Nothing Special   »   [go: up one dir, main page]

WO2023063256A1 - System for controlling cooling fan, work machine, and method for controlling cooling fan - Google Patents

System for controlling cooling fan, work machine, and method for controlling cooling fan Download PDF

Info

Publication number
WO2023063256A1
WO2023063256A1 PCT/JP2022/037629 JP2022037629W WO2023063256A1 WO 2023063256 A1 WO2023063256 A1 WO 2023063256A1 JP 2022037629 W JP2022037629 W JP 2022037629W WO 2023063256 A1 WO2023063256 A1 WO 2023063256A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
engine
frequency
controller
control
Prior art date
Application number
PCT/JP2022/037629
Other languages
French (fr)
Japanese (ja)
Inventor
厚 北條
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to KR1020247011163A priority Critical patent/KR20240052060A/en
Priority to CN202280067449.2A priority patent/CN118056047A/en
Priority to DE112022003877.2T priority patent/DE112022003877T5/en
Publication of WO2023063256A1 publication Critical patent/WO2023063256A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/40Oil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions

Definitions

  • the present disclosure relates to a cooling fan control system, a working machine, and a cooling fan control method.
  • Patent Document 1 A control system for a cooling fan that blows air to cool a working fluid is described, for example, in International Publication No. 2007/026627 (Patent Document 1). This document discloses adjusting the number of revolutions of a cooling fan when a resting state of a working mechanism is detected based on an operating state of a working machine lever.
  • a hydraulically driven cooling fan is a waste of engine power when the cooling system does not need to cool as much, even when the engine is running at high speed. It was controlled to reduce the rotation speed of the fan. Despite the advantage of a hydraulically driven cooling fan in controlling the speed of the cooling fan when the engine is rotating at relatively high speeds, resonance can occur between the cooling fan and the engine. Yes, it was an issue.
  • This disclosure proposes a cooling fan control system, a working machine, and a cooling fan control method that can suppress resonance and ensure the cooling capacity of the cooling fan.
  • a cooling device comprising an engine, a work machine driven by the engine, a cooling fan configured to be able to control the number of rotations independently of the number of rotations of the engine, and a controller that controls the cooling fan
  • a fan control system is proposed.
  • the controller obtains the engine frequency and the cooling fan frequency.
  • the controller changes the frequency of the cooling fan when the number of revolutions of the engine is greater than a threshold value and the frequency of the cooling fan is within a predetermined range with respect to the frequency of the engine while the work machine is stopped.
  • the cooling fan is controlled so as to increase the difference in frequency between the cooling fan and the engine from when the frequency of the cooling fan is acquired.
  • resonance can be suppressed and the cooling capacity of the cooling fan can be ensured.
  • FIG. 2 is a block diagram showing a schematic configuration of a system of the working machine shown in FIG. 1;
  • FIG. 3 is a block diagram illustrating the functional configuration of a controller;
  • FIG. 5 is a flow chart showing the flow of processing related to control of the frequency of the cooling fan;
  • 4 is a graph showing the relationship between the operation of an operating lever and the number of rotations of a cooling fan;
  • 4 is a graph showing the relationship between engine speed and execution or cancellation of cooling fan speed control of the embodiment.
  • 4 is a graph showing the relationship between the engine speed and the frequencies of the engine and the cooling fan.
  • FIG. 1 is a side view schematically showing the configuration of a hydraulic excavator 100 as an example of a work machine based on an embodiment of the present disclosure.
  • a hydraulic excavator 100 of the present embodiment mainly has a traveling body 1, a revolving body 2, and a working machine 3.
  • a vehicle body of the hydraulic excavator 100 is configured by the traveling body 1 and the revolving body 2 .
  • the traveling body 1 has a pair of left and right crawler belt devices 1a. Each of the pair of left and right crawler belt devices 1a has a crawler belt.
  • the hydraulic excavator 100 is self-propelled by rotating the pair of left and right crawler belts.
  • the revolving body 2 is installed so as to be rotatable with respect to the traveling body 1.
  • the revolving body 2 mainly has an operator's cab (cab) 2a, an operator's seat 2b, an engine room 2c, and a counterweight 2d.
  • the driver's cab 2a is arranged, for example, on the front left side of the revolving body 2 (vehicle front side).
  • a driver's seat 2b for an operator to sit on is arranged in the inner space of the driver's cab 2a.
  • the engine room 2c and the counterweight 2d are arranged on the rear side of the revolving body 2 (vehicle rear side) with respect to the driver's cab 2a.
  • the engine room 2c accommodates an engine unit (engine, exhaust treatment structure, etc.).
  • the upper part of the engine room 2c is covered with an engine hood.
  • the counterweight 2d is arranged behind the engine room 2c.
  • the working machine 3 is pivotally supported on the front side of the revolving body 2 and, for example, on the right side of the operator's cab 2a.
  • the working machine 3 has, for example, a boom 3a, an arm 3b, a bucket 3c, a boom cylinder 4a, an arm cylinder 4b, a bucket cylinder 4c, and the like.
  • a base end (one end) of the boom 3a is rotatably connected to the revolving body 2 by a boom bottom pin 5a.
  • a base end (one end) of the arm 3b is rotatably connected to a tip end (the other end) of the boom 3a by a boom top pin 5b.
  • the bucket 3c (one end) is rotatably connected to the tip (the other end) of the arm 3b by an arm top pin 5c.
  • the boom 3a of the work machine 3 rotates relative to the revolving body 2 around the boom bottom pin 5a.
  • the plane is represented as a straight line.
  • the direction in which this straight line extends is the front-rear direction of the vehicle body of the excavator 100 or the front-rear direction of the revolving body 2, and is hereinafter simply referred to as the front-rear direction.
  • the left-right direction (vehicle width direction) of the excavator 100 or the left-right direction of the revolving body 2 is a direction orthogonal to the front-rear direction in a plan view, and is hereinafter simply referred to as the left-right direction.
  • the vertical direction of the vehicle body of the hydraulic excavator 100 or the vertical direction of the revolving structure 2 is a direction orthogonal to a plane defined by the front-rear direction and the left-right direction, and is hereinafter simply referred to as the vertical direction.
  • the side where the work implement 3 protrudes from the vehicle body is the front direction
  • the direction opposite to the front direction is the rear direction.
  • the right side and the left side in the horizontal direction are the right direction and the left direction, respectively, when viewed in the forward direction.
  • the side with the ground is the lower side
  • the side with the sky is the upper side.
  • the front-back direction is the front-back direction of the operator seated in the driver's seat 2b in the operator's cab 2a.
  • the left-right direction is the left-right direction of the operator seated in the driver's seat 2b.
  • the vertical direction is the vertical direction of the operator seated on the driver's seat 2b.
  • the direction facing the operator seated on the driver's seat 2b is the front direction, and the direction behind the operator seated on the driver's seat 2b is the rearward direction.
  • the right side and the left side when an operator sitting in the driver's seat 2b faces the front are the right direction and the left direction, respectively.
  • the operator seated on the driver's seat 2b has the lower side at the feet and the upper side at the head side.
  • the boom 3a can be driven by a boom cylinder (boom hydraulic cylinder) 4a. By this drive, the boom 3a can be rotated vertically with respect to the revolving body 2 around the boom bottom pin 5a.
  • the arm 3b can be driven by an arm cylinder (arm hydraulic cylinder) 4b. This drive allows the arm 3b to rotate vertically with respect to the boom 3a around the boom top pin 5b.
  • the bucket (attachment) 3c can be driven by a bucket cylinder (attachment hydraulic cylinder) 4c. By this driving, the bucket 3c can be rotated vertically with respect to the arm 3b around the arm top pin 5c.
  • the working machine 3 can be driven in this manner.
  • the boom bottom pin 5a is supported by the body of the excavator 100.
  • the boom bottom pin 5 a is supported by a pair of vertical plates (not shown) of the frame of the revolving body 2 .
  • the boom top pin 5b is attached to the tip of the boom 3a.
  • Arm top pin 5c is attached to the tip of arm 3b.
  • the boom bottom pin 5a, the boom top pin 5b and the arm top pin 5c all extend in the left-right direction.
  • the boom bottom pin 5a is also called a boom foot pin.
  • the working machine 3 has a bucket link 3d.
  • the bucket link 3d has a first link member 3da and a second link member 3db.
  • the tip of the first link member 3da and the tip of the second link member 3db are connected via a bucket cylinder top pin 3dc so as to be relatively rotatable.
  • the bucket cylinder top pin 3dc is connected to the tip of the bucket cylinder 4c. Therefore, the first link member 3da and the second link member 3db are pin-connected to the bucket cylinder 4c.
  • the proximal end of the first link member 3da is rotatably connected to the arm 3b by a first link pin 3dd.
  • a base end of the second link member 3db is rotatably connected to a bracket at the root portion of the bucket 3c by a second link pin 3de.
  • a pressure sensor 6a may be attached to the head side of the boom cylinder 4a.
  • the pressure sensor 6a can detect the pressure (head pressure) of hydraulic fluid in the cylinder head side oil chamber 40A of the boom cylinder 4a.
  • a pressure sensor 6b may be attached to the bottom side of the boom cylinder 4a.
  • the pressure sensor 6b can detect the pressure (bottom pressure) of the working oil in the cylinder bottom side oil chamber 40B of the boom cylinder 4a.
  • the pressure sensors 6a and 6b output working oil pressure information consisting of head pressure and bottom pressure to a controller 30, which will be described later.
  • a pressure sensor 6c may be attached to the head side of the arm cylinder 4b.
  • the pressure sensor 6c can detect the pressure of hydraulic fluid (head pressure) in the cylinder head side oil chamber of the arm cylinder 4b.
  • a pressure sensor 6d may be attached to the bottom side of the arm cylinder 4b.
  • the pressure sensor 6d can detect the pressure (bottom pressure) of hydraulic fluid in the cylinder bottom side oil chamber of the arm cylinder 4b.
  • the pressure sensors 6c and 6d output working oil pressure information consisting of head pressure and bottom pressure to the controller 30, which will be described later.
  • a pressure sensor 6e may be attached to the head side of the bucket cylinder 4c.
  • the pressure sensor 6e can detect the pressure (head pressure) of hydraulic fluid in the cylinder head side oil chamber of the bucket cylinder 4c.
  • a pressure sensor 6f may be attached to the bottom side of the bucket cylinder 4c.
  • the pressure sensor 6f can detect the pressure (bottom pressure) of hydraulic oil in the cylinder bottom side oil chamber of the bucket cylinder 4c.
  • the pressure sensors 6e and 6f output working oil pressure information including head pressure and bottom pressure to the controller 30, which will be described later.
  • the boom 3a, the arm 3b, and the bucket 3c may be provided with position sensors for obtaining information on their respective positions and attitudes.
  • the position sensor outputs boom information, arm information and attachment information for obtaining respective positions of the boom 3a, the arm 3b and the bucket 3c to the controller 30, which will be described later.
  • a stroke sensor 7a may be attached to the boom cylinder 4a as a position sensor.
  • the stroke sensor 7a detects the amount of displacement of the cylinder rod 4ab with respect to the cylinder 4aa in the boom cylinder 4a as boom information.
  • a stroke sensor 7b may be attached to the arm cylinder 4b as a position sensor.
  • the stroke sensor 7b detects the amount of displacement of the cylinder rod in the arm cylinder 4b as arm information.
  • a stroke sensor 7c may be attached to the bucket cylinder 4c as a position sensor.
  • the stroke sensor 7c detects the amount of displacement of the cylinder rod in the bucket cylinder 4c as attachment information.
  • the position sensor may be an angle sensor.
  • An angle sensor 9a may be attached around the boom bottom pin 5a.
  • An angle sensor 9b may be attached around the boom top pin 5b.
  • An angle sensor 9c may be attached around the arm top pin 5c.
  • the angle sensors 9a, 9b, 9c may be potentiometers or rotary encoders.
  • the angle sensors 9a, 9b, and 9c output rotation angle information (boom information, arm information, and attachment information) of the boom 3a and the like to the controller 30, which will be described later.
  • boom angle ⁇ b is usually an acute angle.
  • the boom angle ⁇ b represents the angle of the boom 3a with respect to the revolving body 2.
  • the boom angle ⁇ b can be calculated from the detection result of the stroke sensor 7a, and can be calculated from the measurement value of the angle sensor 9a.
  • the angle between a straight line passing through the boom bottom pin 5a and the boom top pin 5b and a straight line passing through the boom top pin 5b and the arm top pin 5c (indicated by a chain double-dashed line in FIG. 1) is Let the arm angle be ⁇ a.
  • the arm angle ⁇ a represents the angle of the arm 3b with respect to the boom 3a in the area where the arm 3b rotates when viewed from the side.
  • the arm angle ⁇ a can be calculated from the detection result of the stroke sensor 7b, and can be calculated from the measurement value of the angle sensor 9b.
  • the angle formed by a straight line passing through the boom top pin 5b and the arm top pin 5c and a straight line passing through the arm top pin 5c and the cutting edge of the bucket 3c (indicated by a chain double-dashed line in FIG. 1) is Let the bucket angle be ⁇ k.
  • the bucket angle ⁇ k represents the angle of the bucket 3c with respect to the arm 3b in the region where the bucket 3c rotates when viewed from the side.
  • the bucket angle ⁇ k can be calculated from the detection result of the stroke sensor 7c, and can be calculated from the measurement value of the angle sensor 9c.
  • FIG. 2 is a block diagram showing a schematic configuration of the system of the work machine shown in FIG. 1. As shown in FIG.
  • the system in this embodiment is a system for controlling the cooling fan 21 .
  • a system according to the embodiment includes a hydraulic excavator 100 as an example of a working machine shown in FIG. 1 and a controller 30 shown in FIG.
  • the controller 30 may be mounted on the hydraulic excavator 100 .
  • the controller 30 may be installed outside the excavator 100 .
  • the controller 30 may be placed at the work site of the excavator 100 or at a remote location away from the work site of the excavator 100 .
  • the engine 15 is mounted on the revolving body 2.
  • the engine 15 is accommodated in the engine room 2c.
  • Engine 15 is, for example, a diesel engine. By controlling the injection amount of fuel to the engine 15, the output of the engine 15 is controlled.
  • the engine 15 is a drive source for operating the hydraulic excavator 100 .
  • the driving force generated by the engine 15 causes the traveling body 1 to travel, the revolving body 2 to revolve with respect to the traveling body 1, and the working machine 3 to operate.
  • the engine 15 is an in-line 6-cylinder.
  • a hydraulic pump 23 is connected to the engine 15 .
  • the rotation of the engine 15 rotates the hydraulic pump 23 .
  • hydraulic oil is supplied from the hydraulic pump 23 to the hydraulic motor 22 via the electromagnetic proportional control valve 24, and the hydraulic motor 22 is rotated.
  • the hydraulic motor 22 is a motor for rotating the cooling fan 21 .
  • the cooling fan 21 has six blades.
  • a cooling fan 21 , a hydraulic motor 22 and a hydraulic pump 23 are mounted on the revolving body 2 .
  • the cooling fan 21 is rotationally driven by a hydraulic motor 22 .
  • the cooling fan 21 is a hydraulically driven fan that is driven using hydraulic oil as a power transmission medium.
  • the cooling fan 21 is not directly connected to the output shaft of the engine 15 , so that the rotation speed of the cooling fan 21 can be freely controlled independently of the rotation speed of the engine 15 .
  • the number of revolutions of the cooling fan 21 is controlled according to the flow rate of hydraulic oil supplied from the hydraulic pump 23 to the hydraulic motor 22 .
  • the intake air cooler 25 cools the air drawn into the engine 15 .
  • the oil cooler 26 cools hydraulic oil circulating through the hydraulic motor 22 and the hydraulic pump 23 .
  • the radiator 27 cools cooling water for the engine 15 .
  • Intake air cooler 25 , oil cooler 26 and radiator 27 are arranged to face cooling fan 21 . Cooling fan 21 is rotated by hydraulic motor 22 to blow cooling air to intake air cooler 25 , oil cooler 26 and radiator 27 .
  • the hydraulic oil for operating the hydraulic motor 22, the cooling water for cooling the engine 15, and the air supplied to the engine 15 are examples of the working fluid involved in the operation of the engine 15.
  • the cooling fan 21 blows air to cool the working fluid.
  • a water temperature sensor 28 is provided in the cooling water path.
  • An oil temperature sensor 29 is provided in the hydraulic oil path.
  • An engine speed sensor 31 is attached to the engine 15 . When the engine 15 rotates, the water temperature sensor 28 detects the temperature of the cooling water, the oil temperature sensor 29 detects the temperature of the working oil, and the engine speed sensor 31 detects the speed of the engine 15 . These detection results are output to the controller 30 .
  • a fan speed sensor 32 is attached to the cooling fan 21 .
  • the rotation speed of the cooling fan 21 is detected by the fan rotation speed sensor 32 . This detection result is output to the controller 30 .
  • the hydraulic excavator 100 includes an operating device 33 operated by an operator.
  • the operating device 33 is arranged, for example, in the driver's cab 2a.
  • the operating device 33 includes a working machine operating device operated to operate the working machine 3 , a swing operating device operated to swing the swing body 2 , and a swing operating device operated to operate the traveling body 1 . and a travel control device.
  • the work machine operating device and the turning operating device are, for example, operating levers.
  • the travel operation device is, for example, an operation pedal.
  • the operation detection unit 33A detects the amount of operation of the operation device 33.
  • the operation detection section 33A detects the direction and angle of inclination from the neutral position of the operation lever.
  • the operation detection unit 33A detects the depression amount of the operation pedal. This detection result is output to the controller 30 .
  • the operation detection unit 33A may be, for example, a displacement sensor such as a potentiometer.
  • the operating device 33 is not limited to an electric operating device, and may be a pilot hydraulic operating device.
  • the operation detection section 33A may be a hydraulic sensor that detects the pressure of the pilot oil.
  • the controller 30 has a CPU (Central Processing Unit) and a storage unit 34 (not shown).
  • the storage unit 34 stores a program for controlling the operation of the cooling fan 21 and various data necessary for executing the program.
  • the storage unit 34 also temporarily stores working data generated as the work is executed.
  • FIG. 3 is a block diagram illustrating the functional configuration of the controller 30.
  • the controller 30 based on the embodiment includes a working machine state determination section 30A, an engine frequency acquisition section 30B, a fan frequency acquisition section 30C, a resonance frequency setting section 30D, and an arithmetic processing section 30E. , a fan control command section 30F and a timer 30T.
  • the work machine state determination unit 30A determines whether the work machine 3 is operating or stopped.
  • the engine frequency acquisition unit 30B acquires the frequency of the engine 15 based on the rotation speed of the engine 15 detected by the engine rotation speed sensor 31 .
  • Fan frequency acquisition unit 30 ⁇ /b>C acquires the frequency of cooling fan 21 based on the rotation speed of cooling fan 21 detected by fan rotation speed sensor 32 .
  • the resonance frequency setting unit 30D sets a range of frequencies in which resonance can occur with respect to the frequency of the engine 15.
  • the computation processing unit 30E executes various computations related to control of the frequency of the cooling fan 21.
  • Fan control command unit 30F outputs a control signal to cooling fan 21 .
  • the timer 30T measures time.
  • the arithmetic processing unit 30E can read the current time from the timer 30T.
  • FIG. 4 is a flow chart showing the flow of processing related to control of the frequency of the cooling fan 21. As shown in FIG.
  • step S1 it is determined whether or not the operating lever operated to operate the working machine 3 is in the neutral state.
  • the tilt from the neutral position of the operation lever detected by the operation detection section 33A is input to the controller 30 .
  • 30 A of work machine state determination parts discriminate
  • FIG. 5 is a graph showing the relationship between the operation of the control lever and the rotation speed of the cooling fan 21. As shown in FIG. The horizontal axis of FIG. 5 indicates time, and the vertical axis of FIG. 5 indicates the target rotational speed of cooling fan 21 .
  • the arithmetic processing unit 30E reads the time from the timer 30T.
  • the arithmetic processing unit 30E calculates the elapsed time from the time when it was first determined in step S1 that the operation lever was in the neutral state to the current time.
  • the arithmetic processing unit 30E reads a threshold (predetermined time T1) for the passage of time from the storage unit 34 .
  • the arithmetic processing unit 30E determines whether or not the time elapsed with the control lever in the neutral state has exceeded the predetermined time T1.
  • Predetermined time T1 is, for example, 4 seconds.
  • step S2 When it is determined that the time elapsed while the operating lever is in the neutral state and the working machine 3 is stopped does not exceed the predetermined time T1 (NO in step S2), the process returns to step S1. Then, the determination of whether or not the operating lever is in the neutral state in step S1 and the determination of whether or not the predetermined time T1 has elapsed in step S2 are repeated.
  • step S3 the frequency of the engine 15 is obtained.
  • the rotation speed of the engine 15 detected by the engine rotation speed sensor 31 is input to the controller 30 .
  • the engine frequency acquisition unit 30B calculates the frequency of the engine 15 based on the number of rotations of the engine 15 . This calculation is performed based on the following formula, where Fe is the frequency of the engine 15, Ne is the rotation speed of the engine 15, and C is the number of cylinders of the engine 15.
  • step S4 it is determined whether or not the rotation speed Ne of the engine 15 is greater than the first threshold value.
  • FIG. 6 is a graph showing the relationship between the rotation speed of the engine 15 and execution or cancellation of frequency control of the cooling fan 21 of the embodiment.
  • the horizontal axis of FIG. 6 indicates the rotation speed of the engine 15 .
  • logic ON when the lever is neutral indicates a setting for executing frequency control of the cooling fan 21 of the embodiment.
  • logic OFF when the lever is neutral indicates a setting for canceling the frequency control of the cooling fan 21 of the embodiment.
  • the arithmetic processing unit 30E reads the first threshold value TH1 related to the rotation speed Ne of the engine 15 from the storage unit 34.
  • the arithmetic processing unit 30E compares the rotation speed Ne of the engine 15 detected by the engine rotation speed sensor 31 with the first threshold TH1 to determine whether the rotation speed Ne of the engine 15 is greater than the first threshold TH1. to judge.
  • the first threshold TH1 is, for example, 1400 rpm.
  • step S4 When it is determined that the rotation speed Ne of the engine 15 is greater than the first threshold TH1 (YES in step S4), the frequency of the cooling fan 21 is obtained in step S5.
  • Fan frequency acquisition unit 30 ⁇ /b>C calculates the frequency of cooling fan 21 based on the rotation speed of cooling fan 21 . This calculation is performed based on the following formula, where Ff is the frequency of the cooling fan 21, Nf is the rotation speed of the cooling fan 21, and B is the number of blades of the cooling fan 21.
  • Cooling fan 21 blows air to intake air cooler 25 , oil cooler 26 and radiator 27 for cooling.
  • a target rotation speed Nf of the cooling fan 21 according to the temperature of the air that is the working fluid of the intake air cooler 25, the temperature of the hydraulic oil that is the working fluid of the oil cooler 26, or the temperature of the cooling water that is the working fluid of the radiator 27 is set.
  • the fan frequency acquisition unit 30C calculates the target frequency Ff of the cooling fan 21 corresponding to the target rotational speed Nf of the cooling fan 21 using the above formula.
  • FIG. 7 is a graph showing the relationship between the rotational speed Ne of the engine 15, the frequency Fe of the engine 15, and the frequency Ff of the cooling fan 21.
  • the horizontal axis of FIG. 7 indicates the rotational speed Ne of the engine 15, and the vertical axis of FIG. 7 indicates the frequency Fe of the engine 15 and the frequency Ff of the cooling fan 21.
  • the number of cylinders of the engine 15 is constant, so the frequency Fe of the engine 15 is proportional to the rotation speed Ne of the engine 15.
  • the frequency Ff of the cooling fan 21 can be set independently of the frequency Fe of the engine 15 to a value equal to or lower than the maximum value shown in FIG. If the difference between the frequency Ff of the cooling fan 21 and the frequency Fe of the engine 15 is small, resonance may occur between the cooling fan 21 and the engine 15 .
  • the resonance frequency setting unit 30D sets a predetermined frequency range in which resonance can occur with respect to the frequency Fe of the engine 15.
  • Resonance frequency setting unit 30D sets an upper limit value and a lower limit value of frequency Ff of cooling fan 21 at which resonance can occur, as shown in FIG.
  • the resonance frequency setting unit 30D may set a range within the frequency Fe of the engine 15 ⁇ 10 Hz as a range in which resonance may occur. That is, the upper limit of the range in which resonance can occur indicated by the broken line in FIG. 7 may be the frequency Fe of the engine 15+10 Hz.
  • the lower limit of the range in which resonance can occur, indicated by the dashed line in FIG. 7, may be the frequency Fe of the engine 15-10 Hz.
  • step S6 the arithmetic processing unit 30E determines whether or not the frequency Ff of the cooling fan 21 is greater than the upper limit of the range of frequencies in which resonance with respect to the frequency Fe of the engine 15 can occur.
  • step S7 the arithmetic processing unit 30E determines whether the frequency Ff of the cooling fan 21 is higher than the lower limit of the range of frequencies in which resonance can occur with respect to the frequency Fe of the engine 15 or not. That is, in steps S6 and S7, it is determined whether or not the frequency Ff of the cooling fan 21 is within a range where resonance with the frequency Fe of the engine 15 can occur.
  • the frequency Ff of the cooling fan 21 is changed in step S8.
  • the arithmetic processing unit 30E increases the frequency Ff of the cooling fan 21 and the frequency Fe of the engine 15 from the time when the frequency Ff of the cooling fan 21 is acquired in step S5. is increased so that the frequency Ff of the cooling fan 21 is out of the range in which resonance can occur.
  • the arithmetic processing unit 30E can change the frequency Ff of the cooling fan 21 to below the lower limit of the range in which resonance can occur, which is indicated by the dashed line in FIG.
  • the arithmetic processing unit 30E may change the frequency Ff of the cooling fan 21 to the lower limit of the range in which resonance can occur.
  • step S6 If the frequency Ff of the cooling fan 21 is greater than the upper limit (YES in step S6) or if the frequency Ff of the cooling fan 21 is equal to or less than the lower limit (NO in step S7), the frequency Ff of the cooling fan 21 cannot be changed. not done.
  • the frequency Ff of the cooling fan 21 calculated in step S5 is used as it is.
  • step S9 the cooling fan 21 is controlled according to the frequency Ff calculated in step S5 or the frequency Ff changed in step S8.
  • the target rotational speed Nf of the cooling fan 21 is calculated from the changed frequency Ff using the above formula.
  • a control signal is transmitted from the fan control command unit 30F to the electromagnetic proportional control valve 24 to change the flow rate of hydraulic oil supplied from the hydraulic pump 23 to the hydraulic motor 22 .
  • the supplied hydraulic oil causes the hydraulic motor 22 to rotate. In this manner, the cooling fan 21 is controlled to rotate at the target rotation speed Nf.
  • step S10 it is determined whether or not the rotation speed Ne of the engine 15 is greater than the second threshold value.
  • the second threshold TH2 is smaller than the first threshold TH1.
  • the second threshold TH2 is, for example, 1350 rpm.
  • Control for changing the frequency Ff of the cooling fan 21 according to the embodiment is executed when the rotational speed Ne of the engine 15 is greater than the first threshold TH1. Even if the rotational speed Ne of the engine 15 drops below the first threshold TH1, if the rotational speed Ne of the engine 15 is greater than the second threshold TH2, the control to change the frequency Ff of the cooling fan 21 is continued. . When the rotational speed Ne of the engine 15 drops below the second threshold TH2, the control for changing the frequency Ff of the cooling fan 21 is released.
  • the arithmetic processing unit 30E reads the second threshold TH2 related to the rotation speed Ne of the engine 15 from the storage unit 34.
  • the arithmetic processing unit 30E compares the target rotational speed Ne of the engine 15 set according to the temperature of the working fluid with the second threshold TH2 to determine whether the rotational speed Ne of the engine 15 is greater than the second threshold TH2. to judge whether
  • step S11 it is determined whether or not the control lever is in the neutral state. This determination is made in the same manner as in step S1.
  • step S11 When it is determined that the operation lever is in the neutral state (YES in step S11), the process returns to step S3.
  • step S11 When it is determined that the operation lever is out of the neutral state because the operator has operated the operation device 33 to move the hydraulic excavator 100 (NO in step S11), the control to change the frequency Ff of the cooling fan 21 is canceled. to end the process (END).
  • step S1 If it is determined in step S1 that the operating lever is tilted from the neutral state, the operating lever is being operated, and therefore the working machine 3 is operating (NO in step S1), the cooling fan 21 No control to change the frequency Ff of is executed.
  • step S4 When it is determined in step S4 that rotation speed Ne of engine 15 is equal to or lower than first threshold value TH1 (NO in step S4), control to change frequency Ff of cooling fan 21 is not executed.
  • step S10 after it is determined in step S4 that the rotation speed Ne of the engine 15 is greater than the first threshold TH1 (step S10 NO), the control for changing the frequency Ff of the cooling fan 21 is released.
  • the cooling fan 21 is controlled so as to rotate at the target rotation speed Nf set according to the temperature of the working fluid.
  • the target rotation speed of the cooling fan 21 is reduced after a predetermined time T1 has elapsed with the control lever in the neutral state, and the frequency Ff of the cooling fan 21 is changed by operating the control lever thereafter. Behavior is shown in which the control is canceled and the target rotation speed of the cooling fan 21 returns to the speed before it was lowered. At this time, the target number of revolutions of the cooling fan 21 is gradually increased over a predetermined period of time T2. Predetermined time T2 is, for example, 2 to 3 seconds. As a result, the pressure of the hydraulic fluid supplied to the hydraulic motor 22 is prevented from suddenly increasing, causing malfunctions in the flow path of the hydraulic fluid and each hydraulic device.
  • the controller 30 sets the rotation speed Ne of the engine 15 to be greater than the first threshold TH1 and the frequency Ff of the cooling fan 21 to match the frequency Fe of the engine when the work implement 3 is stopped.
  • the frequency Ff of the cooling fan 21 is changed so that the frequency difference between the cooling fan 21 and the engine 15 becomes larger than when the frequency of the cooling fan 21 was acquired. 21.
  • the rotational speed Ne of the engine 15 is greater than the first threshold TH1
  • the frequency Ff of the cooling fan 21 is within a range where resonance can occur with respect to the frequency Fe of the engine 15 , control to change the frequency Ff of the cooling fan 21 is executed. As a result, resonance between the engine 15 and the cooling fan 21 can be avoided, and vibration and abnormal noise can be prevented.
  • the controller 30 may change the frequency Ff of the cooling fan 21 to below the lower limit of the predetermined range. Resonance between the engine 15 and the cooling fan 21 can be reliably avoided by setting the frequency Ff of the cooling fan 21 to be equal to or lower than the lower limit of the range in which resonance can occur with respect to the frequency Fe of the engine 15 . Further, by reducing the rotational speed Nf of the cooling fan 21 to reduce the power used to drive the cooling fan 21, fuel efficiency can be improved.
  • the controller 30 may change the frequency Ff of the cooling fan 21 to the lower limit of the predetermined range.
  • the cooling performance of the cooling fan 21 can be suppressed from decreasing.
  • the controller 30 cancels the control to change the frequency Ff of the cooling fan 21 when the rotational speed Ne of the engine 15 drops below a second threshold TH2 which is smaller than the first threshold TH1.
  • You may The first threshold TH1 for executing the control for changing the frequency Ff of the cooling fan 21 and the second threshold TH2 for canceling the control for changing the frequency Ff of the cooling fan 21 are made different. and the second threshold TH2. As a result, it is possible to avoid frequent switching between the execution and cancellation of the control for changing the frequency Ff of the cooling fan 21 due to variations in the rotation speed Ne of the engine 15, thereby preventing the occurrence of unnecessary errors. .
  • the cooling fan 21 is mounted on the hydraulic excavator 100. As shown in FIG. 4 , the controller 30 may release the control to change the frequency Ff of the cooling fan 21 when a command is given from the operator to operate the excavator 100 . While the work implement 3 is operating, there is no need to execute control for suppressing resonance. The cooling capacity of the cooling fan 21 can be ensured by reducing the rotation speed Nf of the cooling fan 21 to shorten the time during which the cooling capacity is lowered.
  • the control for changing the frequency Ff of the cooling fan 21 is executed.
  • the rotation speed Ne of the engine 15 detected by the engine rotation speed sensor 31 is constant for a predetermined time.
  • the rotation speed Ne of the engine 15 fluctuates, resonance between the engine 15 and the cooling fan 21 is less likely to occur, and even if resonance occurs, it is eliminated in a short period of time, so resonance rarely becomes a problem.
  • the rotation speed Ne of the engine 15 is constant. It can be determined more accurately that the number Ne is constant.
  • Control for not executing control to change the frequency Ff of the cooling fan 21 when the work implement 3 is relatively stopped with respect to the revolving body 2 but the hydraulic excavator 100 is self-propelled by the drive of the traveling body 1. may be In the hydraulic excavator 100, even if resonance between the engine 15 and the cooling fan 21 occurs during self-propelled travel, the frequency of self-propelled travel is low, so the resonance rarely poses a problem. Further, when the working machine 3 is stopped relative to the revolving body 2 but the revolving body 2 is revolving with respect to the traveling body 1, the control for changing the frequency Ff of the cooling fan 21 is not executed. It may be used as a control.
  • the revolving angle is often 90° and the revolving ends in a short period of time, so the resonance becomes a problem. Less is.
  • the cooling capacity of the cooling fan 21 can be ensured by reducing the rotation speed Nf of the cooling fan 21 to shorten the time during which the cooling capacity is lowered.
  • control for changing the frequency Ff of the cooling fan 21 is canceled when it is determined in step S11 that the operation lever has been operated to operate the working machine 3.
  • control for changing the frequency Ff of the cooling fan 21 is also canceled when the turning operation device for turning the turning body 2 or the traveling operation device for moving the traveling body 1 is operated. You may Resonance between the engine 15 and the cooling fan 21 during turning or running rarely becomes a problem. , the cooling capacity of the cooling fan 21 can be ensured.
  • operation or stop of work implement 3 may be determined based on detection results of position sensors for obtaining information on the positions and attitudes of boom 3a, arm 3b and bucket 3c.
  • the position sensors may be any one or a combination of the stroke sensors 7a, 7b, 7c and the angle sensors 9a, 9b, 9c described with reference to FIG. 1, for example.
  • the attitudes of work implement 3 detected by the position sensor at different times may be compared, and if the attitudes of work implement 3 differ, it may be determined that work implement 3 is operating.
  • Hydraulic excavator 100 may include an imaging device for imaging work implement 3. In this case, by analyzing the image captured by the imaging device, it is determined whether work implement 3 is operating or stopped. good too.
  • cooling fan 21 is a hydraulically driven fan, but it is not limited to this, and it is sufficient if the rotation speed Nf of the cooling fan 21 can be freely controlled with respect to the rotation speed Ne of the engine 15 .
  • cooling fan 21 may be an electric fan.
  • An alternator connected to the output shaft of the engine 15 may generate power using the driving force generated by the engine 15 , and the power generated by the alternator may drive the electric motor to rotate the cooling fan 21 .
  • the working machine to which the idea of the present disclosure can be applied is not limited to the hydraulic excavator 100, but can be any other type of working machine having an engine and a cooling fan, such as a bulldozer, wheel loader, motor grader, or engine-type forklift. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

Provided is a system for controlling a cooling fan with which the cooling capacity of the cooling fan can be ensured. The control system includes an engine, a work apparatus driven by the engine, a cooling fan configured such that the speed thereof can be controlled independently of the speed of the engine, and a controller that controls the cooling fan. When the speed of the engine is greater than a threshold value and the frequency of the cooling fan is within a predetermined range in relation to the frequency of the engine while the work apparatus has stopped, the controller changes the frequency of the cooling fan and controls the cooling fan so that the difference in frequency between the cooling fan and the engine will be greater than when the frequency of the cooling fan was acquired.

Description

冷却ファンの制御システム、作業機械、および冷却ファンの制御方法Cooling fan control system, working machine, and cooling fan control method
 本開示は、冷却ファンの制御システム、作業機械、および冷却ファンの制御方法に関する。 The present disclosure relates to a cooling fan control system, a working machine, and a cooling fan control method.
 作動流体の冷却のために送風を行う冷却ファンの制御システムは、たとえば、国際公開2007/026627号(特許文献1)に記載されている。この文献には、作業機レバーに対する操作状態に基づいて作業機構の休止状態が検出された場合に、冷却ファンの回転数を調整することが開示されている。 A control system for a cooling fan that blows air to cool a working fluid is described, for example, in International Publication No. 2007/026627 (Patent Document 1). This document discloses adjusting the number of revolutions of a cooling fan when a resting state of a working mechanism is detected based on an operating state of a working machine lever.
国際公開2007/026627号WO2007/026627
 油圧駆動式の冷却ファンは、エンジンが高速で回転されている状態でも、冷却装置をそれほど冷却する必要のない場合に冷却ファンが高速で回転されるとエンジン出力が無駄に消費されるため、冷却ファンの回転数を小さくするように制御されていた。エンジンが比較的高速で回転するときに冷却ファンの回転数を制御するのが油圧駆動式の冷却ファンのメリットであるにも拘らず、冷却ファンとエンジンとの間で共振が発生する可能性があり、課題であった。 A hydraulically driven cooling fan is a waste of engine power when the cooling system does not need to cool as much, even when the engine is running at high speed. It was controlled to reduce the rotation speed of the fan. Despite the advantage of a hydraulically driven cooling fan in controlling the speed of the cooling fan when the engine is rotating at relatively high speeds, resonance can occur between the cooling fan and the engine. Yes, it was an issue.
 本開示では、共振を抑制でき、かつ冷却ファンの冷却能力を確保できる、冷却ファンの制御システム、作業機械、および冷却ファンの制御方法が提案される。 This disclosure proposes a cooling fan control system, a working machine, and a cooling fan control method that can suppress resonance and ensure the cooling capacity of the cooling fan.
 本開示に従うと、エンジンと、エンジンによって駆動される作業機と、エンジンの回転数とは独立して回転数を制御可能に構成される冷却ファンと、冷却ファンを制御するコントローラとを備える、冷却ファンの制御システムが提案される。コントローラは、エンジンの周波数と、冷却ファンの周波数とを取得する。コントローラは、作業機が停止している状態において、エンジンの回転数が閾値よりも大きく、冷却ファンの周波数がエンジンの周波数に対し所定の範囲内にあるとき、冷却ファンの周波数を変更して、冷却ファンの周波数を取得した時点よりも冷却ファンとエンジンとの周波数の差を大きくするように、冷却ファンを制御する。 According to the present disclosure, a cooling device comprising an engine, a work machine driven by the engine, a cooling fan configured to be able to control the number of rotations independently of the number of rotations of the engine, and a controller that controls the cooling fan A fan control system is proposed. The controller obtains the engine frequency and the cooling fan frequency. The controller changes the frequency of the cooling fan when the number of revolutions of the engine is greater than a threshold value and the frequency of the cooling fan is within a predetermined range with respect to the frequency of the engine while the work machine is stopped. The cooling fan is controlled so as to increase the difference in frequency between the cooling fan and the engine from when the frequency of the cooling fan is acquired.
 本開示によれば、共振を抑制でき、かつ冷却ファンの冷却能力を確保することができる。 According to the present disclosure, resonance can be suppressed and the cooling capacity of the cooling fan can be ensured.
実施形態に基づく作業機械の構成を概略的に示す側面図である。It is a side view showing roughly composition of a work machine based on an embodiment. 図1に示される作業機械のシステムの概略構成を示すブロック図である。2 is a block diagram showing a schematic configuration of a system of the working machine shown in FIG. 1; FIG. コントローラの機能構成を説明するブロック図である。3 is a block diagram illustrating the functional configuration of a controller; FIG. 冷却ファンの周波数の制御に係る処理の流れを示すフローチャートである。5 is a flow chart showing the flow of processing related to control of the frequency of the cooling fan; 操作レバーの操作と冷却ファンの回転数との関係を示すグラフである。4 is a graph showing the relationship between the operation of an operating lever and the number of rotations of a cooling fan; エンジンの回転数と実施形態の冷却ファンの回転数制御の実行または解除との関係を示すグラフである。4 is a graph showing the relationship between engine speed and execution or cancellation of cooling fan speed control of the embodiment. エンジンの回転数と、エンジンおよび冷却ファンの周波数との関係を示すグラフである。4 is a graph showing the relationship between the engine speed and the frequencies of the engine and the cooling fan.
 以下、実施形態について図面に基づいて説明する。以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 The embodiments will be described below based on the drawings. In the following description, the same reference numerals are given to the same parts. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 <作業機械の構成>
 図1は、本開示の実施形態に基づく作業機械の一例としての油圧ショベル100の構成を概略的に示す側面図である。図1に示されるように、本実施の形態の油圧ショベル100は、走行体1と、旋回体2と、作業機3とを主に有している。走行体1と旋回体2とにより、油圧ショベル100の車体が構成されている。
<Configuration of working machine>
FIG. 1 is a side view schematically showing the configuration of a hydraulic excavator 100 as an example of a work machine based on an embodiment of the present disclosure. As shown in FIG. 1, a hydraulic excavator 100 of the present embodiment mainly has a traveling body 1, a revolving body 2, and a working machine 3. As shown in FIG. A vehicle body of the hydraulic excavator 100 is configured by the traveling body 1 and the revolving body 2 .
 走行体1は左右一対の履帯装置1aを有している。この左右一対の履帯装置1aの各々は履帯を有している。左右一対の履帯が回転駆動されることにより油圧ショベル100が自走する。 The traveling body 1 has a pair of left and right crawler belt devices 1a. Each of the pair of left and right crawler belt devices 1a has a crawler belt. The hydraulic excavator 100 is self-propelled by rotating the pair of left and right crawler belts.
 旋回体2は走行体1に対して旋回自在に設置されている。この旋回体2は、運転室(キャブ)2aと、運転席2bと、エンジンルーム2cと、カウンタウェイト2dとを主に有している。運転室2aは、旋回体2のたとえば前方左側(車両前側)に配置されている。運転室2aの内部空間には、オペレータが着座するための運転席2bが配置されている。 The revolving body 2 is installed so as to be rotatable with respect to the traveling body 1. The revolving body 2 mainly has an operator's cab (cab) 2a, an operator's seat 2b, an engine room 2c, and a counterweight 2d. The driver's cab 2a is arranged, for example, on the front left side of the revolving body 2 (vehicle front side). A driver's seat 2b for an operator to sit on is arranged in the inner space of the driver's cab 2a.
 エンジンルーム2cおよびカウンタウェイト2dの各々は、運転室2aに対して旋回体2の後方側(車両後側)に配置されている。エンジンルーム2cは、エンジンユニット(エンジン、排気処理構造体など)を収納している。エンジンルーム2cの上方はエンジンフードにより覆われている。カウンタウェイト2dは、エンジンルーム2cの後方に配置されている。 The engine room 2c and the counterweight 2d are arranged on the rear side of the revolving body 2 (vehicle rear side) with respect to the driver's cab 2a. The engine room 2c accommodates an engine unit (engine, exhaust treatment structure, etc.). The upper part of the engine room 2c is covered with an engine hood. The counterweight 2d is arranged behind the engine room 2c.
 作業機3は、旋回体2の前方側であって運転室2aのたとえば右側にて軸支されている。作業機3は、たとえばブーム3a、アーム3b、バケット3c、ブームシリンダ4a、アームシリンダ4b、バケットシリンダ4cなどを有している。ブーム3aの基端部(一端)は、ブームボトムピン5aにより旋回体2に回転可能に連結されている。アーム3bの基端部(一端)は、ブームトップピン5bによりブーム3aの先端部(他端)に回転可能に連結されている。バケット3c(の一端)は、アームトップピン5cによりアーム3bの先端部(他端)に回転可能に連結されている。 The working machine 3 is pivotally supported on the front side of the revolving body 2 and, for example, on the right side of the operator's cab 2a. The working machine 3 has, for example, a boom 3a, an arm 3b, a bucket 3c, a boom cylinder 4a, an arm cylinder 4b, a bucket cylinder 4c, and the like. A base end (one end) of the boom 3a is rotatably connected to the revolving body 2 by a boom bottom pin 5a. A base end (one end) of the arm 3b is rotatably connected to a tip end (the other end) of the boom 3a by a boom top pin 5b. The bucket 3c (one end) is rotatably connected to the tip (the other end) of the arm 3b by an arm top pin 5c.
 本実施形態においては、作業機3を基準として、油圧ショベル100の各部の位置関係について説明する。 In this embodiment, the positional relationship of each part of the hydraulic excavator 100 will be described with the work machine 3 as a reference.
 作業機3のブーム3aは、旋回体2に対して、ブームボトムピン5aを中心に回転移動する。旋回体2に対して回動するブーム3aの特定の部分、たとえばブーム3aの先端部が移動する軌跡は円弧状であり、その円弧を含む平面が特定される。油圧ショベル100を平面視した場合に、当該平面は直線として表される。この直線の延びる方向が、油圧ショベル100の車体の前後方向、または旋回体2の前後方向であり、以下では単に前後方向ともいう。油圧ショベル100の車体の左右方向(車幅方向)、または旋回体2の左右方向とは、平面視において前後方向と直交する方向であり、以下では単に左右方向ともいう。油圧ショベル100の車体の上下方向、または旋回体2の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向であり、以下では単に上下方向ともいう。 The boom 3a of the work machine 3 rotates relative to the revolving body 2 around the boom bottom pin 5a. A specific portion of the boom 3a that rotates with respect to the revolving body 2, for example, the tip of the boom 3a moves in an arc shape, and a plane that includes the arc is specified. When the hydraulic excavator 100 is viewed from above, the plane is represented as a straight line. The direction in which this straight line extends is the front-rear direction of the vehicle body of the excavator 100 or the front-rear direction of the revolving body 2, and is hereinafter simply referred to as the front-rear direction. The left-right direction (vehicle width direction) of the excavator 100 or the left-right direction of the revolving body 2 is a direction orthogonal to the front-rear direction in a plan view, and is hereinafter simply referred to as the left-right direction. The vertical direction of the vehicle body of the hydraulic excavator 100 or the vertical direction of the revolving structure 2 is a direction orthogonal to a plane defined by the front-rear direction and the left-right direction, and is hereinafter simply referred to as the vertical direction.
 前後方向において、車体から作業機3が突き出している側が前方向であり、前方向と反対方向が後方向である。前方向を視て左右方向の右側、左側がそれぞれ右方向、左方向である。上下方向において地面のある側が下側、空のある側が上側である。 In the front-rear direction, the side where the work implement 3 protrudes from the vehicle body is the front direction, and the direction opposite to the front direction is the rear direction. The right side and the left side in the horizontal direction are the right direction and the left direction, respectively, when viewed in the forward direction. In the vertical direction, the side with the ground is the lower side, and the side with the sky is the upper side.
 前後方向とは、運転室2a内の運転席2bに着座したオペレータの前後方向である。左右方向とは、運転席2bに着座したオペレータの左右方向である。上下方向とは、運転席2bに着座したオペレータの上下方向である。運転席2bに着座したオペレータに正対する方向が前方向であり、運転席2bに着座したオペレータの背後方向が後方向である。運転席2bに着座したオペレータが正面に正対したときの右側、左側がそれぞれ右方向、左方向である。運転席2bに着座したオペレータの足元側が下側、頭上側が上側である。 The front-back direction is the front-back direction of the operator seated in the driver's seat 2b in the operator's cab 2a. The left-right direction is the left-right direction of the operator seated in the driver's seat 2b. The vertical direction is the vertical direction of the operator seated on the driver's seat 2b. The direction facing the operator seated on the driver's seat 2b is the front direction, and the direction behind the operator seated on the driver's seat 2b is the rearward direction. The right side and the left side when an operator sitting in the driver's seat 2b faces the front are the right direction and the left direction, respectively. The operator seated on the driver's seat 2b has the lower side at the feet and the upper side at the head side.
 ブーム3aは、ブームシリンダ(ブーム油圧シリンダ)4aにより駆動可能である。この駆動により、ブーム3aは、ブームボトムピン5aを中心に旋回体2に対して上下方向に回動可能である。アーム3bは、アームシリンダ(アーム油圧シリンダ)4bにより駆動可能である。この駆動により、アーム3bは、ブームトップピン5bを中心にブーム3aに対して上下方向に回動可能である。バケット(アタッチメント)3cは、バケットシリンダ(アタッチメント油圧シリンダ)4cにより駆動可能である。この駆動によりバケット3cは、アームトップピン5cを中心にアーム3bに対して上下方向に回動可能である。このように作業機3は駆動可能である。 The boom 3a can be driven by a boom cylinder (boom hydraulic cylinder) 4a. By this drive, the boom 3a can be rotated vertically with respect to the revolving body 2 around the boom bottom pin 5a. The arm 3b can be driven by an arm cylinder (arm hydraulic cylinder) 4b. This drive allows the arm 3b to rotate vertically with respect to the boom 3a around the boom top pin 5b. The bucket (attachment) 3c can be driven by a bucket cylinder (attachment hydraulic cylinder) 4c. By this driving, the bucket 3c can be rotated vertically with respect to the arm 3b around the arm top pin 5c. The working machine 3 can be driven in this manner.
 ブームボトムピン5aは、油圧ショベル100の車体に支持されている。ブームボトムピン5aは、旋回体2のフレームの一対の縦板(図示せず)に支持されている。ブームトップピン5bは、ブーム3aの先端に取り付けられている。アームトップピン5cは、アーム3bの先端に取り付けられている。ブームボトムピン5a、ブームトップピン5bおよびアームトップピン5cは、いずれも左右方向に延びている。ブームボトムピン5aはブームフートピンとも呼ばれる。 The boom bottom pin 5a is supported by the body of the excavator 100. The boom bottom pin 5 a is supported by a pair of vertical plates (not shown) of the frame of the revolving body 2 . The boom top pin 5b is attached to the tip of the boom 3a. Arm top pin 5c is attached to the tip of arm 3b. The boom bottom pin 5a, the boom top pin 5b and the arm top pin 5c all extend in the left-right direction. The boom bottom pin 5a is also called a boom foot pin.
 作業機3は、バケットリンク3dを有している。バケットリンク3dは、第1リンク部材3daと、第2リンク部材3dbとを有している。第1リンク部材3daの先端と第2リンク部材3dbの先端とは、バケットシリンダトップピン3dcを介して、相対回転可能に連結されている。バケットシリンダトップピン3dcは、バケットシリンダ4cの先端に連結されている。したがって第1リンク部材3daおよび第2リンク部材3dbは、バケットシリンダ4cにピン連結されている。 The working machine 3 has a bucket link 3d. The bucket link 3d has a first link member 3da and a second link member 3db. The tip of the first link member 3da and the tip of the second link member 3db are connected via a bucket cylinder top pin 3dc so as to be relatively rotatable. The bucket cylinder top pin 3dc is connected to the tip of the bucket cylinder 4c. Therefore, the first link member 3da and the second link member 3db are pin-connected to the bucket cylinder 4c.
 第1リンク部材3daの基端は、第1リンクピン3ddによりアーム3bに回転可能に連結されている。第2リンク部材3dbの基端は、第2リンクピン3deによりバケット3cの根元部分のブラケットに回転可能に連結されている。 The proximal end of the first link member 3da is rotatably connected to the arm 3b by a first link pin 3dd. A base end of the second link member 3db is rotatably connected to a bracket at the root portion of the bucket 3c by a second link pin 3de.
 ブームシリンダ4aのヘッド側に、圧力センサ6aが取り付けられていてもよい。圧力センサ6aは、ブームシリンダ4aのシリンダヘッド側油室40A内の作動油の圧力(ヘッド圧)を検出することができる。ブームシリンダ4aのボトム側に、圧力センサ6bが取り付けられていてもよい。圧力センサ6bは、ブームシリンダ4aのシリンダボトム側油室40B内の作動油の圧力(ボトム圧)を検出することができる。圧力センサ6a,6bは、ヘッド圧とボトム圧とからなる作動油圧力情報を後述のコントローラ30に出力する。 A pressure sensor 6a may be attached to the head side of the boom cylinder 4a. The pressure sensor 6a can detect the pressure (head pressure) of hydraulic fluid in the cylinder head side oil chamber 40A of the boom cylinder 4a. A pressure sensor 6b may be attached to the bottom side of the boom cylinder 4a. The pressure sensor 6b can detect the pressure (bottom pressure) of the working oil in the cylinder bottom side oil chamber 40B of the boom cylinder 4a. The pressure sensors 6a and 6b output working oil pressure information consisting of head pressure and bottom pressure to a controller 30, which will be described later.
 アームシリンダ4bのヘッド側に、圧力センサ6cが取り付けられていてもよい。圧力センサ6cは、アームシリンダ4bのシリンダヘッド側油室内の作動油の圧力(ヘッド圧)を検出することができる。アームシリンダ4bのボトム側に、圧力センサ6dが取り付けられていてもよい。圧力センサ6dは、アームシリンダ4bのシリンダボトム側油室内の作動油の圧力(ボトム圧)を検出することができる。圧力センサ6c,6dは、ヘッド圧とボトム圧とからなる作動油圧力情報を後述のコントローラ30に出力する。 A pressure sensor 6c may be attached to the head side of the arm cylinder 4b. The pressure sensor 6c can detect the pressure of hydraulic fluid (head pressure) in the cylinder head side oil chamber of the arm cylinder 4b. A pressure sensor 6d may be attached to the bottom side of the arm cylinder 4b. The pressure sensor 6d can detect the pressure (bottom pressure) of hydraulic fluid in the cylinder bottom side oil chamber of the arm cylinder 4b. The pressure sensors 6c and 6d output working oil pressure information consisting of head pressure and bottom pressure to the controller 30, which will be described later.
 バケットシリンダ4cのヘッド側に、圧力センサ6eが取り付けられていてもよい。圧力センサ6eは、バケットシリンダ4cのシリンダヘッド側油室内の作動油の圧力(ヘッド圧)を検出することができる。バケットシリンダ4cのボトム側に、圧力センサ6fが取り付けられていてもよい。圧力センサ6fは、バケットシリンダ4cシリンダボトム側油室内の作動油の圧力(ボトム圧)を検出することができる。圧力センサ6e,6fは、ヘッド圧とボトム圧とからなる作動油圧力情報を後述のコントローラ30に出力する。 A pressure sensor 6e may be attached to the head side of the bucket cylinder 4c. The pressure sensor 6e can detect the pressure (head pressure) of hydraulic fluid in the cylinder head side oil chamber of the bucket cylinder 4c. A pressure sensor 6f may be attached to the bottom side of the bucket cylinder 4c. The pressure sensor 6f can detect the pressure (bottom pressure) of hydraulic oil in the cylinder bottom side oil chamber of the bucket cylinder 4c. The pressure sensors 6e and 6f output working oil pressure information including head pressure and bottom pressure to the controller 30, which will be described later.
 ブーム3a、アーム3bおよびバケット3cには、それぞれの位置および姿勢の情報を得るための位置センサが設けられていてもよい。位置センサは、ブーム3a、アーム3bおよびバケット3cのそれぞれの位置を得るためのブーム情報、アーム情報およびアタッチメント情報を、後述のコントローラ30に出力する。 The boom 3a, the arm 3b, and the bucket 3c may be provided with position sensors for obtaining information on their respective positions and attitudes. The position sensor outputs boom information, arm information and attachment information for obtaining respective positions of the boom 3a, the arm 3b and the bucket 3c to the controller 30, which will be described later.
 ブームシリンダ4aに、位置センサとして、ストロークセンサ7aが取り付けられていてもよい。ストロークセンサ7aは、ブームシリンダ4aにおけるシリンダ4aaに対するシリンダロッド4abの変位量をブーム情報として検出する。アームシリンダ4bに、位置センサとして、ストロークセンサ7bが取り付けられていてもよい。ストロークセンサ7bは、アームシリンダ4bにおけるシリンダロッドの変位量をアーム情報として検出する。バケットシリンダ4cに、位置センサとして、ストロークセンサ7cが取り付けられていてもよい。ストロークセンサ7cは、バケットシリンダ4cにおけるシリンダロッドの変位量をアタッチメント情報として検出する。 A stroke sensor 7a may be attached to the boom cylinder 4a as a position sensor. The stroke sensor 7a detects the amount of displacement of the cylinder rod 4ab with respect to the cylinder 4aa in the boom cylinder 4a as boom information. A stroke sensor 7b may be attached to the arm cylinder 4b as a position sensor. The stroke sensor 7b detects the amount of displacement of the cylinder rod in the arm cylinder 4b as arm information. A stroke sensor 7c may be attached to the bucket cylinder 4c as a position sensor. The stroke sensor 7c detects the amount of displacement of the cylinder rod in the bucket cylinder 4c as attachment information.
 位置センサは、角度センサであってもよい。ブームボトムピン5aの周囲に、角度センサ9aが取り付けられていてもよい。ブームトップピン5bの周囲に、角度センサ9bが取り付けられていてもよい。アームトップピン5cの周囲に、角度センサ9cが取り付けられていてもよい。角度センサ9a,9b,9cは、ポテンショメータであってもよく、ロータリーエンコーダであってもよい。角度センサ9a,9b,9cは、ブーム3aなどの回転角情報(ブーム情報、アーム情報およびアタッチメント情報)を、後述のコントローラ30に出力する。 The position sensor may be an angle sensor. An angle sensor 9a may be attached around the boom bottom pin 5a. An angle sensor 9b may be attached around the boom top pin 5b. An angle sensor 9c may be attached around the arm top pin 5c. The angle sensors 9a, 9b, 9c may be potentiometers or rotary encoders. The angle sensors 9a, 9b, and 9c output rotation angle information (boom information, arm information, and attachment information) of the boom 3a and the like to the controller 30, which will be described later.
 図1に示されるように、側方視において、ブームボトムピン5aとブームトップピン5bとを通る直線(図1中に二点鎖線で図示)と、上下方向に延びる直線(図1中に破線で図示)とのなす角度を、ブーム角θbとする。ブーム角θbは、通常、鋭角である。ブーム角θbは、旋回体2に対するブーム3aの角度を表す。ブーム角θbは、ストロークセンサ7aの検出結果から算出することができ、また角度センサ9aの測定値から算出することができる。 As shown in FIG. 1, when viewed from the side, a straight line passing through the boom bottom pin 5a and the boom top pin 5b (indicated by a two-dot chain line in FIG. 1) and a straight line extending in the vertical direction (a dashed line in FIG. 1) ) is defined as the boom angle θb. Boom angle θb is usually an acute angle. The boom angle θb represents the angle of the boom 3a with respect to the revolving body 2. As shown in FIG. The boom angle θb can be calculated from the detection result of the stroke sensor 7a, and can be calculated from the measurement value of the angle sensor 9a.
 側方視において、ブームボトムピン5aとブームトップピン5bとを通る直線と、ブームトップピン5bとアームトップピン5cとを通る直線(図1中に二点鎖線で図示)とのなす角度を、アーム角θaとする。アーム角θaは、側方視でアーム3bが回動する領域におけるブーム3aに対するアーム3bの角度を表す。アーム角θaは、ストロークセンサ7bの検出結果から算出することができ、また角度センサ9bの測定値から算出することができる。 When viewed from the side, the angle between a straight line passing through the boom bottom pin 5a and the boom top pin 5b and a straight line passing through the boom top pin 5b and the arm top pin 5c (indicated by a chain double-dashed line in FIG. 1) is Let the arm angle be θa. The arm angle θa represents the angle of the arm 3b with respect to the boom 3a in the area where the arm 3b rotates when viewed from the side. The arm angle θa can be calculated from the detection result of the stroke sensor 7b, and can be calculated from the measurement value of the angle sensor 9b.
 側方視において、ブームトップピン5bとアームトップピン5cとを通る直線と、アームトップピン5cとバケット3cの刃先とを通る直線(図1中に二点鎖線で図示)とのなす角度を、バケット角θkとする。バケット角θkは、側方視でバケット3cが回動する領域におけるアーム3bに対するバケット3cの角度を表す。バケット角θkは、ストロークセンサ7cの検出結果から算出することができ、また角度センサ9cの測定値から算出することができる。 When viewed from the side, the angle formed by a straight line passing through the boom top pin 5b and the arm top pin 5c and a straight line passing through the arm top pin 5c and the cutting edge of the bucket 3c (indicated by a chain double-dashed line in FIG. 1) is Let the bucket angle be θk. The bucket angle θk represents the angle of the bucket 3c with respect to the arm 3b in the region where the bucket 3c rotates when viewed from the side. The bucket angle θk can be calculated from the detection result of the stroke sensor 7c, and can be calculated from the measurement value of the angle sensor 9c.
 <システム構成>
 次に、作業機械のシステムの概略構成について図2を用いて説明する。図2は、図1に示される作業機械のシステムの概略構成を示すブロック図である。
<System configuration>
Next, a schematic configuration of the working machine system will be described with reference to FIG. FIG. 2 is a block diagram showing a schematic configuration of the system of the work machine shown in FIG. 1. As shown in FIG.
 本実施形態におけるシステムは、冷却ファン21を制御するためのシステムである。実施形態におけるシステムは、図1に示される作業機械の一例としての油圧ショベル100と、図2に示されるコントローラ30とを含んでいる。コントローラ30は、油圧ショベル100に搭載されていてもよい。コントローラ30は、油圧ショベル100の外部に設置されていてもよい。コントローラ30は、油圧ショベル100の作業現場に配置されてもよく、油圧ショベル100の作業現場から離れた遠隔地に配置されてもよい。 The system in this embodiment is a system for controlling the cooling fan 21 . A system according to the embodiment includes a hydraulic excavator 100 as an example of a working machine shown in FIG. 1 and a controller 30 shown in FIG. The controller 30 may be mounted on the hydraulic excavator 100 . The controller 30 may be installed outside the excavator 100 . The controller 30 may be placed at the work site of the excavator 100 or at a remote location away from the work site of the excavator 100 .
 エンジン15は、旋回体2に搭載されている。エンジン15は、エンジンルーム2c内に収納されている。エンジン15は、たとえばディーゼルエンジンである。エンジン15への燃料の噴射量が制御されることにより、エンジン15の出力が制御される。エンジン15は、油圧ショベル100の動作の駆動源である。エンジン15の発生する駆動力によって、走行体1が走行し、旋回体2が走行体1に対して旋回し、また作業機3が動作する。実施形態においては、エンジン15は直列6気筒である。 The engine 15 is mounted on the revolving body 2. The engine 15 is accommodated in the engine room 2c. Engine 15 is, for example, a diesel engine. By controlling the injection amount of fuel to the engine 15, the output of the engine 15 is controlled. The engine 15 is a drive source for operating the hydraulic excavator 100 . The driving force generated by the engine 15 causes the traveling body 1 to travel, the revolving body 2 to revolve with respect to the traveling body 1, and the working machine 3 to operate. In the embodiment, the engine 15 is an in-line 6-cylinder.
 エンジン15に、油圧ポンプ23が連結されている。エンジン15の回転により、油圧ポンプ23が回転作動される。油圧ポンプ23が作動されることにより、油圧ポンプ23から電磁比例制御バルブ24を介して油圧モータ22に作動油が供給されて、油圧モータ22が回転される。油圧モータ22は、冷却ファン21を回転させるためのモータである。実施形態においては、冷却ファン21の羽根枚数は6枚である。冷却ファン21、油圧モータ22および油圧ポンプ23は、旋回体2に搭載されている。 A hydraulic pump 23 is connected to the engine 15 . The rotation of the engine 15 rotates the hydraulic pump 23 . When the hydraulic pump 23 is operated, hydraulic oil is supplied from the hydraulic pump 23 to the hydraulic motor 22 via the electromagnetic proportional control valve 24, and the hydraulic motor 22 is rotated. The hydraulic motor 22 is a motor for rotating the cooling fan 21 . In the embodiment, the cooling fan 21 has six blades. A cooling fan 21 , a hydraulic motor 22 and a hydraulic pump 23 are mounted on the revolving body 2 .
 冷却ファン21は、油圧モータ22によって回転駆動される。冷却ファン21は、作動油を動力伝達媒体として駆動される油圧駆動ファンである。冷却ファン21は、エンジン15の出力軸に直結しておらず、したがってエンジン15の回転数とは独立して回転数を自在に制御可能に構成されている。具体的には、油圧ポンプ23から油圧モータ22へ供給される作動油の流量に応じて、冷却ファン21の回転数がコントロールされる。 The cooling fan 21 is rotationally driven by a hydraulic motor 22 . The cooling fan 21 is a hydraulically driven fan that is driven using hydraulic oil as a power transmission medium. The cooling fan 21 is not directly connected to the output shaft of the engine 15 , so that the rotation speed of the cooling fan 21 can be freely controlled independently of the rotation speed of the engine 15 . Specifically, the number of revolutions of the cooling fan 21 is controlled according to the flow rate of hydraulic oil supplied from the hydraulic pump 23 to the hydraulic motor 22 .
 インテークエアクーラ25は、エンジン15内に吸引される空気を冷却する。オイルクーラ26は、油圧モータ22および油圧ポンプ23を循環する作動油を冷却する。ラジエータ27は、エンジン15の冷却水を冷却する。インテークエアクーラ25、オイルクーラ26およびラジエータ27は、冷却ファン21に対向配置されている。油圧モータ22によって冷却ファン21が回転されることにより、インテークエアクーラ25、オイルクーラ26およびラジエータ27に対して、冷却のための送風が行われる。 The intake air cooler 25 cools the air drawn into the engine 15 . The oil cooler 26 cools hydraulic oil circulating through the hydraulic motor 22 and the hydraulic pump 23 . The radiator 27 cools cooling water for the engine 15 . Intake air cooler 25 , oil cooler 26 and radiator 27 are arranged to face cooling fan 21 . Cooling fan 21 is rotated by hydraulic motor 22 to blow cooling air to intake air cooler 25 , oil cooler 26 and radiator 27 .
 油圧モータ22を動作させるための作動油、エンジン15を冷却するための冷却水、および、エンジン15に供給される空気は、エンジン15の作動に関与する作動流体の一例である。冷却ファン21は、作動流体の冷却のために送風を行う。 The hydraulic oil for operating the hydraulic motor 22, the cooling water for cooling the engine 15, and the air supplied to the engine 15 are examples of the working fluid involved in the operation of the engine 15. The cooling fan 21 blows air to cool the working fluid.
 冷却水の経路内に、水温センサ28が設けられている。作動油の経路内に、油温センサ29が設けられている。エンジン15には、エンジン回転数センサ31が付設されている。エンジン15の回転時に、水温センサ28により冷却水の温度が検出され、油温センサ29により作動油の温度が検出され、エンジン回転数センサ31によりエンジン15の回転数が検出される。これらの検出結果は、コントローラ30に対して出力される。 A water temperature sensor 28 is provided in the cooling water path. An oil temperature sensor 29 is provided in the hydraulic oil path. An engine speed sensor 31 is attached to the engine 15 . When the engine 15 rotates, the water temperature sensor 28 detects the temperature of the cooling water, the oil temperature sensor 29 detects the temperature of the working oil, and the engine speed sensor 31 detects the speed of the engine 15 . These detection results are output to the controller 30 .
 冷却ファン21には、ファン回転数センサ32が付設されている。冷却ファン21の回転時に、ファン回転数センサ32により冷却ファン21の回転数が検出される。この検出結果は、コントローラ30に対して出力される。 A fan speed sensor 32 is attached to the cooling fan 21 . When the cooling fan 21 rotates, the rotation speed of the cooling fan 21 is detected by the fan rotation speed sensor 32 . This detection result is output to the controller 30 .
 油圧ショベル100は、オペレータによって操作される操作装置33を備えている。操作装置33は、たとえば運転室2a内に配置されている。操作装置33は、作業機3の動作のために操作される作業機操作装置と、旋回体2の旋回動作のために操作される旋回操作装置と、走行体1の動作のために操作される走行操作装置とを含んでいる。作業機操作装置および旋回操作装置は、たとえば操作レバーである。走行操作装置は、たとえば操作ペダルである。 The hydraulic excavator 100 includes an operating device 33 operated by an operator. The operating device 33 is arranged, for example, in the driver's cab 2a. The operating device 33 includes a working machine operating device operated to operate the working machine 3 , a swing operating device operated to swing the swing body 2 , and a swing operating device operated to operate the traveling body 1 . and a travel control device. The work machine operating device and the turning operating device are, for example, operating levers. The travel operation device is, for example, an operation pedal.
 操作検出部33Aは、操作装置33の操作量を検出する。操作装置33が操作レバーの場合、操作検出部33Aは、操作レバーの中立位置からの傾きの方向および角度を検出する。操作装置33が操作ペダルの場合、操作検出部33Aは、操作ペダルの踏み込み量を検出する。この検出結果は、コントローラ30に対して出力される。 The operation detection unit 33A detects the amount of operation of the operation device 33. When the operation device 33 is an operation lever, the operation detection section 33A detects the direction and angle of inclination from the neutral position of the operation lever. When the operation device 33 is an operation pedal, the operation detection unit 33A detects the depression amount of the operation pedal. This detection result is output to the controller 30 .
 操作検出部33Aは、たとえばポテンショメータなどの変位センサであってもよい。操作装置33は、電気式の操作装置に限られず、パイロット油圧方式の操作装置であってもよい。この場合、操作検出部33Aは、パイロット油の圧力を検出する油圧センサであってもよい。 The operation detection unit 33A may be, for example, a displacement sensor such as a potentiometer. The operating device 33 is not limited to an electric operating device, and may be a pilot hydraulic operating device. In this case, the operation detection section 33A may be a hydraulic sensor that detects the pressure of the pilot oil.
 コントローラ30は、図示しないCPU(中央処理装置)および記憶部34などを有している。記憶部34には、冷却ファン21の動作を制御するためのプログラム、およびそのプログラムの実行に必要な各種データが記憶されている。記憶部34にはまた、作業実行にともなって発生するワーキングデータが一時的に記憶される。 The controller 30 has a CPU (Central Processing Unit) and a storage unit 34 (not shown). The storage unit 34 stores a program for controlling the operation of the cooling fan 21 and various data necessary for executing the program. The storage unit 34 also temporarily stores working data generated as the work is executed.
 図3は、コントローラ30の機能構成を説明するブロック図である。実施形態に基づくコントローラ30は、図3に示されるように、作業機状態判別部30Aと、エンジン周波数取得部30Bと、ファン周波数取得部30Cと、共振周波数設定部30Dと、演算処理部30Eと、ファン制御指令部30Fと、タイマ30Tとを含んでいる。 FIG. 3 is a block diagram illustrating the functional configuration of the controller 30. As shown in FIG. As shown in FIG. 3, the controller 30 based on the embodiment includes a working machine state determination section 30A, an engine frequency acquisition section 30B, a fan frequency acquisition section 30C, a resonance frequency setting section 30D, and an arithmetic processing section 30E. , a fan control command section 30F and a timer 30T.
 作業機状態判別部30Aは、作業機3が動作しているかまたは停止しているかの状態を判別する。エンジン周波数取得部30Bは、エンジン回転数センサ31により検出されたエンジン15の回転数に基づいて、エンジン15の周波数を取得する。ファン周波数取得部30Cは、ファン回転数センサ32により検出された冷却ファン21の回転数に基づいて、冷却ファン21の周波数を取得する。共振周波数設定部30Dは、エンジン15の周波数に対して共振が発生し得る周波数の範囲を設定する。 The work machine state determination unit 30A determines whether the work machine 3 is operating or stopped. The engine frequency acquisition unit 30B acquires the frequency of the engine 15 based on the rotation speed of the engine 15 detected by the engine rotation speed sensor 31 . Fan frequency acquisition unit 30</b>C acquires the frequency of cooling fan 21 based on the rotation speed of cooling fan 21 detected by fan rotation speed sensor 32 . The resonance frequency setting unit 30D sets a range of frequencies in which resonance can occur with respect to the frequency of the engine 15. FIG.
 演算処理部30Eは、冷却ファン21の周波数の制御に係る各種の演算を実行する。ファン制御指令部30Fは、冷却ファン21に対して制御信号を出力する。タイマ30Tは、時刻を計時する。演算処理部30Eは、タイマ30Tから現在時刻を読み出すことが可能である。 The computation processing unit 30E executes various computations related to control of the frequency of the cooling fan 21. Fan control command unit 30F outputs a control signal to cooling fan 21 . The timer 30T measures time. The arithmetic processing unit 30E can read the current time from the timer 30T.
 <冷却ファン21の制御>
 以上の構成を備えている実施形態の油圧ショベル100における、コントローラ30による冷却ファン21の制御について、以下に説明する。図4は、冷却ファン21の周波数の制御に係る処理の流れを示すフローチャートである。
<Control of Cooling Fan 21>
Control of the cooling fan 21 by the controller 30 in the hydraulic excavator 100 of the embodiment having the above configuration will be described below. FIG. 4 is a flow chart showing the flow of processing related to control of the frequency of the cooling fan 21. As shown in FIG.
 図4に示されるように、ステップS1において、作業機3の動作のために操作される操作レバーが中立状態であるか否かの判断が行われる。コントローラ30に、操作検出部33Aが検出した操作レバーの中立位置からの傾きが入力される。作業機状態判別部30Aは、操作検出部33Aの検出結果に基づいて、作業機3の状態を判別する。具体的に、作業機状態判別部30Aは、操作レバーが中立状態から傾けられているとの検出結果に基づいて、操作レバーに対する操作がされており、作業機3を作動させるためのオペレータからの指令が与えられており、従って作業機3が動作していることを判別する。また作業機状態判別部30Aは、操作レバーが中立状態であるとの検出結果に基づいて、操作レバーに対する操作がされておらず、従って作業機3が停止していることを判別する。 As shown in FIG. 4, in step S1, it is determined whether or not the operating lever operated to operate the working machine 3 is in the neutral state. The tilt from the neutral position of the operation lever detected by the operation detection section 33A is input to the controller 30 . 30 A of work machine state determination parts discriminate|determine the state of the work machine 3 based on the detection result of 33 A of operation detection parts. Specifically, based on the detection result that the operation lever is tilted from the neutral state, the work machine state determination unit 30A determines that the operation lever is being operated, and the operator's request to operate the work machine 3 is determined. It is determined that a command has been given and therefore the working machine 3 is operating. Further, based on the detection result that the operation lever is in the neutral state, the work machine state determination unit 30A determines that the operation lever is not operated and therefore the work machine 3 is stopped.
 操作レバーが中立状態であると判断されると(ステップS1においてYES)、次にステップS2において、所定時間が経過したか否かの判断が行われる。図5は、操作レバーの操作と冷却ファン21の回転数との関係を示すグラフである。図5の横軸は時間を示し、図5の縦軸は冷却ファン21の目標回転数を示す。 When it is determined that the control lever is in the neutral state (YES in step S1), it is then determined in step S2 whether or not a predetermined time has elapsed. FIG. 5 is a graph showing the relationship between the operation of the control lever and the rotation speed of the cooling fan 21. As shown in FIG. The horizontal axis of FIG. 5 indicates time, and the vertical axis of FIG. 5 indicates the target rotational speed of cooling fan 21 .
 演算処理部30Eは、タイマ30Tから時刻を読み出す。演算処理部30Eは、ステップS1において操作レバーが中立状態であると初めて判断された時刻から現在時刻までに経過した時間を計算する。演算処理部30Eは、記憶部34から、時間の経過にかかる閾値(所定時間T1)を読み出す。演算処理部30Eは、操作レバーが中立の状態で経過した時間が所定時間T1を越えたか否かを判断する。所定時間T1は、たとえば4秒である。 The arithmetic processing unit 30E reads the time from the timer 30T. The arithmetic processing unit 30E calculates the elapsed time from the time when it was first determined in step S1 that the operation lever was in the neutral state to the current time. The arithmetic processing unit 30E reads a threshold (predetermined time T1) for the passage of time from the storage unit 34 . The arithmetic processing unit 30E determines whether or not the time elapsed with the control lever in the neutral state has exceeded the predetermined time T1. Predetermined time T1 is, for example, 4 seconds.
 操作レバーが中立であり作業機3が停止している状態で経過した時間が所定時間T1を越えていないと判断されると(ステップS2においてNO)、ステップS1の処理に戻る。そして、ステップS1の操作レバーが中立状態か否かの判断と、ステップS2の所定時間T1を経過したか否かの判断とが繰り返される。 When it is determined that the time elapsed while the operating lever is in the neutral state and the working machine 3 is stopped does not exceed the predetermined time T1 (NO in step S2), the process returns to step S1. Then, the determination of whether or not the operating lever is in the neutral state in step S1 and the determination of whether or not the predetermined time T1 has elapsed in step S2 are repeated.
 操作レバーが中立であって作業機3が停止している状態で所定時間T1が経過し、従って作業機3が停止している状態が所定時間継続したと判断されると(ステップS2においてYES)、次にステップS3において、エンジン15の周波数が取得される。コントローラ30に、エンジン回転数センサ31により検出されたエンジン15の回転数が入力される。エンジン周波数取得部30Bは、エンジン15の回転数に基づいて、エンジン15の周波数を計算する。この計算は、エンジン15の周波数をFe、エンジン15の回転数をNe、エンジン15の気筒数をCとして、以下の計算式に基づいて行われる。 When it is determined that the predetermined time T1 has elapsed while the operating lever is in the neutral position and the working machine 3 has stopped, and therefore the working machine 3 has been stopped for the predetermined time (YES in step S2). Then, in step S3, the frequency of the engine 15 is obtained. The rotation speed of the engine 15 detected by the engine rotation speed sensor 31 is input to the controller 30 . The engine frequency acquisition unit 30B calculates the frequency of the engine 15 based on the number of rotations of the engine 15 . This calculation is performed based on the following formula, where Fe is the frequency of the engine 15, Ne is the rotation speed of the engine 15, and C is the number of cylinders of the engine 15.
 Fe=Ne×C/2×60
 次にステップS4において、エンジン15の回転数Neが第1閾値よりも大きいか否かの判断が行われる。図6は、エンジン15の回転数と実施形態の冷却ファン21の周波数制御の実行または解除との関係を示すグラフである。図6の横軸はエンジン15の回転数を示す。図6の縦軸における、レバー中立時ロジックのONとは、実施形態の冷却ファン21の周波数制御を実行する設定を示す。図6の縦軸における、レバー中立時ロジックのOFFとは、実施形態の冷却ファン21の周波数制御を解除する設定を示す。
Fe=Ne×C/2×60
Next, in step S4, it is determined whether or not the rotation speed Ne of the engine 15 is greater than the first threshold value. FIG. 6 is a graph showing the relationship between the rotation speed of the engine 15 and execution or cancellation of frequency control of the cooling fan 21 of the embodiment. The horizontal axis of FIG. 6 indicates the rotation speed of the engine 15 . On the vertical axis of FIG. 6, logic ON when the lever is neutral indicates a setting for executing frequency control of the cooling fan 21 of the embodiment. In the vertical axis of FIG. 6, logic OFF when the lever is neutral indicates a setting for canceling the frequency control of the cooling fan 21 of the embodiment.
 演算処理部30Eは、記憶部34から、エンジン15の回転数Neに係る第1閾値TH1を読み出す。演算処理部30Eは、エンジン回転数センサ31により検出されたエンジン15の回転数Neと、第1閾値TH1とを比較して、エンジン15の回転数Neが第1閾値TH1よりも大きいか否かを判断する。第1閾値TH1は、たとえば1400rpmである。 The arithmetic processing unit 30E reads the first threshold value TH1 related to the rotation speed Ne of the engine 15 from the storage unit 34. The arithmetic processing unit 30E compares the rotation speed Ne of the engine 15 detected by the engine rotation speed sensor 31 with the first threshold TH1 to determine whether the rotation speed Ne of the engine 15 is greater than the first threshold TH1. to judge. The first threshold TH1 is, for example, 1400 rpm.
 エンジン15の回転数Neが第1閾値TH1よりも大きいと判断されると(ステップS4においてYES)、次にステップS5において、冷却ファン21の周波数が取得される。ファン周波数取得部30Cは、冷却ファン21の回転数に基づいて、冷却ファン21の周波数を計算する。この計算は、冷却ファン21の周波数をFf、冷却ファン21の回転数をNf、冷却ファン21の羽根枚数をBとして、以下の計算式に基づいて行われる。 When it is determined that the rotation speed Ne of the engine 15 is greater than the first threshold TH1 (YES in step S4), the frequency of the cooling fan 21 is obtained in step S5. Fan frequency acquisition unit 30</b>C calculates the frequency of cooling fan 21 based on the rotation speed of cooling fan 21 . This calculation is performed based on the following formula, where Ff is the frequency of the cooling fan 21, Nf is the rotation speed of the cooling fan 21, and B is the number of blades of the cooling fan 21.
 Ff=Nf×B/60
 冷却ファン21は、インテークエアクーラ25、オイルクーラ26およびラジエータ27に対して、冷却のための送風を行う。インテークエアクーラ25の作動流体である空気の温度、オイルクーラ26の作動流体である作動油の温度、または、ラジエータ27の作動流体である冷却水の温度に従って、目標の冷却ファン21の回転数Nfが設定される。ファン周波数取得部30Cは、上記の計算式を用いて、目標の冷却ファン21の回転数Nfに対応する目標の冷却ファン21の周波数Ffを計算する。
Ff=Nf×B/60
Cooling fan 21 blows air to intake air cooler 25 , oil cooler 26 and radiator 27 for cooling. A target rotation speed Nf of the cooling fan 21 according to the temperature of the air that is the working fluid of the intake air cooler 25, the temperature of the hydraulic oil that is the working fluid of the oil cooler 26, or the temperature of the cooling water that is the working fluid of the radiator 27 is set. The fan frequency acquisition unit 30C calculates the target frequency Ff of the cooling fan 21 corresponding to the target rotational speed Nf of the cooling fan 21 using the above formula.
 図7は、エンジン15の回転数Neと、エンジン15の周波数Feおよび冷却ファン21の周波数Ffとの関係を示すグラフである。図7の横軸はエンジン15の回転数Neを示し、図7の縦軸はエンジン15の周波数Feおよび冷却ファン21の周波数Ffを示す。 FIG. 7 is a graph showing the relationship between the rotational speed Ne of the engine 15, the frequency Fe of the engine 15, and the frequency Ff of the cooling fan 21. FIG. The horizontal axis of FIG. 7 indicates the rotational speed Ne of the engine 15, and the vertical axis of FIG. 7 indicates the frequency Fe of the engine 15 and the frequency Ff of the cooling fan 21.
 上述した計算式に従うと、エンジン15の気筒数は一定であるので、エンジン15の周波数Feは、エンジン15の回転数Neに比例する。冷却ファン21の周波数Ffは、エンジン15の周波数Feとは独立して、図7に示される最大値以下の値に設定が可能である。冷却ファン21の周波数Ffとエンジン15の周波数Feとの差が小さいと、冷却ファン21とエンジン15との間で共振が発生する可能性がある。 According to the above formula, the number of cylinders of the engine 15 is constant, so the frequency Fe of the engine 15 is proportional to the rotation speed Ne of the engine 15. The frequency Ff of the cooling fan 21 can be set independently of the frequency Fe of the engine 15 to a value equal to or lower than the maximum value shown in FIG. If the difference between the frequency Ff of the cooling fan 21 and the frequency Fe of the engine 15 is small, resonance may occur between the cooling fan 21 and the engine 15 .
 共振周波数設定部30Dは、エンジン15の周波数Feに対して共振が発生し得る所定の周波数の範囲を設定する。共振周波数設定部30Dは、図7に示される、共振が発生し得る冷却ファン21の周波数Ffの上限値および下限値を設定する。共振周波数設定部30Dはたとえば、エンジン15の周波数Fe±10Hz以内の範囲を、共振が発生し得る範囲として設定してもよい。つまり、図7に破線で示される共振が発生し得る範囲の上限は、エンジン15の周波数Fe+10Hzであってもよい。図7に一点鎖線で示される共振が発生し得る範囲の下限は、エンジン15の周波数Fe-10Hzであってもよい。 The resonance frequency setting unit 30D sets a predetermined frequency range in which resonance can occur with respect to the frequency Fe of the engine 15. Resonance frequency setting unit 30D sets an upper limit value and a lower limit value of frequency Ff of cooling fan 21 at which resonance can occur, as shown in FIG. For example, the resonance frequency setting unit 30D may set a range within the frequency Fe of the engine 15±10 Hz as a range in which resonance may occur. That is, the upper limit of the range in which resonance can occur indicated by the broken line in FIG. 7 may be the frequency Fe of the engine 15+10 Hz. The lower limit of the range in which resonance can occur, indicated by the dashed line in FIG. 7, may be the frequency Fe of the engine 15-10 Hz.
 演算処理部30Eは、ステップS6において、冷却ファン21の周波数Ffが、エンジン15の周波数Feに対して共振が発生し得る周波数の範囲の上限値よりも大きいか否かを判断する。演算処理部30Eは、ステップS7において、冷却ファン21の周波数Ffが、エンジン15の周波数Feに対して共振が発生し得る周波数の範囲の下限値よりも大きいか否かを判断する。つまり、ステップS6,S7においては、冷却ファン21の周波数Ffが、エンジン15の周波数Feに対して共振が発生し得る範囲内にあるか否かの判断が行われる。 In step S6, the arithmetic processing unit 30E determines whether or not the frequency Ff of the cooling fan 21 is greater than the upper limit of the range of frequencies in which resonance with respect to the frequency Fe of the engine 15 can occur. In step S7, the arithmetic processing unit 30E determines whether the frequency Ff of the cooling fan 21 is higher than the lower limit of the range of frequencies in which resonance can occur with respect to the frequency Fe of the engine 15 or not. That is, in steps S6 and S7, it is determined whether or not the frequency Ff of the cooling fan 21 is within a range where resonance with the frequency Fe of the engine 15 can occur.
 冷却ファン21の周波数Ffが上限値以下であり(ステップS6においてNO)かつ下限値よりも大きい(ステップS7においてYES)と判断されると、すなわち、冷却ファン21の周波数Ffがエンジン15の周波数Feに対して共振が発生し得る所定の範囲内にあると判断されると、ステップS8において、冷却ファン21の周波数Ffが変更される。演算処理部30Eは、冷却ファン21とエンジン15との共振が抑制されるように、ステップS5で冷却ファン21の周波数Ffを取得した時点よりも冷却ファン21の周波数Ffとエンジン15の周波数Feとの差を大きくして、冷却ファン21の周波数Ffが共振が発生し得る範囲から外れるようにする。 When it is determined that the frequency Ff of the cooling fan 21 is equal to or less than the upper limit (NO in step S6) and greater than the lower limit (YES in step S7), that is, the frequency Ff of the cooling fan 21 becomes equal to the frequency Fe of the engine 15. is within the predetermined range where resonance can occur, the frequency Ff of the cooling fan 21 is changed in step S8. In order to suppress resonance between the cooling fan 21 and the engine 15, the arithmetic processing unit 30E increases the frequency Ff of the cooling fan 21 and the frequency Fe of the engine 15 from the time when the frequency Ff of the cooling fan 21 is acquired in step S5. is increased so that the frequency Ff of the cooling fan 21 is out of the range in which resonance can occur.
 たとえば演算処理部30Eは、冷却ファン21の周波数Ffを、図7に一点鎖線で示される共振が発生し得る範囲の下限以下に変更することができる。典型的には、演算処理部30Eは、冷却ファン21の周波数Ffを、共振が発生し得る範囲の下限に変更してもよい。 For example, the arithmetic processing unit 30E can change the frequency Ff of the cooling fan 21 to below the lower limit of the range in which resonance can occur, which is indicated by the dashed line in FIG. Typically, the arithmetic processing unit 30E may change the frequency Ff of the cooling fan 21 to the lower limit of the range in which resonance can occur.
 冷却ファン21の周波数Ffが上限値より大きい場合(ステップS6においてYES)、または、冷却ファン21の周波数Ffが下限値以下である場合(ステップS7においてNO)、冷却ファン21の周波数Ffの変更はなされない。ステップS5で計算された冷却ファン21の周波数Ffが、そのまま用いられる。 If the frequency Ff of the cooling fan 21 is greater than the upper limit (YES in step S6) or if the frequency Ff of the cooling fan 21 is equal to or less than the lower limit (NO in step S7), the frequency Ff of the cooling fan 21 cannot be changed. not done. The frequency Ff of the cooling fan 21 calculated in step S5 is used as it is.
 ステップS9において、ステップS5で計算された周波数Ff、またはステップS8において変更された周波数Ffに従って、冷却ファン21が制御される。ステップS8で冷却ファン21の周波数Ffが変更された場合、その変更された周波数Ffから、上記の計算式を用いて、目標の冷却ファン21の回転数Nfが計算される。ファン制御指令部30Fから電磁比例制御バルブ24に制御信号が送信されて、油圧ポンプ23から油圧モータ22へ供給される作動油の流量を変更する。供給された作動油によって、油圧モータ22が回転動作する。このようにして、冷却ファン21が、目標の回転数Nfで回転動作するように制御される。 In step S9, the cooling fan 21 is controlled according to the frequency Ff calculated in step S5 or the frequency Ff changed in step S8. When the frequency Ff of the cooling fan 21 is changed in step S8, the target rotational speed Nf of the cooling fan 21 is calculated from the changed frequency Ff using the above formula. A control signal is transmitted from the fan control command unit 30F to the electromagnetic proportional control valve 24 to change the flow rate of hydraulic oil supplied from the hydraulic pump 23 to the hydraulic motor 22 . The supplied hydraulic oil causes the hydraulic motor 22 to rotate. In this manner, the cooling fan 21 is controlled to rotate at the target rotation speed Nf.
 次にステップS10において、エンジン15の回転数Neが第2閾値よりも大きいか否かの判断が行われる。図6に示されるように、第2閾値TH2は第1閾値TH1よりも小さい。第2閾値TH2は、たとえば1350rpmである。エンジン15の回転数Neが第1閾値TH1よりも大きい場合に、実施形態に係る冷却ファン21の周波数Ffを変更する制御が実行される。エンジン15の回転数Neが第1閾値TH1以下に低下しても、エンジン15の回転数Neが第2閾値TH2よりも大きいのであれば、冷却ファン21の周波数Ffを変更する制御が継続される。エンジン15の回転数Neが第2閾値TH2以下にまで低下すると、冷却ファン21の周波数Ffを変更する制御が解除される。 Next, in step S10, it is determined whether or not the rotation speed Ne of the engine 15 is greater than the second threshold value. As shown in FIG. 6, the second threshold TH2 is smaller than the first threshold TH1. The second threshold TH2 is, for example, 1350 rpm. Control for changing the frequency Ff of the cooling fan 21 according to the embodiment is executed when the rotational speed Ne of the engine 15 is greater than the first threshold TH1. Even if the rotational speed Ne of the engine 15 drops below the first threshold TH1, if the rotational speed Ne of the engine 15 is greater than the second threshold TH2, the control to change the frequency Ff of the cooling fan 21 is continued. . When the rotational speed Ne of the engine 15 drops below the second threshold TH2, the control for changing the frequency Ff of the cooling fan 21 is released.
 演算処理部30Eは、記憶部34から、エンジン15の回転数Neに係る第2閾値TH2を読み出す。演算処理部30Eは、作動流体の温度に従って設定された目標のエンジン15の回転数Neと、第2閾値TH2とを比較して、エンジン15の回転数Neが第2閾値TH2よりも大きいか否かを判断する。 The arithmetic processing unit 30E reads the second threshold TH2 related to the rotation speed Ne of the engine 15 from the storage unit 34. The arithmetic processing unit 30E compares the target rotational speed Ne of the engine 15 set according to the temperature of the working fluid with the second threshold TH2 to determine whether the rotational speed Ne of the engine 15 is greater than the second threshold TH2. to judge whether
 エンジン15の回転数Neが第2閾値TH2よりも大きいと判断されると(ステップS10においてYES)、次にステップS11において、操作レバーが中立状態であるか否かの判断が行われる。この判断は、ステップS1と同様に行われる。 When it is determined that the rotation speed Ne of the engine 15 is greater than the second threshold TH2 (YES in step S10), then in step S11 it is determined whether or not the control lever is in the neutral state. This determination is made in the same manner as in step S1.
 操作レバーが中立状態であると判断されると(ステップS11においてYES)、ステップS3の処理に戻る。油圧ショベル100を動かすためにオペレータが操作装置33を操作したことで、操作レバーが中立状態から外れたと判断されると(ステップS11においてNO)、冷却ファン21の周波数Ffを変更する制御が解除されて、処理を終了する(エンド)。 When it is determined that the operation lever is in the neutral state (YES in step S11), the process returns to step S3. When it is determined that the operation lever is out of the neutral state because the operator has operated the operation device 33 to move the hydraulic excavator 100 (NO in step S11), the control to change the frequency Ff of the cooling fan 21 is canceled. to end the process (END).
 ステップS1の判断において、操作レバーが中立状態から傾けられており、操作レバーに対する操作がされており、従って作業機3が動作していると判断されると(ステップS1においてNO)、冷却ファン21の周波数Ffを変更する制御は実行されない。ステップS4の判断において、エンジン15の回転数Neが第1閾値TH1以下と判断されると(ステップS4においてNO)、冷却ファン21の周波数Ffを変更する制御は実行されない。ステップS4でエンジン15の回転数Neが第1閾値TH1より大きいと判断された後のステップS10において、エンジン15の回転数Neが第2閾値TH2以下にまで低下したと判断されると(ステップS10においてNO)、冷却ファン21の周波数Ffを変更する制御が解除される。 If it is determined in step S1 that the operating lever is tilted from the neutral state, the operating lever is being operated, and therefore the working machine 3 is operating (NO in step S1), the cooling fan 21 No control to change the frequency Ff of is executed. When it is determined in step S4 that rotation speed Ne of engine 15 is equal to or lower than first threshold value TH1 (NO in step S4), control to change frequency Ff of cooling fan 21 is not executed. When it is determined in step S10 after it is determined in step S4 that the rotation speed Ne of the engine 15 is greater than the first threshold TH1 (step S10 NO), the control for changing the frequency Ff of the cooling fan 21 is released.
 冷却ファン21の周波数Ffを変更する制御が実行されていない状態においては、作動流体の温度に従って設定された目標の回転数Nfで回転するように、冷却ファン21が制御される。 In a state where the control for changing the frequency Ff of the cooling fan 21 is not executed, the cooling fan 21 is controlled so as to rotate at the target rotation speed Nf set according to the temperature of the working fluid.
 なお図5には、操作レバーが中立の状態で所定時間T1が経過した時点で冷却ファン21の目標回転数を低下させ、その後操作レバーが操作されることで冷却ファン21の周波数Ffを変更する制御が解除されて、冷却ファン21の目標回転数が低下する前の回転数に戻る挙動が示されている。このとき冷却ファン21の目標回転数は、所定時間T2をかけて徐々に上昇している。所定時間T2は、たとえば2~3秒である。これにより、油圧モータ22に供給される作動油の圧力が急上昇して作動油の流路および各油圧機器に不具合が発生することが、抑制されている。 In FIG. 5, the target rotation speed of the cooling fan 21 is reduced after a predetermined time T1 has elapsed with the control lever in the neutral state, and the frequency Ff of the cooling fan 21 is changed by operating the control lever thereafter. Behavior is shown in which the control is canceled and the target rotation speed of the cooling fan 21 returns to the speed before it was lowered. At this time, the target number of revolutions of the cooling fan 21 is gradually increased over a predetermined period of time T2. Predetermined time T2 is, for example, 2 to 3 seconds. As a result, the pressure of the hydraulic fluid supplied to the hydraulic motor 22 is prevented from suddenly increasing, causing malfunctions in the flow path of the hydraulic fluid and each hydraulic device.
 <作用および効果>
 上述した説明と一部重複する記載もあるが、実施形態の特徴的な構成および作用効果についてまとめて記載すると、以下の通りである。
<Action and effect>
Although there are some descriptions that partially overlap with the above description, the characteristic configurations and effects of the embodiment will be described collectively as follows.
 図4に示されるように、コントローラ30は、作業機3が停止している状態において、エンジン15の回転数Neが第1閾値TH1よりも大きく、冷却ファン21の周波数Ffがエンジンの周波数Feに対し所定の範囲内にあるとき、冷却ファン21の周波数Ffを変更して、冷却ファン21の周波数を取得した時点よりも冷却ファン21とエンジン15との周波数の差を大きくするように、冷却ファン21を制御する。 As shown in FIG. 4, the controller 30 sets the rotation speed Ne of the engine 15 to be greater than the first threshold TH1 and the frequency Ff of the cooling fan 21 to match the frequency Fe of the engine when the work implement 3 is stopped. On the other hand, when it is within the predetermined range, the frequency Ff of the cooling fan 21 is changed so that the frequency difference between the cooling fan 21 and the engine 15 becomes larger than when the frequency of the cooling fan 21 was acquired. 21.
 作業機3が動作している状態では、冷却ファン21により作動流体(作動油)を冷却する冷却能力を優先させる必要があり、またエンジン15の周波数Feが変動することでエンジン15と冷却ファン21の共振は発生しにくい。エンジン15の回転数Neが第1閾値TH1以下であれば、エンジン15と冷却ファン21との共振は発生しにくい。冷却ファン21の周波数Ffがエンジン15の周波数Feに対して共振が発生し得る範囲になければ、共振を抑制するための制御を実行する必要はない。そのため、冷却ファン21の周波数Ffを変更する制御は実行されない。冷却ファン21の回転数Nfを小さくして冷却能力を低下させる運転が行われる時間が短縮されるので、冷却ファン21の冷却能力を確保することができる。 While the work implement 3 is in operation, it is necessary to give priority to the cooling capacity of the cooling fan 21 for cooling the working fluid (working oil). resonance is less likely to occur. If the rotational speed Ne of the engine 15 is equal to or lower than the first threshold TH1, resonance between the engine 15 and the cooling fan 21 is unlikely to occur. If the frequency Ff of the cooling fan 21 is not within the range where resonance can occur with respect to the frequency Fe of the engine 15, there is no need to perform control to suppress resonance. Therefore, control to change the frequency Ff of the cooling fan 21 is not executed. The cooling capacity of the cooling fan 21 can be ensured because the time during which the cooling capacity is reduced by decreasing the rotational speed Nf of the cooling fan 21 is shortened.
 作業機3が停止しており、エンジン15の回転数Neが第1閾値TH1よりも大きく、かつ、冷却ファン21の周波数Ffがエンジン15の周波数Feに対して共振が発生し得る範囲にあれば、冷却ファン21の周波数Ffを変更する制御が実行される。これにより、エンジン15と冷却ファン21との共振を回避でき、振動および異音の発生を防止することができる。 If the work implement 3 is stopped, the rotational speed Ne of the engine 15 is greater than the first threshold TH1, and the frequency Ff of the cooling fan 21 is within a range where resonance can occur with respect to the frequency Fe of the engine 15 , control to change the frequency Ff of the cooling fan 21 is executed. As a result, resonance between the engine 15 and the cooling fan 21 can be avoided, and vibration and abnormal noise can be prevented.
 図4に示されるように、コントローラ30は、冷却ファン21の周波数Ffを、所定の範囲の下限以下に変更してもよい。冷却ファン21の周波数Ffを、エンジン15の周波数Feに対して共振が発生し得る範囲の下限以下にすることで、エンジン15と冷却ファン21との共振を確実に回避できる。また、冷却ファン21の回転数Nfを低速にして、冷却ファン21の回転駆動に用いる動力を低減することで、燃費を向上することができる。 As shown in FIG. 4, the controller 30 may change the frequency Ff of the cooling fan 21 to below the lower limit of the predetermined range. Resonance between the engine 15 and the cooling fan 21 can be reliably avoided by setting the frequency Ff of the cooling fan 21 to be equal to or lower than the lower limit of the range in which resonance can occur with respect to the frequency Fe of the engine 15 . Further, by reducing the rotational speed Nf of the cooling fan 21 to reduce the power used to drive the cooling fan 21, fuel efficiency can be improved.
 図4に示されるように、コントローラ30は、冷却ファン21の周波数Ffを、所定の範囲の下限に変更してもよい。エンジン15と冷却ファン21との共振を確実に回避できる範囲での最大の回転数Nfで冷却ファン21を回転させることで、冷却ファン21の冷却能力の低下を抑制することができる。 As shown in FIG. 4, the controller 30 may change the frequency Ff of the cooling fan 21 to the lower limit of the predetermined range. By rotating the cooling fan 21 at the maximum number of revolutions Nf within a range where the resonance between the engine 15 and the cooling fan 21 can be reliably avoided, the cooling performance of the cooling fan 21 can be suppressed from decreasing.
 図4,6に示されるように、コントローラ30は、エンジン15の回転数Neが第1閾値TH1よりも小さい第2閾値TH2以下にまで低下すると、冷却ファン21の周波数Ffを変更する制御を解除してもよい。冷却ファン21の周波数Ffを変更する制御を実行するための第1閾値TH1と、冷却ファン21の周波数Ffを変更する制御を解除するための第2閾値TH2とを異ならせて、第1閾値TH1と第2閾値TH2との間に差を設けるヒステリシス特性とする。これにより、冷却ファン21の周波数Ffを変更する制御の実行と解除とが、エンジン15の回転数Neのばらつきで頻繁に切り替わることを回避できるので、不必要なエラーの発生を防止することができる。 As shown in FIGS. 4 and 6, the controller 30 cancels the control to change the frequency Ff of the cooling fan 21 when the rotational speed Ne of the engine 15 drops below a second threshold TH2 which is smaller than the first threshold TH1. You may The first threshold TH1 for executing the control for changing the frequency Ff of the cooling fan 21 and the second threshold TH2 for canceling the control for changing the frequency Ff of the cooling fan 21 are made different. and the second threshold TH2. As a result, it is possible to avoid frequent switching between the execution and cancellation of the control for changing the frequency Ff of the cooling fan 21 due to variations in the rotation speed Ne of the engine 15, thereby preventing the occurrence of unnecessary errors. .
 図1,2に示されるように、冷却ファン21は、油圧ショベル100に搭載されている。図4に示されるように、コントローラ30は、油圧ショベル100を作動させるためのオペレータからの指令が与えられると、冷却ファン21の周波数Ffを変更する制御を解除してもよい。作業機3が動作している状態では、共振を抑制するための制御を実行する必要がない。冷却ファン21の回転数Nfを小さくして冷却能力を低下させる運転が行われる時間を短縮することで、冷却ファン21の冷却能力を確保することができる。 As shown in FIGS. 1 and 2, the cooling fan 21 is mounted on the hydraulic excavator 100. As shown in FIG. 4 , the controller 30 may release the control to change the frequency Ff of the cooling fan 21 when a command is given from the operator to operate the excavator 100 . While the work implement 3 is operating, there is no need to execute control for suppressing resonance. The cooling capacity of the cooling fan 21 can be ensured by reducing the rotation speed Nf of the cooling fan 21 to shorten the time during which the cooling capacity is lowered.
 上記実施形態では、ステップS1,S2において、作業機3が停止している状態が所定時間T1継続したと判断されたときに、冷却ファン21の周波数Ffを変更する制御を実行する例を説明した。冷却ファン21の周波数Ffを変更する制御を実行するための条件として、エンジン回転数センサ31により検出されたエンジン15の回転数Neが一定である状態が所定時間継続したと判断されることを加えてもよい。エンジン15の回転数Neが変動していると、エンジン15と冷却ファン21との共振が発生しにくく、共振が発生しても短時間で解消されるので、共振が問題になることが少ない。作業機3が停止していることを判断することでエンジン15の回転数Neが一定であると推定されるが、エンジン回転数センサ31の検出結果に基づいて判断することで、エンジン15の回転数Neが一定であることをより精度よく判断することができる。 In the above-described embodiment, when it is determined in steps S1 and S2 that the working machine 3 has been stopped for the predetermined time T1, the control for changing the frequency Ff of the cooling fan 21 is executed. . As a condition for executing the control to change the frequency Ff of the cooling fan 21, it is determined that the rotation speed Ne of the engine 15 detected by the engine rotation speed sensor 31 is constant for a predetermined time. may When the rotation speed Ne of the engine 15 fluctuates, resonance between the engine 15 and the cooling fan 21 is less likely to occur, and even if resonance occurs, it is eliminated in a short period of time, so resonance rarely becomes a problem. By determining that the work implement 3 is stopped, it is estimated that the rotation speed Ne of the engine 15 is constant. It can be determined more accurately that the number Ne is constant.
 作業機3が旋回体2に対して相対的に停止しているが、走行体1の駆動により油圧ショベル100が自走しているときには、冷却ファン21の周波数Ffを変更する制御を実行しない制御としてもよい。油圧ショベル100では、自走中にエンジン15と冷却ファン21との共振が発生するとしても、自走する頻度が低いので、共振が問題になることが少ない。また、作業機3が旋回体2に対して相対的に停止しているが、旋回体2が走行体1に対して旋回しているときには、冷却ファン21の周波数Ffを変更する制御を実行しない制御としてもよい。油圧ショベル100では、旋回体2の旋回中にエンジン15と冷却ファン21との共振が発生するとしても、旋回する角度は90°が多く短時間で旋回が終了するので、共振が問題になることが少ない。冷却ファン21の回転数Nfを小さくして冷却能力を低下させる運転が行われる時間を短縮することで、冷却ファン21の冷却能力を確保することができる。 Control for not executing control to change the frequency Ff of the cooling fan 21 when the work implement 3 is relatively stopped with respect to the revolving body 2 but the hydraulic excavator 100 is self-propelled by the drive of the traveling body 1. may be In the hydraulic excavator 100, even if resonance between the engine 15 and the cooling fan 21 occurs during self-propelled travel, the frequency of self-propelled travel is low, so the resonance rarely poses a problem. Further, when the working machine 3 is stopped relative to the revolving body 2 but the revolving body 2 is revolving with respect to the traveling body 1, the control for changing the frequency Ff of the cooling fan 21 is not executed. It may be used as a control. In the hydraulic excavator 100, even if resonance occurs between the engine 15 and the cooling fan 21 while the revolving body 2 is revolving, the revolving angle is often 90° and the revolving ends in a short period of time, so the resonance becomes a problem. Less is. The cooling capacity of the cooling fan 21 can be ensured by reducing the rotation speed Nf of the cooling fan 21 to shorten the time during which the cooling capacity is lowered.
 上記実施形態では、ステップS11において、作業機3を動作させるために操作レバーが操作されたと判断されたときに、冷却ファン21の周波数Ffを変更する制御を解除する例を説明した。この判断に加えて、旋回体2を旋回動作させるための旋回操作装置または走行体1を動作させるための走行操作装置が操作されたときにも、冷却ファン21の周波数Ffを変更する制御を解除してもよい。旋回中または走行中のエンジン15と冷却ファン21との共振が問題になることは少ないので、冷却ファン21の回転数Nfを小さくして冷却能力を低下させる運転が行われる時間を短縮することで、冷却ファン21の冷却能力を確保することができる。 In the above embodiment, an example was explained in which the control for changing the frequency Ff of the cooling fan 21 is canceled when it is determined in step S11 that the operation lever has been operated to operate the working machine 3. In addition to this determination, the control for changing the frequency Ff of the cooling fan 21 is also canceled when the turning operation device for turning the turning body 2 or the traveling operation device for moving the traveling body 1 is operated. You may Resonance between the engine 15 and the cooling fan 21 during turning or running rarely becomes a problem. , the cooling capacity of the cooling fan 21 can be ensured.
 上記実施形態では、作業機3の動作のために操作される操作レバーが中立状態であるか否かを検出することで、作業機3が動作しているかまたは停止しているかを判断した。この例に限られず、ブーム3a、アーム3bおよびバケット3cの位置および姿勢の情報を得るための位置センサの検出結果に基づいて、作業機3の動作または停止を判断してもよい。位置センサは、たとえば図1を参照して説明した、ストロークセンサ7a,7b,7c、角度センサ9a,9b,9cのいずれかまたは組み合わせであってもよい。位置センサが異なる時刻に検出した作業機3の姿勢を比較して、作業機3の姿勢が異なると、作業機3が動作していると判断されてもよい。 In the above embodiment, it is determined whether the work machine 3 is operating or stopped by detecting whether or not the operation lever operated to operate the work machine 3 is in the neutral state. Not limited to this example, operation or stop of work implement 3 may be determined based on detection results of position sensors for obtaining information on the positions and attitudes of boom 3a, arm 3b and bucket 3c. The position sensors may be any one or a combination of the stroke sensors 7a, 7b, 7c and the angle sensors 9a, 9b, 9c described with reference to FIG. 1, for example. The attitudes of work implement 3 detected by the position sensor at different times may be compared, and if the attitudes of work implement 3 differ, it may be determined that work implement 3 is operating.
 または、図1を参照して説明した、圧力センサ6a,6b,6c,6d,6e,6fにより検出される作動油圧力情報が経時的に変動することで、作業機3が動作していると判断されてもよい。ブームシリンダ4a、アームシリンダ4bおよびバケットシリンダ4cに作動油を供給する油圧ポンプの吐出圧が変動していることが検知されると、作業機3が動作していると判断されてもよい。油圧ショベル100は、作業機3を撮像する撮像装置を備えてもよく、この場合、撮像装置の撮像した画像を解析することによって、作業機3が動作しているか停止しているかを判断してもよい。 Alternatively, when the hydraulic pressure information detected by the pressure sensors 6a, 6b, 6c, 6d, 6e, and 6f described with reference to FIG. may be judged. It may be determined that the work implement 3 is operating when it is detected that the discharge pressure of the hydraulic pumps that supply hydraulic oil to the boom cylinder 4a, the arm cylinder 4b, and the bucket cylinder 4c is fluctuating. Hydraulic excavator 100 may include an imaging device for imaging work implement 3. In this case, by analyzing the image captured by the imaging device, it is determined whether work implement 3 is operating or stopped. good too.
 上記実施形態では、冷却ファン21は油圧駆動ファンであるが、これに限られず、エンジン15の回転数Neに対して冷却ファン21の回転数Nfが自在に制御できるものであればよい。たとえば、冷却ファン21は電動ファンであってもよい。エンジン15の出力軸に連結されたオルタネータが、エンジン15で発生した駆動力で発電し、オルタネータの発電した電力で電動モータが駆動されて、冷却ファン21を回転させてもよい。 In the above embodiment, the cooling fan 21 is a hydraulically driven fan, but it is not limited to this, and it is sufficient if the rotation speed Nf of the cooling fan 21 can be freely controlled with respect to the rotation speed Ne of the engine 15 . For example, cooling fan 21 may be an electric fan. An alternator connected to the output shaft of the engine 15 may generate power using the driving force generated by the engine 15 , and the power generated by the alternator may drive the electric motor to rotate the cooling fan 21 .
 本開示の思想を適用可能な作業機械は、油圧ショベル100に限られず、ブルドーザ、ホイールローダ、モータグレーダまたはエンジン式フォークリフトなどの、エンジンと冷却ファンとを備える他の種類の作業機械であってもよい。 The working machine to which the idea of the present disclosure can be applied is not limited to the hydraulic excavator 100, but can be any other type of working machine having an engine and a cooling fan, such as a bulldozer, wheel loader, motor grader, or engine-type forklift. good.
 以上のように実施形態について説明を行ったが、今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments have been described as above, the embodiments disclosed this time are illustrative in all respects and should be considered not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the scope and meaning equivalent to the scope of the claims.
 1 走行体、2 旋回体、3 作業機、3a ブーム、3b アーム、3c バケット、4a ブームシリンダ、4b アームシリンダ、4c バケットシリンダ、6a,6b,6c,6d,6e,6f 圧力センサ、7a,7b,7c ストロークセンサ、9a,9b,9c 角度センサ、15 エンジン、21 冷却ファン、22 油圧モータ、23 油圧ポンプ、24 電磁比例制御バルブ、25 インテークエアクーラ、26 オイルクーラ、27 ラジエータ、28 水温センサ、29 油温センサ、30 コントローラ、30A 作業機状態判別部、30B エンジン周波数取得部、30C ファン周波数取得部、30D 共振周波数設定部、30E 演算処理部、30F ファン制御指令部、30T タイマ、31 エンジン回転数センサ、32 ファン回転数センサ、33 操作装置、33A 操作検出部、34 記憶部、100 油圧ショベル、T1,T2 所定時間、TH1 第1閾値、TH2 第2閾値。 1 traveling body, 2 rotating body, 3 work machine, 3a boom, 3b arm, 3c bucket, 4a boom cylinder, 4b arm cylinder, 4c bucket cylinder, 6a, 6b, 6c, 6d, 6e, 6f pressure sensor, 7a, 7b , 7c stroke sensor, 9a, 9b, 9c angle sensor, 15 engine, 21 cooling fan, 22 hydraulic motor, 23 hydraulic pump, 24 electromagnetic proportional control valve, 25 intake air cooler, 26 oil cooler, 27 radiator, 28 water temperature sensor, 29 Oil temperature sensor, 30 Controller, 30A Work machine state determination unit, 30B Engine frequency acquisition unit, 30C Fan frequency acquisition unit, 30D Resonance frequency setting unit, 30E Arithmetic processing unit, 30F Fan control command unit, 30T Timer, 31 Engine rotation number sensor, 32 fan speed sensor, 33 operation device, 33A operation detection unit, 34 storage unit, 100 hydraulic excavator, T1, T2 predetermined time, TH1 first threshold, TH2 second threshold.

Claims (7)

  1.  エンジンと、
     前記エンジンによって駆動される作業機と、
     前記エンジンの回転数とは独立して回転数を制御可能に構成される冷却ファンと、
     前記冷却ファンを制御するコントローラとを備え、
     前記コントローラは、前記エンジンの周波数と、前記冷却ファンの周波数とを取得し、
     前記コントローラは、前記作業機が停止している状態において、前記エンジンの回転数が閾値よりも大きく、前記冷却ファンの周波数が前記エンジンの周波数に対し所定の範囲内にあるとき、前記冷却ファンの周波数を変更して、前記冷却ファンの周波数を取得した時点よりも前記冷却ファンと前記エンジンとの周波数の差を大きくするように、冷却ファンを制御する、冷却ファンの制御システム。
    engine and
    a work machine driven by the engine;
    a cooling fan configured to be able to control the number of revolutions independently of the number of revolutions of the engine;
    a controller that controls the cooling fan;
    the controller obtains the frequency of the engine and the frequency of the cooling fan;
    When the number of rotations of the engine is greater than a threshold value and the frequency of the cooling fan is within a predetermined range with respect to the frequency of the engine, the controller controls the operation of the cooling fan. A control system for a cooling fan that controls the cooling fan so as to change the frequency to increase the frequency difference between the cooling fan and the engine compared to when the frequency of the cooling fan is obtained.
  2.  前記コントローラは、前記冷却ファンの周波数を前記所定の範囲の下限以下に変更する、請求項1に記載の冷却ファンの制御システム。 The cooling fan control system according to claim 1, wherein the controller changes the frequency of the cooling fan to a lower limit or less of the predetermined range.
  3.  前記コントローラは、前記冷却ファンの周波数を前記所定の範囲の下限に変更する、請求項2に記載の冷却ファンの制御システム。 The cooling fan control system according to claim 2, wherein the controller changes the frequency of the cooling fan to the lower limit of the predetermined range.
  4.  前記コントローラは、前記エンジンの回転数が前記閾値よりも小さい第2閾値以下にまで低下すると、前記冷却ファンの周波数を変更する制御を解除する、請求項1から請求項3のいずれか1項に記載の冷却ファンの制御システム。 4. The controller according to any one of claims 1 to 3, wherein the controller cancels the control to change the frequency of the cooling fan when the rotation speed of the engine drops to a second threshold that is lower than the threshold. A control system for the described cooling fan.
  5.  前記冷却ファンは、作業機械に搭載されており、
     前記コントローラは、前記作業機械を作動させるためのオペレータからの指令が与えられると、前記冷却ファンの周波数を変更する制御を解除する、請求項1から請求項4のいずれか1項に記載の冷却ファンの制御システム。
    The cooling fan is mounted on the working machine,
    5. The cooling according to any one of claims 1 to 4, wherein the controller cancels the control of changing the frequency of the cooling fan when an operator's command to operate the work machine is given. fan control system.
  6.  エンジンと、
     前記エンジンによって駆動される作業機と、
     前記エンジンの回転数とは独立して回転数を制御可能に構成される冷却ファンと、
     前記冷却ファンを制御するコントローラとを備え、
     前記コントローラは、前記エンジンの周波数と、前記冷却ファンの周波数とを取得し、
     前記コントローラは、前記作業機が停止している状態において、前記エンジンの回転数が閾値よりも大きく、前記冷却ファンの周波数が前記エンジンの周波数に対し所定の範囲内にあるとき、前記冷却ファンの周波数を変更して、前記冷却ファンの周波数を取得した時点よりも前記冷却ファンと前記エンジンとの周波数の差を大きくするように、冷却ファンを制御する、作業機械。
    engine and
    a work machine driven by the engine;
    a cooling fan configured to be able to control the number of revolutions independently of the number of revolutions of the engine;
    a controller that controls the cooling fan;
    the controller obtains the frequency of the engine and the frequency of the cooling fan;
    When the number of rotations of the engine is greater than a threshold value and the frequency of the cooling fan is within a predetermined range with respect to the frequency of the engine, the controller controls the operation of the cooling fan. A working machine that controls a cooling fan by changing a frequency to increase the difference between the frequencies of the cooling fan and the engine compared to when the frequency of the cooling fan is obtained.
  7.  エンジンと、前記エンジンによって駆動される作業機と、前記エンジンの回転数とは独立して回転数を制御可能に構成される冷却ファンとを備える作業機械における、前記冷却ファンの制御方法であって、
     前記作業機が動作しているか否かを判断することと、
     前記エンジンの周波数を取得することと、
     前記冷却ファンの周波数を取得することと、
     前記作業機が停止している状態において、前記エンジンの回転数が閾値よりも大きく、前記冷却ファンの周波数が前記エンジンの周波数に対し所定の範囲内にあるとき、前記冷却ファンの周波数を変更して、前記冷却ファンの周波数を取得した時点よりも前記冷却ファンと前記エンジンとの周波数の差を大きくするように、冷却ファンを制御することと、を備える、冷却ファンの制御方法。
    A method for controlling a cooling fan in a work machine comprising an engine, a work machine driven by the engine, and a cooling fan configured to be able to control the number of revolutions independently of the number of revolutions of the engine, comprising: ,
    determining whether the work machine is operating;
    obtaining the frequency of the engine;
    obtaining the frequency of the cooling fan;
    When the number of revolutions of the engine is greater than a threshold value and the frequency of the cooling fan is within a predetermined range with respect to the frequency of the engine while the work machine is stopped, the frequency of the cooling fan is changed. and controlling the cooling fan so as to increase the difference in frequency between the cooling fan and the engine after obtaining the frequency of the cooling fan.
PCT/JP2022/037629 2021-10-11 2022-10-07 System for controlling cooling fan, work machine, and method for controlling cooling fan WO2023063256A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247011163A KR20240052060A (en) 2021-10-11 2022-10-07 Cooling fan control system, working machine, and cooling fan control method
CN202280067449.2A CN118056047A (en) 2021-10-11 2022-10-07 Cooling fan control system, work machine, and cooling fan control method
DE112022003877.2T DE112022003877T5 (en) 2021-10-11 2022-10-07 Cooling fan control unit, working machine, and cooling fan control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166699 2021-10-11
JP2021166699A JP7340578B2 (en) 2021-10-11 2021-10-11 Cooling fan control system, working machine, and cooling fan control method

Publications (1)

Publication Number Publication Date
WO2023063256A1 true WO2023063256A1 (en) 2023-04-20

Family

ID=85987695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037629 WO2023063256A1 (en) 2021-10-11 2022-10-07 System for controlling cooling fan, work machine, and method for controlling cooling fan

Country Status (5)

Country Link
JP (1) JP7340578B2 (en)
KR (1) KR20240052060A (en)
CN (1) CN118056047A (en)
DE (1) DE112022003877T5 (en)
WO (1) WO2023063256A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107753A (en) * 1997-10-06 1999-04-20 Denso Corp Cooling system for automobile
WO2007026627A1 (en) * 2005-08-29 2007-03-08 Komatsu Ltd. Control device for hydraulically driven fan
US20140026548A1 (en) * 2011-04-15 2014-01-30 Volvo Construction Equipment Ab Method and a device for reducing vibrations in a working machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1761892A1 (en) 2004-06-22 2007-03-14 Koninklijke Philips Electronics N.V. Method and device for selecting multimedia items, portable preference storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107753A (en) * 1997-10-06 1999-04-20 Denso Corp Cooling system for automobile
WO2007026627A1 (en) * 2005-08-29 2007-03-08 Komatsu Ltd. Control device for hydraulically driven fan
US20140026548A1 (en) * 2011-04-15 2014-01-30 Volvo Construction Equipment Ab Method and a device for reducing vibrations in a working machine

Also Published As

Publication number Publication date
CN118056047A (en) 2024-05-17
JP2023057272A (en) 2023-04-21
DE112022003877T5 (en) 2024-06-20
KR20240052060A (en) 2024-04-22
JP7340578B2 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP4568331B2 (en) Hydraulic drive fan control device
JP4842264B2 (en) Construction machine cooling system
JP2017172186A (en) Control method for motor grader, and motor grader
JP2017172188A (en) Control method and motor grader
WO2023063256A1 (en) System for controlling cooling fan, work machine, and method for controlling cooling fan
JP4951650B2 (en) Hydraulic working machine
US12001236B2 (en) Work vehicle and method for controlling work vehicle
JP3734065B2 (en) Tractor
JP7193419B2 (en) construction machinery
JPWO2018096668A1 (en) Work vehicle and control method of work vehicle
JP7478113B2 (en) Work Machine
WO2022070563A1 (en) Work machine
JP2021110135A (en) Working machine
JP7500488B2 (en) Work Machine
JP7205992B2 (en) work machine
JP4922053B2 (en) Cooling fan drive control device and construction machine
JP7581152B2 (en) Hydraulic system of work machine, work machine
WO2023067886A1 (en) Control device for work machine
WO2023053732A1 (en) Work machine and method for controlling work machine
JP2024096173A (en) Work Machine
JP7012037B2 (en) Work machine
JP2022033101A (en) Working machine
CN117881855A (en) System and method for controlling a work machine
JP2022033103A (en) Working machine
JP2022184018A (en) Work machine and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011163

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280067449.2

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22880951

Country of ref document: EP

Kind code of ref document: A1