WO2022239367A1 - エアロゾル生成装置の電源ユニット - Google Patents
エアロゾル生成装置の電源ユニット Download PDFInfo
- Publication number
- WO2022239367A1 WO2022239367A1 PCT/JP2022/007886 JP2022007886W WO2022239367A1 WO 2022239367 A1 WO2022239367 A1 WO 2022239367A1 JP 2022007886 W JP2022007886 W JP 2022007886W WO 2022239367 A1 WO2022239367 A1 WO 2022239367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- terminal
- switch
- voltage
- supply unit
- Prior art date
Links
- 239000000443 aerosol Substances 0.000 title claims abstract description 92
- 230000009467 reduction Effects 0.000 claims description 12
- 230000003071 parasitic effect Effects 0.000 claims description 9
- 101100236764 Caenorhabditis elegans mcu-1 gene Proteins 0.000 abstract description 138
- 238000010438 heat treatment Methods 0.000 description 117
- 238000001514 detection method Methods 0.000 description 38
- 230000006870 function Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 24
- 238000004891 communication Methods 0.000 description 20
- 239000000446 fuel Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 16
- 239000000796 flavoring agent Substances 0.000 description 15
- 235000019634 flavors Nutrition 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 9
- 101100038180 Caenorhabditis briggsae rpb-1 gene Proteins 0.000 description 8
- 101100038181 Caenorhabditis elegans ama-1 gene Proteins 0.000 description 8
- 101100306017 Caenorhabditis elegans rpb-2 gene Proteins 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 230000004043 responsiveness Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 241000208125 Nicotiana Species 0.000 description 5
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 235000014435 Mentha Nutrition 0.000 description 1
- 241001072983 Mentha Species 0.000 description 1
- 101100524646 Toxoplasma gondii ROM6 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 241000411851 herbal medicine Species 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 235000014569 mints Nutrition 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3287—Power saving characterised by the action undertaken by switching off individual functional units in the computer system
Definitions
- the present invention relates to a power supply unit for an aerosol generator.
- Patent Document 1 describes an operational amplifier that heats an aerosol source and outputs according to a voltage applied to a load having a correlation between temperature and electrical resistance, and a configuration that performs processing based on the voltage according to the output. and a first circuit and a second circuit electrically connected in parallel between the power supply and the load, wherein the first circuit and the second circuit connect the first switch and the second switch.
- Control devices for aerosol inhalers are described, each including a device. This control device is configured to obtain a voltage corresponding to the output of the operational amplifier while the second switch is in the ON state.
- Patent Document 2 discloses a heating element having a predetermined resistance value, a power supply for supplying power to the heating element, a plurality of resistors connected in parallel with the heating element, a control unit, and an on-state control unit for the heating element.
- a configured non-combustion inhaler is described.
- an aerosol generator configured to be able to inhale aerosol may use the resistance value of the heater to perform predetermined control such as heating control of the heater.
- An operational amplifier is used to measure the resistance value of the heater. An op amp consumes power while supplying voltage to the power supply terminals. Therefore, suppressing the power consumption of the operational amplifier is effective for saving the power of the aerosol generator.
- the purpose of the present invention is to provide an aerosol generator capable of saving power.
- a power supply unit of an aerosol generator includes a power supply, a heater connector including a positive electrode and a negative electrode connected to a heater that consumes the power supplied from the power supply and heats the aerosol source, A first fixed resistor having one end connected to the + pole of the heater connector, and a control terminal for controlling opening and closing, and connected between the other end of the first fixed resistor and the power supply. a first plus side switch, a positive power supply terminal connected between the other end of the first fixed resistor and the first plus side switch, one end of the first fixed resistor and the + pole of the heater connector.
- an operational amplifier including a non-inverting input terminal connected between, an inverting input terminal connected to the negative pole of the heater connector, and an output terminal; and a controller including an input terminal connected to the output terminal of the operational amplifier. and wherein the controller is configured to control power supply from the power supply to the heater based on an input to the input terminal.
- FIG. 1 is a perspective view of a non-combustion inhaler
- FIG. 1 is a perspective view of a non-combustion inhaler showing a state in which a rod is attached
- FIG. Fig. 10 is another perspective view of a non-combustion type inhaler
- 1 is an exploded perspective view of a non-combustion inhaler
- FIG. Fig. 3 is a perspective view of the internal unit of the non-combustion inhaler
- FIG. 6 is an exploded perspective view of the internal unit of FIG. 5
- FIG. 3 is a perspective view of the internal unit with the power supply and chassis removed
- FIG. 11 is another perspective view of the internal unit with the power supply and chassis removed
- It is a schematic diagram for demonstrating the operation mode of an aspirator.
- FIG. 4 is a diagram for explaining the operation of an electric circuit in sleep mode; It is a figure for demonstrating the operation
- FIG. 4 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode; It is a figure for demonstrating the operation
- FIG. 5 is a diagram for explaining the operation of the electric circuit when detecting the temperature of the heater in the heating mode; FIG.
- FIG. 4 is a diagram for explaining the operation of the electric circuit in charging mode;
- FIG. 4 is a diagram for explaining the operation of an electric circuit when an MCU is reset (restarted);
- FIG. 11 is a circuit diagram of a main part of the electric circuit shown in FIG. 10, showing the main electronic components used for heating the heater and detecting the temperature. It is a figure which shows an example of the voltage change input into the gate terminal of switch S3 and switch S4 in heating mode.
- FIG. 4 is a diagram showing current flow during heating control in a heating mode.
- FIG. 5 is a diagram showing current flow during temperature detection control in a heating mode;
- FIG. 22 is a diagram showing the current flow when both the switch S3 and the switch S4 are turned on in the drive example EX2 of FIG. 21;
- FIG. 4 is a plan view of the receptacle-mounted substrate viewed from the main surface side; It is the top view which looked at the receptacle mounting board
- suction system which is one embodiment of the aerosol generator of the present invention, will be described below with reference to the drawings.
- This suction system includes a non-combustion type suction device 100 (hereinafter also simply referred to as "suction device 100"), which is an embodiment of the power supply unit of the present invention, and a rod 500 heated by the suction device 100.
- suction device 100 a non-combustion type suction device 100
- the suction device 100 accommodates the heating unit in a non-detachable manner
- the heating unit may be detachably attached to the aspirator 100 .
- the rod 500 and the heating unit may be integrated and detachably attached to the aspirator 100 .
- the power supply unit of the aerosol generator may have a configuration that does not include the heating section as a component.
- “non-detachable” refers to a mode in which detachment is not possible as far as the intended use is concerned.
- an induction heating coil provided in the aspirator 100 and a susceptor built in the rod 500 may cooperate to form a heating unit.
- FIG. 1 is a perspective view showing the overall configuration of the aspirator 100.
- FIG. FIG. 2 is a perspective view of the suction device 100 showing a state in which the rod 500 is attached.
- FIG. 3 is another perspective view of the suction device 100.
- FIG. FIG. 4 is an exploded perspective view of the aspirator 100.
- FIG. Also, in the following description, for the sake of convenience, the orthogonal coordinate system of a three-dimensional space is used, in which the three mutually orthogonal directions are the front-back direction, the left-right direction, and the up-down direction. In the figure, the front is indicated by Fr, the rear by Rr, the right by R, the left by L, the upper by U, and the lower by D.
- the inhaler 100 generates flavor-containing aerosol by heating an elongated, substantially cylindrical rod 500 (see FIG. 2) as an example of a flavor component-generating base having a filling containing an aerosol source and a flavor source. configured to
- Rod 500 includes a fill containing an aerosol source that is heated at a predetermined temperature to produce an aerosol.
- the type of aerosol source is not particularly limited, and extracts from various natural products and/or their constituent components can be selected according to the application.
- the aerosol source may be solid or liquid, for example polyhydric alcohols such as glycerin, propylene glycol, or water.
- the aerosol source may include a flavor source such as a tobacco material or an extract derived from the tobacco material that releases flavor components upon heating.
- the gas to which the flavor component is added is not limited to an aerosol, and for example an invisible vapor may be generated.
- the filling of rod 500 may contain tobacco shreds as a flavor source.
- Materials for shredded tobacco are not particularly limited, and known materials such as lamina and backbone can be used.
- the filling may contain one or more perfumes.
- the type of flavoring agent is not particularly limited, but menthol is preferable from the viewpoint of imparting a good smoking taste.
- Flavor sources may contain plants other than tobacco, such as mints, herbal medicines, or herbs. Depending on the application, rod 500 may not contain a flavor source.
- the suction device 100 includes a substantially rectangular parallelepiped case 110 having a front surface, a rear surface, a left surface, a right surface, an upper surface, and a lower surface.
- the case 110 comprises a bottomed cylindrical case body 112 in which front, rear, top, bottom, and right surfaces are integrally formed, and a left surface that seals an opening 114 (see FIG. 4) of the case body 112. It has an outer panel 115 , an inner panel 118 , and a slider 119 .
- the inner panel 118 is fixed to the case body 112 with bolts 120 .
- the outer panel 115 is fixed to the case body 112 so as to cover the outer surface of the inner panel 118 by a magnet 124 held by a chassis 150 (see FIG. 5) housed in the case body 112 and described later. Since the outer panel 115 is fixed by the magnet 124, the user can replace the outer panel 115 according to his or her preference.
- the inner panel 118 is provided with two through holes 126 through which the magnets 124 pass.
- the inner panel 118 is further provided with a longitudinally elongated hole 127 and a circular round hole 128 between the two vertically arranged through holes 126 .
- This long hole 127 is for transmitting light emitted from eight LEDs (Light Emitting Diodes) L1 to L8 built in the case body 112 .
- a button-type operation switch OPS built in the case body 112 passes through the round hole 128 . Thereby, the user can detect the light emitted from the eight LEDs L1 to L8 through the LED window 116 of the outer panel 115. FIG. Also, the user can press down the operation switch OPS via the pressing portion 117 of the outer panel 115 .
- the upper surface of the case body 112 is provided with an opening 132 into which the rod 500 can be inserted.
- the slider 119 is coupled to the case body 112 so as to be movable in the front-rear direction between a position for closing the opening 132 (see FIG. 1) and a position for opening the opening 132 (see FIG. 2).
- the operation switch OPS is used to perform various operations of the aspirator 100.
- the user operates the operation switch OPS via the pressing portion 117 while inserting the rod 500 into the opening 132 as shown in FIG.
- the heating unit 170 (see FIG. 5) heats the rod 500 without burning it.
- an aerosol is generated from the aerosol source contained in the rod 500 and the flavor of the flavor source contained in the rod 500 is added to the aerosol.
- the user can inhale the flavor-containing aerosol by holding the mouthpiece 502 of the rod 500 projecting from the opening 132 and inhaling.
- a charging terminal 134 is provided for receiving power supply by being electrically connected to an external power source such as an outlet or a mobile battery.
- the charging terminal 134 is a USB (Universal Serial Bus) Type-C receptacle, but is not limited to this.
- Charging terminal 134 is hereinafter also referred to as receptacle RCP.
- the charging terminal 134 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power supply.
- the wireless power transfer method in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
- the charging terminal 134 can be connected to various USB terminals or the like, and may have the power receiving coil described above.
- the configuration of the aspirator 100 shown in FIGS. 1-4 is merely an example.
- the inhaler 100 holds the rod 500 and applies an action such as heating to generate gas to which a flavor component is added from the rod 500, and the user can inhale the generated gas. It can be configured in various forms.
- FIG. 5 is a perspective view of the internal unit 140 of the suction device 100.
- FIG. 6 is an exploded perspective view of the internal unit 140 of FIG. 5.
- FIG. 7 is a perspective view of internal unit 140 with power supply BAT and chassis 150 removed.
- FIG. 8 is another perspective view of the internal unit 140 with the power supply BAT and chassis 150 removed.
- the internal unit 140 housed in the internal space of the case 110 includes a chassis 150, a power supply BAT, a circuit section 160, a heating section 170, a notification section 180, and various sensors.
- the chassis 150 includes a plate-shaped chassis body 151 arranged substantially in the center of the interior space of the case 110 in the front-rear direction and extending in the vertical and front-rear directions, and a chassis body 151 disposed substantially in the center of the interior space of the case 110 in the front-rear direction.
- a plate-shaped front and rear dividing wall 152 extending in the vertical and horizontal directions
- a plate-shaped upper and lower dividing wall 153 extending forward from substantially the center of the front and rear dividing wall 152 in the vertical direction
- the front and rear dividing wall 152 and the upper edges of the chassis body 151 and a plate-shaped chassis lower wall 155 extending rearward from the front-rear dividing wall 152 and the lower edge of the chassis body 151 .
- the left surface of the chassis body 151 is covered with the inner panel 118 and the outer panel 115 of the case 110 described above.
- the internal space of the case 110 is defined by a chassis 150 such that a heating unit housing area 142 is defined in the upper front, a board housing area 144 is defined in the lower front, and a power supply housing space 146 is defined in the rear to extend vertically. ing.
- the heating part 170 housed in the heating part housing area 142 is composed of a plurality of tubular members, which are concentrically arranged to form a tubular body as a whole.
- the heating section 170 has a rod housing section 172 capable of housing a portion of the rod 500 therein, and a heater HTR (see FIGS. 10 to 19) that heats the rod 500 from its outer circumference or center.
- the surface of the rod housing portion 172 and the heater HTR are insulated by forming the rod housing portion 172 from a heat insulating material or providing a heat insulating material inside the rod housing portion 172 .
- the heater HTR may be any element that can heat the rod 500 .
- the heater HTR is, for example, a heating element.
- Heating elements include heating resistors, ceramic heaters, induction heaters, and the like.
- the heater HTR for example, one having a PTC (Positive Temperature Coefficient) characteristic in which the resistance value increases as the temperature increases is preferably used.
- a heater HTR having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used.
- the heating part 170 has a function of defining a flow path of air to be supplied to the rod 500 and a function of heating the rod 500 .
- the case 110 is formed with a vent (not shown) for introducing air, and is configured to allow air to enter the heating unit 170 .
- the power supply BAT housed in the power supply housing space 146 is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery.
- the electrolyte of the power supply BAT may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
- the notification unit 180 notifies various information such as the SOC (State Of Charge) indicating the state of charge of the power supply BAT, the preheating time during suction, and the suction possible period.
- the notification unit 180 of this embodiment includes eight LEDs L1 to L8 and a vibration motor M.
- the notification unit 180 may be composed of light emitting elements such as LEDs L1 to L8, may be composed of vibrating elements such as the vibration motor M, or may be composed of sound output elements.
- the notification unit 180 may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
- Various sensors include an intake air sensor that detects the user's puff action (sucking action), a power supply temperature sensor that detects the temperature of the power supply BAT, a heater temperature sensor that detects the temperature of the heater HTR, and a case temperature sensor that detects the temperature of the case 110. , a cover position sensor that detects the position of the slider 119, a panel detection sensor that detects attachment/detachment of the outer panel 115, and the like.
- the intake sensor is mainly composed of a thermistor T2 arranged near the opening 132, for example.
- the power supply temperature sensor is mainly composed of, for example, a thermistor T1 arranged near the power supply BAT.
- the heater temperature sensor is mainly composed of, for example, a thermistor T3 arranged near the heater HTR.
- the rod housing portion 172 is preferably insulated from the heater HTR.
- the thermistor T3 is preferably in contact with or close to the heater HTR inside the rod housing portion 172 . If the heater HTR has PTC characteristics or NTC characteristics, the heater HTR itself may be used as the heater temperature sensor.
- the case temperature sensor is mainly composed of, for example, a thermistor T4 arranged near the left surface of the case 110 .
- the cover position sensor is mainly composed of a Hall IC 14 including a Hall element arranged near the slider 119 .
- the panel detection sensor is mainly composed of a Hall IC 13 including a Hall element arranged near the inner surface of the inner panel 118 .
- the circuit section 160 includes four circuit boards, multiple ICs (Integrate Circuits), and multiple elements.
- the four circuit boards are an MCU-mounted board 161 on which an MCU (Micro Controller Unit) 1 and a charging IC 2, which will be described later, are mainly arranged, a receptacle-mounted board 162 mainly on which charging terminals 134 are arranged, an operation switch OPS, and an LED An LED mounting substrate 163 on which L1 to L8 and a communication IC 15 described later are arranged, and a Hall IC mounting substrate 164 on which a Hall IC 14 including a Hall element constituting a cover position sensor is arranged.
- the MCU mounting board 161 and the receptacle mounting board 162 are arranged parallel to each other in the board accommodation area 144 . More specifically, the MCU mounting board 161 and the receptacle mounting board 162 are arranged such that their element mounting surfaces are arranged along the horizontal direction and the vertical direction, and the MCU mounting board 161 is arranged in front of the receptacle mounting board 162. .
- the MCU mounting board 161 and the receptacle mounting board 162 are each provided with openings.
- the MCU mounting board 161 and the receptacle mounting board 162 are fastened with bolts 136 to the board fixing portion 156 of the front/rear dividing wall 152 with a cylindrical spacer 173 interposed between the peripheral edges of these openings.
- the spacer 173 fixes the positions of the MCU mounting board 161 and the receptacle mounting board 162 inside the case 110 and mechanically connects the MCU mounting board 161 and the receptacle mounting board 162 .
- the MCU mounting board 161 and the receptacle mounting board 162 it is possible to prevent the MCU mounting board 161 and the receptacle mounting board 162 from coming into contact with each other and causing a short-circuit current between them.
- the MCU mounting board 161 and the receptacle mounting board 162 have main surfaces 161a and 162a that face forward, and secondary surfaces 161b and 162b that are opposite to the main surfaces 161a and 162a. and the main surface 162a of the receptacle mounting substrate 162 face each other with a predetermined gap therebetween.
- a main surface 161 a of the MCU mounting board 161 faces the front surface of the case 110
- a secondary surface 162 b of the receptacle mounting board 162 faces the front and rear dividing walls 152 of the chassis 150 .
- Elements and ICs mounted on the MCU mounting board 161 and the receptacle mounting board 162 will be described later.
- the LED mounting board 163 is arranged on the left side of the chassis body 151 and between the two magnets 124 arranged vertically.
- the element mounting surface of the LED mounting substrate 163 is arranged along the vertical direction and the front-rear direction.
- the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 are orthogonal to the element mounting surface of the LED mounting board 163 .
- the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 and the element mounting surface of the LED mounting board 163 are not limited to being orthogonal, but preferably intersect (non-parallel).
- the vibration motor M which forms the notification unit 180 together with the LEDs L1 to L8, is fixed to the bottom surface of the chassis bottom wall 155 and electrically connected to the MCU mounting board 161.
- the Hall IC mounting board 164 is arranged on the upper surface of the chassis upper wall 154 .
- FIG. 9 is a schematic diagram for explaining the operation modes of the aspirator 100.
- the operating modes of the suction device 100 include charging mode, sleep mode, active mode, heating initialization mode, heating mode, and heating termination mode.
- the sleep mode is a mode for saving power by stopping the power supply to the electronic parts required for heating control of the heater HTR.
- the active mode is a mode in which most functions except heating control of the heater HTR are enabled.
- the operation mode is switched to the active mode.
- the slider 119 is closed or the non-operating time of the operation switch OPS reaches a predetermined time while the aspirator 100 is operating in the active mode, the operating mode is switched to the sleep mode.
- the heating initial setting mode is a mode for initializing control parameters and the like for starting heating control of the heater HTR.
- the aspirator 100 detects the operation of the operation switch OPS while operating in the active mode, it switches the operation mode to the heating initial setting mode, and when the initial setting is completed, switches the operation mode to the heating mode.
- the heating mode is a mode that executes heating control of the heater HTR (heating control for aerosol generation and heating control for temperature detection).
- the aspirator 100 starts heating control of the heater HTR when the operation mode is switched to the heating mode.
- the heating end mode is a mode for executing heating control end processing (heating history storage processing, etc.) of the heater HTR.
- the operation mode is switched to the heating end mode.
- the operation mode is switched to the active mode.
- the USB connection is established while the aspirator 100 is operating in the heating mode, the operating mode is switched to the heating end mode, and when the end processing is completed, the operating mode is switched to the charging mode. As shown in FIG.
- the operating mode may be switched to the active mode before switching the operating mode to the charging mode.
- the aspirator 100 may switch the operation mode in order of the heating end mode, the active mode, and the charging mode when the USB connection is made while operating in the heating mode.
- the charging mode is a mode in which the power supply BAT is charged with power supplied from an external power supply connected to the receptacle RCP.
- the aspirator 100 switches the operation mode to the charge mode when an external power source is connected (USB connection) to the receptacle RCP while operating in sleep mode or active mode.
- the aspirator 100 switches the operation mode to the sleep mode when the charging of the power supply BAT is completed or the connection between the receptacle RCP and the external power supply is released while operating in the charging mode.
- FIG. 11 shows a range 161A mounted on the MCU mounting board 161 (range surrounded by thick dashed lines) and a range 163A mounted on the LED mounting board 163 (range surrounded by thick solid lines) in the electric circuit shown in FIG.
- FIG. 12 is the same as FIG. 10 except that a range 162A mounted on the receptacle mounting board 162 and a range 164A mounted on the Hall IC mounting board 164 are added to the electric circuit shown in FIG. is.
- the wiring indicated by the thick solid line in FIG. 10 is the wiring (the wiring connected to the ground provided in the internal unit 140) that has the same potential as the reference potential (ground potential) of the internal unit 140. It is described as a ground line below.
- an electronic component in which a plurality of circuit elements are chipped is indicated by a rectangle, and the symbols of various terminals are indicated inside the rectangle.
- a power supply terminal VCC and a power supply terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively.
- a power supply terminal VSS and a ground terminal GND mounted on the chip indicate power supply terminals on the low potential side (reference potential side).
- the power supply voltage is the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side. Chipped electronic components use this power supply voltage to perform various functions.
- the MCU-mounted board 161 includes, as main electronic components, an MCU1 that controls the entire sucker 100, a charging IC2 that controls charging of the power source BAT, a capacitor, a resistor load switches (hereinafter referred to as LSW) 3, 4, 5, a ROM (Read Only Memory) 6, a switch driver 7, and a step-up/step-down DC/DC converter 8 (in the figure, buck-boost DC/DC 8), operational amplifier OP2, operational amplifier OP3, flip-flops (FF) 16, 17, connector Cn (t2) (which is electrically connected to thermistor T2 constituting an intake sensor) ( The figure shows the thermistor T2 connected to this connector), and a connector Cn(t3) electrically connected to the thermistor T3 constituting the heater temperature sensor (the figure shows the thermistor T3 connected to this connector).
- LSW resistor load switches
- LSW resistor load switches
- ROM Read Only Memory
- switch driver 7 a switch driver 7
- a ground terminal GND of each of the charging IC 2, LSW3, LSW4, LSW5, switch driver 7, step-up/step-down DC/DC converter 8, FF16, and FF17 is connected to a ground line.
- a power terminal VSS of the ROM 6 is connected to the ground line.
- a negative power supply terminal of each of the operational amplifiers OP2 and OP3 is connected to the ground line.
- the LED mounting board 163 (area 163A) has, as main electronic components, a Hall IC 13 including a Hall element constituting a panel detection sensor, LEDs L1 to L8, an operation switch OPS, a communication IC 15 and are provided.
- the communication IC 15 is a communication module for communicating with electronic devices such as smartphones.
- a power supply terminal VSS of the Hall IC 13 and a ground terminal GND of the communication IC 15 are each connected to a ground line.
- Communication IC 15 and MCU 1 are configured to be communicable via communication line LN.
- One end of the operation switch OPS is connected to the ground line, and the other end of the operation switch OPS is connected to the terminal P4 of the MCU1.
- the receptacle mounting board 162 (range 162A) includes a power connector electrically connected to the power supply BAT as a main electronic component (in the figure, the power supply BAT connected to this power connector is shown). ), a connector electrically connected to a thermistor T1 constituting a power supply temperature sensor (in the figure, the thermistor T1 connected to this connector is shown), and a boost DC/DC converter 9 (in the figure, a boost DC/DC 9 ), the protection IC 10, the overvoltage protection IC 11, the fuel gauge IC 12, the receptacle RCP, the switches S3 to S6 configured by MOSFETs, the operational amplifier OP1, and the heater HTR. (positive electrode side and negative electrode side) heater connectors Cn are provided.
- ground terminals GND of receptacle RCP, ground terminal GND of step-up DC/DC converter 9, power supply terminal VSS of protection IC 10, power supply terminal VSS of fuel gauge IC 12, ground terminal GND of overvoltage protection IC 11, and operational amplifier The negative power supply terminals of OP1 are each connected to the ground line.
- the Hall IC mounting substrate 164 (area 164A) is provided with a Hall IC 14 including a Hall element that constitutes a cover position sensor.
- a power terminal VSS of the Hall IC 14 is connected to the ground line.
- the output terminal OUT of the Hall IC 14 is connected to the terminal P8 of the MCU1.
- the MCU1 detects opening/closing of the slider 119 from a signal input to the terminal P8.
- a connector electrically connected to the vibration motor M is provided on the MCU mounting board 161 .
- the two power supply input terminals V BUS of the receptacle RCP are each connected to the input terminal IN of the overvoltage protection IC11 via a fuse Fs.
- the USB voltage V USB is supplied to the two power input terminals V BUS of the receptacle RCP.
- An input terminal IN of the overvoltage protection IC 11 is connected to one end of a voltage dividing circuit Pa consisting of a series circuit of two resistors.
- the other end of the voltage dividing circuit Pa is connected to the ground line.
- a connection point between the two resistors forming the voltage dividing circuit Pa is connected to the voltage detection terminal OVLo of the overvoltage protection IC11.
- the overvoltage protection IC 11 outputs the voltage input to the input terminal IN from the output terminal OUT when the voltage input to the voltage detection terminal OVLo is less than the threshold.
- the overvoltage protection IC 11 stops voltage output from the output terminal OUT (cuts off the electrical connection between the LSW3 and the receptacle RCP) when the voltage input to the voltage detection terminal OVLo exceeds the threshold (overvoltage). By doing so, the electronic components downstream of the overvoltage protection IC 11 are protected.
- the output terminal OUT of the overvoltage protection IC11 is connected to the input terminal VIN of the LSW3 and one end of the voltage dividing circuit Pc (series circuit of two resistors) connected to the MCU1. The other end of the voltage dividing circuit Pc is connected to the ground line. A connection point of the two resistors forming the voltage dividing circuit Pc is connected to the terminal P17 of the MCU1.
- An input terminal VIN of LSW3 is connected to one end of a voltage dividing circuit Pf consisting of a series circuit of two resistors.
- the other end of the voltage dividing circuit Pf is connected to the ground line.
- a connection point between the two resistors forming the voltage dividing circuit Pf is connected to the control terminal ON of the LSW3.
- the collector terminal of the bipolar transistor S2 is connected to the control terminal ON of LSW3.
- the emitter terminal of the bipolar transistor S2 is connected to the ground line.
- the base terminal of bipolar transistor S2 is connected to terminal P19 of MCU1.
- the output terminal VOUT of LSW3 is connected to the input terminal VBUS of charging IC2.
- the MCU1 turns on the bipolar transistor S2 while the USB connection is not made.
- the control terminal ON of LSW3 is connected to the ground line via the bipolar transistor S2, so that a low level signal is input to the control terminal ON of LSW3.
- the bipolar transistor S2 connected to LSW3 is turned off by MCU1 when the USB connection is made.
- the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. Therefore, when the USB connection is made and the bipolar transistor S2 is turned off, a high level signal is input to the control terminal ON of the LSW3.
- the LSW 3 outputs the USB voltage VUSB supplied from the USB cable from the output terminal VOUT. Even if the USB connection is made while the bipolar transistor S2 is not turned off, the control terminal ON of the LSW3 is connected to the ground line via the bipolar transistor S2. Therefore, it should be noted that a low level signal continues to be input to the control terminal ON of LSW3 unless MCU1 turns off bipolar transistor S2.
- the positive terminal of the power supply BAT is connected to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC2. Therefore, the power supply voltage V BAT of the power supply BAT is supplied to the protection IC 10 , the charging IC 2 and the step-up DC/DC converter 9 .
- a resistor Ra, a switch Sa composed of a MOSFET, a switch Sb composed of a MOSFET, and a resistor Rb are connected in series in this order to the negative terminal of the power supply BAT.
- a current detection terminal CS of the protection IC 10 is connected to a connection point between the resistor Ra and the switch Sa. Control terminals of the switches Sa and Sb are connected to the protection IC 10 . Both ends of the resistor Rb are connected to the fuel gauge IC12.
- the protection IC 10 acquires the value of the current flowing through the resistor Ra during charging and discharging of the power supply BAT from the voltage input to the current detection terminal CS, and when this current value becomes excessive (overcurrent), the switch Sa , the switch Sb is controlled to open and close to stop the charging or discharging of the power source BAT, thereby protecting the power source BAT. More specifically, when the protection IC 10 acquires an excessive current value while charging the power supply BAT, it stops charging the power supply BAT by turning off the switch Sb. When the protection IC 10 acquires an excessive current value during discharging of the power supply BAT, the protection IC 10 stops discharging the power supply BAT by turning off the switch Sa.
- the protection IC 10 performs opening/closing control of the switch Sa and the switch Sb to The power supply BAT is protected by stopping the charging or discharging of BAT. More specifically, when the protection IC 10 detects that the power supply BAT is overcharged, the protection IC 10 stops charging the power supply BAT by turning off the switch Sb. When detecting overdischarge of the power supply BAT, the protection IC 10 turns off the switch Sa to stop the discharge of the power supply BAT.
- a resistor Rt1 is connected to a connector connected to the thermistor T1 arranged near the power supply BAT.
- a series circuit of the resistor Rt1 and the thermistor T1 is connected to the ground line and the regulator terminal TREG of the fuel gauge IC12.
- a connection point between the thermistor T1 and the resistor Rt1 is connected to a thermistor terminal THM of the fuel gauge IC12.
- the thermistor T1 may be a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature increases, or an NTC (Negative Temperature Coefficient) thermistor whose resistance value decreases as the temperature increases.
- the fuel gauge IC 12 detects the current flowing through the resistor Rb, and based on the detected current value, indicates the remaining capacity of the power supply BAT, SOC (State Of Charge) indicating the state of charge, and SOH (State Of Charge) indicating the state of health. Health) and other battery information.
- the fuel gauge IC12 supplies a voltage to the voltage dividing circuit of the thermistor T1 and the resistor Rt1 from the built-in regulator connected to the regulator terminal TREG.
- the fuel gauge IC 12 acquires the voltage divided by this voltage dividing circuit from the thermistor terminal THM, and acquires temperature information regarding the temperature of the power supply BAT based on this voltage.
- the fuel gauge IC12 is connected to the MCU1 via a communication line LN for serial communication, and is configured to be able to communicate with the MCU1.
- the fuel gauge IC12 transmits the derived battery information and the acquired temperature information of the power supply BAT to the MCU1 in response to a request from the MCU1.
- serial communication requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that only one signal line is shown in FIGS. 10-19 for simplicity.
- the fuel gauge IC 12 has a notification terminal 12a.
- the notification terminal 12a is connected to the terminal P6 of the MCU1 and the cathode of a diode D2, which will be described later.
- the fuel gauge IC 12 detects an abnormality such as an excessive temperature of the power supply BAT, it notifies the MCU 1 of the occurrence of the abnormality by outputting a low-level signal from the notification terminal 12a. This low level signal is also input to the CLR ( ⁇ ) terminal of the FF 17 via the diode D2.
- One end of the reactor Lc is connected to the switching terminal SW of the step-up DC/DC converter 9 .
- the other end of this reactor Lc is connected to the input terminal VIN of the step-up DC/DC converter 9 .
- the step-up DC/DC converter 9 performs on/off control of the built-in transistor connected to the switching terminal SW to step up the input voltage and output it from the output terminal VOUT.
- the input terminal VIN of the step-up DC/DC converter 9 constitutes a power supply terminal of the step-up DC/DC converter 9 on the high potential side.
- the boost DC/DC converter 9 performs a boost operation when the signal input to the enable terminal EN is at high level.
- the signal input to the enable terminal EN of the boost DC/DC converter 9 may be controlled to be low level by the MCU1.
- the MCU 1 does not control the signal input to the enable terminal EN of the boost DC/DC converter 9, so that the potential of the enable terminal EN may be made indefinite.
- the output terminal VOUT of the step-up DC/DC converter 9 is connected to the source terminal of the switch S4 composed of a P-channel MOSFET.
- the gate terminal of switch S4 is connected to terminal P15 of MCU1.
- One end of the resistor Rs is connected to the drain terminal of the switch S4.
- the other end of the resistor Rs is connected to a positive heater connector Cn connected to one end of the heater HTR.
- a voltage dividing circuit Pb consisting of two resistors is connected to the connection point between the switch S4 and the resistor Rs.
- a connection point of the two resistors forming the voltage dividing circuit Pb is connected to the terminal P18 of the MCU1.
- a connection point between the switch S4 and the resistor Rs is further connected to the positive power supply terminal of the operational amplifier OP1.
- a connection line between the output terminal VOUT of the step-up DC/DC converter 9 and the source terminal of the switch S4 is connected to the source terminal of the switch S3 composed of a P-channel MOSFET.
- the gate terminal of switch S3 is connected to terminal P16 of MCU1.
- a drain terminal of the switch S3 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
- a circuit including the switch S3 and a circuit including the switch S4 and the resistor Rs are connected in parallel between the output terminal VOUT of the boost DC/DC converter 9 and the positive electrode side of the heater connector Cn. . Since the circuit including the switch S3 does not have a resistor, it has a lower resistance than the circuit including the switch S4 and the resistor Rs.
- the non-inverting input terminal of the operational amplifier OP1 is connected to the connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
- the inverting input terminal of the operational amplifier OP1 is connected to the negative heater connector Cn connected to the other end of the heater HTR and to the drain terminal of the switch S6 composed of an N-channel MOSFET.
- the source terminal of switch S6 is connected to the ground line.
- a gate terminal of the switch S6 is connected to the terminal P14 of the MCU1, the anode of the diode D4, and the enable terminal EN of the step-up DC/DC converter 9.
- the cathode of diode D4 is connected to the Q terminal of FF17.
- resistor R4 One end of a resistor R4 is connected to the output terminal of the operational amplifier OP1. The other end of the resistor R4 is connected to the terminal P9 of the MCU1 and the drain terminal of the switch S5 composed of an N-channel MOSFET. A source terminal of the switch S5 is connected to the ground line. A gate terminal of the switch S5 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
- the input terminal VBUS of charging IC2 is connected to the anode of each of LEDs L1-L8.
- the cathodes of the LEDs L1-L8 are connected to the control terminals PD1-PD8 of the MCU1 via current limiting resistors. That is, LEDs L1 to L8 are connected in parallel to the input terminal VBUS.
- the LEDs L1 to L8 are operable by the USB voltage V USB supplied from the USB cable connected to the receptacle RCP and the voltage supplied from the power supply BAT via the charging IC2.
- the MCU 1 incorporates transistors (switching elements) connected to each of the control terminals PD1 to PD8 and the ground terminal GND.
- the MCU1 turns on the transistor connected to the control terminal PD1 to energize the LED L1 to light it, and turns off the transistor connected to the control terminal PD1 to turn off the LED L1.
- the brightness and light emission pattern of the LED L1 can be dynamically controlled.
- LEDs L2 to L8 are similarly controlled by the MCU1.
- the charging IC2 has a charging function of charging the power supply BAT based on the USB voltage VUSB input to the input terminal VBUS.
- the charging IC 2 acquires the charging current and charging voltage of the power supply BAT from terminals and wiring (not shown), and based on these, performs charging control of the power supply BAT (power supply control from the charging terminal bat to the power supply BAT). Also, the charging IC 2 may acquire the temperature information of the power supply BAT transmitted from the fuel gauge IC 12 to the MCU 1 from the MCU 1 through serial communication using the communication line LN, and use it for charging control.
- the charging IC2 further comprises a V BAT power pass function and an OTG function.
- the V BAT power pass function is a function of outputting from the output terminal SYS a system power supply voltage Vcc0 substantially matching the power supply voltage V BAT input to the charging terminal bat.
- the OTG function is a function for outputting from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input to the charging terminal bat.
- ON/OFF of the OTG function of the charging IC 2 is controlled by the MCU 1 through serial communication using the communication line LN.
- the power supply voltage V BAT input to the charging terminal bat may be directly output from the input terminal VBUS. In this case, power supply voltage VBAT and system power supply voltage Vcc4 are substantially the same.
- the output terminal SYS of the charging IC 2 is connected to the input terminal VIN of the step-up/step-down DC/DC converter 8 .
- One end of a reactor La is connected to the switching terminal SW of the charging IC2.
- the other end of the reactor La is connected to the output terminal SYS of the charging IC2.
- a charge enable terminal CE ( ⁇ ) of the charge IC2 is connected to a terminal P22 of the MCU1 via a resistor.
- the collector terminal of the bipolar transistor S1 is connected to the charge enable terminal CE ( ⁇ ) of the charge IC2.
- the emitter terminal of the bipolar transistor S1 is connected to the output terminal VOUT of the LSW4 which will be described later.
- the base terminal of bipolar transistor S1 is connected to the Q terminal of FF17.
- one end of a resistor Rc is connected to the charge enable terminal CE ( ⁇ ) of the charge IC2.
- the other end of the resistor Rc is connected to the output terminal VOUT of LSW4.
- a resistor is connected to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 .
- the signal input to the enable terminal EN of the step-up/step-down DC/DC converter 8 is at a high level. Then, the step-up/step-down DC/DC converter 8 starts step-up operation or step-down operation.
- the step-up/step-down DC/DC converter 8 steps up or steps down the system power supply voltage Vcc0 input to the input terminal VIN by switching control of the built-in transistor connected to the reactor Lb to generate the system power supply voltage Vcc1, and the output terminal VOUT.
- Output from The output terminal VOUT of the buck-boost DC/DC converter 8 includes the feedback terminal FB of the buck-boost DC/DC converter 8, the input terminal VIN of the LSW 4, the input terminal VIN of the switch driver 7, the power supply terminal VCC and the D terminal of the FF 16. and connected to A wiring to which system power supply voltage Vcc1 output from output terminal VOUT of step-up/step-down DC/DC converter 8 is supplied is referred to as power supply line PL1.
- the LSW4 When the signal input to the control terminal ON becomes high level, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN from the output terminal VOUT.
- the control terminal ON of LSW4 and the power supply line PL1 are connected via a resistor. Therefore, by supplying the system power supply voltage Vcc1 to the power supply line PL1, a high level signal is input to the control terminal ON of the LSW4.
- the voltage output from LSW4 is the same as the system power supply voltage Vcc1 if wiring resistance and the like are ignored. Described as voltage Vcc2.
- the output terminal VOUT of the LSW4 is connected to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM6, the emitter terminal of the bipolar transistor S1, and the resistor Rc. , and the power supply terminal VCC of the FF 17 .
- a wiring to which system power supply voltage Vcc2 output from output terminal VOUT of LSW4 is supplied is referred to as power supply line PL2.
- the LSW5 When the signal input to the control terminal ON becomes high level, the LSW5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT.
- a control terminal ON of LSW5 is connected to terminal P23 of MCU1.
- the voltage output from LSW5 is the same as the system power supply voltage Vcc2 if wiring resistance and the like are ignored. Described as voltage Vcc3.
- a wiring to which system power supply voltage Vcc3 output from output terminal VOUT of LSW5 is supplied is referred to as power supply line PL3.
- a series circuit of a thermistor T2 and a resistor Rt2 is connected to the power supply line PL3, and the resistor Rt2 is connected to the ground line.
- the thermistor T2 and the resistor Rt2 form a voltage dividing circuit, and their connection point is connected to the terminal P21 of the MCU1.
- the MCU1 detects the temperature variation (resistance value variation) of the thermistor T2 based on the voltage input to the terminal P21, and determines the presence or absence of the puff operation based on the amount of temperature variation.
- a series circuit of a thermistor T3 and a resistor Rt3 is connected to the power supply line PL3, and the resistor Rt3 is connected to the ground line.
- the thermistor T3 and the resistor Rt3 form a voltage dividing circuit, and their connection point is connected to the terminal P13 of the MCU1 and the inverting input terminal of the operational amplifier OP2.
- the MCU1 detects the temperature of the thermistor T3 (corresponding to the temperature of the heater HTR) based on the voltage input to the terminal P13.
- a series circuit of a thermistor T4 and a resistor Rt4 is connected to the power supply line PL3, and the resistor Rt4 is connected to the ground line.
- the thermistor T4 and the resistor Rt4 form a voltage dividing circuit, and the connection point between them is connected to the terminal P12 of the MCU1 and the inverting input terminal of the operational amplifier OP3.
- the MCU1 detects the temperature of the thermistor T4 (corresponding to the temperature of the case 110) based on the voltage input to the terminal P12.
- a source terminal of a switch S7 composed of a MOSFET is connected to the power supply line PL2.
- the gate terminal of switch S7 is connected to terminal P20 of MCU1.
- a drain terminal of the switch S7 is connected to one of a pair of connectors to which the vibration motor M is connected. The other of the pair of connectors is connected to the ground line.
- the MCU1 can control the opening/closing of the switch S7 by manipulating the potential of the terminal P20, and vibrate the vibration motor M in a specific pattern.
- a dedicated driver IC may be used instead of the switch S7.
- a positive power supply terminal of the operational amplifier OP2 and a voltage dividing circuit Pd (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP2 are connected to the power supply line PL2.
- a connection point between the two resistors forming the voltage dividing circuit Pd is connected to the non-inverting input terminal of the operational amplifier OP2.
- the operational amplifier OP2 outputs a signal corresponding to the temperature of the heater HTR (signal corresponding to the resistance value of the thermistor T3).
- the thermistor T3 since the thermistor T3 has the NTC characteristic, the higher the temperature of the heater HTR (the temperature of the thermistor T3), the lower the output voltage of the operational amplifier OP2.
- the output of the voltage dividing circuit of the thermistor T3 and the resistor Rt3 is connected to the non-inverting input terminal of the operational amplifier OP2, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP2.
- the output of the pressure circuit Pd may be connected.
- a positive power supply terminal of the operational amplifier OP3 and a voltage dividing circuit Pe (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP3 are connected to the power supply line PL2.
- a connection point between the two resistors forming the voltage dividing circuit Pe is connected to the non-inverting input terminal of the operational amplifier OP3.
- the operational amplifier OP3 outputs a signal corresponding to the temperature of the case 110 (a signal corresponding to the resistance value of the thermistor T4).
- the thermistor T4 having the NTC characteristic is used, so the higher the temperature of the case 110, the lower the output voltage of the operational amplifier OP3.
- the output of the voltage dividing circuit of the thermistor T4 and the resistor Rt4 is connected to the non-inverting input terminal of the operational amplifier OP3, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP3.
- the output of the pressure circuit Pe may be connected.
- a resistor R1 is connected to the output terminal of the operational amplifier OP2.
- a cathode of a diode D1 is connected to the resistor R1.
- the anode of the diode D1 is connected to the output terminal of the operational amplifier OP3, the D terminal of the FF17, and the CLR ( ⁇ ) terminal of the FF17.
- a connection line between the resistor R1 and the diode D1 is connected to a resistor R2 connected to the power supply line PL1. Also, the CLR ( ⁇ ) terminal of the FF 16 is connected to this connection line.
- resistor R3 One end of a resistor R3 is connected to the connection line between the anode of the diode D1 and the output terminal of the operational amplifier OP3 and the D terminal of the FF17.
- the other end of resistor R3 is connected to power supply line PL2.
- the anode of the diode D2 connected to the notification terminal 12a of the fuel gauge IC12, the anode of the diode D3, and the CLR ( ⁇ ) terminal of the FF 17 are connected to this connection line.
- the cathode of diode D3 is connected to terminal P5 of MCU1.
- the FF16 When the temperature of the heater HTR becomes excessive and the signal output from the operational amplifier OP2 becomes low and the signal input to the CLR ( ⁇ ) terminal becomes low level, the FF16 outputs a high level signal from the Q ( ⁇ ) terminal. Input to terminal P11 of MCU1. A high-level system power supply voltage Vcc1 is supplied from the power supply line PL1 to the D terminal of the FF16. Therefore, in the FF 16, a low level signal continues to be output from the Q ( ⁇ ) terminal unless the signal input to the CLR ( ⁇ ) terminal operating in negative logic becomes low level.
- the signal input to the CLR ( ⁇ ) terminal of the FF 17 is when the temperature of the heater HTR becomes excessive, when the temperature of the case 110 becomes excessive, and when an abnormality is detected from the notification terminal 12a of the fuel gauge IC 12.
- the low-level signal shown When the low-level signal shown is output, it becomes low-level.
- the FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR ( ⁇ ) terminal becomes low level.
- This low-level signal is input to terminal P10 of MCU1, the gate terminal of switch S6, the enable terminal EN of boost DC/DC converter 9, and the base terminal of bipolar transistor S1 connected to charging IC2. be.
- the CE ( ⁇ ) terminal of the charging IC2 is of negative logic, the charging of the power source BAT is stopped. As a result, the heating of the heater HTR and the charging of the power supply BAT are stopped. Even if the MCU1 attempts to output a low-level enable signal from the terminal P22 to the charge enable terminal CE ( ⁇ ) of the charging IC2, when the bipolar transistor S1 is turned on, the amplified current is transferred from the collector terminal to the MCU1 and the charge enable terminal CE ( ⁇ ) of the charge IC2. Note that a high level signal is input to the charge enable terminal CE ( ⁇ ) of the charge IC2.
- a high-level system power supply voltage Vcc2 is supplied from the power supply line PL2 to the D terminal of the FF17. Therefore, the FF 17 continues to output a high level signal from the Q terminal unless the signal input to the CLR ( ⁇ ) terminal operating in negative logic becomes low level.
- a low level signal is output from the output terminal of the operational amplifier OP3
- a low level signal is input to the CLR ( ⁇ ) terminal of the FF17 regardless of the level of the signal output from the output terminal of the operational amplifier OP2.
- the low level signal output from the output terminal of the operational amplifier OP3 is not affected by the high level signal due to the diode D1. sea bream.
- the high level signal is passed through the diode D1. signal.
- the power line PL2 is further branched from the MCU mounting board 161 toward the LED mounting board 163 and the Hall IC mounting board 164 side.
- the power terminal VDD of the hall IC 13, the power terminal VCC of the communication IC 15, and the power terminal VDD of the hall IC 14 are connected to the branched power line PL2.
- the output terminal OUT of the Hall IC 13 is connected to the terminal P3 of the MCU1 and the terminal SW2 of the switch driver 7. When the outer panel 115 is removed, a low level signal is output from the output terminal OUT of the Hall IC 13 .
- the MCU 1 determines whether or not the outer panel 115 is attached based on the signal input to the terminal P3.
- a series circuit (a series circuit of a resistor and a capacitor) connected to the operation switch OPS is provided on the LED mounting board 163 .
- This series circuit is connected to power supply line PL2.
- a connection point between the resistor and the capacitor in this series circuit is connected to the terminal P4 of the MCU 1, the operation switch OPS, and the terminal SW1 of the switch driver 7.
- FIG. When the operation switch OPS is not pressed, the operation switch OPS is not conductive, and the signals input to the terminal P4 of the MCU1 and the terminal SW1 of the switch driver 7 are at a high level due to the system power supply voltage Vcc2.
- the operation switch OPS When the operation switch OPS is pressed and turned on, the signals input to the terminal P4 of the MCU 1 and the terminal SW1 of the switch driver 7 are connected to the ground line, and thus become low level.
- the MCU1 detects the operation of the operation switch OPS from the signal input to the terminal P4.
- the switch driver 7 is provided with a reset input terminal RSTB.
- the reset input terminal RSTB is connected to the control terminal ON of LSW4.
- the switch driver 7 By outputting a low level signal from the reset input terminal RSTB, the output operation of LSW4 is stopped.
- the operation switch OPS which is originally pushed down via the pressing portion 117 of the outer panel 115, is directly pushed down by the user with the outer panel 115 removed, the signal is input to the terminals SW1 and SW2 of the switch driver 7. become low level.
- FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode.
- FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode.
- FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode.
- FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode.
- FIG. 17 is a diagram for explaining the operation of the electric circuit when the temperature of the heater HTR is detected in the heating mode.
- FIG. 18 is a diagram for explaining the operation of the electric circuit in charging mode.
- FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode.
- FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode.
- FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode.
- FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode.
- FIG. 17 is a diagram for explaining the operation
- FIGS. 13 to 19 are diagrams for explaining the operation of the electric circuit when the MCU 1 is reset (restarted).
- the terminals surrounded by dashed ellipses have inputs or outputs such as the power supply voltage V BAT , the USB voltage V USB , and the system power supply voltage. It shows the terminals that have been made.
- the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2.
- FIG. 1 the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2.
- MCU1 enables the V BAT power pass function of charging IC2 and disables the OTG function and charging function. Since the USB voltage VUSB is not input to the input terminal VBUS of the charging IC2, the VBAT power pass function of the charging IC2 is enabled. Since the signal for enabling the OTG function is not output from the MCU1 to the charging IC2 from the communication line LN, the OTG function is disabled. Therefore, the charging IC2 generates the system power supply voltage Vcc0 from the power supply voltage VBAT input to the charging terminal bat, and outputs it from the output terminal SYS.
- the system power supply voltage Vcc0 output from the output terminal SYS is input to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 .
- the buck-boost DC/DC converter 8 is enabled by inputting a high-level system power supply voltage Vcc0 to an enable terminal EN of positive logic, generates a system power supply voltage Vcc1 from the system power supply voltage Vcc0, and outputs it to an output terminal VOUT.
- Output from The system power supply voltage Vcc1 output from the output terminal VOUT of the buck-boost DC/DC converter 8 is applied to the input terminal VIN of the LSW4, the control terminal ON of the LSW4, the input terminal VIN of the switch driver 7, the power supply terminal VCC of the FF16, and the D terminal and , respectively.
- the LSW4 When the system power supply voltage Vcc1 is input to the control terminal ON, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN as the system power supply voltage Vcc2 from the output terminal VOUT.
- the system power supply voltage Vcc2 output from the LSW4 is applied to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the Hall IC 13, the power supply terminal VCC of the communication IC 15, and the power supply terminal VDD of the Hall IC 14. is entered.
- the system power supply voltage Vcc2 is the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM 6, the resistor Rc and the bipolar transistor S1 connected to the charge enable terminal CE ( ⁇ ) of the charging IC2, and the FF17. They are supplied to the power supply terminal VCC, the positive power supply terminal of the operational amplifier OP3, the voltage dividing circuit Pe, the positive power supply terminal of the operational amplifier OP2, and the voltage dividing circuit Pd.
- the bipolar transistor S1 connected to the charging IC2 is off unless a low level signal is output from the Q terminal of the FF17. Therefore, the system power supply voltage Vcc2 generated by the LSW4 is also input to the charging enable terminal CE ( ⁇ ) of the charging IC2. Since the charge enable terminal CE ( ⁇ ) of the charge IC2 is of negative logic, the charge function of the charge IC2 is turned off in this state.
- LSW 5 stops outputting system power supply voltage Vcc3, so power supply to electronic components connected to power supply line PL3 is stopped. Also, in the sleep mode, the OTG function of the charging IC 2 is stopped, so power supply to the LEDs L1 to L8 is stopped.
- Fig. 14> When the MCU 1 detects that the signal input to the terminal P8 becomes high level from the sleep mode state of FIG. 13 and the slider 119 is opened, it inputs a high level signal from the terminal P23 to the control terminal ON of the LSW5. . As a result, the LSW 5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT as the system power supply voltage Vcc3. The system power supply voltage Vcc3 output from the output terminal VOUT of the LSW5 is supplied to the thermistor T2, the thermistor T3, and the thermistor T4.
- the MCU1 detects that the slider 119 is opened, the MCU1 enables the OTG function of the charging IC2 via the communication line LN.
- the charging IC2 outputs from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input from the charging terminal bat.
- the system power supply voltage Vcc4 output from the input terminal VBUS is It is fed to the LEDs L1-L8.
- Fig. 15> From the state of FIG. 14, when the signal input to the terminal P4 becomes low level (the operation switch OPS is pressed), the MCU1 performs various settings necessary for heating, and then boosts the voltage from the terminal P14. A high-level enable signal is input to the enable terminal EN of the DC/DC converter 9 . As a result, the step-up DC/DC converter 9 outputs the driving voltage V bst obtained by stepping up the power supply voltage V BAT from the output terminal VOUT. The drive voltage Vbst is supplied to switch S3 and switch S4. In this state, the switches S3 and S4 are off. Also, the switch S6 is turned on by the high-level enable signal output from the terminal P14.
- the negative terminal of the heater HTR is connected to the ground line, and the heater HTR can be heated by turning on the switch S3.
- the mode shifts to the heating mode.
- Fig. 16> In the state of FIG. 15, the MCU1 starts switching control of the switch S3 connected to the terminal P16 and switching control of the switch S4 connected to the terminal P15. These switching controls may be automatically started when the heating initial setting mode described above is completed, or may be started by further pressing the operation switch OPS. Specifically, as shown in FIG. 16, the MCU 1 turns on the switch S3 and turns off the switch S4 to supply the driving voltage Vbst to the heater HTR to heat the heater HTR for generating aerosol. and temperature detection control for detecting the temperature of the heater HTR by turning off the switch S3 and turning on the switch S4 as shown in FIG.
- the driving voltage Vbst is also supplied to the gate of the switch S5 to turn on the switch S5. Further, during heating control, the drive voltage Vbst that has passed through the switch S3 is also input to the positive power supply terminal of the operational amplifier OP1 via the resistor Rs.
- the resistance value of the resistor Rs is negligibly small compared to the internal resistance value of the operational amplifier OP1. Therefore, during heating control, the voltage input to the positive power supply terminal of the operational amplifier OP1 is approximately equal to the drive voltage Vbst .
- the resistance value of the resistor R4 is greater than the ON resistance value of the switch S5.
- the switch S5 is turned on during heating control.
- the output voltage of the operational amplifier OP1 is divided by the voltage dividing circuit of the resistor R4 and the switch S5 and input to the terminal P9 of the MCU1. Since the resistance value of the resistor R4 is higher than the ON resistance value of the switch S5, the voltage input to the terminal P9 of the MCU1 is sufficiently reduced. This can prevent a large voltage from being input from the operational amplifier OP1 to the MCU1.
- Fig. 17> As shown in FIG. 17, during temperature detection control, the driving voltage Vbst is input to the positive power supply terminal of the operational amplifier OP1 and also to the voltage dividing circuit Pb. The voltage divided by the voltage dividing circuit Pb is input to the terminal P18 of the MCU1. Based on the voltage input to the terminal P18, the MCU1 acquires the reference voltage V temp applied to the series circuit of the resistor Rs and the heater HTR during temperature detection control.
- the driving voltage V bst (reference voltage V temp ) is supplied to the series circuit of the resistor Rs and the heater HTR.
- a voltage V heat obtained by dividing the driving voltage V bst (reference voltage V temp ) by the resistor Rs and the heater HTR is input to the non-inverting input terminal of the operational amplifier OP1. Since the resistance value of the resistor Rs is sufficiently higher than the resistance value of the heater HTR, the voltage V heat is sufficiently lower than the driving voltage V bst .
- the switch S5 is turned off by supplying the low voltage V heat to the gate terminal of the switch S5.
- the operational amplifier OP1 amplifies and outputs the difference between the voltage input to the inverting input terminal and the voltage V heat input to the non-inverting input terminal.
- the output signal of operational amplifier OP1 is input to terminal P9 of MCU1.
- the MCU1 obtains the temperature of the heater HTR based on the signal input to the terminal P9, the reference voltage V temp obtained based on the input voltage of the terminal P18, and the known electrical resistance value of the resistor Rs. . Based on the acquired temperature of the heater HTR, the MCU 1 performs heating control of the heater HTR (for example, control so that the temperature of the heater HTR becomes a target temperature).
- the MCU 1 can obtain the temperature of the heater HTR even during periods when the switches S3 and S4 are turned off (periods when the heater HTR is not energized). Specifically, the MCU1 obtains the temperature of the heater HTR based on the voltage input to the terminal P13 (the output voltage of the voltage dividing circuit composed of the thermistor T3 and the resistor Rt3).
- the MCU 1 can acquire the temperature of the case 110 at any timing. Specifically, the MCU1 obtains the temperature of the case 110 based on the voltage input to the terminal P12 (the output voltage of the voltage dividing circuit composed of the thermistor T4 and the resistor Rt4).
- FIG. 18 exemplifies a case where a USB connection is made in sleep mode.
- the USB voltage VUSB is input to the input terminal VIN of LSW3 via the overvoltage protection IC11.
- the USB voltage V USB is also supplied to a voltage dividing circuit Pf connected to the input terminal VIN of LSW3. Since the bipolar transistor S2 is ON immediately after the USB connection is made, the signal input to the control terminal ON of the LSW3 remains at a low level.
- the USB voltage V USB is also supplied to the voltage dividing circuit Pc connected to the terminal P17 of the MCU1, and the voltage divided by this voltage dividing circuit Pc is input to the terminal P17.
- the MCU1 detects that the USB connection has been made based on the voltage input to the terminal P17.
- the MCU1 When the MCU1 detects that the USB connection has been made, the MCU1 turns off the bipolar transistor S2 connected to the terminal P19.
- the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3.
- a high-level signal is input to the control terminal ON of LSW3, and LSW3 outputs the USB voltage VUSB from the output terminal VOUT.
- the USB voltage VUSB output from LSW3 is input to the input terminal VBUS of charging IC2.
- the USB voltage V_USB output from LSW3 is directly supplied to LEDs L1 to L8 as system power supply voltage Vcc4.
- the MCU1 When the MCU1 detects that the USB connection has been established, the MCU1 further outputs a low-level enable signal from the terminal P22 to the charge enable terminal CE( ⁇ ) of the charge IC2. As a result, the charging IC 2 enables the charging function of the power supply BAT, and starts charging the power supply BAT with the USB voltage VUSB input to the input terminal VBUS.
- the MCU1 When the USB connection is made in the active mode, when the MCU1 detects that the USB connection is made, it turns off the bipolar transistor S2 connected to the terminal P19. A low-level enable signal is output to the charge enable terminal CE ( ⁇ ) of , and the OTG function of the charge IC 2 is turned off by serial communication using the communication line LN. As a result, the system power supply voltage Vcc4 supplied to the LEDs L1 to L8 is switched from the voltage generated by the OTG function of the charging IC 2 (voltage based on the power supply voltage VBAT) to the USB voltage VUSB output from the LSW3. . The LEDs L1 to L8 do not operate unless the MCU1 turns on the built-in transistors. This prevents an unstable voltage from being supplied to the LEDs L1-L8 during the on-to-off transition of the OTG function.
- the switch driver 7 outputs a low-level signal from the reset input terminal RSTB when it reaches a predetermined time, or when the signal input to either the terminal SW1 or the terminal SW2 becomes high level, the reset input terminal RSTB is output. return the signal output from to high level. As a result, the control terminal ON of LSW4 becomes high level, and the state in which the system power supply voltage Vcc2 is supplied to each part is restored.
- FIG. 20 is a circuit diagram of main parts of the electric circuit shown in FIG. 10, showing the main electronic components used for heating and temperature detection of the heater HTR.
- FIG. 20 shows a reactor Ld, a resistor RS4 , an npn-type bipolar transistor TS4 , and a voltage dividing circuit Pb as electronic components and nodes whose illustration or reference numerals are omitted in FIG.
- the resistors R Pb1 and R Pb2 , the parasitic diode D5 of the switch S5, the nodes N1 to N8, and the operational amplifiers OP4, OP5, ADC (analog-digital converter) 1a, and ADC1b built in the MCU1 are It is shown.
- Various resistors resistor R S4 , resistor Rs, resistor R Pb1 , resistor R Pb2 , and resistor R4) shown in FIG. 20 are fixed resistors having predetermined resistance values.
- resistor RS4 One end of resistor RS4 is connected to the gate terminal of switch S4 .
- the other end of resistor RS4 is connected to the collector terminal of bipolar transistor TS4 .
- the emitter terminal of bipolar transistor TS4 is connected to ground.
- the base terminal of bipolar transistor TS4 is connected to terminal P15 of MCU1.
- the reactor Ld is provided for the purpose of reducing noise in the drive voltage Vbst output from the boost DC/DC converter 9 .
- Reactor Ld is connected between the source terminal of switch S4 and the output terminal VOUT of boost DC/DC converter 9 .
- another noise reduction first reactor is provided between the switch S4 and the resistor Rs
- another noise reduction reactor is provided between the resistor Rs and the heater connector Cn(+) on the positive electrode side.
- a second reactor for reduction may be provided. Any one of the reactor Ld, the first reactor, and the second reactor may be omitted, or any two of them may be omitted.
- these reactors for noise reduction are not essential and can be omitted.
- the node N1 connects the source terminal of the switch S3 and one end of the reactor Ld.
- the node N1 is connected to the output terminal VOUT of the boost DC/DC converter 9 .
- the node N7 connects the heater connector Cn(+) on the positive electrode side (+ pole) and the non-inverting input terminal of the operational amplifier OP1.
- the node N2 connects the drain terminal of the switch S3 and the node N7.
- the node N4 connects the node N2 and the resistor Rs.
- the node N4 is connected to the gate terminal of the switch S5.
- the node N5 connects the end of the resistor R4 opposite to the operational amplifier OP1 side and the drain terminal of the switch S5. Node N5 is connected to terminal P9 of MCU1.
- a node N3 connects the drain terminal of the switch S4 and the opposite end of the resistor Rs on the node N4 side.
- the node N3 is connected to the positive power supply terminal of the operational amplifier OP1 and one end of the resistor RPb1 .
- a node N6 connects the other end of the resistor RPb1 and one end of the resistor RPb2 .
- Node N6 is connected to terminal P18 of MCU1.
- the other end of resistor RPb2 is connected to ground.
- the node N8 connects the heater connector Cn(-) on the negative electrode side (- pole) and the drain terminal of the switch S6.
- the node N8 is connected to the inverting input terminal of the operational amplifier OP1.
- the parasitic diode D5 has a configuration in which the anode is connected to the source terminal of the switch S5 and the cathode is connected to the drain terminal of the switch S5.
- the flow when the switch S4 is turned on is as follows. First, in a state where the drive voltage Vbst is being output from the output terminal VOUT of the step -up DC/DC converter 9, the MCU 1 turns on the bipolar transistor TS4 (current amplified from the emitter terminal of the bipolar transistor TS4 is output). This connects the gate terminal of the switch S4 to ground via the resistor R S4 , the collector terminal of the bipolar transistor T S4 and the emitter terminal of the bipolar transistor T S4 .
- the gate voltage of the switch S4 becomes close to the ground potential (0 V in this embodiment), and the absolute value of the gate-source voltage of the switch S4 becomes larger than the absolute value of the threshold voltage of the switch S4.
- switch S4 is turned on.
- the bipolar transistor TS4 is turned off, the absolute value of the gate-source voltage of the switch S4 becomes equal to or less than the absolute value of the threshold voltage of the switch S4, so the switch S4 is turned off.
- Gate-to-source voltage refers to the voltage applied between the gate and source terminals. Since the switch S4 in this embodiment is a P-channel MOSFET, a negative gate-source voltage is required to turn on the switch S4.
- the switch S4 when the potential of the source terminal becomes lower than the potential of the gate terminal by less than the threshold voltage, the switch S4 is turned on.
- the threshold voltage of the switch S4 is -4.5V
- the source potential is 4.9V
- the gate potential is 0V
- the gate-source voltage is -4.9V. Since -4.9V is lower than the threshold voltage of -4.5V, the switch S4 is turned on.
- the source potential is 4.9V and the gate potential is 3.3V
- the voltage between the gate and the source Since -1.6V is higher than the threshold voltage of -4.5V, the switch S4 is turned off.
- the gate-source voltage and the threshold voltage of a P-channel MOSFET are described as absolute values ignoring signs.
- the system power supply voltage Vcc2 (the MCU1 power supply voltage input to the MCU1 power supply terminal VDD) and the driving voltage Vbst described above preferably have the following values.
- FIG. 21 is a diagram showing an example of voltage changes input to the gate terminals of the switches S3 and S4 in the heating mode. Note that the switches S3 and S4 are turned on when the voltage input to the gate terminal is at a low level because the switches S3 and S4 are P-channel MOSFETs in this embodiment.
- FIG. 21 shows a driving example EX1 and a driving example EX2.
- the MCU1 alternately turns on and off the switches S3 and S4. That is, in the drive example EX1, the MCU1 turns off the switch S4 while the switch S3 is on, and turns on the switch S4 while the switch S3 is off.
- the period during which the voltage input to the gate terminal of the switch S3 is at low level and the period during which the voltage input to the gate terminal of the switch S4 is at low level do not overlap.
- the drive example EX2 is different from the drive example EX1 in that the period during which the switch S3 is turned on and the period during which the switch S4 is turned on partially overlap.
- the period during which the voltage input to the gate terminal of the switch S3 is at low level overlaps with the period during which the voltage input to the gate terminal of the switch S4 is at low level.
- FIG. 21 shows the control cycle Tc of the MCU1.
- the MCU 1 keeps the switch S4 ON time constant and controls the switch S3 ON time. That is, the MCU 1 supplies power to the heater HTR by PWM (Pulse Width Modulation) control during heating control.
- the maximum value of the time during which the switch S3 is turned on is the control period Tc, excluding the fixed time during which the switch S4 is turned on.
- the certain time period during which the switch S4 is turned on is sufficiently smaller than the maximum value of the time period during which the switch S3 is turned on, for example, 1/10 or less of this maximum value.
- the switch S3 may be turned on multiple times during the control period Tc. In this case, if the duty ratio calculated by the PWM control is less than 100%, the switch S3 is intermittently turned on during the control period Tc excluding the certain time during which the switch S4 is turned on. Become.
- the MCU1 controls so that the switch S4 is switched from off to on at the timing when the switch S3 is switched from on to off.
- the MCU 1 changes the ON time of the switch S3 by fixing the timing of turning off the switch S3 and controlling the timing of turning on the switch S3.
- the MCU 1 may supply power to the heater HTR by PFM (Pulse Frequency Modulation) control.
- FIG. 22 is a diagram showing current flow during heating control in the heating mode.
- the switch S3 is turned on and the switch S4 is turned off.
- a first heating discharge path HR1 through which current flows in the order of node N1, switch S3, node N2, node N7, heater HTR, node N8, switch S6, and ground;
- a second heating discharge path HR2 through which current flows in order of N4 and the gate terminal of switch S5, and a current in order of node N1, switch S3, node N2, node N4, resistor Rs, node N3, and the positive power supply terminal of operational amplifier OP1.
- a third heating discharge path HR3 through which the current flows is formed.
- a voltage lower than the drive voltage Vbst (the voltage after stepping down the drive voltage Vbst by the resistor Rs) is supplied to the positive power supply terminal of the operational amplifier OP1, and the operational amplifier OP1 is operational. That is, during heating control, due to the presence of the third heating discharge path HR3, the voltage applied between the positive power supply terminal and the negative power supply terminal of the operational amplifier OP1 is lower than the drive voltage Vbst (however, the MCU1 power supply voltage is higher than the system power supply voltage Vcc2).
- FIG. 23 is a diagram showing current flow during temperature detection control in the heating mode.
- the switch S3 is turned off and the switch S4 is turned on.
- the resistance value of reactor Ld and the ON resistance value of switch S4 are sufficiently small. Therefore, due to the presence of the third detection discharge path MR3, the positive power supply terminal of the operational amplifier OP1 is supplied with a voltage (reference voltage V temp ) that is substantially the same as the drive voltage Vbst , thereby enabling the operational amplifier OP1 to operate. .
- V temp reference voltage
- the power supply voltage of the operational amplifier OP1 becomes higher than during heating control, so the upper limit value of the differential input value of the operational amplifier OP1 can be increased.
- the voltage V heat obtained by dividing the voltage of the node N3 (reference voltage V temp ) by the resistor Rs and the heater HTR is input to the non-inverting input terminal of the operational amplifier OP1.
- the potential of the node N7 matches the potential of the node N4 if wiring resistance is ignored. Therefore, the voltage input to the gate terminal of the switch S5 is also the same as the voltage V heat . Since the voltage V heat is equal to or lower than the threshold voltage of the switch S5, the switch S5 is turned off in the state of FIG. Thus, it is preferable to determine the resistance value of the resistor Rs so that the voltage V heat is equal to or lower than the threshold voltage of the switch S5.
- the output voltage V OUT of the operational amplifier OP1 is input to the terminal P9 of the MCU1 without being divided.
- the parasitic diode D5 behaves like a Zener diode. Therefore, even if the output voltage V OUT of the operational amplifier OP1 becomes excessive due to some factor, it is possible to prevent the voltage input to the terminal P9 of the MCU1 from increasing.
- the resistance values of resistor R4 and resistor Rs are determined so that the voltage input to terminal P9 of MCU1 is equal to or lower than the operating voltage (system power supply voltage Vcc2) of MCU1. ing.
- the output of the operational amplifier OP1 is Voltage V OUT is represented by the following equation (1).
- the terms excluding the amplification factor A on the right side of the equation (1) correspond to the voltage V heat .
- the subsequent voltage is converted into a digital value (denoted as ADC_V temp ) by the built-in ADC 1a.
- the inverting input terminals of the operational amplifier OP4 and/or the operational amplifier OP5 are not necessarily connected to the ground potential, and may be connected to another reference potential. If this reference potential is sufficiently high, the reference potential may be connected to the non-inverting input terminal, and the divided voltage value of the output voltage V OUT or the reference voltage V temp may be connected to the inverting input terminal.
- the output of ADC1a and operational amplifier OP4 causes temperature drift error ⁇ 1 due to the temperature inside MCU1
- the output of ADC1b and operational amplifier OP5 causes temperature drift error ⁇ 2 due to the temperature inside MCU1. That is, strictly speaking, the digital value output from ADC 1a is ADC_V temp (1+ ⁇ 1), and strictly speaking, the digital value output from ADC 1b is ADC_V OUT (1+ ⁇ 2).
- Equation (3) is obtained by substituting the digital value ADC_V temp (1+ ⁇ 1) for V temp in equation (2) and substituting the digital value ADC_V OUT (1+ ⁇ 2) for V OUT in equation (2).
- ADC1a and operational amplifier OP4 and ADC1b and operational amplifier OP5 are provided inside MCU1, respectively. Therefore, the temperature drift error ⁇ 1 and the temperature drift error ⁇ 2 can be regarded as substantially the same. That is, (1+ ⁇ 1) and (1+ ⁇ 2) in equation (3) are the same value. Therefore, the temperature drift error is canceled in equation (3).
- the MCU 1 derives the resistance value RHTR of the heater HTR by calculating the equation (3). Since the heater HTR has a characteristic that the resistance value changes according to the temperature, the temperature of the heater HTR can be obtained by deriving the resistance value RHTR.
- equation (3) allows the temperature drift error that can occur in the output voltage V OUT (more precisely, the electronic components (op-amp OP5 and ADC1b) necessary to acquire information corresponding to the output voltage V OUT ).
- temperature drift error that may occur in the output of V temp) and temperature drift error that may occur in the reference voltage V temp can be canceled, and the resistance value RHTR of the heater HTR can be derived more accurately. In other words, the resistance value RHTR of the heater HTR can be easily derived without being affected by the temperature of the MCU1.
- operational amplifiers OP5 and ADC1b and operational amplifiers OP4 and ADC1a are separately provided inside the MCU1. However, these may be made common. That is, the operational amplifier and ADC for obtaining information on the output voltage V OUT and the operational amplifier and ADC for obtaining information on the reference voltage V temp are shared, and the digital value ADC_V temp (1+ ⁇ 1) and the digital value ADC_V OUT (1+ ⁇ 2) may be obtained by time division. According to this configuration, temperature drift errors occurring in these two digital values can be more matched, and the resistance value RHTR of the heater HTR can be derived with higher accuracy.
- the MCU1 may acquire the potential of the node N1 as the reference voltage V temp and use it to derive the resistance value of the heater HTR.
- the positive power supply terminal of the operational amplifier OP1 is always supplied with voltage and the increase in power consumption is allowed, the positive power supply terminal of the operational amplifier OP1 is connected to the node N1 instead of the node N3, and the node N1 and the voltage divider circuit are connected. Pb may be connected.
- FIG. 24 is a diagram showing current flow when both the switch S3 and the switch S4 are on in the driving example EX2 of FIG.
- node N4, and the gate terminal of switch S5 and a third detection path, through which current flows in the order of node N1, reactor Ld, switch S4, node N3, and the positive power supply terminal of operational amplifier OP1.
- a discharge path MR3 is formed.
- the node N3 and the node N4 are at substantially the same potential, so that almost no current flows through the resistor Rs. Therefore, the power supply voltage of the operational amplifier OP1 becomes the drive voltage Vbst . That is, in this state, the upper limit value of the differential input value of the operational amplifier OP1 is equal to the driving voltage Vbst . Therefore, the output voltage of the operational amplifier OP1 becomes higher than in the state of FIG.
- the resistance of the resistor R4 and the ON resistance of the switch S5 is set so that the voltage input to the terminal P9 of the MCU1 is equal to or lower than the operating voltage (system power supply voltage Vcc2) of the MCU1. ratio is determined. Therefore, a voltage higher than the operating voltage is not input to the terminal P9 of the MCU1. That is, the operation of MCU1 is stabilized.
- the third heating discharge path HR3 applies a voltage lower than the drive voltage Vbst to the operational amplifier OP1. It can be supplied as a power supply voltage. Further, as shown in FIG. 23, during the period in which the switch S4 is on and the switch S3 is off, a voltage equivalent to the drive voltage Vbst can be supplied as the power supply voltage of the operational amplifier OP1 through the third detection discharge path MR3. can. Therefore, as shown in FIG.
- the period from the start of the heating of the heater HTR to the end of the heating until the end of the temperature detection of the heater HTR (from the fall of the gate voltage of the switch 3 to the period immediately after that).
- the power supply voltage can be continuously supplied to the operational amplifier OP1. Therefore, compared with the reference example in which the power supply voltage is not supplied to the operational amplifier OP1 during the ON period of the switch S3 (heating period of the heater HTR), it is not necessary to wait until the power supply voltage of the operational amplifier OP1 sufficiently rises during the temperature detection control. Heating control and temperature detection control can be efficiently executed.
- the drive example EX2 it is possible to supply the power supply voltage of the operational amplifier OP1 required for temperature detection control while performing heating control. Therefore, the power supply voltage of the operational amplifier OP1 can be brought into a sufficiently raised state at the timing when the heating control is finished, and the heater HTR can be turned on at an earlier timing after the heating of the heater HTR is finished, as compared with the drive example EX1. can be detected with high accuracy.
- the power supply voltage may not be supplied to the operational amplifier OP1 during the period after the switch S4 is turned off until the switch S3 is turned on next time. be.
- it is the heating control that is performed immediately after this period and the operation of the operational amplifier OP1 is not essential. Therefore, there is no problem even if the power supply voltage is not supplied to the operational amplifier OP1 during this period.
- power consumption by the operational amplifier OP1 can be eliminated during this period, it is possible to contribute to power saving of the sucker 100 as a whole.
- switch S3, switch S4, and switch S6 shown in FIG. 20 each have a preferred configuration. Preferred examples of each switch will be described below.
- the switch S3 preferably has a small on-resistance value (in other words, a large chip size) in order to allow more current to flow through the heater HTR when heating the heater HTR.
- a small on-resistance value in other words, a large chip size
- the comparison is performed under the condition that the temperature and the flowing current are the same.
- the switch S3 is turned on and off at high speed by PWM control, PFM control, or the like when heating the heater HTR. For this reason, it is preferable that the maximum current value that can be output instantaneously (maximum current value that can be output in a pulse form) is large. Moreover, the switch S3 preferably has a maximum current value that can be continuously output larger than that of the switch S4 from the viewpoints of allowing a large amount of current to flow through the heater HTR and having a longer ON time than the switch S4.
- the maximum current values that can be output from each of the switches S3, S4, and S6 the comparison is performed under the condition that the temperatures are the same.
- Switch S3 is preferably a P-channel MOSFET, as illustrated in FIG.
- the switch S3 can also be composed of an N-channel MOSFET.
- the voltage supplied from the terminal P16 of the MCU1 to the gate terminal of the switch S3 is set to a value higher than the drive voltage Vbst in order to turn on the switch S3. It is necessary to raise the power supply voltage of MCU1.
- the switch S3 is composed of a P-channel MOSFET, the power supply voltage of the MCU1 can be lowered below the driving voltage Vbst , so that the power consumption of the MCU1 can be suppressed.
- the switch S4 preferably has a small on-resistance so that a sufficient voltage can be applied to the series circuit of the resistor Rs and the heater HTR. However, if the on-resistance value is made too small, the size increases. Therefore, in order to reduce the circuit area, the on-resistance value of the switch S4 is preferably larger than the on-resistance value of the switch S3. In order that the current for detecting the resistance value of the heater HTR does not change the temperature of the heater HTR, it is preferable that the ON resistance value of the switch S4 is not too small. Specifically, the on-resistance value of the switch S4 is preferably smaller than the resistance value of the resistor Rs and larger than the on-resistance value of the switch 3 .
- the detection of the resistance value of the heater HTR needs to be performed in a shorter time than the heating of the heater HTR.
- the switch S6 since the switch S6 is always turned on in the heating mode, it does not have to be highly responsive. Therefore, the responsiveness of the switch S4 is preferably higher than the responsiveness of the switches S3 and S6. Indicators of transistor responsiveness include turn-on time t on , turn-on delay time t d(on) , rise time t r , turn-off time t off , turn-off delay time t d(off) , and fall time t f . .
- the turn-on delay time td (on) is the time required for the drain-source voltage to reach 90% of the set value after the gate-source voltage reaches 10% of the set value at turn-on.
- the rise time tr is the time required for the drain-source voltage to reach from 90% to 10% of the set value at turn-on.
- Turn-on time t on is the sum of turn-on delay time t d(on) and rise time t r .
- the turn-off delay time td (off) is the time required for the drain-source voltage to reach 10% of the set value after the gate-source voltage reaches 90% of the set value at turn-off.
- the fall time tf is the time required for the drain-source voltage to reach from 10% to 90% of the set value at turn-off.
- the turn-off time toff is the sum of the turn- off delay time td (off) and the fall time tf .
- the resistance value of the heater HTR must be detected in a shorter time than the heating of the heater HTR.
- the turn-on delay or rise time of switch S4 is preferably shorter than the turn-on delay or rise time of switches S3 and S6, respectively.
- the turn-off delay or fall time of switch S4 is preferably shorter than the turn-off delay or fall time of switches S3 and S6, respectively.
- Switch S4 is preferably a P-channel MOSFET, as illustrated in FIG.
- the switch S4 can also be composed of an N-channel MOSFET.
- the voltage supplied from the terminal P15 of the MCU1 to the gate terminal of the switch S4 is set to a value higher than the drive voltage Vbst in order to turn on the switch S4. Therefore, the power supply voltage of MCU1 is increased.
- the switch S4 is composed of a P-channel MOSFET, the power supply voltage of the MCU1 can be lowered below the driving voltage Vbst , so that the power consumption of the MCU1 can be suppressed.
- the switch S6 preferably has a small on-resistance value (in other words, a large chip size) in order to allow more current to flow through the heater HTR when heating the heater HTR.
- the on-resistance value of the switch S6 is preferably equal to the on-resistance value of the switch S3.
- the switch S6 needs to pass current continuously in the heating mode. Therefore, it is preferable that the maximum current value that the switch S6 can continuously output is larger than that of the switches S4 and S3. On the other hand, since the switch S6 is always turned on in the heating mode, it is preferable that the maximum current value that the switch S6 can instantaneously output (output in pulse form) is smaller than that of the switch S3, which is repeatedly turned on and off. If the maximum current value that can be instantaneously output (output in the form of a pulse) is excessively increased for the application of the switch S6, the chip size and cost of the switch S6 may increase.
- the switch S3 is connected to a high-potential location on the circuit, it is more difficult to improve the responsiveness than the switch S6 from the viewpoint of safety. Therefore, making the switch S6 more responsive than the switch S3 is effective in improving the responsiveness of the entire circuit.
- the turn-off delay time or fall time of switch S6 is preferably shorter than the turn-off delay time or fall time of switch S3.
- the turn-on delay or rise time of switch S6 is preferably shorter than the turn-on delay or rise time of switch S3.
- Switch S6 is preferably an N-channel MOSFET, as illustrated in FIG.
- the switch S6 can also be composed of a P-channel MOSFET.
- the switch S6 is composed of a P-channel MOSFET, it is necessary to set the voltage supplied from the terminal P14 of the MCU1 to the gate terminal of the switch S6 to a value lower than the ground level in order to turn on the switch S6. be.
- Generating voltages below ground requires specialized circuitry such as negative power supplies and rail splitter circuits.
- the switch S6 is composed of an N-channel MOSFET, the MCU 1 can turn on the switch S6 by inputting a voltage equivalent to its own power supply voltage to the gate terminal, thereby suppressing the complexity of the circuit. .
- the switch S6 is composed of an N-channel MOSFET, a high level signal is input to the enable terminal EN of the boost DC/DC converter 9 at the same time when the switch S6 is turned on, and the drive voltage is output from the boost DC/DC converter 9. V bst can be output.
- the switch S6 is composed of a P-channel MOSFET, it is necessary to connect an inverter for logic inversion between the enable terminal EN of the boost DC/DC converter 9 and the gate terminal of the switch S6.
- an inverter can be made unnecessary, and a reduction in circuit scale and manufacturing cost can be realized.
- the switch S3, the switch S4, and the switch S6 have different configurations.
- the term "switches having different configurations including transistors” means that at least one of the types of transistors and the specifications of the transistors (on-resistance, responsiveness, etc.) is different. To tell. By adopting such a configuration, compared to the case where all three switches are of the same type and specifications, the type and specifications of each switch can be made to correspond to the location where each switch is connected. . Therefore, the performance of the aspirator 100 can be improved.
- FIG. 25 is a plan view of the receptacle mounting substrate 162 viewed from the main surface 162a side.
- FIG. 26 is a plan view of the receptacle mounting substrate 162 viewed from the side of the secondary surface 162b.
- the main surface 162a of the receptacle mounting substrate 162 is provided with the reactor Lc, resistor Rs, switch S4, switch S6, and heater connector Cn among the electronic components shown in FIG.
- the secondary surface 162b of the receptacle mounting board 162 is provided with the boost DC/DC converter 9, the switch S3, the resistor R Pb1 , and the resistor R Pb2 among the electronic components shown in FIG. be done.
- resistor RPb1 and resistor RPb2 are closely spaced.
- a resistor RPb1 and a resistor RPb2 form a voltage dividing circuit Pb that divides the potential of the node N3. If there is a temperature difference between the resistor RPb1 and the resistor RPb2 , the voltage division ratio of the voltage dividing circuit Pb fluctuates, and the accuracy of obtaining the potential of the node N3 required to derive the resistance value of the heater HTR decreases. . As shown in FIG.
- the resistor RPb1 and the resistor RPb2 are mounted on the same surface of the receptacle mounting board 162, and are arranged close to each other, so that the resistor RPb1 and the resistor RPb2 are mounted on the same surface. It can prevent temperature differences. In order to enhance this effect, it is preferable that the electronic component closest to the resistor RPb1 among the electronic components mounted on the receptacle mounting substrate 162 is the resistor RPb2 .
- those that can become heat sources or noise sources include the switch S3, the step-up DC/DC converter 9, the reactor Lc, and the heater connector Cn.
- the switch S3 generates the largest amount of heat
- the step-up DC/DC converter 9 generates the second largest amount of heat.
- the switch S3 and the step-up DC/DC converter 9, which generate a large amount of heat, the switch S4, the switch S6, and the resistor Rs are mounted on different surfaces of the same substrate.
- switch S3 and boost DC/DC converter 9 are mounted on minor surface 162b
- switch S4, switch S6 and resistor Rs are mounted on main surface 162a.
- the switch S3 and the step-up DC/DC converter 9, the switch S4, the switch S4, and the The switch S6 and the resistor Rs are arranged so as not to overlap. By doing so, the heat or noise generated by the switch S3 and the boost DC/DC converter 9 is less likely to be transmitted to the switch S4, the switch S6 and the resistor Rs through the substrate. That is, the switch S4, the switch S6, and the resistor Rs can be more strongly suppressed from being affected by heat or noise from the switch S3 and the step-up DC/DC converter 9.
- the switch S4 or the switch S6 may be mounted on the secondary surface 162b. By doing so, either the switch S4 or the switch S6 can be prevented from being affected by heat or noise from the switch S3 and the step-up DC/DC converter 9.
- FIG. 25 the switch S4 or the switch S6 may be mounted on the secondary surface 162b.
- At least one of the switches S4 and S6 among the electronic components of the circuit shown in FIG. 20 may be mounted on a board different from the receptacle mounting board 162 (for example, the MCU mounting board 161, etc.). . By doing so, at least one of the switch S4 and the switch S6 can be prevented from being affected by heat or noise from the switch S3 and the boost DC/DC converter 9 .
- FIG. 25 shows a distance DS4 between the mounting area where the resistor Rs is mounted on the main surface 162a and the mounting area where the reactor Lc is mounted on the main surface 162a (the straight line connecting the two mounting areas at the shortest distance). length) is shown.
- FIG. 25 also shows a distance DS5 between the mounting area where the switch S4 is mounted on the main surface 162a and the mounting area where the reactor Lc is mounted on the main surface 162a (a straight line connecting the two mounting areas at the shortest distance). length) is shown. And the distance DS4 is shorter than the distance DS5.
- the resistance value of the resistor Rs is less susceptible to temperature fluctuations than the on-resistance value of the switch S4. Therefore, the substrate area can be effectively utilized by arranging the resistor Rs, which is less susceptible to temperature changes, closer to the reactor Lc than the switch S4.
- a resistor Rs is mounted between the switch S4 and the reactor Lc. That is, the mounting area of the resistor Rs exists on a straight line connecting the mounting area of the switch S4 and the mounting area of the reactor Lc. By doing so, the resistor Rs becomes a physical barrier that protects the switch S4 from the heat generated by the reactor Lc. As a result, it is possible to strongly suppress the temperature change of the switch S4. If the on-resistance value of the switch S4 fluctuates, it affects the measurement accuracy of the resistance value of the heater HTR. Therefore, it is particularly important to suppress the temperature change of switch S4.
- FIG. 27 is an enlarged view of range H shown in FIG. 25.
- FIG. 27 As shown in FIG. 27, on the main surface 162a of the receptacle mounting substrate 162, the mounting area of the switch S4 and the mounting area of the heater connector Cn are separated from each other. A resistor R S4 and a bipolar transistor T S4 at are implemented. In other words, the resistor R S4 and the bipolar transistor T S4 are mounted on the straight lines DL1 and DL2 connecting the mounting area of the switch S4 and the mounting area of the heater connector Cn, respectively. According to this configuration, resistor R S4 and bipolar transistor T S4 provide a physical barrier to protect switch S4 from heat generated at heater connector Cn. As a result, it is possible to strongly suppress the temperature change of the switch S4.
- the switch S4 is arranged near the outer edge of the main surface 162a of the receptacle mounting substrate 162. As shown in FIGS. Specifically, on the main surface 162a of the receptacle mounting board 162, the switch S4 mounting area and the closest edge 162em, which is the edge closest to the switch S4 mounting area among the rightward edges 162e of the main surface 162a, are separated. The distance DS1 between them is shorter than the distance DS2 between the center of the main surface 162a of the receptacle mounting board 162 in the horizontal direction and the mounting area of the switch S4.
- the switch S4 is arranged near the edge of the receptacle mounting board 162, so that it is less likely to be affected by heat generated by other electronic components. In particular, as shown in FIG. 27, no other electronic component exists between the closest edge 162em and the switch S4. By using S4, the temperature change of the switch S4 can be further suppressed.
- the distance DS3 between the mounting area of the resistor Rs on the main surface 162a of the receptacle mounting board 162 and the edge 162en closest to the mounting area of the resistor Rs among the edges 162e is the distance It is larger than DS1.
- resistor Rs is less sensitive to temperature changes than switch S4. Therefore, by arranging the resistor Rs close to the center of the receptacle mounting board 162, the board area can be effectively utilized.
- the voltage V GS (absolute value) applied between the gate and the source when the switch S4 is turned on is as high as possible. That is, when the switch S4 is a P-channel MOSFET, it is preferable to set the voltage VGS applied between the gate and the source when it is on to a negative value as large as possible. This is because the on-resistance value of the switch S4 can be lowered by doing so, the Joule heat generated when the switch S4 is on can be reduced, and the temperature fluctuation of the switch S4 can be suppressed.
- the maximum rated value (absolute value) of the voltage that can be applied between the gate and source of the switch S4 is defined as voltage V GSS
- the threshold voltage (absolute value) between the gate and source of switch S4 is defined as voltage V th .
- the MCU 1 preferably controls the voltage applied to the gate terminal of the switch S4 so that the voltage V GS (absolute value) is closer to the voltage V GSS between the voltage V GSS and the voltage V th . .
- the gate terminal of the switch S4 is set such that the absolute value of the difference between the voltage V GSS and the voltage V GS (absolute value) is smaller than the absolute value of the difference between the voltage V th and the voltage V GS (absolute value). It is preferable to control the voltage applied to .
- an overvoltage protection diode such as a varistor between the gate terminal and the source terminal of the switch S4.
- a power supply (power supply BAT); a heater connector (heater connector Cn) including + and - electrodes to which a heater (heater HTR) that consumes power supplied from the power source and heats the aerosol source is connected; a first fixed resistor (resistor Rs) one end of which is connected to the + pole of the heater connector; a first plus side switch (switch S4) including a control terminal (gate terminal) for controlling opening and closing and connected between the other end of the first fixed resistor and the power supply; A positive power supply terminal connected between the other end of the first fixed resistor and the first plus side switch (node N3), and between one end of the first fixed resistor and the + pole of the heater connector (node N3).
- an operational amplifier including a non-inverting input terminal connected to the - pole of the heater connector, and an output terminal
- a controller including an input terminal (terminal P9) connected to the output terminal of the operational amplifier
- the controller is configured to control power supply from the power supply to the heater based on an input to the input terminal.
- Power supply unit for the aerosol generator for the aerosol generator.
- the noise reduction component makes it difficult for noise to be supplied to the heater and the first plus side switch, thereby improving the durability of the heater and the first plus side switch.
- the noise reduction component connected to the high potential side of the first plus side switch makes it difficult for noise to be supplied to the first plus side switch. Also, since no noise reduction component is provided between the first plus side switch and the heater, the voltage supplied to the heater is prevented from being slurred or delayed. Therefore, the operation of the aerosol generator is stabilized.
- the power supply unit of the aerosol generator An input terminal (switching terminal SW) connected to the power supply, an output terminal (output terminal VOUT) connected to the first plus side switch, and outputting a voltage from the output terminal when a signal of a predetermined level is input. and a voltage converter (step-up DC/DC converter 9) including an enabling terminal (enable terminal EN) for
- the negative side switch includes a control terminal (gate terminal) for controlling opening and closing, the terminal of the controller connected to the enable terminal of the voltage converter (terminal P14) is the same as the terminal of the controller connected to the control terminal of the negative switch (terminal P14); Power supply unit for the aerosol generator.
- a power supply unit for an aerosol generator according to any one of (1) to (5), a second plus side switch (switch S3) connected between one end of the first fixed resistor and the power supply; A sensor (operation switch OPS) that outputs a user's aerosol generation request, the controller is configured to close the second positive switch based on the aerosol generation request; Power supply unit for the aerosol generator.
- a discharge route (third heating discharge route HR3) exists. In this way, power is supplied to the operational amplifier even when the second plus side switch is ON. Supply voltage fluctuation can be suppressed, and the operation of the operational amplifier is stabilized.
- the power supply unit of the aerosol generator, the controller is configured to alternately close the first positive side switch and the second positive side switch; Power supply unit for the aerosol generator.
- the power supply unit of the aerosol generator is In the period from when the first plus side switch is turned ON until the first plus side switch is next turned on (control period Tc in drive example EX1 in FIG. 21), a predetermined time is elapsed from the end timing of the period. turning on the second plus side switch at the previous start timing, turning off the second plus side switch at the end timing, and variably controlling the start timing; Power supply unit for the aerosol generator.
- the first plus side switch is turned on at the same time that the second plus side switch is turned off, fluctuations in the power supplied to the operational amplifier when switching between on and off of the switch can be suppressed.
- the time during which the second plus side switch is turned on is variably controlled, optimum electric power can be supplied to the heater according to the situation. As a result, the operation of the operational amplifier is stabilized, and the performance of the aerosol generator can be improved.
- the power unit of the aerosol generator includes a clamp switch (switch S5) including a control terminal for controlling opening and closing, A control terminal of the clamp switch is connected between one end of the first fixed resistor and the + pole of the heater connector (node N4), Power supply unit for the aerosol generator.
- the clamp circuit can be automatically functioned by turning on the second plus side switch. This makes it possible to more effectively avoid malfunctions of the controller.
- the power unit of the aerosol generator a second fixed resistor (resistor R4) having one end connected to the output terminal of the operational amplifier and the other end connected to the input terminal (terminal P9) of the controller;
- the clamp circuit includes an N-channel MOSFET (switch S5), The gate terminal of the N-channel MOSFET is connected between one end of the first fixed resistor and the + pole of the heater connector (node N4), A source terminal of the N-channel MOSFET is connected to the ground, a drain terminal of the N-channel MOSFET is connected between the other end of the second fixed resistor and the input terminal of the controller (node N5); Power supply unit for the aerosol generator.
- the clamp circuit can be automatically functioned by turning on the second plus side switch. This makes it possible to more effectively avoid malfunctions of the controller.
- the voltage input to the controller can be made very small. Therefore, inputting a high voltage to the controller is suppressed, and malfunction of the controller can be avoided.
- the clamp circuit includes a parasitic diode (parasitic diode D5) including an anode connected to the source terminal of the N-channel MOSFET and a cathode connected to the drain terminal of the N-channel MOSFET, Power supply unit for the aerosol generator.
- parasitic diode D5 parasitic diode including an anode connected to the source terminal of the N-channel MOSFET and a cathode connected to the drain terminal of the N-channel MOSFET, Power supply unit for the aerosol generator.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
省電力化が可能なエアロゾル生成装置を提供する。 吸引器(100)は、一端がヒータコネクタCnの+極へ接続される抵抗器Rsと、抵抗器Rsの他端と電源BATの間へ接続されるスイッチS4と、抵抗器Rsの他端とスイッチS4の間へ接続される正電源端子、抵抗器Rsの一端とヒータコネクタCnの+極の間へ接続される非反転入力端子、ヒータコネクタCnの-極へ接続される反転入力端子、及び出力端子を含むオペアンプOP1と、オペアンプOP1の出力端子へ接続される端子P9を含むMCU1と、を備え、MCU1は、端子P9への入力に基づき、電源BATからヒータHTRへの電力の供給を制御するように構成される。
Description
本発明は、エアロゾル生成装置の電源ユニットに関する。
特許文献1には、エアロゾル源を加熱し且つ温度と電気抵抗値が相関を持つ負荷に印加される電圧に応じた出力を行うオペアンプと、上記出力に応じた電圧に基づく処理を行うように構成された制御部と、電源と上記負荷との間に並列に電気的に接続された第1回路及び第2回路と、を含み、第1回路及び第2回路は第1開閉器及び第2開閉器をそれぞれ含む、エアロゾル吸引器用の制御装置が記載されている。この制御装置は、第2開閉器がオン状態である間に、オペアンプの出力に応じた電圧を取得するように構成されている。
特許文献2には、所定の抵抗値を有する加熱要素と、前記加熱要素に電力を供給する電源と、前記加熱要素と並列に接続される複数の抵抗と、制御部と、前記加熱要素のオン/オフを制御する第1スイッチと、前記電源と前記複数の抵抗との間に接続される第2スイッチと、前記複数の抵抗の間の配線と前記制御部との間に接続される第3スイッチとを備え、前記加熱要素の抵抗値を測定する際に、前記制御部は、前記第2スイッチと前記第3スイッチとをオンし、前記第1スイッチをオフするスイッチ制御を実行するように構成された非燃焼式吸引器が記載されている。
エアロゾルを吸引可能に構成したエアロゾル生成装置では、特許文献に記載されているように、ヒータの抵抗値を利用して、ヒータの加熱制御等の所定の制御を行うことがある。ヒータの抵抗値の計測には、オペアンプが用いられる。オペアンプは電源端子へ電圧を供給している間は電力を消費する。このため、オペアンプの電力消費を抑制することが、エアロゾル生成装置の省電力化を図るために有効である。
本発明の目的は、省電力化が可能なエアロゾル生成装置を提供することにある。
本発明の一態様のエアロゾル生成装置の電源ユニットは、電源と、前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続される+極と-極とを含むヒータコネクタと、一端が前記ヒータコネクタの+極へ接続される第1固定抵抗器と、開閉を制御するための制御端子を含み、且つ、前記第1固定抵抗器の他端と前記電源の間へ接続される第1プラス側スイッチと、前記第1固定抵抗器の他端と前記第1プラス側スイッチの間へ接続される正電源端子と、前記第1固定抵抗器の一端と前記ヒータコネクタの+極の間へ接続される非反転入力端子と、前記ヒータコネクタの-極へ接続される反転入力端子と、出力端子と、を含むオペアンプと、前記オペアンプの出力端子へ接続される入力端子を含むコントローラと、を備え、前記コントローラは、前記入力端子への入力に基づき、前記電源から前記ヒータへの電力の供給を制御するように構成される、ものである。
本発明によれば、省電力化が可能なエアロゾル生成装置を提供することができる。
以下、本発明におけるエアロゾル生成装置の一実施形態である吸引システムについて図面を参照しながら説明する。この吸引システムは、本発明の電源ユニットの一実施形態である非燃焼式吸引器100(以下、単に、「吸引器100」ともいう)と、吸引器100によって加熱されるロッド500と、を備える。以下の説明では、吸引器100が、加熱部を着脱不能に収容した構成を例に説明する。しかし、吸引器100に対し加熱部が着脱自在に構成されていてもよい。例えば、ロッド500と加熱部が一体化されたものを、吸引器100に着脱自在に構成したものであってもよい。つまり、エアロゾル生成装置の電源ユニットは、構成要素として加熱部を含まない構成であってもよい。なお、着脱不能とは、想定される用途の限りにおいて、取外しが行えないような態様を指すものとする。または、吸引器100に設けられる誘導加熱用コイルと、ロッド500に内蔵されるサセプタが協働して加熱部を構成してもよい。
図1は、吸引器100の全体構成を示す斜視図である。図2は、ロッド500を装着した状態を示す吸引器100の斜視図である。図3は、吸引器100の他の斜視図である。図4は、吸引器100の分解斜視図である。また、以下の説明では、互いに直交する3方向を、便宜上、前後方向、左右方向、上下方向とした、3次元空間の直交座標系を用いて説明する。図中、前方をFr、後方をRr、右側をR、左側をL、上方をU、下方をD、として示す。
吸引器100は、エアロゾル源及び香味源を含む充填物などを有する香味成分生成基材の一例としての細長い略円柱状のロッド500(図2参照)を加熱することによって、香味を含むエアロゾルを生成するように構成される。
<香味成分生成基材(ロッド)>
ロッド500は、所定温度で加熱されてエアロゾルを生成するエアロゾル源を含有する充填物を含む。
ロッド500は、所定温度で加熱されてエアロゾルを生成するエアロゾル源を含有する充填物を含む。
エアロゾル源の種類は、特に限定されず、用途に応じて種々の天然物からの抽出物質及び/又はそれらの構成成分を選択することができる。エアロゾル源は、固体であってもよいし、例えば、グリセリン、プロピレングリコールといった多価アルコールや、水などの液体であってもよい。エアロゾル源は、加熱することによって香味成分を放出するたばこ原料やたばこ原料由来の抽出物等の香味源を含んでいてもよい。香味成分が付加される気体はエアロゾルに限定されず、例えば不可視の蒸気が生成されてもよい。
ロッド500の充填物は、香味源としてたばこ刻みを含有し得る。たばこ刻みの材料は特に限定されず、ラミナや中骨等の公知の材料を用いることができる。充填物は、1種又は2種以上の香料を含んでいてもよい。当該香料の種類は特に限定されないが、良好な喫味の付与の観点から、好ましくはメンソールである。香味源は、たばこ以外の植物(例えば、ミント、漢方、又はハーブ等)を含有し得る。用途によっては、ロッド500は香味源を含まなくてもよい。
<非燃焼式吸引器の全体構成>
続いて、吸引器100の全体構成について、図1~図4を参照しながら説明する。
吸引器100は、前面、後面、左面、右面、上面、及び下面を備える略直方体形状のケース110を備える。ケース110は、前面、後面、上面、下面、及び右面が一体に形成された有底筒状のケース本体112と、ケース本体112の開口部114(図4参照)を封止し左面を構成するアウターパネル115及びインナーパネル118と、スライダ119と、を備える。
続いて、吸引器100の全体構成について、図1~図4を参照しながら説明する。
吸引器100は、前面、後面、左面、右面、上面、及び下面を備える略直方体形状のケース110を備える。ケース110は、前面、後面、上面、下面、及び右面が一体に形成された有底筒状のケース本体112と、ケース本体112の開口部114(図4参照)を封止し左面を構成するアウターパネル115及びインナーパネル118と、スライダ119と、を備える。
インナーパネル118は、ケース本体112にボルト120で固定される。アウターパネル115は、ケース本体112に収容された後述するシャーシ150(図5参照)に保持されたマグネット124によって、インナーパネル118の外面を覆うようにケース本体112に固定される。アウターパネル115が、マグネット124によって固定されることで、ユーザは好みに合わせてアウターパネル115を取り替えることが可能となっている。
インナーパネル118には、マグネット124が貫通するように形成された2つの貫通孔126が設けられる。インナーパネル118には、上下に配置された2つの貫通孔126の間に、さらに縦長の長孔127及び円形の丸孔128が設けられる。この長孔127は、ケース本体112に内蔵された8つのLED(Light Emitting Diode) L1~L8から出射される光を透過させるためのものである。丸孔128には、ケース本体112に内蔵されたボタン式の操作スイッチOPSが貫通する。これにより、ユーザは、アウターパネル115のLED窓116を介して8つのLED L1~L8から出射される光を検知することができる。また、ユーザは、アウターパネル115の押圧部117を介して操作スイッチOPSを押し下げることができる。
図2に示すように、ケース本体112の上面には、ロッド500を挿入可能な開口132が設けられる。スライダ119は、開口132を閉じる位置(図1参照)と開口132を開放する位置(図2参照)との間を、前後方向に移動可能にケース本体112に結合される。
操作スイッチOPSは、吸引器100の各種操作を行うために使用される。例えば、ユーザは、図2に示すようにロッド500を開口132に挿入して装着した状態で、押圧部117を介して操作スイッチOPSを操作する。これにより、加熱部170(図5参照)によって、ロッド500を燃焼させずに加熱する。ロッド500が加熱されると、ロッド500に含まれるエアロゾル源からエアロゾルが生成され、ロッド500に含まれる香味源の香味が当該エアロゾルに付加される。ユーザは、開口132から突出したロッド500の吸口502を咥えて吸引することにより、香味を含むエアロゾルを吸引することができる。
ケース本体112の下面には、図3に示すように、コンセントやモバイルバッテリ等の外部電源と電気的に接続して電力供給を受けるための充電端子134が設けられている。本実施形態において、充電端子134は、USB(Universal Serial Bus) Type-C形状のレセプタクルとしているが、これに限定されるものではない。充電端子134を、以下では、レセプタクルRCPとも記載する。
なお、充電端子134は、例えば、受電コイルを備え、外部電源から送電される電力を非接触で受電可能に構成されてもよい。この場合の電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型を組み合わせたものでもよい。別の一例として、充電端子134は、各種USB端子等が接続可能であり、且つ上述した受電コイルを有していてもよい。
図1~図4に示される吸引器100の構成は一例にすぎない。吸引器100は、ロッド500を保持して例えば加熱等の作用を加えることで、ロッド500から香味成分が付与された気体を生成させ、生成された気体をユーザが吸引することができるような、様々な形態で構成することができる。
<非燃焼式吸引器の内部構成>
吸引器100の内部ユニット140について図5~図8を参照しながら説明する。
図5は、吸引器100の内部ユニット140の斜視図である。図6は、図5の内部ユニット140の分解斜視図である。図7は、電源BAT及びシャーシ150を取り除いた内部ユニット140の斜視図である。図8は、電源BAT及びシャーシ150を取り除いた内部ユニット140の他の斜視図である。
吸引器100の内部ユニット140について図5~図8を参照しながら説明する。
図5は、吸引器100の内部ユニット140の斜視図である。図6は、図5の内部ユニット140の分解斜視図である。図7は、電源BAT及びシャーシ150を取り除いた内部ユニット140の斜視図である。図8は、電源BAT及びシャーシ150を取り除いた内部ユニット140の他の斜視図である。
ケース110の内部空間に収容される内部ユニット140は、シャーシ150と、電源BATと、回路部160と、加熱部170と、通知部180と、各種センサと、を備える。
シャーシ150は、前後方向においてケース110の内部空間の略中央に配置され上下方向且つ前後方向に延設された板状のシャーシ本体151と、前後方向においてケース110の内部空間の略中央に配置され上下方向且つ左右方向に延びる板状の前後分割壁152と、上下方向において前後分割壁152の略中央から前方に延びる板状の上下分割壁153と、前後分割壁152及びシャーシ本体151の上縁部から後方に延びる板状のシャーシ上壁154と、前後分割壁152及びシャーシ本体151の下縁部から後方に延びる板状のシャーシ下壁155と、を備える。シャーシ本体151の左面は、前述したケース110のインナーパネル118及びアウターパネル115に覆われる。
ケース110の内部空間は、シャーシ150により前方上部に加熱部収容領域142が区画形成され、前方下部に基板収容領域144が区画形成され、後方に上下方向に亘って電源収容空間146が区画形成されている。
加熱部収容領域142に収容される加熱部170は、複数の筒状の部材から構成され、これらが同心円状に配置されることで、全体として筒状体をなしている。加熱部170は、その内部にロッド500の一部を収納可能なロッド収容部172と、ロッド500を外周または中心から加熱するヒータHTR(図10~図19参照)と、を有する。ロッド収容部172が断熱材で構成される、又は、ロッド収容部172の内部に断熱材が設けられることで、ロッド収容部172の表面とヒータHTRは断熱されることが好ましい。ヒータHTRは、ロッド500を加熱可能な素子であればよい。ヒータHTRは、例えば、発熱素子である。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。ヒータHTRとしては、例えば、温度の増加に伴って抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが好ましく用いられる。これに代えて、温度の増加に伴って抵抗値が低下するNTC(Negative Temperature Coefficient)特性を有するヒータHTRを用いてもよい。加熱部170は、ロッド500へ供給する空気の流路を画定する機能、及びロッド500を加熱する機能を有する。ケース110には、空気を流入させるための通気口(不図示)が形成され、加熱部170に空気が流入できるように構成される。
電源収容空間146に収容される電源BATは、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源BATの電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。
通知部180は、電源BATの充電状態を示すSOC(State Of Charge)、吸引時の予熱時間、吸引可能期間等の各種情報を通知する。本実施形態の通知部180は、8つのLED L1~L8と、振動モータMと、を含む。通知部180は、LED L1~L8のような発光素子によって構成されていてもよく、振動モータMのような振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。通知部180は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。
各種センサは、ユーザのパフ動作(吸引動作)を検出する吸気センサ、電源BATの温度を検出する電源温度センサ、ヒータHTRの温度を検出するヒータ温度センサ、ケース110の温度を検出するケース温度センサ、スライダ119の位置を検出するカバー位置センサ、及びアウターパネル115の着脱を検出するパネル検出センサ等を含む。
吸気センサは、例えば、開口132の近傍に配置されたサーミスタT2を主体に構成される。電源温度センサは、例えば、電源BATの近傍に配置されたサーミスタT1を主体に構成される。ヒータ温度センサは、例えば、ヒータHTRの近傍に配置されたサーミスタT3を主体に構成される。上述した通り、ロッド収容部172はヒータHTRから断熱されることが好ましい。この場合において、サーミスタT3は、ロッド収容部172の内部において、ヒータHTRと接する又は近接することが好ましい。ヒータHTRがPTC特性やNTC特性を有する場合、ヒータHTRそのものをヒータ温度センサに用いてもよい。ケース温度センサは、例えば、ケース110の左面の近傍に配置されたサーミスタT4を主体に構成される。カバー位置センサは、スライダ119の近傍に配置されたホール素子を含むホールIC14を主体に構成される。パネル検出センサは、インナーパネル118の内側の面の近傍に配置されたホール素子を含むホールIC13を主体に構成される。
回路部160は、4つの回路基板と、複数のIC(Integrate Circuit)と、複数の素子と、を備える。4つの回路基板は、主に後述のMCU(Micro Controller Unit)1及び充電IC2が配置されたMCU搭載基板161と、主に充電端子134が配置されたレセプタクル搭載基板162と、操作スイッチOPS、LED L1~L8、及び後述の通信IC15が配置されたLED搭載基板163と、カバー位置センサを構成するホール素子を含む後述のホールIC14が配置されたホールIC搭載基板164と、を備える。
MCU搭載基板161及びレセプタクル搭載基板162は、基板収容領域144において互いに平行に配置される。具体的に説明すると、MCU搭載基板161及びレセプタクル搭載基板162は、それぞれの素子配置面が左右方向及び上下方向に沿って配置され、MCU搭載基板161がレセプタクル搭載基板162よりも前方に配置される。MCU搭載基板161及びレセプタクル搭載基板162には、それぞれ開口部が設けられる。MCU搭載基板161及びレセプタクル搭載基板162は、これら開口部の周縁部同士の間に円筒状のスペーサ173を介在させた状態で前後分割壁152の基板固定部156にボルト136で締結される。即ち、スペーサ173は、ケース110の内部におけるMCU搭載基板161及びレセプタクル搭載基板162の位置を固定し、且つ、MCU搭載基板161とレセプタクル搭載基板162とを機械的に接続する。これにより、MCU搭載基板161とレセプタクル搭載基板162が接触し、これらの間で短絡電流が生じることを抑制できる。
便宜上、MCU搭載基板161及びレセプタクル搭載基板162の前方を向く面を、それぞれの主面161a、162aとし、主面161a、162aの反対面をそれぞれの副面161b、162bとすると、MCU搭載基板161の副面161bと、レセプタクル搭載基板162の主面162aとが、所定の隙間を介して対向する。MCU搭載基板161の主面161aはケース110の前面と対向し、レセプタクル搭載基板162の副面162bは、シャーシ150の前後分割壁152と対向する。MCU搭載基板161及びレセプタクル搭載基板162に搭載される素子及びICについては後述する。
LED搭載基板163は、シャーシ本体151の左側面、且つ上下に配置された2つのマグネット124の間に配置される。LED搭載基板163の素子配置面は、上下方向及び前後方向に沿って配置されている。換言すると、MCU搭載基板161及びレセプタクル搭載基板162それぞれの素子配置面と、LED搭載基板163の素子配置面とは、直交している。このように、MCU搭載基板161及びレセプタクル搭載基板162それぞれの素子配置面と、LED搭載基板163の素子配置面とは、直交に限らず、交差している(非平行である)ことが好ましい。なお、LED L1~L8とともに通知部180を構成する振動モータMは、シャーシ下壁155の下面に固定され、MCU搭載基板161に電気的に接続される。
ホールIC搭載基板164は、シャーシ上壁154の上面に配置される。
<吸引器の動作モード>
図9は、吸引器100の動作モードを説明するための模式図である。図9に示すように、吸引器100の動作モードには、充電モード、スリープモード、アクティブモード、加熱初期設定モード、加熱モード、及び加熱終了モードが含まれる。
図9は、吸引器100の動作モードを説明するための模式図である。図9に示すように、吸引器100の動作モードには、充電モード、スリープモード、アクティブモード、加熱初期設定モード、加熱モード、及び加熱終了モードが含まれる。
スリープモードは、主にヒータHTRの加熱制御に必要な電子部品への電力供給を停止して省電力化を図るモードである。
アクティブモードは、ヒータHTRの加熱制御を除くほとんどの機能が有効になるモードである。吸引器100は、スリープモードにて動作している状態にて、スライダ119が開かれると、動作モードをアクティブモードに切り替える。吸引器100は、アクティブモードにて動作している状態にて、スライダ119が閉じられたり、操作スイッチOPSの無操作時間が所定時間に達したりすると、動作モードをスリープモードに切り替える。
加熱初期設定モードは、ヒータHTRの加熱制御を開始するための制御パラメータ等の初期設定を行うモードである。吸引器100は、アクティブモードにて動作している状態にて、操作スイッチOPSの操作を検出すると、動作モードを加熱初期設定モードに切り替え、初期設定が終了すると、動作モードを加熱モードに切り替える。
加熱モードは、ヒータHTRの加熱制御(エアロゾル生成のための加熱制御と、温度検出のための加熱制御)を実行するモードである。吸引器100は、動作モードが加熱モードに切り替わると、ヒータHTRの加熱制御を開始する。
加熱終了モードは、ヒータHTRの加熱制御の終了処理(加熱履歴の記憶処理等)を実行するモードである。吸引器100は、加熱モードにて動作している状態にて、ヒータHTRへの通電時間又はユーザの吸引回数が上限に達したり、スライダ119が閉じられたりすると、動作モードを加熱終了モードに切り替え、終了処理が終了すると、動作モードをアクティブモードに切り替える。吸引器100は、加熱モードにて動作している状態にて、USB接続がなされると、動作モードを加熱終了モードに切り替え、終了処理が終了すると、動作モードを充電モードに切り替える。図9に示したように、この場合において、動作モードを充電モードに切り替える前に、動作モードをアクティブモードへ切り替えてもよい。換言すれば、吸引器100は、加熱モードにて動作している状態にて、USB接続がなされると、動作モードを加熱終了モード、アクティブモード、充電モードの順に切り替えてもよい。
充電モードは、レセプタクルRCPに接続された外部電源から供給される電力により、電源BATの充電を行うモードである。吸引器100は、スリープモード又はアクティブモードにて動作している状態にて、レセプタクルRCPに外部電源が接続(USB接続)されると、動作モードを充電モードに切り替える。吸引器100は、充電モードにて動作している状態にて、電源BATの充電が完了したり、レセプタクルRCPと外部電源との接続が解除されたりすると、動作モードをスリープモードに切り替える。
<内部ユニットの回路の概略>
図10、図11、及び図12は、内部ユニット140の電気回路の概略構成を示す図である。図11は、図10に示す電気回路のうち、MCU搭載基板161に搭載される範囲161A(太い破線で囲まれた範囲)と、LED搭載基板163に搭載される範囲163A(太い実線で囲まれた範囲)とを追加した点を除いては、図10と同じである。図12は、図10に示す電気回路のうち、レセプタクル搭載基板162に搭載される範囲162Aと、ホールIC搭載基板164に搭載される範囲164Aとを追加した点を除いては、図10と同じである。
図10、図11、及び図12は、内部ユニット140の電気回路の概略構成を示す図である。図11は、図10に示す電気回路のうち、MCU搭載基板161に搭載される範囲161A(太い破線で囲まれた範囲)と、LED搭載基板163に搭載される範囲163A(太い実線で囲まれた範囲)とを追加した点を除いては、図10と同じである。図12は、図10に示す電気回路のうち、レセプタクル搭載基板162に搭載される範囲162Aと、ホールIC搭載基板164に搭載される範囲164Aとを追加した点を除いては、図10と同じである。
図10において太い実線で示した配線は、内部ユニット140の基準となる電位(グランド電位)と同電位となる配線(内部ユニット140に設けられたグランドに接続される配線)であり、この配線を以下ではグランドラインと記載する。図10では、複数の回路素子をチップ化した電子部品を矩形で示しており、この矩形の内側に各種端子の符号を記載している。チップに搭載される電源端子VCC及び電源端子VDDは、それぞれ、高電位側の電源端子を示す。チップに搭載される電源端子VSS及びグランド端子GNDは、それぞれ、低電位側(基準電位側)の電源端子を示す。チップ化された電子部品は、高電位側の電源端子の電位と低電位側の電源端子の電位の差分が、電源電圧となる。チップ化された電子部品は、この電源電圧を用いて、各種機能を実行する。
図11に示すように、MCU搭載基板161(範囲161A)には、主要な電子部品として、吸引器100の全体を統括制御するMCU1と、電源BATの充電制御を行う充電IC2と、コンデンサ、抵抗器、及びトランジスタ等を組み合わせて構成されたロードスイッチ(以下、LSW)3,4,5と、ROM(Read Only Memory)6と、スイッチドライバ7と、昇降圧DC/DCコンバータ8(図では、昇降圧DC/DC8と記載)と、オペアンプOP2と、オペアンプOP3と、フリップフロップ(以下、FF)16,17と、吸気センサを構成するサーミスタT2と電気的に接続されるコネクタCn(t2)(図では、このコネクタに接続されたサーミスタT2を記載)と、ヒータ温度センサを構成するサーミスタT3と電気的に接続されるコネクタCn(t3)(図では、このコネクタに接続されたサーミスタT3を記載)と、ケース温度センサを構成するサーミスタT4と電気的に接続されるコネクタCn(t4)(図では、このコネクタに接続されたサーミスタT4を記載)と、USB接続検出用の分圧回路Pcと、が設けられている。
充電IC2、LSW3、LSW4、LSW5、スイッチドライバ7、昇降圧DC/DCコンバータ8、FF16、及びFF17の各々のグランド端子GNDは、グランドラインに接続されている。ROM6の電源端子VSSは、グランドラインに接続されている。オペアンプOP2及びオペアンプOP3の各々の負電源端子は、グランドラインに接続されている。
図11に示すように、LED搭載基板163(範囲163A)には、主要な電子部品として、パネル検出センサを構成するホール素子を含むホールIC13と、LED L1~L8と、操作スイッチOPSと、通信IC15と、が設けられている。通信IC15は、スマートフォン等の電子機器との通信を行うための通信モジュールである。ホールIC13の電源端子VSS及び通信IC15のグランド端子GNDの各々は、グランドラインに接続されている。通信IC15とMCU1は、通信線LNによって通信可能に構成されている。操作スイッチOPSの一端はグランドラインに接続され、操作スイッチOPSの他端はMCU1の端子P4に接続されている。
図12に示すように、レセプタクル搭載基板162(範囲162A)には、主要な電子部品として、電源BATと電気的に接続される電源コネクタ(図では、この電源コネクタに接続された電源BATを記載)と、電源温度センサを構成するサーミスタT1と電気的に接続されるコネクタ(図では、このコネクタに接続されたサーミスタT1を記載)と、昇圧DC/DCコンバータ9(図では、昇圧DC/DC9と記載)と、保護IC10と、過電圧保護IC11と、残量計IC12と、レセプタクルRCPと、MOSFETで構成されたスイッチS3~スイッチS6と、オペアンプOP1と、ヒータHTRと電気的に接続される一対(正極側と負極側)のヒータコネクタCnと、が設けられている。
レセプタクルRCPの2つのグランド端子GNDと、昇圧DC/DCコンバータ9のグランド端子GNDと、保護IC10の電源端子VSSと、残量計IC12の電源端子VSSと、過電圧保護IC11のグランド端子GNDと、オペアンプOP1の負電源端子は、それぞれ、グランドラインに接続されている。
図12に示すように、ホールIC搭載基板164(範囲164A)には、カバー位置センサを構成するホール素子を含むホールIC14が設けられている。ホールIC14の電源端子VSSは、グランドラインに接続されている。ホールIC14の出力端子OUTは、MCU1の端子P8に接続されている。MCU1は、端子P8に入力される信号により、スライダ119の開閉を検出する。
図11に示すように、振動モータMと電気的に接続されるコネクタは、MCU搭載基板161に設けられている。
<内部ユニットの回路の詳細>
以下、図10を参照しながら各電子部品の接続関係等について説明する。
以下、図10を参照しながら各電子部品の接続関係等について説明する。
レセプタクルRCPの2つの電源入力端子VBUSは、それぞれ、ヒューズFsを介して、過電圧保護IC11の入力端子INに接続されている。レセプタクルRCPにUSBプラグが接続され、このUSBプラグを含むUSBケーブルが外部電源に接続されると、レセプタクルRCPの2つの電源入力端子VBUSにUSB電圧VUSBが供給される。
過電圧保護IC11の入力端子INには、2つの抵抗器の直列回路からなる分圧回路Paの一端が接続されている。分圧回路Paの他端はグランドラインに接続されている。分圧回路Paを構成する2つの抵抗器の接続点は、過電圧保護IC11の電圧検出端子OVLoに接続されている。過電圧保護IC11は、電圧検出端子OVLoに入力される電圧が閾値未満の状態では、入力端子INに入力された電圧を出力端子OUTから出力する。過電圧保護IC11は、電圧検出端子OVLoに入力される電圧が閾値以上(過電圧)となった場合には、出力端子OUTからの電圧出力を停止(LSW3とレセプタクルRCPとの電気的な接続を遮断)することで、過電圧保護IC11よりも下流の電子部品の保護を図る。過電圧保護IC11の出力端子OUTは、LSW3の入力端子VINと、MCU1に接続された分圧回路Pc(2つの抵抗器の直列回路)の一端と、に接続されている。分圧回路Pcの他端はグランドラインに接続されている。分圧回路Pcを構成する2つの抵抗器の接続点は、MCU1の端子P17に接続されている。
LSW3の入力端子VINには、2つの抵抗器の直列回路からなる分圧回路Pfの一端が接続されている。分圧回路Pfの他端はグランドラインに接続されている。分圧回路Pfを構成する2つの抵抗器の接続点は、LSW3の制御端子ONに接続されている。LSW3の制御端子ONには、バイポーラトランジスタS2のコレクタ端子が接続されている。バイポーラトランジスタS2のエミッタ端子はグランドラインに接続されている。バイポーラトランジスタS2のベース端子は、MCU1の端子P19に接続されている。LSW3は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力された電圧を出力端子VOUTから出力する。LSW3の出力端子VOUTは、充電IC2の入力端子VBUSに接続されている。MCU1は、USB接続がなされていない間は、バイポーラトランジスタS2をオンにする。これにより、LSW3の制御端子ONはバイポーラトランジスタS2を介してグランドラインへ接続されるため、LSW3の制御端子ONにはローレベルの信号が入力される。
LSW3に接続されたバイポーラトランジスタS2は、USB接続がなされると、MCU1によってオフされる。バイポーラトランジスタS2がオフすることで、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。このため、USB接続がなされ且つバイポーラトランジスタS2がオフされると、LSW3の制御端子ONには、ハイレベルの信号が入力される。これにより、LSW3は、USBケーブルから供給されるUSB電圧VUSBを出力端子VOUTから出力する。なお、バイポーラトランジスタS2がオフされていない状態でUSB接続がなされても、LSW3の制御端子ONは、バイポーラトランジスタS2を介してグランドラインへ接続されている。このため、MCU1がバイポーラトランジスタS2をオフしない限り、LSW3の制御端子ONにはローレベルの信号が入力され続ける点に留意されたい。
LSW3に接続されたバイポーラトランジスタS2は、USB接続がなされると、MCU1によってオフされる。バイポーラトランジスタS2がオフすることで、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。このため、USB接続がなされ且つバイポーラトランジスタS2がオフされると、LSW3の制御端子ONには、ハイレベルの信号が入力される。これにより、LSW3は、USBケーブルから供給されるUSB電圧VUSBを出力端子VOUTから出力する。なお、バイポーラトランジスタS2がオフされていない状態でUSB接続がなされても、LSW3の制御端子ONは、バイポーラトランジスタS2を介してグランドラインへ接続されている。このため、MCU1がバイポーラトランジスタS2をオフしない限り、LSW3の制御端子ONにはローレベルの信号が入力され続ける点に留意されたい。
電源BATの正極端子は、保護IC10の電源端子VDDと、昇圧DC/DCコンバータ9の入力端子VINと、充電IC2の充電端子batと、に接続されている。したがって、電源BATの電源電圧VBATは、保護IC10と、充電IC2と、昇圧DC/DCコンバータ9とに供給される。電源BATの負極端子には、抵抗器Raと、MOSFETで構成されたスイッチSaと、MOSFETで構成されたスイッチSbと、抵抗器Rbと、がこの順に直列接続されている。抵抗器RaとスイッチSaの接続点には、保護IC10の電流検出端子CSが接続されている。スイッチSaとスイッチSbの各々の制御端子は、保護IC10に接続されている。抵抗器Rbの両端は、残量計IC12に接続されている。
保護IC10は、電流検出端子CSに入力される電圧から、電源BATの充放電時において抵抗器Raに流れる電流値を取得し、この電流値が過大になった場合(過電流)に、スイッチSaとスイッチSbの開閉制御を行って、電源BATの充電又は放電を停止させることで、電源BATの保護を図る。より具体的には、保護IC10は、電源BATの充電時に過大な電流値を取得した場合には、スイッチSbをオフすることで、電源BATの充電を停止させる。保護IC10は、電源BATの放電時に過大な電流値を取得した場合には、スイッチSaをオフすることで、電源BATの放電を停止させる。また、保護IC10は、電源端子VDDに入力される電圧から、電源BATの電圧値が異常になった場合(過充電又は過電圧の場合)に、スイッチSaとスイッチSbの開閉制御を行って、電源BATの充電又は放電を停止させることで、電源BATの保護を図る。より具体的には、保護IC10は、電源BATの過充電を検知した場合には、スイッチSbをオフすることで、電源BATの充電を停止させる。保護IC10は、電源BATの過放電を検知した場合には、スイッチSaをオフすることで、電源BATの放電を停止させる。
電源BATの近傍に配置されたサーミスタT1と接続されるコネクタには抵抗器Rt1が接続されている。抵抗器Rt1とサーミスタT1の直列回路は、グランドラインと、残量計IC12のレギュレータ端子TREGとに接続されている。サーミスタT1と抵抗器Rt1の接続点は、残量計IC12のサーミスタ端子THMに接続されている。サーミスタT1は、温度の増加に従い抵抗値が増大するPTC(Positive Temperature Coefficient)サーミスタであってもよいし、温度の増加に従い抵抗値が減少するNTC(Negative Temperature Coefficient)サーミスタでもよい。
残量計IC12は、抵抗器Rbに流れる電流を検出し、検出した電流値に基づいて、電源BATの残容量、充電状態を示すSOC(State Of Charge)、及び健全状態を示すSOH(State Of Health)等のバッテリ情報を導出する。残量計IC12は、レギュレータ端子TREGに接続される内蔵レギュレータから、サーミスタT1と抵抗器Rt1の分圧回路に電圧を供給する。残量計IC12は、この分圧回路によって分圧された電圧をサーミスタ端子THMから取得し、この電圧に基づいて、電源BATの温度に関する温度情報を取得する。残量計IC12は、シリアル通信を行うための通信線LNによってMCU1と接続されており、MCU1と通信可能に構成されている。残量計IC12は、導出したバッテリ情報と、取得した電源BATの温度情報を、MCU1からの要求に応じて、MCU1に送信する。なお、シリアル通信を行うためには、データ送信用のデータラインや同期用のクロックラインなどの複数の信号線が必要になる。図10-図19では、簡略化のため、1本の信号線のみが図示されている点に留意されたい。
残量計IC12は、通知端子12aを備えている。通知端子12aは、MCU1の端子P6と、後述するダイオードD2のカソードと、に接続されている。残量計IC12は、電源BATの温度が過大になった等の異常を検出すると、通知端子12aからローレベルの信号を出力することで、その異常発生をMCU1に通知する。このローレベルの信号は、ダイオードD2を経由して、FF17のCLR( ̄)端子にも入力される。
昇圧DC/DCコンバータ9のスイッチング端子SWには、リアクトルLcの一端が接続されている。このリアクトルLcの他端は昇圧DC/DCコンバータ9の入力端子VINに接続されている。昇圧DC/DCコンバータ9は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、入力された電圧を昇圧して、出力端子VOUTから出力する。なお、昇圧DC/DCコンバータ9の入力端子VINは、昇圧DC/DCコンバータ9の高電位側の電源端子を構成している。昇圧DC/DCコンバータ9は、イネーブル端子ENに入力される信号がハイレベルとなっている場合に、昇圧動作を行う。USB接続されている状態においては、昇圧DC/DCコンバータ9のイネーブル端子ENに入力される信号は、MCU1によってローレベルに制御されてもよい。若しくは、USB接続されている状態においては、昇圧DC/DCコンバータ9のイネーブル端子ENに入力される信号をMCU1が制御しないことで、イネーブル端子ENの電位を不定にしてもよい。
昇圧DC/DCコンバータ9の出力端子VOUTには、Pチャネル型MOSFETにより構成されたスイッチS4のソース端子が接続されている。スイッチS4のゲート端子は、MCU1の端子P15と接続されている。スイッチS4のドレイン端子には、抵抗器Rsの一端が接続されている。抵抗器Rsの他端は、ヒータHTRの一端と接続される正極側のヒータコネクタCnに接続されている。スイッチS4と抵抗器Rsの接続点には、2つの抵抗器からなる分圧回路Pbが接続されている。分圧回路Pbを構成する2つの抵抗器の接続点は、MCU1の端子P18と接続されている。スイッチS4と抵抗器Rsの接続点は、更に、オペアンプOP1の正電源端子と接続されている。
昇圧DC/DCコンバータ9の出力端子VOUTとスイッチS4のソース端子との接続ラインには、Pチャネル型MOSFETにより構成されたスイッチS3のソース端子が接続されている。スイッチS3のゲート端子は、MCU1の端子P16と接続されている。スイッチS3のドレイン端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。このように、昇圧DC/DCコンバータ9の出力端子VOUTとヒータコネクタCnの正極側との間には、スイッチS3を含む回路と、スイッチS4及び抵抗器Rsを含む回路とが並列接続されている。スイッチS3を含む回路は、抵抗器を有さないため、スイッチS4及び抵抗器Rsを含む回路よりも低抵抗の回路である。
オペアンプOP1の非反転入力端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。オペアンプOP1の反転入力端子は、ヒータHTRの他端と接続される負極側のヒータコネクタCnと、Nチャネル型MOSFETにより構成されたスイッチS6のドレイン端子と、に接続されている。スイッチS6のソース端子はグランドラインに接続されている。スイッチS6のゲート端子は、MCU1の端子P14と、ダイオードD4のアノードと、昇圧DC/DCコンバータ9のイネーブル端子ENと、に接続されている。ダイオードD4のカソードは、FF17のQ端子と接続されている。オペアンプOP1の出力端子には抵抗器R4の一端が接続されている。抵抗器R4の他端は、MCU1の端子P9と、Nチャネル型MOSFETにより構成されたスイッチS5のドレイン端子と、に接続されている。スイッチS5のソース端子は、グランドラインに接続されている。スイッチS5のゲート端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。
充電IC2の入力端子VBUSは、LED L1~L8の各々のアノードに接続されている。LED L1~L8の各々のカソードは、電流制限ための抵抗器を介して、MCU1の制御端子PD1~PD8に接続されている。すなわち、入力端子VBUSには、LED L1~L8が並列接続されている。LED L1~L8は、レセプタクルRCPに接続されたUSBケーブルから供給されるUSB電圧VUSBと、電源BATから充電IC2を経由して供給される電圧と、のそれぞれによって動作可能に構成されている。MCU1には、制御端子PD1~制御端子PD8の各々とグランド端子GNDとに接続されたトランジスタ(スイッチング素子)が内蔵されている。MCU1は、制御端子PD1と接続されたトランジスタをオンすることでLED L1に通電してこれを点灯させ、制御端子PD1と接続されたトランジスタをオフすることでLED L1を消灯させる。制御端子PD1と接続されたトランジスタのオンとオフを高速で切り替えることで、LED L1の輝度や発光パターンを動的に制御できる。LED L2~L8についても同様にMCU1によって点灯制御される。
充電IC2は、入力端子VBUSに入力されるUSB電圧VUSBに基づいて電源BATを充電する充電機能を備える。充電IC2は、不図示の端子や配線から、電源BATの充電電流や充電電圧を取得し、これらに基づいて、電源BATの充電制御(充電端子batから電源BATへの電力供給制御)を行う。また、充電IC2は、残量計IC12からMCU1に送信された電源BATの温度情報を、通信線LNを利用したシリアル通信によってMCU1から取得し、充電制御に利用してもよい。
充電IC2は、更に、VBATパワーパス機能と、OTG機能とを備える。VBATパワーパス機能は、充電端子batに入力される電源電圧VBATと略一致するシステム電源電圧Vcc0を、出力端子SYSから出力する機能である。OTG機能は、充電端子batに入力される電源電圧VBATを昇圧して得られるシステム電源電圧Vcc4を、入力端子VBUSから出力する機能である。充電IC2のOTG機能のオンオフは、通信線LNを利用したシリアル通信によって、MCU1により制御される。なお、OTG機能においては、充電端子batに入力される電源電圧VBATを、入力端子VBUSからそのまま出力してもよい。この場合において、電源電圧VBATとシステム電源電圧Vcc4は略一致する。
充電IC2の出力端子SYSは、昇降圧DC/DCコンバータ8の入力端子VINに接続されている。充電IC2のスイッチング端子SWにはリアクトルLaの一端が接続されている。リアクトルLaの他端は、充電IC2の出力端子SYSに接続されている。充電IC2の充電イネーブル端子CE( ̄)は、抵抗器を介して、MCU1の端子P22に接続されている。更に、充電IC2の充電イネーブル端子CE( ̄)には、バイポーラトランジスタS1のコレクタ端子が接続されている。バイポーラトランジスタS1のエミッタ端子は、後述のLSW4の出力端子VOUTに接続されている。バイポーラトランジスタS1のベース端子は、FF17のQ端子に接続されている。更に、充電IC2の充電イネーブル端子CE( ̄)には、抵抗器Rcの一端が接続されている。抵抗器Rcの他端は、LSW4の出力端子VOUTに接続されている。
昇降圧DC/DCコンバータ8の入力端子VINとイネーブル端子ENには抵抗器が接続されている。充電IC2の出力端子SYSから、昇降圧DC/DCコンバータ8の入力端子VINにシステム電源電圧Vcc0が入力されることで、昇降圧DC/DCコンバータ8のイネーブル端子ENに入力される信号はハイレベルとなり、昇降圧DC/DCコンバータ8は昇圧動作又は降圧動作を開始する。昇降圧DC/DCコンバータ8は、リアクトルLbに接続された内蔵トランジスタのスイッチング制御により、入力端子VINに入力されたシステム電源電圧Vcc0を昇圧又は降圧してシステム電源電圧Vcc1を生成し、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTは、昇降圧DC/DCコンバータ8のフィードバック端子FBと、LSW4の入力端子VINと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、に接続されている。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されるシステム電源電圧Vcc1が供給される配線を電源ラインPL1と記載する。
LSW4は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力されているシステム電源電圧Vcc1を出力端子VOUTから出力する。LSW4の制御端子ONと電源ラインPL1は、抵抗器を介して接続されている。このため、電源ラインPL1にシステム電源電圧Vcc1が供給されることで、LSW4の制御端子ONにはハイレベルの信号が入力される。LSW4が出力する電圧は、配線抵抗等を無視すればシステム電源電圧Vcc1と同一であるが、システム電源電圧Vcc1と区別するために、LSW4の出力端子VOUTから出力される電圧を、以下ではシステム電源電圧Vcc2と記載する。
LSW4の出力端子VOUTは、MCU1の電源端子VDDと、LSW5の入力端子VINと、残量計IC12の電源端子VDDと、ROM6の電源端子VCCと、バイポーラトランジスタS1のエミッタ端子と、抵抗器Rcと、FF17の電源端子VCCと、に接続されている。LSW4の出力端子VOUTから出力されるシステム電源電圧Vcc2が供給される配線を電源ラインPL2と記載する。
LSW5は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力されているシステム電源電圧Vcc2を出力端子VOUTから出力する。LSW5の制御端子ONは、MCU1の端子P23と接続されている。LSW5が出力する電圧は、配線抵抗等を無視すればシステム電源電圧Vcc2と同一であるが、システム電源電圧Vcc2と区別するために、LSW5の出力端子VOUTから出力される電圧を、以下ではシステム電源電圧Vcc3と記載する。LSW5の出力端子VOUTから出力されるシステム電源電圧Vcc3が供給される配線を電源ラインPL3と記載する。
電源ラインPL3には、サーミスタT2と抵抗器Rt2の直列回路が接続され、抵抗器Rt2はグランドラインに接続されている。サーミスタT2と抵抗器Rt2は分圧回路を構成しており、これらの接続点は、MCU1の端子P21と接続されている。MCU1は、端子P21に入力される電圧に基づいて、サーミスタT2の温度変動(抵抗値変動)を検出し、その温度変動量によって、パフ動作の有無を判定する。
電源ラインPL3には、サーミスタT3と抵抗器Rt3の直列回路が接続され、抵抗器Rt3はグランドラインに接続されている。サーミスタT3と抵抗器Rt3は分圧回路を構成しており、これらの接続点は、MCU1の端子P13と、オペアンプOP2の反転入力端子と、に接続されている。MCU1は、端子P13に入力される電圧に基づいて、サーミスタT3の温度(ヒータHTRの温度に相当)を検出する。
電源ラインPL3には、サーミスタT4と抵抗器Rt4の直列回路が接続され、抵抗器Rt4はグランドラインに接続されている。サーミスタT4と抵抗器Rt4は分圧回路を構成しており、これらの接続点は、MCU1の端子P12と、オペアンプOP3の反転入力端子と、に接続されている。MCU1は、端子P12に入力される電圧に基づいて、サーミスタT4の温度(ケース110の温度に相当)を検出する。
電源ラインPL2には、MOSFETにより構成されたスイッチS7のソース端子が接続されている。スイッチS7のゲート端子は、MCU1の端子P20に接続されている。スイッチS7のドレイン端子は、振動モータMが接続される一対のコネクタの一方に接続されている。この一対のコネクタの他方はグランドラインに接続されている。MCU1は、端子P20の電位を操作することでスイッチS7の開閉を制御し、振動モータMを特定のパターンで振動させることができる。スイッチS7に代えて、専用のドライバICを用いてもよい。
電源ラインPL2には、オペアンプOP2の正電源端子と、オペアンプOP2の非反転入力端子に接続されている分圧回路Pd(2つの抵抗器の直列回路)と、が接続されている。分圧回路Pdを構成する2つの抵抗器の接続点は、オペアンプOP2の非反転入力端子に接続されている。オペアンプOP2は、ヒータHTRの温度に応じた信号(サーミスタT3の抵抗値に応じた信号)を出力する。本実施形態では、サーミスタT3としてNTC特性を持つものを用いているため、ヒータHTRの温度(サーミスタT3の温度)が高いほど、オペアンプOP2の出力電圧は低くなる。これは、オペアンプOP2の負電源端子はグランドラインへ接続されており、オペアンプOP2の反転入力端子に入力される電圧値(サーミスタT3と抵抗器Rt3による分圧値)が、オペアンプOP2の非反転入力端子に入力される電圧値(分圧回路Pdによる分圧値)より高くなると、オペアンプOP2の出力電圧の値は、グランド電位の値と略等しくなるためである。つまり、ヒータHTRの温度(サーミスタT3の温度)が高温になると、オペアンプOP2の出力電圧はローレベルになる。
なお、サーミスタT3としてPTC特性を持つものを用いる場合には、オペアンプOP2の非反転入力端子に、サーミスタT3及び抵抗器Rt3の分圧回路の出力を接続し、オペアンプOP2の反転入力端子に、分圧回路Pdの出力を接続すればよい。
なお、サーミスタT3としてPTC特性を持つものを用いる場合には、オペアンプOP2の非反転入力端子に、サーミスタT3及び抵抗器Rt3の分圧回路の出力を接続し、オペアンプOP2の反転入力端子に、分圧回路Pdの出力を接続すればよい。
電源ラインPL2には、オペアンプOP3の正電源端子と、オペアンプOP3の非反転入力端子に接続されている分圧回路Pe(2つの抵抗器の直列回路)と、が接続されている。分圧回路Peを構成する2つの抵抗器の接続点は、オペアンプOP3の非反転入力端子に接続されている。オペアンプOP3は、ケース110の温度に応じた信号(サーミスタT4の抵抗値に応じた信号)を出力する。本実施形態では、サーミスタT4としてNTC特性を持つものを用いているため、ケース110の温度が高いほど、オペアンプOP3の出力電圧は低くなる。これは、オペアンプOP3の負電源端子はグランドラインへ接続されており、オペアンプOP3の反転入力端子に入力される電圧値(サーミスタT4と抵抗器Rt4による分圧値)が、オペアンプOP3の非反転入力端子に入力される電圧値(分圧回路Peによる分圧値)より高くなると、オペアンプOP3の出力電圧の値は、グランド電位の値と略等しくなるためである。つまり、サーミスタT4の温度が高温になると、オペアンプOP3の出力電圧が、ローレベルになる。
なお、サーミスタT4としてPTC特性を持つものを用いる場合には、オペアンプOP3の非反転入力端子に、サーミスタT4及び抵抗器Rt4の分圧回路の出力を接続し、オペアンプOP3の反転入力端子に、分圧回路Peの出力を接続すればよい。
なお、サーミスタT4としてPTC特性を持つものを用いる場合には、オペアンプOP3の非反転入力端子に、サーミスタT4及び抵抗器Rt4の分圧回路の出力を接続し、オペアンプOP3の反転入力端子に、分圧回路Peの出力を接続すればよい。
オペアンプOP2の出力端子には抵抗器R1が接続されている。抵抗器R1には、ダイオードD1のカソードが接続されている。ダイオードD1のアノードは、オペアンプOP3の出力端子と、FF17のD端子と、FF17のCLR( ̄)端子と、に接続されている。抵抗器R1とダイオードD1との接続ラインには、電源ラインPL1に接続された抵抗器R2が接続されている。また、この接続ラインには、FF16のCLR( ̄)端子が接続されている。
ダイオードD1のアノード及びオペアンプOP3の出力端子の接続点と、FF17のD端子との接続ラインには、抵抗器R3の一端が接続されている。抵抗器R3の他端は電源ラインPL2に接続されている。更に、この接続ラインには、残量計IC12の通知端子12aと接続されているダイオードD2のアノードと、ダイオードD3のアノードと、FF17のCLR( ̄)端子と、が接続されている。ダイオードD3のカソードは、MCU1の端子P5に接続されている。
FF16は、ヒータHTRの温度が過大となり、オペアンプOP2から出力される信号が小さくなって、CLR( ̄)端子に入力される信号がローレベルになると、Q( ̄)端子からハイレベルの信号をMCU1の端子P11に入力する。FF16のD端子には電源ラインPL1からハイレベルのシステム電源電圧Vcc1が供給されている。このため、FF16では、負論理で動作するCLR( ̄)端子に入力される信号がローレベルにならない限り、Q( ̄)端子からはローレベルの信号が出力され続ける。
FF17のCLR( ̄)端子に入力される信号は、ヒータHTRの温度が過大となった場合と、ケース110の温度が過大となった場合と、残量計IC12の通知端子12aから異常検出を示すローレベルの信号が出力された場合のいずれかの場合に、ローレベルとなる。FF17は、CLR( ̄)端子に入力される信号がローレベルになると、Q端子からローレベルの信号を出力する。このローレベルの信号は、MCU1の端子P10と、スイッチS6のゲート端子と、昇圧DC/DCコンバータ9のイネーブル端子ENと、充電IC2に接続されたバイポーラトランジスタS1のベース端子と、にそれぞれ入力される。スイッチS6のゲート端子にローレベルの信号が入力されると、スイッチS6を構成するNチャネル型MOSFETのゲート-ソース間電圧が閾値電圧未満となるため、スイッチS6がオフになる。昇圧DC/DCコンバータ9のイネーブル端子ENにローレベルの信号が入力されると、昇圧DC/DCコンバータ9のイネーブル端子ENは正論理であるため、昇圧動作が停止する。バイポーラトランジスタS1のベース端子にローレベルの信号が入力されると、バイポーラトランジスタS1がオンになる(コレクタ端子から増幅された電流が出力される)。バイポーラトランジスタS1がオンになると、充電IC2のCE( ̄)端子にバイポーラトランジスタS1を介してハイレベルのシステム電源電圧Vcc2が入力される。充電IC2のCE( ̄)端子は負論理であるため、電源BATの充電が停止される。これらにより、ヒータHTRの加熱と電源BATの充電が停止される。なお、MCU1が端子P22から充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力しようとしても、バイポーラトランジスタS1がオンされると、増幅された電流が、コレクタ端子からMCU1の端子P22および充電IC2の充電イネーブル端子CE( ̄)に入力される。これにより、充電IC2の充電イネーブル端子CE( ̄)にはハイレベルの信号が入力される点に留意されたい。
FF17のD端子には電源ラインPL2からハイレベルのシステム電源電圧Vcc2が供給されている。このため、FF17では、負論理で動作するCLR( ̄)端子に入力される信号がローレベルにならない限り、Q端子からハイレベルの信号が出力され続ける。オペアンプOP3の出力端子からローレベルの信号が出力されると、オペアンプOP2の出力端子から出力される信号のレベルに拠らず、FF17のCLR( ̄)端子にはローレベルの信号が入力される。オペアンプOP2の出力端子からハイレベルの信号が出力される場合には、オペアンプOP3の出力端子から出力されるローレベルの信号は、ダイオードD1によってこのハイレベルの信号の影響を受けない点に留意されたい。また、オペアンプOP2の出力端子からローレベルの信号が出力される場合には、オペアンプOP3の出力端子からハイレベルの信号が出力されたとしても、ダイオードD1を介してこのハイレベルの信号はローレベルの信号に置き換わる。
電源ラインPL2は、MCU搭載基板161からLED搭載基板163及びホールIC搭載基板164側に向けて更に分岐している。この分岐した電源ラインPL2には、ホールIC13の電源端子VDDと、通信IC15の電源端子VCCと、ホールIC14の電源端子VDDと、が接続されている。
ホールIC13の出力端子OUTは、MCU1の端子P3と、スイッチドライバ7の端子SW2と、に接続されている。アウターパネル115が外れると、ホールIC13の出力端子OUTからローレベルの信号が出力される。MCU1は、端子P3に入力される信号により、アウターパネル115の装着有無を判定する。
LED搭載基板163には、操作スイッチOPSと接続された直列回路(抵抗器とコンデンサの直列回路)が設けられている。この直列回路は、電源ラインPL2に接続されている。この直列回路の抵抗器とコンデンサの接続点は、MCU1の端子P4と、操作スイッチOPSと、スイッチドライバ7の端子SW1と、に接続されている。操作スイッチOPSが押下されていない状態では、操作スイッチOPSは導通せず、MCU1の端子P4とスイッチドライバ7の端子SW1にそれぞれ入力される信号は、システム電源電圧Vcc2によりハイレベルとなる。操作スイッチOPSが押下されて操作スイッチOPSが導通状態になると、MCU1の端子P4とスイッチドライバ7の端子SW1にそれぞれ入力される信号は、グランドラインへ接続されるためローレベルとなる。MCU1は、端子P4に入力される信号により、操作スイッチOPSの操作を検出する。
スイッチドライバ7には、リセット入力端子RSTBが設けられている。リセット入力端子RSTBは、LSW4の制御端子ONに接続されている。スイッチドライバ7は、端子SW1と端子SW2に入力される信号のレベルがいずれもローレベルとなった場合(アウターパネル115が外されており、且つ、操作スイッチOPSが押下された状態)には、リセット入力端子RSTBからローレベルの信号を出力することで、LSW4の出力動作を停止させる。つまり、本来はアウターパネル115の押圧部117を介して押し下げられる操作スイッチOPSが、アウターパネル115が外れた状態でユーザによって直接押し下げられると、スイッチドライバ7の端子SW1と端子SW2に入力される信号のレベルがいずれもローレベルになる。
<吸引器の動作モード毎の動作>
以下、図13~図19を参照して、図10に示す電気回路の動作を説明する。図13は、スリープモードにおける電気回路の動作を説明するための図である。図14は、アクティブモードにおける電気回路の動作を説明するための図である。図15は、加熱初期設定モードにおける電気回路の動作を説明するための図である。図16は、加熱モードにおけるヒータHTRの加熱時の電気回路の動作を説明するための図である。図17は、加熱モードにおけるヒータHTRの温度検出時の電気回路の動作を説明するための図である。図18は、充電モードにおける電気回路の動作を説明するための図である。図19は、MCU1のリセット(再起動)時の電気回路の動作を説明するための図である。図13~図19の各々において、チップ化された電子部品の端子のうち、破線の楕円で囲まれた端子は、電源電圧VBAT、USB電圧VUSB、及びシステム電源電圧等の入力又は出力がなされている端子を示している。
以下、図13~図19を参照して、図10に示す電気回路の動作を説明する。図13は、スリープモードにおける電気回路の動作を説明するための図である。図14は、アクティブモードにおける電気回路の動作を説明するための図である。図15は、加熱初期設定モードにおける電気回路の動作を説明するための図である。図16は、加熱モードにおけるヒータHTRの加熱時の電気回路の動作を説明するための図である。図17は、加熱モードにおけるヒータHTRの温度検出時の電気回路の動作を説明するための図である。図18は、充電モードにおける電気回路の動作を説明するための図である。図19は、MCU1のリセット(再起動)時の電気回路の動作を説明するための図である。図13~図19の各々において、チップ化された電子部品の端子のうち、破線の楕円で囲まれた端子は、電源電圧VBAT、USB電圧VUSB、及びシステム電源電圧等の入力又は出力がなされている端子を示している。
いずれの動作モードにおいても、電源電圧VBATは、保護IC10の電源端子VDDと、昇圧DC/DCコンバータ9の入力端子VINと、充電IC2の充電端子batに入力されている。
<スリープモード:図13>
MCU1は、充電IC2のVBATパワーパス機能を有効とし、OTG機能と充電機能を無効とする。充電IC2の入力端子VBUSにUSB電圧VUSBが入力されないことで、充電IC2のVBATパワーパス機能は有効になる。通信線LNからOTG機能を有効にするための信号がMCU1から充電IC2へ出力されないため、OTG機能は無効になる。このため、充電IC2は、充電端子batに入力された電源電圧VBATからシステム電源電圧Vcc0を生成して、出力端子SYSから出力する。出力端子SYSから出力されたシステム電源電圧Vcc0は、昇降圧DC/DCコンバータ8の入力端子VIN及びイネーブル端子ENに入力される。昇降圧DC/DCコンバータ8は、正論理であるイネーブル端子ENにハイレベルのシステム電源電圧Vcc0が入力されることでイネーブルとなり、システム電源電圧Vcc0からシステム電源電圧Vcc1を生成して、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されたシステム電源電圧Vcc1は、LSW4の入力端子VINと、LSW4の制御端子ONと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、にそれぞれ供給される。
MCU1は、充電IC2のVBATパワーパス機能を有効とし、OTG機能と充電機能を無効とする。充電IC2の入力端子VBUSにUSB電圧VUSBが入力されないことで、充電IC2のVBATパワーパス機能は有効になる。通信線LNからOTG機能を有効にするための信号がMCU1から充電IC2へ出力されないため、OTG機能は無効になる。このため、充電IC2は、充電端子batに入力された電源電圧VBATからシステム電源電圧Vcc0を生成して、出力端子SYSから出力する。出力端子SYSから出力されたシステム電源電圧Vcc0は、昇降圧DC/DCコンバータ8の入力端子VIN及びイネーブル端子ENに入力される。昇降圧DC/DCコンバータ8は、正論理であるイネーブル端子ENにハイレベルのシステム電源電圧Vcc0が入力されることでイネーブルとなり、システム電源電圧Vcc0からシステム電源電圧Vcc1を生成して、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されたシステム電源電圧Vcc1は、LSW4の入力端子VINと、LSW4の制御端子ONと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、にそれぞれ供給される。
LSW4は、制御端子ONにシステム電源電圧Vcc1が入力されることで、入力端子VINに入力されたシステム電源電圧Vcc1を、出力端子VOUTからシステム電源電圧Vcc2として出力する。LSW4から出力されたシステム電源電圧Vcc2は、MCU1の電源端子VDDと、LSW5の入力端子VINと、ホールIC13の電源端子VDDと、通信IC15の電源端子VCCと、ホールIC14の電源端子VDDと、に入力される。更に、システム電源電圧Vcc2は、残量計IC12の電源端子VDDと、ROM6の電源端子VCCと、充電IC2の充電イネーブル端子CE( ̄)に接続された抵抗器Rc及びバイポーラトランジスタS1と、FF17の電源端子VCCと、オペアンプOP3の正電源端子と、分圧回路Peと、オペアンプOP2の正電源端子と、分圧回路Pdと、にそれぞれ供給される。充電IC2に接続されているバイポーラトランジスタS1は、FF17のQ端子からローレベルの信号が出力されない限りはオフとなっている。そのため、LSW4で生成されたシステム電源電圧Vcc2は、充電IC2の充電イネーブル端子CE( ̄)にも入力される。充電IC2の充電イネーブル端子CE( ̄)は負論理のため、この状態では、充電IC2による充電機能はオフとなる。
このように、スリープモードにおいては、LSW5はシステム電源電圧Vcc3の出力を停止しているため、電源ラインPL3に接続される電子部品への電力供給は停止される。また、スリープモードにおいては、充電IC2のOTG機能は停止しているため、LED L1~L8への電力供給は停止される。
<アクティブモード:図14>
MCU1は、図13のスリープモードの状態から、端子P8に入力される信号がハイレベルとなり、スライダ119が開いたことを検出すると、端子P23からLSW5の制御端子ONにハイレベルの信号を入力する。これにより、LSW5は入力端子VINに入力されているシステム電源電圧Vcc2を、システム電源電圧Vcc3として、出力端子VOUTから出力する。LSW5の出力端子VOUTから出力されたシステム電源電圧Vcc3は、サーミスタT2と、サーミスタT3と、サーミスタT4と、に供給される。
MCU1は、図13のスリープモードの状態から、端子P8に入力される信号がハイレベルとなり、スライダ119が開いたことを検出すると、端子P23からLSW5の制御端子ONにハイレベルの信号を入力する。これにより、LSW5は入力端子VINに入力されているシステム電源電圧Vcc2を、システム電源電圧Vcc3として、出力端子VOUTから出力する。LSW5の出力端子VOUTから出力されたシステム電源電圧Vcc3は、サーミスタT2と、サーミスタT3と、サーミスタT4と、に供給される。
更に、MCU1は、スライダ119が開いたことを検出すると、通信線LNを介して、充電IC2のOTG機能を有効化する。これにより、充電IC2は、充電端子batから入力された電源電圧VBATを昇圧して得られるシステム電源電圧Vcc4を、入力端子VBUSから出力する。入力端子VBUSから出力されたシステム電源電圧Vcc4は、
LED L1~L8に供給される。
LED L1~L8に供給される。
<加熱初期設定モード:図15>
図14の状態から、端子P4に入力される信号がローレベルになる(操作スイッチOPSの押下がなされる)と、MCU1は、加熱に必要な各種の設定を行った後、端子P14から、昇圧DC/DCコンバータ9のイネーブル端子ENにハイレベルのイネーブル信号を入力する。これにより、昇圧DC/DCコンバータ9は、電源電圧VBATを昇圧して得られる駆動電圧Vbstを出力端子VOUTから出力する。駆動電圧Vbstは、スイッチS3とスイッチS4に供給される。この状態では、スイッチS3とスイッチS4はオフとなっている。また、端子P14から出力されたハイレベルのイネーブル信号によってスイッチS6はオンされる。これにより、ヒータHTRの負極側端子がグランドラインに接続されて、スイッチS3をONにすればヒータHTRを加熱可能な状態になる。MCU1の端子P14からハイレベルの信号のイネーブル信号が出力された後、加熱モードに移行する。
図14の状態から、端子P4に入力される信号がローレベルになる(操作スイッチOPSの押下がなされる)と、MCU1は、加熱に必要な各種の設定を行った後、端子P14から、昇圧DC/DCコンバータ9のイネーブル端子ENにハイレベルのイネーブル信号を入力する。これにより、昇圧DC/DCコンバータ9は、電源電圧VBATを昇圧して得られる駆動電圧Vbstを出力端子VOUTから出力する。駆動電圧Vbstは、スイッチS3とスイッチS4に供給される。この状態では、スイッチS3とスイッチS4はオフとなっている。また、端子P14から出力されたハイレベルのイネーブル信号によってスイッチS6はオンされる。これにより、ヒータHTRの負極側端子がグランドラインに接続されて、スイッチS3をONにすればヒータHTRを加熱可能な状態になる。MCU1の端子P14からハイレベルの信号のイネーブル信号が出力された後、加熱モードに移行する。
<加熱モード時のヒータ加熱:図16>
図15の状態において、MCU1は、端子P16に接続されたスイッチS3のスイッチング制御と、端子P15に接続されたスイッチS4のスイッチング制御を開始する。これらスイッチング制御は、上述した加熱初期設定モードが完了すれば自動的に開始されてもよいし、さらなる操作スイッチOPSの押下によって開始されてもよい。具体的には、MCU1は、図16のように、スイッチS3をオンし、スイッチS4をオフして、駆動電圧VbstをヒータHTRに供給し、エアロゾル生成のためのヒータHTRの加熱を行う加熱制御と、図17のように、スイッチS3をオフし、スイッチS4をオンして、ヒータHTRの温度を検出する温度検出制御と、を行う。
図15の状態において、MCU1は、端子P16に接続されたスイッチS3のスイッチング制御と、端子P15に接続されたスイッチS4のスイッチング制御を開始する。これらスイッチング制御は、上述した加熱初期設定モードが完了すれば自動的に開始されてもよいし、さらなる操作スイッチOPSの押下によって開始されてもよい。具体的には、MCU1は、図16のように、スイッチS3をオンし、スイッチS4をオフして、駆動電圧VbstをヒータHTRに供給し、エアロゾル生成のためのヒータHTRの加熱を行う加熱制御と、図17のように、スイッチS3をオフし、スイッチS4をオンして、ヒータHTRの温度を検出する温度検出制御と、を行う。
図16に示すように、加熱制御時においては、駆動電圧Vbstは、スイッチS5のゲートにも供給されて、スイッチS5がオンとなる。また、加熱制御時には、スイッチS3を通過した駆動電圧Vbstが、抵抗器Rsを介して、オペアンプOP1の正電源端子にも入力される。抵抗器Rsの抵抗値は、オペアンプOP1の内部抵抗値と比べると無視できるほど小さい。そのため、加熱制御時において、オペアンプOP1の正電源端子に入力される電圧は、駆動電圧Vbstとほぼ同等になる。
なお、抵抗器R4の抵抗値は、スイッチS5のオン抵抗値よりも大きくなっている。加熱制御時にもオペアンプOP1は動作するが、加熱制御時にはスイッチS5がオンになる。スイッチS5がオンの状態では、オペアンプOP1の出力電圧が、抵抗器R4とスイッチS5の分圧回路によって分圧されて、MCU1の端子P9に入力される。抵抗器R4の抵抗値がスイッチS5のオン抵抗値よりも大きくなっていることで、MCU1の端子P9に入力される電圧は十分に小さくなる。これにより、オペアンプOP1からMCU1に対して大きな電圧が入力されるのを防ぐことができる。
<加熱モード時のヒータ温度検出:図17>
図17に示すように、温度検出制御時には、駆動電圧VbstがオペアンプOP1の正電源端子に入力されると共に、分圧回路Pbに入力される。分圧回路Pbによって分圧された電圧は、MCU1の端子P18に入力される。MCU1は、端子P18に入力される電圧に基づいて、温度検出制御時における抵抗器RsとヒータHTRの直列回路に印加される基準電圧Vtempを取得する。
図17に示すように、温度検出制御時には、駆動電圧VbstがオペアンプOP1の正電源端子に入力されると共に、分圧回路Pbに入力される。分圧回路Pbによって分圧された電圧は、MCU1の端子P18に入力される。MCU1は、端子P18に入力される電圧に基づいて、温度検出制御時における抵抗器RsとヒータHTRの直列回路に印加される基準電圧Vtempを取得する。
また、温度検出制御時には、駆動電圧Vbst(基準電圧Vtemp)が、抵抗器RsとヒータHTRの直列回路に供給される。そして、この駆動電圧Vbst(基準電圧Vtemp)を抵抗器RsとヒータHTRによって分圧した電圧Vheatが、オペアンプOP1の非反転入力端子に入力される。抵抗器Rsの抵抗値はヒータHTRの抵抗値よりも十分に大きいため、電圧Vheatは、駆動電圧Vbstよりも十分に低い値である。温度検出制御時には、この低い電圧VheatがスイッチS5のゲート端子にも供給されることで、スイッチS5はオフされる。オペアンプOP1は、反転入力端子に入力される電圧と非反転入力端子に入力される電圧Vheatの差を増幅して出力する。
オペアンプOP1の出力信号は、MCU1の端子P9に入力される。MCU1は、端子P9に入力された信号と、端子P18の入力電圧に基づいて取得した基準電圧Vtempと、既知の抵抗器Rsの電気抵抗値と、に基づいて、ヒータHTRの温度を取得する。MCU1は、取得したヒータHTRの温度に基づいて、ヒータHTRの加熱制御(例えばヒータHTRの温度が目標温度となるような制御)を行う。
なお、MCU1は、スイッチS3とスイッチS4をそれぞれオフにしている期間(ヒータHTRへの通電を行っていない期間)においても、ヒータHTRの温度を取得することができる。具体的には、MCU1は、端子P13に入力される電圧(サーミスタT3と抵抗器Rt3から構成される分圧回路の出力電圧)に基づいて、ヒータHTRの温度を取得する。
また、MCU1は、任意のタイミングにて、ケース110の温度の取得も可能である。具体的には、MCU1は、端子P12に入力される電圧(サーミスタT4と抵抗器Rt4から構成される分圧回路の出力電圧)に基づいて、ケース110の温度を取得する。
<充電モード:図18>
図18は、スリープモードの状態でUSB接続がなされた場合を例示している。USB接続がなされると、USB電圧VUSBが過電圧保護IC11を介してLSW3の入力端子VINに入力される。USB電圧VUSBは、LSW3の入力端子VINに接続された分圧回路Pfにも供給される。USB接続がなされた直後の時点では、バイポーラトランジスタS2がオンとなっているため、LSW3の制御端子ONに入力される信号はローレベルのままとなる。USB電圧VUSBは、MCU1の端子P17に接続された分圧回路Pcにも供給され、この分圧回路Pcで分圧された電圧が端子P17に入力される。MCU1は、端子P17に入力された電圧に基づいて、USB接続がなされたことを検出する。
図18は、スリープモードの状態でUSB接続がなされた場合を例示している。USB接続がなされると、USB電圧VUSBが過電圧保護IC11を介してLSW3の入力端子VINに入力される。USB電圧VUSBは、LSW3の入力端子VINに接続された分圧回路Pfにも供給される。USB接続がなされた直後の時点では、バイポーラトランジスタS2がオンとなっているため、LSW3の制御端子ONに入力される信号はローレベルのままとなる。USB電圧VUSBは、MCU1の端子P17に接続された分圧回路Pcにも供給され、この分圧回路Pcで分圧された電圧が端子P17に入力される。MCU1は、端子P17に入力された電圧に基づいて、USB接続がなされたことを検出する。
MCU1は、USB接続がなされたことを検出すると、端子P19に接続されたバイポーラトランジスタS2をオフする。バイポーラトランジスタS2のゲート端子にローレベルの信号を入力すると、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。これにより、LSW3の制御端子ONにハイレベルの信号が入力されて、LSW3は、USB電圧VUSBを出力端子VOUTから出力する。LSW3から出力されたUSB電圧VUSBは、充電IC2の入力端子VBUSに入力される。また、LSW3から出力されたUSB電圧VUSBは、そのままシステム電源電圧Vcc4として、LED L1~L8に供給される。
MCU1は、USB接続がなされたことを検出すると、更に、端子P22から、充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力する。これにより、充電IC2は、電源BATの充電機能を有効化し、入力端子VBUSに入力されるUSB電圧VUSBによる電源BATの充電を開始する。
なお、アクティブモードの状態でUSB接続がなされた場合には、MCU1は、USB接続がなされたことを検出すると、端子P19に接続されたバイポーラトランジスタS2をオフし、更に、端子P22から、充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力し、更に、通信線LNを利用したシリアル通信によって、充電IC2のOTG機能をオフする。これにより、LED L1~L8に供給されるシステム電源電圧Vcc4は、充電IC2のOTG機能で生成されていた電圧(電源電圧VBATに基づく電圧)から、LSW3から出力されたUSB電圧VUSBに切り替わる。LED L1~L8は、MCU1によって内蔵トランジスタのオン制御がなされない限りは作動しない。このため、OTG機能のオンからオフへの過渡期における不安定な電圧がLED L1~L8に供給されるのは防がれる。
<MCUのリセット:図19>
アウターパネル115が外されてホールIC13の出力がローレベルとなり、操作スイッチOPSのオン操作がなされてMCU1の端子P4に入力される信号がローレベルになると、スイッチドライバ7の端子SW1と端子SW2が共にローレベルとなる。これにより、スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力する。リセット入力端子RSTBから出力されたローレベルの信号はLSW4の制御端子ONに入力される。これにより、LSW4は、出力端子VOUTからのシステム電源電圧Vcc2の出力を停止する。システム電源電圧Vcc2の出力が停止されることで、MCU1の電源端子VDDにシステム電源電圧Vcc2が入力されなくなるため、MCU1は停止する。
アウターパネル115が外されてホールIC13の出力がローレベルとなり、操作スイッチOPSのオン操作がなされてMCU1の端子P4に入力される信号がローレベルになると、スイッチドライバ7の端子SW1と端子SW2が共にローレベルとなる。これにより、スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力する。リセット入力端子RSTBから出力されたローレベルの信号はLSW4の制御端子ONに入力される。これにより、LSW4は、出力端子VOUTからのシステム電源電圧Vcc2の出力を停止する。システム電源電圧Vcc2の出力が停止されることで、MCU1の電源端子VDDにシステム電源電圧Vcc2が入力されなくなるため、MCU1は停止する。
スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力している時間が既定時間に達するか、端子SW1と端子SW2のいずれかに入力される信号がハイレベルになると、リセット入力端子RSTBから出力する信号をハイレベルに戻す。これにより、LSW4の制御端子ONがハイレベルとなり、システム電源電圧Vcc2が各部に供給される状態に復帰する。
<加熱制御と温度検出制御の詳細>
図20は、図10に示す電気回路のうち、ヒータHTRの加熱と温度検出に用いられる主要な電子部品を抜き出して示した要部回路図である。図20には、図10では図示又は符号を省略していた電子部品やノードとして、リアクトルLdと、抵抗器RS4と、npn型のバイポーラトランジスタTS4と、分圧回路Pbを構成している抵抗器RPb1及び抵抗器RPb2と、スイッチS5の寄生ダイオードD5と、ノードN1~N8と、MCU1に内蔵されたオペアンプOP4、オペアンプOP5、ADC(アナログデジタル変換器)1a、及びADC1bと、が示されている。図20に示した各種の抵抗器(抵抗器RS4、抵抗器Rs、抵抗器RPb1、抵抗器RPb2、及び抵抗器R4)は、既定の抵抗値を持つ固定抵抗器である。
図20は、図10に示す電気回路のうち、ヒータHTRの加熱と温度検出に用いられる主要な電子部品を抜き出して示した要部回路図である。図20には、図10では図示又は符号を省略していた電子部品やノードとして、リアクトルLdと、抵抗器RS4と、npn型のバイポーラトランジスタTS4と、分圧回路Pbを構成している抵抗器RPb1及び抵抗器RPb2と、スイッチS5の寄生ダイオードD5と、ノードN1~N8と、MCU1に内蔵されたオペアンプOP4、オペアンプOP5、ADC(アナログデジタル変換器)1a、及びADC1bと、が示されている。図20に示した各種の抵抗器(抵抗器RS4、抵抗器Rs、抵抗器RPb1、抵抗器RPb2、及び抵抗器R4)は、既定の抵抗値を持つ固定抵抗器である。
抵抗器RS4の一端は、スイッチS4のゲート端子と接続されている。抵抗器RS4の他端は、バイポーラトランジスタTS4のコレクタ端子と接続されている。バイポーラトランジスタTS4のエミッタ端子はグランドに接続されている。バイポーラトランジスタTS4のベース端子は、MCU1の端子P15に接続されている。
リアクトルLdは、昇圧DC/DCコンバータ9から出力される駆動電圧Vbstのノイズ低減を目的に設けられている。リアクトルLdは、スイッチS4のソース端子と昇圧DC/DCコンバータ9の出力端子VOUTの間に接続されている。なお、リアクトルLdに加えて、スイッチS4と抵抗器Rsの間に別のノイズ低減用の第1リアクトルを設け、抵抗器Rsと正極側のヒータコネクタCn(+)との間に更に別のノイズ低減用の第2リアクトルを設けてもよい。これら、リアクトルLd、第1リアクトル、及び第2リアクトルのうち、いずれか1つを省略したり、いずれか2つを省略したりしてもよい。また、これらのノイズ低減用のリアクトルは必須ではなく省略可能である。
ノードN1は、スイッチS3のソース端子と、リアクトルLdの一端とを接続している。ノードN1は、昇圧DC/DCコンバータ9の出力端子VOUTに接続されている。
ノードN7は、正極側(+極)のヒータコネクタCn(+)と、オペアンプOP1の非反転入力端子とを接続している。
ノードN2は、スイッチS3のドレイン端子と、ノードN7とを接続している。
ノードN4は、ノードN2と、抵抗器Rsとを接続している。ノードN4は、スイッチS5のゲート端子に接続されている。
ノードN5は、抵抗器R4におけるオペアンプOP1側の反対側端と、スイッチS5のドレイン端子とを接続している。ノードN5は、MCU1の端子P9に接続されている。
ノードN3は、スイッチS4のドレイン端子と、抵抗器RsのノードN4側の反対端とを接続している。ノードN3は、オペアンプOP1の正電源端子と、抵抗器RPb1の一端とに接続されている。
ノードN6は、抵抗器RPb1の他端と、抵抗器RPb2の一端とを接続している。ノードN6は、MCU1の端子P18に接続されている。抵抗器RPb2の他端はグランドに接続されている。
ノードN8は、負極側(-極)のヒータコネクタCn(-)と、スイッチS6のドレイン端子とを接続している。ノードN8は、オペアンプOP1の反転入力端子に接続されている。
寄生ダイオードD5は、アノードがスイッチS5のソース端子に接続され、カソードがスイッチS5のドレイン端子に接続された構成である。
図20に示す回路において、スイッチS4をオンする際の流れは次の通りである。まず、昇圧DC/DCコンバータ9の出力端子VOUTから駆動電圧Vbstが出力されている状態にて、MCU1は、バイポーラトランジスタTS4をオンする(バイポーラトランジスタTS4のエミッタ端子から増幅された電流が出力される)。これにより、スイッチS4のゲート端子が、抵抗器RS4、バイポーラトランジスタTS4のコレクタ端子、及びバイポーラトランジスタTS4のエミッタ端子を介してグランドに接続される。その結果、スイッチS4のゲート電圧がグランド電位(本実施形態では0Vとする)に近い値となり、スイッチS4のゲート・ソース間電圧の絶対値が、スイッチS4の閾値電圧の絶対値よりも大きくなって、スイッチS4はオンする。バイポーラトランジスタTS4をオフすると、スイッチS4のゲート・ソース間電圧の絶対値が、スイッチS4の閾値電圧の絶対値以下となるため、スイッチS4はオフする。
ゲート・ソース間電圧は、ゲート端子とソース端子の間に印加される電圧を指す。本実施形態におけるスイッチS4はPチャネル型のMOSFETであるため、スイッチS4をオンしようとすると、マイナスの値を持つゲート・ソース間電圧が必要となる。換言すれば、ソース端子の電位がゲート端子の電位から閾値電圧より低くなると、スイッチS4はオンされる。例えば、スイッチS4の閾値電圧を-4.5Vとした場合、ソース電位を4.9Vとし、ゲート電位を0Vにすると、ゲート・ソース間電圧は-4.9Vとなる。-4.9Vは、閾値電圧である-4.5Vより低いため、スイッチS4はオンされる。一方、ソース電位を4.9Vとし、ゲート電位を3.3Vにすると、ゲート・ソース間電圧は-1.6Vとなる。-1.6Vは、閾値電圧である-4.5Vより高いため、スイッチS4はオフされる。
本明細書においては理解を容易にするため、Pチャネル型のMOSFETのゲート・ソース間電圧と閾値電圧については、符号を無視した絶対値として説明する。
ゲート・ソース間電圧は、ゲート端子とソース端子の間に印加される電圧を指す。本実施形態におけるスイッチS4はPチャネル型のMOSFETであるため、スイッチS4をオンしようとすると、マイナスの値を持つゲート・ソース間電圧が必要となる。換言すれば、ソース端子の電位がゲート端子の電位から閾値電圧より低くなると、スイッチS4はオンされる。例えば、スイッチS4の閾値電圧を-4.5Vとした場合、ソース電位を4.9Vとし、ゲート電位を0Vにすると、ゲート・ソース間電圧は-4.9Vとなる。-4.9Vは、閾値電圧である-4.5Vより低いため、スイッチS4はオンされる。一方、ソース電位を4.9Vとし、ゲート電位を3.3Vにすると、ゲート・ソース間電圧は-1.6Vとなる。-1.6Vは、閾値電圧である-4.5Vより高いため、スイッチS4はオフされる。
本明細書においては理解を容易にするため、Pチャネル型のMOSFETのゲート・ソース間電圧と閾値電圧については、符号を無視した絶対値として説明する。
なお、前述してきたシステム電源電圧Vcc2(MCU1の電源端子VDDに入力されるMCU1の電源電圧)と駆動電圧Vbstは、好ましくは下記に示す値である。
システム電源電圧Vcc2=3.3V
駆動電圧Vbst=4.9V
システム電源電圧Vcc2=3.3V
駆動電圧Vbst=4.9V
次に、図21から図24を参照して、ヒータHTRの加熱制御と、ヒータHTRの温度検出制御の動作について説明する。
図21は、加熱モードにおけるスイッチS3及びスイッチS4のゲート端子に入力される電圧変化の一例を示す図である。本実施形態においては、スイッチS3及びスイッチS4はPチャネル型のMOSFETであるため、ゲート端子に入力される電圧がローレベルの時に、スイッチS3及びスイッチS4はオンされる点に留意されたい。図21には、駆動例EX1と駆動例EX2が示されている。図21の駆動例EX1では、MCU1は、スイッチS3及びスイッチS4のそれぞれのオンとオフを交互に繰り返す。つまり、駆動例EX1では、MCU1は、スイッチS3をオンしている間はスイッチS4をオフし、スイッチS3をオフしている間はスイッチS4をオンする。換言すれば、駆動例EX1では、スイッチS3のゲート端子に入力される電圧がローレベルである期間と、スイッチS4のゲート端子に入力される電圧がローレベルである期間が重複しない。駆動例EX2は、スイッチS3をオンする期間と、スイッチS4をオンする期間とを一部重複させている点が駆動例EX1と相違する。換言すれば、駆動例EX2では、スイッチS3のゲート端子に入力される電圧がローレベルである期間と、スイッチS4のゲート端子に入力される電圧がローレベルである期間が重複する。
図21には、MCU1の制御周期Tcが示されている。MCU1は、この制御周期Tcにおいて、スイッチS4をオンする時間を一定とし、スイッチS3をオンする時間を制御する。つまり、MCU1は、加熱制御時には、PWM(パルス幅変調)制御によって、ヒータHTRへの電力の供給を行う。この制御周期Tcのうち、スイッチS4をオンしている一定時間を除いた時間が、スイッチS3をオンする時間の最大値である。スイッチS4をオンしている一定時間は、スイッチS3をオンする時間の最大値よりも十分に小さく、例えば、この最大値の10分の1以下である。なお、制御周期Tcのうち、スイッチS3を複数回オンしてもよい。この場合において、PWM制御によって算出されるデューティ比が100%未満ならば、制御周期TcのうちスイッチS4をオンしている一定時間を除いた時間において、スイッチS3は間欠的にオンされることとなる。
駆動例EX1では、スイッチS3がオンからオフに切り替わるタイミングで、スイッチS4がオフからオンに切り替わるように、MCU1が制御している。つまり、MCU1は、スイッチS3をオフするタイミングは固定とし、スイッチS3をオンするタイミングを制御することで、スイッチS3のオン時間を変更している。なお、MCU1は、PFM(パルス周波数変調)制御によってヒータHTRへの電力の供給を行ってもよい。
図22は、加熱モードの加熱制御時における電流の流れを示した図である。加熱制御時には、スイッチS3がオン且つスイッチS4がオフとなる。この状態では、ノードN1、スイッチS3、ノードN2、ノードN7、ヒータHTR、ノードN8、スイッチS6、及びグランドの順に電流が流れる第1加熱放電経路HR1と、ノードN1、スイッチS3、ノードN2、ノードN4、及びスイッチS5のゲート端子の順に電流が流れる第2加熱放電経路HR2と、ノードN1、スイッチS3、ノードN2、ノードN4、抵抗器Rs、ノードN3、及びオペアンプOP1の正電源端子の順に電流が流れる第3加熱放電経路HR3と、が形成される。
第3加熱放電経路HR3の存在により、オペアンプOP1の正電源端子には、駆動電圧Vbstよりも低い電圧(駆動電圧Vbstの抵抗器Rsで降圧後の電圧)が供給されて、オペアンプOP1は動作可能になっている。つまり、加熱制御時には、第3加熱放電経路HR3の存在により、オペアンプOP1の正電源端子と負電源端子の間に印加される電圧は、駆動電圧Vbstよりも低い値(ただし、MCU1の電源電圧であるシステム電源電圧Vcc2よりは高い値)となる。この状態では、オペアンプOP1の差動入力値が駆動電圧Vbstよりも高くなると、オペアンプOP1の出力電圧は、オペアンプOP1の正電源端子に印加されている電圧に貼り付いてしまう。この電圧は、MCU1の電源電圧よりも高いため、この電圧がMCU1に入力されると、MCU1は正常に動作しなくなる虞がある。そこで、第2加熱放電経路HR2の存在によってスイッチS5がオンされるようになっている。これにより、オペアンプOP1の出力電圧は、抵抗器R4とスイッチS5のオン抵抗によって分圧されてMCU1の端子P9に入力される。スイッチS5のオン抵抗値は抵抗器R4の抵抗値よりも十分に小さい。このため、抵抗器R4とスイッチS5によって分圧される電圧値は微小となる。したがって、スイッチS5は、オンすることで、オペアンプOP1の出力電圧をグランドレベルにクランプしていると見做すことができる。
図23は、加熱モードの温度検出制御時における電流の流れを示した図である。温度検出制御時には、スイッチS3がオフ且つスイッチS4がオンとなる。この状態では、ノードN1、リアクトルLd、スイッチS4、抵抗器Rs、ノードN2、ノードN7、ヒータHTR、ノードN8、スイッチS6、及びグランドの順に電流が流れる第1検出放電経路MR1と、ノードN1、リアクトルLd、スイッチS4、抵抗器Rs、ノードN4、及びスイッチS5のゲート端子の順に電流が流れる第2検出放電経路MR2と、ノードN1、リアクトルLd、スイッチS4、ノードN3、及びオペアンプOP1の正電源端子の順に電流が流れる第3検出放電経路MR3と、が形成される。
リアクトルLdの抵抗値とスイッチS4のオン抵抗値は十分に小さい。このため、第3検出放電経路MR3の存在により、オペアンプOP1の正電源端子には、駆動電圧Vbstとほぼ同じ電圧(基準電圧Vtemp)が供給されて、オペアンプOP1は動作可能になっている。このように、温度検出制御時には、オペアンプOP1の電源電圧が、加熱制御時よりも大きくなるため、オペアンプOP1の差動入力値の上限値を大きくすることができる。
温度検出制御時には、オペアンプOP1の非反転入力端子に、ノードN3の電圧(基準電圧Vtemp)を、抵抗器RsとヒータHTRで分圧した電圧Vheatが入力される。なお、ノードN7は、配線抵抗を無視すれば、ノードN4の電位と一致する。このため、スイッチS5のゲート端子に入力される電圧も、電圧Vheatと同じになる。電圧Vheatは、スイッチS5の閾値電圧以下であるため、図23の状態では、スイッチS5はオフになる。このように、電圧VheatがスイッチS5の閾値電圧以下となるように、抵抗器Rsの抵抗値を決めておくことが好ましい。スイッチS5がオフになることで、オペアンプOP1の出力電圧VOUTは、分圧されることなく、MCU1の端子P9に入力される。なお、スイッチS5がオフの状態では、寄生ダイオードD5がツェナーダイオードのように振る舞う。このため、何らかの要因によってオペアンプOP1の出力電圧VOUTが過大となった場合でも、MCU1の端子P9に入力される電圧が高くなるのを防ぐことができる。本実施形態では、図23の状態において、MCU1の端子P9に入力される電圧がMCU1の動作電圧(システム電源電圧Vcc2)以下となるように、抵抗器R4や抵抗器Rsの抵抗値が決められている。
オペアンプOP1の増幅率をAとし、ヒータHTRの抵抗値をRHTRとし、抵抗器Rsの抵抗値をRRSとし、オペアンプOP1の反転入力端子に入力される電圧を0Vとすると、オペアンプOP1の出力電圧VOUTは、以下の式(1)により表される。式(1)の右辺の増幅率Aを除く項が電圧Vheatに相当する。
式(1)を抵抗値RHTRについて解くと、以下の式(2)が得られる。
温度検出制御時において、MCU1は、端子P9に入力された出力電圧VOUTと、グランド電位(=0V)の差を内蔵のオペアンプOP5によって増幅し、増幅後の電圧を内蔵のADC1bでデジタル値(ADC_VOUTと記載)に変換する。また、MCU1は、端子P18に入力された基準電圧Vtempの分圧値(分圧回路Pbによって分圧された値)とグランド電位(=0V)の差を内蔵のオペアンプOP4によって増幅し、増幅後の電圧を内蔵のADC1aでデジタル値(ADC_Vtempと記載)に変換する。オペアンプOP4及び/又はオペアンプOP5の反転入力端子は必ずしもグランド電位に接続されていなくてもよく、他の基準電位に接続されていてもよい。この基準電位が十分に高い場合、基準電位が非反転入力端子に接続され、出力電圧VOUTや基準電圧Vtempの分圧値が反転入力端子に接続されてもよい。なお、ADC1a及びオペアンプOP4の出力は、MCU1内部の温度の影響による温度ドリフト誤差ε1を生じ、ADC1b及びオペアンプOP5の出力は、MCU1内部の温度の影響による温度ドリフト誤差ε2を生じる。つまり、ADC1aから出力されるデジタル値は、厳密には、ADC_Vtemp(1+ε1)となり、ADC1bから出力されるデジタル値は、厳密には、ADC_VOUT(1+ε2)となる。
デジタル値ADC_Vtemp(1+ε1)を式(2)のVtempに代入し、デジタル値ADC_VOUT(1+ε2)を式(2)のVOUTに代入したものが、式(3)である。ADC1a及びオペアンプOP4と、ADC1b及びオペアンプOP5は、それぞれMCU1内部に設けられている。そのため、温度ドリフト誤差ε1と温度ドリフト誤差ε2はほぼ同じと見做せる。つまり、式(3)における(1+ε1)と(1+ε2)は同じ値となる。このため、式(3)において、温度ドリフト誤差は相殺される。MCU1は、この式(3)の演算により、ヒータHTRの抵抗値RHTRを導出する。ヒータHTRは、温度に応じて抵抗値が変化する特性を持つため、抵抗値RHTRが導出されることで、ヒータHTRの温度が取得可能となる。
このように、式(3)の演算により、出力電圧VOUTに生じ得る温度ドリフト誤差(正確には、出力電圧VOUTに相当する情報を取得するために必要な電子部品(オペアンプOP5及びADC1b)の出力に生じ得る温度ドリフト誤差)と、基準電圧Vtempに生じ得る温度ドリフト誤差(正確には、基準電圧Vtempに相当する情報を取得するために必要な電子部品(オペアンプOP4及びADC1a)の出力に生じ得る温度ドリフト誤差)とを相殺することができ、ヒータHTRの抵抗値RHTRをより精度よく導出することができる。換言すれば、MCU1の温度の影響を受けずに、ヒータHTRの抵抗値RHTRが導出しやすくなる。
図20の例では、MCU1内部に、オペアンプOP5及びADC1bと、オペアンプOP4及びADC1aと、が個別に設けられている。しかし、これらは共通化されていてもよい。つまり、出力電圧VOUTの情報を取得するためのオペアンプ及びADCと、基準電圧Vtempの情報を取得するためのオペアンプ及びADCとを共通化し、デジタル値ADC_Vtemp(1+ε1)と、デジタル値ADC_VOUT(1+ε2)を時分割で得る構成としてもよい。この構成によれば、これら2つのデジタル値に生じる温度ドリフト誤差をより一致させることができ、ヒータHTRの抵抗値RHTRをより高精度に導出できる。
なお、スイッチS4がオンの時におけるノードN3の電位は、ノードN1の電位とほぼ同じである。このため、MCU1は、スイッチS3がオフ且つスイッチS4がオンの時に、ノードN1の電位を基準電圧Vtempとして取得し、ヒータHTRの抵抗値の導出に用いてもよい。また、オペアンプOP1の正電源端子に電圧を常時供給して電力消費が増えるのを許容するのであれば、オペアンプOP1の正電源端子をノードN3ではなくノードN1に接続し、ノードN1と分圧回路Pbとを接続してもよい。
図24は、図21の駆動例EX2におけるスイッチS3とスイッチS4が共にオンしているときの電流の流れを示した図である。図24の状態では、ノードN1、スイッチS3、ノードN2、ノードN7、ヒータHTR、ノードN8、スイッチS6、及びグランドの順に電流が流れる第1加熱放電経路HR1と、ノードN1、スイッチS3、ノードN2、ノードN4、及びスイッチS5のゲート端子の順に電流が流れる第2加熱放電経路HR2と、ノードN1、リアクトルLd、スイッチS4、ノードN3、及びオペアンプOP1の正電源端子の順に電流が流れる第3検出放電経路MR3と、が形成される。
図24の状態では、ノードN3とノードN4がほぼ同電位となるため、抵抗器Rsにはほとんど電流が流れない。したがって、オペアンプOP1の電源電圧は、駆動電圧Vbstとなる。つまり、この状態では、オペアンプOP1の差動入力値の上限値が駆動電圧Vbstと等しくなる。このため、オペアンプOP1の出力電圧は図22の状態と比べて大きくなる。しかし、本実施形態では、図24の状態において、MCU1の端子P9に入力される電圧がMCU1の動作電圧(システム電源電圧Vcc2)以下となるように、抵抗器R4とスイッチS5のオン抵抗の抵抗比が決められている。このため、MCU1の端子P9に動作電圧以上の大きな電圧が入力されることはない。つまり、MCU1の動作が安定する。
このように、吸引器100では、図22に示すように、スイッチS3がオン且つスイッチS4がオフの期間においては、第3加熱放電経路HR3によって、駆動電圧Vbstよりも小さい電圧をオペアンプOP1の電源電圧として供給することができる。また、図23に示すように、スイッチS4がオン且つスイッチS3がオフの期間においては、第3検出放電経路MR3によって、駆動電圧Vbstと同等の電圧をオペアンプOP1の電源電圧として供給することができる。したがって、図21に示したように、ヒータHTRの加熱を開始し、その加熱を終了して、ヒータHTRの温度検出を終了するまでの期間(スイッチ3のゲート電圧の立下りから、その直後のスイッチS4の立ち上がりまでの期間)において、オペアンプOP1に連続して電源電圧を供給できる。したがって、スイッチS3のオン期間(ヒータHTRの加熱期間)においてオペアンプOP1に電源電圧を供給しない参考例と比較すると、温度検出制御時において、オペアンプOP1の電源電圧が十分に立ち上がるまで待つ必要がなくなり、加熱制御と温度検出制御を効率的に実行することができる。
特に、駆動例EX2によれば、加熱制御を行いながら、温度検出制御時に必要なオペアンプOP1の電源電圧の供給が可能になる。このため、加熱制御が終了したタイミングで、オペアンプOP1の電源電圧を十分に立ち上げた状態とすることができ、駆動例EX1と比べると、ヒータHTRの加熱終了後、より早いタイミングで、ヒータHTRの抵抗値を高精度に検出できるようになる。
なお、図21に示す駆動例EX1及び駆動例EX2のどちらにおいても、スイッチS4がオフになった後、次にスイッチS3がオンされるまでの期間は、オペアンプOP1に電源電圧が供給されない場合がある。しかし、この期間の直後に行われるのは加熱制御であり、オペアンプOP1の動作は必須ではない。このため、この期間においてオペアンプOP1に電源電圧が供給されなくても支障はない。しかも、この期間においてはオペアンプOP1による電力消費を無くすことができるため、吸引器100全体の省電力化に寄与することができる。
以上のように構成された吸引器100において、図20に示したスイッチS3、スイッチS4、及びスイッチS6は、それぞれ好ましい構成がある。以下、各スイッチの好ましい例について説明する。
<スイッチS3の好ましい構成>
スイッチS3は、ヒータHTRを加熱する際に、ヒータHTRにより多くの電流が流れるようにするために、オン抵抗値が小さい(換言すると、チップサイズが大きい)構成が好ましい。以下では、スイッチS3、スイッチS4、及びスイッチS6のそれぞれのオン抵抗値を比較する場合には、温度及び流れる電流が同じという条件下で比較を行うものとする。
スイッチS3は、ヒータHTRを加熱する際に、ヒータHTRにより多くの電流が流れるようにするために、オン抵抗値が小さい(換言すると、チップサイズが大きい)構成が好ましい。以下では、スイッチS3、スイッチS4、及びスイッチS6のそれぞれのオン抵抗値を比較する場合には、温度及び流れる電流が同じという条件下で比較を行うものとする。
スイッチS3は、ヒータHTRを加熱する際に、PWM制御又はPFM制御等によって高速でオンオフされる。このため、瞬間的に出力可能な最大電流値(パルス状で出力可能な最大電流値)は、大きいことが好ましい。また、スイッチS3は、多くの電流をヒータHTRに流す観点と、スイッチS4よりもオン時間が長くなる観点とから、連続して出力可能な最大電流値は、スイッチS4よりも大きいことが好ましい。以下では、スイッチS3、スイッチS4、及びスイッチS6のそれぞれが出力可能な最大電流値を比較する場合には、温度が同じという条件下で比較を行うものとする。
スイッチS3は、図20に例示したように、Pチャネル型MOSFETであることが好ましい。スイッチS3は、Nチャネル型MOSFETで構成することも可能である。しかし、スイッチS3をNチャネル型MOSFETで構成した場合には、スイッチS3をオンするために、MCU1の端子P16からスイッチS3のゲート端子に供給する電圧を、駆動電圧Vbstよりも大きい値にする必要があり、MCU1の電源電圧を高くする必要がある。これに対し、スイッチS3をPチャネル型MOSFETで構成すれば、MCU1の電源電圧を駆動電圧Vbstよりも下げることができるため、MCU1の消費電力を抑えることができる。
<スイッチS4の好ましい構成>
スイッチS4は、抵抗器RsとヒータHTRの直列回路に十分な大きさの電圧を印加できるように、オン抵抗値を小さくすることが好ましい。ただし、オン抵抗値を小さくしすぎると、サイズが大きくなることから、回路面積を削減するために、スイッチS4のオン抵抗値は、スイッチS3のオン抵抗値よりも大きいことが好ましい。ヒータHTRの抵抗値を検出するための電流がヒータHTRの温度を変化させないためにも、スイッチS4のオン抵抗値は小さすぎないことが好ましい。具体的には、スイッチS4のオン抵抗値は、抵抗器Rsの抵抗値より小さく、スイッチ3のオン抵抗値よりも大きい値とすることが好ましい。
スイッチS4は、抵抗器RsとヒータHTRの直列回路に十分な大きさの電圧を印加できるように、オン抵抗値を小さくすることが好ましい。ただし、オン抵抗値を小さくしすぎると、サイズが大きくなることから、回路面積を削減するために、スイッチS4のオン抵抗値は、スイッチS3のオン抵抗値よりも大きいことが好ましい。ヒータHTRの抵抗値を検出するための電流がヒータHTRの温度を変化させないためにも、スイッチS4のオン抵抗値は小さすぎないことが好ましい。具体的には、スイッチS4のオン抵抗値は、抵抗器Rsの抵抗値より小さく、スイッチ3のオン抵抗値よりも大きい値とすることが好ましい。
図21に例示したように、ヒータHTRの抵抗値の検出は、ヒータHTRの加熱よりも短時間で行う必要がある。また、スイッチS6は加熱モードでは常時オンされることから応答性は高くなくてよい。このため、スイッチS4の応答性は、スイッチS3及びスイッチS6の応答性よりも高いことが好ましい。トランジスタの応答性を示す指標としては、ターンオン時間ton、ターンオン遅れ時間td(on)、上昇時間tr、ターンオフ時間toff、ターンオフ遅れ時間td(off)、及び下降時間tfがある。
ターンオン遅れ時間td(on)は、ターンオン時に、ゲート・ソース間電圧が設定値の10%に達してから、ドレイン・ソース間電圧が設定値の90%まで達するのに要する時間である。
上昇時間trは、ターンオン時に、ドレイン・ソース間電圧が設定値の90%から10%まで達するのに要する時間である。
ターンオン時間tonは、ターンオン遅れ時間td(on)と上昇時間trの合計値である。
ターンオフ遅れ時間td(off)は、ターンオフ時に、ゲート・ソース間電圧が設定値の90%に達してから、ドレイン・ソース間電圧が設定値の10%まで達するのに要する時間である。
下降時間tfは、ターンオフ時に、ドレイン・ソース間電圧が設定値の10%から90%まで達するのに要する時間である。
ターンオフ時間toffは、ターンオフ遅れ時間td(off)と下降時間tfの合計値である。
上昇時間trは、ターンオン時に、ドレイン・ソース間電圧が設定値の90%から10%まで達するのに要する時間である。
ターンオン時間tonは、ターンオン遅れ時間td(on)と上昇時間trの合計値である。
ターンオフ遅れ時間td(off)は、ターンオフ時に、ゲート・ソース間電圧が設定値の90%に達してから、ドレイン・ソース間電圧が設定値の10%まで達するのに要する時間である。
下降時間tfは、ターンオフ時に、ドレイン・ソース間電圧が設定値の10%から90%まで達するのに要する時間である。
ターンオフ時間toffは、ターンオフ遅れ時間td(off)と下降時間tfの合計値である。
ヒータHTRの抵抗値の検出は、ヒータHTRの加熱よりも短時間で行う必要がある。このため、スイッチS4のターンオン遅れ時間又は上昇時間は、スイッチS3及びスイッチS6のそれぞれのターンオン遅れ時間又は上昇時間より短いことが好ましい。同様に、スイッチS4のターンオフ遅れ時間又は下降時間は、スイッチS3及びスイッチS6のそれぞれのターンオフ遅れ時間又は下降時間より短いことが好ましい。
スイッチS4は、図20に例示したように、Pチャネル型MOSFETであることが好ましい。スイッチS4は、Nチャネル型MOSFETで構成することも可能である。しかし、スイッチS4をNチャネル型MOSFETで構成した場合には、スイッチS4をオンするために、MCU1の端子P15からスイッチS4のゲート端子に供給する電圧を、駆動電圧Vbstよりも大きい値にする必要があり、MCU1の電源電圧が高くなる。これに対し、スイッチS4をPチャネル型MOSFETで構成すれば、MCU1の電源電圧を駆動電圧Vbstよりも下げることができるため、MCU1の消費電力を抑えることができる。
<スイッチS6の好ましい構成>
スイッチS6は、ヒータHTRを加熱する際に、ヒータHTRにより多くの電流が流れるようにするために、オン抵抗値が小さい(換言すると、チップサイズが大きい)構成が好ましい。具体的には、スイッチS6のオン抵抗値は、スイッチS3のオン抵抗値と同等にすることが好ましい。
スイッチS6は、ヒータHTRを加熱する際に、ヒータHTRにより多くの電流が流れるようにするために、オン抵抗値が小さい(換言すると、チップサイズが大きい)構成が好ましい。具体的には、スイッチS6のオン抵抗値は、スイッチS3のオン抵抗値と同等にすることが好ましい。
スイッチS6は、加熱モードにおいて継続的に電流を流す必要がある。このため、スイッチS6が連続して出力可能な最大電流値は、スイッチS4及びスイッチS3より大きいことが好ましい。一方、スイッチS6は加熱モードにおいては常時オンされるため、スイッチS6が瞬間的に出力可能(パルス状で出力可能)な最大電流値は、オンオフが繰り返されるスイッチS3より小さくすることが好ましい。スイッチS6の用途に対して瞬間的に出力可能(パルス状で出力可能)な最大電流値を過大にしてしまうと、スイッチS6のチップサイズやコストが増大してしまう虞がある。
また、スイッチS3は、回路上の高電位な箇所に接続されるため、安全性の観点からスイッチS6よりも応答性を向上させにくい。そこで、スイッチS6の応答性をスイッチS3よりも高めることが、回路全体の応答性を高めるうえで有効となる。具体的には、スイッチS6のターンオフ遅れ時間又は下降時間は、スイッチS3のターンオフ遅れ時間又は下降時間より短いことが好ましい。同様に、スイッチS6のターンオン遅れ時間又は上昇時間は、スイッチS3のターンオン遅れ時間又は上昇時間より短いことが好ましい。
スイッチS6は、図20に例示したように、Nチャネル型MOSFETであることが好ましい。スイッチS6は、Pチャネル型MOSFETで構成することも可能である。しかし、スイッチS6をPチャネル型MOSFETで構成した場合には、スイッチS6をオンするために、MCU1の端子P14からスイッチS6のゲート端子に供給する電圧を、グランドレベルよりも小さい値にする必要がある。グランドレベルよりも小さい電圧を生成しようとすると、負電源やレール・スプリッタ回路などの専用の回路が必要になってしまう。これに対し、スイッチS6をNチャネル型MOSFETで構成すれば、MCU1は自身の電源電圧相当の電圧をゲート端子へ入力すればスイッチS6をオンできるため、回路が複雑になることを抑えることができる。また、スイッチS6をNチャネル型MOSFETで構成すれば、スイッチS6のオンと同時に、昇圧DC/DCコンバータ9のイネーブル端子ENにハイレベルの信号を入力して、昇圧DC/DCコンバータ9から駆動電圧Vbstを出力させることができる。スイッチS6をPチャネル型MOSFETで構成した場合には、昇圧DC/DCコンバータ9のイネーブル端子ENとスイッチS6のゲート端子の間に論理反転用のインバータを接続する必要がある。しかし、スイッチS6をNチャネル型MOSFETで構成することで、このようなインバータを不要にでき、回路規模の削減、製造コストの削減を実現できる。
このように、スイッチS3、スイッチS4、及びスイッチS6は、それぞれ異なる構成とすることが好ましい。本明細書において、トランジスタを含んで構成されるスイッチの構成が異なるとは、トランジスタの種類が異なること、トランジスタの仕様(オン抵抗値及び応答性等)が異なること、の少なくとも一方を満たすことを言う。このような構成とすることで、3つのスイッチの全てが同種類及び同仕様である場合に比べて、各スイッチの種類及び仕様を、それぞれが接続される箇所に応じたものとすることができる。このため、吸引器100の性能を向上させることができる。
なお、図20に示した回路において、スイッチS6を省略し、ノードN8をグランドに直接接続する構成とすることも可能である。この場合でも、スイッチS3とスイッチS4を異なる構成とすることで、2つのスイッチの全てが同種類及び同仕様である場合に比べて、各スイッチの種類及び仕様を、それぞれが接続される箇所に応じたものとすることができる。このため、吸引器100の性能を向上させることができる。
<電子部品の好ましい配置>
次に、図20に示す回路における主要な電子部品のレセプタクル搭載基板162における設置箇所の好ましい例について説明する。
次に、図20に示す回路における主要な電子部品のレセプタクル搭載基板162における設置箇所の好ましい例について説明する。
図25は、レセプタクル搭載基板162を主面162a側から見た平面図である。図26は、レセプタクル搭載基板162を副面162b側から見た平面図である。図25に示すように、レセプタクル搭載基板162の主面162aには、図20に示した電子部品のうち、リアクトルLc、抵抗器Rs、スイッチS4、スイッチS6、及びヒータコネクタCnが設けられる。図26に示すように、レセプタクル搭載基板162の副面162bには、図20に示した電子部品のうち、昇圧DC/DCコンバータ9、スイッチS3、抵抗器RPb1、及び抵抗器RPb2が設けられる。
副面162bにおいて、抵抗器RPb1と抵抗器RPb2は近接配置されている。抵抗器RPb1と抵抗器RPb2は、ノードN3の電位を分圧する分圧回路Pbを構成している。抵抗器RPb1と抵抗器RPb2の温度に差が生じると、分圧回路Pbの分圧比が変動し、ヒータHTRの抵抗値を導出するために必要なノードN3の電位の取得精度が低下する。図26に示すように、抵抗器RPb1と抵抗器RPb2が、レセプタクル搭載基板162の同一面に実装され、更に、近接して配置されることで、抵抗器RPb1と抵抗器RPb2の温度に差が生じるのを防ぐことができる。この効果を高めるために、レセプタクル搭載基板162に実装される電子部品のうち、抵抗器RPb1に最も近い電子部品を、抵抗器RPb2とすることが好ましい。
図25及び図26に示す電子部品のうち熱源又はノイズ源となり得るものとしては、スイッチS3、昇圧DC/DCコンバータ9、リアクトルLc、及びヒータコネクタCnが挙げられる。これらのうち、最も発熱量が大きいのはスイッチS3であり、その次に発熱量が大きいのは昇圧DC/DCコンバータ9である。図25及び図26の例では、発熱量の大きいスイッチS3及び昇圧DC/DCコンバータ9と、スイッチS4、スイッチS6、及び抵抗器Rsとが同じ基板の別面に搭載されている。換言すれば、スイッチS3及び昇圧DC/DCコンバータ9は副面162bに搭載され、スイッチS4、スイッチS6、及び抵抗器Rsは主面162aに搭載される。このようにすることで、スイッチS4、スイッチS6、及び抵抗器Rsが、スイッチS3及び昇圧DC/DCコンバータ9から熱又はノイズの影響を受けるのを抑制できる。
また、図25に示す例では、レセプタクル搭載基板162の素子搭載面(主面162a及び副面162b)に直交する方向に見た状態で、スイッチS3及び昇圧DC/DCコンバータ9と、スイッチS4、スイッチS6、及び抵抗器Rsと、が重ならないように配置されている。このようにすることで、スイッチS3及び昇圧DC/DCコンバータ9で発生した熱又はノイズが、スイッチS4、スイッチS6、及び抵抗器Rsへ基板を介して伝わりにくくなる。つまり、スイッチS4、スイッチS6、及び抵抗器Rsが、スイッチS3及び昇圧DC/DCコンバータ9から熱又はノイズの影響を受けるのをより強く抑制できる。
なお、図25及び図26に示す例において、例えば、スイッチS4又はスイッチS6を副面162bに実装する構成としてもよい。このようにすることでも、スイッチS4とスイッチS6のいずれかが、スイッチS3及び昇圧DC/DCコンバータ9からの熱又はノイズの影響を受けるのを防ぐことができる。
また、図20に示した回路の電子部品のうち、スイッチS4とスイッチS6の少なくとも一方は、レセプタクル搭載基板162とは別の基板(例えば、MCU搭載基板161等)に実装される構成としてもよい。このようにすることでも、スイッチS4とスイッチS6の少なくとも一方が、スイッチS3及び昇圧DC/DCコンバータ9からの熱又はノイズの影響を受けるのを防ぐことができる。
図25には、主面162aにおいて抵抗器Rsが実装される実装領域と、主面162aにおいてリアクトルLcが実装される実装領域との間の距離DS4(2つの実装領域を最短距離で結ぶ直線の長さ)が示されている。また、図25には、主面162aにおいてスイッチS4が実装される実装領域と、主面162aにおいてリアクトルLcが実装される実装領域との間の距離DS5(2つの実装領域を最短距離で結ぶ直線の長さ)が示されている。そして、距離DS4は、距離DS5よりも短くなっている。
抵抗器Rsの抵抗値は、スイッチS4のオン抵抗値と比べると、温度による変動の影響を受けにくい。したがって、温度変化の影響を受けにくい抵抗器Rsについては、スイッチS4よりもリアクトルLcの近くに配置することで、基板面積を有効活用することができる。
更に、図25の例では、スイッチS4とリアクトルLcの間に抵抗器Rsが実装されている。つまり、抵抗器Rsの実装領域は、スイッチS4の実装領域とリアクトルLcの実装領域とを結ぶ直線上に存在している。このようにすることで、抵抗器Rsが、リアクトルLcで発生する熱からスイッチS4を守る物理的な障壁となる。この結果、スイッチS4の温度が変化するのを強く抑制することができる。スイッチS4のオン抵抗値が変動してしまうと、ヒータHTRの抵抗値の計測精度に影響が出る。そのため、スイッチS4の温度変化を抑制することは特に重要である。
図27は、図25に示す範囲Hの拡大図である。図27に示すように、レセプタクル搭載基板162の主面162aにおいて、スイッチS4の実装領域と、ヒータコネクタCnの実装領域とは離間しているが、これらの間には、図20に示した回路における抵抗器RS4及びバイポーラトランジスタTS4が実装されている。換言すると、スイッチS4の実装領域とヒータコネクタCnの実装領域とを結ぶ直線DL1及び直線DL2のそれぞれの上に、抵抗器RS4とバイポーラトランジスタTS4が実装されている。この構成によれば、抵抗器RS4とバイポーラトランジスタTS4が、ヒータコネクタCnで発生する熱からスイッチS4を守る物理的な障壁となる。この結果、スイッチS4の温度が変化するのを強く抑制することができる。
また、図25及び図27に示すように、スイッチS4は、レセプタクル搭載基板162の主面162aにおける外縁の近傍に配置されている。具体的には、レセプタクル搭載基板162の主面162aにおいて、スイッチS4の実装領域と、主面162aの右方向の縁162eのうち最もスイッチS4の実装領域に近い縁である最近接縁162emとの間の距離DS1は、レセプタクル搭載基板162の主面162aにおける左右方向の中心とスイッチS4の実装領域との間の距離DS2よりも短くなっている。このように、スイッチS4は、レセプタクル搭載基板162の縁の近傍に配置されることで、他の電子部品が発生する熱の影響を受けにくくなっている。特に、図27に示すように、最近接縁162emとスイッチS4の間に他の電子部品が存在しないようにする、換言すると、レセプタクル搭載基板162上において最近接縁162emに最も近い電子部品をスイッチS4とすることで、スイッチS4の温度変化をより抑制することができる。
また、図27に示す例では、レセプタクル搭載基板162の主面162aにおける抵抗器Rsの実装領域と、縁162eのうち最も抵抗器Rsの実装領域に近い縁162enとの間の距離DS3は、距離DS1よりも大きくなっている。前述したように、抵抗器Rsは、スイッチS4よりも温度変化の影響を受けにくい。そこで、抵抗器Rsについては、レセプタクル搭載基板162の中央に近づけて配置することで、基板面積を有効活用できる。
<スイッチS4の好ましい形態>
スイッチS4は、オン時においてゲート・ソース間に印加される電圧VGS(絶対値)を、できるだけ高い値とすることが好ましい。つまり、スイッチS4がPチャネル型のMOSFETである場合には、オン時においてゲート・ソース間に印加される電圧VGSを、できるだけ大きな-の値とすることが好ましい。こうすることで、スイッチS4のオン抵抗値を下げることができ、オン時におけるジュール熱を減らして、スイッチS4の温度変動を抑制できるためである。具体的には、スイッチS4のゲート・ソース間に印加できる電圧の最大定格値(絶対値)を電圧VGSSとし、スイッチS4のゲート・ソース間の電圧の閾値(絶対値)を電圧Vthとすると、MCU1は、電圧VGS(絶対値)が、電圧VGSSと電圧Vthのうち、電圧VGSSに近い値となるように、スイッチS4のゲート端子に印加する電圧を制御することが好ましい。換言すると、電圧VGSSと電圧VGS(絶対値)の差の絶対値が、電圧Vthと電圧VGS(絶対値)との差の絶対値よりも小さくなるように、スイッチS4のゲート端子に印加する電圧を制御することが好ましい。
スイッチS4は、オン時においてゲート・ソース間に印加される電圧VGS(絶対値)を、できるだけ高い値とすることが好ましい。つまり、スイッチS4がPチャネル型のMOSFETである場合には、オン時においてゲート・ソース間に印加される電圧VGSを、できるだけ大きな-の値とすることが好ましい。こうすることで、スイッチS4のオン抵抗値を下げることができ、オン時におけるジュール熱を減らして、スイッチS4の温度変動を抑制できるためである。具体的には、スイッチS4のゲート・ソース間に印加できる電圧の最大定格値(絶対値)を電圧VGSSとし、スイッチS4のゲート・ソース間の電圧の閾値(絶対値)を電圧Vthとすると、MCU1は、電圧VGS(絶対値)が、電圧VGSSと電圧Vthのうち、電圧VGSSに近い値となるように、スイッチS4のゲート端子に印加する電圧を制御することが好ましい。換言すると、電圧VGSSと電圧VGS(絶対値)の差の絶対値が、電圧Vthと電圧VGS(絶対値)との差の絶対値よりも小さくなるように、スイッチS4のゲート端子に印加する電圧を制御することが好ましい。
このように、電圧VGS(絶対値)を高い値にするために、スイッチS4のゲート端子とソース端子の間に、バリスタ等の過電圧保護ダイオードを設けることが好ましい。この過電圧保護ダイオードがあることで、昇圧DC/DCコンバータ9におけるスイッチングにより生じ得るサージ電圧がスイッチS4に印加された場合でも、その値を最大定格値以下とすることができる。この結果、スイッチS4が故障しにくくなり、吸引器100の耐久性を向上できる。
本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
電源(電源BAT)と、
上記電源から供給される電力を消費してエアロゾル源を加熱するヒータ(ヒータHTR)が接続される+極と-極とを含むヒータコネクタ(ヒータコネクタCn)と、
一端が上記ヒータコネクタの+極へ接続される第1固定抵抗器(抵抗器Rs)と、
開閉を制御するための制御端子(ゲート端子)を含み、且つ、上記第1固定抵抗器の他端と上記電源の間へ接続される第1プラス側スイッチ(スイッチS4)と、
上記第1固定抵抗器の他端と上記第1プラス側スイッチの間(ノードN3)へ接続される正電源端子と、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間(ノードN7)へ接続される非反転入力端子と、上記ヒータコネクタの-極へ接続される反転入力端子と、出力端子と、を含むオペアンプ(オペアンプOP1)と、
上記オペアンプの出力端子へ接続される入力端子(端子P9)を含むコントローラ(MCU1)と、を備え、
上記コントローラは、上記入力端子への入力に基づき、上記電源から上記ヒータへの電力の供給を制御するように構成される、
エアロゾル生成装置の電源ユニット。
電源(電源BAT)と、
上記電源から供給される電力を消費してエアロゾル源を加熱するヒータ(ヒータHTR)が接続される+極と-極とを含むヒータコネクタ(ヒータコネクタCn)と、
一端が上記ヒータコネクタの+極へ接続される第1固定抵抗器(抵抗器Rs)と、
開閉を制御するための制御端子(ゲート端子)を含み、且つ、上記第1固定抵抗器の他端と上記電源の間へ接続される第1プラス側スイッチ(スイッチS4)と、
上記第1固定抵抗器の他端と上記第1プラス側スイッチの間(ノードN3)へ接続される正電源端子と、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間(ノードN7)へ接続される非反転入力端子と、上記ヒータコネクタの-極へ接続される反転入力端子と、出力端子と、を含むオペアンプ(オペアンプOP1)と、
上記オペアンプの出力端子へ接続される入力端子(端子P9)を含むコントローラ(MCU1)と、を備え、
上記コントローラは、上記入力端子への入力に基づき、上記電源から上記ヒータへの電力の供給を制御するように構成される、
エアロゾル生成装置の電源ユニット。
(1)によれば、第1プラス側スイッチがONになると、オペアンプへ電圧が供給されるようになる。これにより、第1プラス側スイッチがOFFである状態では、オペアンプが電力を消費しなくなるので、オペアンプの消費電力を、適切に削減できる。
(2)
(1)に記載のエアロゾル生成装置の電源ユニットであって、
上記第1プラス側スイッチと上記電源の間、上記第1プラス側スイッチと上記第1固定抵抗器の他端の間、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間の少なくとも1つへ接続され、入力されるノイズを低減するノイズ低減部品(リアクトルLd)を備える、
エアロゾル生成装置の電源ユニット。
(1)に記載のエアロゾル生成装置の電源ユニットであって、
上記第1プラス側スイッチと上記電源の間、上記第1プラス側スイッチと上記第1固定抵抗器の他端の間、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間の少なくとも1つへ接続され、入力されるノイズを低減するノイズ低減部品(リアクトルLd)を備える、
エアロゾル生成装置の電源ユニット。
(2)によれば、ノイズ低減部品により、ヒータや第1プラス側スイッチへノイズが供給されにくくなるので、ヒータや第1プラス側スイッチの耐久性が向上する。
(3)
(2)に記載のエアロゾル生成装置の電源ユニットであって、
上記ノイズ低減部品は、上記第1プラス側スイッチと上記電源の間へ接続される、
エアロゾル生成装置の電源ユニット。
(2)に記載のエアロゾル生成装置の電源ユニットであって、
上記ノイズ低減部品は、上記第1プラス側スイッチと上記電源の間へ接続される、
エアロゾル生成装置の電源ユニット。
(3)によれば、第1プラス側スイッチの高電位側へ接続されるノイズ低減部品により、第1プラス側スイッチへノイズが供給されにくくなる。また、第1プラス側スイッチとヒータの間にノイズ低減部品が設けられないことにより、ヒータへ供給される電圧がなまされたり、遅延されたりすることが防がれる。このため、エアロゾル生成装置の動作が安定するようになる。
(4)
(1)から(3)のいずれか1つに記載のエアロゾル生成装置の電源ユニットであって、
上記ヒータコネクタの-極へ接続されるマイナス側スイッチ(スイッチS6)を備える、
エアロゾル生成装置の電源ユニット。
(1)から(3)のいずれか1つに記載のエアロゾル生成装置の電源ユニットであって、
上記ヒータコネクタの-極へ接続されるマイナス側スイッチ(スイッチS6)を備える、
エアロゾル生成装置の電源ユニット。
(4)によれば、第1プラス側スイッチとマイナス側スイッチの一方がショートしてしまったり、ONに貼り付いてしまったりしても、すぐにヒータへ短絡電流が供給されることが防がれる。このため、エアロゾル生成装置の安定性が向上する。
(5)
(4)に記載のエアロゾル生成装置の電源ユニットであって、
上記電源へ接続される入力端子(スイッチング端子SW)と、上記第1プラス側スイッチへ接続される出力端子(出力端子VOUT)と、所定レベルの信号が入力されると上記出力端子から電圧を出力する有効化端子(イネーブル端子EN)と、を含む電圧変換器(昇圧DC/DCコンバータ9)を備え、
上記マイナス側スイッチは、開閉を制御するための制御端子(ゲート端子)を含み、
上記電圧変換器の有効化端子へ接続される上記コントローラの端子(端子P14)は、上記マイナス側スイッチの制御端子へ接続される上記コントローラの端子(端子P14)と同一である、
エアロゾル生成装置の電源ユニット。
(4)に記載のエアロゾル生成装置の電源ユニットであって、
上記電源へ接続される入力端子(スイッチング端子SW)と、上記第1プラス側スイッチへ接続される出力端子(出力端子VOUT)と、所定レベルの信号が入力されると上記出力端子から電圧を出力する有効化端子(イネーブル端子EN)と、を含む電圧変換器(昇圧DC/DCコンバータ9)を備え、
上記マイナス側スイッチは、開閉を制御するための制御端子(ゲート端子)を含み、
上記電圧変換器の有効化端子へ接続される上記コントローラの端子(端子P14)は、上記マイナス側スイッチの制御端子へ接続される上記コントローラの端子(端子P14)と同一である、
エアロゾル生成装置の電源ユニット。
(5)によれば、マイナス側スイッチのONと電圧変換器の有効化を同時に行うことができる。このため、ヒータへ放電するために必要な工程が減り、エアロゾル生成の応答性を高めることができる。
(6)
(1)から(5)のいずれか1つに記載のエアロゾル生成装置の電源ユニットであって、
上記第1固定抵抗器の一端と上記電源の間へ接続される第2プラス側スイッチ(スイッチS3)と、
ユーザのエアロゾル生成要求を出力するセンサ(操作スイッチOPS)と、を備え、
上記コントローラは、上記エアロゾル生成要求に基づき、上記第2プラス側スイッチを閉じるように構成される、
エアロゾル生成装置の電源ユニット。
(1)から(5)のいずれか1つに記載のエアロゾル生成装置の電源ユニットであって、
上記第1固定抵抗器の一端と上記電源の間へ接続される第2プラス側スイッチ(スイッチS3)と、
ユーザのエアロゾル生成要求を出力するセンサ(操作スイッチOPS)と、を備え、
上記コントローラは、上記エアロゾル生成要求に基づき、上記第2プラス側スイッチを閉じるように構成される、
エアロゾル生成装置の電源ユニット。
(6)によれば、電源、第2プラス側スイッチ、第1固定抵抗器の一端、第1固定抵抗器の他端、オペアンプの正電源端子の順に電流が流れる放電ルート(第3加熱放電経路HR3)が存在する。このように、第2プラス側スイッチがONの時にもオペアンプへ電源が供給されるので、例えば、第2プラス側スイッチがONの状態から第1プラス側スイッチがONの状態に切り替わるときにおけるオペアンプへ供給される電圧変動を抑制でき、オペアンプの動作が安定する。
(7)
(6)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラは、上記第1プラス側スイッチと上記第2プラス側スイッチを交互に閉じるように構成される、
エアロゾル生成装置の電源ユニット。
(6)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラは、上記第1プラス側スイッチと上記第2プラス側スイッチを交互に閉じるように構成される、
エアロゾル生成装置の電源ユニット。
(7)によれば、第2プラス側スイッチがONの状態から第1プラス側スイッチがONの状態に切り替わるときに、オペアンプへ供給される電圧変動を抑制でき、オペアンプの動作が安定する。
(8)
(7)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラは、
上記第1プラス側スイッチをONにしてから、次に上記第1プラス側スイッチをONにするまでの期間(図21の駆動例EX1における制御周期Tc)において、上記期間の終了タイミングよりも所定時間前の開始タイミングにて上記第2プラス側スイッチをONし、上記終了タイミングにて上記第2プラス側スイッチをOFFし、上記開始タイミングを可変制御する、
エアロゾル生成装置の電源ユニット。
(7)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラは、
上記第1プラス側スイッチをONにしてから、次に上記第1プラス側スイッチをONにするまでの期間(図21の駆動例EX1における制御周期Tc)において、上記期間の終了タイミングよりも所定時間前の開始タイミングにて上記第2プラス側スイッチをONし、上記終了タイミングにて上記第2プラス側スイッチをOFFし、上記開始タイミングを可変制御する、
エアロゾル生成装置の電源ユニット。
(8)によれば、第2プラス側スイッチがOFFすると同時に、第1プラス側スイッチがONするため、スイッチのオンオフ切り替え時におけるオペアンプへ供給される電源の変動を抑制できる。また、第2プラス側スイッチがONされる時間が可変制御されるため、状況に応じた最適な電力をヒータに供給できる。この結果、オペアンプの動作が安定すると共に、エアロゾル生成装置の性能を向上させることができる。
(9)
(6)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラは、上記第1プラス側スイッチと上記第2プラス側スイッチの一方がONの状態で、上記第1プラス側スイッチと上記第2プラス側スイッチの他方の制御端子へ、上記第1プラス側スイッチと上記第2プラス側スイッチの他方をONするための信号を出力するように構成される、
エアロゾル生成装置の電源ユニット。
(6)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラは、上記第1プラス側スイッチと上記第2プラス側スイッチの一方がONの状態で、上記第1プラス側スイッチと上記第2プラス側スイッチの他方の制御端子へ、上記第1プラス側スイッチと上記第2プラス側スイッチの他方をONするための信号を出力するように構成される、
エアロゾル生成装置の電源ユニット。
(9)によれば、オペアンプへ連続的に電源が供給されるようになるので、オペアンプの動作が安定する。
(10)
(6)から(9)のいずれか1つに記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子へ接続され、上記第2プラス側スイッチがONの状態でのみ機能するクランプ回路(スイッチS5及び寄生ダイオードD5)を備える、
エアロゾル生成装置の電源ユニット。
(6)から(9)のいずれか1つに記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子へ接続され、上記第2プラス側スイッチがONの状態でのみ機能するクランプ回路(スイッチS5及び寄生ダイオードD5)を備える、
エアロゾル生成装置の電源ユニット。
(10)によれば、第2プラス側スイッチがONの時でも、オペアンプが出力する電圧が高くならない。このため、コントローラへ高い電圧が入力されることが抑制され、コントローラの誤動作を回避できる。
(11)
(10)に記載のエアロゾル生成装置の電源ユニットであって、
上記クランプ回路は、開閉を制御するための制御端子を含むクランプ用スイッチ(スイッチS5)を含み、
上記クランプ用スイッチの制御端子は、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間(ノードN4)へ接続される、
エアロゾル生成装置の電源ユニット。
(10)に記載のエアロゾル生成装置の電源ユニットであって、
上記クランプ回路は、開閉を制御するための制御端子を含むクランプ用スイッチ(スイッチS5)を含み、
上記クランプ用スイッチの制御端子は、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間(ノードN4)へ接続される、
エアロゾル生成装置の電源ユニット。
(11)によれば、第2プラス側スイッチがONになることで、クランプ回路を自動的に機能させることができる。これにより、コントローラの誤動作をより効果的に回避できる。
(12)
(10)に記載のエアロゾル生成装置の電源ユニットであって、
一端が上記オペアンプの出力端子へ接続され、他端が上記コントローラの入力端子(端子P9)へ接続された第2固定抵抗器(抵抗器R4)と、を備え、
上記クランプ回路は、Nチャネル型MOSFET(スイッチS5)を含み、
上記Nチャネル型MOSFETのゲート端子は、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間(ノードN4)へ接続され、
上記Nチャネル型MOSFETのソース端子は、グランドへ接続され、
上記Nチャネル型MOSFETのドレイン端子は、上記第2固定抵抗器の他端と上記コントローラの上記入力端子の間(ノードN5)へ接続される、
エアロゾル生成装置の電源ユニット。
(10)に記載のエアロゾル生成装置の電源ユニットであって、
一端が上記オペアンプの出力端子へ接続され、他端が上記コントローラの入力端子(端子P9)へ接続された第2固定抵抗器(抵抗器R4)と、を備え、
上記クランプ回路は、Nチャネル型MOSFET(スイッチS5)を含み、
上記Nチャネル型MOSFETのゲート端子は、上記第1固定抵抗器の一端と上記ヒータコネクタの+極の間(ノードN4)へ接続され、
上記Nチャネル型MOSFETのソース端子は、グランドへ接続され、
上記Nチャネル型MOSFETのドレイン端子は、上記第2固定抵抗器の他端と上記コントローラの上記入力端子の間(ノードN5)へ接続される、
エアロゾル生成装置の電源ユニット。
(12)によれば、第2プラス側スイッチがONになることで、クランプ回路を自動的に機能させることができる。これにより、コントローラの誤動作をより効果的に回避できる。
(13)
(12)に記載のエアロゾル生成装置の電源ユニットであって、
上記第2固定抵抗器の抵抗値は、上記Nチャネル型MOSFETのON抵抗値より高い、
エアロゾル生成装置の電源ユニット。
(12)に記載のエアロゾル生成装置の電源ユニットであって、
上記第2固定抵抗器の抵抗値は、上記Nチャネル型MOSFETのON抵抗値より高い、
エアロゾル生成装置の電源ユニット。
(13)によれば、NチャネルMOSFETをONした時(=第2プラス側スイッチをONした時)、コントローラへ入力される電圧を微小なものにできる。このため、コントローラへ高い電圧が入力されることが抑制され、コントローラの誤動作を回避できる。
(14)
(12)又は(13)に記載のエアロゾル生成装置の電源ユニットであって、
上記クランプ回路は、上記Nチャネル型MOSFETのソース端子へ接続されるアノードと、上記Nチャネル型MOSFETのドレイン端子へ接続されるカソードと、を含む寄生ダイオード(寄生ダイオードD5)を含む、
エアロゾル生成装置の電源ユニット。
(12)又は(13)に記載のエアロゾル生成装置の電源ユニットであって、
上記クランプ回路は、上記Nチャネル型MOSFETのソース端子へ接続されるアノードと、上記Nチャネル型MOSFETのドレイン端子へ接続されるカソードと、を含む寄生ダイオード(寄生ダイオードD5)を含む、
エアロゾル生成装置の電源ユニット。
(14)によれば、クランプ回路のNチャネル型MOSFETがOFFの時には、寄生ダイオードが降伏することで、高い電圧がコントローラへ入力されるのを防ぐことができる。このため、コントローラの誤動作を回避できる。
以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
なお、本出願は、2021年5月10日出願の日本特許出願(特願2021-079886)に基づくものであり、その内容は本出願の中に参照として援用される。
100 吸引器
1 MCU
9 昇圧DC/DCコンバータ
OP1 オペアンプ
Lc、Ld リアクトル
HTR ヒータ
BAT 電源
Cn ヒータコネクタ
S3、S4、S5、S6 スイッチ
Rs、R4、RPb1、RPb2 抵抗器
D5 寄生ダイオード
N1~N8 ノード
HR1 第1加熱放電経路
HR2 第2加熱放電経路
HR3 第3加熱放電経路
MR1 第1検出放電経路
MR2 第2検出放電経路
MR3 第3検出放電経路
1 MCU
9 昇圧DC/DCコンバータ
OP1 オペアンプ
Lc、Ld リアクトル
HTR ヒータ
BAT 電源
Cn ヒータコネクタ
S3、S4、S5、S6 スイッチ
Rs、R4、RPb1、RPb2 抵抗器
D5 寄生ダイオード
N1~N8 ノード
HR1 第1加熱放電経路
HR2 第2加熱放電経路
HR3 第3加熱放電経路
MR1 第1検出放電経路
MR2 第2検出放電経路
MR3 第3検出放電経路
Claims (14)
- 電源と、
前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続される+極と-極とを含むヒータコネクタと、
一端が前記ヒータコネクタの+極へ接続される第1固定抵抗器と、
開閉を制御するための制御端子を含み、且つ、前記第1固定抵抗器の他端と前記電源の間へ接続される第1プラス側スイッチと、
前記第1固定抵抗器の他端と前記第1プラス側スイッチの間へ接続される正電源端子と、前記第1固定抵抗器の一端と前記ヒータコネクタの+極の間へ接続される非反転入力端子と、前記ヒータコネクタの-極へ接続される反転入力端子と、出力端子と、を含むオペアンプと、
前記オペアンプの出力端子へ接続される入力端子を含むコントローラと、を備え、
前記コントローラは、前記入力端子への入力に基づき、前記電源から前記ヒータへの電力の供給を制御するように構成される、
エアロゾル生成装置の電源ユニット。 - 請求項1に記載のエアロゾル生成装置の電源ユニットであって、
前記第1プラス側スイッチと前記電源の間、前記第1プラス側スイッチと前記第1固定抵抗器の他端の間、前記第1固定抵抗器の一端と前記ヒータコネクタの+極の間の少なくとも1つへ接続され、入力されるノイズを低減するノイズ低減部品を備える、
エアロゾル生成装置の電源ユニット。 - 請求項2に記載のエアロゾル生成装置の電源ユニットであって、
前記ノイズ低減部品は、前記第1プラス側スイッチと前記電源の間へ接続される、
エアロゾル生成装置の電源ユニット。 - 請求項1から3のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
前記ヒータコネクタの-極へ接続されるマイナス側スイッチを備える、
エアロゾル生成装置の電源ユニット。 - 請求項4に記載のエアロゾル生成装置の電源ユニットであって、
前記電源へ接続される入力端子と、前記第1プラス側スイッチへ接続される出力端子と、所定レベルの信号が入力されると前記出力端子から電圧を出力する有効化端子と、を含む電圧変換器を備え、
前記マイナス側スイッチは、開閉を制御するための制御端子を含み、
前記電圧変換器の有効化端子へ接続される前記コントローラの端子は、前記マイナス側スイッチの制御端子へ接続される前記コントローラの端子と同一である、
エアロゾル生成装置の電源ユニット。 - 請求項1から5のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
前記第1固定抵抗器の一端と前記電源の間へ接続される第2プラス側スイッチと、
ユーザのエアロゾル生成要求を出力するセンサと、を備え、
前記コントローラは、前記エアロゾル生成要求に基づき、前記第2プラス側スイッチを閉じるように構成される、
エアロゾル生成装置の電源ユニット。 - 請求項6に記載のエアロゾル生成装置の電源ユニットであって、
前記コントローラは、前記第1プラス側スイッチと前記第2プラス側スイッチを交互に閉じるように構成される、
エアロゾル生成装置の電源ユニット。 - 請求項7に記載のエアロゾル生成装置の電源ユニットであって、
前記コントローラは、
前記第1プラス側スイッチをONにしてから、次に前記第1プラス側スイッチをONにするまでの期間において、前記期間の終了タイミングよりも所定時間前の開始タイミングにて前記第2プラス側スイッチをONし、前記終了タイミングにて前記第2プラス側スイッチをOFFし、前記開始タイミングを可変制御する、
エアロゾル生成装置の電源ユニット。 - 請求項6に記載のエアロゾル生成装置の電源ユニットであって、
前記コントローラは、前記第1プラス側スイッチと前記第2プラス側スイッチの一方がONの状態で、前記第1プラス側スイッチと前記第2プラス側スイッチの他方の制御端子へ、前記第1プラス側スイッチと前記第2プラス側スイッチの他方をONするための信号を出力するように構成される、
エアロゾル生成装置の電源ユニット。 - 請求項6から9のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
前記オペアンプの出力端子へ接続され、前記第2プラス側スイッチがONの状態でのみ機能するクランプ回路を備える、
エアロゾル生成装置の電源ユニット。 - 請求項10に記載のエアロゾル生成装置の電源ユニットであって、
前記クランプ回路は、開閉を制御するための制御端子を含むクランプ用スイッチを含み、
前記クランプ用スイッチの制御端子は、前記第1固定抵抗器の一端と前記ヒータコネクタの+極の間へ接続される、
エアロゾル生成装置の電源ユニット。 - 請求項10に記載のエアロゾル生成装置の電源ユニットであって、
一端が前記オペアンプの出力端子へ接続され、他端が前記コントローラの入力端子へ接続された第2固定抵抗器と、を備え、
前記クランプ回路は、Nチャネル型MOSFETを含み、
前記Nチャネル型MOSFETのゲート端子は、前記第1固定抵抗器の一端と前記ヒータコネクタの+極の間へ接続され、
前記Nチャネル型MOSFETのソース端子は、グランドへ接続され、
前記Nチャネル型MOSFETのドレイン端子は、前記第2固定抵抗器の他端と前記コントローラの前記入力端子の間へ接続される、
エアロゾル生成装置の電源ユニット。 - 請求項12に記載のエアロゾル生成装置の電源ユニットであって、
前記第2固定抵抗器の抵抗値は、前記Nチャネル型MOSFETのON抵抗値より高い、
エアロゾル生成装置の電源ユニット。 - 請求項12又は13に記載のエアロゾル生成装置の電源ユニットであって、
前記クランプ回路は、前記Nチャネル型MOSFETのソース端子へ接続されるアノードと、前記Nチャネル型MOSFETのドレイン端子へ接続されるカソードと、を含む寄生ダイオードを含む、
エアロゾル生成装置の電源ユニット。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021079886 | 2021-05-10 | ||
JP2021-079886 | 2021-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239367A1 true WO2022239367A1 (ja) | 2022-11-17 |
Family
ID=84029068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/007886 WO2022239367A1 (ja) | 2021-05-10 | 2022-02-25 | エアロゾル生成装置の電源ユニット |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022239367A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108181951A (zh) * | 2018-02-26 | 2018-06-19 | 深圳市舜宝科技有限公司 | 电子烟控制电路及方法 |
JP6834053B1 (ja) * | 2020-09-30 | 2021-02-24 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
JP6865879B1 (ja) * | 2020-09-07 | 2021-04-28 | 日本たばこ産業株式会社 | エアロゾル発生システム、吸引器用コントローラ、および電源装置 |
-
2022
- 2022-02-25 WO PCT/JP2022/007886 patent/WO2022239367A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108181951A (zh) * | 2018-02-26 | 2018-06-19 | 深圳市舜宝科技有限公司 | 电子烟控制电路及方法 |
JP6865879B1 (ja) * | 2020-09-07 | 2021-04-28 | 日本たばこ産業株式会社 | エアロゾル発生システム、吸引器用コントローラ、および電源装置 |
JP6834053B1 (ja) * | 2020-09-30 | 2021-02-24 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022239390A1 (ja) | エアロゾル生成装置の電源ユニット | |
JP2024071766A (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239361A1 (ja) | エアロゾル生成装置の電源ユニット | |
JP7545541B2 (ja) | 吸引器 | |
WO2022239389A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239405A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239367A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239368A1 (ja) | エアロゾル生成装置の電源ユニット | |
JP7224519B2 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239360A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239369A1 (ja) | エアロゾル生成装置の電源ユニット | |
JP7066927B1 (ja) | エアロゾル生成装置の電源ユニット | |
JP2023014171A (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239374A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239407A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239412A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239408A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239396A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239395A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239383A1 (ja) | エアロゾル生成装置の電源ユニット | |
JP7137039B1 (ja) | エアロゾル生成装置 | |
WO2022239382A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239384A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239385A1 (ja) | エアロゾル生成装置の電源ユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22807074 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22807074 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |