Nothing Special   »   [go: up one dir, main page]

WO2023063457A1 - 반도체 발광 소자 및 디스플레이 장치 - Google Patents

반도체 발광 소자 및 디스플레이 장치 Download PDF

Info

Publication number
WO2023063457A1
WO2023063457A1 PCT/KR2021/014406 KR2021014406W WO2023063457A1 WO 2023063457 A1 WO2023063457 A1 WO 2023063457A1 KR 2021014406 W KR2021014406 W KR 2021014406W WO 2023063457 A1 WO2023063457 A1 WO 2023063457A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
layer
adhesive layer
emitting device
Prior art date
Application number
PCT/KR2021/014406
Other languages
English (en)
French (fr)
Inventor
최환준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2021/014406 priority Critical patent/WO2023063457A1/ko
Priority to KR1020247011070A priority patent/KR20240050446A/ko
Publication of WO2023063457A1 publication Critical patent/WO2023063457A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/0283Stretchable printed circuits

Definitions

  • Embodiments relate to semiconductor light emitting devices and display devices.
  • a display device uses a self-light emitting element such as a light emitting diode as a light source of a pixel to display a high-quality image.
  • a self-light emitting element such as a light emitting diode
  • Light emitting diodes exhibit excellent durability even under harsh environmental conditions, and are in the limelight as a light source for next-generation display devices because of their long lifespan and high luminance.
  • Such display devices are expanding into various forms such as flexible displays, foldable displays, stretchable displays, and rollable displays beyond flat panel displays.
  • a typical display device includes more than tens of millions of pixels. Therefore, since it is very difficult to bond at least one or more light emitting elements to each of tens of millions of small-sized pixels on a display panel, various researches on bonding light emitting elements to a display panel have been actively conducted. .
  • a bonding member is formed over the entire area of the display substrate, and tens of millions of light emitting devices are bonded to the display substrate using the bonding member.
  • bonding members are formed not only in regions corresponding to the light emitting elements requiring bonding members but also in regions where bonding members are not required, material cost may be wasted.
  • an electrical short may occur between adjacent light emitting elements due to a bonding member formed in an area not corresponding to a light emitting element.
  • a plurality of light emitting elements are bonded to the display substrate through a bonding member through a thermal compression method. That is, heat is applied to the bonding member to melt the bonding member, and pressure is applied to the plurality of light emitting elements so that the plurality of light emitting elements are electrically connected to and fixed to the display substrate. Then, the melted bonding member is transformed into a hardened bonding member.
  • the light emitting element Since it is difficult for the light emitting element to be bonded to the display substrate by the pressure applied once, the light emitting element is bonded to the display substrate by applying the pressure at least several times and then releasing the pressure.
  • the light emitting element and the bonding member may be separated from each other by expansion due to material characteristics of the bonding member. That is, separation occurs partially between the light emitting element and the bonding member.
  • the step portion A formed inside the lower side of the light emitting element 4 may be separated from the bonding member 2 . As shown in Figure 1b, it can be separated from the bonding member (2) at the outer corner portion (B) of the light emitting element (4).
  • this separation causes various deformations in the bonding member 2 according to the equilibrium state of the display substrate, the pressed state of each of the plurality of light emitting elements 4, and the position of each of the plurality of light emitting elements 4, and stress is generated. , the light emitting element 4 and the bonding member 2 are easily separated.
  • the bonding member 2 is formed of a material having a high coefficient of thermal expansion, contraction and expansion are high, and thus volume expansion due to absorption of surrounding moisture is highly likely to occur during the thermal compression process.
  • physical properties of the bonding member 2 may be changed due to ultraviolet rays or the like. A region most greatly affected by the change in physical properties is a region where the bonding member 2 and the light emitting element 4 come into contact.
  • the bonding member 2 serves to fix the light emitting element 4 to the display substrate.
  • the fixing force of the light emitting element 4 to the display substrate is reduced.
  • the display device including the light emitting element 4 is used for a long time, the light emitting element 4 is separated from the display substrate by various impacts, resulting in defective pixels or defects in a region including a plurality of pixels, resulting in fatal product reliability degradation. .
  • the bonding member 2 has conductivity, the light emitting element 4 is electrically connected to the electrode wiring 1 through the bonding member 2 .
  • the conductive ball 3 is not electrically connected to the light emitting element 4 and even if connected, the gap between the light emitting element 4 and the conductive ball 3 The contact area is reduced, causing a decrease in luminance.
  • Embodiments are aimed at solving the foregoing and other problems.
  • Another object of the embodiments is to provide a semiconductor light emitting device with enhanced electrical connectivity between the passivation layer and the first adhesive layer of the semiconductor light emitting device.
  • Another object of the embodiments is to provide a semiconductor light emitting device with enhanced fixation between the passivation layer and the first adhesive layer of the semiconductor light emitting device.
  • Another object of the embodiments is to provide a display device with enhanced electrical connectivity between a semiconductor light emitting device and a substrate.
  • Another object of the embodiments is to provide a display device with enhanced fixation between a semiconductor light emitting device and a substrate.
  • a semiconductor light emitting device includes a light emitting layer; a passivation layer on the light emitting layer; and a first adhesive layer on the passivation layer, the passivation layer including a plurality of grooves, and the first adhesive layer may be disposed in each of the plurality of grooves.
  • the passivation layer includes a plurality of first medium layers and a plurality of second medium layers stacked on each other, the first medium layer has a first refractive index, and the second medium layer has a second refractive index different from the first refractive index. It may have a refractive index.
  • the passivation layer may include a third medium layer, the first medium layer and the second medium layer may be disposed on the third medium layer, and the third medium layer may contact a surface of the light emitting layer.
  • Each of the plurality of grooves may include a first groove in the first medium layer; and a second groove in the second medium layer, and the first groove and the second groove may have different widths.
  • the first adhesive layer may include a 1-1 adhesive layer in the first groove; and a first-second adhesive layer in the second groove.
  • a second adhesive layer may be included on the first adhesive layer, and the first adhesive layer may include reflective particles.
  • the second adhesive layer may include at least one conductive ball.
  • the first adhesive layer may include at least one conductive ball.
  • a display device includes a substrate including a plurality of pixels; electrode wiring on the substrate; an insulating layer on each of the plurality of pixels; first to third semiconductor light emitting devices on the insulating layer; and a first adhesive layer disposed between the electrode wiring and each of the first to third semiconductor light emitting devices and electrically connecting each of the first to third semiconductor light emitting devices to the electrode wiring, to the third semiconductor light emitting device may include a light emitting layer; and a passivation layer on the light emitting layer, the passivation layer including a plurality of grooves, and the first adhesive layer may be disposed in each of the plurality of grooves.
  • the first adhesive layer may be included in each of the first to third semiconductor light emitting devices.
  • Each of the first to third semiconductor light emitting devices may include one of a horizontal semiconductor light emitting device, a flip chip semiconductor light emitting device, and a vertical semiconductor light emitting device.
  • the substrate may include a stretchable substrate.
  • fixation and electrical connectivity may be strengthened, thereby preventing poor lighting or lowering of luminance.
  • reliability of the product can be improved.
  • a plurality of grooves 1521 may be formed in 1520 .
  • the passivation layer 1520 may include a DBR layer.
  • Each of the plurality of grooves 1521 may have, for example, a shape of a created bone.
  • a first adhesive layer 1540 may be disposed in each of the plurality of grooves 1521 of the passivation layer 1520 . Accordingly, the first adhesive layer 1540 may be caught and fixed to the plurality of grooves 1521 having the shape of a bone, so that the first adhesive layer 1540 may not be separated from the passivation layer 1520 .
  • the third semiconductor light emitting device 313 (similar to the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312) is mounted on the first substrate 301, the first to third Each of the semiconductor light emitting devices 311 , 312 , and 313 is more firmly fixed to the first substrate 301 , so that reliability of the product may be improved by enhancing fixation.
  • the third semiconductor light emitting device 313 (similar to the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312) is mounted on the first substrate 301
  • the third semiconductor light emitting device ( 313) (similar to the first semiconductor light emitting element 311 and the second semiconductor light emitting element 312) are mounted on the first substrate 301, the first electrode wiring 321 on the first substrate 301 And since it is more perfectly connected to the second electrode wiring 322, lighting failure or luminance reduction can be prevented.
  • the first adhesive layer ( 1540) is formed, enabling an easier and error-free process and increasing mass productivity.
  • a stretchable display can be realized by dividing a rigid area corresponding to each of the plurality of pixels PX and a soft area, which is the other area.
  • the display device of the embodiment may include a horizontal type semiconductor light emitting device, a flip chip type semiconductor light emitting device, or a vertical type semiconductor light emitting device.
  • FIG. 1A and 1B show a state in which a light emitting element and a bonding member are separated.
  • FIG. 2 illustrates a living room of a house in which a display device according to an exemplary embodiment is disposed.
  • FIG. 3 is a schematic block diagram of a display device according to an exemplary embodiment.
  • FIG. 4 is a circuit diagram showing an example of a pixel of FIG. 3 .
  • FIG. 5 is an enlarged view of a first panel area in the display device of FIG. 2 .
  • FIG. 6 is a plan view illustrating unit pixels of the display device according to the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a unit pixel of the display device according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing a semiconductor light emitting device of an embodiment.
  • FIG. 9 is a rear view showing the semiconductor light emitting device of the embodiment.
  • 10 to 12 show a method of forming a plurality of grooves in the passivation layer of the semiconductor light emitting device of the embodiment.
  • FIG. 13 is a cross-sectional view showing area C of FIG. 7 in detail.
  • FIG. 14 is a detailed cross-sectional view of region D of FIG. 13 .
  • 15 is a graph showing thermal change (or viscosity change) according to temperature.
  • 16 is a cross-sectional view of a display device according to a second embodiment.
  • FIG. 17 is a cross-sectional view showing area E of FIG. 16 in detail.
  • FIG. 18 is a cross-sectional view of a display device according to a third embodiment.
  • the display device described in this specification includes a TV, a Shinage, a mobile phone, a smart phone, a head-up display (HUD) for a car, a backlight unit for a laptop computer, a display for VR or AR, and the like.
  • a TV a Shinage
  • a mobile phone a smart phone
  • a head-up display HUD
  • a backlight unit for a laptop computer
  • a display for VR or AR and the like.
  • the configuration according to the embodiment described in this specification can be applied to a device capable of displaying even a new product type to be developed in the future.
  • FIG. 2 illustrates a living room of a house in which a display device according to an exemplary embodiment is disposed.
  • the display device 100 of the embodiment may display the status of various electronic products such as a washing machine 101, a robot cleaner 102, and an air purifier 103, and may display the status of each electronic product and an IOT based and can control each electronic product based on the user's setting data.
  • various electronic products such as a washing machine 101, a robot cleaner 102, and an air purifier 103
  • the display device 100 may include a flexible display fabricated on a thin and flexible substrate.
  • a flexible display can be bent or rolled like paper while maintaining characteristics of a conventional flat panel display.
  • a unit pixel means a minimum unit for implementing one color.
  • a unit pixel of the flexible display may be implemented by a light emitting device.
  • the light emitting device may be a Micro-LED or a Nano-LED, but is not limited thereto.
  • FIG. 3 is a block diagram schematically illustrating a display device according to an exemplary embodiment
  • FIG. 4 is a circuit diagram illustrating an example of a pixel of FIG. 3 .
  • a display device may include a display panel 10 , a driving circuit 20 , a scan driving unit 30 and a power supply circuit 50 .
  • the display device 100 may drive a light emitting element in an active matrix (AM) method or a passive matrix (PM) method.
  • AM active matrix
  • PM passive matrix
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the display panel 10 may be formed in a rectangular shape, but is not limited thereto. That is, the display panel 10 may be formed in a circular or elliptical shape. At least one side of the display panel 10 may be formed to be bent with a predetermined curvature.
  • the display panel 10 may be divided into a display area DA and a non-display area NDA disposed around the display area DA.
  • the display area DA is an area where the pixels PX are formed to display an image.
  • the display panel 10 includes data lines (D1 to Dm, where m is an integer greater than or equal to 2), scan lines (S1 to Sn, where n is an integer greater than or equal to 2) crossing the data lines (D1 to Dm), and a high potential voltage.
  • pixels PXs connected to the high potential voltage line VDDL supplied, the low potential voltage line VSSL supplied with the low potential voltage, and the data lines D1 to Dm and the scan lines S1 to Sn can include
  • Each of the pixels PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • the first sub-pixel PX1 emits light of a first color of a first main wavelength
  • the second sub-pixel PX2 emits light of a second color of a second main wavelength
  • the third sub-pixel PX3 emits light of a second color.
  • a third color light having a third main wavelength may be emitted.
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light, but are not limited thereto.
  • FIG. 3 it is illustrated that each of the pixels PX includes three sub-pixels, but is not limited thereto. That is, each of the pixels PX may include four or more sub-pixels.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes at least one of the data lines D1 to Dm, at least one of the scan lines S1 to Sn, and a high voltage signal. It can be connected to the upper voltage line (VDDL).
  • the first sub-pixel PX1 may include light emitting elements LD, a plurality of transistors for supplying current to the light emitting elements LD, and at least one capacitor Cst.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include only one light emitting element LD and at least one capacitor Cst. may be
  • Each of the light emitting elements LD may be a semiconductor light emitting diode including a first electrode, a plurality of conductive semiconductor layers, and a second electrode.
  • the first electrode may be an anode electrode and the second electrode may be a cathode electrode, but is not limited thereto.
  • the light emitting device LD may be one of a horizontal light emitting device, a flip chip type light emitting device, and a vertical light emitting device.
  • the plurality of transistors may include a driving transistor DT supplying current to the light emitting elements LD and a scan transistor ST supplying a data voltage to a gate electrode of the driving transistor DT, as shown in FIG. 4 .
  • the driving transistor DT has a gate electrode connected to the source electrode of the scan transistor ST, a source electrode connected to the high potential voltage line VDDL to which a high potential voltage is applied, and first electrodes of the light emitting elements LD.
  • a connected drain electrode may be included.
  • the scan transistor ST has a gate electrode connected to the scan line (Sk, k is an integer satisfying 1 ⁇ k ⁇ n), a source electrode connected to the gate electrode of the driving transistor DT, and data lines Dj, j an integer that satisfies 1 ⁇ j ⁇ m).
  • the capacitor Cst is formed between the gate electrode and the source electrode of the driving transistor DT.
  • the storage capacitor Cst charges a difference between the gate voltage and the source voltage of the driving transistor DT.
  • the driving transistor DT and the scan transistor ST may be formed of thin film transistors.
  • the driving transistor DT and the scan transistor ST have been mainly described as being formed of P-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), but the present invention is not limited thereto.
  • the driving transistor DT and the scan transistor ST may be formed of N-type MOSFETs. In this case, positions of the source and drain electrodes of the driving transistor DT and the scan transistor ST may be changed.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes one driving transistor DT, one scan transistor ST, and one capacitor ( 2T1C (2 Transistor - 1 capacitor) having Cst) is illustrated, but the present invention is not limited thereto.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include a plurality of scan transistors ST and a plurality of capacitors Cst.
  • the second sub-pixel PX2 and the third sub-pixel PX3 may be expressed with substantially the same circuit diagram as the first sub-pixel PX1 , a detailed description thereof will be omitted.
  • the driving circuit 20 outputs signals and voltages for driving the display panel 10 .
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the data driver 21 receives digital video data DATA and a source control signal DCS from the timing controller 22 .
  • the data driver 21 converts the digital video data DATA into analog data voltages according to the source control signal DCS and supplies them to the data lines D1 to Dm of the display panel 10 .
  • the timing controller 22 receives digital video data DATA and timing signals from the host system.
  • the timing signals may include a vertical sync signal, a horizontal sync signal, a data enable signal, and a dot clock.
  • the host system may be an application processor of a smart phone or tablet PC, a monitor, a system on chip of a TV, and the like.
  • the timing controller 22 generates control signals for controlling operation timings of the data driver 21 and the scan driver 30 .
  • the control signals may include a source control signal DCS for controlling the operation timing of the data driver 21 and a scan control signal SCS for controlling the operation timing of the scan driver 30 .
  • the driving circuit 20 may be disposed in the non-display area NDA provided on one side of the display panel 10 .
  • the driving circuit 20 may be formed of an integrated circuit (IC) and mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method.
  • COG chip on glass
  • COP chip on plastic
  • ultrasonic bonding method The present invention is not limited to this.
  • the driving circuit 20 may be mounted on a circuit board (not shown) instead of the display panel 10 .
  • the data driver 21 may be mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method, and the timing controller 22 may be mounted on a circuit board. there is.
  • COG chip on glass
  • COP chip on plastic
  • the scan driver 30 receives the scan control signal SCS from the timing controller 22 .
  • the scan driver 30 generates scan signals according to the scan control signal SCS and supplies them to the scan lines S1 to Sn of the display panel 10 .
  • the scan driver 30 may include a plurality of transistors and be formed in the non-display area NDA of the display panel 10 .
  • the scan driver 30 may be formed as an integrated circuit, and in this case, it may be mounted on a gate flexible film attached to the other side of the display panel 10 .
  • the circuit board may be attached to pads provided on one edge of the display panel 10 using an anisotropic conductive film. Due to this, the lead lines of the circuit board may be electrically connected to the pads.
  • the circuit board may be a flexible printed circuit board, a printed circuit board, or a flexible film such as a chip on film. The circuit board may be bent under the display panel 10 . Accordingly, one side of the circuit board may be attached to one edge of the display panel 10 and the other side may be disposed under the display panel 10 and connected to a system board on which a host system is mounted.
  • the power supply circuit 50 may generate voltages necessary for driving the display panel 10 from the main power supplied from the system board and supply the voltages to the display panel 10 .
  • the power supply circuit 50 generates a high potential voltage (VDD) and a low potential voltage (VSS) for driving the light emitting elements (LD) of the display panel 10 from the main power supply to generate the display panel 10. can be supplied to the high potential voltage line (VDDL) and the low potential voltage line (VSSL).
  • the power supply circuit 50 may generate and supply driving voltages for driving the driving circuit 20 and the scan driving unit 30 from the main power.
  • FIG. 5 is an enlarged view of a first panel area in the display device of FIG. 3;
  • the display device 100 of the embodiment may be manufactured by mechanically and electrically connecting a plurality of panel areas such as the first panel area A1 by tiling.
  • the first panel area A1 may include a plurality of semiconductor light emitting devices 150 arranged for each unit pixel (PX in FIG. 3 ).
  • the unit pixel PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • a plurality of red semiconductor light emitting elements 150R are disposed in the first sub-pixel PX1
  • a plurality of green semiconductor light emitting elements 150G are disposed in the second sub-pixel PX2
  • a plurality of blue semiconductor light emitting elements 150B may be disposed in the third sub-pixel PX3.
  • the unit pixel PX may further include a fourth sub-pixel in which the semiconductor light emitting device is not disposed, but is not limited thereto.
  • the first adhesive layer is disposed in a plurality of grooves formed in the passivation layer of each of the plurality of semiconductor light emitting devices so that the plurality of semiconductor light emitting devices and the first adhesive layer are not separated, so that the fixation (or adhesiveness or adhesiveness) ) and electrical connectivity can be strengthened.
  • the display device described below may be a stretchable display device, but the embodiment may be equally applied to other types of display devices, such as rigid display devices, flexible display devices, foldable display devices, and rollable display devices. there is.
  • FIG. 6 is a plan view illustrating unit pixels of the display device according to the first embodiment.
  • a plurality of pixels PX may be defined in the display device according to the first embodiment.
  • the first to third semiconductor light emitting devices 311, 312, and 313 are disposed on the pixel PX, and the first to third semiconductor light emitting devices 311, 312, and 313 emit light.
  • the circuit unit (303 in FIG. 7) is disposed, the area corresponding to the pixel PX may be called a hard area or a rigid area RA.
  • the area excluding the pixels PX, that is, the area between the pixels PX, can be called a soft area (SA) because only a plurality of signal lines (304 in FIG. 7) are disposed to maximize stretchability. .
  • all areas other than each of the plurality of pixels PX are soft areas SA, and each of the plurality of pixels PX is made of a material having an elongation property or minimizing components. By forming it, it can be implemented as a stretchable display.
  • a plurality of signal lines 304 may be electrically connected to the pixel PX.
  • the pixel PX may include a first semiconductor light emitting device 311 , a second semiconductor light emitting device 312 , and a third semiconductor light emitting device 313 .
  • the first semiconductor light emitting device 311 includes a red semiconductor light emitting device that emits red light
  • the second semiconductor light emitting device 312 includes a green semiconductor light emitting device that emits green light
  • the third semiconductor light emitting device 312 includes a green semiconductor light emitting device that emits green light
  • the device 313 may include a blue semiconductor light emitting device emitting blue light.
  • the first to third semiconductor light emitting devices 311, 312, and 313 may be formed of a semiconductor material, for example, a group IV compound or a group III-V semiconductor compound.
  • the signal line 304 may include, for example, a gate line GL, a data line DL, a first driving voltage line DVL1 and a second driving voltage line DVL2, and more lines may be provided. there is.
  • the gate line GL, the first driving voltage line DVL1 and the second driving voltage line DVL2 may be disposed along a first direction, and the data line DL may be disposed along a second direction.
  • the data line DL may cross each of the gate line GL, the first driving voltage line DVL1 and the second driving voltage line DVL2 .
  • the gate line GL, the first driving voltage line DVL1 and the second driving voltage line DVL2 are electrically connected to the pixel PX in the first direction
  • the data line DL is electrically connected in the second direction. may be electrically connected to the pixel PX.
  • the plurality of signal wires 304 may be formed of metal having excellent electrical conductivity.
  • the plurality of signal wires 304 may include a plurality of layers including different metals, but are not limited thereto.
  • a plurality of signal wires 304 may be formed on the same layer, but this is not limited.
  • the plurality of signal wires 304 on the soft area SA may be disposed on the same layer, and the plurality of signal wires 304 on the rigid area RA may be disposed on different layers.
  • one line of pixels PX is selected by a scan signal supplied to the gate line GL, and the first driving voltage supplied by the first driving voltage line DVL1 and the second driving voltage line DVL2
  • a current corresponding to the data voltage supplied to each of the data lines DL to the pixels PX of the selected one line may be generated based on the second driving voltage supplied by ).
  • Light having luminance corresponding to different currents generated by each pixel PX may be emitted from the first to third semiconductor light emitting devices 311 , 312 , and 313 . Accordingly, a high-definition full-color image may be implemented by different colors and different luminance emitted from each of the first to third semiconductor light emitting devices 311, 312, and 313.
  • the plurality of signal lines 304 disposed on the soft area SA may have a winding shape.
  • the length of each of the plurality of signal wires 304 may be greater than the distance between adjacent pixels PX. Accordingly, even if the first substrate 301 is stretched, it may be stretched corresponding to the stretched first substrate 301 .
  • FIG. 7 is a cross-sectional view illustrating a unit pixel of the display device according to the first embodiment.
  • the display device may include a first substrate 301, a circuit unit 303, and a plurality of first to third semiconductor light emitting devices 311, 312, and 313.
  • the first substrate 301 is responsible for overall support of the display device, and is made of a material having an elongation property and can be stretched in all directions.
  • the first substrate 301 may be formed of a material having elongation characteristics.
  • the first substrate 301 may be made of silicone rubber such as polydimethylsiloxane (PDMS) or an elastomer such as polyurethane (PU), but is not limited thereto. .
  • PDMS polydimethylsiloxane
  • PU polyurethane
  • the first substrate 301 may have a thin thickness, for example, 10 ⁇ m to 1 mm in order to enhance stretch characteristics, but is not limited thereto.
  • the circuit unit 303 may be disposed in the pixel PX.
  • the circuit unit 303 may be formed using a semiconductor process.
  • the circuit unit 303 is electrically connected to the plurality of signal wires 304 and the first to third semiconductor light emitting elements 311, 312, and 313, and uses signals supplied to the plurality of signal wires 304 to generate the first signal wires 304.
  • Light emission of the third semiconductor light emitting devices 311, 312, and 313 may be controlled.
  • the circuit unit 303 may include at least two or more transistors and at least one capacitor.
  • the transistor may include a scan transistor (ST in FIG. 4) and a drive transistor (DT in FIG. 4) or may include more transistors.
  • the first to third semiconductor light emitting elements 311 , 312 , and 313 are disposed on the circuit unit 303 , so that the size of the pixel PX can be minimized.
  • an uppermost layer of the circuit unit 303 may be an insulating layer (not shown), and the first to third semiconductor light emitting devices 311, 312, and 313 may be disposed on the insulating layer. there is. Electrically connected to the lower side of each of the first to third semiconductor light emitting devices 311, 312 and 313 through the insulating layer or electrically connected to the upper side of each of the first to third semiconductor light emitting devices 311, 312 and 313 Alternatively, it may be electrically connected to the lower and upper sides of each of the first to third semiconductor light emitting devices 311, 312, and 313.
  • the insulating layer which is the uppermost layer of the circuit unit 303, may be a planarization layer with a flat upper surface in order to easily form the first electrode wiring 321 and the second electrode wiring 322, but is not limited thereto.
  • the display device may include a first insulating layer 306 disposed on the circuit unit 303 .
  • the first insulating layer 306 may be formed of an inorganic material or an organic material.
  • the first insulating layer 306 may be formed only in the pixel PX. That is, in order to maximize stretchability, the first insulating layer 306 may be formed in the rigid region RA and not formed in the soft region SA.
  • the first to third semiconductor light emitting devices 311 , 312 , and 313 may be sequentially inserted into the first insulating layer 306 or simultaneously inserted into the first insulating layer 306 .
  • a liquid insulating member is formed on the circuit unit 303 and the first to third semiconductor light emitting devices 311 , 312 , and 313 are pressed, thereby causing the first to third semiconductor light emitting devices 311 , 312 , 313) may be inserted into the insulating member. Thereafter, the liquid insulating member may be cured to become a solid insulating member.
  • an insulating layer having grooves (or holes) corresponding to each of the first to third semiconductor light emitting devices 311, 312, and 313 is formed on the circuit unit 303, and each groove of the insulating layer is provided with an insulating layer.
  • the first to third semiconductor light emitting devices 311, 312, and 313 may be inserted and fixed.
  • the first to third semiconductor light emitting elements 311, 312, and 313 may be inserted into each groove of the insulating layer by using a self-assembly method using a magnetic field and dielectrophoretic force by a magnet.
  • the first to third semiconductor light emitting devices 311 , 312 , and 313 may be inserted into the first insulating layer 306 using various other methods.
  • the first to third semiconductor light emitting devices 311, 312, and 313 are surrounded by a first insulating layer 306, and the first to third semiconductor light emitting devices 311 are surrounded by the first insulating layer 306. , 312, 313) may be spaced apart from each other or color mixing of light between them may be prevented.
  • the first insulating layer 306 may be formed of a light blocking material that blocks light, but is not limited thereto.
  • the display device may include a first electrode wire 321 and a second electrode wire 322 formed as a pair disposed on the circuit unit 303 .
  • the lower side of each of the first to third semiconductor light emitting devices 311, 312, and 313 is the first. It may be electrically connected to the electrode wire 321 and the second electrode wire 322 .
  • the first electrode wire 321 may be electrically connected to the first driving voltage line DVL1
  • the second electrode wire 322 may be electrically connected to the second driving voltage line DVL2.
  • first electrode wire 321 and the first driving voltage line DVL1 may be integrally formed, and the second electrode wire 322 may be integrally formed with the second driving voltage line DVL2.
  • first electrode and the first driving voltage line DVL1 may be formed of different metals, and the second electrode wire 322 and the second driving voltage line DVL2 may be formed of different metals.
  • the display device according to the first embodiment may include a first adhesive layer 1540 .
  • the first adhesive layer 1540 may be disposed between each of the first to third semiconductor light emitting devices 311 , 312 , and 313 and the circuit unit 303 .
  • the first adhesive layer 1540 may electrically connect and fix the first to third semiconductor light emitting devices 311 , 312 , and 313 .
  • the first adhesive layer 1540 may electrically connect each of the first to third semiconductor light emitting devices 311 , 312 , and 313 to the first electrode wire 321 and the second electrode wire 322 .
  • the first adhesive layer 1540 may be disposed between each of the first to third semiconductor light emitting devices 311 , 312 , and 313 and the first electrode wire 321 and the second electrode wire 322 .
  • the first adhesive layer 1540 may have conductivity.
  • the first adhesive layer 1540 may include conductive balls 1541 or conductive particles.
  • the upper side of the conductive ball 1541 may contact the lower side of each of the first to third semiconductor light emitting devices 311, 312, and 313.
  • the lower side of the conductive ball 1541 may contact the first electrode wire 321 or the second electrode wire 322 .
  • the conductive ball 1541 may be disposed only on the first electrode wire 321 and the second electrode wire 322 .
  • the conductive ball 1541 may be disposed between the first electrode wire 321 and the second electrode wire 322 .
  • the conductive balls 1541 may not contact each other along the horizontal direction. Therefore, even if the conductive ball 1541 is disposed between the first electrode wire 321 and the second electrode wire 322, the first electrode wire 321 is connected to the second electrode wire 322 by the conductive ball 1541. is not electrically shorted.
  • the first adhesive layer 1540 connects the first to third semiconductor light emitting devices 311 , 312 , and 313 to the first electrode wiring 321 , the second electrode wiring 322 , and/or the circuit unit 303 .
  • the first adhesive layer 1540 may include an insulating adhesive material.
  • the first adhesive layer 1540 may be included in each of the first to third semiconductor light emitting devices 311, 312, and 313, but is not limited thereto.
  • the display device may include a second substrate 302 .
  • the second substrate 302 may be formed of a rigid material.
  • the second substrate 302 may be made of polyimide (PI), polyacrylate, polyacetate, or the like.
  • the first substrate 301 may be referred to as a flexible substrate, a stretched substrate, a soft substrate, or a stretchable substrate
  • the second substrate 302 may be referred to as a rigid substrate or a rigid substrate.
  • the second substrate 302 may be formed in the rigid area RA corresponding to the pixel PX and may not be formed in the soft area SA.
  • the second substrate 302 may serve to support the circuit unit 303 and the first to third semiconductor light emitting devices 311 , 312 , and 313 .
  • the first substrate 301 When the first substrate 301 sufficiently serves as a support, the first substrate 301 may be omitted and the circuit unit 303 may be formed on the first substrate 301 .
  • the display device may include a second insulating layer 307 .
  • the second insulating layer 307 may be formed of an organic material, but is not limited thereto.
  • the second insulating layer 307 may be formed of a material having an elongation property.
  • the second insulating layer 307 may be disposed on the first substrate 301 .
  • the second insulating layer 307 may be disposed on the plurality of first to third semiconductor light emitting devices 311 , 312 , and 313 .
  • the second insulating layer 307 may protect the first to third semiconductor light emitting devices 311 , 312 , and 313 , the circuit unit 303 , and/or the signal line from an external environment. That is, the second insulating layer 307 prevents the first to third semiconductor light emitting devices 311, 312, and 313 from being exposed to moisture, heat, or the like, and can protect them from external impact. In addition, the second insulating layer 307 may prevent the signal line from being corroded by moisture.
  • the second insulating layer 307 may be referred to as a substrate, a molding part, or a molding member.
  • each of the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312 is a third semiconductor light emitting device ( 313), it can be easily understood from the third semiconductor light emitting element 313 shown in FIG. 9.
  • FIG. 8 is a cross-sectional view showing a semiconductor light emitting device of an embodiment.
  • 9 is a rear view showing the semiconductor light emitting device of the embodiment.
  • a third semiconductor light emitting device 313 may include a light emitting layer 1510 , a passivation layer 1520 and a first adhesive layer 1540 .
  • the passivation layer 1520 may be called a protective layer or an insulating layer.
  • the light emitting layer 1510 may include a first conductivity type semiconductor layer 1511 , an active layer 1512 , and a second conductivity type semiconductor layer 1513 .
  • the first conductivity-type semiconductor layer 1511, the active layer 1512, and the second conductivity-type semiconductor layer 1513 may be sequentially grown on a wafer (411 in FIG. 16) using deposition equipment such as MOCVD.
  • the first conductivity type semiconductor layer 1511 may include a first conductivity type dopant
  • the second conductivity type semiconductor layer 1513 may include a second conductivity type dopant.
  • the first conductivity type dopant may be an n-type dopant such as silicon (Si)
  • the second conductivity type dopant may be a p-type dopant such as boron (B).
  • the passivation layer 1520 may protect the light emitting layer 1510 .
  • the passivation layer 1520 may prevent leakage current from flowing to the side of the light emitting layer 1510 .
  • the passivation layer 1520 may be formed of an insulating material such as SiOx or SiNx, but is not limited thereto.
  • the second conductivity-type semiconductor layer 1513, the active layer 1512, and the first conductivity-type semiconductor layer 1511 are sequentially etched using an etching process.
  • a passivation layer 1520 may be formed along the circumference of the side.
  • the passivation layer 1520 may include a plurality of grooves 1521 .
  • the passivation layer 1520 may include a DBR layer as shown in FIG. 14, but is not limited thereto.
  • the passivation layer 1520 may include a plurality of first medium layers 1521a and 1521b and a plurality of second medium layers 1522a and 1522b stacked on each other.
  • the first medium layers 1521a and 1521b may have a first refractive index
  • the second medium layers 1522a and 1522b may have a second refractive index different from the first refractive index.
  • the passivation layer 1520 may include a third medium layer 15230.
  • the third medium layer 15230 is disposed on the light emitting layer 1510, and the plurality of first medium layers 1521a and 1521b and the plurality of second medium layers 1522a and 1522b are on the third medium layer 15230. can be placed. That is, the third medium layer 15230 may be disposed between the light emitting layer 1510 and the first medium layers 1521a and 1521b or between the light emitting layer 1510 and the second medium layer 1522a and 1522b.
  • the third medium layer 15230 may contact the surface of the light emitting layer 1510 .
  • the third medium layer 15230 may surround the light emitting layer 1510 .
  • the third medium layer 15230 prevents the light emitting layer 1510 from being exposed to the plurality of grooves 1521, so that the light emitting layer 1510 is applied to the conductive balls 1541 of the first adhesive layer 1540 disposed in the plurality of grooves 1521. ) can be avoided.
  • the first medium layers 1521a and 1521b, the second medium layers 1522a and 1522b, and the third medium layer 15230 may be formed of an inorganic material having insulating properties.
  • Each of the first medium layers 1521a and 1521b, the second medium layers 1522a and 1522b, and the third medium layer 15230 may include, for example, at least one selected from SiOx, SiNx, TiOx, and AlxOy.
  • the third medium layer 15230 may include the same material as or a different material from that of the first medium layers 1521a and 1521b or the second medium layers 1522a and 1522b.
  • the plurality of grooves 1521 may be formed in the first medium layer 1521a and 1521b and the second medium layer 1522a and 1522b, but may not be formed in the third medium layer 15230.
  • the third medium layer 15230 may be a stopper layer made of a material that does not react to an etchant for wet etching used to form the plurality of grooves 1521 .
  • a method of forming a plurality of grooves 1521 in the passivation layer 1520 will be described with reference to FIGS. 10 to 12 .
  • a third medium layer 15230 is formed on the light emitting layer 1510, and a plurality of first medium layers 1521a, 1521b, and 1521c and a plurality of first medium layers 1521a, 1521b, and 1521c are formed on the third medium layer 15230.
  • Second medium layers 1522a, 1522b, and 1522c may be alternately formed.
  • a mask layer may be formed on the uppermost layer, for example, the first medium layer 1521a, 1521b, and 1521c and then patterned to form the mask layer 1600 .
  • wet etching may be performed using an etchant for wet etching.
  • the first medium layers 1521a, 1521b, and 1521c and the second medium layers 1522a, 1522b, and 1522c may have different selectivities to an etchant for wet etching.
  • the second medium layers 1522a, 1522b, and 1522c may be better etched by an etchant for wet etching than the first medium layers 1521a, 1521b, and 1521c.
  • the third medium layer 15230 may be a stopper layer that does not react with an etchant for wet etching.
  • the first medium layer 1521a, the second medium layer 1522a, and the first medium layer 1521b exposed between the patterns of the mask layer 1600 by the etchant for wet etching the second medium layer 1522b, the first medium layer 1521c, and the second medium layer 1522c are removed in order, so that a plurality of grooves 1521 may be formed. Since the second medium layers 1522a, 1522b, and 1522c have higher selectivity to the etchant for wet etching than the first medium layers 1521a, 1521b, and 1521c, and are more easily removed, the first medium layers 1521a, 1521b .
  • first medium layers 1521a, 1521b, and 1521c and the second medium layers 1522a, 1522b, and 1522c may have the same selectivity for an etchant for wet etching.
  • the grooves of the first medium layers 1521a, 1521b, and 1521c and the second medium layers 1522a, 1522b, and 1522c may have the same or similar widths.
  • the vertical direction of the passivation layer 1520 The positions of the plurality of grooves 1521 may be different depending on the positions of the grooves 1521 .
  • the groove 1521 on the upper side of the passivation layer 1520 exposed to the etchant for wet etching for a long time is relatively large, and the groove 1521 on the lower side of the passivation layer 1520 exposed to the etchant for wet etching less is relatively small.
  • the width may decrease linearly from the upper side to the lower side of the passivation, but is not limited thereto.
  • each of the plurality of grooves 1521 is formed using wet etching, they may be formed using dry etching.
  • dry etching When dry etching is used, each of the plurality of grooves 1521 is formed along a vertical direction, and each groove 1521 of the first medium layer 1521a, 1521b, and 1521c and the second medium layer 1522a, 1522b, and 1522c
  • the widths of may be the same as or similar to each other.
  • the third semiconductor light emitting device 313 of the embodiment may include a first electrode 1531 and a second electrode 1532 .
  • the first electrode 1531 and the second electrode 1532 may allow a current corresponding to the data voltage to flow through the light emitting layer 1510 .
  • the first electrode 1531 may be electrically connected to the first electrode wire 321 and the second electrode 1532 may be electrically connected to the second electrode wire 322. there is.
  • the first electrode 1531 and the second electrode 1532 are the same. It may be a flip chip type semiconductor light emitting device or a horizontal type semiconductor light emitting device disposed toward the direction.
  • the first adhesive layer 1540 may bond the third semiconductor light emitting element 313 to the circuit unit 303 or the first electrode wiring 321 and the second electrode wiring 322 as described above. That is, the first adhesive layer 1540 may electrically connect the third semiconductor light emitting element 313 to the first electrode wiring 321 and the second electrode wiring 322 and may be physically processed.
  • the first adhesive layer 1540 may be formed of an adhesive material.
  • the first adhesive layer 1540 may include conductive balls 1541 .
  • the first adhesive layer 1540 may be formed using anisotropic conductive film (ACF) or anisotropic conductive paste (ACP).
  • ACF or ACP may be formed of an insulating resin material.
  • a thermally polymerizable composition, a photopolymerizable composition, a photopolymerizable composition, and the like can be appropriately selected and used.
  • thermally polymerizable composition a thermally radically polymerizable resin composition comprising an acrylate compound and a thermal radical polymerization initiator, a thermally cationically polymerizable resin composition comprising an epoxy compound and a thermal cationic polymerization initiator, and an epoxy compound and thermal anionic polymerization Thermal anion polymerizable resin composition containing an initiator, etc.
  • the photopolymerizable composition include radically photopolymerizable resin compositions containing an acrylate compound and a photoradical polymerization initiator.
  • a photoinitiator you may contain multiple types reacting to light with a different wavelength. Thereby, the wavelength used for photocuring of the resin constituting the insulating resin layer during ACF or ACP production and photocuring of resin for bonding electronic components to each other during anisotropic connection can be used separately.
  • the insulating resin binder When the insulating resin binder is formed using a photopolymerizable composition, all or part of the photopolymerizable compound contained in the insulating resin binder can be photocured by photocuring during production of ACF or ACP. By this photocuring, the arrangement of the conductive balls in the insulating resin binder is maintained or fixed, and suppression of short circuit can be improved. Moreover, the viscosity of the insulating resin layer in the manufacturing process of ACF or ACP can be adjusted by adjusting these photocuring conditions.
  • the first adhesive layer 1540 may be included in the third semiconductor light emitting device 313 . That is, the first adhesive layer 1540 may be formed on the passivation layer 1520 .
  • the method of forming the first adhesive layer 1540 on the passivation layer 1520 may use an ACF or ACP including conductive balls 1541 or a difference in curing by UV irradiation of negative photo active compound (nPAC). .
  • B-stage film In the case of using ACF or ACP, a B-stage film is used, and the viscosity decreases at a certain temperature, and when the temperature rises, the viscosity rapidly increases and hardens.
  • B-stage usually refers to a pre-curing state, and as shown in FIG. 15, it is characterized by rapid shape change at a specific temperature Tg (change transition point).
  • Tg change transition point
  • the first adhesive layer 1540 melts and may be penetrated or inserted into the plurality of grooves 1521 of the passivation layer 1520 . Thereafter, as the temperature rises above the specific temperature Tg, the viscosity also increases and the first adhesive layer 1540 may be cured. For example, the first adhesive layer 1540 is in a semi-cured state, and the conductive ball 1541 in the first adhesive layer 1540 can be moved by pressure.
  • the first adhesive layer 1540 may be disposed not only on the passivation layer 1520 but also in the plurality of grooves 1521 .
  • the plurality of grooves 1521 have different widths in the first medium layers 1521a and 1521b and the second medium layers 1522a and 1522b, and in this way, the first medium layers 1521a and 1521b having different widths ) and the first adhesive layer 1540 is formed in the groove 1521 of each of the second medium layers 1522a and 1522b, so that the first adhesive layer 1540 can be firmly fixed to the passivation.
  • each of the plurality of grooves 1521 has a fish bone shape
  • the first adhesive layer 1540 is hooked and fixed by each of the plurality of grooves 1521 of the passivation layer 1520, so that the first adhesive layer 1540 is engaged with each other.
  • 1540 is not separated from the passivation layer 1520, so that there is a gap between the third semiconductor light emitting device 313 (the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312 are the same) and the first substrate 301. Stability can be improved.
  • the third semiconductor light emitting device 313 (the first semiconductor light emitting device 311 and the second semiconductor light emitting device) is formed by the first adhesive layer 1540. 312) is electrically connected to the first wire and the second wire without disconnection, thereby preventing lighting defects or lowering of luminance of the first to third semiconductor light emitting devices 311, 312, and 313.
  • the third semiconductor light emitting element 313 connects the first electrode wiring 321 and the second electrode on the first substrate 301 via the first adhesive layer 1540. It may be bonded to wire 322 .
  • a first insulating layer 306 may be disposed on the circuit unit 303 .
  • the first insulating layer 306 may be an adhesive material melted by heat, but is not limited thereto.
  • the first electrode 1531 and the second electrode 1532 of the third semiconductor light emitting element 313 are positioned facing the first electrode wiring 321 and the second electrode wiring 322 on the first substrate 301 After that, heat is applied to melt the first insulating layer 306, and pressure is applied to the third semiconductor light emitting element 313 (the same applies to the first semiconductor light emitting element 311 and the second semiconductor light emitting element 312) to form a third semiconductor light emitting element.
  • the light emitting element 313 may come into close contact with the first electrode wire 321 and the second electrode wire 322 . That is, the third semiconductor light emitting element 313 may be adhered to the first electrode wiring 321 and the second electrode wiring 322 through the first insulating layer 306 .
  • the third semiconductor light emitting device 313 may be fixed within the first insulating layer 306 .
  • the first adhesive layer 1540 is pressed between the light emitting layer 1510 and the first electrode wire 321 and the second electrode wire 322 by the pressure, so that the upper side of the conductive ball 1541 in the first adhesive layer 1540 In contact with the first electrode 1531 or the second electrode 1532 of this semiconductor light emitting element, the lower side of the conductive ball 1541 in the first adhesive layer 1540 is the first electrode wire 321 or the second electrode wire 322 ) can be reached.
  • the first adhesive layer 1540 is also cured, so that the conductive ball 1541 is connected to the first electrode 1531 or the second electrode 1532 and the first electrode 1532 of the semiconductor light emitting device.
  • a contact state with the electrode wire 321 or the second electrode wire 322 may be maintained.
  • a first insulating layer 306 is disposed between the first adhesive layer 1540 and the first electrode wiring 321 and the second electrode wiring 322, and the conductive ball 1541 is disposed on the first insulating layer 306. ) can be located. That is, since the conductive balls 1541 are simultaneously positioned on different members, the stability of the conductive balls 1541 is strengthened and the force to expand the conductive balls 1541 can be suppressed. For example, a portion of the conductive balls 1541 may be fixed to the first adhesive layer 1540 and another portion of the conductive balls 1541 may be fixed to the first insulating layer 306 .
  • the first insulating layer 306 may not be disposed between the third semiconductor light emitting element 313 and the circuit unit 303, but may be disposed only around the third semiconductor light emitting element 313. Not limited.
  • FIG. 14 shows two first medium layers 1521a and 1521b and two second medium layers 1522a and 1522b, as shown in FIG. 12, three first medium layers 1521a and 1521b, 1521c) and two second medium layers 1522a, 1522b, 1522c, or more first and second medium layers.
  • each of the plurality of grooves 1521 is formed in the first groove 1521_1 formed in each of the plurality of first medium layers 1521a and 1521b and each of the plurality of second medium layers 1522a and 1522b.
  • the formed second groove 1521_2 may be included.
  • the first width W1 of the first groove 1521_1 and the second width W2 of the second groove 1521_2 may be different, but are not limited thereto.
  • the second width W2 of the second groove 1521_2 may be greater than the first width W1 of the first groove 1521_1.
  • the first adhesive layer 1540 may include a 1-1 adhesive layer 1540_1 , a 1-2 adhesive layer 1540_2 , and a 1-3 adhesive layer 1540_3 .
  • the 1-1 adhesive layer 1540_1 is disposed in the first groove 1521_1
  • the 1-2 adhesive layer 1540_2 is disposed in the second groove 1521_2
  • the 1-3 adhesive layer 1540_3 is passivated. may be disposed on layer 1520 .
  • the width of the 1-2 adhesive layer 1540_2 also corresponds to the width of the 1-1 adhesive layer 1540_1.
  • the 1-2nd adhesive layer 1540_2 has a first area and a second area. The first area is in vertical contact with the 1-1st adhesive layer 1540_1, and the second area is the first medium layer 1521a. , 1521b) and a part of 1521b) may be vertically overlapped.
  • the first area of the 1-2nd adhesive layer 1540_2 may be an area extending upward or downward from the 1-1st adhesive layer 1540_1.
  • the second area of the 1-2nd adhesive layer 1540_2 extends from the first area in both directions, and may vertically contact the lower surface or the upper surface of the first medium layer 1521a or 1521b. Meanwhile, side surfaces of the 1-1st adhesive layer 1540_1 may contact side surfaces of the first medium layers 1521a and 1521b.
  • the first adhesive layer 1540 is included in each of the first to third semiconductor light emitting devices 311, 312, and 313, the first adhesive layer 1540 includes the first to third semiconductor light emitting devices ( 311, 312, 313) may be provided independently of each.
  • the first adhesive layer 1540 may be attached to each of the first to third semiconductor light emitting devices 311 , 312 , and 313 .
  • the first adhesive layer 1540 is in the form of a film or sheet, and an adhesive material is applied to one side thereof, and may be attached to the first to third semiconductor light emitting devices 311, 312, and 313 via the adhesive material.
  • the first to third semiconductor light emitting devices 311 , 312 , and 313 to which the first adhesive layer 1540 is attached may be positioned on the first insulating layer 306 at each sub-pixel of each of the plurality of pixels PX. there is.
  • the first adhesive layer 1540 and the first insulating layer 306 are melted by thermal compression, and the first to third semiconductor light emitting elements 311, 312, and 313 respectively pass through the first insulating layer 306 to the first electrode. It may be closely attached to the wiring 321 and the second electrode wiring 322 .
  • the conductive ball 1541 of the first adhesive layer 1540 is also pressed, and the first electrode 1531 or the second electrode 1532 and the first electrode of the first to third semiconductor light emitting devices 311, 312, and 313 are pressed. It may contact the wiring 321 or the second electrode wiring 322 .
  • FIG. 16 is a cross-sectional view of a display device according to a second embodiment.
  • FIG. 17 is a cross-sectional view showing area E of FIG. 16 in detail.
  • the second embodiment is the same as the first embodiment except for the second adhesive layer 1550 and the reflective particles 1543 .
  • the same reference numerals are given to reference numerals having the same shape, structure, and/or function as those in the first embodiment, and detailed descriptions are omitted.
  • a third semiconductor light emitting element 313 (the same applies to the first semiconductor light emitting element 311 and the second semiconductor light emitting element 312) is disposed in the first insulating layer 306.
  • the first adhesive layer 1540 and the second adhesive layer 1550 may be disposed between the third semiconductor light emitting element 313 and the first electrode wiring 321 and the second electrode wiring 322 .
  • the first adhesive layer 1540 may be disposed on the passivation layer 1520 of the third semiconductor light emitting device 313 .
  • it may be disposed not only on the surface of the passivation layer 1520 but also in the plurality of grooves 1521 .
  • each of the plurality of grooves 1521 has a fish bone shape
  • the first adhesive layer 1540 is caught and fixed by each of the plurality of grooves 1521 of the passivation layer 1520, so that the first adhesive layer 1540 ) is not separated from the passivation layer 1520, so that the third semiconductor light emitting device 313 (the same applies to the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312) and the first substrate 301 have stability. This can be improved.
  • the third semiconductor light emitting device 313 (the first semiconductor light emitting device 311 and the second semiconductor light emitting device) is formed by the first adhesive layer 1540. 312) is electrically connected to the first wire and the second wire without disconnection, thereby preventing lighting defects or lowering of luminance of the first to third semiconductor light emitting devices 311, 312, and 313.
  • the first adhesive layer 1540 may include reflective particles 1543 . That is, the reflective particles 1543 may be dispersed on the first adhesive layer 1540 .
  • the reflective particle 1543 may be made of metal.
  • the reflective particles 1543 may be referred to as scattering particles, light diffusing particles, light extraction particles, and the like. Therefore, the light traveling downward from the third semiconductor light emitting device 313 is reflected in an upward direction or in a random direction by the reflective particles 1543 of the first adhesive layer 1540, thereby radiating a greater amount of light forward and improving luminance. can improve
  • the second adhesive layer 1550 may be disposed on the first adhesive layer 1540 .
  • the second adhesive layer 1550 may be disposed between the first adhesive layer 1540 and the first electrode wire 321 and the second electrode wire 322 .
  • the second adhesive layer 1550 may include conductive balls 1541 .
  • the third semiconductor light emitting element 313 and the first electrode wiring 321 and the second electrode wiring 322 may be electrically connected by the conductive ball 1541 of the second adhesive layer 1550 .
  • the semiconductor light emitting device may be physically fixed to the circuit unit 303 and/or the first electrode wiring 321 and the second electrode wiring 322 by the first adhesive layer 1540 and the second adhesive layer 1550. .
  • FIG. 16 shows that the lower surface of the first adhesive layer 1540 is in contact with the first electrode wiring 321 and the second electrode wiring 322, but the first adhesive layer 1540 and the first electrode wiring 321 and A first insulating layer 306 may be disposed between the two electrode wires 322 .
  • FIG. 18 is a cross-sectional view of a display device according to a third embodiment.
  • the third semiconductor light emitting device 313 (the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312 are the same) is a vertical semiconductor light emitting device, except for the electrical connection with the electrode wiring. And the same as the first embodiment and / or the second embodiment.
  • the same reference numerals are assigned to reference numerals having the same shape, structure, and/or function as those of the first and/or second embodiments, and detailed descriptions are omitted.
  • the third semiconductor light emitting device 313 may be a vertical semiconductor light emitting device. Voltages are supplied to upper and lower sides of the vertical semiconductor light emitting device, so that current may flow in a vertical direction of the vertical semiconductor light emitting device.
  • the side surface of the third semiconductor light emitting element 313 is shown as having a surface perpendicular to a horizontal surface, but is not limited thereto.
  • the lower side of the third semiconductor light emitting element 313, that is, the electrode 1530 is electrically connected to the first electrode wire 323, and the upper side of the third semiconductor light emitting element 313 is electrically connected to the second electrode wire 324.
  • the second electrode wire 324 may be electrically connected to the upper side of the third semiconductor light emitting element 313 through the side surface and upper surface of the first insulating layer 306, but is not limited thereto.
  • the display device according to the third embodiment is not a stretchable display device, another insulating layer is disposed on the third semiconductor light emitting element 313, and a contact hole formed in the other insulating layer on the other insulating layer
  • the second electrode wire 324 may be electrically connected to the upper side of the third semiconductor light emitting element 313 through the .
  • the first adhesive layer 1540 may be disposed between the third semiconductor light emitting element 313 and the first electrode wire 323 .
  • a portion of the first adhesive layer 1540 may be disposed in at least the plurality of grooves 1521 formed in the passivation layer 1520 of the third semiconductor light emitting device 313 .
  • each of the plurality of grooves 1521 has a fish bone shape
  • the first adhesive layer 1540 is caught and fixed by each of the plurality of grooves 1521 of the passivation layer 1520, so that the first adhesive layer 1540 ) is not separated from the passivation layer 1520, so that the third semiconductor light emitting device 313 (the same applies to the first semiconductor light emitting device 311 and the second semiconductor light emitting device 312) and the first substrate 301 have stability. This can be improved.
  • the third semiconductor light emitting device 313 (the first semiconductor light emitting device 311 and the second semiconductor light emitting device) is formed by the first adhesive layer 1540. 312) is electrically connected to the first wire and the second wire without disconnection, thereby preventing lighting defects or lowering of luminance of the first to third semiconductor light emitting devices 311, 312, and 313.
  • the embodiment may be adopted in the display field for displaying images or information.
  • the embodiment can be adopted in the field of display displaying images or information using a semiconductor light emitting device.
  • the semiconductor light-emitting device may be a micro-level semiconductor light-emitting device or a nano-level semiconductor light-emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

반도체 발광 소자는 발광층과, 발광층 상에 패시베이션층과, 패시베이션층 상에 제1 접착층을 포함한다. 패시베이션층은 복수의 홈을 포함하고, 제1 접착층은 복수의 홈 각각에 배치될 수 있다. 복수의 홈에 제1 접착층이 배치되어, 고정성을 강화할 수 있다. 디스플레이 장치는 복수의 반도체 발광 소자를 포함한다. 반도체 발광 소자는 수평형 반도체 발광 소자, 플립칩형 반도체 발광 소자 또는 수직형 반도체 발광 소자가 포함될 수 있다.

Description

반도체 발광 소자 및 디스플레이 장치
실시예는 반도체 발광 소자 및 디스플레이 장치에 관한 것이다.
디스플레이 장치는 발광 다이오드(Light Emitting Diode)와 같은 자발광 소자를 화소의 광원으로 이용하여 고화질의 영상을 표시한다. 발광 다이오드는 열악한 환경 조건에서도 우수한 내구성을 나타내며, 장수명 및 고휘도가 가능하여 차세대 디스플레이 장치의 광원으로 각광받고 있다.
최근, 신뢰성이 높은 무기 결정 구조의 재료를 이용하여 초소형의 발광 다이오드를 제조하고, 이를 디스플레이 장치의 패널(이하, "디스플레이 패널"이라 함)에 배치하여 차세대 광원으로 이용하기 위한 연구가 진행되고 있다.
이러한 디스플레이 장치는 평판 디스플레이를 넘어, 플렉서블 디스플레이, 폴더블(folderable) 디스플레이, 스트레처블(strechable) 디스플레이, 롤러블(rollable) 디스플레이 등과 같이 다양한 형태로 확대되고 있다.
고해상도를 구현하기 위해서 점차 화소의 사이즈가 작아지고 있고, 이와 같이 작아진 사이즈의 수많은 화소에 발광 소자가 정렬되어야 하므로, 마이크로 또는 나노 스케일 정도로 작은 초소형의 발광 다이오드의 제조에 대한 연구가 활발하게 이루어지고 있다.
통상 디스플레이 장치는 수 천만 개 이상의 화소를 포함한다. 따라서, 사이즈가 작은 수 천만 개 이상의 화소 각각에 적어도 하나 이상의 발광 소자들을 디스플레이 패널 상에 본딩시키는 것이 매우 어렵기 때문에, 최근 디스플레이 패널에 발광 소자들을 본딩하는 방안에 대한 다양한 연구가 활발하게 진행되고 있다.
일 예로, 디스플레이 기판의 전 영역에 본딩 부재가 형성되고, 본딩 부재를 이용하여 수 천만 개 이상의 발광 소자가 디스플레이 기판에 본딩된다.
이러한 경우, 본딩 부재가 요구되는 발광 소자에 대응하는 영역뿐만 아니라 그렇지 않은 영역까지 본딩 부재가 형성되므로, 재료 비용이 낭비될 수 있다.
또한, 발광 소자에 대응하지 않은 영역에 형성된 본딩 부재로 인해 인접하는 발광 소자 간에 전기적인 쇼트가 발생될 수 있다.
한편, 열 압착 방식을 통해 본딩 부재를 매개로 복수의 발광 소자기 디스플레이 기판에 본딩된다. 즉, 본딩 부재에 열이 가해져 본딩 부재가 녹고, 복수의 발광 소자에 압력이 가해져 복수의 발광 소자가 디스플레이 기판에 전기적으로 연결되며 또한 고정된다. 이후, 녹은 본딩 부재는 경화된 본딩 부재로 변형된다.
발광 소자가 1회 가해진 압력에 의해 디스플레이 기판에 본딩되기 어려워, 적어도 수회의 압력이 가해졌다 압력 해제되었다 하여, 발광 소자가 디스플레이 기판에 본딩된다. 이러한 경우, 본딩 부재의 재질 특성 등으로 인한 팽창에 의해 발광 소자와 본딩 부재가 분리될 수 있다. 즉, 발광 소자와 본딩 부재 사이에서 부분적으로 분리가 발생된다.
도 1a에 도시한 바와 같이, 발광 소자(4)의 하측의 내부에 형성된 단차 부분(A)에서 본딩 부재(2)와 분리될 수 있다. 도 1b에 도시한 바와 같이, 발광 소자(4)의 외측 모서리 부분(B)에서 본딩 부재(2)와 분리될 수 있다.
특히, 이러한 분리는 디스플레이 기판의 평형 상태, 복수의 발광 소자(4) 각각의 눌리는 상태, 복수의 발광 소자(4) 각각의 위치에 따라 본딩 부재(2)에 다양한 변형을 유발하고 스트레스가 발생되어, 발광 소자(4)와 본딩 부재(2)가 분리되기 쉽다.
또한, 본딩 부재(2)는 열팽창 계수가 큰 물질로 형성되어 수축 팽창이 커, 열 압착 공정시 주변 수분 흡수로 인한 부피 팽창이 발생할 가능성이 높다. 또한, 본딩 부재(2)는 자외선 등에 의한 물성 특성 변화가 발생할 수 있다. 이러한 물성 특성 변화에 가장 크게 영향을 받는 영역이 본딩 부재(2)와 발광 소자(4)가 접하는 영역이다.
상술한 바와 같이, 발광 소자(4)와 본딩 부재(2)가 분리되는 경우, 다음과 같은 문제가 있다.
먼저, 고정성이 결여되어 제품 신뢰성이 떨어진다. 본딩 부재(2)는 발광 소자(4)를 디스플레이 기판에 고정시키는 역할을 한다. 하지만, 발광 소자(4)가 디스플레이 기판과 분리되는 경우, 발광 소자(4)가 디스플레이 기판에 고정되는 고정력이 저하된다. 특히 발광 소자(4)를 구비한 디스플레이 장치를 장시간 사용시 다양한 충격에 의해 발광 소자(4)가 디스플레이 기판으로부터 이탈되어 화소 불량이나 복수의 화소를 포함하는 영역 불량이 발생되어 치명적인 제품 신뢰성 저하가 발생된다.
아울러, 전기적 연결 불량으로 점등 불량이나 휘도 저하가 야기된다. 본딩 부재(2)는 도전성을 가지므로, 본딩 부재(2)를 통해 발광 소자(4)가 전극 배선(1)과 전기적으로 연결된다. 하지만, 발광 소자(4)와 본딩 부재(2)가 분리되는 경우, 도전볼(3)이 발광 소자(4)와 전기적으로 연결되지 않고 설사 연결되더라도 발광 소자(4)와 도전볼(3) 간의 접촉 면적이 줄어들어 휘도 저하가 야기된다.
실시예는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
실시예의 다른 목적은 반도체 발광 소자의 패시베이션층과 제1 접착층 간의 전기적 연결성을 강화한 반도체 발광 소자를 제공하는 것이다.
또한 실시예의 또 다른 목적은 반도체 발광 소자의 패시베이션층과 제1 접착층 간의 고정성을 강화한 반도체 발광 소자를 제공하는 것이다.
실시예의 다른 목적은 반도체 발광 소자와 기판 간의 전기적 연결성을 강화한 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 반도체 발광 소자와 기판 간의 고정성을 강화한 디스플레이 장치를 제공하는 것이다.
실시예의 기술적 과제는 본 항목에 기재된 것에 한정되지 않으며, 발명의 설명을 통해 파악될 수 있는 것을 포함한다.
상기 또는 다른 목적을 달성하기 위해 실시예의 일 측면에 따르면, 반도체 발광 소자는, 발광층; 상기 발광층 상에 패시베이션층; 및 상기 패시베이션층 상에 제1 접착층을 포함하고, 상기 패시베이션층은 복수의 홈을 포함하고, 상기 제1 접착층은 상기 복수의 홈 각각에 배치될 수 있다.
상기 패시베이션층은 서로 적층된 복수의 제1 매질층과 복수의 제2 매질층을 포함하고, 상기 제1 매질층은 제1 굴절율을 가지고, 상기 제2 매질층은 상기 제1 굴절율과 상이한 제2 굴절율을 가질 수 있다.
상기 패시베이션층은 제3 매질층을 포함하고, 상기 제1 매질층 및 상기 제2 매질층은 상기 제3 매질층 상에 배치되고, 상기 제3 매질층은 상기 발광층의 표면에 접할 수 있다.
상기 복수의 홈 각각은, 상기 제1 매질층에 제1 홈; 및 상기 제2 매질층에 제2 홈을 포함하고, 상기 제1 홈 및 상기 제2 홈은 서로 상이한 폭을 가질 수 있다.
상기 제1 접착층은, 상기 제1 홈에 제1-1 접착층; 및 상기 제2 홈에 제1-2 접착층을 포함할 수 있다.
상기 제1 접착층 상에 제2 접착층을 포함하고, 상기 제1 접착층은 반사 입자를 포함할 수 있다.
상기 제2 접착층은 적어도 하나 이상의 도전볼을 포함할 수 있다.
상기 제1 접착층은 적어도 하나 이상의 도전볼을 포함할 수 있다.
실시예의 다른 측면에 따르면, 디스플레이 장치는, 복수의 화소를 포함하는 기판; 상기 기판 상에 전극 배선; 상기 복수의 화소 각각에 절연층; 상기 절연층에 제1 내지 제3 반도체 발광 소자; 및 상기 전극 배선과 상기 제1 내지 제3 반도체 발광 소자 각각의 사이에 배치되어, 상기 제1 내지 제3 반도체 발광 소자 각각을 상기 전극 배선에 전기적으로 연결하는 제1 접착층을 포함하고, 상기 제1 내지 제3 반도체 발광 소자는, 발광층; 및 상기 발광층 상에 패시베이션층을 포함하고, 상기 패시베이션층은 복수의 홈을 포함하고, 상기 제1 접착층은 상기 복수의 홈 각각에 배치될 수 있다.
상기 제1 접착층은 상기 제1 내지 제3 반도체 발광 소자 각각에 포함될 수 있다.
상기 제1 내지 제3 반도체 발광 소자 각각은 수평형 반도체 발광 소자, 플립칩형 반도체 발광 소자 및 수직형 반도체 발광 소자 중 하나를 포함할 수 있다
상기 기판은 스트레처블 기판을 포함할 수 있다.
실시예는 고정성과 전기적 연결성을 강화하여, 점등 불량이나 휘도 저하를 방지할 수 있다. 또한, 제품에 대한 신뢰성을 제고할 수 있다.
도 7, 도 8, 도 13 및 도 14에 도시한 바와 같이, 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)의 패시베이션층(1520)에 복수의 홈(1521)이 형성될 수 있다. 패시베이션층(1520)은 DBR층을 포함할 수 있다. 복수의 홈(1521) 각각은 예컨대, 생성 뼈 형상을 가질 수 있다. 제1 접착층(1540)이 패시베이션층(1520)의 복수의 홈(1521) 각각에 배치될 수 있다. 이에 따라, 제1 접착층(1540)이 생성 뼈 형상을 갖는 복수의 홈(1521)에 걸림 고정되어 제1 접착층(1540)는 패시베이션층(1520)와 분리되지 않을 수 있다.
이러한 경우, 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 제1 기판(301) 상에 장착되는 경우, 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각이 제1 기판(301)와 보다 단단하게 고정되어 고정성이 강화되어 제품에 대한 신뢰성이 제고될 수 있다.
아울러, 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 제1 기판(301) 상에 장착되는 경우, 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 제1 기판(301) 상에 장착되는 경우, 제1 기판(301) 상의 제1 전극 배선(321) 및 제2 전극 배선(322)에 보다 완벽하게 연결되므로 점등 불량이나 휘도 저하가 방지될 수 있다.
한편, 실시예는 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에 미리 패시베이션층(1520)과 분리되지 않도록 패시베이션층(1520)의 복수의 홈(1521) 각각에 제1 접착층(1540)이 형성되도록 하여, 보다 쉽고 에러 없는 공정이 가능하여 양산성이 높아질 수 있다.
또한, 실시예는 복수의 화소(PX) 각각에 대응하는 리지드 영역과 그 외의 영역인 소프트 영역으로 구분함으로써, 스트레처블 디스플레이 구현이 가능하다.
아울러, 실시예의 디스플레이 장치는 수평형 반도체 발광 소자, 플립칩형 반도체 발광 소자 또는 수직형 반도체 발광 소자가 포함될 수 있다.
실시예의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 실시예의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 바람직한 실시예와 같은 특정 실시예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1a 및 도 1b는 발광 소자와 본딩 부재가 분리된 모습을 도시한다.
도 2은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실을 도시한다.
도 3는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이다.
도 4는 도 3의 화소의 일 예를 보여주는 회로도이다.
도 5은 도 2의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 6은 제1 실시예에 따른 디스플레이 장치의 단위 화소를 도시한 평면도이다.
도 7은 제1 실시예에 따른 디스플레이 장치의 단위 화소를 도시한 단면도이다.
도 8은 실시예의 반도체 발광 소자를 도시한 단면도이다.
도 9는 실시예의 반도체 발광 소자를 도시한 배면도이다.
도 10 내지 도 12는 실시예의 반도체 발광 소자의 패시베이션층에 복수의 홈을 형성하는 방법을 도시한다.
도 13은 도 7의 C 영역을 상세히 도시한 단면도이다.
도 14는 도 13의 D 영역을 상세히 도시한 단면도이다.
도 15는 온도에 따른 열 변화(또는 점도 변화)를 보여주는 그래프이다.
도 16은 제2 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 17은 도 16의 E 영역을 상세히 도시한 단면도이다.
도 18은 제3 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도면들에 도시된 구성 요소들의 크기, 형상, 수치 등은 실제와 상이할 수 있다. 또한, 동일한 구성 요소들에 대해서 도면들 간에 서로 상이한 크기, 형상, 수치 등으로 도시되더라도, 이는 도면 상의 하나의 예시일 뿐이며, 동일한 구성 요소들에 대해서는 도면들 간에 서로 동일한 크기, 형상, 수치 등을 가질 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 '모듈' 및 '부'는 명세서 작성의 용이함이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것이며, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것은 아니다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 '상(on)'에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 다른 중간 요소가 존재할 수도 있는 것을 포함한다.
본 명세서에서 설명되는 디스플레이 장치에는 TV, 샤이니지, 휴대폰, 스마트 폰(smart phone), 자동차용 HUD(head-Up Display), 노트북 컴퓨터(laptop computer)용 백라이트 유닛, VR이나 AR용 디스플레이 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에도 적용될 수 있다.
이하 실시예에 따른 발광 소자 및 이를 포함하는 디스플레이 장치에 대해 설명한다.
도 2은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실을 도시한다.
도 2을 참조하면, 실시예의 디스플레이 장치(100)는 세탁기(101), 로봇 청소기(102), 공기 청정기(103) 등의 각종 전자 제품의 상태를 표시할 수 있고, 각 전자 제품들과 IOT 기반으로 통신할 수 있으며 사용자의 설정 데이터에 기초하여 각 전자 제품들을 제어할 수도 있다.
실시예에 따른 디스플레이 장치(100)는 얇고 유연한 기판 위에 제작되는 플렉서블 디스플레이(flexible display)를 포함할 수 있다. 플렉서블 디스플레이는 기존의 평판 디스플레이의 특성을 유지하면서, 종이와 같이 휘어지거나 말릴 수 있다.
플렉서블 디스플레이에서 시각정보는 매트릭스 형태로 배치되는 단위 화소(unit pixel)의 발광이 독자적으로 제어됨에 의하여 구현될 수 있다. 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다. 플렉서블 디스플레이의 단위 화소는 발광 소자에 의하여 구현될 수 있다. 실시예에서 발광 소자는 Micro-LED나 Nano-LED일 수 있으나 이에 한정되는 것은 아니다.
도 3는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이고, 도 4는 도 3의 화소의 일 예를 보여주는 회로도이다.
도 3 및 도 4를 참조하면, 실시예에 따른 디스플레이 장치는 디스플레이 패널(10), 구동 회로(20), 스캔 구동부(30) 및 전원 공급 회로(50)를 포함할 수 있다.
실시예의 디스플레이 장치(100)는 액티브 매트릭스(AM, Active Matrix)방식 또는 패시브 매트릭스(PM, Passive Matrix) 방식으로 발광 소자를 구동할 수 있다.
구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
디스플레이 패널(10)은 직사각형으로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. 즉, 디스플레이 패널(10)은 원형 또는 타원형으로 형성될 수 있다. 디스플레이 패널(10)의 적어도 일 측은 소정의 곡률로 구부러지도록 형성될 수 있다.
디스플레이 패널(10)은 표시 영역(DA)과 표시 영역(DA)의 주변에 배치된 비표시 영역(NDA)으로 구분될 수 있다. 표시 영역(DA)은 화소(PX)들이 형성되어 영상을 디스플레이하는 영역이다. 디스플레이 패널(10)은 데이터 배선들(D1~Dm, m은 2 이상의 정수), 데이터 배선들(D1~Dm)과 교차되는 스캔 라인들(S1~Sn, n은 2 이상의 정수), 고전위 전압이 공급되는 고전위 전압 라인(VDDL), 저전위 전압이 공급되는 저전위 전압 라인(VSSL) 및 데이터 배선들(D1~Dm)과 스캔 라인들(S1~Sn)에 접속된 화소(PX)들을 포함할 수 있다.
화소(PX)들 각각은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 제1 서브 화소(PX1)는 제1 주 파장의 제1 컬러 광을 발광하고, 제2 서브 화소(PX2)는 제2 주 파장의 제2 컬러 광을 발광하며, 제3 서브 화소(PX3)는 제3 주 파장의 제3 컬러 광을 발광할 수 있다. 제1 컬러 광은 적색 광, 제2 컬러 광은 녹색 광, 제3 컬러 광은 청색 광일 수 있으나, 이에 한정되지 않는다. 또한, 도 3에서는 화소(PX)들 각각이 3 개의 서브 화소들을 포함하는 것을 예시하였으나, 이에 한정되지 않는다. 즉, 화소(PX)들 각각은 4 개 이상의 서브 화소들을 포함할 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 데이터 배선들(D1~Dm) 중 적어도 하나, 스캔 라인들(S1~Sn) 중 적어도 하나 및 고전위 전압 라인(VDDL)에 접속될 수 있다. 제1 서브 화소(PX1)는 도 4과 같이 발광 소자(LD)들과 발광 소자(LD)들에 전류를 공급하기 위한 복수의 트랜지스터들과 적어도 하나의 커패시터(Cst)를 포함할 수 있다.
도면에 도시되지 않았지만, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 단지 하나의 발광 소자(LD)와 적어도 하나의 커패시터(Cst)를 포함할 수도 있다.
발광 소자(LD)들 각각은 제1 전극, 복수의 도전형 반도체층 및 제2 전극을 포함하는 반도체 발광 다이오드일 수 있다. 여기서, 제1 전극은 애노드 전극, 제2 전극은 캐소드 전극일 수 있지만, 이에 대해서는 한정하지 않는다.
발광 소자(LD)는 수평형 발광 소자, 플립칩형 발광 소자 및 수직형 발광 소자 중 하나일 수 있다.
복수의 트랜지스터들은 도 4와 같이 발광 소자(LD)들에 전류를 공급하는 구동 트랜지스터(DT), 구동 트랜지스터(DT)의 게이트 전극에 데이터 전압을 공급하는 스캔 트랜지스터(ST)를 포함할 수 있다. 구동 트랜지스터(DT)는 스캔 트랜지스터(ST)의 소스 전극에 접속되는 게이트 전극, 고전위 전압이 인가되는 고전위 전압 라인(VDDL)에 접속되는 소스 전극 및 발광 소자(LD)들의 제1 전극들에 접속되는 드레인 전극을 포함할 수 있다. 스캔 트랜지스터(ST)는 스캔 라인(Sk, k는 1≤k≤n을 만족하는 정수)에 접속되는 게이트 전극, 구동 트랜지스터(DT)의 게이트 전극에 접속되는 소스 전극 및 데이터 배선(Dj, j는 1≤j≤m을 만족하는 정수)에 접속되는 드레인 전극을 포함할 수 있다.
커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전극과 소스 전극 사이에 형성된다. 스토리지 커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전압과 소스 전압의 차이값을 충전한다.
구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 박막 트랜지스터(thin film transistor)로 형성될 수 있다. 또한, 도 4에서는 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)가 P 타입 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)으로 형성된 것을 중심으로 설명하였으나, 본 발명은 이에 한정되지 않는다. 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 N 타입 MOSFET으로 형성될 수도 있다. 이 경우, 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)들 각각의 소스 전극과 드레인 전극의 위치는 변경될 수 있다.
또한, 도 4에서는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각이 하나의 구동 트랜지스터(DT), 하나의 스캔 트랜지스터(ST) 및 하나의 커패시터(Cst)를 갖는 2T1C (2 Transistor - 1 capacitor)를 포함하는 것을 예시하였으나, 본 발명은 이에 한정되지 않는다. 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 복수의 스캔 트랜지스터(ST)들과 복수의 커패시터(Cst)들을 포함할 수 있다.
제2 서브 화소(PX2)와 제3 서브 화소(PX3)는 제1 서브 화소(PX1)와 실질적으로 동일한 회로도로 표현될 수 있으므로, 이들에 대한 자세한 설명은 생략한다.
구동 회로(20)는 디스플레이 패널(10)을 구동하기 위한 신호들과 전압들을 출력한다. 이를 위해, 구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
데이터 구동부(21)는 타이밍 제어부(22)로부터 디지털 비디오 데이터(DATA)와 소스 제어 신호(DCS)를 입력 받는다. 데이터 구동부(21)는 소스 제어 신호(DCS)에 따라 디지털 비디오 데이터(DATA)를 아날로그 데이터 전압들로 변환하여 디스플레이 패널(10)의 데이터 배선들(D1~Dm)에 공급한다.
타이밍 제어부(22)는 호스트 시스템으로부터 디지털 비디오 데이터(DATA)와 타이밍 신호들을 입력받는다. 타이밍 신호들은 수직동기신호(vertical sync signal), 수평동기신호(horizontal sync signal), 데이터 인에이블 신호(data enable signal) 및 도트 클럭(dot clock)을 포함할 수 있다. 호스트 시스템은 스마트폰 또는 태블릿 PC의 어플리케이션 프로세서, 모니터, TV의 시스템 온 칩 등일 수 있다.
타이밍 제어부(22)는 데이터 구동부(21)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 제어신호들을 생성한다. 제어신호들은 데이터 구동부(21)의 동작 타이밍을 제어하기 위한 소스 제어 신호(DCS)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 스캔 제어 신호(SCS)를 포함할 수 있다.
구동 회로(20)는 디스플레이 패널(10)의 일 측에 마련된 비표시 영역(NDA)에서 배치될 수 있다. 구동 회로(20)는 집적회로(integrated circuit, IC)로 형성되어 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착될 수 있으나, 본 발명은 이에 한정되지 않는다. 예를 들어, 구동 회로(20)는 디스플레이 패널(10)이 아닌 회로 보드(미도시) 상에 장착될 수 있다.
데이터 구동부(21)는 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착되고, 타이밍 제어부(22)는 회로 보드 상에 장착될 수 있다.
스캔 구동부(30)는 타이밍 제어부(22)로부터 스캔 제어 신호(SCS)를 입력 받는다. 스캔 구동부(30)는 스캔 제어 신호(SCS)에 따라 스캔 신호들을 생성하여 디스플레이 패널(10)의 스캔 라인들(S1~Sn)에 공급한다. 스캔 구동부(30)는 복수의 트랜지스터들을 포함하여 디스플레이 패널(10)의 비표시 영역(NDA)에 형성될 수 있다. 또는, 스캔 구동부(30)는 집적 회로로 형성될 수 있으며, 이 경우 디스플레이 패널(10)의 다른 일 측에 부착되는 게이트 연성 필름 상에 장착될 수 있다.
회로 보드는 이방성 도전 필름(anisotropic conductive film)을 이용하여 디스플레이 패널(10)의 일 측 가장자리에 마련된 패드들 상에 부착될 수 있다. 이로 인해, 회로 보드의 리드 라인들은 패드들에 전기적으로 연결될 수 있다. 회로 보드는 연성 인쇄 회로 보드(flexible printed circuit board), 인쇄 회로 보드(printed circuit board) 또는 칩온 필름(chip on film)과 같은 연성 필름(flexible film)일 수 있다. 회로 보드는 디스플레이 패널(10)의 하부로 벤딩(bending)될 수 있다. 이로 인해, 회로 보드의 일 측은 디스플레이 패널(10)의 일 측 가장자리에 부착되며, 타 측은 디스플레이 패널(10)의 하부에 배치되어 호스트 시스템이 장착되는 시스템 보드에 연결될 수 있다.
전원 공급 회로(50)는 시스템 보드로부터 인가되는 메인 전원으로부터 디스플레이 패널(10)의 구동에 필요한 전압들을 생성하여 디스플레이 패널(10)에 공급할 수 있다. 예를 들어, 전원 공급 회로(50)는 메인 전원으로부터 디스플레이 패널(10)의 발광 소자(LD)들을 구동하기 위한 고전위 전압(VDD)과 저전위 전압(VSS)을 생성하여 디스플레이 패널(10)의 고전위 전압 라인(VDDL)과 저전위 전압 라인(VSSL)에 공급할 수 있다. 또한, 전원 공급 회로(50)는 메인 전원으로부터 구동 회로(20)와 스캔 구동부(30)를 구동하기 위한 구동 전압들을 생성하여 공급할 수 있다.
도 5은 도3의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 5을 참조하면, 실시예의 디스플레이 장치(100)는 제1 패널영역(A1)과 같은 복수의 패널영역들이 타일링에 의해 기구적, 전기적 연결되어 제조될 수 있다.
제1 패널영역(A1)은 단위 화소(도 3의 PX) 별로 배치된 복수의 반도체 발광 소자(150)를 포함할 수 있다.
예컨대, 단위 화소(PX)는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 예컨대, 복수의 적색 반도체 발광 소자(150R)가 제1 서브 화소(PX1)에 배치되고, 복수의 녹색 반도체 발광 소자(150G)가 제2 서브 화소(PX2)에 배치되며, 복수의 청색 반도체 발광 소자(150B)가 제3 서브 화소(PX3)에 배치될 수 있다. 단위 화소(PX)는 반도체 발광 소자가 배치되지 않는 제4 서브 화소를 더 포함할 수도 있지만, 이에 대해서는 한정하지 않는다.
한편, 실시예는 복수의 반도체 발광 소자 각각의 패시베이션층에 형성된 복수의 홈에 제1 접착층이 배치되어 복수의 반도체 발광 소자와 제1 접착층이 분리되지 않음으로써, 고정성(또는 접착성이나 부착성)과 전기적 연결성을 강화할 수 있다.
이하에서 누락된 설명은 도 2 내지 도 5 및 해당 도면과 관련하여 상술된 설명으로부터 용이하게 이해될 수 있다.
이하에서 설명되는 디스플레이 장치는 스트레처블 디스플레이 장치일 수 있지만, 실시예는 다른 타입의 디스플레이 장치, 예컨대 리지드형 디스플레이 장치, 플렉서블 디스플레이 장치, 폴더블 디스플레이 장치, 롤러블 디스플레이 장치 등에도 동일하게 적용될 수 있다.
[제1 실시예]
도 6은 제1 실시예에 따른 디스플레이 장치의 단위 화소를 도시한 평면도이다.
도 6에는 단위 화소가 도시되고 있지만, 제1 실시예에 따른 디스플레이 장치에는 복수의 화소(PX)가 정의될 수 있다. 실시예에 따르면, 화소(PX) 상에 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 배치되고, 또한 제1 내지 제3 반도체 발광 소자(311, 312, 313)를 발광시키기 위한 회로부(도 7의 303)가 배치되므로, 화소(PX)에 대응하는 영역은 하드 영역(hard area) 또는 리지드(rigid) 영역(RA)으로 불릴 수 있다. 화소(PX)를 제외한 영역, 즉 화소(PX) 사이의 영역은 복수의 신호 배선(도 7의 304)만을 배치시켜, 최대한 연신성을 강화하므로, 소프트 영역(soft area, SA)으로 불릴 수 있다. 따라서, 제1 실시예에 따른 디스플레이 장치는 복수의 화소(PX) 각각을 제외한 나머지 영역은 모두 소프트 영역(SA)이고, 복수의 화소(PX) 각각에도 구성 요소를 최소화하거나 연신 특성을 갖는 재질로 형성함으로써, 스트레처블 디스플레이로 구현될 수 있다.
도 6을 참조하면, 화소(PX)에 복수의 신호 배선(304)이 전기적으로 연결될 수 있다.
화소(PX)는 제1 반도체 발광 소자(311), 제2 반도체 발광 소자(312) 및 제3 반도체 발광 소자(313)를 포함할 수 있다. 예컨대, 제1 반도체 발광 소자(311)는 적색 광을 발광하는 적색 반도체 발광 소자를 포함하고, 제2 반도체 발광 소자(312)는 녹색 광을 발광하는 녹색 반도체 발광 소자를 포함하며, 제3 반도체 발광 소자(313)는 청색 광을 발광하는 청색 반도체 발광 소자를 포함할 수 있다.
제1 내지 제3 반도체 발광 소자(311, 312, 313)는 반도체 물질, 예컨대 Ⅳ족 화합물 또는 III-V족 반도체 화합물로 형성될 수 있다.
신호 배선(304)은 예컨대, 게이트 배선(GL), 데이터 배선(DL), 제1 구동 전압 라인(DVL1) 및 제2 구동 전압 라인(DVL2)을 포함할 수 있고, 더 많은 배선이 구비될 수도 있다.
예컨대, 게이트 배선(GL), 제1 구동 전압 라인(DVL1) 및 제2 구동 전압 라인(DVL2)은 제1 방향을 따라 배치되고, 데이터 배선(DL)은 제2 방향을 따라 배치될 수 있다. 예컨대, 화소(PX)에서 데이터 배선(DL)은 게이트 배선(GL), 제1 구동 전압 라인(DVL1) 및 제2 구동 전압 라인(DVL2) 각각과 교차할 수 있다. 다시 말해, 게이트 배선(GL), 제1 구동 전압 라인(DVL1) 및 제2 구동 전압 라인(DVL2)은 제1 방향에서 화소(PX)에 전기적으로 연결되고, 데이터 배선(DL)은 제2 방향에서 화소(PX)에 전기적으로 연결될 수 있다.
복수의 신호 배선(304)은 전기 전도도가 우수한 금속으로 형성될 수 있다. 복수의 신호 배선(304)은 사로 상이한 금속을 포함하는 복수의 층을 포함할 수 있지만, 이에 대해서는 한정하지 않는다. 복수의 신호 배선(304)은 동일한 층 상에 형성될 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 소프트 영역(SA) 상의 복수의 신호 배선(304)은 동일한 층 상에 배치되고, 리지드 영역(RA) 상의 복수의 신호 배선(304)은 서로 상이한 층 상에 배치될 수 있다.
예컨대, 게이트 배선(GL)으로 공급된 스캔 신호에 의해 일 라인 분의 화소(PX)가 선택되고, 제1 구동 전압 라인(DVL1)에 의해 공급된 제1 구동 전압과 제2 구동 전압 라인(DVL2)에 의해 공급된 제2 구동 전압을 바탕으로 상기 선택된 일 라인 분의 화소(PX)에 데이터 배선(DL) 각각으로 공급된 데이터 전압에 대응하는 전류가 생성될 수 있다. 각 화소(PX)에서 생성된 서로 상이한 전류에 해당하는 휘도를 갖는 광이 제1 내지 제3 반도체 발광 소자(311, 312, 313)에서 발광될 수 있다. 따라서, 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에서 발광된 서로 상이한 컬러와 서로 상이한 휘도에 의해 고화질의 풀 컬러 영상이 구현될 수 있다.
제1 실시예에 따른 디스플레이 장치에서 소프트 영역(SA) 상에 배치된 복수의 신호 배선(304)은 꼬불꼬불한 형상을 가질 수 있다. 예컨대, 복수의 신호 배선(304) 각각의 길이는 인접한 화소(PX) 사이의 거리보다 클 수 있다. 이에 따라, 제1 기판(301)이 연신되더라도 그 연신되는 제1 기판(301)에 대응하여 연신 가능할 수 있다.
도 7은 제1 실시예에 따른 디스플레이 장치의 단위 화소를 도시한 단면도이다.
도 7을 참조하면, 제1 실시예에 따른 디스플레이 장치는 제1 기판(301) 및 회로부(303) 및 복수의 제1 내지 제3 반도체 발광 소자(311, 312, 313)를 포함할 수 있다.
제1 기판(301)은 디스플레이 장치의 전체적인 지지를 담당하며, 또한 연신 특성을 갖는 재질로 이루어져 사방으로 늘어날 수 있다. 제1 기판(301)은 연신 특성을 갖는 재질로 형성될 수 있다. 예컨대, 제1 기판(301)은 폴리메탈실록산(PDMS: polydimethylsiloxane)과 같은 실리콘 고무(Silicon Rubber), 폴리우레탄(polyurethane; PU) 등의 탄성중합체(elastomer)로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다.
예컨대, 제1 기판(301)은 연신 특성을 강화하기 위해, 얇은 두께 예컨대, 10㎛ 내지 1mm일 수 있지만, 이에 대해서는 한정하지 않는다.
회로부(303)는 화소(PX)에 배치될 수 있다. 회로부(303)는 반도체 공정을 이용하여 형성될 수 있다. 회로부(303)터는 복수의 신호 배선(304) 및 제1 내지 제3 반도체 발광 소자(311, 312, 313)와 전기적으로 연결되어, 복수의 신호 배선(304)으로 공급된 신호를 이용하여 제1 내지 제3 반도체 발광 소자(311, 312, 313)의 발광을 제어할 수 있다. 예컨대, 회로부(303)는 적어도 2개 이상의 트랜지스터 및 적어도 하나의 커패시터를 포함할 수 있다. 예컨대, 트랜지스터는 스캔 트랜지스터(도 4의 ST) 및 구동 트랜지스터(도 4의 DT)를 포함하거나 이보다 더 많은 트랜지스터를 포함할 수 있다.
실시예에 따르면, 회로부(303) 상에 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 배치되어, 화소(PX)의 사이즈를 최소화할 수 있다.
회로부(303)가 간략히 도시되었지만, 회로부(303)의 최상층은 절연층(미도시)일 수 있고, 이 절연층 상에 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 배치될 수 있다. 절연층을 통해 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각의 하측에 전기적으로 연결되거나, 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각의 상측에 전기적으로 연결되거나, 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각의 하측 및 상측에 전기적으로 연결될 수 있다.
회로부(303)의 최상층인 절연층은 제1 전극 배선(321)과 제2 전극 배선(322)을 용이하게 형성하기 위해 그 상면이 평평한 평탄화층일 수 있지만, 이에 대해서는 한정하지 않는다.
제1 실시예에 따른 디스플레이 장치는 회로부(303) 상에 배치된 제1 절연층(306)을 포함할 수 있다.
제1 절연층(306)은 무기 물질 또는 유기 물질로 형성될 수 있다. 제1 절연층(306)은 화소(PX)에만 형성될 수 있다. 즉, 최대한 스트레처블 특성을 강화하기 위해, 제1 절연층(306)은 리지드 영역(RA)에 형성되고, 소프트 영역(SA)에는 형성되지 않을 수 있다.
예컨대, 제1 내지 제3 반도체 발광 소자(311, 312, 313)는 순차적으로 제1 절연층(306)에 삽입되거나 동시에 삽입될 수 있다.
일 예로서, 회로부(303) 상에 액상의 절연 부재가 형성되고, 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 가압됨으로써, 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 절연 부재 내부로 삽입될 수 있다. 이후, 액상의 절연 부재가 경화되어 고상의 절연 부재가 될 수 있다.
다른 예로서, 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에 대응하는 홈(또는 홀)이 구비된 절연층이 회로부(303) 상에 형성되고, 절연층의 각 홈에 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 삽입 및 고정될 수 있다. 예컨대, 자석에 의한 자기장과 유전영동힘을 이용한 자가 조립 방식을 이용하여 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 절연층의 각 홈에 삽입될 수 있다.
이외 다른 다양한 방식을 이용하여 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 제1 절연층(306)에 삽입될 수 있다.
제1 내지 제3 반도체 발광 소자(311, 312, 313)는 제1 절연층(306)에 의해 둘러싸이고, 이와 같이 둘러싸인 제1 절연층(306)에 의해 제1 내지 제3 반도체 발광 소자(311, 312, 313)는 서로 이격되거나 서로 간의 광의 혼색이 방지될 수 있다. 이를 위해, 제1 절연층(306)은 광을 차단하는 광 차단 물질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
제1 실시예에 따른 디스플레이 장치는 회로부(303) 상에 배치된 쌍으로 이루어진 제1 전극 배선(321) 및 제2 전극 배선(322)을 포함할 수 있다.
제1 내지 제3 반도체 발광 소자(311, 312, 313)가 제1 절연층(306)에 삽입될 때, 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 각각의 하측이 제1 전극 배선(321) 및 제2 전극 배선(322)에 전기적으로 연결될 수 있다. 예컨대, 제1 전극 배선(321)은 제1 구동 전압 라인(DVL1)에 전기적을 연결되고, 제2 전극 배선(322)은 제2 구동 전압 라인(DVL2)에 전기적으로 연결될 수 있다.
일 예로서, 제1 전극 배선(321)과 제1 구동 전압 라인(DVL1)이 일체로 형성되고, 제2 전극 배선(322)이 제2 구동 전압 라인(DVL2)과 일체로 형성될 수 있다. 다른 예로서, 제1 전극과 제1 구동 전압 라인(DVL1)은 서로 상이한 금속으로 형성되고, 제2 전극 배선(322)과 제2 구동 전압 라인(DVL2)은 서로 상이한 금속으로 형성될 수 있다.
제1 실시예에 따른 디스플레이 장치는 제1 접착층(1540)을 포함할 수 있다.
제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각과 회로부(303) 사이에 배치될 수 있다.
제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각의 전기적 연결과 고정을 담당할 수 있다.
일 예로서, 제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각을 제1 전극 배선(321) 및 제2 전극 배선(322)에 전기적으로 연결할 수 있다. 예컨대, 제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각과 제1 전극 배선(321) 및 제2 전극 배선(322) 사이에 배치될 수 있다.
제1 접착층(1540)은 전도성을 가질 수 있다. 이를 위해, 제1 접착층(1540)은 도전볼(1541)이나 전도성 입자를 포함할 수 있다. 도전볼(1541)의 상측은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각의 하측에 접할 수 있다. 도전볼(1541)의 하측은 제1 전극 배선(321) 또는 제2 전극 배선(322)에 접할 수 있다. 예컨대, 도전볼(1541)은 제1 전극 배선(321) 및 제2 전극 배선(322) 상에만 배치될 수 있다. 예컨대, 도전볼(1541)은 제1 전극 배선(321)과 제2 전극 배선(322) 사이에 배치될 수 있다. 도전볼(1541)은 수평 방향을 따라 서로 접하지 않을 수 있다. 따라서, 도전볼(1541)이 제1 전극 배선(321)과 제2 전극 배선(322) 사이에 배치되더라도, 도전볼(1541)에 의해 제1 전극 배선(321)가 제2 전극 배선(322)이 전기적으로 쇼트되지 않는다.
다른 예로서, 제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각을 제1 전극 배선(321), 제2 전극 배선(322) 및/또는 회로부(303)에 고정시킬 수 있다. 이를 위해, 제1 접착층(1540)은 절연성을 갖는 접착 물질을 포함할 수 있다.
나중에 설명하겠지만, 제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에 포함될 수 있지만, 이에 대해서는 한정하지 않는다.
제1 실시예에 따른 디스플레이 장치는 제2 기판(302)를 포함할 수 있다. 제2 기판(302)는 강성 재질로 형성될 수 있다. 예컨대, 제2 기판(302)은 폴리이미드(polyimide; PI), 폴리아크릴레이트(polyacrylate), 폴리아세테이트(polyacetate) 등으로 이루어질 수 있다.
예컨대, 제1 기판(301)은 연성 기판, 연신 기판, 소프트 기판, 스트레처블 기판으로 명명하고, 제2 기판(302)은 강성 기판, 리지드 기판으로 명명할 수 있다.
제2 기판(302)은 화소(PX)에 대응하는 리지드 영역(RA)에 형성되고, 소프트 영역(SA)에 형성되지 않을 수 있다. 제2 기판(302)은 회로부(303) 및 제1 내지 제3 반도체 발광 소자(311, 312, 313)를 지지하는 역할을 할 수 있다.
제1 기판(301)이 충분히 지지 역할을 수행하는 경우 제1 기판(301)은 생략되고, 회로부(303)가 제1 기판(301) 상에 형성될 수 있다.
제1 실시예에 따른 디스플레이 장치는 제2 절연층(307)을 포함할 수 있다. 제2 절연층(307)은 유기 물질로 형성될 수 있지만, 이에 대해서는 한정하지 않는다. 제2 절연층(307)은 연신 특성을 갖는 재질로 형성될 수 있다.
제2 절연층(307)은 제1 기판(301) 상에 배치될 수 있다. 제2 절연층(307)은 복수의 제1 내지 제3 반도체 발광 소자(311, 312, 313) 상에 배치될 수 있다.
제2 절연층(307)은 제1 내지 제3 반도체 발광 소자(311, 312, 313), 회로부(303) 및/또는 신호 라인을 외부의 환경으로부터 보호할 수 있다. 즉, 제2 절연층(307)은 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 수분, 열 등에 노출되지 않도록 하며, 외부의 충격으로부터 보호할 수 있다. 또한, 제2 절연층(307)은 수분에 의해 신호 라인이 부식되지 않도록 할 수 있다.
제2 절연층(307)은 기판, 몰딩부, 몰딩 부재 등으로 불릴 수 있다.
이하에서 실시예의 반도체 발광 소자(313)를 설명한다. 설명의 편의를 위해, 도 8 및 도 9에는 제3 반도체 발광 소자(313)가 도시되고 있지만, 제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312) 각각은 제3 반도체 발광 소자(313)와 동일한 구조 및/또는 형상을 가지므로, 도 9에 도시된 제3 반도체 발광 소자(313)로부터 용이하게 이해될 수 있다.
도 8은 실시예의 반도체 발광 소자를 도시한 단면도이다. 도 9는 실시예의 반도체 발광 소자를 도시한 배면도이다.
도 8 및 도 9를 참조하면, 실시예의 제3 반도체 발광 소자(313)는 발광층(1510), 패시베이션층(1520) 및 제1 접착층(1540)을 포함할 수 있다. 패시베이션층(1520)은 보호층, 절연층 등으로 불릴 수 있다.
발광층(1510)은 제1 도전형 반도체층(1511), 활성층(1512) 및 제2 도전형 반도체층(1513)을 포함할 수 있다. 제1 도전형 반도체층(1511), 활성층(1512) 및 제2 도전형 반도체층(1513)은 MOCVD와 같은 증착 장비를 이용하여 웨이퍼(도 16의 411) 상에서 순차적으로 성장될 수 있다.
제1 도전형 반도체층(1511)은 제1 도전형 도펀트를 포함하고, 제2 도전형 반도체층(1513)은 제2 도전형 도펀트를 포함할 수 있다. 예컨대, 제1 도전형 도펀트는 실리콘(Si)과 같은 n형 도펀트이고, 제2 도전형 도펀트는 보론(B)과 같은 p형 도펀트일 수 있다.
패시베이션층(1520)은 발광층(1510)을 보호할 수 있다. 패시베이션층(1520)은 발광층(1510)의 측면에 누설 전류가 흐르지 않도록 할 수 있다. 패시베이션층(1520)은 절연 물질, 예컨대 SiOx나 SiNx 등을 형성될 수 있지만, 이에 대해서는 한정하지 않는다.
예컨대, MOCVD 장비를 이용하여 발광층(1510)이 성장된 후, 식각 공정을 이용하여 제2 도전형 반도체층(1513), 활성층(1512) 및 제1 도전형 반도체층(1511)의 순서로 식각될 수 있다. 이후, 제1 도전형 반도체층(1511)의 측면 일부를 제외한 나머지 영역, 즉 제1 도전형 반도체층(1511)의 측면의 다른 일부, 활성층(1512)의 측면 및 제2 도전형 반도체층(1513)의 측면 둘레를 따라 패시베이션층(1520)이 형성될 수 있다.
실시예에 따르면, 패시베이션층(1520)은 복수의 홈(1521)을 포함할 수 있다. 또한, 패시베이션층(1520)은 도 14에 도시한 바와 같이, DBR층을 포함할 수 있지만, 이에 대해서는 한정하지 않는다.
예컨대, 패시베이션층(1520)은 서로 적층된 복수의 제1 매질층(1521a, 1521b)과 복수의 제2 매질층(1522a, 1522b)를 포함할 수 있다. 제1 매질층(1521a, 1521b)은 제1 굴절율을 가지고, 제2 매질층(1522a, 1522b)은 제1 굴절율과 상이한 제2 굴절율을 가질 수 있다.
또한, 패시베이션층(1520)은 제3 매질층(15230)을 포함할 수 있다. 제3 매질층(15230)은 발광층(1510) 상에 배치되고, 복수의 제1 매질층(1521a, 1521b)과 복수의 제2 매질층(1522a, 1522b)은 제3 매질층(15230) 상에 배치될 수 있다. 즉, 제3 매질층(15230)은 발광층(1510)과 제1 매질층(1521a, 1521b) 사이 또는 발광층(1510)과 제2 매질층(1522a, 1522b) 사이에 배치될 수 있다. 예컨대, 제3 매질층(15230)은 발광층(1510)의 표면에 접할 수 있다. 예컨대, 제3 매질층(15230)은 발광층(1510)을 둘러쌀 수 있다.
제3 매질층(15230)은 발광층(1510)이 복수의 홈(1521)에 노출되지 않도록 하여, 복수의 홈(1521)에 배치된 제1 접착층(1540)의 도전볼(1541)에 발광층(1510)이 접하지 않도록 할 수 있다.
제1 매질층(1521a, 1521b), 제2 매질층(1522a, 1522b) 및 제3 매질층(15230)은 절연 특성을 갖는 무기 물질로 이루어질 수 있다. 제1 매질층(1521a, 1521b), 제2 매질층(1522a, 1522b) 및 제3 매질층(15230) 각각은 예컨대, SiOx, SiNx, TiOx, AlxOy 등으로부터 선택된 적어도 하나를 포함할 수 있다. 예컨대, 제3 매질층(15230)은 제1 매질층(1521a, 1521b) 또는 제2 매질층(1522a, 1522b)의 물질과 동일한 물질 또는 상이한 물질을 포함할 수 있다.
예컨대, 복수의 홈(1521)은 제1 매질층(1521a, 1521b) 및 제2 매질층(1522a, 1522b)에 형성되고, 제3 매질층(15230)에는 형성되지 않을 수 있다. 이를 위해, 제3 매질층(15230)은 복수의 홈(1521)을 형성하기 위해 사용된 습식 식각용 식각액에 반응하지 않는 재질로 이루어진 스토퍼(stopper)층일 수 있다.
도 10 내지 도 12를 참조하여 패시베이션층(1520)에 복수의 홈(1521)을 형성하는 방법을 설명한다.
도 10에 도시한 바와 같이, 발광층(1510) 상에 제3 매질층(15230)이 형성되고, 제3 매질층(15230) 상에 복수의 제1 매질층(1521a, 1521b, 1521c)과 복수의 제2 매질층(1522a, 1522b, 1522c)이 교대로 형성될 수 있다. 이후, 최상층, 예컨대 제1 매질층(1521a, 1521b, 1521c) 상에 마스크막이 형성된 후 패터닝되어 마스크층(1600)이 형성될 수 있다.
도 11에 도시한 바와 같이, 습식 식각용 식각액을 이용하여 습식 식각이 수행될 수 있다. 이때, 제1 매질층(1521a, 1521b, 1521c)과 제2 매질층(1522a, 1522b, 1522c)은 습식 식각용 식각액에 대한 선택도(selectivity)가 상이할 수 있다. 예컨대, 제1 매질층(1521a, 1521b, 1521c)보다는 제2 매질층(1522a, 1522b, 1522c)이 습식 식각용 식각액에 더 잘 식각될 수 있다. 한편, 제3 매질층(15230)은 습식 식각용 식각액에 반응되지 않는 스토퍼층일 수 있다.
따라서, 도 12에 도시한 바와 같이, 습식 식각용 식각액에 의해 마스크층(1600)의 패턴 사이에 노출된 제1 매질층(1521a)부터 제2 매질층(1522a), 제1 매질층(1521b), 제2 매질층(1522b), 제1 매질층(1521c) 및 제2 매질층(1522c)의 순서로 제거됨으로써, 복수의 홈(1521)이 형성될 수 있다. 제2 매질층(1522a, 1522b, 1522c)이 제1 매질층(1521a, 1521b, 1521c)에 비해 습식 식각용 식각액에 대한 선택도가 높아 더욱 더 제거가 용이하므로, 제1 매질층(1521a, 1521b, 1521c)에 형성된 홈, 즉 제1 홈의 폭보다 제2 매질층(1522a, 1522b, 1522c)에 형성된 홈, 즉 제2 홈의 폭이 더 클 수 있다.
다른 실시예로서, 제1 매질층(1521a, 1521b, 1521c)과 제2 매질층(1522a, 1522b, 1522c) 모두 습식 식각용 식각액에 대한 선택도가 동일할 수 있다. 이러한 경우, 제1 매질층(1521a, 1521b, 1521c) 및 제2 매질층(1522a, 1522b, 1522c) 각각의 홈의 폭이 동일하거나 비슷할 수 있다.
한편, 제1 매질층(1521a, 1521b, 1521c) 및 제2 매질층(1522a, 1522b, 1522c) 각각의 위치에 따라 습식 식각용 식각액에 노출되는 시간이 상이하므로, 패시베이션층(1520)의 수직 방향으로의 위치에 따라 복수의 홈(1521)의 위치가 상이할 수 있다. 예컨대, 습식 식각용 식각액에 오래 노출된 패시베이션층(1520)의 상측의 홈(1521)은 비교적 크고, 습식 식각용 식각액에 보다 적게 노출된 패시베이션층(1520)의 하측의 홈(1521)은 비교적 작을 수 있다. 즉, 패시베이션의 상측에서 하측으로 갈수록 폭이 선형적으로 감소할 수 있지만, 이에 대해서는 한정하지 않는다.
이상에서는 복수의 홈(1521)이 습식 식각을 이용하여 형성됨을 설명하고 있지만, 건식 식각을 이용하여 형성될 수도 있다. 건식 식각을 이용하는 경우, 복수의 홈(1521) 각각은 수직 방향을 따라 형성되고, 제1 매질층(1521a, 1521b, 1521c) 및 제2 매질층(1522a, 1522b, 1522c) 각각의 홈(1521)의 폭은 서로 동일하거나 유사할 수 있다.
한편, 실시예의 제3 반도체 발광 소자(313)는 제1 전극(1531) 및 제2 전극(1532)을 포함할 수 있다. 제1 전극(1531) 및 제2 전극(1532)은 데이터 전압에 대응하는 전류가 발광층(1510)에 흐르도록 할 수 있다. 이를 위해, 도 7에 도시한 바와 같이, 제1 전극(1531)은 제1 전극 배선(321)과 전기적으로 연결되고, 제2 전극(1532)은 제2 전극 배선(322)과 전기적으로 연결될 수 있다.
실시예에 따르면, 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)는 제1 전극(1531) 및 제2 전극(1532)이 동일 방향을 향해 배치되는 플립칩형 반도체 발광 소자 또는 수평형 반도체 발광 소자일 수 있다.
한편, 제1 접착층(1540)은 상술한 바와 같이, 제3 반도체 발광 소자(313)를 회로부(303)나 제1 전극 배선(321) 및 제2 전극 배선(322)과 본딩할 수 있다. 즉, 제1 접착층(1540)은 제3 반도체 발광 소자(313)를 제1 전극 배선(321) 및 제2 전극 배선(322)에 전기적으로 연결시키고 물리적으로 공정시킬 수 있다.
이를 위해, 제1 접착층(1540)은 접착 물질로 형성될 수 있다. 또한, 제1 접착층(1540)은 도전볼(1541)을 포함할 수 있다. 예컨대, 제1 접착층(1540)은 ACF(anisotropic conductive film)나 ACP(anisotropic conductive paste)를 이용하여 형성될 수 있다.
ACF나 ACP는 절연성 수지재로 형성될 수 있다. 절연성 수지 바인더로는 열중합성 조성물, 광중합성 조성물, 광열 병용 중합성 조성물 등을 적절히 선택하여 사용할 수 있다.
열중합성 조성물로는, 아크릴레이트 화합물과 열라디칼 중합 개시제를 포함하는 열라디칼 중합성 수지 조성물, 에폭시 화합물과 열카티온 중합 개시제를 포함하는 열카티온 중합성 수지 조성물, 에폭시 화합물과 열아니온 중합 개시제를 포함하는 열아니온 중합성 수지 조성물 등을 들 수 있다. 광중합성 조성물로는, 아크릴레이트 화합물과 광라디칼 중합 개시제를 포함하는 광라디칼 중합성 수지 조성물 등을 들 수 있다.
광중합 개시제로는 파장이 상이한 광에 반응하는 복수 종류를 함유시켜도 된다. 이로써, ACF나 ACP의 제조 시에 있어서의, 절연성 수지층을 구성하는 수지의 광경화와, 이방성 접속 시에 전자 부품끼리를 접착하기 위한 수지의 광경화에서 사용하는 파장을 구분하여 사용할 수 있다.
절연성 수지 바인더를 광중합성 조성물을 사용하여 형성하는 경우에, ACF나 ACP의 제조 시의 광경화에 의해, 절연성 수지 바인더에 포함되는 광중합성 화합물의 전부 또는 일부를 광경화시킬 수 있다. 이 광경화에 의해, 절연성 수지 바인더에 있어서의 도전볼의 배치가 유지 내지 고정화되어, 쇼트의 억제가 향상될 수 있다. 또한, 이 광경화의 조건을 조정함으로써, ACF나 ACP의 제조 공정에 있어서의 절연성 수지층의 점도를 조정할 수 있다.
실시예에 따르면, 제1 접착층(1540)은 제3 반도체 발광 소자(313)에 포함될 수 있다. 즉, 제1 접착층(1540)이 패시베이션층(1520) 상에 형성될 수 있다.
제1 접착층(1540)은 패시베이션층(1520) 상에 형성하는 방법은 도전볼(1541)이 포함된 ACF나 ACP를 이용하거나 nPAC(negative photo active compound)의 UV 조사에 따른 경화 차이를 이용할 수 있다.
ACF나 ACP를 이용하는 경우, B-stage 상태의 필름을 사용하며 특정 온도에서 점도가 낮아지다 더 온도가 올라가면 점도가 급격하게 높아져 경화되는 특성을 이용할 수 있다. B-stage는 보통 가경화 상태를 말하며, 도 15에 도시한 바와 같이, 특정온도 Tg(변화 전이점)에서 형상변화가 급격하게 일어나는 특징이 있다. ACF와 같은 B-stage 물질의 경우, 온도가 높아짐에 따라 점도가 낮아지고, 특정온도 Tg 이상으로 올라가면 점도가 급격하게 올라가 해당 물질이 경화된다.
따라서, 온도가 높아져 점도가 낮아질 때, 제1 접착층(1540)이 녹아 패시베이션층(1520)의 복수의 홈(1521)으로 침투되거나 삽입될 수 있다. 이후, 온도가 특정온도 Tg 이상으로 올라감으로써, 점도도 올라가 제1 접착층(1540)이 경화될 수 있다. 예컨대, 제1 접착층(1540)은 반 경화 상태로서, 제1 접착층(1540) 내의 도전볼(1541)이 압력에 의해 위치 이동될 수 있다.
제1 접착층(1540)은 패시베이션층(1520) 상뿐만 아니라 복수의 홈(1521)에도 배치될 수 있다. 특히, 복수의 홈(1521)이 제1 매질층(1521a, 1521b) 및 제2 매질층(1522a, 1522b)에서 서로 상이한 폭을 가지고, 이와 같이 서로 상이한 폭을 갖는 제1 매질층(1521a, 1521b) 및 제2 매질층(1522a, 1522b) 각각의 홈(1521)에 제1 접착층(1540)이 형성됨으로써, 제1 접착층(1540)이 패시베이션에 단단하게 고정될 수 있다.
즉, 복수의 홈(1521) 각각이 생선 뼈(fish bone) 형상을 가지므로, 제1 접착층(1540)이 패시베이션층(1520)의 복수의 홈(1521) 각각에 의해 걸림 고정됨으로써, 제1 접착층(1540)이 패시베이션층(1520)과 분리되지 않아 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)와 제1 기판(301) 간의 고정성이 향상될 수 있다.
또한, 제1 접착층(1540)이 패시베이션층(1520)과 분리되지 않으므로, 제1 접착층(1540)에 의해 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 제1 배선 및 제2 배선에 단선 없이 전기적으로 연결되어 제1 내지 제3 반도체 발광 소자(311, 312, 313)의 점등 불량이나 휘도 저하를 방지할 수 있다.
한편, 도 13 및 도 14에 도시한 바와 같이, 제3 반도체 발광 소자(313)가 제1 접착층(1540)을 매개로 하여 제1 기판(301) 상의 제1 전극 배선(321) 및 제2 전극 배선(322)에 본딩될 수 있다.
제1 절연층(306)이 회로부(303) 상에 배치될 수 있다. 제1 절연층(306)은 열에 의해 녹는 접착 물질일 수 있지만, 이에 대해서는 한정하지 않는다.
제3 반도체 발광 소자(313)의 제1 전극(1531) 및 제2 전극(1532)이 제1 기판(301) 상의 제1 전극 배선(321) 및 제2 전극 배선(322)을 향하도록 위치된 후, 열을 가해 제1 절연층(306)을 녹이고 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)에 압력을 가해 제3 반도체 발광 소자(313)가 제1 전극 배선(321) 및 제2 전극 배선(322)으로 밀착될 수 있다. 즉, 제3 반도체 발광 소자(313)가 제1 절연층(306)을 통해 제1 전극 배선(321) 및 제2 전극 배선(322)으로 밀착될 수 있다. 이와 같이 밀착된 상태에서 제1 절연층(306)이 경화됨으로써, 제3 반도체 발광 소자(313)가 제1 절연층(306) 내에 고정될 수 있다. 압력에 의해 제1 접착층(1540)이 발광층(1510)과 제1 전극 배선(321) 및 제2 전극 배선(322) 사이에서 눌려짐으로써, 제1 접착층(1540) 내의 도전볼(1541)의 상측이 반도체 발광 소자의 제1 전극(1531) 또는 제2 전극(1532)에 접하고, 제1 접착층(1540) 내의 도전볼(1541)의 하측이 제1 전극 배선(321) 또는 제2 전극 배선(322)에 접할 수 있다. 예컨대, 제1 절연층(306)이 경화될 때, 제1 접착층(1540)도 경화되어, 도전볼(1541)이 반도체 발광 소자의 제1 전극(1531) 또는 제2 전극(1532) 그리고 제1 전극 배선(321) 또는 제2 전극 배선(322)과의 접촉 상태가 유지될 수 있다.
한편, 제1 접착층(1540)과 제1 전극 배선(321) 및 제2 전극 배선(322) 사이에 제1 절연층(306)이 배치되고, 이 제1 절연층(306)에 도전볼(1541)이 위치될 수 있다. 즉, 도전볼(1541)이 서로 상이한 부재에 동시에 위치됨으로써, 도전볼(1541)의 고정성이 강화되어 도전볼(1541)이 팽창하려는 힘을 억제하여 줄 수 있다. 예컨대, 도전볼(1541)의 일부는 제1 접착층(1540)에 고정되고, 도전볼(1541)의 다른 일부는 제1 절연층(306)에 고정될 수 있다.
다른 실시예로서, 제3 반도체 발광 소자(313)와 회로부(303) 사이에 제1 절연층(306)이 배치되지 않고, 제3 반도체 발광 소자(313)의 둘레에만 배치될 수도 있지만, 이에 대해서는 한정하지 않는다.
도 14에는 2개의 제1 매질층(1521a, 1521b)와 2개의 제2 매질층(1522a, 1522b)가 도시되고 있지만, 도 도 12에 도시한 바와 같이 3개의 제1 매질층(1521a, 1521b, 1521c)와 2개의 제2 매질층(1522a, 1522b, 1522c) 또는 그 이상의 개수를 갖는 제1 매질층 및 제2 매질층을 가질 수도 있다.
도 14에 도시한 바와 같이, 복수의 홈(1521) 각각은 복수의 제1 매질층(1521a, 1521b) 각각에 형성된 제1 홈(1521_1)과 복수의 제2 매질층(1522a, 1522b) 각각에 형성된 제2 홈(1521_2)을 포함할 수 있다. 제1 홈(1521_1)의 제1 폭(W1)과 제2 홈(1521_2)의 제2 폭(W2)는 상이할 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 제2 홈(1521_2)의 제2 폭(W2)은 제1 홈(1521_1)의 제1 폭(W1)보다 클 수 있다.
제1 접착층(1540)은 제1-1 접착층(1540_1), 제1-2 접착층(1540_2) 및 제1-3 접착층(1540_3)을 포함할 수 있다. 예컨대, 제1-1 접착층(1540_1)은 제1 홈(1521_1)에 배치되고, 제1-2 접착층(1540_2)은 제2 홈(1521_2)에 배치되며, 제1-3 접착층(1540_3)은 패시베이션층(1520) 상에 배치될 수 있다.
제2 홈(1521_2)의 제2 폭(W2)이 제1 홈(1521_1)의 제1 폭(W1)보다 크므로, 제1-2 접착층(1540_2)의 폭 또한 제1-1 접착층(1540_1)의 폭보다 클 수 있다. 이러한 경우, 제1-2 접착층(1540_2)은 제1 영역과 제2 영역을 가지는데, 제1 영역은 제1-1 접착층(1540_1)과 수직으로 접하고, 제2 영역은 제1 매질층(1521a, 1521b)의 일부와 수직으로 중첩될 수 있다. 예컨대, 제1-2 접착층(1540_2)의 제1 영역은 제1-1 접착층(1540_1)으로부터 상부 방향 또는 하부 방향으로 연장된 영역일 수 있다. 예컨대, 제1-2 접착층(1540_2)의 제2 영역은 제1 영역으로부터 양측 방향으로 연장된 영역으로서, 수직으로 제1 매질층(1521a, 1521b)의 하면 또는 상면과 접할 수 있다. 한편, 제1-1 접착층(1540_1)의 측면은 제1 매질층(1521a, 1521b)의 측면과 접할 수 있다.
한편, 이상에서는 제1 접착층(1540)이 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에 포함되는 것으로 설명하였지만, 제1 접착층(1540)은 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각과 독립적으로 구비될 수도 있다.
구체적으로, 본딩 공정을 수행할 때, 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에 제1 접착층(1540)이 부착될 수 있다. 이때, 제1 접착층(1540)은 필름이나 시트 형태로서 일측에 점착 물질이 도포되어, 이 점착 물질을 매개로 하여 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각에 부착될 수 있다. 이후, 제1 접착층(1540)이 부착된 제1 내지 제3 반도체 발광 소자(311, 312, 313)가 제1 절연층(306) 상에서 복수의 화소(PX) 각각의 각 서브 화소에 위치될 수 있다. 이후 열 압착에 의해 제1 접착층(1540) 및 제1 절연층(306)이 녹아 제1 내지 제3 반도체 발광 소자(311, 312, 313) 각각이 제1 절연층(306)을 통해 제1 전극 배선(321) 및 제2 전극 배선(322)으로 밀착될 수 있다. 이때, 제1 접착층(1540)의 도전볼(1541) 또한 가압되어 제1 내지 제3 반도체 발광 소자(311, 312, 313)의 제1 전극(1531) 또는 제2 전극(1532) 그리고 제1 전극 배선(321) 또는 제2 전극 배선(322)과 접할 수 있다. 이후 경화 공정이 수행됨으로써, 제1 접착층(1540) 및 제1 절연층(306)이 경화되고, 도전볼(1541) 또한 반도체 발광 소자와 제1 전극 배선(321) 및 제2 전극 배선(322)과의 접촉 및 전기적 연결을 유지할 수 있다.
[제2 실시예]
도 16은 제2 실시예에 따른 디스플레이 장치를 도시한 단면도이다. 도 17은 도 16의 E 영역을 상세히 도시한 단면도이다.
제2 실시예는 제2 접착층(1550)과 반사 입자(1543)을 제외하고 제1 실시예와 동일하다. 제2 실시예에서 제1 실시예와 동일한 형상, 구조 및/또는 기능을 갖는 도면 부호에 대해 동일한 도면 부호를 부여하고 상세한 설명을 생략한다.
도 16 및 도 17에 도시한 바와 같이, 제1 절연층(306) 내에 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 배치되고, 제1 접착층(1540) 및 제2 접착층(1550)이 제3 반도체 발광 소자(313)와 제1 전극 배선(321) 및 제2 전극 배선(322) 사이에 배치될 수 있다.
제1 접착층(1540)은 제3 반도체 발광 소자(313)의 패시베이션층(1520) 상에 배치될 수 있다. 예컨대, 패시베이션층(1520)의 표면 상에 배치될 뿐만 아니라 복수의 홈(1521)에도 배치될 수 있다.
복수의 홈(1521) 각각이 생선 뼈(fish bone) 형상을 가지므로, 제1 접착층(1540)이 패시베이션층(1520)의 복수의 홈(1521) 각각에 의해 걸림 고정됨으로써, 제1 접착층(1540)이 패시베이션층(1520)과 분리되지 않아 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)와 제1 기판(301) 간의 고정성이 향상될 수 있다.
또한, 제1 접착층(1540)이 패시베이션층(1520)과 분리되지 않으므로, 제1 접착층(1540)에 의해 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 제1 배선 및 제2 배선에 단선 없이 전기적으로 연결되어 제1 내지 제3 반도체 발광 소자(311, 312, 313)의 점등 불량이나 휘도 저하를 방지할 수 있다.
제1 접착층(1540)은 반사 입자(1543)를 포함할 수 있다. 즉, 반사 입자(1543)가 제1 접착층(1540) 상에 분산될 수 있다. 반사 입자(1543)는 금속으로 이루어질 수 있다. 반사 입자(1543)는 산란 입자, 광 확산 입자, 광 추출 입자 등으로 불릴 수 있다. 따라서, 제3 반도체 발광 소자(313)에서 하부 방향으로 진행된 광이 제1 접착층(1540)의 반사 입자(1543)에 의해 상부 방향이나 랜덤한 방향으로 반사됨으로써, 전방으로 보다 많은 광량을 출사시켜 휘도를 향상시킬 수 있다.
제2 접착층(1550)은 제1 접착층(1540) 상에 배치될 수 있다. 제2 접착층(1550)은 제1 접착층(1540)과 제1 전극 배선(321) 및 제2 전극 배선(322) 사이에 배치될 수 있다. 제2 접착층(1550)은 도전볼(1541)을 포함할 수 있다. 제2 접착층(1550)의 도전볼(1541)에 의해 제3 반도체 발광 소자(313)와 제1 전극 배선(321) 및 제2 전극 배선(322)이 전기적으로 연결될 수 있다. 또한, 제1 접착층(1540) 및 제2 접착층(1550)에 의해 반도체 발광 소자가 회로부(303) 및/또는 제1 전극 배선(321) 및 제2 전극 배선(322)에 물리적으로 고정될 수 있다.
도 16에는 제1 접착층(1540)의 하면이 제1 전극 배선(321) 및 제2 전극 배선(322)에 접하는 것으로 도시되고 있지만, 제1 접착층(1540)과 제1 전극 배선(321) 및 제2 전극 배선(322) 사이에 제1 절연층(306)이 배치될 수도 있다.
[제3 실시예]
도 18은 제3 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
제3 실시예는 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 수직형 반도체 발광 소자인 것과 전극 배선과의 전기적 연결을 제외하고 제1 실시예 및/또는 제2 실시예와 동일하다. 제3 실시예에서 제1 실시예 및/또는 제2 실시예와 동일한 형상, 구조 및/또는 기능을 갖는 도면 부호에 대해 동일한 도면 부호를 부여하고 상세한 설명을 생략한다.
도 18에 도시한 바와 같이, 제3 반도체 발광 소자(313)는 수직형 반도체 발광 소자일 수 있다. 수직형 반도체 발광 소자는 상측 및 하측 각각으로 전압이 공급되어, 수직형 반도체 발광 소자의 수직 방향을 따라 전류가 흐를 수 있다. 도 18에는 제3 반도체 발광 소자(313)의 측면이 수평면에 대해 수직인 면을 갖는 것으로 도시되고 있지만, 이에 대해서는 한정하지 않는다.
제3 반도체 발광 소자(313)의 하측, 즉 전극(1530)이 제1 전극 배선(323)에 전기적으로 연결되고, 제3 반도체 발광 소자(313)의 상측이 제2 전극 배선(324)에 전기적으로 연결될 수 있다. 예컨대, 제2 전극 배선(324)은 제1 절연층(306)의 측면과 상면을 통해 제3 반도체 발광 소자(313)의 상측에 전기적으로 연결될 수 있지만, 이에 대해서는 한정하지 않는다.
만일 제3 실시예에 따른 디스플레이 장치가 스트레처블 디스플레이 장치가 아닌 경우, 제3 반도체 발광 소자(313) 상에 또 다른 절연층이 배치되고, 또 다른 절연층 상에서 또 다른 절연층에 형성된 콘택홀을 통해 제2 전극 배선(324)이 제3 반도체 발광 소자(313)의 상측에 전기적으로 연결될 수 있다.
한편, 제1 접착층(1540)이 제3 반도체 발광 소자(313)와 제1 전극 배선(323) 사이에 배치될 수 있다. 제1 접착층(1540)의 일부는 적어도 제3 반도체 발광 소자(313)의 패시베이션층(1520)에 형성된 복수의 홈(1521)에 배치될 수 있다.
복수의 홈(1521) 각각이 생선 뼈(fish bone) 형상을 가지므로, 제1 접착층(1540)이 패시베이션층(1520)의 복수의 홈(1521) 각각에 의해 걸림 고정됨으로써, 제1 접착층(1540)이 패시베이션층(1520)과 분리되지 않아 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)와 제1 기판(301) 간의 고정성이 향상될 수 있다.
또한, 제1 접착층(1540)이 패시베이션층(1520)과 분리되지 않으므로, 제1 접착층(1540)에 의해 제3 반도체 발광 소자(313)(제1 반도체 발광 소자(311) 및 제2 반도체 발광 소자(312)도 마찬가지)가 제1 배선 및 제2 배선에 단선 없이 전기적으로 연결되어 제1 내지 제3 반도체 발광 소자(311, 312, 313)의 점등 불량이나 휘도 저하를 방지할 수 있다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 실시예의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 실시예의 등가적 범위 내에서의 모든 변경은 실시예의 범위에 포함된다.
실시예는 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다.
실시예는 반도체 발광 소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다. 반도체 발광 소자는 마이크로급 반도체 발광 소자나 나노급 반도체 발광 소자일 수 있다.

Claims (19)

  1. 발광층;
    상기 발광층 상에 패시베이션층; 및
    상기 패시베이션층 상에 제1 접착층을 포함하고,
    상기 패시베이션층은 복수의 홈을 포함하고,
    상기 제1 접착층은 상기 복수의 홈 각각에 배치되는
    반도체 발광 소자.
  2. 제1항에 있어서,
    상기 패시베이션층은 DBR층을 포함하는
    반도체 발광 소자.
  3. 제1항에 있어서,
    상기 패시베이션층은 서로 적층된 복수의 제1 매질층과 복수의 제2 매질층을 포함하고,
    상기 제1 매질층은 제1 굴절율을 가지고,
    상기 제2 매질층은 상기 제1 굴절율과 상이한 제2 굴절율을 갖는
    반도체 발광 소자.
  4. 제3항에 있어서,
    상기 패시베이션층은 제3 매질층을 포함하고,
    상기 제1 매질층 및 상기 제2 매질층은 상기 제3 매질층 상에 배치되고,
    상기 제3 매질층은 상기 발광층의 표면에 접하는
    반도체 발광 소자.
  5. 제3항에 있어서,
    상기 복수의 홈 각각은,
    상기 제1 매질층에 제1 홈; 및
    상기 제2 매질층에 제2 홈을 포함하고,
    상기 제1 홈 및 상기 제2 홈은 서로 상이한 폭을 갖는
    반도체 발광 소자.
  6. 제5항에 있어서,
    상기 제2 홈의 제2 폭은 상기 제1 홈의 제1 폭보다 큰
    반도체 발광 소자.
  7. 제6항에 있어서,
    상기 제1 접착층은,
    상기 제1 홈에 제1-1 접착층; 및
    상기 제2 홈에 제1-2 접착층을 포함하는
    반도체 발광 소자.
  8. 제7항에 있어서,
    상기 제1 접착층은,
    상기 패시베이션층 상에 제1-3 접착층을 포함하는
    반도체 발광 소자.
  9. 제10항에 있어서,
    상기 제1-2 접착층의 제1 영역은 상기 제1-1 접착층과 수직으로 접하고,
    상기 제1-2 접착층의 제2 영역은 상기 제1 매질층의 일부와 수직으로 중첩되는
    반도체 발광 소자.
  10. 제1항에 있어서,
    상기 제1 접착층 상에 제2 접착층을 포함하고,
    상기 제1 접착층은 반사 입자를 포함하는
    반도체 발광 소자.
  11. 제10항에 있어서,
    상기 제2 접착층은 적어도 하나 이상의 도전볼을 포함하는
    반도체 발광 소자.
  12. 제1항에 있어서,
    상기 제1 접착층은 적어도 하나 이상의 도전볼을 포함하는
    반도체 발광 소자.
  13. 복수의 화소를 포함하는 기판;
    상기 기판 상에 전극 배선;
    상기 복수의 화소 각각에 절연층;
    상기 절연층에 제1 내지 제3 반도체 발광 소자; 및
    상기 전극 배선과 상기 제1 내지 제3 반도체 발광 소자 각각의 사이에 배치되어, 상기 제1 내지 제3 반도체 발광 소자 각각을 상기 전극 배선에 전기적으로 연결하는 제1 접착층을 포함하고,
    상기 제1 내지 제3 반도체 발광 소자는,
    발광층; 및
    상기 발광층 상에 패시베이션층을 포함하고,
    상기 패시베이션층은 복수의 홈을 포함하고,
    상기 제1 접착층은 상기 복수의 홈 각각에 배치되는
    디스플레이 장치.
  14. 제13항에 있어서,
    상기 제1 접착층은 적어도 하나 이상의 도전볼을 포함하는
    디스플레이 장치.
  15. 제13항에 있어서,
    상기 전극 배선과 상기 제1 접착층 상에 제2 접착층을 포함하고,
    상기 제1 접착층은 반사 입자를 포함하고,
    상기 제2 접착층는 적어도 하나 이상의 도전볼을 포함하는
    디스플레이 장치.
  16. 제13항에 있어서,
    상기 제1 반도체 발광 소자는 적색 반도체 발광 소자를 포함하고,
    상기 제2 반도체 발광 소자는 녹색 반도체 발광 소자를 포함하며,
    상기 제3 반도체 발광 소자는 청색 반도체 발광 소자를 포함하는
    디스플레이 장치.
  17. 제13항에 있어서,
    상기 제1 접착층은 상기 제1 내지 제3 반도체 발광 소자 각각에 포함되는
    디스플레이 장치.
  18. 제13항에 있어서,
    상기 제1 내지 제3 반도체 발광 소자 각각은 수평형 반도체 발광 소자, 플립칩형 반도체 발광 소자 및 수직형 반도체 발광 소자 중 하나를 포함하는
    디스플레이 장치.
  19. 제13항에 있어서,
    상기 기판은 스트레처블 기판을 포함하는
    디스플레이 장치.
PCT/KR2021/014406 2021-10-15 2021-10-15 반도체 발광 소자 및 디스플레이 장치 WO2023063457A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2021/014406 WO2023063457A1 (ko) 2021-10-15 2021-10-15 반도체 발광 소자 및 디스플레이 장치
KR1020247011070A KR20240050446A (ko) 2021-10-15 2021-10-15 반도체 발광 소자 및 디스플레이 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/014406 WO2023063457A1 (ko) 2021-10-15 2021-10-15 반도체 발광 소자 및 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2023063457A1 true WO2023063457A1 (ko) 2023-04-20

Family

ID=85987810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014406 WO2023063457A1 (ko) 2021-10-15 2021-10-15 반도체 발광 소자 및 디스플레이 장치

Country Status (2)

Country Link
KR (1) KR20240050446A (ko)
WO (1) WO2023063457A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065666A (ko) * 2005-11-08 2008-07-14 로무 가부시키가이샤 질화물 반도체 발광 소자 및 질화물 반도체 발광 소자 제조방법
KR20180065342A (ko) * 2016-12-07 2018-06-18 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20180102422A (ko) * 2017-03-07 2018-09-17 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20200026773A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR20200104876A (ko) * 2018-01-26 2020-09-04 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065666A (ko) * 2005-11-08 2008-07-14 로무 가부시키가이샤 질화물 반도체 발광 소자 및 질화물 반도체 발광 소자 제조방법
KR20180065342A (ko) * 2016-12-07 2018-06-18 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20180102422A (ko) * 2017-03-07 2018-09-17 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20200104876A (ko) * 2018-01-26 2020-09-04 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
KR20200026773A (ko) * 2019-11-28 2020-03-11 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법

Also Published As

Publication number Publication date
KR20240050446A (ko) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2021025202A1 (ko) 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 기판
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2018135704A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2015060507A1 (en) Display device using semiconductor light emitting device
WO2021071077A1 (en) Display module and manufacturing method thereof
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021060832A1 (en) Display apparatus and manufacturing method thereof
WO2020179989A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2021025201A1 (ko) 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 전사 기판
WO2021107270A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2023063457A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2023042926A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2022004926A1 (ko) 마이크로 led를 이용한 디스플레이 장치
WO2023027214A1 (ko) 디스플레이 장치
WO2023153532A1 (ko) 디스플레이 장치
WO2023033212A1 (ko) 디스플레이 장치
WO2023027217A1 (ko) 디스플레이 장치
WO2023074972A1 (ko) 디스플레이 장치
WO2024106572A1 (ko) 전사 기판
WO2023022250A1 (ko) 디스플레이 장치
WO2023090468A1 (ko) 디스플레이 장치
WO2024080390A1 (ko) 반도체 발광소자를 포함하는 디스플레이 장치
WO2023042946A1 (ko) 디스플레이 장치
WO2023171833A1 (ko) 반도체 발광소자를 포함하는 디스플레이 장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011070

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18701014

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21960724

Country of ref document: EP

Kind code of ref document: A1