Nothing Special   »   [go: up one dir, main page]

WO2023058197A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023058197A1
WO2023058197A1 PCT/JP2021/037196 JP2021037196W WO2023058197A1 WO 2023058197 A1 WO2023058197 A1 WO 2023058197A1 JP 2021037196 W JP2021037196 W JP 2021037196W WO 2023058197 A1 WO2023058197 A1 WO 2023058197A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
indoor
damper
temperature
Prior art date
Application number
PCT/JP2021/037196
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 橋川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023552633A priority Critical patent/JPWO2023058197A1/ja
Priority to CN202180102772.4A priority patent/CN118019948A/en
Priority to PCT/JP2021/037196 priority patent/WO2023058197A1/en
Priority to EP21959939.6A priority patent/EP4414622A1/en
Publication of WO2023058197A1 publication Critical patent/WO2023058197A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves

Definitions

  • the present disclosure relates to air conditioners.
  • One of the methods of air conditioners is the convection air conditioning system, which adjusts the temperature of the air sucked in from the outside and blows it out into the indoor space.
  • the convection air conditioning system when low-temperature air is blown into the room during cooling, if the temperature of the blown air is too low, the occupants will feel the cold air and the comfort will decrease.
  • the convection air-conditioning system when high-temperature air is blown into the room during heating, if the temperature of the blown-out air is too high, the occupants will feel warm air, which will reduce comfort.
  • Patent Document 1 discloses a technique for operating an air conditioner with a predetermined lower limit for the temperature of the blown air in order to improve the comfort of the occupants.
  • the air conditioner of Patent Document 1 lowers the frequency of the compressor to raise the evaporation temperature and lowers the opening of the expansion valve when the temperature of the blown air is below a predetermined lower limit during cooling operation.
  • the cooling capacity is suppressed and the drop in temperature of the blown air is prevented.
  • the cooling capacity may not be fully throttled due to limitations in the operating range such as the frequency of the compressor reaching the lower limit, and the temperature of the blown air may fall below the set value.
  • the temperature of the blown air may not be stabilized by avoiding a drop in the temperature of the blown air by stopping cooling.
  • An object of the present disclosure is to provide an air conditioner capable of maintaining a suitable temperature of blown air while executing continuous operation.
  • the present disclosure relates to an air conditioner that includes an outdoor unit and an indoor unit.
  • the outdoor unit and the indoor unit are connected by refrigerant pipes to form a refrigerant circuit.
  • the outdoor unit includes a compressor and an outdoor heat exchanger.
  • the indoor unit includes an expansion valve, an indoor heat exchanger, an air supply device that takes in outdoor air into the room through a supply air passage, and an exhaust device that discharges the indoor air to the outside through an exhaust air passage.
  • the indoor heat exchanger is configured to allow passage of air flowing through the supply air passage and air flowing through the exhaust air passage.
  • the indoor unit further includes a switching device capable of switching whether the indoor air flowing through the exhaust air passage passes through the indoor heat exchanger.
  • the air conditioner of the present disclosure it is possible to maintain a suitable temperature of the blown air while executing continuous operation.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 1.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1.
  • FIG. 4 is a flowchart showing damper control during cooling operation in Embodiment 1.
  • FIG. FIG. 4 is a diagram showing an example of damper operation in Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of damper operation in Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of damper operation in Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of damper operation in Embodiment 1;
  • FIG. 4 is a refrigerant state transition diagram according to Embodiment 1; 4 is a flowchart showing damper control during heating operation in Embodiment 1.
  • FIG. 4 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 2.
  • FIG. 9 is a flowchart showing damper control during cooling operation in Embodiment 2.
  • FIG. 11 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 3; 10 is a flow chart showing damper control during cooling operation in Embodiment 3.
  • FIG. FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 11 is a schematic diagram showing the configuration of an indoor unit in a modified example of Embodiment 3;
  • FIG. 11 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 4;
  • 14 is a flow chart showing damper control during heating operation in Embodiment 4.
  • FIG. 12 is a diagram showing an example of damper operation in Embodiment 3;
  • FIG. 11 is a schematic diagram showing the configuration of an indoor unit in a modified example of Embodiment 3;
  • FIG. 11 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 4;
  • 14 is a flow chart showing damper control during heating operation in Embodiment 4.
  • Embodiment 1 ⁇ Configuration> 1 to 3, the configuration of the air conditioner 100 according to Embodiment 1, the configuration of the indoor unit 20 of the air conditioner 100 according to Embodiment 1, and the refrigerant circuit of the air conditioner 100 according to Embodiment 1. will be described.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner 100 according to Embodiment 1
  • FIG. 2 is a schematic diagram showing the configuration of an indoor unit 20 according to Embodiment 1
  • FIG. 1 is a refrigerant circuit diagram of the air conditioner 100 in FIG.
  • the air conditioner 100 includes an outdoor unit 10 and an indoor unit 20.
  • the outdoor unit 10 and the indoor unit 20 are connected by refrigerant piping 30 .
  • the indoor unit 20 which is an outside air processing unit is arranged in the ceiling space 101 .
  • the indoor unit 20 takes in the outdoor air OA and blows it out from the duct 40 as supply air SA through the outlet 41 .
  • the indoor unit 20 takes in the indoor air RA into the duct 40 through the suction port 42 and discharges it to the outside as the exhaust air EA.
  • the indoor unit 20 includes a total heat exchanger 21, a supply air heat exchanger 22, an exhaust heat exchanger 23, a supply air blower 28, an exhaust air blower 29, a supply air temperature A detection unit 50 and an outside air temperature detection unit 51 are included.
  • FIG. 1 shows a schematic diagram of the indoor unit 20 viewed from the side.
  • FIG. 2 shows a schematic diagram of the indoor unit 20 viewed from above.
  • the total heat exchanger 21 has, for example, a structure in which a plurality of crossing ventilation paths are alternately stacked.
  • total heat exchange is performed between the indoor air RA and the outdoor air OA as the indoor air RA and the outdoor air OA pass through the ventilation path.
  • total heat exchange not only sensible heat (temperature) but also latent heat (water vapor) is exchanged.
  • the supply air heat exchanger 22 and the exhaust heat exchanger 23 are indoor heat exchangers that exchange heat between refrigerant and air.
  • the supply air temperature detector 50 is a device for measuring the temperature of the supply air SA blown into the room.
  • the outdoor air temperature detection unit 51 is a device for measuring the temperature of the outdoor air OA taken into the room from the outdoors.
  • the outdoor air OA is led to the total heat exchanger 21 by a blower 28 as an air supply device, and after passing through the supply air heat exchanger 22, is supplied indoors as supply air SA.
  • An air passage through which the outdoor air OA flows into the room is called a supply air passage.
  • the room air RA is discharged to the outside as the exhaust EA by the blower 29 as an exhaust device.
  • An air passage through which the indoor air RA flows to the outside is called an exhaust air passage.
  • a first damper 24 and a second damper 25 as switching devices for switching the flow of air indicated by various arrows are arranged in the exhaust air passage.
  • the first damper 24 can switch whether the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23 or not.
  • the second damper 25 can switch whether the room air RA flowing through the exhaust air passage passes through the total heat exchanger 21 or not.
  • the indoor air RA passes through the total heat exchanger 21 without passing through the exhaust heat exchanger 23, the exhaust heat exchanger 23 and the total heat exchanger 21 or a pattern that passes through the exhaust heat exchanger 23 and does not pass through the total heat exchanger 21.
  • the outdoor unit 10 and the indoor unit 20 are connected by refrigerant pipes 30a and 30b.
  • the outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, and a blower 14 as an outdoor unit fan.
  • the indoor unit 20 includes a supply air heat exchanger 22 , an exhaust heat exchanger 23 and an expansion valve 26 .
  • the air conditioner 100 circulates the refrigerant in the order of the compressor 11, the outdoor heat exchanger 13, the expansion valve 26, the exhaust heat exchanger 23, and the supply air heat exchanger 22 during cooling operation.
  • the air conditioner 100 circulates the refrigerant in order of the compressor 11, the supply air heat exchanger 22, the exhaust heat exchanger 23, the expansion valve 26, and the outdoor heat exchanger 13 during the heating operation.
  • the compressor 11 sucks and compresses the low-temperature, low-pressure refrigerant and discharges it as a high-temperature, high-pressure gas refrigerant.
  • the compressor 11 is driven by, for example, an inverter, and its capacity (amount of refrigerant discharged per unit time) is controlled.
  • the four-way valve 12 switches the refrigerant flow according to the operating mode of the air conditioner 100 .
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant flowing through the refrigerant circuit and the outdoor air.
  • a blower 14 is adjacent to the outdoor heat exchanger 13 .
  • Air blower 14 blows air to outdoor heat exchanger 13 .
  • the expansion valve 26 is, for example, an electronic expansion valve whose opening degree can be controlled.
  • the air conditioner 100 includes a control device 60 that centrally controls drive components such as the blower 14 and the expansion valve 26 .
  • the control device 60 includes a CPU (Central Processing Unit) 61, a memory 62 (ROM (Read Only Memory) and RAM (Random Access Memory)), and input/output devices (not shown) for inputting and outputting various signals. Configured.
  • the CPU 61 expands the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 60 are described.
  • the control device 60 controls each device according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the control device 60 adjusts the amount of air blown, for example, by controlling the rotational speeds of the fans 14, 28, and 29.
  • the control device 60 controls the amount of pressure reduction of the refrigerant, for example, by controlling the degree of opening of the expansion valve 26 .
  • FIG. 4 is a flowchart showing damper control during cooling operation in the first embodiment.
  • 5 to 7 are diagrams showing an example of damper operation according to Embodiment 1.
  • FIG. 4 is a flowchart showing damper control during cooling operation in the first embodiment.
  • 5 to 7 are diagrams showing an example of damper operation according to Embodiment 1.
  • FIG. 4 is a flowchart showing damper control during cooling operation in the first embodiment.
  • 5 to 7 are diagrams showing an example of damper operation according to Embodiment 1.
  • step S1 the control device 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detection unit 50 is higher than a preset lower limit air temperature TL . do.
  • the lower limit air temperature TL is a temperature set as a temperature at which cool air is felt by indoor residents. If the supply air temperature TSA is higher than the lower limit air temperature TL (YES in step S1), that is, if there is no need to suppress the cooling capacity, the controller 60 proceeds to the process of step S2.
  • step S2 the controller 60 controls the first damper 24 so that the room air RA does not pass through the exhaust heat exchanger 23, as shown in FIGS.
  • step S3 the controller 60 compares the indoor air temperature TIN with the outdoor air temperature TOA (step S3).
  • the indoor air temperature TIN is measured by a thermometer (not shown) placed in the indoor space.
  • the outdoor air temperature TOA is measured by the outdoor air temperature detector 51 .
  • step S3 When the indoor air temperature TIN is lower than the outdoor air temperature TOA (YES in step S3), the controller 60 proceeds to the process of step S4.
  • step S4 the controller 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG. As a result, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be cooled.
  • step S3 the controller 60 controls the second damper 25 so that the room air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
  • step S5 the controller 60 controls the second damper 25 so that the room air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
  • step S6 the controller 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23, as shown in FIG.
  • step S7 the control device 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
  • step S6 the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, thereby cooling the room air RA.
  • the cooling capacity of the supply air heat exchanger 22 can be suppressed and the supply air temperature TSA can be raised.
  • step S7 it is possible to prevent the indoor air RA from passing through the total heat exchanger 21 and to prevent the outdoor air OA passing through the supply air passage from being cooled. Therefore, it is possible to reduce the minimum capacity (exchange heat amount of the supply air SA) when the cooling capacity is suppressed, and to widen the supply air temperature range in which continuous operation is possible.
  • FIG. 8 is a refrigerant state transition diagram according to the first embodiment.
  • the vertical axis indicates the pressure p and the horizontal axis indicates the specific enthalpy h.
  • the refrigeration cycle is described when the indoor unit 20 acts as an evaporator.
  • points A to C are evaporation processes performed in the indoor unit 20
  • points C to D are condensation processes performed in the compressor 11
  • points D to E are condensation processes performed in the outdoor unit.
  • point E to point A indicate the expansion stroke performed in the expansion valve 26 .
  • the specific enthalpy of the refrigerant is increased from h1 to h2 in the exhaust heat exchanger 23, and the specific enthalpy of the refrigerant is increased from h2 to h3 in the supply air heat exchanger 22.
  • the exchange heat quantity QSA of the supply air heat exchanger 22 can be reduced. Thereby, the decrease in the temperature of the supply air SA can be suppressed.
  • FIG. 9 is a flowchart showing damper control during heating operation according to the first embodiment.
  • the control device 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detection unit 50 is lower than the preset upper limit air temperature TH . do.
  • the upper limit air temperature T H is a temperature set as a temperature at which warm air can be felt by the occupants of the room. If the supply air temperature TSA is lower than the upper limit air temperature TH (YES in step S11), that is, if the heating capacity does not need to be suppressed, the control device 60 proceeds to the process of step S12.
  • the control device 60 controls the first damper 24 so that the indoor air RA does not pass through the exhaust heat exchanger 23 in step S12.
  • the controller 60 compares the indoor air temperature TIN with the outdoor air temperature TOA (step S13).
  • the indoor air temperature TIN is measured by a thermometer (not shown) placed in the indoor space.
  • the outdoor air temperature TOA is measured by the outdoor air temperature detector 51 .
  • step S13 When the indoor air temperature TIN is higher than the outdoor air temperature TOA (YES in step S13), the control device 60 proceeds to the process of step S14.
  • step S14 the controller 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine. As a result, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be heated.
  • step S15 the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine.
  • the total heat exchange between the indoor air RA and the outdoor air OA is not performed in the total heat exchanger 21. can be done.
  • step S11 If the supply air temperature TSA is higher than the upper limit air temperature TH in step S11 (NO in step S11), that is, if the heating capacity needs to be suppressed, the control device 60 proceeds to the process of step S16. .
  • the controller 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23 in step S16.
  • step S17 the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine.
  • step S16 the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, thereby heating the room air RA.
  • the heating capacity of the supply air heat exchanger 22 can be suppressed, and the supply air temperature TSA can be lowered.
  • step S17 it is possible to prevent the indoor air RA from passing through the total heat exchanger 21 and prevent the outdoor air OA passing through the supply air passage from being heated.
  • FIG. 10 is a schematic diagram showing the configuration of the indoor unit 20A according to the second embodiment.
  • the configuration of the second embodiment is the same as that of the indoor unit 20 of the first embodiment except that the first damper 24 has a mechanism for adjusting the angle.
  • the control device 60 changes the angle of the first damper 24 depending on the situation.
  • FIG. 11 is a flow chart showing damper control in the second embodiment. Referring to FIG. 11, damper control will be described by taking control during cooling operation as an example.
  • step S21 the controller 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detector 50 is higher than a preset target value air temperature TT . do.
  • the target value air temperature TT is a set temperature that the indoor occupants feel is appropriate.
  • step S21 If the supply air temperature TSA is higher than the target value air temperature TT (YES in step S21), that is, if the supply air temperature TSA is desired to be lowered, the process proceeds to step S22.
  • control device 60 performs control to change the angle of first damper 24 so that the amount of indoor air RA passing through exhaust heat exchanger 23 is reduced. As a result, the amount of air passing through the exhaust heat exchanger 23 is reduced, and the amount of heat exchanged in the supply air heat exchanger 22 can be increased. Due to the increase in the amount of heat exchanged in the supply air heat exchanger 22, the supply air temperature TSA can be lowered.
  • step S21 If the supply air temperature TSA is lower than the target value air temperature TT (NO in step S21), that is, if it is desired to raise the supply air temperature TSA , the control device 60 proceeds to the process of step S23.
  • step S ⁇ b>23 the control device 60 performs control to change the angle of the first damper 24 so as to increase the air volume of the indoor air RA passing through the exhaust heat exchanger 23 .
  • the amount of air passing through the exhaust heat exchanger 23 increases, and the amount of heat exchanged in the supply air heat exchanger 22 can be reduced. Due to the reduction in the amount of heat exchanged in the charge air heat exchanger 22, the charge air temperature TSA can be increased.
  • the indoor unit 20A in Embodiment 2 when the supply air temperature TSA is desired to approach the target value air temperature TT , the supply air heat The amount of heat exchanged by the exchanger 22 can be controlled.
  • FIG. 12 is a schematic diagram showing the configuration of an indoor unit 20B according to Embodiment 3. As shown in FIG. Embodiment 3 differs from Embodiment 1 in that supply air heat exchanger 22 is downsized and exhaust heat exchanger 23 is arranged adjacent to supply air heat exchanger 22 . As shown in FIG. 12, in the indoor unit 20B, the supply air heat exchanger 22 is downsized, and the exhaust heat exchanger 23 is arranged adjacent to the supply air heat exchanger 22, so that the entire heat exchanger can be reduced in size.
  • the indoor unit 20B in Embodiment 3 is equipped with a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23 instead of the first damper 24.
  • the configuration is different from that of form 1.
  • the first damper group includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c.
  • the supply air heat exchanger 22 is located in the supply air path, and the exhaust heat exchanger 23 is controlled by the control device 60 controlling the third damper 24a, the fourth damper 24b, and the fifth damper 24c. It is located in a common air path that is switched to allow either one of the outdoor air OA and the indoor air RA to pass through.
  • the control device 60 switches whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23 by changing the positions of the third damper 24a, the fourth damper 24b, and the fifth damper 24c.
  • FIG. 13 is a flow chart showing damper control in the third embodiment.
  • 14 to 16 are diagrams showing an example of damper operation according to the third embodiment. Referring to FIG. 13, damper control will be described using control during cooling operation as an example.
  • step S31 the control device 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detection unit 50 is higher than a preset lower limit air temperature TL . do.
  • the lower limit air temperature TL is a temperature set as a temperature at which cool air is felt by indoor residents. If supply air temperature TSA is higher than lower limit air temperature TL (YES in step S31), that is, if there is no need to suppress the cooling capacity, control device 60 proceeds to the process of step S32.
  • step S32 the control device 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c so that the indoor air RA does not pass through the exhaust heat exchanger 23, as shown in FIGS. .
  • step S32 the control device 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c so that the outdoor air OA passes through the exhaust heat exchanger 23, as shown in FIGS. .
  • the controller 60 compares the indoor air temperature TIN with the outdoor air temperature TOA (step S33).
  • the indoor air temperature TIN is measured by a thermometer (not shown) placed in the indoor space.
  • the outdoor air temperature TOA is measured by the outdoor air temperature detector 51 .
  • step S34 the controller 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG. As a result, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be cooled.
  • the first damper group (third damper 24a, fourth damper 24b, fifth damper 24c) and second damper 25 are switched to the arrangement shown in FIG.
  • the outdoor air OA passes through the total heat exchanger 21 by the blower 28, passes through the supply air heat exchanger 22 and the exhaust heat exchanger 23, and is supplied indoors as supply air SA.
  • the indoor air RA passes through the total heat exchanger 21 by the blower 29 and is exhausted to the outside as the exhaust EA.
  • the cooling capacity of the indoor unit 20B when it is not necessary to suppress the cooling capacity, it is possible to prevent the cooling capacity of the indoor unit 20B from being lowered by preventing the indoor air RA from passing through the exhaust heat exchanger 23.
  • the cooling capacity can be improved.
  • total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be cooled.
  • step S35 the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
  • the total heat exchange is prevented between the indoor air RA and the outdoor air OA in the total heat exchanger 21. can be done.
  • the first damper group (third damper 24a, fourth damper 24b, fifth damper 24c) and second damper 25 are switched to the arrangement shown in FIG.
  • the outdoor air OA passes through the total heat exchanger 21 by the blower 28, passes through the supply air heat exchanger 22 and the exhaust heat exchanger 23, and is supplied indoors as supply air SA.
  • the indoor air RA is exhausted to the outside as exhaust EA by the blower 29 without passing through the total heat exchanger 21 .
  • the cooling capacity of the indoor unit 20B when it is not necessary to suppress the cooling capacity, it is possible to prevent the cooling capacity of the indoor unit 20B from being lowered by preventing the indoor air RA from passing through the exhaust heat exchanger 23.
  • the indoor unit 20B since the outdoor air OA passes through the exhaust heat exchanger 23 together with the supply air heat exchanger 22, the cooling capacity can be improved.
  • the indoor air RA can be prevented from passing through the total heat exchanger 21 and can be prevented from exchanging heat with the outdoor air OA passing through the supply air passage.
  • step S36 the controller 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c so that the indoor air RA passes through the exhaust heat exchanger 23, as shown in FIG.
  • step S37 the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
  • step S36 the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, thereby cooling the room air RA.
  • the cooling capacity of the supply air heat exchanger 22 can be suppressed and the supply air temperature TSA can be raised.
  • step S37 it is possible to prevent the indoor air RA from passing through the total heat exchanger 21 and to prevent the outdoor air OA passing through the supply air passage from being cooled. Therefore, it is possible to reduce the minimum capacity (exchange heat amount of the supply air SA) when the cooling capacity is suppressed, and to widen the supply air temperature range in which continuous operation is possible.
  • the exhaust heat exchanger 23 is used to cool the outdoor air OA as shown in FIGS. can be done. Therefore, the size and specifications of the supply air heat exchanger 22 can be reduced, and the cost of the product can be suppressed.
  • FIG. 17 is a schematic diagram showing the configuration of an indoor unit 20C in a modified example of the third embodiment.
  • the modification of the third embodiment differs from the third embodiment in that part of the supply air heat exchanger 22 also serves as the exhaust heat exchanger 23 of the third embodiment.
  • Other points are the same as those of the third embodiment.
  • the air passage of the indoor unit 20C is divided by a third damper 24a, a fourth damper 24b, and a fifth damper 24c.
  • part of the supply air heat exchanger 22 can have the function of the exhaust heat exchanger 23 shown in the third embodiment by partitioning the air passage.
  • FIG. 18 is a schematic diagram showing the configuration of an indoor unit 20D according to the fourth embodiment.
  • the configuration of the indoor unit 20D in the fourth embodiment is the same as the configuration of the indoor unit 20 in the first embodiment.
  • control when the outdoor air temperature TOA is lower than the preset freezing temperature Tf during heating operation will be described.
  • the freezing temperature Tf is a temperature set as a temperature at which moisture in the air flowing through the exhaust air passage may freeze.
  • FIG. 19 is a flow chart showing damper control in the fourth embodiment.
  • the control of the damper will be described using the control during the heating operation as an example.
  • the supply air heat exchanger 22 and the exhaust heat exchanger 23 act as condensers.
  • step S41 the controller 60 determines whether the outdoor air temperature TOA is higher than the freezing temperature Tf .
  • the controller 60 proceeds to the process of step S42.
  • step S42 the control device 60 executes the processing of steps S11 to S17 in FIG. 9 described above, and returns the processing from the subroutine to the main routine.
  • step S43 When the outdoor air temperature TOA is lower than the freezing temperature Tf (NO in step S41), the control device 60 proceeds to the process of step S43.
  • the control device 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23 in the process of step S43.
  • step S44 the control device 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine.
  • the temperature of the indoor air RA flowing into the total heat exchanger 21 can be increased by passing through the exhaust heat exchanger 23 (steps S43, S44 processing). As a result, freezing of moisture in the air in the exhaust air passage and clogging of the total heat exchanger 21 can be reduced.
  • the present disclosure relates to an air conditioner 100 including an outdoor unit 10 and an indoor unit 20.
  • the outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe 30 to form a refrigerant circuit.
  • the outdoor unit 10 includes a compressor 11 and an outdoor heat exchanger 13.
  • the indoor unit 20 includes an expansion valve 26, a supply air heat exchanger 22 and an exhaust heat exchanger 23, which are indoor heat exchangers, and a blower 28 as an air supply device that takes in the outdoor air OA into the room through the supply air passage. and a blower 29 as an exhaust device for discharging indoor air RA to the outside through an exhaust air passage.
  • the indoor heat exchanger is configured to allow passage of air flowing through the supply air passage and air flowing through the exhaust air passage.
  • the indoor unit 20 further includes a first damper 24 as a switching device capable of switching whether the indoor air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, which is an indoor heat exchanger.
  • the indoor heat exchanger comprises a supply air heat exchanger 22 as a first indoor heat exchanger and an exhaust air heat exchanger 23 as a second indoor heat exchanger.
  • the indoor unit 20 further includes a control device 60 that controls the operation of the first damper 24 .
  • the controller 60 controls the first damper 24 so that the room air RA passes through the exhaust heat exchanger 23, thereby suppressing the amount of heat exchanged by the supply air heat exchanger 22 in the supply air passage.
  • the indoor heat exchanger comprises a supply air heat exchanger 22 as a first indoor heat exchanger and an exhaust air heat exchanger 23 as a second indoor heat exchanger.
  • the indoor unit 20 further includes a control device 60 that controls the operation of the first damper 24 .
  • the first damper 24 can adjust the air volume of the indoor air RA passing through the exhaust heat exchanger 23 .
  • the control device 60 adjusts the amount of heat exchanged by the supply air heat exchanger 22 in the supply air path by controlling the first damper 24 so as to adjust the air volume of the indoor air RA passing through the exhaust heat exchanger 23 .
  • the indoor heat exchanger comprises a supply air heat exchanger 22 as a first indoor heat exchanger and an exhaust air heat exchanger 23 as a second indoor heat exchanger.
  • the indoor unit 20 further includes a control device 60 that controls operations of the third damper 24a, the fourth damper 24b, and the fifth damper 24c as switching devices.
  • the supply air heat exchanger 22 is positioned in the supply air path, and the control device 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c to control the outdoor air OA and the indoor air OA. It is located in a common air path that can be switched to pass either one of the air RA and the air RA.
  • the indoor unit 20 further includes a total heat exchanger 21 that exchanges heat between the outdoor air OA and the indoor air RA.
  • the second damper 25 as a switching device can switch whether the room air RA flowing through the exhaust air passage passes through the total heat exchanger 21 or not.
  • the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25.
  • the controller 60 controls the indoor air RA to exhaust heat exchange.
  • the first damper 24 is controlled so that the indoor air RA does not pass through the heat exchanger 23
  • the second damper 25 is controlled so that the room air RA passes through the total heat exchanger 21 .
  • the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25.
  • the controller 60 controls the indoor air RA to exhaust heat exchange.
  • the first damper 24 is controlled so that the indoor air RA does not pass through the heat exchanger 23, and the second damper 25 is controlled so that the indoor air RA does not pass through the total heat exchanger 21.
  • the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25.
  • the control device 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23 when the temperature TSA of the supply air taken into the room is lower than a preset lower limit value.
  • the second damper 25 is controlled so that the air RA does not pass through the total heat exchanger 21.
  • the switching device includes a first damper 24 capable of increasing or decreasing the volume of the room air RA passing through the exhaust heat exchanger 23, and a second damper switching whether or not the room air RA passes through the total heat exchanger 21. 25.
  • the control device 60 operates the first damper 24 so that the amount of indoor air RA passing through the exhaust heat exchanger 23 is reduced.
  • the first damper 24 is controlled so that the amount of room air RA passing through the exhaust heat exchanger 23 increases.
  • the switching device includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c as a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23;
  • a second damper 25 is provided for switching whether the room air RA passes through the total heat exchanger 21 .
  • the controller 60 controls the outdoor air OA to exhaust heat exchange.
  • the third damper 24a, the fourth damper 24b, and the fifth damper 24c are controlled so that the indoor air RA passes through the heat exchanger 23, and the second damper 25 is controlled so that the indoor air RA passes through the total heat exchanger 21.
  • the switching device includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c as a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23;
  • a second damper 25 is provided for switching whether the room air RA passes through the total heat exchanger 21 .
  • the controller 60 controls the outdoor air OA to exhaust heat exchange.
  • the third damper 24a, the fourth damper 24b, and the fifth damper 24c are controlled so that the indoor air RA passes through the heat exchanger 23, and the second damper 25 is controlled so that the room air RA does not pass through the total heat exchanger 21.
  • the switching device includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c as a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23;
  • a second damper 25 is provided for switching whether the room air RA passes through the total heat exchanger 21 .
  • the control device 60 controls the third damper 24a and the fourth damper 24b so that the indoor air RA passes through the exhaust heat exchanger 23 when the temperature TSA of the supply air taken into the room is lower than a preset lower limit value.
  • the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25.
  • the control device 60 controls the first damper 24 so that the indoor air RA passes through the first exhaust heat exchanger 23 when the outdoor air temperature TOA is lower than the freezing temperature Tf , and the indoor air RA is completely heat exchanged.
  • the second damper 25 is controlled to pass through the vessel 21 .
  • the air conditioner 100 of the present embodiment can keep the temperature of the blown air at a suitable level while executing continuous operation.
  • the configuration may be such that the total heat exchanger 21 and the second damper 25 are eliminated.
  • the cooling capacity As a method of suppressing the cooling capacity, there is a method of lowering the frequency of the compressor 11 (reducing the rotational speed) to raise the evaporating temperature, and a method of lowering the opening of the expansion valve 26 to raise the degree of superheat at the outlet of the evaporator.
  • the cooling capacity may be suppressed by combining these methods with the damper operation control method described above.
  • the control device 60 executes a process of decreasing the frequency of the compressor 11 or a process of decreasing the degree of opening of the expansion valve 26 . Even if the frequency of the compressor 11 is lowered to the lower limit or the opening of the expansion valve 26 is lowered to the lower limit, if the supply air temperature TSA is lower than the lower limit air temperature TL , the control device 60 controls the exhaust heat A process for causing air to flow through the exchanger 23 is executed. As a result, the room air RA flowing through the exhaust air passage is cooled, and the cooling capacity of the supply air heat exchanger 22 is suppressed, so that the supply air temperature TSA can be increased.
  • the process of lowering the frequency of the compressor 11 or the process of lowering the degree of opening of the expansion valve 26 leads to a decrease in the power consumption of the air conditioner 100 as well as a decrease in the cooling capacity.
  • damper control in the exhaust heat exchanger 23 reduces the cooling capacity of the supply air heat exchanger 22, but the exhaust heat exchanger 23 exhibits the reduced cooling capacity, so the power consumption of the air conditioner 100 is reduced. does not lead to decline. Therefore, power consumption can be suppressed by executing damper control in the exhaust heat exchanger 23 after executing the process of lowering the frequency of the compressor 11 or the process of lowering the degree of opening of the expansion valve 26 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An outdoor unit (10) is provided with a compressor (11) and an outdoor heat exchanger (13). An indoor unit (20) is provided with: an expansion valve (26); a supply air heat exchanger (22) and an exhaust heat exchanger (23) that are indoor heat exchangers; a blower (28) serving as an air supply device that brings outdoor air (OA) into a room through a supply air path; and a blower (29) serving as an exhaust device that discharges indoor air (RA) to the outside through an exhaust air path. The indoor heat exchangers are configured so as to allow passage of each of air flowing through the supply air path and air flowing through the exhaust air path. The indoor unit (20) is also provided with a first damper (24) serving as a switching device that can switch whether or not to allow the indoor air (RA) flowing in the exhaust air path to pass through the exhaust heat exchanger (23) that is a indoor heat exchanger.

Description

空気調和機air conditioner
 本開示は、空気調和機に関する。 The present disclosure relates to air conditioners.
 空気調和機の方式の一つとして、室外から吸い込んだ空気を温度調整し、室内空間へ空気を吹き出す対流空調方式がある。対流空調方式では、冷房時に低温の空気を室内に吹き出す際に吹出空気の温度が低すぎると居住者が冷風を感じ快適性が低下してしまう。一方、対流空調方式では、暖房時に高温の空気を室内に吹き出す際に吹出空気の温度が高すぎると居住者が温風を感じ快適性が低下してしまう。 One of the methods of air conditioners is the convection air conditioning system, which adjusts the temperature of the air sucked in from the outside and blows it out into the indoor space. In the convection air conditioning system, when low-temperature air is blown into the room during cooling, if the temperature of the blown air is too low, the occupants will feel the cold air and the comfort will decrease. On the other hand, in the convection air-conditioning system, when high-temperature air is blown into the room during heating, if the temperature of the blown-out air is too high, the occupants will feel warm air, which will reduce comfort.
 特許第5054935号公報(特許文献1)には、居住者の快適性を向上させるため、吹出空気の温度に予め定めた下限値を設けて空気調和機を運転する技術が開示されている。 Japanese Patent No. 5054935 (Patent Document 1) discloses a technique for operating an air conditioner with a predetermined lower limit for the temperature of the blown air in order to improve the comfort of the occupants.
特許第5054935号公報Japanese Patent No. 5054935
 特許文献1の空気調和機は、例えば、冷房運転時において、吹出空気の温度が予め定めた下限値を下回る場合に、圧縮機の周波数を下げ蒸発温度を上げること、膨張弁の開度を下げ蒸発器出口部の過熱度を上げることにより冷房能力を抑制し、吹出空気の温度の低下を防いでいる。しかしながら、特許文献1の空気調和機では、圧縮機の周波数が下限に到達するなどの運転範囲の制約により冷房能力を絞り切れず、吹出空気の温度が設定値を下回る場合がある。あるいは、特許文献1の空気調和機では、冷却停止により吹出空気の温度低下を回避することで吹出空気の温度が安定しない場合がある。 For example, the air conditioner of Patent Document 1 lowers the frequency of the compressor to raise the evaporation temperature and lowers the opening of the expansion valve when the temperature of the blown air is below a predetermined lower limit during cooling operation. By increasing the degree of superheat at the outlet of the evaporator, the cooling capacity is suppressed and the drop in temperature of the blown air is prevented. However, in the air conditioner of Patent Literature 1, the cooling capacity may not be fully throttled due to limitations in the operating range such as the frequency of the compressor reaching the lower limit, and the temperature of the blown air may fall below the set value. Alternatively, in the air conditioner of Patent Literature 1, the temperature of the blown air may not be stabilized by avoiding a drop in the temperature of the blown air by stopping cooling.
 本開示の目的は、連続運転を実行しつつ吹出空気の温度を好適に保つことのできる空気調和機を提供することである。 An object of the present disclosure is to provide an air conditioner capable of maintaining a suitable temperature of blown air while executing continuous operation.
 本開示は、室外機と、室内機とを備える空気調和機に関する。室外機と室内機とは、冷媒配管により接続され冷媒回路を構成する。室外機は、圧縮機と、室外熱交換器と、を備える。室内機は、膨張弁と、室内熱交換器と、給気風路を通して室外空気を室内に取り入れる給気装置と、排気風路を通して室内空気を室外へ吐き出す排気装置と、を備える。室内熱交換器は、給気風路を流れる空気と排気風路を流れる空気の各々が通過可能に構成される。室内機は、排気風路を流れる室内空気が室内熱交換器を通過するか否かを切替え可能な切替装置をさらに備える。 The present disclosure relates to an air conditioner that includes an outdoor unit and an indoor unit. The outdoor unit and the indoor unit are connected by refrigerant pipes to form a refrigerant circuit. The outdoor unit includes a compressor and an outdoor heat exchanger. The indoor unit includes an expansion valve, an indoor heat exchanger, an air supply device that takes in outdoor air into the room through a supply air passage, and an exhaust device that discharges the indoor air to the outside through an exhaust air passage. The indoor heat exchanger is configured to allow passage of air flowing through the supply air passage and air flowing through the exhaust air passage. The indoor unit further includes a switching device capable of switching whether the indoor air flowing through the exhaust air passage passes through the indoor heat exchanger.
 本開示の空気調和機によれば、連続運転を実行しつつ吹出空気の温度を好適に保つことができる。 According to the air conditioner of the present disclosure, it is possible to maintain a suitable temperature of the blown air while executing continuous operation.
実施の形態1における空気調和機の構成を示す概略図である。1 is a schematic diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. 実施の形態1における室内機の構成を示す概略図である。1 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 1. FIG. 実施の形態1における空気調和機の冷媒回路図である。2 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1. FIG. 実施の形態1における冷房運転時のダンパの制御を示すフローチャートである。4 is a flowchart showing damper control during cooling operation in Embodiment 1. FIG. 実施の形態1におけるダンパ操作の一例を示す図である。FIG. 4 is a diagram showing an example of damper operation in Embodiment 1; FIG. 実施の形態1におけるダンパ操作の一例を示す図である。FIG. 4 is a diagram showing an example of damper operation in Embodiment 1; FIG. 実施の形態1におけるダンパ操作の一例を示す図である。FIG. 4 is a diagram showing an example of damper operation in Embodiment 1; FIG. 実施の形態1における冷媒状態遷移図である。FIG. 4 is a refrigerant state transition diagram according to Embodiment 1; 実施の形態1における暖房運転時のダンパの制御を示すフローチャートである。4 is a flowchart showing damper control during heating operation in Embodiment 1. FIG. 実施の形態2における室内機の構成を示す概略図である。4 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 2. FIG. 実施の形態2における冷房運転時のダンパの制御を示すフローチャートである。9 is a flowchart showing damper control during cooling operation in Embodiment 2. FIG. 実施の形態3における室内機の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 3; 実施の形態3における冷房運転時のダンパの制御を示すフローチャートである。10 is a flow chart showing damper control during cooling operation in Embodiment 3. FIG. 実施の形態3におけるダンパ操作の一例を示す図である。FIG. 12 is a diagram showing an example of damper operation in Embodiment 3; 実施の形態3におけるダンパ操作の一例を示す図である。FIG. 12 is a diagram showing an example of damper operation in Embodiment 3; 実施の形態3におけるダンパ操作の一例を示す図である。FIG. 12 is a diagram showing an example of damper operation in Embodiment 3; 実施の形態3の変形例における室内機の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an indoor unit in a modified example of Embodiment 3; 実施の形態4における室内機の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an indoor unit according to Embodiment 4; 実施の形態4における暖房運転時のダンパの制御を示すフローチャートである。14 is a flow chart showing damper control during heating operation in Embodiment 4. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されている。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the embodiments described below, when referring to the number, amount, etc., the scope of the present disclosure is not necessarily limited to the number, amount, etc., unless otherwise specified. The same reference numbers are given to the same parts and equivalent parts, and redundant description may not be repeated. It is planned from the beginning to use the configurations in the embodiments in combination as appropriate.
 実施の形態1.
 <構成>
 図1から図3を用いて、実施の形態1における空気調和機100の構成、実施の形態1における空気調和機100の室内機20の構成、および実施の形態1における空気調和機100の冷媒回路の構成について説明する。
Embodiment 1.
<Configuration>
1 to 3, the configuration of the air conditioner 100 according to Embodiment 1, the configuration of the indoor unit 20 of the air conditioner 100 according to Embodiment 1, and the refrigerant circuit of the air conditioner 100 according to Embodiment 1. will be described.
 図1は、実施の形態1における空気調和機100の構成を示す概略図であり、図2は、実施の形態1における室内機20の構成を示す概略図であり、図3は、実施の形態1における空気調和機100の冷媒回路図である。 FIG. 1 is a schematic diagram showing the configuration of an air conditioner 100 according to Embodiment 1, FIG. 2 is a schematic diagram showing the configuration of an indoor unit 20 according to Embodiment 1, and FIG. 1 is a refrigerant circuit diagram of the air conditioner 100 in FIG.
 空気調和機100は、室外機10と、室内機20とを備える。室外機10と室内機20とは、冷媒配管30により接続されている。外気処理ユニットである室内機20は、天井裏101に配置されている。室内機20は、室外空気OAを取込み、吹出口41を介して給気SAとしてダクト40から吹き出す。室内機20は、室内空気RAを吸込口42を介してダクト40へ取込み、排気EAとして室外へ吐き出す。 The air conditioner 100 includes an outdoor unit 10 and an indoor unit 20. The outdoor unit 10 and the indoor unit 20 are connected by refrigerant piping 30 . The indoor unit 20 which is an outside air processing unit is arranged in the ceiling space 101 . The indoor unit 20 takes in the outdoor air OA and blows it out from the duct 40 as supply air SA through the outlet 41 . The indoor unit 20 takes in the indoor air RA into the duct 40 through the suction port 42 and discharges it to the outside as the exhaust air EA.
 室内機20は、本体ケーシング内に、全熱交換器21と、給気熱交換器22と、排気熱交換器23と、給気用の送風機28と、排気用の送風機29と、給気温度検知部50と、外気温度検知部51とを含む。図1では、室内機20を側面から見た概略図が示されている。図2では、室内機20を上面から見た概略図が示されている。 The indoor unit 20 includes a total heat exchanger 21, a supply air heat exchanger 22, an exhaust heat exchanger 23, a supply air blower 28, an exhaust air blower 29, a supply air temperature A detection unit 50 and an outside air temperature detection unit 51 are included. FIG. 1 shows a schematic diagram of the indoor unit 20 viewed from the side. FIG. 2 shows a schematic diagram of the indoor unit 20 viewed from above.
 全熱交換器21は、例えば互いに直交する複数の通風路が交互に積層された構造を有する。全熱交換器21では、その通風路に室内空気RAと室外空気OAとが通過することによって、室内空気RAと室外空気OAとの間で全熱交換を行なう。全熱交換では、顕熱(温度)だけではなく、潜熱(水蒸気)の熱も交換する。 The total heat exchanger 21 has, for example, a structure in which a plurality of crossing ventilation paths are alternately stacked. In the total heat exchanger 21, total heat exchange is performed between the indoor air RA and the outdoor air OA as the indoor air RA and the outdoor air OA pass through the ventilation path. In total heat exchange, not only sensible heat (temperature) but also latent heat (water vapor) is exchanged.
 給気熱交換器22および排気熱交換器23は、冷媒と空気との間で熱交換を行なう室内熱交換器である。給気温度検知部50は、室内に吹き出される給気SAの温度を測定するための機器である。外気温度検知部51は、屋外から室内に取り込まれる室外空気OAの温度を測定するための機器である。 The supply air heat exchanger 22 and the exhaust heat exchanger 23 are indoor heat exchangers that exchange heat between refrigerant and air. The supply air temperature detector 50 is a device for measuring the temperature of the supply air SA blown into the room. The outdoor air temperature detection unit 51 is a device for measuring the temperature of the outdoor air OA taken into the room from the outdoors.
 室外空気OAは、給気装置としての送風機28によって全熱交換器21に導かれ、給気熱交換器22を通過した後に、給気SAとして室内に供給される。室外空気OAが室内へと流れる風路を給気風路と称する。他方、室内空気RAは、排気装置としての送風機29によって排気EAとして室外に排気される。室内空気RAが室外へと流れる風路を排気風路と称する。 The outdoor air OA is led to the total heat exchanger 21 by a blower 28 as an air supply device, and after passing through the supply air heat exchanger 22, is supplied indoors as supply air SA. An air passage through which the outdoor air OA flows into the room is called a supply air passage. On the other hand, the room air RA is discharged to the outside as the exhaust EA by the blower 29 as an exhaust device. An air passage through which the indoor air RA flows to the outside is called an exhaust air passage.
 図2に示すように、排気風路には、各種矢印で示す空気の流れを切替える切替装置としての第1ダンパ24および第2ダンパ25が配置されている。第1ダンパ24は、排気風路を流れる室内空気RAが排気熱交換器23を通過するか否かを切替え可能である。第2ダンパ25は、排気風路を流れる室内空気RAが全熱交換器21を通過するか否かを切替え可能である。 As shown in FIG. 2, a first damper 24 and a second damper 25 as switching devices for switching the flow of air indicated by various arrows are arranged in the exhaust air passage. The first damper 24 can switch whether the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23 or not. The second damper 25 can switch whether the room air RA flowing through the exhaust air passage passes through the total heat exchanger 21 or not.
 第1ダンパ24および第2ダンパ25の切替えにより、室内空気RAは、例えば、排気熱交換器23を通過せず全熱交換器21を通過するパターン、排気熱交換器23および全熱交換器21を通過しないパターン、排気熱交換器23を通過し全熱交換器21を通過しないパターンのいずれかにより排気風路を流れる。 By switching the first damper 24 and the second damper 25, the indoor air RA, for example, passes through the total heat exchanger 21 without passing through the exhaust heat exchanger 23, the exhaust heat exchanger 23 and the total heat exchanger 21 or a pattern that passes through the exhaust heat exchanger 23 and does not pass through the total heat exchanger 21.
 図3に示すように、空気調和機100は、室外機10と、室内機20とが冷媒配管30a、30bにより接続されている。室外機10は、圧縮機11と、四方弁12と、室外熱交換器13と、室外機ファンとしての送風機14とを備える。室内機20は、給気熱交換器22と、排気熱交換器23と、膨張弁26とを備える。 As shown in FIG. 3, in the air conditioner 100, the outdoor unit 10 and the indoor unit 20 are connected by refrigerant pipes 30a and 30b. The outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, and a blower 14 as an outdoor unit fan. The indoor unit 20 includes a supply air heat exchanger 22 , an exhaust heat exchanger 23 and an expansion valve 26 .
 空気調和機100は、冷房運転時において、圧縮機11、室外熱交換器13、膨張弁26、排気熱交換器23、給気熱交換器22の順に冷媒を循環させる。空気調和機100は、暖房運転時において、圧縮機11、給気熱交換器22、排気熱交換器23、膨張弁26、室外熱交換器13の順に冷媒を循環させる。 The air conditioner 100 circulates the refrigerant in the order of the compressor 11, the outdoor heat exchanger 13, the expansion valve 26, the exhaust heat exchanger 23, and the supply air heat exchanger 22 during cooling operation. The air conditioner 100 circulates the refrigerant in order of the compressor 11, the supply air heat exchanger 22, the exhaust heat exchanger 23, the expansion valve 26, and the outdoor heat exchanger 13 during the heating operation.
 圧縮機11は、低温、低圧の冷媒を吸入して圧縮し、高温、高圧のガス冷媒として吐出する。圧縮機11は、例えば、インバータにより駆動し、容量(単位時間当たりに吐出する冷媒の量)が制御される。四方弁12は、空気調和機100の運転モードに応じて冷媒の流れを切替える。 The compressor 11 sucks and compresses the low-temperature, low-pressure refrigerant and discharges it as a high-temperature, high-pressure gas refrigerant. The compressor 11 is driven by, for example, an inverter, and its capacity (amount of refrigerant discharged per unit time) is controlled. The four-way valve 12 switches the refrigerant flow according to the operating mode of the air conditioner 100 .
 室外熱交換器13は、冷媒回路を流れる冷媒と室外空気との間で熱交換を行なう。室外熱交換器13には、送風機14が隣接されている。送風機14は、室外熱交換器13への送風を行なう。膨張弁26は、例えば、弁の開度が制御可能な電子式膨張弁で構成される。空気調和機100は、送風機14、膨張弁26等の駆動部品を統括的に制御する制御装置60を備えている。 The outdoor heat exchanger 13 exchanges heat between the refrigerant flowing through the refrigerant circuit and the outdoor air. A blower 14 is adjacent to the outdoor heat exchanger 13 . Air blower 14 blows air to outdoor heat exchanger 13 . The expansion valve 26 is, for example, an electronic expansion valve whose opening degree can be controlled. The air conditioner 100 includes a control device 60 that centrally controls drive components such as the blower 14 and the expansion valve 26 .
 制御装置60は、CPU(Central Processing Unit)61と、メモリ62(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための図示しない入出力装置等を含んで構成される。CPU61は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置60の処理手順が記されたプログラムである。制御装置60は、これらのプログラムに従って、各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 60 includes a CPU (Central Processing Unit) 61, a memory 62 (ROM (Read Only Memory) and RAM (Random Access Memory)), and input/output devices (not shown) for inputting and outputting various signals. Configured. The CPU 61 expands the program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 60 are described. The control device 60 controls each device according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 制御装置60は、例えば、送風機14,28,29の回転速度を制御することにより、送風量を調整する。制御装置60は、例えば、膨張弁26の開度を制御することにより、冷媒の減圧量を制御する。 The control device 60 adjusts the amount of air blown, for example, by controlling the rotational speeds of the fans 14, 28, and 29. The control device 60 controls the amount of pressure reduction of the refrigerant, for example, by controlling the degree of opening of the expansion valve 26 .
 <動作>
 図4は、実施の形態1における冷房運転時のダンパの制御を示すフローチャートである。図5から図7は、実施の形態1におけるダンパ操作の一例を示す図である。
<Action>
FIG. 4 is a flowchart showing damper control during cooling operation in the first embodiment. 5 to 7 are diagrams showing an example of damper operation according to Embodiment 1. FIG.
 図4に示すように、制御装置60は、ステップS1において、給気温度検知部50において検出される給気温度TSAが予め設定されている下限値空気温度Tより高いか否かを判定する。下限値空気温度Tは、室内の居住者が冷風を感じる温度として設定される温度である。制御装置60は、給気温度TSAが下限値空気温度Tより高い場合(ステップS1でYES)、すなわち、冷却能力を抑制する必要がない場合、ステップS2の処理へ移行する。 As shown in FIG. 4, in step S1, the control device 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detection unit 50 is higher than a preset lower limit air temperature TL . do. The lower limit air temperature TL is a temperature set as a temperature at which cool air is felt by indoor residents. If the supply air temperature TSA is higher than the lower limit air temperature TL (YES in step S1), that is, if there is no need to suppress the cooling capacity, the controller 60 proceeds to the process of step S2.
 制御装置60は、ステップS2において、図5、図6に示すように、室内空気RAが排気熱交換器23を通過しないように第1ダンパ24を制御する。次いで、制御装置60は、室内空気温度TINと室外空気温度TOAとを比較する(ステップS3)。室内空気温度TINは、図示しない室内空間に配置される温度計により計測される。室外空気温度TOAは外気温度検知部51により計測される。 In step S2, the controller 60 controls the first damper 24 so that the room air RA does not pass through the exhaust heat exchanger 23, as shown in FIGS. Next, the controller 60 compares the indoor air temperature TIN with the outdoor air temperature TOA (step S3). The indoor air temperature TIN is measured by a thermometer (not shown) placed in the indoor space. The outdoor air temperature TOA is measured by the outdoor air temperature detector 51 .
 制御装置60は、室内空気温度TINが室外空気温度TOAよりも低い場合(ステップS3でYES)、ステップS4の処理へ移行する。制御装置60は、ステップS4において、図5に示すように、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。これにより、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれることにより、給気風路を通過する室外空気OAを冷却することができる。 When the indoor air temperature TIN is lower than the outdoor air temperature TOA (YES in step S3), the controller 60 proceeds to the process of step S4. In step S4, the controller 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG. As a result, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be cooled.
 制御装置60は、室内空気温度TINが室外空気温度TOAよりも高い場合(ステップS3でNO)、ステップS5の処理へ移行する。制御装置60は、ステップS5において、図6に示すように、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。これにより、給気風路を通過する室外空気OAを冷却する必要がない場合には、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれないようにすることができる。 If the indoor air temperature TIN is higher than the outdoor air temperature TOA (NO in step S3), the controller 60 proceeds to step S5. In step S5, the controller 60 controls the second damper 25 so that the room air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG. As a result, when it is not necessary to cool the outdoor air OA passing through the supply air passage, the total heat exchange is prevented between the indoor air RA and the outdoor air OA in the total heat exchanger 21. can be done.
 制御装置60は、ステップS1において、給気温度TSAが下限値空気温度Tより低い場合(ステップS1でNO)、すなわち、冷却能力を抑制する必要がある場合、ステップS6の処理へ移行する。制御装置60は、ステップS6において、図7に示すように、室内空気RAが排気熱交換器23を通過するように第1ダンパ24を制御する。次いで、制御装置60は、ステップS7において、図7に示すように、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。 If the supply air temperature TSA is lower than the lower limit air temperature TL in step S1 (NO in step S1), that is, if it is necessary to suppress the cooling capacity, the controller 60 proceeds to step S6. . In step S6, the controller 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23, as shown in FIG. Next, in step S7, the control device 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
 ステップS6の処理により、排気風路を流れる室内空気RAが排気熱交換器23を通過することで、室内空気RAが冷却される。これにより、給気熱交換器22の冷却能力を抑え、給気温度TSAを上げることができる。ステップS7の処理により、室内空気RAが全熱交換器21を通過しないようにし、給気風路を通過する室外空気OAを冷却しないようにすることができる。よって、冷却能力抑制時の最小能力(給気SAの交換熱量)を従来よりも小さくし、連続運転可能な給気温度範囲を広げることが可能となる。 By the process of step S6, the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, thereby cooling the room air RA. As a result, the cooling capacity of the supply air heat exchanger 22 can be suppressed and the supply air temperature TSA can be raised. By the process of step S7, it is possible to prevent the indoor air RA from passing through the total heat exchanger 21 and to prevent the outdoor air OA passing through the supply air passage from being cooled. Therefore, it is possible to reduce the minimum capacity (exchange heat amount of the supply air SA) when the cooling capacity is suppressed, and to widen the supply air temperature range in which continuous operation is possible.
 図8は、実施の形態1における冷媒状態遷移図である。縦軸は圧力pを示し、横軸は比エンタルピーhを示す。p-h線図上には、点Aから点Eを結ぶ線で示されるように、室内機20が蒸発器として作用する場合の冷凍サイクルが記載されている。図8において、点Aから点Cは室内機20において実行される蒸発工程、点Cから点Dは圧縮機11において実行される凝縮工程、点Dから点Eは室外機において実行される凝縮工程、点Eから点Aは膨張弁26において実行される膨張行程を示す。 FIG. 8 is a refrigerant state transition diagram according to the first embodiment. The vertical axis indicates the pressure p and the horizontal axis indicates the specific enthalpy h. As indicated by the line connecting point A to point E on the ph diagram, the refrigeration cycle is described when the indoor unit 20 acts as an evaporator. In FIG. 8, points A to C are evaporation processes performed in the indoor unit 20, points C to D are condensation processes performed in the compressor 11, and points D to E are condensation processes performed in the outdoor unit. , point E to point A indicate the expansion stroke performed in the expansion valve 26 .
 図8に示すように、蒸発工程では、点Aから点Bにおいて排気熱交換器23に空気を流すことにより、交換熱量QEA分の熱量を排気熱交換器23において熱交換する。これにより、給気熱交換器22に流入する冷媒の比エンタルピーをh1からh2に上昇させる。蒸発工程では、点Bから点Cにおいて給気熱交換器22に空気を流すことにより、交換熱量QSA分の熱量を給気熱交換器22において熱交換する。 As shown in FIG. 8, in the evaporation process, air is caused to flow from point A to point B in the exhaust heat exchanger 23, thereby exchanging heat in the exhaust heat exchanger 23 for the amount of heat exchanged QEA . As a result, the specific enthalpy of the refrigerant flowing into the supply air heat exchanger 22 is increased from h1 to h2. In the evaporation process, air is flown from point B to point C into the supply air heat exchanger 22, so that the supply air heat exchanger 22 exchanges the heat amount corresponding to the exchange heat amount QSA .
 このように、蒸発工程では、排気熱交換器23において冷媒の比エンタルピーをh1からh2に上昇させ、給気熱交換器22において冷媒の比エンタルピーをh2からh3に上昇させる。このため、排気熱交換器23を空気が通過しない場合に比べ給気熱交換器22の交換熱量QSAを低下させることができる。これにより、給気SAの温度の低下を抑制することができる。 Thus, in the evaporation process, the specific enthalpy of the refrigerant is increased from h1 to h2 in the exhaust heat exchanger 23, and the specific enthalpy of the refrigerant is increased from h2 to h3 in the supply air heat exchanger 22. For this reason, compared with the case where the air does not pass through the exhaust heat exchanger 23, the exchange heat quantity QSA of the supply air heat exchanger 22 can be reduced. Thereby, the decrease in the temperature of the supply air SA can be suppressed.
 図9は、実施の形態1における暖房運転時のダンパの制御を示すフローチャートである。図9に示すように、制御装置60は、ステップS11において、給気温度検知部50において検出される給気温度TSAが予め設定されている上限値空気温度Tより低いか否かを判定する。上限値空気温度Tは、室内の居住者が温風を感じる温度として設定される温度である。制御装置60は、給気温度TSAが上限値空気温度Tより低い場合(ステップS11でYES)、すなわち、暖房能力を抑制する必要がない場合、ステップS12の処理へ移行する。 FIG. 9 is a flowchart showing damper control during heating operation according to the first embodiment. As shown in FIG. 9, in step S11, the control device 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detection unit 50 is lower than the preset upper limit air temperature TH . do. The upper limit air temperature T H is a temperature set as a temperature at which warm air can be felt by the occupants of the room. If the supply air temperature TSA is lower than the upper limit air temperature TH (YES in step S11), that is, if the heating capacity does not need to be suppressed, the control device 60 proceeds to the process of step S12.
 制御装置60は、ステップS12において、室内空気RAが排気熱交換器23を通過しないように第1ダンパ24を制御する。次いで、制御装置60は、室内空気温度TINと室外空気温度TOAとを比較する(ステップS13)。室内空気温度TINは、図示しない室内空間に配置される温度計により計測される。室外空気温度TOAは外気温度検知部51により計測される。 The control device 60 controls the first damper 24 so that the indoor air RA does not pass through the exhaust heat exchanger 23 in step S12. Next, the controller 60 compares the indoor air temperature TIN with the outdoor air temperature TOA (step S13). The indoor air temperature TIN is measured by a thermometer (not shown) placed in the indoor space. The outdoor air temperature TOA is measured by the outdoor air temperature detector 51 .
 制御装置60は、室内空気温度TINが室外空気温度TOAよりも高い場合(ステップS13でYES)、ステップS14の処理へ移行する。制御装置60は、ステップS14において、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。これにより、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれることにより、給気風路を通過する室外空気OAを加熱することができる。 When the indoor air temperature TIN is higher than the outdoor air temperature TOA (YES in step S13), the control device 60 proceeds to the process of step S14. In step S14, the controller 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine. As a result, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be heated.
 制御装置60は、室内空気温度TINが室外空気温度TOAよりも低い場合(ステップS13でNO)、ステップS15の処理へ移行する。制御装置60は、ステップS15において、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。これにより、給気風路を通過する室外空気OAを加熱する必要がない場合には、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれないようにすることができる。 When the indoor air temperature TIN is lower than the outdoor air temperature TOA (NO in step S13), the control device 60 proceeds to the process of step S15. In step S15, the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine. As a result, when it is not necessary to heat the outdoor air OA passing through the supply air passage, the total heat exchange between the indoor air RA and the outdoor air OA is not performed in the total heat exchanger 21. can be done.
 制御装置60は、ステップS11において、給気温度TSAが上限値空気温度Tより高い場合(ステップS11でNO)、すなわち、暖房能力を抑制する必要がある場合、ステップS16の処理へ移行する。制御装置60は、ステップS16において、室内空気RAが排気熱交換器23を通過するように第1ダンパ24を制御する。次いで、制御装置60は、ステップS17において、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。 If the supply air temperature TSA is higher than the upper limit air temperature TH in step S11 (NO in step S11), that is, if the heating capacity needs to be suppressed, the control device 60 proceeds to the process of step S16. . The controller 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23 in step S16. Next, in step S17, the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine.
 ステップS16の処理により、排気風路を流れる室内空気RAが排気熱交換器23を通過することで、室内空気RAが加熱される。これにより、給気熱交換器22の加熱能力を抑え、給気温度TSAを下げることができる。ステップS17の処理により、室内空気RAが全熱交換器21を通過しないようにし、給気風路を通過する室外空気OAを加熱しないようにすることができる。 By the process of step S16, the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, thereby heating the room air RA. As a result, the heating capacity of the supply air heat exchanger 22 can be suppressed, and the supply air temperature TSA can be lowered. By the process of step S17, it is possible to prevent the indoor air RA from passing through the total heat exchanger 21 and prevent the outdoor air OA passing through the supply air passage from being heated.
 実施の形態2.
 <構成>
 図10は、実施の形態2における室内機20Aの構成を示す概略図である。実施の形態2においては、第1ダンパ24が角度の調整できる機構を備えている点以外の構成は、実施の形態1の室内機20と同様である。制御装置60は、第1ダンパ24の角度を状況に応じて変更する。
Embodiment 2.
<Configuration>
FIG. 10 is a schematic diagram showing the configuration of the indoor unit 20A according to the second embodiment. The configuration of the second embodiment is the same as that of the indoor unit 20 of the first embodiment except that the first damper 24 has a mechanism for adjusting the angle. The control device 60 changes the angle of the first damper 24 depending on the situation.
 <動作>
 図11は、実施の形態2におけるダンパの制御を示すフローチャートである。図11では、ダンパの制御について、冷房運転時の制御を例に説明する。
<Action>
FIG. 11 is a flow chart showing damper control in the second embodiment. Referring to FIG. 11, damper control will be described by taking control during cooling operation as an example.
 図11に示すように、制御装置60は、ステップS21において、給気温度検知部50において検出される給気温度TSAが予め設定されている目標値空気温度Tより高いか否かを判定する。目標値空気温度Tは、室内の居住者が適温と感じる設定温度である。 As shown in FIG. 11, in step S21, the controller 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detector 50 is higher than a preset target value air temperature TT . do. The target value air temperature TT is a set temperature that the indoor occupants feel is appropriate.
 制御装置60は、給気温度TSAが目標値空気温度Tより高い場合(ステップS21でYES)、すなわち、給気温度TSAを下げたい場合、ステップS22の処理へ移行する。制御装置60は、ステップS22において、室内空気RAが排気熱交換器23を通過する風量が減少するように第1ダンパ24の角度を変更する制御を行なう。これにより、排気熱交換器23を通過する風量が減り、給気熱交換器22における交換熱量を増やすことができる。給気熱交換器22における交換熱量の増加により、給気温度TSAを下げることができる。 If the supply air temperature TSA is higher than the target value air temperature TT (YES in step S21), that is, if the supply air temperature TSA is desired to be lowered, the process proceeds to step S22. In step S22, control device 60 performs control to change the angle of first damper 24 so that the amount of indoor air RA passing through exhaust heat exchanger 23 is reduced. As a result, the amount of air passing through the exhaust heat exchanger 23 is reduced, and the amount of heat exchanged in the supply air heat exchanger 22 can be increased. Due to the increase in the amount of heat exchanged in the supply air heat exchanger 22, the supply air temperature TSA can be lowered.
 制御装置60は、給気温度TSAが目標値空気温度Tより低い場合(ステップS21でNO)、すなわち、給気温度TSAを上げたい場合、ステップS23の処理へ移行する。制御装置60は、ステップS23において、室内空気RAが排気熱交換器23を通過する風量が増加するように第1ダンパ24の角度を変更する制御を行なう。これにより、排気熱交換器23を通過する風量が増え、給気熱交換器22における交換熱量を減らすことができる。給気熱交換器22における交換熱量の減少により、給気温度TSAを上げることができる。 If the supply air temperature TSA is lower than the target value air temperature TT (NO in step S21), that is, if it is desired to raise the supply air temperature TSA , the control device 60 proceeds to the process of step S23. In step S<b>23 , the control device 60 performs control to change the angle of the first damper 24 so as to increase the air volume of the indoor air RA passing through the exhaust heat exchanger 23 . As a result, the amount of air passing through the exhaust heat exchanger 23 increases, and the amount of heat exchanged in the supply air heat exchanger 22 can be reduced. Due to the reduction in the amount of heat exchanged in the charge air heat exchanger 22, the charge air temperature TSA can be increased.
 このように、実施の形態2における室内機20Aによれば、給気温度TSAを目標値空気温度Tに近づけたい場合に、排気熱交換器23を通過する風量の増減により、給気熱交換器22の交換熱量をコントロールすることができる。 Thus, according to the indoor unit 20A in Embodiment 2, when the supply air temperature TSA is desired to approach the target value air temperature TT , the supply air heat The amount of heat exchanged by the exchanger 22 can be controlled.
 実施の形態3.
 <構成>
 図12は、実施の形態3における室内機20Bの構成を示す概略図である。実施の形態3においては、給気熱交換器22が小型化され、排気熱交換器23が給気熱交換器22に隣接する位置に配置されている点が実施の形態1の構成と異なる。図12に示すように、室内機20Bは、給気熱交換器22が小型化され、排気熱交換器23が給気熱交換器22に隣接する位置に配置されているため、熱交換器全体のサイズを小さくすることができる。
Embodiment 3.
<Configuration>
FIG. 12 is a schematic diagram showing the configuration of an indoor unit 20B according to Embodiment 3. As shown in FIG. Embodiment 3 differs from Embodiment 1 in that supply air heat exchanger 22 is downsized and exhaust heat exchanger 23 is arranged adjacent to supply air heat exchanger 22 . As shown in FIG. 12, in the indoor unit 20B, the supply air heat exchanger 22 is downsized, and the exhaust heat exchanger 23 is arranged adjacent to the supply air heat exchanger 22, so that the entire heat exchanger can be reduced in size.
 実施の形態3における室内機20Bは、第1ダンパ24の代わりに排気熱交換器23に室内空気RAまたは室外空気OAが通過するか否かを切替える第1ダンパ群を備えている点が実施の形態1の構成と異なる。第1ダンパ群は、第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを含む。室内機20Bにおいて、給気熱交換器22は、給気風路に位置し、排気熱交換器23は、制御装置60が第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御することにより室外空気OAと室内空気RAとのうちいずれか一方を通過可能に切替えられる共通風路に位置する。制御装置60は、第3ダンパ24a、第4ダンパ24b、第5ダンパ24cの位置を変更することにより、排気熱交換器23に室内空気RAまたは室外空気OAが通過するか否かを切替える。 The indoor unit 20B in Embodiment 3 is equipped with a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23 instead of the first damper 24. The configuration is different from that of form 1. The first damper group includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c. In the indoor unit 20B, the supply air heat exchanger 22 is located in the supply air path, and the exhaust heat exchanger 23 is controlled by the control device 60 controlling the third damper 24a, the fourth damper 24b, and the fifth damper 24c. It is located in a common air path that is switched to allow either one of the outdoor air OA and the indoor air RA to pass through. The control device 60 switches whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23 by changing the positions of the third damper 24a, the fourth damper 24b, and the fifth damper 24c.
 <動作>
 図13は、実施の形態3におけるダンパの制御を示すフローチャートである。図14から図16は、実施の形態3におけるダンパ操作の一例を示す図である。図13では、ダンパの制御について、冷房運転時の制御を例に説明する。
<Action>
FIG. 13 is a flow chart showing damper control in the third embodiment. 14 to 16 are diagrams showing an example of damper operation according to the third embodiment. Referring to FIG. 13, damper control will be described using control during cooling operation as an example.
 図13に示すように、制御装置60は、ステップS31において、給気温度検知部50において検出される給気温度TSAが予め設定されている下限値空気温度Tより高いか否かを判定する。下限値空気温度Tは、室内の居住者が冷風を感じる温度として設定される温度である。制御装置60は、給気温度TSAが下限値空気温度Tより高い場合(ステップS31でYES)、すなわち、冷却能力を抑制する必要がない場合、ステップS32の処理へ移行する。 As shown in FIG. 13, in step S31, the control device 60 determines whether or not the supply air temperature TSA detected by the supply air temperature detection unit 50 is higher than a preset lower limit air temperature TL . do. The lower limit air temperature TL is a temperature set as a temperature at which cool air is felt by indoor residents. If supply air temperature TSA is higher than lower limit air temperature TL (YES in step S31), that is, if there is no need to suppress the cooling capacity, control device 60 proceeds to the process of step S32.
 制御装置60は、ステップS32において、図14、図15に示すように、室内空気RAが排気熱交換器23を通過しないように第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御する。制御装置60は、ステップS32において、図14、図15に示すように、室外空気OAが排気熱交換器23を通過するように第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御する。 In step S32, the control device 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c so that the indoor air RA does not pass through the exhaust heat exchanger 23, as shown in FIGS. . In step S32, the control device 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c so that the outdoor air OA passes through the exhaust heat exchanger 23, as shown in FIGS. .
 次いで、制御装置60は、室内空気温度TINと室外空気温度TOAとを比較する(ステップS33)。室内空気温度TINは、図示しない室内空間に配置される温度計により計測される。室外空気温度TOAは外気温度検知部51により計測される。 Next, the controller 60 compares the indoor air temperature TIN with the outdoor air temperature TOA (step S33). The indoor air temperature TIN is measured by a thermometer (not shown) placed in the indoor space. The outdoor air temperature TOA is measured by the outdoor air temperature detector 51 .
 制御装置60は、室内空気温度TINが室外空気温度TOAよりも低い場合(ステップS33でYES)、ステップS34の処理へ移行する。制御装置60は、ステップS34において、図14に示すように、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。これにより、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれることにより、給気風路を通過する室外空気OAを冷却することができる。 When the indoor air temperature TIN is lower than the outdoor air temperature TOA (YES in step S33), the controller 60 proceeds to the process of step S34. In step S34, the controller 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG. As a result, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be cooled.
 ステップS32およびステップS34の処理により、第1ダンパ群(第3ダンパ24a、第4ダンパ24b、第5ダンパ24c)および第2ダンパ25は、図14に示す配置に切替えられる。図14に示すように、室外空気OAは、送風機28によって全熱交換器21を通過した後、給気熱交換器22および排気熱交換器23を通過し、給気SAとして室内に供給される。室内空気RAは、送風機29によって全熱交換器21を通過し、排気EAとして室外に排気される。 By the processing in steps S32 and S34, the first damper group (third damper 24a, fourth damper 24b, fifth damper 24c) and second damper 25 are switched to the arrangement shown in FIG. As shown in FIG. 14, the outdoor air OA passes through the total heat exchanger 21 by the blower 28, passes through the supply air heat exchanger 22 and the exhaust heat exchanger 23, and is supplied indoors as supply air SA. . The indoor air RA passes through the total heat exchanger 21 by the blower 29 and is exhausted to the outside as the exhaust EA.
 これにより、冷却能力を抑制する必要がない場合は、室内空気RAが排気熱交換器23を通過しないようにすることで室内機20Bの冷却能力を低下させないようにすることができる。室内機20Bでは、室外空気OAが給気熱交換器22とともに排気熱交換器23を通過するため、冷却能力を向上させることができる。室内機20Bでは、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれることにより、給気風路を通過する室外空気OAを冷却することができる。 As a result, when it is not necessary to suppress the cooling capacity, it is possible to prevent the cooling capacity of the indoor unit 20B from being lowered by preventing the indoor air RA from passing through the exhaust heat exchanger 23. In the indoor unit 20B, since the outdoor air OA passes through the exhaust heat exchanger 23 together with the supply air heat exchanger 22, the cooling capacity can be improved. In the indoor unit 20B, total heat exchange is performed between the indoor air RA and the outdoor air OA in the total heat exchanger 21, so that the outdoor air OA passing through the supply air passage can be cooled.
 制御装置60は、室内空気温度TINが室外空気温度TOAよりも高い場合(ステップS33でNO)、ステップS35の処理へ移行する。制御装置60は、ステップS35において、図15に示すように、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。これにより、給気風路を通過する室外空気OAを冷却する必要がない場合には、全熱交換器21において室内空気RAと室外空気OAとの間で全熱交換が行なわれないようにすることができる。 When the indoor air temperature TIN is higher than the outdoor air temperature TOA (NO in step S33), the controller 60 proceeds to the process of step S35. In step S35, the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG. As a result, when it is not necessary to cool the outdoor air OA passing through the supply air passage, the total heat exchange is prevented between the indoor air RA and the outdoor air OA in the total heat exchanger 21. can be done.
 ステップS32およびステップS35の処理により、第1ダンパ群(第3ダンパ24a、第4ダンパ24b、第5ダンパ24c)および第2ダンパ25は、図15に示す配置に切替えられる。図15に示すように、室外空気OAは、送風機28によって全熱交換器21を通過した後、給気熱交換器22および排気熱交換器23を通過し、給気SAとして室内に供給される。室内空気RAは、送風機29によって全熱交換器21を通過せずに、排気EAとして室外に排気される。 By the processing in steps S32 and S35, the first damper group (third damper 24a, fourth damper 24b, fifth damper 24c) and second damper 25 are switched to the arrangement shown in FIG. As shown in FIG. 15, the outdoor air OA passes through the total heat exchanger 21 by the blower 28, passes through the supply air heat exchanger 22 and the exhaust heat exchanger 23, and is supplied indoors as supply air SA. . The indoor air RA is exhausted to the outside as exhaust EA by the blower 29 without passing through the total heat exchanger 21 .
 これにより、冷却能力を抑制する必要がない場合は、室内空気RAが排気熱交換器23を通過しないようにすることで室内機20Bの冷却能力を低下させないようにすることができる。室内機20Bでは、室外空気OAが給気熱交換器22とともに排気熱交換器23を通過するため、冷却能力を向上させることができる。室内機20Bでは、室内空気RAが全熱交換器21を通過しないようにし、給気風路を通過する室外空気OAと熱交換しないようにすることができる。 As a result, when it is not necessary to suppress the cooling capacity, it is possible to prevent the cooling capacity of the indoor unit 20B from being lowered by preventing the indoor air RA from passing through the exhaust heat exchanger 23. In the indoor unit 20B, since the outdoor air OA passes through the exhaust heat exchanger 23 together with the supply air heat exchanger 22, the cooling capacity can be improved. In the indoor unit 20B, the indoor air RA can be prevented from passing through the total heat exchanger 21 and can be prevented from exchanging heat with the outdoor air OA passing through the supply air passage.
 制御装置60は、ステップS31において、給気温度TSAが下限値空気温度Tより低い場合(ステップS31でNO)、すなわち、冷却能力を抑制する必要がある場合、ステップS36の処理へ移行する。制御装置60は、ステップS36において、図16に示すように、室内空気RAが排気熱交換器23を通過するように第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御する。次いで、制御装置60は、ステップS37において、図16に示すように、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。 If the supply air temperature TSA is lower than the lower limit air temperature TL in step S31 (NO in step S31), that is, if the cooling capacity needs to be suppressed, the control device 60 proceeds to the process of step S36. . In step S36, the controller 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c so that the indoor air RA passes through the exhaust heat exchanger 23, as shown in FIG. Next, in step S37, the controller 60 controls the second damper 25 so that the indoor air RA does not pass through the total heat exchanger 21, and returns the process from the subroutine to the main routine, as shown in FIG.
 ステップS36の処理により、排気風路を流れる室内空気RAが排気熱交換器23を通過することで、室内空気RAが冷却される。これにより、給気熱交換器22の冷却能力を抑え、給気温度TSAを上げることができる。ステップS37の処理により、室内空気RAが全熱交換器21を通過しないようにし、給気風路を通過する室外空気OAを冷却しないようにすることができる。よって、冷却能力抑制時の最小能力(給気SAの交換熱量)を従来よりも小さくし、連続運転可能な給気温度範囲を広げることが可能となる。 By the process of step S36, the room air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, thereby cooling the room air RA. As a result, the cooling capacity of the supply air heat exchanger 22 can be suppressed and the supply air temperature TSA can be raised. By the process of step S37, it is possible to prevent the indoor air RA from passing through the total heat exchanger 21 and to prevent the outdoor air OA passing through the supply air passage from being cooled. Therefore, it is possible to reduce the minimum capacity (exchange heat amount of the supply air SA) when the cooling capacity is suppressed, and to widen the supply air temperature range in which continuous operation is possible.
 実施の形態3の室内機20Bでは、給気温度TSAが下限値空気温度Tを下回らない場合、図14、図15に示すように排気熱交換器23を室外空気OAの冷却に用いることができる。このため、給気熱交換器22のサイズおよびスペックを小さくすることができ、製品のコストを抑えることができる。 In the indoor unit 20B of Embodiment 3, when the supply air temperature TSA does not fall below the lower limit air temperature TL , the exhaust heat exchanger 23 is used to cool the outdoor air OA as shown in FIGS. can be done. Therefore, the size and specifications of the supply air heat exchanger 22 can be reduced, and the cost of the product can be suppressed.
 <構成>
 図17は、実施の形態3の変形例における室内機20Cの構成を示す概略図である。実施の形態3の変形例においては、給気熱交換器22の一部が、実施の形態3の排気熱交換器23の構成を兼ねている点が実施の形態3と異なる。その他の点は、実施の形態3と同じである。
<Configuration>
FIG. 17 is a schematic diagram showing the configuration of an indoor unit 20C in a modified example of the third embodiment. The modification of the third embodiment differs from the third embodiment in that part of the supply air heat exchanger 22 also serves as the exhaust heat exchanger 23 of the third embodiment. Other points are the same as those of the third embodiment.
 室内機20Cは、第3ダンパ24a、第4ダンパ24b、第5ダンパ24cにより風路が区切られている。室内機20Cは、風路が区切られることにより給気熱交換器22の一部に実施の形態3で示した排気熱交換器23の機能を持たせることが可能となる。 The air passage of the indoor unit 20C is divided by a third damper 24a, a fourth damper 24b, and a fifth damper 24c. In the indoor unit 20C, part of the supply air heat exchanger 22 can have the function of the exhaust heat exchanger 23 shown in the third embodiment by partitioning the air passage.
 実施の形態4.
 <構成>
 図18は、実施の形態4における室内機20Dの構成を示す概略図である。実施の形態4における室内機20Dの構成は、実施の形態1の室内機20の構成と同じである。実施の形態4では、暖房運転時において室外空気温度TOAが予め設定される凍結温度Tよりも低い場合の制御について説明する。凍結温度Tは、排気風路を流れる空気中の水分が凍結する可能性がある温度として設定される温度である。
Embodiment 4.
<Configuration>
FIG. 18 is a schematic diagram showing the configuration of an indoor unit 20D according to the fourth embodiment. The configuration of the indoor unit 20D in the fourth embodiment is the same as the configuration of the indoor unit 20 in the first embodiment. In the fourth embodiment, control when the outdoor air temperature TOA is lower than the preset freezing temperature Tf during heating operation will be described. The freezing temperature Tf is a temperature set as a temperature at which moisture in the air flowing through the exhaust air passage may freeze.
 室外空気温度TOAが凍結温度Tよりも低い場合は、排気風路を流れる室内空気RAが室外空気OAにより冷却されることにより空気に含まれる水分が凍結することがある。これにより、全熱交換器21が目詰まりするという問題があった。 When the outdoor air temperature TOA is lower than the freezing temperature Tf , the indoor air RA flowing through the exhaust air passage is cooled by the outdoor air OA, and the moisture contained in the air may freeze. As a result, there is a problem that the total heat exchanger 21 is clogged.
 <動作>
 図19は、実施の形態4におけるダンパの制御を示すフローチャートである。図19では、ダンパの制御について、暖房運転時の制御を例に説明する。室内機20Dにおいて、給気熱交換器22および排気熱交換器23は、凝縮器として作用する。
<Action>
FIG. 19 is a flow chart showing damper control in the fourth embodiment. In FIG. 19, the control of the damper will be described using the control during the heating operation as an example. In the indoor unit 20D, the supply air heat exchanger 22 and the exhaust heat exchanger 23 act as condensers.
 図19に示すように、制御装置60は、ステップS41において、室外空気温度TOAが凍結温度Tより高いか否かを判定する。制御装置60は、室外空気温度TOAが凍結温度Tより高い場合(ステップS41でYES)、ステップS42の処理へ移行する。制御装置60は、ステップS42の処理において、前述した図9のステップS11~ステップS17の処理を実行し、処理をサブルーチンからメインルーチンに戻す。 As shown in FIG. 19, in step S41, the controller 60 determines whether the outdoor air temperature TOA is higher than the freezing temperature Tf . When the outdoor air temperature TOA is higher than the freezing temperature Tf (YES in step S41), the controller 60 proceeds to the process of step S42. In the processing of step S42, the control device 60 executes the processing of steps S11 to S17 in FIG. 9 described above, and returns the processing from the subroutine to the main routine.
 制御装置60は、室外空気温度TOAが凍結温度Tより低い場合(ステップS41でNO)、ステップS43の処理へ移行する。制御装置60は、ステップS43の処理において、室内空気RAが排気熱交換器23を通過するように第1ダンパ24を制御する。次いで、制御装置60は、ステップS44において、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御し、処理をサブルーチンからメインルーチンに戻す。 When the outdoor air temperature TOA is lower than the freezing temperature Tf (NO in step S41), the control device 60 proceeds to the process of step S43. The control device 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23 in the process of step S43. Next, in step S44, the control device 60 controls the second damper 25 so that the indoor air RA passes through the total heat exchanger 21, and returns the process from the subroutine to the main routine.
 このように、実施の形態4における室内機20Dによれば、排気熱交換器23の通過により、全熱交換器21へ流入する室内空気RAの温度を向上させることができる(ステップS43、ステップS44の処理)。これにより、排気風路における空気中の水分の凍結、全熱交換器21の目詰まりを低減することができる。 Thus, according to the indoor unit 20D in Embodiment 4, the temperature of the indoor air RA flowing into the total heat exchanger 21 can be increased by passing through the exhaust heat exchanger 23 (steps S43, S44 processing). As a result, freezing of moisture in the air in the exhaust air passage and clogging of the total heat exchanger 21 can be reduced.
 <まとめ>
 本開示は、室外機10と、室内機20とを備える空気調和機100に関する。室外機10と室内機20とは、冷媒配管30により接続され冷媒回路を構成する。室外機10は、圧縮機11と、室外熱交換器13と、を備える。室内機20は、膨張弁26と、室内熱交換器である給気熱交換器22、排気熱交換器23と、給気風路を通して室外空気OAを室内に取り入れる給気装置としての送風機28と、排気風路を通して室内空気RAを室外へ吐き出す排気装置としての送風機29と、を備える。室内熱交換器は、給気風路を流れる空気と排気風路を流れる空気の各々が通過可能に構成される。室内機20は、排気風路を流れる室内空気RAが室内熱交換器である排気熱交換器23を通過するか否かを切替え可能な切替装置としての第1ダンパ24をさらに備える。
<Summary>
The present disclosure relates to an air conditioner 100 including an outdoor unit 10 and an indoor unit 20. The outdoor unit 10 and the indoor unit 20 are connected by a refrigerant pipe 30 to form a refrigerant circuit. The outdoor unit 10 includes a compressor 11 and an outdoor heat exchanger 13. The indoor unit 20 includes an expansion valve 26, a supply air heat exchanger 22 and an exhaust heat exchanger 23, which are indoor heat exchangers, and a blower 28 as an air supply device that takes in the outdoor air OA into the room through the supply air passage. and a blower 29 as an exhaust device for discharging indoor air RA to the outside through an exhaust air passage. The indoor heat exchanger is configured to allow passage of air flowing through the supply air passage and air flowing through the exhaust air passage. The indoor unit 20 further includes a first damper 24 as a switching device capable of switching whether the indoor air RA flowing through the exhaust air passage passes through the exhaust heat exchanger 23, which is an indoor heat exchanger.
 好ましくは、室内熱交換器は、第1室内熱交換器としての給気熱交換器22と、第2室内熱交換器としての排気熱交換器23と、を備える。室内機20は、第1ダンパ24の動作を制御する制御装置60をさらに備える。制御装置60は、室内空気RAが排気熱交換器23を通過するように第1ダンパ24を制御することによって給気風路における給気熱交換器22の交換熱量を抑制する。 Preferably, the indoor heat exchanger comprises a supply air heat exchanger 22 as a first indoor heat exchanger and an exhaust air heat exchanger 23 as a second indoor heat exchanger. The indoor unit 20 further includes a control device 60 that controls the operation of the first damper 24 . The controller 60 controls the first damper 24 so that the room air RA passes through the exhaust heat exchanger 23, thereby suppressing the amount of heat exchanged by the supply air heat exchanger 22 in the supply air passage.
 好ましくは、室内熱交換器は、第1室内熱交換器としての給気熱交換器22と、第2室内熱交換器としての排気熱交換器23と、を備える。室内機20は、第1ダンパ24の動作を制御する制御装置60をさらに備える。第1ダンパ24は、室内空気RAが排気熱交換器23を通過する風量を調整可能である。制御装置60は、室内空気RAが排気熱交換器23を通過する風量を調整するように第1ダンパ24を制御することによって給気風路における給気熱交換器22の交換熱量を調整する。 Preferably, the indoor heat exchanger comprises a supply air heat exchanger 22 as a first indoor heat exchanger and an exhaust air heat exchanger 23 as a second indoor heat exchanger. The indoor unit 20 further includes a control device 60 that controls the operation of the first damper 24 . The first damper 24 can adjust the air volume of the indoor air RA passing through the exhaust heat exchanger 23 . The control device 60 adjusts the amount of heat exchanged by the supply air heat exchanger 22 in the supply air path by controlling the first damper 24 so as to adjust the air volume of the indoor air RA passing through the exhaust heat exchanger 23 .
 好ましくは、室内熱交換器は、第1室内熱交換器としての給気熱交換器22と、第2室内熱交換器としての排気熱交換器23と、を備える。室内機20は、切替装置としての第3ダンパ24a、第4ダンパ24b、第5ダンパ24cの動作を制御する制御装置60をさらに備える。給気熱交換器22は、給気風路に位置し、排気熱交換器23は、制御装置60が第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御することにより室外空気OAと室内空気RAとのうちいずれか一方を通過可能に切替えられる共通風路に位置する。 Preferably, the indoor heat exchanger comprises a supply air heat exchanger 22 as a first indoor heat exchanger and an exhaust air heat exchanger 23 as a second indoor heat exchanger. The indoor unit 20 further includes a control device 60 that controls operations of the third damper 24a, the fourth damper 24b, and the fifth damper 24c as switching devices. The supply air heat exchanger 22 is positioned in the supply air path, and the control device 60 controls the third damper 24a, the fourth damper 24b, and the fifth damper 24c to control the outdoor air OA and the indoor air OA. It is located in a common air path that can be switched to pass either one of the air RA and the air RA.
 好ましくは、室内機20は、室外空気OAと室内空気RAとの熱交換を行なう全熱交換器21をさらに備える。切替装置としての第2ダンパ25は、排気風路を流れる室内空気RAが全熱交換器21を通過するか否かを切替え可能である。 Preferably, the indoor unit 20 further includes a total heat exchanger 21 that exchanges heat between the outdoor air OA and the indoor air RA. The second damper 25 as a switching device can switch whether the room air RA flowing through the exhaust air passage passes through the total heat exchanger 21 or not.
 好ましくは、切替装置は、排気熱交換器23に室内空気RAが通過するか否かを切替える第1ダンパ24と、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された下限値よりも高く、かつ室内空気温度TINが室外空気温度TOAよりも低い場合に、室内空気RAが排気熱交換器23を通過しないように第1ダンパ24を制御し、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御する。 Preferably, the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25. When the temperature TSA of the supply air taken into the room is higher than the preset lower limit and the indoor air temperature TIN is lower than the outdoor air temperature TOA , the controller 60 controls the indoor air RA to exhaust heat exchange. The first damper 24 is controlled so that the indoor air RA does not pass through the heat exchanger 23 , and the second damper 25 is controlled so that the room air RA passes through the total heat exchanger 21 .
 好ましくは、切替装置は、排気熱交換器23に室内空気RAが通過するか否かを切替える第1ダンパ24と、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された下限値よりも高く、かつ室内空気温度TINが室外空気温度TOAよりも高い場合に、室内空気RAが排気熱交換器23を通過しないように第1ダンパ24を制御し、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御する。 Preferably, the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25. When the temperature TSA of the supply air taken into the room is higher than the preset lower limit and the indoor air temperature TIN is higher than the outdoor air temperature TOA , the controller 60 controls the indoor air RA to exhaust heat exchange. The first damper 24 is controlled so that the indoor air RA does not pass through the heat exchanger 23, and the second damper 25 is controlled so that the indoor air RA does not pass through the total heat exchanger 21.
 好ましくは、切替装置は、排気熱交換器23に室内空気RAが通過するか否かを切替える第1ダンパ24と、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された下限値よりも低い場合に、室内空気RAが排気熱交換器23を通過するように第1ダンパ24を制御し、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御する。 Preferably, the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25. The control device 60 controls the first damper 24 so that the indoor air RA passes through the exhaust heat exchanger 23 when the temperature TSA of the supply air taken into the room is lower than a preset lower limit value. The second damper 25 is controlled so that the air RA does not pass through the total heat exchanger 21.
 好ましくは、切替装置は、排気熱交換器23に室内空気RAが通過する風量を増減可能な第1ダンパ24と、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された目標値よりも高い場合に、室内空気RAが排気熱交換器23を通過する風量が減少するように第1ダンパ24を制御し、給気温度TSAが予め設定された目標値よりも低い場合に、室内空気RAが排気熱交換器23を通過する風量が増加するように第1ダンパ24を制御する。 Preferably, the switching device includes a first damper 24 capable of increasing or decreasing the volume of the room air RA passing through the exhaust heat exchanger 23, and a second damper switching whether or not the room air RA passes through the total heat exchanger 21. 25. When the temperature TSA of the supply air taken into the room is higher than a preset target value, the control device 60 operates the first damper 24 so that the amount of indoor air RA passing through the exhaust heat exchanger 23 is reduced. When the supply air temperature TSA is lower than a preset target value, the first damper 24 is controlled so that the amount of room air RA passing through the exhaust heat exchanger 23 increases.
 好ましくは、切替装置は、排気熱交換器23に室内空気RAまたは室外空気OAが通過するか否かを切替える第1ダンパ群としての第3ダンパ24a、第4ダンパ24b、第5ダンパ24cと、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された下限値よりも高く、かつ室内空気温度TINが室外空気温度TOAよりも低い場合に、室外空気OAが排気熱交換器23を通過するように第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御し、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御する。 Preferably, the switching device includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c as a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23; A second damper 25 is provided for switching whether the room air RA passes through the total heat exchanger 21 . When the temperature TSA of the supply air taken into the room is higher than the preset lower limit and the indoor air temperature TIN is lower than the outdoor air temperature TOA , the controller 60 controls the outdoor air OA to exhaust heat exchange. The third damper 24a, the fourth damper 24b, and the fifth damper 24c are controlled so that the indoor air RA passes through the heat exchanger 23, and the second damper 25 is controlled so that the indoor air RA passes through the total heat exchanger 21.
 好ましくは、切替装置は、排気熱交換器23に室内空気RAまたは室外空気OAが通過するか否かを切替える第1ダンパ群としての第3ダンパ24a、第4ダンパ24b、第5ダンパ24cと、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された下限値よりも高く、かつ室内空気温度TINが室外空気温度TOAよりも高い場合に、室外空気OAが排気熱交換器23を通過するように第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御し、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御する。 Preferably, the switching device includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c as a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23; A second damper 25 is provided for switching whether the room air RA passes through the total heat exchanger 21 . When the temperature TSA of the supply air taken into the room is higher than the preset lower limit and the indoor air temperature TIN is higher than the outdoor air temperature TOA , the controller 60 controls the outdoor air OA to exhaust heat exchange. The third damper 24a, the fourth damper 24b, and the fifth damper 24c are controlled so that the indoor air RA passes through the heat exchanger 23, and the second damper 25 is controlled so that the room air RA does not pass through the total heat exchanger 21.
 好ましくは、切替装置は、排気熱交換器23に室内空気RAまたは室外空気OAが通過するか否かを切替える第1ダンパ群としての第3ダンパ24a、第4ダンパ24b、第5ダンパ24cと、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室内に取り入れる給気の温度TSAが予め設定された下限値よりも低い場合に、室内空気RAが排気熱交換器23を通過するように第3ダンパ24a、第4ダンパ24b、第5ダンパ24cを制御し、室内空気RAが全熱交換器21を通過しないように第2ダンパ25を制御する。 Preferably, the switching device includes a third damper 24a, a fourth damper 24b, and a fifth damper 24c as a first damper group for switching whether the indoor air RA or the outdoor air OA passes through the exhaust heat exchanger 23; A second damper 25 is provided for switching whether the room air RA passes through the total heat exchanger 21 . The control device 60 controls the third damper 24a and the fourth damper 24b so that the indoor air RA passes through the exhaust heat exchanger 23 when the temperature TSA of the supply air taken into the room is lower than a preset lower limit value. , controls the fifth damper 24 c and controls the second damper 25 so that the room air RA does not pass through the total heat exchanger 21 .
 好ましくは、切替装置は、排気熱交換器23に室内空気RAが通過するか否かを切替える第1ダンパ24と、全熱交換器21に室内空気RAが通過するか否かを切替える第2ダンパ25とを備える。制御装置60は、室外空気温度TOAが凍結温度Tより低い場合に、室内空気RAが第排気熱交換器23を通過するように第1ダンパ24を制御し、室内空気RAが全熱交換器21を通過するように第2ダンパ25を制御する。 Preferably, the switching device includes a first damper 24 for switching whether or not the room air RA passes through the exhaust heat exchanger 23, and a second damper 24 for switching whether or not the room air RA passes through the total heat exchanger 21. 25. The control device 60 controls the first damper 24 so that the indoor air RA passes through the first exhaust heat exchanger 23 when the outdoor air temperature TOA is lower than the freezing temperature Tf , and the indoor air RA is completely heat exchanged. The second damper 25 is controlled to pass through the vessel 21 .
 本実施の形態の空気調和機100は、上記の構成を備えることによって、連続運転を実行しつつ吹出空気の温度を好適に保つことができる。 With the above configuration, the air conditioner 100 of the present embodiment can keep the temperature of the blown air at a suitable level while executing continuous operation.
 <変形例>
 前述の実施の形態においては、全熱交換器21および第2ダンパ25を無くした構成であってもよい。
<Modification>
In the above-described embodiment, the configuration may be such that the total heat exchanger 21 and the second damper 25 are eliminated.
 冷却能力を抑制する方法として、圧縮機11の周波数を下げ(回転速度を遅くし)蒸発温度を上げる方法、膨張弁26の開度を下げ蒸発器出口部の過熱度を上げる方法がある。前述の実施の形態においては、給気温度TSAが下限値空気温度Tより低い場合、これらの方法と前述したダンパ操作の制御方法とを組み合わせることにより、冷却能力を抑制してもよい。 As a method of suppressing the cooling capacity, there is a method of lowering the frequency of the compressor 11 (reducing the rotational speed) to raise the evaporating temperature, and a method of lowering the opening of the expansion valve 26 to raise the degree of superheat at the outlet of the evaporator. In the above-described embodiment, when the supply air temperature TSA is lower than the lower limit air temperature TL , the cooling capacity may be suppressed by combining these methods with the damper operation control method described above.
 具体的に、制御装置60は、給気温度TSAが下限値空気温度Tより低い場合、圧縮機11の周波数を下げる処理、または、膨張弁26の開度を下げる処理を実行する。制御装置60は、圧縮機11の周波数を下限値まで下げ、あるいは、膨張弁26の開度を下限値まで下げたとしても給気温度TSAが下限値空気温度Tを下回る場合、排気熱交換器23に空気を流す処理を実行する。これにより、排気風路を流れる室内空気RAが冷却され、給気熱交換器22の冷却能力が抑えられるため、給気温度TSAを上げることができる。 Specifically, when the supply air temperature TSA is lower than the lower limit air temperature TL , the control device 60 executes a process of decreasing the frequency of the compressor 11 or a process of decreasing the degree of opening of the expansion valve 26 . Even if the frequency of the compressor 11 is lowered to the lower limit or the opening of the expansion valve 26 is lowered to the lower limit, if the supply air temperature TSA is lower than the lower limit air temperature TL , the control device 60 controls the exhaust heat A process for causing air to flow through the exchanger 23 is executed. As a result, the room air RA flowing through the exhaust air passage is cooled, and the cooling capacity of the supply air heat exchanger 22 is suppressed, so that the supply air temperature TSA can be increased.
 ここで、圧縮機11の周波数を下げる処理、または、膨張弁26の開度を下げる処理は、冷却能力の低下と同時に空気調和機100の消費電力の低下に繋がる。それに対し、排気熱交換器23におけるダンパ制御は、給気熱交換器22の冷却能力を低下させるが、低下分の冷却能力を排気熱交換器23が発揮するため空気調和機100の消費電力の低下に繋がらない。よって、圧縮機11の周波数を下げる処理、または、膨張弁26の開度を下げる処理を実行した後に、排気熱交換器23におけるダンパ制御を実行することにより、消費電力量を抑えることができる。 Here, the process of lowering the frequency of the compressor 11 or the process of lowering the degree of opening of the expansion valve 26 leads to a decrease in the power consumption of the air conditioner 100 as well as a decrease in the cooling capacity. On the other hand, damper control in the exhaust heat exchanger 23 reduces the cooling capacity of the supply air heat exchanger 22, but the exhaust heat exchanger 23 exhibits the reduced cooling capacity, so the power consumption of the air conditioner 100 is reduced. does not lead to decline. Therefore, power consumption can be suppressed by executing damper control in the exhaust heat exchanger 23 after executing the process of lowering the frequency of the compressor 11 or the process of lowering the degree of opening of the expansion valve 26 .
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 10 室外機、11 圧縮機、12 四方弁、13 室外熱交換器、14,28,29 送風機、20,20A,20B,20C,20D 室内機、21 全熱交換器、22 給気熱交換器、23 排気熱交換器、24 第1ダンパ、24a 第3ダンパ、24b 第4ダンパ、24c 第5ダンパ、25 第2ダンパ、26 膨張弁、30,30a,30b 冷媒配管、40 ダクト、41 吹出口、42 吸込口、50 給気温度検知部、51 外気温度検知部、60 制御装置、61 CPU、62 メモリ、100 空気調和機、EA 排気、SA 給気、OA 室外空気、RA 室内空気。 10 outdoor unit, 11 compressor, 12 four-way valve, 13 outdoor heat exchanger, 14, 28, 29 blower, 20, 20A, 20B, 20C, 20D indoor unit, 21 total heat exchanger, 22 supply air heat exchanger, 23 exhaust heat exchanger, 24 first damper, 24a third damper, 24b fourth damper, 24c fifth damper, 25 second damper, 26 expansion valve, 30, 30a, 30b refrigerant pipe, 40 duct, 41 outlet, 42 Suction port, 50 Supply air temperature detection part, 51 Outside air temperature detection part, 60 Control device, 61 CPU, 62 Memory, 100 Air conditioner, EA Exhaust air, SA Supply air, OA Outdoor air, RA Indoor air.

Claims (13)

  1.  室外機と、室内機とを備える空気調和機であって、
     前記室外機と前記室内機とは、冷媒配管により接続され冷媒回路を構成し、
     前記室外機は、圧縮機と、室外熱交換器と、を備え、
     前記室内機は、膨張弁と、室内熱交換器と、給気風路を通して室外空気を室内に取り入れる給気装置と、排気風路を通して室内空気を室外へ吐き出す排気装置と、を備え、
     前記室内熱交換器は、前記給気風路を流れる空気と前記排気風路を流れる空気の各々が通過可能に構成され、
     前記室内機は、前記排気風路を流れる前記室内空気が前記室内熱交換器を通過するか否かを切替え可能な切替装置をさらに備える、空気調和機。
    An air conditioner comprising an outdoor unit and an indoor unit,
    The outdoor unit and the indoor unit are connected by refrigerant pipes to form a refrigerant circuit,
    The outdoor unit includes a compressor and an outdoor heat exchanger,
    The indoor unit includes an expansion valve, an indoor heat exchanger, an air supply device that takes in outdoor air into the room through a supply air passage, and an exhaust device that discharges indoor air to the outside through an exhaust air passage,
    The indoor heat exchanger is configured to allow passage of air flowing through the supply air passage and air flowing through the exhaust air passage,
    The indoor unit further includes a switching device capable of switching whether the indoor air flowing through the exhaust air passage passes through the indoor heat exchanger.
  2.  前記室内熱交換器は、第1室内熱交換器と、第2室内熱交換器と、を備え、
     前記室内機は、前記切替装置の動作を制御する制御装置をさらに備え、
     前記制御装置は、前記室内空気が前記第2室内熱交換器を通過するように前記切替装置を制御することによって前記給気風路における前記第1室内熱交換器の交換熱量を抑制する、請求項1に記載の空気調和機。
    The indoor heat exchanger comprises a first indoor heat exchanger and a second indoor heat exchanger,
    The indoor unit further includes a control device that controls the operation of the switching device,
    The control device controls the switching device so that the indoor air passes through the second indoor heat exchanger, thereby suppressing the amount of heat exchanged by the first indoor heat exchanger in the supply air passage. 1. The air conditioner according to 1.
  3.  前記室内熱交換器は、第1室内熱交換器と、第2室内熱交換器と、を備え、
     前記室内機は、前記切替装置の動作を制御する制御装置をさらに備え、
     前記切替装置は、前記室内空気が前記第2室内熱交換器を通過する風量を調整可能であり、
     前記制御装置は、前記室内空気が前記第2室内熱交換器を通過する風量を調整するように前記切替装置を制御することによって前記給気風路における前記第1室内熱交換器の交換熱量を調整する、請求項1に記載の空気調和機。
    The indoor heat exchanger comprises a first indoor heat exchanger and a second indoor heat exchanger,
    The indoor unit further includes a control device that controls the operation of the switching device,
    The switching device is capable of adjusting the amount of air that the indoor air passes through the second indoor heat exchanger,
    The control device adjusts the amount of heat exchanged by the first indoor heat exchanger in the supply air passage by controlling the switching device so as to adjust the air volume of the indoor air passing through the second indoor heat exchanger. The air conditioner according to claim 1, wherein
  4.  前記室内熱交換器は、第1室内熱交換器と、第2室内熱交換器と、を備え、
     前記室内機は、前記切替装置の動作を制御する制御装置をさらに備え、
     前記第1室内熱交換器は、前記給気風路に位置し、前記第2室内熱交換器は、前記制御装置が前記切替装置を制御することにより前記室外空気と前記室内空気とのうちいずれか一方を通過可能に切替えられる共通風路に位置する、請求項1に記載の空気調和機。
    The indoor heat exchanger comprises a first indoor heat exchanger and a second indoor heat exchanger,
    The indoor unit further includes a control device that controls the operation of the switching device,
    The first indoor heat exchanger is positioned in the supply air passage, and the second indoor heat exchanger is switched between the outdoor air and the indoor air by the control device controlling the switching device. 2. The air conditioner according to claim 1, located in a common air path that can be switched to pass through one of them.
  5.  前記室内機は、前記室外空気と前記室内空気との熱交換を行なう全熱交換器をさらに備え、
     前記切替装置は、前記排気風路を流れる前記室内空気が前記全熱交換器を通過するか否かを切替え可能である、請求項2から請求項4のいずれか1項に記載の空気調和機。
    The indoor unit further comprises a total heat exchanger that exchanges heat between the outdoor air and the indoor air,
    The air conditioner according to any one of claims 2 to 4, wherein the switching device is capable of switching whether the indoor air flowing through the exhaust air passage passes through the total heat exchanger. .
  6.  前記切替装置は、前記第2室内熱交換器に前記室内空気が通過するか否かを切替える第1ダンパと、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された下限値よりも高く、かつ室内空気温度が室外空気温度よりも低い場合に、前記室内空気が前記第2室内熱交換器を通過しないように前記第1ダンパを制御し、前記室内空気が前記全熱交換器を通過するように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper that switches whether the indoor air passes through the second indoor heat exchanger, and a second damper that switches whether the indoor air passes through the total heat exchanger. with
    The control device allows the indoor air to pass through the second indoor heat exchanger when the temperature of the supply air taken into the room is higher than a preset lower limit value and the indoor air temperature is lower than the outdoor air temperature. 6. The air conditioner according to claim 5, wherein the first damper is controlled so as not to prevent the indoor air from passing through the total heat exchanger, and the second damper is controlled so that the indoor air passes through the total heat exchanger.
  7.  前記切替装置は、前記第2室内熱交換器に前記室内空気が通過するか否かを切替える第1ダンパと、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された下限値よりも高く、かつ室内空気温度が室外空気温度よりも高い場合に、前記室内空気が前記第2室内熱交換器を通過しないように前記第1ダンパを制御し、前記室内空気が前記全熱交換器を通過しないように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper that switches whether the indoor air passes through the second indoor heat exchanger, and a second damper that switches whether the indoor air passes through the total heat exchanger. with
    The control device allows the indoor air to pass through the second indoor heat exchanger when the temperature of the supply air taken into the room is higher than a preset lower limit and the indoor air temperature is higher than the outdoor air temperature. 6. The air conditioner according to claim 5, wherein said first damper is controlled so as not to pass through said total heat exchanger, and said second damper is controlled so that said room air does not pass through said total heat exchanger.
  8.  前記切替装置は、前記第2室内熱交換器に前記室内空気が通過するか否かを切替える第1ダンパと、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された下限値よりも低い場合に、前記室内空気が前記第2室内熱交換器を通過するように前記第1ダンパを制御し、前記室内空気が前記全熱交換器を通過しないように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper that switches whether the indoor air passes through the second indoor heat exchanger, and a second damper that switches whether the indoor air passes through the total heat exchanger. with
    The control device controls the first damper so that the indoor air passes through the second indoor heat exchanger when the temperature of the supply air taken into the room is lower than a preset lower limit, and The air conditioner according to claim 5, wherein said second damper is controlled so that indoor air does not pass through said total heat exchanger.
  9.  前記切替装置は、前記第2室内熱交換器に前記室内空気が通過する風量を増減可能な第1ダンパと、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された目標値よりも高い場合に、前記室内空気が前記第2室内熱交換器を通過する風量が減少するように前記第1ダンパを制御し、前記給気の温度が予め設定された目標値よりも低い場合に、前記室内空気が前記第2室内熱交換器を通過する風量が増加するように前記第1ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper that can increase or decrease the amount of the indoor air passing through the second indoor heat exchanger, and a second damper that switches whether the indoor air passes through the total heat exchanger. with
    The control device operates the first damper so that the volume of the indoor air passing through the second indoor heat exchanger is reduced when the temperature of the supply air taken into the room is higher than a preset target value. and controlling the first damper so that the amount of the indoor air passing through the second indoor heat exchanger increases when the temperature of the supplied air is lower than a preset target value. Item 6. The air conditioner according to item 5.
  10.  前記切替装置は、前記第2室内熱交換器に前記室内空気または前記室外空気が通過するか否かを切替える第1ダンパ群と、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された下限値よりも高く、かつ室内空気温度が室外空気温度よりも低い場合に、前記室外空気が前記第2室内熱交換器を通過するように前記第1ダンパ群を制御し、前記室内空気が前記全熱交換器を通過するように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper group that switches whether the indoor air or the outdoor air passes through the second indoor heat exchanger, and a damper group that switches whether the indoor air passes through the total heat exchanger. and a switching second damper,
    The controller controls the outdoor air to pass through the second indoor heat exchanger when the temperature of the supply air taken into the room is higher than a preset lower limit and the indoor air temperature is lower than the outdoor air temperature. 6. The air conditioner according to claim 5, wherein said first damper group is controlled to allow said room air to pass through said total heat exchanger, and said second damper is controlled to pass said total heat exchanger.
  11.  前記切替装置は、前記第2室内熱交換器に前記室内空気または前記室外空気が通過するか否かを切替える第1ダンパ群と、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された下限値よりも高く、かつ室内空気温度が室外空気温度よりも高い場合に、前記室外空気が前記第2室内熱交換器を通過するように前記第1ダンパ群を制御し、前記室内空気が前記全熱交換器を通過しないように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper group that switches whether the indoor air or the outdoor air passes through the second indoor heat exchanger, and a damper group that switches whether the indoor air passes through the total heat exchanger. and a switching second damper,
    When the temperature of the supply air taken into the room is higher than a preset lower limit and the indoor air temperature is higher than the outdoor air temperature, the outdoor air passes through the second indoor heat exchanger. 6. The air conditioner according to claim 5, wherein said first damper group is controlled so as to prevent said room air from passing through said total heat exchanger.
  12.  前記切替装置は、前記第2室内熱交換器に前記室内空気または前記室外空気が通過するか否かを切替える第1ダンパ群と、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室内に取り入れる給気の温度が予め設定された下限値よりも低い場合に、前記室内空気が前記第2室内熱交換器を通過するように前記第1ダンパ群を制御し、前記室内空気が前記全熱交換器を通過しないように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper group that switches whether the indoor air or the outdoor air passes through the second indoor heat exchanger, and a damper group that switches whether the indoor air passes through the total heat exchanger. and a switching second damper,
    The control device controls the first damper group so that the indoor air passes through the second indoor heat exchanger when the temperature of the supply air taken into the room is lower than a preset lower limit, The air conditioner according to claim 5, wherein said second damper is controlled so that said indoor air does not pass through said total heat exchanger.
  13.  前記切替装置は、前記第2室内熱交換器に前記室内空気が通過するか否かを切替える第1ダンパと、前記全熱交換器に前記室内空気が通過するか否かを切替える第2ダンパとを備え、
     前記制御装置は、室外空気温度が凍結温度より低い場合に、前記室内空気が前記第2室内熱交換器を通過するように前記第1ダンパを制御し、前記室内空気が前記全熱交換器を通過するように前記第2ダンパを制御する、請求項5に記載の空気調和機。
    The switching device includes a first damper that switches whether the indoor air passes through the second indoor heat exchanger, and a second damper that switches whether the indoor air passes through the total heat exchanger. with
    The control device controls the first damper so that the indoor air passes through the second indoor heat exchanger when the outdoor air temperature is lower than the freezing temperature, and the indoor air passes through the total heat exchanger. The air conditioner according to claim 5, wherein said second damper is controlled to pass through.
PCT/JP2021/037196 2021-10-07 2021-10-07 Air conditioner WO2023058197A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023552633A JPWO2023058197A1 (en) 2021-10-07 2021-10-07
CN202180102772.4A CN118019948A (en) 2021-10-07 2021-10-07 Air conditioner
PCT/JP2021/037196 WO2023058197A1 (en) 2021-10-07 2021-10-07 Air conditioner
EP21959939.6A EP4414622A1 (en) 2021-10-07 2021-10-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037196 WO2023058197A1 (en) 2021-10-07 2021-10-07 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023058197A1 true WO2023058197A1 (en) 2023-04-13

Family

ID=85803272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037196 WO2023058197A1 (en) 2021-10-07 2021-10-07 Air conditioner

Country Status (4)

Country Link
EP (1) EP4414622A1 (en)
JP (1) JPWO2023058197A1 (en)
CN (1) CN118019948A (en)
WO (1) WO2023058197A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114294A (en) * 2003-10-09 2005-04-28 Daikin Ind Ltd Air conditioner
EP2113725A2 (en) * 2008-05-01 2009-11-04 LG Electronics Inc. Control method for a ventilating apparatus
JP5054935B2 (en) 2006-05-31 2012-10-24 日立アプライアンス株式会社 Air conditioner
WO2019082377A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Heat pump system
WO2020230590A1 (en) * 2019-05-10 2020-11-19 ダイキン工業株式会社 Air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114294A (en) * 2003-10-09 2005-04-28 Daikin Ind Ltd Air conditioner
JP5054935B2 (en) 2006-05-31 2012-10-24 日立アプライアンス株式会社 Air conditioner
EP2113725A2 (en) * 2008-05-01 2009-11-04 LG Electronics Inc. Control method for a ventilating apparatus
WO2019082377A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Heat pump system
WO2020230590A1 (en) * 2019-05-10 2020-11-19 ダイキン工業株式会社 Air conditioning system

Also Published As

Publication number Publication date
EP4414622A1 (en) 2024-08-14
JPWO2023058197A1 (en) 2023-04-13
CN118019948A (en) 2024-05-10

Similar Documents

Publication Publication Date Title
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
US11098919B2 (en) Air conditioning system
JP2012141113A (en) Air conditioning/water heating device system
AU2015267776B2 (en) Refrigeration apparatus
JP3643162B2 (en) Air conditioner
EP1674807A2 (en) Air conditioner
JP2013002749A (en) Air conditioning device
JP6105933B2 (en) Air conditioner using direct expansion coil
JP5511897B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
JP6750240B2 (en) Air conditioner
JP4104218B2 (en) Air conditioner
JP2018071864A (en) Air conditioner
WO2023058197A1 (en) Air conditioner
JP6049324B2 (en) Air conditioner
JP7462830B2 (en) Air Conditioning Equipment
US11624518B2 (en) Water source heat pump head pressure control for hot gas reheat
JP5501094B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
WO2022059075A1 (en) Air conditioning apparatus
KR101622619B1 (en) Air conditioner
JP7018775B2 (en) Air conditioning system
JPH02223757A (en) Air conditioner
WO2023228243A1 (en) Air conditioner
JPH08121902A (en) Air conditioning device
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
KR101344461B1 (en) Air-conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552633

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180102772.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021959939

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021959939

Country of ref document: EP

Effective date: 20240507