WO2023054290A1 - リチウムイオン電池用の負極材料粉末 - Google Patents
リチウムイオン電池用の負極材料粉末 Download PDFInfo
- Publication number
- WO2023054290A1 WO2023054290A1 PCT/JP2022/035798 JP2022035798W WO2023054290A1 WO 2023054290 A1 WO2023054290 A1 WO 2023054290A1 JP 2022035798 W JP2022035798 W JP 2022035798W WO 2023054290 A1 WO2023054290 A1 WO 2023054290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- negative electrode
- sny
- compound phase
- material powder
- Prior art date
Links
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 64
- 239000000843 powder Substances 0.000 title claims abstract description 59
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 35
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 126
- 239000002245 particle Substances 0.000 claims abstract description 73
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 229910000676 Si alloy Inorganic materials 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009689 gas atomisation Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011856 silicon-based particle Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910008433 SnCU Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000012856 weighed raw material Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004072 SiFe Inorganic materials 0.000 description 1
- 229910004219 SiNi Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/06—Metal silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This invention relates to negative electrode material powder for lithium ion batteries.
- Lithium-ion batteries have the advantage of high capacity, high voltage, and the ability to be miniaturized, and are widely used as power sources for mobile phones and laptop computers. Moreover, in recent years, great expectations have been placed on power sources for power applications such as electric vehicles and hybrid vehicles, and the development thereof has been actively promoted.
- Li ions lithium cobalt oxide
- graphite graphite as a negative electrode active material has a theoretical capacity of only 372 mAh/g, and a much higher capacity has been desired.
- metal materials such as Si, which can be expected to increase capacity, are being considered.
- the theoretical capacity of Si is 4198 mAh/g, but since Si absorbs Li ions through an alloying reaction with Li, large volume expansion/contraction occurs as the Li ions are absorbed/desorbed. As a result, the Si particles crack or separate from the current collector, and the cycle characteristics, which are capacity retention characteristics when charging and discharging are repeated, deteriorate.
- Patent Literature 1 discloses providing a Si compound phase together with a Si phase in Si-based alloy particles.
- the Si compound phase is effective in suppressing expansion of the Si phase and improving cycle characteristics.
- Such means for improving cycle characteristics may reduce the initial characteristics of the battery, such as initial discharge capacity and initial coulombic efficiency. , there is still room for improvement.
- the present invention was made with the object of providing a negative electrode material powder for lithium ion batteries capable of improving battery characteristics in consideration of initial characteristics and cycle characteristics.
- the present invention contains Si, Sn, element X, element Y, A negative electrode material powder for a lithium ion battery containing a Si phase, a SiX compound phase and a SnY compound phase at a phase ratio represented by the following formula (1),
- the Si phase, the SiX compound phase, and the SnY compound phase exist separately in separate states,
- the particle size at an integrated value of 50% in the particle size distribution is the average particle size mdSi, mdSix, and mdSnY in each phase
- the average particle diameters mdSi, mdSiX, and mdSnY are all within the range of 0.1 to 50 ⁇ m, It is characterized in that the average grain size ratios represented by mdSi/mdSiX and mdSi/mdSnY are both in the range of 0.1 to 5.0.
- a[Si]-b[SiX]-c[SnY]...Equation (1) provided that the element X is one or more elements selected from the group consisting of Fe, Ni, Cr, Zr, and Ti, The element Y is one or more elements selected from the group consisting of Cu, Fe, Ni, Cr, Co, Mn, Zr, and Ti,
- the Si phase which expands as Li is absorbed, exists independently from other SiX compound phases and SnY compound phases. is likely to form a space that allows the expansion of the Si phase, and this space serves as a buffer region against the expansion of the Si phase, suppressing the collapse of the SiX compound phase that serves as a skeleton in the electrode, and cycle characteristics can be improved.
- the ratio of the average grain size of the Si phase and the SiX compound phase (mdSi/mdSix) and the ratio of the average grain size of the Si phase and the SnY compound phase (mdSi/mdSnY) are both 0.1 to It is within the range of 5.0. More preferably, it is within the range of 0.3 to 3.0. By doing so, it is possible to avoid excessive deterioration of the initial characteristics or the cycle characteristics, and improve the battery characteristics considering the initial characteristics and the cycle characteristics.
- a, b, and c in the formula (1) should be 30 ⁇ a ⁇ 90, 1 ⁇ b ⁇ 70, and 0.1 ⁇ c ⁇ 30, respectively. is preferred.
- FIG. 1 is a schematic diagram showing the structure of a negative electrode material powder according to one embodiment of the present invention.
- FIG. 1A is a schematic diagram of Si alloy particles having a Si phase, a SiX compound phase and a SnY compound phase.
- 1(B) is a schematic diagram of a negative electrode material powder of one embodiment of the present invention obtained by pulverizing the Si alloy particles of FIG. 1(A).
- FIG. 2 is a schematic diagram for explaining the effect of the negative electrode material powder of one embodiment of the present invention.
- FIG. 3 is a schematic diagram for explaining the effect of the negative electrode material powder of another embodiment of the present invention.
- a negative electrode material powder for a lithium ion battery according to one embodiment of the present invention and a lithium ion battery (hereinafter sometimes simply referred to as a battery) using this negative electrode material powder for a negative electrode will be specifically described.
- "-" indicating a numerical range is used in the sense that the numerical values described before and after it are included as a lower limit and an upper limit.
- the present negative electrode material powder contains Si, Sn, element X and element Y as main constituent elements.
- the element X is one or more elements selected from the group consisting of Fe, Ni, Cr, Zr, and Ti
- the element Y is Cu, Fe, Ni, Cr, Co, Mn, Zr. , and Ti.
- Elements other than the main constituent elements of these Si, Sn, element X, and element Y are not included unless unavoidable.
- unavoidable impurity elements include nitrogen (N), sulfur (S), phosphorus (P), oxygen (O), and the like.
- the respective upper limits are N ⁇ 0.10% by mass, S ⁇ 0.10% by mass, P ⁇ 0.10% by mass, and O ⁇ 15% by mass.
- the present negative electrode material powder contains Si phase, SiX compound phase and SnY compound phase in the phase ratio represented by the following formula (1) as its metal structure.
- [Si] in formula (1) means a Si phase
- [SiX] means a SiX compound phase
- [SnY] means a SnY compound phase, respectively.
- non-compound Sn simple substance (Sn phase) may be contained as an impurity as long as the proportion of the total is 5% by mass or less.
- the Si phase is a phase that mainly contains Si and occludes Li ions. From the viewpoint of increasing the amount of Li absorption, it is preferable to use a single phase of Si. However, the Si phase may contain unavoidable impurities.
- the ratio of the Si phase (value of "a" in formula (1)) is 10 to 95% by mass, preferably 30 to 90% by mass.
- the proportion of the Si phase is 10% by mass or more, preferably 30% by mass or more.
- the ratio of the Si phase is 95% by mass or less, preferably 90% by mass or less.
- the SiX compound that constitutes the SiX compound phase has poor Li-absorbing properties and undergoes very little expansion due to reaction with Li ions. Therefore, the SiX compound phase plays a role of a skeleton that maintains the structure of the electrode.
- the SiX compound may have different properties such as the Li-absorbing property and conductivity. Fe, Ni, Cr, and Zr as the element X are particularly excellent in the low expansion properties and high electrical conductivity expected of SiX compounds. Elements X effective for increasing the initial coulomb efficiency are Ni and Ti. The element X that is effective in improving discharge rate characteristics is Ti. Thus, it is preferable to appropriately select the element X according to the desired properties.
- the SiX compound phase may be composed of only one type of compound, or may be composed of two or more types of compounds such as a SiFe compound and a SiNi compound.
- the SnY compound that constitutes the SnY compound phase has a theoretical capacity lower than that of Si and higher than that of SiX compound.
- the theoretical capacity of SiZr compounds corresponding to SiX compounds is 100 mAh/g, while the theoretical capacity of SnY compounds is 150-600 mAh/g. Therefore, in this example, a diffusion path for Li ions is easily ensured through the SnY compound phase.
- the degree of expansion due to reaction with Li ions is small compared to Si and Sn alone, which are highly reactive with Li ions. can.
- the SnCu compound formed when Cu is selected as the element Y has excellent conductivity. It is also effective in improving cycle characteristics. Therefore, the element Y preferably contains Cu.
- the SnY compound phase may be composed of only one type of compound, or may be composed of two or more types of compounds.
- the SiX compound phase and the SnY compound phase play different roles, and the ratio of these compound phases also changes the obtained battery characteristics.
- the SnY compound phase expands more than the SiX compound phase due to reaction with Li ions, albeit to a lesser extent. Therefore, when the ratio of the SnY compound phase is high and the ratio of the SiX compound phase is low, the cycle characteristics deteriorate. On the other hand, when the ratio of the SiX compound phase is high and the ratio of the SnY compound phase is low, the initial discharge capacity becomes low.
- the ratio of the SiX compound phase (the value of "b" in formula (1)) is 1 to 90% by mass, preferably 1 to 70% by mass or 5 to 90% by mass, and 5 to 70% by mass. More preferably, 10 to 70% by mass is even more preferable.
- a + b + c 100
- b 90% by mass
- a and c are the minimum values of 10% by mass and 0.07% by mass
- the total of a + b + c is 100.07% by mass. and exceeds 100% by mass. In terms of significant figures, this can be regarded as 100% by mass, but if exceeding 100% by mass becomes a problem, the upper limit of b is not 90% by mass, but 89.93% by mass. %.
- b 90% by mass
- the upper limit of b is 89.9% by weight instead of 90% by weight.
- b is 70% by mass
- a and c are the minimum values of 30% by mass, 0.1% by mass, and 0.1% by mass.
- the value is 1% by mass
- the sum of a+b+c is 100.1% by mass, which can be regarded as 100% by mass in terms of significant figures.
- the upper limit of b should be 89.9% by mass instead of 90% by mass.
- the ratio of the SiX compound phase (value of "b" in formula (1)) is 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of obtaining high cycle characteristics. Also, from the viewpoint of obtaining a high initial discharge capacity, the proportion of the SiX compound phase is 90% by mass or less, in some cases 89.97% by mass or less, preferably 89.9% by mass or less, and more preferably 70% by mass or less. .
- the proportion of the SnY compound phase (value of "c” in formula (1)) is 0.07 to 50% by mass, preferably 0.1 to 50% by mass, more preferably 0.1 to 30% by mass.
- the ratio of the SnY compound phase (the value of "c” in formula (1)) is 0.07% by mass or more, preferably 0.1% by mass or more, from the viewpoint of obtaining a high initial discharge capacity.
- the proportion of the SnY compound phase is 50% by mass or less, preferably 30% by mass or less.
- the relationships among a indicating the ratio of the Si phase, b indicating the ratio of the SiX compound phase, and c indicating the ratio of the SnY compound phase are 10 ⁇ a ⁇ 95, 1 ⁇ b ⁇ 90, and 0.07 ⁇ c ⁇ 50.
- each main element suitable for obtaining the above constituent phases in the negative electrode material powder is as follows. In the following description, “%” means “% by mass” unless otherwise specified.
- the Si content is preferably 50-95%, more preferably 60-80%, and still more preferably 73-79%.
- the Si content is preferably 50% or more, more preferably 60% or more, and even more preferably 73% or more.
- the Si content is preferably 95% or less, more preferably 80% or less, and even more preferably 79% or less.
- the content of element X is preferably 1.0-38%, more preferably 5.0-30%, and even more preferably 13-23%.
- the content of element X is preferably 1.0% or more, more preferably 5.0% or more, and even more preferably 13% or more, from the viewpoint of obtaining good cycle characteristics.
- the content of element X is preferably 38% or less, more preferably 30% or less, and even more preferably 23% or less.
- the total content thereof is preferably within the above range.
- the Sn content is preferably 0.7 to 30%, more preferably 1.0 to 10%, still more preferably 1.5 to 5.0%.
- the Sn content is preferably 0.7% or more, more preferably 1.0% or more, and even more preferably 1.5% or more, from the viewpoint of obtaining the effect as a Li diffusion path.
- the Sn content is preferably 30% or less, more preferably 10% or less, and even more preferably 5.0% or less.
- the content of element Y is preferably 1.0-15%, more preferably 1.5-10%, and even more preferably 1.5-4.0%.
- the content of the element Y is preferably 1.0% or more, more preferably 1.5% or more, from the viewpoint of obtaining the effect as a Li diffusion path.
- the content of element Y is preferably 15% or less, more preferably 10% or less, and even more preferably 4.0% or less.
- the total content thereof is preferably within the above range.
- FIG. 1B shows a schematic diagram of negative electrode material powder 3 according to one embodiment of the present invention, which is obtained by pulverizing Si alloy particles having Si phase, SiX compound phase and SnY compound phase. ing.
- the Si phase 3a, the SiX compound phase 3b, and the SnY compound phase 3c are separately present in a separated state.
- the average particle diameters of the Si phase 3a, the SiX compound phase 3b, and the SnY compound phase 3c are respectively mdSi, mdSiX, and mdSnY
- the average particle diameters mdSi, mdSiX, and mdSnY are all within the range of 0.1 to 50 ⁇ m.
- the average particle size mdSi is more preferably 1.0 to 20 ⁇ m, particularly preferably 1.0 to 10 ⁇ m.
- each of the average particle diameters mdSi, mdSiX and mdSnY is 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1.0 ⁇ m or more.
- the average particle diameters mdSi, mdSiX and mdSnY are all 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and the average particle diameter mdSi is more preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less.
- particle size refers to the diameter of a circle having the same area measured by measuring the area of each phase constituting the present negative electrode material powder under electron microscope observation, that is, the equivalent circle diameter.
- the "average particle size” means the particle size at an integrated value of 50% in the particle size distribution. 5000 times) to mean the average value of 100 particles analyzed.
- the amount of expansion of the Si phase is suppressed by miniaturization, and the collapse of the Si phase is suppressed.
- this Si phase exists independently of other SiX compound phases and SnY compound phases, a space that allows expansion of Si is likely to be formed around the Si phase, and this space serves as a buffer region against the expansion of Si. As a result, it is possible to suppress the collapse of the SiX compound phase that serves as a framework within the electrode.
- the Si phase 3a if the grain size of the Si phase 3a is excessively large relative to the SiX compound phase 3b or the SnY compound phase 3c, the Si phase 3a repeatedly expands and contracts, causing the electrode to collapse. and cycle characteristics deteriorate.
- 4 in the same figure is a conductive base material which comprises a part of electrode.
- the Si phase 3a when the grain size of the Si phase 3a is excessively smaller than that of the SiX compound phase 3b or SnY compound phase 3c, the Si phase 3a is surrounded by the SiX compound phase 3b or SnY compound phase 3c. As a result, the absorption and release of Li ions in the Si phase 3a is hindered, and the initial coulombic efficiency and initial capacity deteriorate.
- a more preferred average particle size ratio is in the range of 0.3 to 5.0 or 0.1 to 3.0, and more preferably in the range of 0.3 to 3.0.
- Each raw material is weighed so that it has a predetermined chemical composition, and the weighed raw material is melted using a melting means such as an arc furnace, a high-frequency induction furnace, or a heating furnace. to obtain a Si alloy as a quenched alloy.
- a melting means such as an arc furnace, a high-frequency induction furnace, or a heating furnace.
- a gas such as N 2 , Ar, He or the like is sprayed at a high pressure, for example, 1 to 10 MPa, against the molten alloy that is discharged into a spray chamber and continuously (rod-like) flows downward to pulverize the molten alloy. cool down.
- the cooled molten metal freely falls in the atomization chamber while remaining semi-molten, and approaches a spherical shape to obtain, for example, Si alloy particles as shown in FIG. 1(A).
- Si phase, SiX compound phase and SnY compound phase are formed in the structure of the Si alloy particles 1 shown in the figure.
- high-pressure water may be sprayed instead of gas from the viewpoint of improving the cooling effect.
- the obtained Si alloy particles are finely pulverized, and as shown in FIG. to obtain a negative electrode material powder.
- the Si alloy particles 1 are pulverized by a dry pulverization method, pulverization and agglomeration are repeated, and it is difficult to separate the Si phase 3a, the SiX compound phase 3b, and the SnY compound phase 3c independently, and these phases adhere to each other.
- wet pulverization method a wet pulverization method using a bead mill or planetary ball mill can be adopted.
- a solvent is used together with the Si alloy particles to be pulverized.
- Ethanol, methanol, isopropyl alcohol, naphthesol, and the like can be used as solvents. It is also possible to add dispersants.
- the Si alloy particles have a chemical composition adjusted so that the Si, SiX compound, and SnY compound have the above-mentioned phase ratio, the average particle diameters mdSi, mdSix, and mdSnY are all 0.1 to 0.1 by wet pulverization.
- Si particles, SiX compound particles, and SnY compound particles are separately formed directly from the molten metal instead of the method of pulverizing the Si alloy particles having the three phases inside. It is also possible to adopt a method of pulverizing these particles to a predetermined particle size and then mixing them.
- the negative electrode has a conductive substrate and a conductive film laminated on the surface of the conductive substrate.
- the conductive film contains at least the present negative electrode material powder described above in a binder.
- the conductive film may also contain a conductive aid, if necessary. When a conductive additive is contained, it becomes easier to secure a conductive path for electrons.
- the conductive film may contain aggregate as necessary.
- aggregate When the aggregate is contained, expansion and contraction of the negative electrode during charging and discharging can be easily suppressed, and collapse of the negative electrode can be suppressed, so that cycle characteristics can be further improved.
- the conductive base material functions as a current collector.
- the material include Cu, Cu alloys, Ni, Ni alloys, Fe, Fe-based alloys, and the like. Preferably, it should be Cu or a Cu alloy.
- a foil shape, a plate shape, and the like can be exemplified. A foil shape is preferable from the viewpoints of reducing the volume of the battery and improving the degree of freedom in shape.
- the material of the binder examples include polyvinylidene fluoride (PVdF) resin, fluorine resin such as polytetrafluoroethylene, polyvinyl alcohol resin, polyimide resin, polyamide resin, polyamideimide resin, styrene-butadiene rubber (SBR), polyacrylic acid. etc. can be suitably used. These can be used alone or in combination of two or more.
- PVdF polyvinylidene fluoride
- fluorine resin such as polytetrafluoroethylene
- polyvinyl alcohol resin polyimide resin
- polyamide resin polyamideimide resin
- SBR styrene-butadiene rubber
- polyacrylic acid etc.
- these resins can be used alone or in combination of two or more.
- polyimide resin is particularly preferable because it has high mechanical strength, can withstand volume expansion of the active material well, and effectively prevents the conductive film from being peeled off from the current collector due to breakage of the binder.
- Examples of the conductive aid include carbon black such as ketjen black, acetylene black, furnace black, graphite, carbon nanotubes, fullerene, and the like. These may be used singly or in combination of two or more. Among these, ketjen black, acetylene black, and the like can be preferably used from the viewpoint of easily ensuring electron conductivity.
- the content of the conductive aid is preferably 0 to 30 parts by mass, more preferably 4 to 13 parts by mass, with respect to 100 parts by mass of the present negative electrode material powder, from the viewpoint of conductivity improvement, electrode capacity, etc. is within.
- the average particle diameter (d50) of the conductive aid is preferably 10 nm to 1 ⁇ m, more preferably 20 to 50 nm, from the viewpoint of dispersibility, ease of handling, and the like.
- a material that does not expand or contract during charge/discharge or that expands or contracts very little.
- examples include graphite, alumina, calcia, zirconia, and activated carbon. These may be used singly or in combination of two or more. Among these, graphite and the like can be preferably used from the viewpoint of conductivity, Li activity, and the like.
- the content of the aggregate is preferably in the range of 10 to 400 parts by mass, more preferably 43 to 100 parts by mass, with respect to 100 parts by mass of the negative electrode material powder, from the viewpoint of improving cycle characteristics.
- the average particle size of the aggregate is preferably 10 to 50 ⁇ m, more preferably 20 to 30 ⁇ m, from the viewpoint of functionality as an aggregate and control of electrode film thickness.
- the average particle size of the aggregate is a value measured using a laser diffraction/scattering particle size distribution analyzer.
- the present negative electrode is made into a paste by adding the required amount of the present negative electrode material powder and, if necessary, a conductive aid and an aggregate to a binder dissolved in an appropriate solvent. It can be produced by coating, drying, and, if necessary, consolidation, heat treatment, or the like.
- the positive electrode include those in which a layer containing a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 and LiMnO 2 is formed on the surface of a current collector such as aluminum foil. can be done.
- a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 and LiMnO 2
- the electrolyte examples include an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
- a polymer in which a lithium salt is dissolved a polymer solid electrolyte in which a polymer is impregnated with the above electrolytic solution, and the like can also be used.
- non-aqueous solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. One or more of these may be contained.
- lithium salt examples include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 and LiAsF 6 . One or more of these may be contained.
- battery components include separators, cans (battery cases), gaskets, and the like. Any of these can be appropriately used as long as they are commonly used in lithium ion batteries.
- a battery can be constructed by combining them.
- the shape of the battery is not particularly limited, and may be any shape such as cylindrical, rectangular, or coin-shaped, and can be appropriately selected according to the specific application.
- % of the alloy composition is mass % unless otherwise specified.
- each raw material shown in Table 1 was weighed. Each weighed raw material was heated and melted using a high-frequency induction furnace to obtain a molten alloy. Powdered Si alloy particles were produced from the above molten alloy by a gas atomization method. An argon atmosphere was used as the atmosphere during the production of the molten alloy and the gas atomization. Further, at the time of gas atomization, high-pressure (4 MPa) argon gas was sprayed onto the molten alloy falling like a rod in the atomization chamber. The obtained Si alloy particles were mechanically pulverized using a wet bead mill to obtain negative electrode material powder.
- Each coin-type half-cell was produced as follows.
- an electrode prepared using negative electrode material powder was used as a test electrode, and a Li foil was used as a counter electrode.
- each paste is applied to the surface of stainless steel (SUS) 316L foil (thickness 20 ⁇ m) to be a negative electrode current collector using a doctor blade method so as to have a thickness of 50 ⁇ m, and dried to form each negative electrode active material layer. bottom.
- the negative electrode active material layer was densified by roll pressing.
- test electrodes were produced using the negative electrode material powders according to the examples and the comparative examples as negative electrode active materials.
- test poles were punched into discs with a diameter of 11 mm to obtain test poles.
- Li foil (thickness: 500 ⁇ m) was punched out in substantially the same shape as the test electrode to prepare each counter electrode. Also, LiPF 6 was dissolved at a concentration of 1 mol/l in a mixed solvent of equal volume ratios of ethylene carbonate (EC) and diethyl carbonate (DEC) to prepare a non-aqueous electrolyte.
- EC ethylene carbonate
- DEC diethyl carbonate
- each test electrode was accommodated in each positive electrode can, and a counter electrode was accommodated in each negative electrode can, and a polyolefin-based microporous film separator was placed between each test electrode and each counter electrode.
- Each test electrode should be a negative electrode in a lithium ion battery, but when a Li foil is used as a counter electrode, the Li foil becomes a negative electrode and the test electrode becomes a positive electrode.
- each negative electrode can and each positive electrode can were crimped and fixed.
- Example 1 Calculation of Ratios of Si Phase, SiX Compound Phase, and SnY Compound Phase
- the method of calculating the ratios of Si phase, SiX compound phase, and SnY compound phase shown in Tables 2 and 3 below will be described using Example 1 as an example.
- the ratio of the SiX compound phase (Si 2 Fe) is the sum of the amount of compounded Si (17.50%) and the amount of Fe (17.43%) in Table 1, and is 35% in this example.
- the ratio of Si phase is a value obtained by subtracting the amount of compounded Si (17.50%) from the total amount of Si (77.57%) in Table 1, and is 60% in this example.
- the proportion of the SnY compound phase is the sum of the Sn content (3.05%) and the Cu content (1.96%) in Table 1, and is 5% in this example.
- the average grain size ratios represented by mdSi/mdSiX and mdSi/mdSnY were calculated. These results are shown in Tables 2 and 3.
- the average particle diameters mdSi, mdSiX, and mdSnY are respectively indicated as Si, SiX, and SnY in the "average particle diameter ( ⁇ m)", and are represented by mdSi/mdSiX and mdSi/mdSnY.
- the average grain size ratios are indicated respectively as Si/SiX and Si/SnY in the "mean grain size ratio".
- the charge/discharge test was performed at a rate of 1/5C.
- the current value for (charging) and discharging the amount of electricity C 0 required to (charge) and discharge the electrode for the C rate in 1 hour is assumed to be 1C. That is, the battery is (charged) and discharged in 12 minutes at 5C and in 5 hours at 1/5C.
- the cycle characteristics were evaluated by performing the charge/discharge cycle 100 times.
- a capacity retention ratio discharge capacity after 100 cycles/initial discharge capacity (discharge capacity at 1st cycle) ⁇ 100) was obtained from each of the obtained discharge capacities.
- the determination of the capacity retention rate was as follows: " ⁇ " when it was over 70%, " ⁇ " when it was over 50% to 70% or less, and " ⁇ " when it was over 40% to 50% or less. The results are shown in Tables 2 and 3.
- Comparative Example 1 is an example in which the ratio of the Si phase in the negative electrode material powder exceeds the upper limit (95%), the average particle size ratio (mdSi/mdSiX and mdSi/mdSnY) is larger than the upper limit (5.0), The evaluation of the cycle characteristics was "xx”.
- Comparative Example 2 is an example in which the ratio of the Si phase in the negative electrode material powder is below the lower limit (10%), and the average particle size ratio (mdSi/mdSiX and mdSi/mdSnY) is lower than the lower limit (0.1). The coulombic efficiency and the initial discharge capacity were evaluated as "xx".
- Comparative Example 3 the ratio of the SnY compound phase exceeded the upper limit (50%), and the initial coulombic efficiency and initial discharge capacity were evaluated as "xx". In Comparative Example 4, the ratio of the SnY compound phase was below the lower limit (0.07%), and the cycle characteristics were evaluated as "xx".
- Comparative Example 5 the average particle size ratios (mdSi/mdSiX and mdSi/mdSnY) were smaller than the lower limit (0.1), and the initial coulombic efficiency and initial discharge capacity were evaluated as "xx".
- Comparative Example 6 the average particle size ratio (mdSi/mdSiX and mdSi/mdSnY) was greater than the upper limit (5.0), and the cycle characteristics were evaluated as "xx".
- Comparative Example 7 the average particle diameters mdSi, mdSiX, and mdSnY were larger than the upper limit (50 ⁇ m), and the cycle characteristics were evaluated as “xx”.
- Comparative Example 8 the average particle diameters mdSi, mdSiX, and mdSnY were smaller than the lower limit (0.1 ⁇ m), and the initial coulombic efficiency and initial discharge capacity were evaluated as “xx”.
- the ratio of Si phase, SiX compound phase and SnY compound phase is adjusted within a predetermined range, and the average particle size of the Si phase, SiX compound phase and SnY compound phase that exist independently mdSi, mdSiX, and mdSnY are all in the range of 0.1 to 50 ⁇ m, and the average particle size ratios represented by mdSi/mdSiX and mdSi/mdSnY are all in the range of 0.1 to 5.0.
- there is no particularly low evaluation of "xx” and the battery characteristics are enhanced in consideration of initial coulombic efficiency, initial discharge capacity and cycle characteristics.
- Examples 22 to 27 have different average particle size ratios (mdSi/mdSiX and mdSi/mdSnY). It can be seen that each characteristic is enhanced in a well-balanced manner when the ratio of the average particle diameters is within the range of 0.3 to 3.0.
- the negative electrode material powder for lithium ion batteries and the lithium ion battery of the present invention have been described in detail above, the present invention is not limited to the above embodiments and examples.
- the negative electrode material powder of the present invention can be applied not only to the negative electrode material powder for liquid lithium ion batteries as in the above embodiment, but also to the negative electrode material powder for all-solid lithium ion batteries.
- Various modifications are possible without departing from the spirit.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
従来、一般には正極側の活物質としてコバルト酸リチウム(LiCoO2)が用いられ、また負極活物質として黒鉛が広く使用されていた。しかしながら、負極活物質の黒鉛は、その理論容量が372mAh/gに過ぎず、より一層の高容量化が望まれていた。
しかしながら、このようなサイクル特性を高めるための手段は、初期放電容量、初期クーロン効率といった電池の初期特性を低下させてしまう場合もあり、初期特性およびサイクル特性を考慮した電池特性を高めることについては、未だ改善の余地があった。
下記式(1)で表される相割合で、Si相、SiX化合物相およびSnY化合物相を含むリチウムイオン電池用の負極材料粉末であって、
前記Si相、前記SiX化合物相および前記SnY化合物相は、それぞれ分離した状態で別々に存在し、
前記Si相、前記SiX化合物相および前記SnY化合物相のそれぞれについて、粒径分布における積算値50%での粒径を、各相における平均粒径mdSi、mdSiX、およびmdSnYとしたとき、
前記平均粒径mdSi、mdSiX、mdSnYはいずれも0.1~50μmの範囲内であり、
mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.1~5.0の範囲内であることを特徴とする。
a[Si]-b[SiX]-c[SnY]…式(1)
但し、前記元素XはFe,Ni,Cr,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
前記元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
前記式(1)中、a、b、cは、それぞれ前記Si相、前記SiX化合物相、前記SnY化合物相の含有量(質量%)を示し、a+b+c=100であり、10≦a≦95、1≦b≦90、0.07≦c≦50である。
本負極材料粉末は、Si、Sn、元素Xおよび元素Yを主構成元素とするものである。ここで、元素XはFe,Ni,Cr,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、また元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素である。
これらSi、Sn、元素X、及び元素Yの主構成元素以外の元素は不可避的なものを除けば含まれていない。不可避的不純物元素としては、例えば、窒素(N)、硫黄(S)、リン(P)、酸素(O)等が考えられる。それぞれの上限は、N≦0.10質量%、S≦0.10質量%、P≦0.10質量%、O≦15質量%である。
a[Si]-b[SiX]-c[SnY]…式(1)
式(1)における[Si]はSi相を、[SiX]はSiX化合物相を、[SnY]はSnY化合物相を、それぞれ意味する。また、a、b、c(a+b+c=100である)は、それぞれ順に、Si相、SiX化合物相、SnY化合物相の含有量(質量%)を示しており、本例では、10≦a≦95、1≦b≦90、0.07≦c≦50とする。
なお、全体に占める割合が5質量%以下であれば非化合物のSn単体(Sn相)が不純物として含まれていてもよい。
なお、SiX化合物相は、1種の化合物のみで構成する場合のほか、例えばSiFe化合物とSiNi化合物など、2種以上の化合物で構成することも可能である。
なお、a+b+c=100を満たすにあたって、bが90質量%であると、aとcがそれぞれ最小値である10質量%、0.07質量%の値をとっても、a+b+cの合計は100.07質量%となり、100質量%を超える。有効数字の関係で、これは100質量%と見做してよいが、100質量%超となることが問題になる場合には、bの上限値は、90質量%ではなく、89.93質量%とする。同様に、bが90質量%であり、aとcがそれぞれ10質量%、0.1質量%であって、a+b+c=100.1質量%となることが許容されない場合には、bの上限値は、90質量%ではなく、89.9質量%とする。
同様に、例えば、30≦a≦90、1≦b≦70、0.1≦c≦30である場合に、bが70質量%であり、aとcがそれぞれ最小値である30質量%、0.1質量%の値をとっても、a+b+cの合計が100.1質量%となり、これは有効数字の関係で100質量%と見做してよい。ただし、100質量%を超えることが問題になる場合には、bの上限値は90質量%ではなく89.9質量%とする。
ここで、「粒径」とは、電子顕微鏡観察下で本負極材料粉末を構成する各相の面積を測定し、同じ面積を有する円に換算したときの直径、即ち円相当直径をいう。また、「平均粒径」とは、粒径分布における積算値50%での粒径を意味し、具体的には、Si相、SiX化合物相およびSnY化合物相のそれぞれの粉末の断面SEM画像(5000倍)から粒子100個について解析した平均値をいう。
一方、図3で示すように、Si相3aの粒径がSiX化合物相3bもしくはSnY化合物相3cに対して過度に小さい場合は、Si相3aがSiX化合物相3bもしくはSnY化合物相3cにより囲まれて、Si相3aにおけるLiイオンの吸蔵・放出が妨げられてしまうため、初期クーロン効率および初期容量が悪化する。
なおアトマイズ法においては、冷却効果を向上させる観点からガスに代えて高圧水を噴き付けてもよい。また場合によってはアトマイズ法に代えてロール急冷法を用いて箔片化されたSi合金を得ることも可能である。
ここで乾式粉砕法によりSi合金粒子1を粉砕した場合には、粉砕と凝集が繰り返され、Si相3a、SiX化合物相3b、SnY化合物相3cを分離独立させることが難しく、これらの相が密着した粉末が形成されてしまうことから、本例では湿式粉砕法が用いてSi合金粒子を微細化することが好ましい。
次に、本負極材料粉末を含む負極を用いて構成された電池について説明する。
下記表1には実施例27種と比較例8種の負極材料粉末についての合金組成を示している。表1で示した各合金組成は、下記表2、表3に記載の目標構成が得られるように規定されている。
但し、各相の粒径の差が大きい比較例5,6については、溶湯から直接Si粒子、SiX化合物粒子、SnY化合物粒子を別々に形成し、これら粒子をそれぞれ所定の粒径となるよう粉砕し、その後混合することにより負極材料粉末とした。
作製した負極活物質としての負極材料粉末100質量部と、導電助材としてのケッチェンブラック(ライオン(株)製)6質量部と、結着剤としてのポリイミド(熱可塑性樹脂)バインダ19質量部とを配合し、これを溶剤としてのN-メチル-2-ピロリドン(NMP)と混合し、各負極材料粉末を含む各ペーストを作製した。
3-1.負極材料粉末の構成相確認
作製された各実施例,比較例に係る負極材料粉末について、XRD(X線回折)による分析を行ない、Si相、SiX化合物相およびSnY化合物相を含んでいることを確認した。尚、XRD分析はCo管球を用いて120°~20°の角度の範囲を測定した。
下記表2、表3で示すSi相、SiX化合物相、SnY化合物相の割合の算出方法について、実施例1の場合を例に説明する。
(1)まず作製された負極材料粉末における構成相を確認する。実施例1の場合、上記XRD分析の結果、Si、Si2Fe、Sn5Cu6が確認された。
(2)Si2Feは、質量%比で表すと、50.1[Si]-49.9[Fe]である。これに対応して化合物化するSi量は17.43×50.1/49.9=17.50%となる。よってSiX化合物相(Si2Fe)の割合は、化合物化したSi量(17.50%)と表1のFe量(17.43%)を合計した値であり、この例では35%である。
(3)Si相の割合は、表1の全Si量(77.57%)から化合物化したSi量(17.50%)を差し引いて得た値であり、この例では60%である。
(4)SnY化合物相の割合は、表1のSn量(3.05%)とCu量(1.96%)を合計した値であり、この例では5%である。
得られた負極材料粉末において、Si相、SiX化合物相およびSnY化合物相がそれぞれ離した状態で別々の存在することは、SEM画像により確認した。その上で、任意に選択した、それぞれ分離した状態で別々に存在するSi相、SiX化合物相およびSnY化合物相のそれぞれの粉末の断面SEM画像(倍率5000倍)から各100個について粒径(円相当直径)を測定し、その平均値をそれぞれ平均粒径mdSi、mdSiX、mdSnYとした。また、mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比を算出した。これらの結果を表2、表3に示している。なお、表2、表3では、平均粒径mdSi、mdSiX、mdSnYはそれぞれ、「平均粒径(μm)」におけるSi、SiX、SnYと示しており、mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比はそれぞれ、「平均粒径比」におけるSi/SiX及びSi/SnYと示している。
作製した各コイン型電池を用い、電流値0.2mAの定電流充放電を1サイクル分実施した。このLi放出時に使用した容量(mAh)を活物質量(g)で割った値から初期放電容量C0(mAh/g)を算出した。また上記充放電サイクルにおける充電容量に対する放電容量の比率を、放電容量/充電容量の百分率で求めて初期クーロン効率(%)を求めた。
比較例1は、負極材料粉末におけるSi相の割合が上限(95%)を上回っている例で、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が上限(5.0)より大きく、サイクル特性についての評価が「××」であった。
比較例2は、負極材料粉末におけるSi相の割合が下限(10%)を下回っている例で、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が下限(0.1)より小さく初期クーロン効率および初期放電容量についての評価が「××」であった。
比較例4は、SnY化合物相の割合が下限(0.07%)を下回っており、サイクル特性についての評価が「××」であった。
比較例6は、平均粒径の比(mdSi/mdSiXおよびmdSi/mdSnY)が上限(5.0)より大きく、サイクル特性についての評価が「××」であった。
比較例8は、平均粒径mdSi、mdSiX、mdSnYが下限(0.1μm)より小さく、初期クーロン効率および初期放電容量についての評価が「××」であった。
Claims (4)
- Si、Sn、元素X、及び元素Yを含有し、
下記式(1)で表される相割合で、Si相、SiX化合物相およびSnY化合物相を含むリチウムイオン電池用の負極材料粉末であって、
前記Si相、前記SiX化合物相および前記SnY化合物相は、それぞれ分離した状態で別々に存在し、
前記Si相、前記SiX化合物相および前記SnY化合物相のそれぞれについて、粒径分布における積算値50%での粒径を、各相における平均粒径mdSi、mdSiX、およびmdSnYとしたとき、
前記平均粒径mdSi、mdSiX、mdSnYはいずれも0.1~50μmの範囲内であり、
mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.1~5.0の範囲内であるリチウムイオン電池用の負極材料粉末。
a[Si]-b[SiX]-c[SnY]…式(1)
但し、前記元素XはFe,Ni,Cr,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
前記元素YはCu,Fe,Ni,Cr,Co,Mn,Zr,及びTiよりなる群の中から選択された1種以上の元素であり、
前記式(1)中、a、b、cは、それぞれ前記Si相、前記SiX化合物相、前記SnY化合物相の含有量(質量%)を示し、a+b+c=100であり、10≦a≦95、1≦b≦90、0.07≦c≦50である。 - 前記式(1)におけるa、b、cが、それぞれ30≦a≦90、1≦b≦70、0.1≦c≦30である、請求項1に記載のリチウムイオン電池用の負極材料粉末。
- 前記元素YがCuであって、
前記式(1)におけるa、b、cが、それぞれ30≦a≦90、1≦b≦70、0.1≦c≦30である、請求項1に記載のリチウムイオン電池用の負極材料粉末。 - 前記mdSi/mdSiXおよびmdSi/mdSnYで表される平均粒径の比がいずれも0.3~3.0の範囲内である、請求項1~3のいずれか1項に記載のリチウムイオン電池用の負極材料粉末。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/692,711 US20240372084A1 (en) | 2021-09-30 | 2022-09-26 | Negative electrode material powder for lithium ion battery |
EP22876157.3A EP4394936A1 (en) | 2021-09-30 | 2022-09-26 | Negative electrode material powder for lithium ion battery |
CN202280064927.4A CN117999672A (zh) | 2021-09-30 | 2022-09-26 | 锂离子电池用的负极材料粉末 |
KR1020247010205A KR20240050411A (ko) | 2021-09-30 | 2022-09-26 | 리튬 이온 전지용의 부극 재료 분말 |
JP2023551489A JPWO2023054290A1 (ja) | 2021-09-30 | 2022-09-26 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-161675 | 2021-09-30 | ||
JP2021161675 | 2021-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023054290A1 true WO2023054290A1 (ja) | 2023-04-06 |
Family
ID=85782703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035798 WO2023054290A1 (ja) | 2021-09-30 | 2022-09-26 | リチウムイオン電池用の負極材料粉末 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240372084A1 (ja) |
EP (1) | EP4394936A1 (ja) |
JP (1) | JPWO2023054290A1 (ja) |
KR (1) | KR20240050411A (ja) |
CN (1) | CN117999672A (ja) |
TW (1) | TWI813461B (ja) |
WO (1) | WO2023054290A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005209496A (ja) * | 2004-01-23 | 2005-08-04 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2013084549A (ja) * | 2011-09-30 | 2013-05-09 | Daido Steel Co Ltd | リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極 |
WO2017082369A1 (ja) * | 2015-11-10 | 2017-05-18 | 日産自動車株式会社 | 電気デバイス用負極活物質、およびこれを用いた電気デバイス |
JP2017224499A (ja) | 2016-06-15 | 2017-12-21 | 大同特殊鋼株式会社 | リチウムイオン電池用負極活物質およびリチウムイオン電池 |
US20180261837A1 (en) * | 2017-03-10 | 2018-09-13 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery and lithium secondary battery including the same |
JP2020126835A (ja) * | 2019-02-06 | 2020-08-20 | 大同特殊鋼株式会社 | リチウムイオン電池用負極活物質 |
JP2021161675A (ja) | 2020-03-31 | 2021-10-11 | 住友林業株式会社 | 耐震補強金物、及び、耐震補強構造 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102243610B1 (ko) * | 2018-12-17 | 2021-04-27 | 주식회사 티씨케이 | 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지 |
US11862787B2 (en) * | 2019-02-06 | 2024-01-02 | Daido Steel Co., Ltd. | Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery |
-
2022
- 2022-09-26 WO PCT/JP2022/035798 patent/WO2023054290A1/ja active Application Filing
- 2022-09-26 US US18/692,711 patent/US20240372084A1/en active Pending
- 2022-09-26 CN CN202280064927.4A patent/CN117999672A/zh active Pending
- 2022-09-26 JP JP2023551489A patent/JPWO2023054290A1/ja active Pending
- 2022-09-26 KR KR1020247010205A patent/KR20240050411A/ko unknown
- 2022-09-26 EP EP22876157.3A patent/EP4394936A1/en active Pending
- 2022-09-30 TW TW111137144A patent/TWI813461B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005209496A (ja) * | 2004-01-23 | 2005-08-04 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2013084549A (ja) * | 2011-09-30 | 2013-05-09 | Daido Steel Co Ltd | リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極 |
WO2017082369A1 (ja) * | 2015-11-10 | 2017-05-18 | 日産自動車株式会社 | 電気デバイス用負極活物質、およびこれを用いた電気デバイス |
JP2017224499A (ja) | 2016-06-15 | 2017-12-21 | 大同特殊鋼株式会社 | リチウムイオン電池用負極活物質およびリチウムイオン電池 |
US20180261837A1 (en) * | 2017-03-10 | 2018-09-13 | Samsung Sdi Co., Ltd. | Negative active material for lithium secondary battery and lithium secondary battery including the same |
JP2020126835A (ja) * | 2019-02-06 | 2020-08-20 | 大同特殊鋼株式会社 | リチウムイオン電池用負極活物質 |
JP2021161675A (ja) | 2020-03-31 | 2021-10-11 | 住友林業株式会社 | 耐震補強金物、及び、耐震補強構造 |
Also Published As
Publication number | Publication date |
---|---|
US20240372084A1 (en) | 2024-11-07 |
EP4394936A1 (en) | 2024-07-03 |
KR20240050411A (ko) | 2024-04-18 |
TW202332103A (zh) | 2023-08-01 |
CN117999672A (zh) | 2024-05-07 |
TWI813461B (zh) | 2023-08-21 |
JPWO2023054290A1 (ja) | 2023-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5884573B2 (ja) | リチウムイオン電池用負極活物質及びこれを用いたリチウムイオン電池用負極 | |
JP5790282B2 (ja) | リチウム二次電池用負極活物質およびリチウム二次電池用負極 | |
JP7375569B2 (ja) | リチウムイオン電池用負極活物質 | |
JP6808988B2 (ja) | リチウムイオン電池用負極活物質およびリチウムイオン電池 | |
JP2012014866A (ja) | リチウム二次電池用負極活物質およびその製造方法 | |
US11862787B2 (en) | Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery | |
JP7337580B2 (ja) | 多元系シリサイドおよびケイ素を含むリチウムイオン電池用負極材料 | |
WO2023054290A1 (ja) | リチウムイオン電池用の負極材料粉末 | |
WO2024095901A1 (ja) | リチウムイオン電池用の負極材料粉末 | |
WO2023054289A1 (ja) | リチウムイオン電池の電極材料およびSi合金複合粉末 | |
US20240038976A1 (en) | Si ALLOY POWDER FOR NEGATIVE ELECTRODE | |
JP2024018914A (ja) | リチウムイオン電池負極用Si合金粉末 | |
US20240038977A1 (en) | Si ALLOY POWDER FOR NEGATIVE ELECTRODE | |
JP2024018915A (ja) | リチウムイオン電池負極用Si合金粉末 | |
WO2022260110A1 (ja) | リチウムイオン電池用負極活物質 | |
JP7443851B2 (ja) | リチウムイオン電池の負極用粉末材料およびその製造方法 | |
CN117476918A (zh) | 负极用Si合金粉末 | |
CN117476888A (zh) | 负极用Si合金粉末 | |
WO2024190760A1 (ja) | リチウムイオン電池負極活物質 | |
JP2015138625A (ja) | リチウムイオン電池用負極活物質 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22876157 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023551489 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280064927.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247010205 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022876157 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022876157 Country of ref document: EP Effective date: 20240328 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |