 5. , ie, the movable contact 7 side, and protrudes toward the arm portion 6A. The breaker 100 presses the distal end portion of the arm portion 6A downward, that is, toward the fixed contact 5 side with the deformation limiting protrusion 26, and can limit the deformation amount of the arm portion 6A pushed up by the inverted bimetal 8. For this reason, the breaker 100 having this structure prevents the reversed bimetal 8 from pushing up the arm portion 6A beyond the elastic limit and lowering the spring property. It has the advantage of being able to keep the contact resistance small by pressing with a contact pressure of .
 可動接点金属板6は、固定部6Bを本体ケース1Aの第2の外壁11Bに固定して、アーム部6Aを収納部20に配置している。図4ないし図9のブレーカ100は、第2の外壁11Bの上端面に可動接点金属板6の固定部6Bを固定している。本体ケース1Aは、図2及び図3に示すように、第2の外壁11B上端面に、外周壁10の上面よりも一段低い段差凹部21を設けており、この段差凹部21に可動接点金属板6の固定部6Bを嵌合させて定位置に配置している。図6と図7に示す本体ケース1Aは、この段差凹部21の中央部から突出して、可動接点金属板6の固定部6Bを貫通する連結凸部15を設けている。可動接点金属板6の固定部6Bには、連結凸部15を貫通させる貫通孔6Fを設けている。図に示す連結凸部15は、水平断面形状を長円形として、可動接点金属板6の固定部6Bを正確な姿勢で段差凹部21に配置できるようにしている。さらに、図2と図3に示す段差凹部21は、可動接点金属板6の両側部を位置決めする位置決リブ22を第2の外壁11Bの上端部に形成している。図3に示す第2の外壁11Bは、その上端面において、位置決リブ22以外の部分を、外周壁10の上面よりも低くして段差凹部21を設けることにより、段差形状の位置決リブ22を形成している。可動接点金属板6は、固定部6Bの両側に位置決リブ22を案内する位置決凹部6Gを設けている。可動接点金属板6は、固定部6Bに開口された貫通孔6Fに連結凸部15が挿入されると共に、固定部6Bの両側に設けた位置決凹部6Gに位置決リブ22が案内されて、第2の外壁11Bの段差凹部21の定位置に配置される。固定部6Bが段差凹部21に配置された可動接点金属板6は、接着して第2の外壁11Bに固定され、あるいは本体ケース1Aに固定される蓋ケース1Bに挟まれて、すなわち、第2の外壁11Bの段差凹部21の底面と蓋ケース1Bの対向面とで上下両面から挟着されてケース1の定位置に固定される。 The movable contact metal plate 6 has the fixed portion 6B fixed to the second outer wall 11B of the main body case 1A and the arm portion 6A arranged in the storage portion 20. The breaker 100 shown in FIGS. 4 to 9 has the fixed portion 6B of the movable contact metal plate 6 fixed to the upper end surface of the second outer wall 11B. As shown in FIGS. 2 and 3, the main body case 1A is provided with a step recess 21 on the upper end surface of the second outer wall 11B, which is one step lower than the upper surface of the outer peripheral wall 10. 6 is fitted with a fixed portion 6B and arranged at a fixed position. The main body case 1A shown in FIGS. 6 and 7 is provided with a connecting projection 15 that protrudes from the central portion of the step recess 21 and penetrates the fixed portion 6B of the movable contact metal plate 6. As shown in FIG. A fixed portion 6B of the movable contact metal plate 6 is provided with a through hole 6F through which the connecting convex portion 15 is passed. The connecting projection 15 shown in the figure has an oval horizontal cross-sectional shape so that the fixing portion 6B of the movable contact metal plate 6 can be arranged in the stepped recess 21 in an accurate posture. 2 and 3, positioning ribs 22 for positioning both sides of the movable contact metal plate 6 are formed at the upper end of the second outer wall 11B. The second outer wall 11B shown in FIG. forming The movable contact metal plate 6 is provided with positioning recesses 6G for guiding the positioning ribs 22 on both sides of the fixed portion 6B. In the movable contact metal plate 6, the connecting projections 15 are inserted into the through holes 6F opened in the fixed portion 6B, and the positioning ribs 22 are guided by the positioning recesses 6G provided on both sides of the fixed portion 6B. It is arranged at a fixed position of the step recess 21 of the second outer wall 11B. The movable contact metal plate 6 with the fixed portion 6B arranged in the stepped recess 21 is fixed to the second outer wall 11B by bonding, or sandwiched between the cover case 1B fixed to the main body case 1A, that is, the second The bottom surface of the step recess 21 of the outer wall 11B and the facing surface of the lid case 1B are sandwiched from both upper and lower sides, and fixed to the fixed position of the case 1. As shown in FIG.
 可動接点金属板6は、ケース1から外部に引き出される延伸部分を接続端子6Xとしている。図に示す接続端子6Xは、ケース1の反対側の端面から引き出される固定接点金属板4の接続端子4Xとほぼ同一平面に位置するように後端部を段差形状に折り曲げている。
(固定接点金属板4)
The movable contact metal plate 6 has a connection terminal 6X in an extended portion that is pulled out from the case 1 . The connecting terminal 6X shown in the figure has its rear end portion bent in a stepped shape so as to be positioned substantially on the same plane as the connecting terminal 4X of the fixed contact metal plate 4 pulled out from the opposite end face of the case 1. As shown in FIG.
(Fixed contact metal plate 4)
 固定接点金属板4は、インサート成形して本体ケース1Aに固定している。固定接点金属板4は、先端部4Aで収納部20の底部13の開口部を閉塞し、中間部4Bと先端部4Aの一部を収納部20の底部13から本体ケース1Aの第1の外壁11Aに埋設するようにインサート成形して、本体ケース1Aに固定している。図3の固定接点金属板4は、収納部20の底部を閉塞する部分よりも、第1の外壁11Aに埋設される部分を高くするように段差部4Dを設けて、段差部4Dを本体ケース1Aの底部13に埋設して、段差部4Dの後端側を底部13の上面に露出させて、この露出部を固定接点5としている。 The fixed contact metal plate 4 is fixed to the main body case 1A by insert molding. The fixed contact metal plate 4 closes the opening of the bottom portion 13 of the storage portion 20 with the tip portion 4A, and extends the intermediate portion 4B and part of the tip portion 4A from the bottom portion 13 of the storage portion 20 to the first outer wall of the main body case 1A. It is fixed to the body case 1A by insert molding so as to be embedded in the body case 11A. The fixed contact metal plate 4 shown in FIG. 3 is provided with a stepped portion 4D so that the portion embedded in the first outer wall 11A is higher than the portion that closes the bottom of the housing portion 20, and the stepped portion 4D is provided with the main body case. It is embedded in the bottom portion 13 of 1A, the rear end side of the step portion 4D is exposed on the upper surface of the bottom portion 13, and this exposed portion serves as the fixed contact 5. As shown in FIG.
 固定接点金属板4は、図10に示すように、可動接点7と対向する領域に銀メッキ層を設けて固定接点5として接触抵抗を小さくできる。固定接点5の銀メッキ層は、たとえば5μmである。ただ、固定接点5の銀メッキ層の膜厚は、3μm~20μm、好ましくは4μm~10μmとすることができる。固定接点5の銀メッキ層を薄くすることで、製造コストを低減できる。 As shown in FIG. 10, the fixed contact metal plate 4 can be used as a fixed contact 5 by providing a silver plating layer in the area facing the movable contact 7 to reduce the contact resistance. The silver plating layer of fixed contact 5 is, for example, 5 μm. However, the film thickness of the silver plating layer of the fixed contact 5 can be 3 μm to 20 μm, preferably 4 μm to 10 μm. By thinning the silver plating layer of the fixed contact 5, the manufacturing cost can be reduced.
 固定接点金属板4は、ケース1から外部に引き出される延伸部分を接続端子4Xとしている。図に示す固定接点金属板4は、ケース1から外部に延長される部分を、ケース1に埋設される中間部4Bから直線状に引き出して接続端子4Xとしている。 The fixed contact metal plate 4 has a connection terminal 4X that extends from the case 1 to the outside. The fixed contact metal plate 4 shown in the figure has a portion extending from the case 1 to the outside, which is linearly pulled out from an intermediate portion 4B embedded in the case 1 to form a connection terminal 4X.
 全体が極めて小さいマイクロブレーカ100は、接点の接触位置のわずかなずれによっても接触抵抗は増加する。可動接点7と固定接点5の接触圧が弱く、オン状態では可動接点7と固定接点5が極めて狭い局部で接触しているからである。さらに、ブレーカ100の可動接点7と固定接点5の表面は、常に全面が均一な状態には保持されず、常時接触している位置に比較して、常時接触していない非接触位置の表面は薄膜の酸化膜などによって接触抵抗が増加する。 The contact resistance of the micro-breaker 100, which is extremely small as a whole, increases even if the contact positions of the contacts are slightly displaced. This is because the contact pressure between the movable contact 7 and the fixed contact 5 is weak, and the movable contact 7 and the fixed contact 5 are in contact with each other in an extremely narrow area in the ON state. Furthermore, the surfaces of the movable contact 7 and the fixed contact 5 of the breaker 100 are not always kept in a uniform state over the entire surfaces, and the surfaces at the non-contact position where they are not in constant contact are Contact resistance increases due to thin oxide films and the like.
 マイクロブレーカ100は、接点の接触抵抗を小さくすることを目的として、活性化処理が採用されている。接点の活性化処理は、オン状態で通電しながら、超音波振動させる。この方法で活性化処理された接点は、可動接点7と固定接点5とが特定の位置で接触する状態に限って、接触抵抗を小さくするので、接点の接触位置がずれると接触抵抗は増加する。
(接点の活性化処理)
The micro-breaker 100 employs an activation process for the purpose of reducing the contact resistance of the contacts. The contact is activated by ultrasonic vibration while energized in the ON state. The contact activated by this method reduces the contact resistance only when the movable contact 7 and the fixed contact 5 are in contact with each other at a specific position. .
(Contact activation processing)
 弱い接触圧のマイクロブレーカ100は、組み立てた状態で、接点を活性化処理して接触抵抗を小さくできる。接点の活性化処理は、組み立てられたブレーカ100の接点に通電する状態で超音波振動させて処理される。ブレーカ100は、可動接点7と固定接点5とを互いに衝突させて離反方向に超音波振動させる。すなわち、ブレーカ100は、固定接点5と可動接点7とが互いに接近し衝突し、また互いに離れる方向に相対的に移動するように超音波振動させる。超音波振動させる状態で接点の電流は、抵抗負荷の状態で、好ましくは0.1A~100Aとする。超音波振動時における接点電流を大きくして、接点はより効果的に活性化される。抵抗と直列にコイルを接続しているインダクタンスのある負荷は、電流を遮断するときにコイルに蓄えられる電流エネルギーが大きくなるので接点電流を小さくして接点を活性化できる。コイルに蓄えられる電流のエネルギーを消費するために、接点の放電電流が大きくなるからである。したがって、接点電流は、抵抗負荷とインダクタンス負荷とを考慮して最適な値に設定する。さらに、ブレーカ100は、接点の電流を大きくするとジュール熱で発熱してそれ自体でオフ状態に切り換えられる特性がある。超音波振動で接点を活性化するには、可動接点7を固定接点5に接触するオン状態に保持する必要がある。したがって、接点に大電流を流して超音波振動させる方法は、超音波振動させる時間を短くして、接点がオン状態にある状態で超音波振動させる。したがって、接点に大電流を流して超音波振動させる方法は、超音波振動させる時間を短くする。 The micro-breaker 100 with weak contact pressure can reduce the contact resistance by activating the contacts in the assembled state. The contact activation process is performed by ultrasonically vibrating the contacts of the assembled breaker 100 while energizing them. The breaker 100 causes the movable contact 7 and the fixed contact 5 to collide with each other and ultrasonically vibrate in the separating direction. That is, the breaker 100 ultrasonically vibrates the fixed contact 5 and the movable contact 7 so that the fixed contact 5 and the movable contact 7 approach and collide with each other and relatively move away from each other. The current of the contact under ultrasonic vibration is preferably 0.1 A to 100 A under resistive load. By increasing the contact current during ultrasonic vibration, the contacts are activated more effectively. A load with an inductance that connects a coil in series with a resistor increases the current energy stored in the coil when the current is interrupted, so the contact current can be reduced to activate the contact. This is because the current energy stored in the coil is consumed, so that the contact discharge current becomes large. Therefore, the contact current is set to an optimum value considering the resistive load and the inductive load. Further, the breaker 100 has a characteristic that when the current of the contact is increased, it generates heat by Joule heat and switches itself to the off state. In order to activate the contacts with ultrasonic vibration, it is necessary to keep the movable contact 7 in an ON state in contact with the fixed contact 5 . Therefore, in the method of applying a large current to the contact to apply ultrasonic vibration, the time for ultrasonic vibration is shortened, and ultrasonic vibration is performed while the contact is in the ON state. Therefore, the method of applying a large current to the contact and subjecting it to ultrasonic vibration shortens the ultrasonic vibration time.
 通電状態で接点を超音波振動させる時間は0.1ミリ秒~1秒とする。超音波振動させる時間は、長くして接点をより効果的に活性化できるが、長すぎると接点の銀メッキ層が損傷を受けるので、銀メッキ層を損傷することなく接点を活性化できる時間に設定される。また、超音波振動による接点の活性化は、接点電流、負荷の種類、超音波振動の振幅にも影響を受け、接点電流と振幅が大きいと短時間で接点がより効果的に活性化される。したがって、超音波振動させる時間は、接点電流と超音波振動の振幅を考慮して前述の範囲で最適値に設定される。 The time for ultrasonically vibrating the contact in the energized state shall be 0.1 milliseconds to 1 second. The time of ultrasonic vibration can be increased to activate the contacts more effectively, but if it is too long, the silver plating layer of the contacts will be damaged. set. In addition, contact activation by ultrasonic vibration is also affected by contact current, type of load, and amplitude of ultrasonic vibration. If the contact current and amplitude are large, the contact is activated more effectively in a short time. . Therefore, the ultrasonic vibration time is set to an optimum value within the above-described range, taking into consideration the contact current and the amplitude of the ultrasonic vibration.
 また、接点を超音波振動させる周波数は20KHz~6GHz、好ましくは20KHz~1GHzとする。超音波振動の周波数を高くして、単位時間に可動接点7と固定接点5との衝突回数と離反回数とを多くできる。ただ、超音波振動の周波数が高すぎると可動接点7が固定接点5から離れる間隔が狭くなって放電による活性化が低下し、反対に周波数が低すぎると衝突回数が少なくなって活性化が低下するので、超音波振動の周波数は、アーム部6Aの厚さや長さを考慮し、さらにアーム部6Aの共振周波数を考慮して、最適値に設定される。 Also, the frequency for ultrasonically vibrating the contact is 20 KHz to 6 GHz, preferably 20 KHz to 1 GHz. By increasing the frequency of the ultrasonic vibration, it is possible to increase the number of collisions and separations between the movable contact 7 and the fixed contact 5 per unit time. However, if the frequency of the ultrasonic vibration is too high, the distance between the movable contact 7 and the fixed contact 5 will become narrower, and the activation due to discharge will decrease. Therefore, the frequency of the ultrasonic vibration is set to an optimum value in consideration of the thickness and length of the arm portion 6A and the resonance frequency of the arm portion 6A.
 さらに、ブレーカ100を超音波振動させる振幅は0.01μm~100μmとする。超音波振動の振幅を大きくして、可動接点7が固定接点5に衝突する運動のエネルギーを大きくでき、また可動接点7が固定接点5から離れる間隔を大きくできる。ブレーカ100を超音波振動させる振幅は、可動接点7を固定接点5から離す隙間に影響を与える。ただ、可動接点7が固定接点5から離れる間隔は、アーム部6Aを共振させることで、ブレーカ100を超音波振動させる振幅よりも大きくできる。したがって、ブレーカ100を超音波振動させる周波数を、アーム部6Aの共振周波数やその近傍、あるいはその共振周波数の整数倍、あるいは又、共振周波数の整数分の1に設定することで可動接点7を固定接点5から充分な間隔に離して、効果的に活性化できる。 Furthermore, the amplitude for ultrasonically vibrating the breaker 100 is set to 0.01 μm to 100 μm. By increasing the amplitude of the ultrasonic vibration, the energy of the motion of the movable contact 7 colliding with the fixed contact 5 can be increased, and the distance between the movable contact 7 and the fixed contact 5 can be increased. The amplitude with which the breaker 100 is ultrasonically vibrated affects the gap separating the movable contact 7 from the fixed contact 5 . However, the interval at which the movable contact 7 is separated from the fixed contact 5 can be made larger than the amplitude of ultrasonic vibration of the breaker 100 by causing the arm portion 6A to resonate. Therefore, the movable contact 7 is fixed by setting the frequency for ultrasonically vibrating the breaker 100 to the resonance frequency of the arm portion 6A, the vicinity thereof, an integral multiple of the resonance frequency, or an integer fraction of the resonance frequency. A sufficient distance from the contact 5 allows effective activation.
 ブレーカ100を超音波振動させる振幅を大きくするには、ブレーカ100に接触してこれを超音波振動させる超音波振動子や超音波ホーンの出力を大きくする必要がある。大出力の超音波振動子や超音波ホーンをブレーカ100のケース1に押圧して超音波振動させると、超音波振動子との接触箇所が超音波振動による発熱で変形する等の弊害があるので、ブレーカ100を超音波振動させる振幅は、接点を活性化できる範囲で小さく設定される。
(ヒーター9)
In order to increase the amplitude of the ultrasonic vibration of the breaker 100, it is necessary to increase the output of the ultrasonic vibrator or ultrasonic horn that contacts the breaker 100 and ultrasonically vibrates it. If a high-output ultrasonic vibrator or ultrasonic horn is pressed against the case 1 of the breaker 100 and ultrasonically vibrated, there is an adverse effect such as deformation of the contact point with the ultrasonic vibrator due to heat generated by the ultrasonic vibration. , the amplitude for ultrasonically vibrating the breaker 100 is set to a small value within a range where the contact can be activated.
(Heater 9)
 ヒーター9は、通電されることによって発熱して、バイメタル8を加熱する。ヒーター9は、対向面を長円形あるいは長方形とする厚みのあるヒーターで、上面と下面に電極を設けている。ヒーターには、例えば、通電されてバイメタル8を加熱できる全てのヒーターを使用することができる。上下面に電極を設けているヒーター9は、下面を固定接点金属板4に接触して、上面をバイメタル8を介してアーム部6Aに接触できるようにしている。このヒーター9は、アーム部6Aの可動接点7が固定接点5に接触するオン状態では、アーム部6Aとバイメタル8とが非接触状態となって通電されず、アーム部6Aの可動接点7が固定接点5から離れてオフ状態となる状態では、アーム部6Aに接触するバイメタル8と固定接点金属板4とを介して通電されて発熱し、バイメタル8を加熱する。加熱されるバイメタル8は、可動接点7を固定接点5から離すオフ状態に保持する。この無通電タイプのブレーカ100は、オフ状態に切り換えられた状態で、可動接点7をオフ状態に保持するので、電池パックに安全に使用できる。それは、電池パックが異常な状態で使用されて設定温度よりも高くなり、無通電タイプのブレーカ100がオフに切り換えられた後は、電池パックの電池からヒーター9に通電され続けてバイメタル8が加熱されるので、ブレーカ100がオン状態に復帰することなく、電池が放電されるまで電流を遮断する状態に保持できるからである。 The heater 9 generates heat when energized and heats the bimetal 8 . The heater 9 is a thick heater having an elliptical or rectangular facing surface, and electrodes are provided on the upper surface and the lower surface. For the heater, for example, all heaters that can be energized to heat the bimetal 8 can be used. A heater 9 having electrodes on its upper and lower surfaces has its lower surface in contact with the fixed contact metal plate 4 and its upper surface in contact with the arm portion 6A via the bimetal 8. As shown in FIG. In this heater 9, when the movable contact 7 of the arm portion 6A is in contact with the fixed contact 5, the arm portion 6A and the bimetal 8 are not in contact with each other, and electricity is not supplied, and the movable contact 7 of the arm portion 6A is fixed. In the OFF state away from the contact 5 , electricity is generated through the bimetal 8 in contact with the arm portion 6 A and the fixed contact metal plate 4 to heat the bimetal 8 . A heated bimetal 8 holds the movable contact 7 in an off state away from the fixed contact 5 . Since this non-energized type breaker 100 keeps the movable contact 7 in the OFF state when switched to the OFF state, it can be safely used in a battery pack. This is because the battery pack is used in an abnormal state and the temperature becomes higher than the set temperature, and after the non-energized type breaker 100 is switched off, the battery in the battery pack continues to energize the heater 9 and the bimetal 8 heats up. Therefore, the circuit breaker 100 does not return to the ON state, and the current interrupting state can be maintained until the battery is discharged.
 ただ、ブレーカ100は、必ずしもヒーターを内蔵する構造には限定しない。ヒーターを内蔵しないブレーカ100は、バイメタル8が設定温度よりも高くなって変形し、アーム部6Aを変形させて接点をオフ状態に切り換えると、バイメタル8を加熱してブレーカ100をオフ状態に保持することなく、バイメタル8が所定の温度まで低下すると、バイメタル8とアーム部6Aとを復帰させてブレーカ100をオン状態に切り換える。
[実施形態2]
However, the breaker 100 is not necessarily limited to a structure with a built-in heater. In the breaker 100 without a built-in heater, when the bimetal 8 becomes higher than the set temperature and deforms, deforming the arm portion 6A and switching the contact to the OFF state, the bimetal 8 is heated and the breaker 100 is kept in the OFF state. When the temperature of the bimetal 8 drops to a predetermined temperature, the bimetal 8 and the arm portion 6A are restored to switch the breaker 100 to the ON state.
[Embodiment 2]
 以上のブレーカは、固定アーム部6aに接触部の一形態として、突起6eを設けた例を説明した。ただ本発明は接触部をこのような突起を設けた形態に限定せず、突起を設けない構成としてもよい。すなわち接触部は必ずしも固定アーム部から突出させた突起とする必要はなく、例えば固定アーム部の平坦面を接触部とすることもできる。このような例を実施形態2に係るブレーカとして図11~図12に示す。これらの図において、上述した実施形態1と同様の部材については同じ符号を付して詳細説明を適宜省略する。これらの図に示すブレーカでは、固定アーム部6a’には接触部として、突起に代えて平坦面6e’としている。この構成においても、同様の特性を得られることを本発明者は確認した。
(ブレーカ100の電池パックへの内蔵)
In the breaker described above, the fixed arm portion 6a is provided with the protrusion 6e as one form of the contact portion. However, the present invention is not limited to the form in which the contact portion is provided with such protrusions, and may be configured without protrusions. That is, the contact portion does not necessarily have to be a protrusion projecting from the fixed arm portion, and for example, the flat surface of the fixed arm portion can be used as the contact portion. Such an example is shown in FIGS. 11 and 12 as a breaker according to the second embodiment. In these figures, the same reference numerals are assigned to the same members as in the first embodiment, and detailed description thereof will be omitted as appropriate. In the breaker shown in these figures, the fixed arm portion 6a' has a flat surface 6e' as the contact portion instead of the protrusion. The inventors have confirmed that similar characteristics can be obtained with this configuration as well.
(Built in the battery pack of the breaker 100)
 以上のブレーカ100は、例えば、電池パックに内蔵されて、電池や周囲温度が高温になり、あるいは電池パックが異常な状態で使用されるときに電流を遮断する。電池パックに内蔵されるブレーカ100は、ケース1の両端から引き出された一対の接続端子6X、4Xが、直接に、あるいは接続リードを介して電池端子や回路基板に接続される。接続端子6X、4Xは、例えば、レーザー溶接により接続リードや電池端子に接続される。また、ブレーカ100は、ケース1が電池表面や回路基板に接近する状態で、好ましくは熱結合状態で配置されて、電池や周囲温度が高温になると内蔵するバイメタル8を反転させて電流を遮断する。
(ブレーカの回路基板への固定)
The breaker 100 described above is incorporated in a battery pack, for example, and cuts off the current when the battery or the ambient temperature becomes high, or when the battery pack is used in an abnormal state. In the breaker 100 built in the battery pack, a pair of connection terminals 6X and 4X drawn out from both ends of the case 1 are connected directly or via connection leads to battery terminals or a circuit board. The connection terminals 6X and 4X are connected to connection leads and battery terminals by laser welding, for example. In addition, the breaker 100 is arranged in a state where the case 1 is close to the surface of the battery or the circuit board, preferably in a thermally coupled state, and when the temperature of the battery or the ambient temperature rises, the built-in bimetal 8 is reversed to cut off the current. .
(fixing the breaker to the circuit board)
 以上のブレーカは、回路基板やリード板にハンダ付けして固定することもできる。回路基板に直接半田付けするブレーカは、ケースから外部に引き出される可動接点金属板の接続端子と固定接点金属板の接続端子を、ケースの底面、すなわち本体ケースの底面とほぼ同一平面に位置するように折り曲げる。このブレーカは、ケースの両端から外部に引き出された接続端子を回路基板にハンダ付けして固定できる。このブレーカは、ケースの底面、すなわち、本体ケースの底面を回路基板の上に載せて、回路基板にハンダ付けできる。
[実施例1]
The breaker described above can also be fixed by soldering to a circuit board or lead plate. For a breaker that is directly soldered to a circuit board, the connection terminals of the movable contact metal plate and the connection terminals of the fixed contact metal plate, which are pulled out from the case, should be positioned on the bottom surface of the case, that is, on the same plane as the bottom surface of the main body case. fold into This breaker can be fixed by soldering connection terminals drawn out from both ends of the case to the circuit board. This breaker can be soldered to a circuit board by placing the bottom of the case, that is, the bottom of the body case, on the circuit board.
[Example 1]
 バイメタル8を2.2mm×2.4mmの長方形、厚さ(t)を0.05mm、反転温度を85℃、復帰温度を30℃とし、
  可動接点金属板6にはCu-Zr系合金を使用して、可動接点金属板6の厚さ(d)を0.15mm、
  アーム部6Aの長さ(L1)を4.5mm、最大横幅(W1)を2.1mm、
  固定アーム部6aの長さ(L2)を1.8mm、横幅(W2)を0.5mm、
  スリット6cの隙間(W3)を0.2mm、
 さらに、アーム部6Aの先端部に可動接点7を設けて、この可動接点7を厚さ120μmとするシーム材(Ag-Ni)とし、固定接点5を、4.5μmのAgメッキ層とし、ケース1の外形を、縦5.8mm、横2.8mm、高さ1.15mmとするブレーカ100の復帰温度の誤差は、アーム部6Aを固定アーム部6aと変形アーム部6bとに分離しない従来のブレーカ100の復帰温度の誤差の1/5以下と極めて小さく、復帰温度のばらつきを著しく小さくして、接点をオン状態に復帰できる。
 さらに、このブレーカ100は、可動接点金属板6に厚さを0.15mm厚い金属板を使用して、周囲温度60℃における最大電流容量を13A、オン抵抗を1.5mΩと小さくできる。
The bimetal 8 is a rectangle of 2.2 mm × 2.4 mm, the thickness (t) is 0.05 mm, the inversion temperature is 85 ° C., and the return temperature is 30 ° C.,
A Cu—Zr alloy is used for the movable contact metal plate 6, and the thickness (d) of the movable contact metal plate 6 is 0.15 mm.
The length (L1) of the arm portion 6A is 4.5 mm, the maximum width (W1) is 2.1 mm,
The length (L2) of the fixed arm portion 6a is 1.8 mm, the width (W2) is 0.5 mm,
The gap (W3) of the slit 6c is 0.2 mm,
Further, a movable contact 7 is provided at the tip of the arm portion 6A, the movable contact 7 is made of a seam material (Ag-Ni) with a thickness of 120 μm, the fixed contact 5 is made of a 4.5 μm Ag plating layer, and the case 1 is 5.8 mm long, 2.8 mm wide, and 1.15 mm high. The error of the return temperature of the breaker 100 is extremely small, 1/5 or less, and the contact can be returned to the ON state with extremely small variation in the return temperature.
Furthermore, this breaker 100 uses a metal plate with a thickness of 0.15 mm for the movable contact metal plate 6, and can reduce the maximum current capacity to 13 A and the on-resistance to 1.5 mΩ at an ambient temperature of 60°C.
 この実施例1で使用したCu-Zr系合金は、以下の組成とした。
 Cu………99.9wt%
 Zr………0.1wt%
[実施例2]
The Cu—Zr alloy used in Example 1 had the following composition.
Cu: 99.9 wt%
Zr…………0.1wt%
[Example 2]
 閉塞プレート27aにストッパ凸部25を設ける以外、実施例1と同じ構造であって、閉塞プレート27aにストッパ凸部25を設けるブレーカ100は、復帰温度の誤差が従来のブレーカ100の1/6以下とさらに正確になる。
[比較例1]
The breaker 100 having the same structure as that of the first embodiment except that the stopper protrusions 25 are provided on the closing plate 27a and provided with the stopper protrusions 25 on the closing plate 27a has a return temperature error of 1/6 or less of that of the conventional breaker 100. and more accurate.
[Comparative Example 1]
 可動接点金属板6のアーム部6Aを固定アーム部6aと変形アーム部6bとに分離することなく、厚さを0.1mmとする可動接点金属板6を使用する以外は実施例1と同様にして比較例1のブレーカ100を製造した。このブレーカ100は、復帰温度の誤差が10℃~15℃となり、60℃における最大電流容量が9A、ブレーカ100のオン抵抗が3mΩとなる。 Example 1 was repeated except that the movable contact metal plate 6 with a thickness of 0.1 mm was used without separating the arm portion 6A of the movable contact metal plate 6 into the fixed arm portion 6a and the deformable arm portion 6b. A breaker 100 of Comparative Example 1 was manufactured. This breaker 100 has a return temperature error of 10° C. to 15° C., a maximum current capacity of 9 A at 60° C., and an ON resistance of 3 mΩ.
 以上のことから、実施例1及び実施例2のブレーカ100は、可動接点金属板6に固定アーム部6aと変形アーム部6bとに分離して、固定アーム部6aに突起6eを設けることで、復帰温度の誤差を著しく低減でき、さらに、ブレーカ100の最大電流容量を、比較例のブレーカ100の9Aから13Aと4Aも増大できる。実施例1及び2のブレーカ100は、可動接点金属板6を厚くし、アーム部6Aを固定アーム部6aと変形アーム部6bとして、固定アーム部6aに突起6eを設け、反転するバイメタル8では変形アーム部6bのみを変形させるので、比較例と同じバイメタル8を使用して、復帰温度を正確にでき、また、最大電流容量を増大し、オン抵抗を小さくできる特長を実現する。 From the above, the breaker 100 of the first and second embodiments has the movable contact metal plate 6 separated into the fixed arm portion 6a and the deformed arm portion 6b, and the fixed arm portion 6a is provided with the protrusion 6e. The error of the return temperature can be significantly reduced, and the maximum current capacity of the breaker 100 can be increased from 9A of the breaker 100 of the comparative example to 13A and 4A. In the breakers 100 of the first and second embodiments, the movable contact metal plate 6 is made thicker, the arm portion 6A is used as the fixed arm portion 6a and the deformed arm portion 6b, the fixed arm portion 6a is provided with the protrusion 6e, and the reversible bimetal 8 is deformed. Since only the arm portion 6b is deformed, the same bimetal 8 as in the comparative example can be used to accurately set the return temperature, increase the maximum current capacity, and reduce the on-resistance.
 本発明は、周囲温度が上昇して電流を遮断した後、周囲温度が低下して通電する復帰温度を高い精度でコントロールできるブレーカとして好適に採用できる。 The present invention can be suitably employed as a breaker that can control with high accuracy the return temperature at which current is cut off when the ambient temperature rises and then when the ambient temperature drops and the current is turned on.
100…ブレーカ
1…ケース
1A…本体ケース
1B…蓋ケース
4…固定接点金属板
4A…先端部
4B…中間部
4D…段差部
4X…接続端子
5…固定接点
6…可動接点金属板
6A…アーム部
6a、6a’…固定アーム部
6b…変形アーム部
6c…スリット
6d…凸部
6e…突起
6e’…平坦面
6f…付け根部
6g…変形領域
6B…固定部
6F…貫通孔
6G…位置決凹部
6X…接続端子
7…可動接点
8…バイメタル
9…ヒーター
10…外周壁
11…外壁
11A…第1の外壁
11B…第2の外壁
12…対向壁
13…底部
15…連結凸部
16…連結凹部
17…連結凸部
18…連結凹部
20…収納部
21…段差凹部
22…位置決リブ
23…連結プラスチック
24…積層金属板
25…ストッパ凸部
26…変形制限凸部
27a…閉塞プレート
27b…外周壁
28…溶融凸条
101…可動接点金属板
105…固定接点
106…固定接点金属板
107…可動接点
108…バイメタル
DESCRIPTION OF SYMBOLS 100... Breaker 1... Case 1A... Main body case 1B... Lid case 4... Fixed contact metal plate 4A... Tip part 4B... Intermediate part 4D... Stepped part 4X... Connection terminal 5... Fixed contact 6... Movable contact metal plate 6A... Arm part 6a, 6a' -- fixed arm portion 6b -- deformable arm portion 6c -- slit 6d -- convex portion 6e -- projection 6e' -- flat surface 6f -- root portion 6g -- deformable region 6B -- fixed portion 6F -- through hole 6G -- positioning recess 6X Connection terminal 7 Movable contact 8 Bimetal 9 Heater 10 Outer wall 11 Outer wall 11A First outer wall 11B Second outer wall 12 Opposite wall 13 Bottom 15 Connecting protrusion 16 Connecting recess 17 Connecting convex portion 18 Connecting concave portion 20 Receiving portion 21 Step concave portion 22 Positioning rib 23 Connecting plastic 24 Laminated metal plate 25 Stopper convex portion 26 Deformation limiting convex portion 27a Closing plate 27b Peripheral wall 28 Molten ridge 101 Movable contact metal plate 105 Fixed contact 106 Fixed contact metal plate 107 Movable contact 108 Bimetal

Claims (9)

  1.  固定接点を有する固定接点金属板と、
     前記固定接点と対向する位置に可動接点を配置してなる可動接点金属板と、
     この可動接点金属板の対向位置に配置されて、設定温度で反転して前記可動接点をオンからオフに切り換えるバイメタルと、
     前記固定接点金属板と、前記可動接点金属板と、前記バイメタルを定位置に配置してなるケースとを備えており、
     前記可動接点金属板は、
      反転する前記バイメタルに押されて前記可動接点を前記固定接点から離すアーム部と、
      前記ケースに固定されてなる固定部とを有し、
     前記アーム部は、
      反転する前記バイメタルに押されて弾性変形して、前記可動接点を前記固定接点から離す変形アーム部と、
      前記変形アーム部からスリットを介して切り離されてなり、かつ、付け根部を前記固定部に連結してなる固定アーム部とを有し、
     前記固定アーム部は、前記バイメタルに接触する接触部を有し、
     前記接触部が反転する前記バイメタルに押されて、前記可動接点がオンからオフに切り換えられるブレーカ。
    a fixed contact metal plate having a fixed contact;
    a movable contact metal plate having a movable contact arranged at a position facing the fixed contact;
    a bimetal arranged at a position facing the movable contact metal plate for switching the movable contact from on to off by reversing at a set temperature;
    The fixed contact metal plate, the movable contact metal plate, and a case formed by arranging the bimetal at a fixed position,
    The movable contact metal plate is
    an arm portion that is pushed by the reversing bimetal to separate the movable contact from the fixed contact;
    and a fixing portion fixed to the case,
    The arm portion
    a deformable arm portion elastically deformed by being pushed by the reversing bimetal to separate the movable contact from the fixed contact;
    a fixed arm section separated from the deformable arm section through a slit and having a root section connected to the fixed section;
    The fixed arm portion has a contact portion that contacts the bimetal,
    A breaker in which the contact portion is pushed by the reversing bimetal to switch the movable contact from on to off.
  2.  請求項1に記載のブレーカであって、
     前記可動接点金属板は、前記アーム部の変形アーム部に、前記接触部と前記可動接点との間に、前記バイメタルに向かって突出する凸部を有するブレーカ。
    A breaker according to claim 1,
    In the breaker, the movable contact metal plate has a convex portion projecting toward the bimetal between the contact portion and the movable contact on the deformed arm portion of the arm portion.
  3.  請求項1又は2に記載のブレーカであって、
     前記アーム部が、幅方向の中央部に長手方向に伸びる前記固定アーム部を有するブレーカ。
    The breaker according to claim 1 or 2,
    A breaker in which the arm portion has the fixed arm portion extending in the longitudinal direction at the center portion in the width direction.
  4.  請求項1ないし3のいずれか一項に記載のブレーカであって、
     前記固定アーム部の長さが、前記アーム部の10%~90%であるブレーカ。
    A breaker according to any one of claims 1 to 3,
    A breaker in which the length of the fixed arm portion is 10% to 90% of the arm portion.
  5.  請求項1ないし4のいずれか一項に記載のブレーカであって、
     前記ケースが、前記バイメタルの押圧力による前記固定アーム部の変形を制限して、前記変形アーム部の変形を制限しないストッパ凸部を内面に有するブレーカ。
    A breaker according to any one of claims 1 to 4,
    A breaker in which the case has a stopper convex portion on an inner surface that limits deformation of the fixed arm portion due to the pressing force of the bimetal and does not limit deformation of the deformable arm portion.
  6.  請求項5に記載のブレーカであって、
     前記ケースが、
      前記固定接点金属板を固定してなる本体ケースと、
      前記本体ケースの開口部を閉塞する閉塞プレートを備える蓋ケースとを備え、
     前記閉塞プレートが、前記ストッパ凸部を内面に有するブレーカ。
    A breaker according to claim 5,
    the case is
    a body case to which the fixed contact metal plate is fixed;
    a lid case comprising a closing plate that closes the opening of the main body case;
    A breaker in which the closing plate has the stopper projection on the inner surface thereof.
  7.  請求項1ないし6のいずれか一項に記載のブレーカであって、
     前記バイメタルを加熱するヒーターを前記ケースに内蔵してなるブレーカ。
    A breaker according to any one of claims 1 to 6,
    A breaker in which a heater for heating the bimetal is incorporated in the case.
  8.  請求項7に記載のブレーカであって、
     前記ヒーターがPTCで、前記バイメタルとケースとの間に配置されてなるブレーカ。
    A breaker according to claim 7,
    A breaker in which the heater is a PTC and is arranged between the bimetal and the case.
  9.  請求項1ないし8のいずれか一項に記載のブレーカであって、
     前記接触部が、前記固定アーム部から前記バイメタルに向かって突出する突起であるブレーカ。
    A breaker according to any one of claims 1 to 8,
    The breaker, wherein the contact portion is a projection projecting from the fixed arm portion toward the bimetal.
PCT/JP2022/039976 2021-10-27 2022-10-26 Breaker WO2023074752A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023556605A JP7558596B2 (en) 2021-10-27 2022-10-26 breaker
CN202280063277.1A CN118120039A (en) 2021-10-27 2022-10-26 Circuit breaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-175583 2021-10-27
JP2021175583 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074752A1 true WO2023074752A1 (en) 2023-05-04

Family

ID=86158041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039976 WO2023074752A1 (en) 2021-10-27 2022-10-26 Breaker

Country Status (3)

Country Link
JP (1) JP7558596B2 (en)
CN (1) CN118120039A (en)
WO (1) WO2023074752A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196443A (en) * 2004-12-13 2006-07-27 Furukawa Electric Co Ltd:The Thermal protector and protector
JP2017098186A (en) * 2015-11-27 2017-06-01 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196443A (en) * 2004-12-13 2006-07-27 Furukawa Electric Co Ltd:The Thermal protector and protector
JP2017098186A (en) * 2015-11-27 2017-06-01 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit

Also Published As

Publication number Publication date
JP7558596B2 (en) 2024-10-01
CN118120039A (en) 2024-05-31
JPWO2023074752A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US6686722B2 (en) Battery pack containing a circuit breaker
CN110651349B (en) Circuit breaker and safety circuit with same
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
CN110678952B (en) Circuit breaker and safety circuit with same
WO2023074752A1 (en) Breaker
JP6457810B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
CN112534537A (en) Circuit breaker, safety circuit and secondary battery pack
JP5850562B2 (en) Battery pack with non-energized breaker
JP5804515B2 (en) breaker
JP6916498B1 (en) Non-energized type breaker
JP6592299B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP6099080B2 (en) Non-energized breaker
JP4128250B2 (en) Thermal protector for power supply
JP6111172B2 (en) DC breaker
WO2022091434A1 (en) Non-conductive type breaker
JP5901055B2 (en) breaker
WO2020022298A1 (en) Circuit breaker, safety circuit and secondary battery pack
JP6038680B2 (en) Breaker device
JP6401550B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP2023094085A (en) breaker
JP2005347225A (en) Thermal protector, cellular phone using it and electronic apparatus
JP7471625B2 (en) Battery pack and battery pack manufacturing method
WO2024069853A1 (en) Breaker and secondary battery pack including same
CN114188184A (en) Circuit breaker
JP2013098098A (en) Breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556605

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280063277.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22887077

Country of ref document: EP

Kind code of ref document: A1