Nothing Special   »   [go: up one dir, main page]

WO2022239103A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2022239103A1
WO2022239103A1 PCT/JP2021/017859 JP2021017859W WO2022239103A1 WO 2022239103 A1 WO2022239103 A1 WO 2022239103A1 JP 2021017859 W JP2021017859 W JP 2021017859W WO 2022239103 A1 WO2022239103 A1 WO 2022239103A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power supply
power
switch
bypass
Prior art date
Application number
PCT/JP2021/017859
Other languages
French (fr)
Japanese (ja)
Inventor
知之 川上
優典 加藤
拓也 片岡
喜久夫 泉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/017859 priority Critical patent/WO2022239103A1/en
Priority to JP2023520621A priority patent/JP7499958B2/en
Publication of WO2022239103A1 publication Critical patent/WO2022239103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power supply system connected to a grid power supply and forming a power distribution network for multiple power supplies or multiple electrical loads.
  • Patent Document 1 even if an abnormality occurs in a part of a plurality of power systems, by operating the inter-system switch and the intra-system switch, the power system in which the abnormality has occurred is configured.
  • a power supply system is described that allows continued use of at least one of a power output and an electrical load.
  • the present disclosure has been made to solve the above problems, and aims to obtain a power supply system with high redundancy while minimizing the loss generated in the power system.
  • the present disclosure relates to a power supply system connected to a grid power supply and forming a power distribution network for multiple power sources or multiple electrical loads.
  • the multiple power sources or multiple electrical loads include a first device or a second device.
  • the power supply system includes a main electric line connected to a system power supply, a first converter and a second converter connected in parallel to the main electric line and converting electric power, and a first converter and a first device.
  • a first bypass line connecting a second switch that switches between a conductive state and an open state, a connection node between the first device and the first switch, and a connection node between the second device and the second switch; and a first bypass switch arranged in the first bypass electric path and switched between a conductive state and an open state.
  • FIG. 1 is a configuration diagram showing a power supply system according to Embodiment 1;
  • FIG. 3 is a diagram showing the relationship between a DC/DC converter, an open/close switch, and a bypass switch in the power supply system according to Embodiment 1;
  • FIG. 4 is a diagram showing operations of opening/closing switches and bypass switches when an abnormality occurs in a part of the DC/DC converters of the power supply system according to Embodiment 1; It is a figure which shows the conceptual structure of the circuit of a DC/DC converter.
  • FIG. 4 is a time chart showing the flow of processing when an abnormality is detected in the DC/DC converter; 4 is a flow chart showing a procedure of processing when an abnormality is detected in a DC/DC converter; 9 is a flow chart showing a modified example of the procedure of processing when an abnormality is detected in the DC/DC converter; It is a block diagram which shows the modification which provided the sensor which detects overcurrent in a bypass electric circuit.
  • FIG. 10 is a configuration diagram showing a power supply system according to Embodiment 2;
  • FIG. 1 is a configuration diagram showing a power supply system 1 according to Embodiment 1. As shown in FIG. Power is supplied to the power supply system 1 from a system power supply 100 .
  • System power supply 100 is, for example, an AC power supply.
  • the power supply system 1 includes a power converter board 200 , a distribution board 300 , and a control device (central monitoring device) 50 .
  • An AC/DC converter 210 and a plurality of DC/DC converters 211 and 212 are arranged on the power converter board 200 .
  • AC/DC converter 210 converts AC power supplied from system power supply 100 into DC power.
  • the power converter board 200 is wired with the main electric line 10 .
  • Main electric line 10 connects system power supply 100 and AC/DC converter 210 , and connects AC/DC converter 210 and a plurality of DC/DC converters 211 and 212 .
  • a plurality of DC/DC converters 211 and 212 are connected in parallel to the main electric line 10 .
  • FIG. 1 shows a distributed power supply 400 and an electrical load 500 as examples of various devices.
  • Distributed power source 400 is a generic term for distributed power sources 401-404 depicted in FIG.
  • Electrical load 500 is a generic term for electrical loads 501-504 depicted in FIG.
  • the power supply system 1 can be conceptually partitioned into a plurality of regions 601, 602, 603, 604, .
  • the circuit configuration of each area 601, 602, 603, 604 is common.
  • the circuit configuration of region 601 will be described below as a representative example of the circuit configuration of regions 601, 602, 603, 604, .
  • the DC/DC converter 211 arranged in the area 601 is connected to the distributed power supply 401 that constitutes the storage battery by the electric line 11 passing through the power converter board 200 and the distribution board 300 .
  • DC/DC converter 212 arranged in area 601 is connected to distributed power supply 402 that constitutes a storage battery by electric line 12 passing through power converter board 200 and distribution board 300 .
  • Distributed power sources 401 and 402 are, for example, the same storage battery.
  • the DC/DC converters 211 and 212 convert the DC power from the AC/DC converter 210 into a magnitude corresponding to the distributed power sources 401 and 402.
  • DC/DC converter 211 supplies power to distributed power supply 401 .
  • DC/DC converter 212 supplies power to distributed power source 402 .
  • the distributed power sources 401 and 402 that constitute the storage batteries are charged.
  • An open/close switch 311 is provided on the electric circuit 11 .
  • the opening/closing switch 311 switches between a conductive state (switch ON) and an open state (switch OFF) in the electric circuit 11 .
  • An open/close switch 312 is provided in the electric line 12 .
  • the open/close switch 312 switches between a conductive state (switch ON) and an open state (switch OFF) in the electric path 12 .
  • a bypass electric circuit 13 that connects the electric circuit 11 and the electric circuit 12 is provided between the electric circuit 11 and the electric circuit 12 .
  • a bypass switch 313 is provided in the bypass electric line 13 .
  • the bypass switch 313 switches between a conductive state (switch ON) and an open state (switch OFF) in the bypass electric line 13 .
  • the DC/DC converters 211 and 212 for converting the power supplied from the main electric line 10 via the AC/DC converter 210 are connected in parallel to the main electric line 10.
  • An open/close switch 311 is provided on the electric line 11 that connects the DC/DC converter 211 and the distributed power supply 401
  • an open/close switch 312 is provided on the electric line 12 that connects the DC/DC converter 212 and the distributed power supply 402. be done.
  • a bypass switch 313 is provided in the bypass electric line 13 that connects the electric lines 11 and 12 .
  • Areas 602 to 604 include the same circuit configuration as area 601 described so far.
  • This embodiment shows an example in which the types of distributed power sources 400 or electric loads 500 connected to the electric lines 11 and 12 of each of the regions 601-604 are different for each of the regions 601-604. Distributed power sources 400 and electric loads 500 connected to electric lines 11 and 12 in regions 602 to 604 will be described below.
  • Distributed power sources 403 and 404 constituting solar cells are connected to the electric circuits 11 and 12 in the region 602 .
  • Distributed power sources 403 and 404 are, for example, the same solar cell.
  • DC/DC converters 211 and 212 located in region 602 convert DC power from, for example, distributed power sources 403 and 404 into the magnitude of DC power supplied by AC/DC converter 210 .
  • Electric loads 501 and 502 constituting lighting are connected to the electric circuits 11 and 12 in the region 603 .
  • Electrical loads 501 and 502 are, for example, the same lighting.
  • the DC/DC converters 211 and 212 arranged in the area 603 convert the DC power from the AC/DC converter 210 into magnitudes corresponding to the electric loads 501 and 502, for example.
  • Electric loads 503 and 504 that constitute an air conditioner are connected to the electric circuits 11 and 12 in the region 604 .
  • Electrical loads 503 and 504 are, for example, the same air conditioner.
  • the DC/DC converters 211 and 212 arranged in the area 604 convert the DC power from the AC/DC converter 210 into magnitudes corresponding to the electric loads 503 and 504, for example.
  • the electrical loads 501-504 are devices to which power is supplied from the system power supply 100 or distributed power supplies 401-404.
  • Distributed power sources 403 and 404 that constitute solar cells are devices that function as power sources.
  • Distributed power sources 401 and 402 constituting storage batteries are devices to which power for charging is supplied from sources other than system power source 100 or distributed power sources 401 to 404, and also devices that function as power sources.
  • distributed power sources 401 and 402 that constitute storage batteries function as devices to which power is supplied from system power source 100 when power is supplied from system power source 100 to main electric line 10, and from system power source 100 It functions as a power source that supplies power to the electrical load 500 when the power supply to the main electric line 10 is interrupted.
  • the control device 50 includes a processor 51, a memory 52, and a communication interface (not shown).
  • Processor 51 monitors the status of distributed power sources 400 and electrical loads 500 according to data stored in memory 52 and information obtained via a communication interface.
  • Controller 50 may control AC/DC converter 210 and DC/DC converters 211 and 212 .
  • the control device 50 may also control the open/close switches 311 and 312 and the bypass switch 313 .
  • the memory 52 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), and flash memory.
  • the flash memory stores an operating system, application programs, and various data.
  • Control device 50 is implemented by processor 51 executing an operating system and application programs stored in memory 52 .
  • the processor 51 refers to various data stored in the memory 52 .
  • the control device 50 may be placed near the power converter board 200 and the distribution board 300, or may be located in a remote location away from the power converter board 200 and the distribution board 300. When the control device 50 is placed in a remote location, the control device 50 may be configured to be connected to interfaces of the power converter board 200 and the distribution board 300 through a network such as the Internet.
  • FIG. 1 shows a configuration in which an AC/DC converter 210 and DC/DC converters 211 and 212 are provided on a power converter board 200, and open/close switches 311 and 312 and a bypass switch 313 are provided on a distribution board 300.
  • the power converter board 200 may be provided with the open/close switches 311 and 312 and the bypass switch 313 .
  • the power converter board 200 and the distribution board 300 may be configured on a single board.
  • FIG. 2 is a diagram showing the relationship between the DC/DC converters 211 and 212, the open/close switches 311 and 312, and the bypass switch 313 of the power supply system 1 according to the first embodiment.
  • dashed arrows extending from the DC/DC converters 211 and 212 indicate open/close switches 311 and 312 or bypass switches 313 controlled by the DC/DC converters 211 and 212.
  • the switching operations of the DC/DC converters 211 and 212 will be described using the circuit configuration of the area 601 as a representative example.
  • the DC/DC converter 211 controls ON/OFF of the open/close switch 311 arranged on the electric line 11 .
  • the DC/DC converter 212 controls ON/OFF of an open/close switch 312 arranged on the electric line 12 .
  • DC/DC converter 211 and DC/DC converter 212 control ON/OFF of bypass switch 313 arranged in bypass electric line 13 .
  • the DC/DC converter 211 switches the open/close switch 311 from ON to OFF and switches the bypass switch 313 from OFF to ON when an abnormal current such as an overcurrent is detected.
  • the DC/DC converter 212 switches the open/close switch 312 from ON to OFF and switches the bypass switch 313 from OFF to ON.
  • the DC/DC converters 211, 212 arranged in each of the regions 602-604 perform the same switching operation as the DC/DC converters 211, 212 arranged in the region 601 in each of the regions 602-604.
  • FIG. 3 is a diagram showing operations of the open/close switches 311 and 312 and the bypass switch 313 when an abnormality occurs in some of the DC/DC converters 211 and 212 of the power supply system 1 according to the first embodiment.
  • FIG. 3 illustrates a case where an abnormality such as overcurrent occurs in the DC/DC converter 211 in the area 601 and the DC/DC converter 212 in the area 604 .
  • the abnormalities in the DC/DC converters 211 and 212 include, for example, overcurrent, overvoltage, undervoltage, overtemperature, and control power drop in the DC/DC converters 211 and 212. Furthermore, an abnormality in the DC/DC converters 211, 212 may also include a state in which the DC/DC converters 211, 212 are disconnected from the system.
  • the on-off switches 311 and 312 and the bypass switch 313 may be configured so that the operator can manually switch them.
  • one of the open/close switches 311 or 312 may be OFF depending on the situation. For example, when the electric load 503 is not used, the opening/closing switch 311 of the corresponding area 604 may be turned off.
  • DC power from AC/DC converter 210 is supplied from DC/DC converter 212 to distributed power supply 401 via bypass electric line 13 . Therefore, even if the DC/DC converter 211 and the distributed power supply 401 are open, power is supplied to the distributed power supply 401 via the bypass electric line 13 .
  • the only switch involved in the path from the system power supply 100 to the distributed power supply 401 is the open/close switch 311. Further, even when an abnormality occurs in the DC/DC converter 211, the switches involved in the path from the system power supply 100 to the distributed power supply 401 via the bypass electric line 13 are the open/close switch 312 and the bypass switch 313. are only two. Therefore, according to the power supply system 1, it is possible to minimize the loss caused by the switch on the DC electric line that supplies power.
  • the ON/OFF switch 312 is the only switch involved in the path from the system power supply 100 to the electric load 504 . Further, even when an abnormality occurs in the DC/DC converter 212, the switches involved in the path from the system power supply 100 to the electric load 504 via the bypass electric line 13 are the open/close switch 311 and the bypass switch 313. are only two. Therefore, according to the power supply system 1, it is possible to minimize the loss caused by the switch on the DC electric line that supplies power.
  • the power supply system 1 operates similarly even when an abnormality is detected in the other DC/DC converters 211 and 212 shown in FIG.
  • the opening/closing switch 311 corresponding to the electric line 11 is turned from ON to OFF
  • the bypass switch 313 provided in the bypass electric line 13 is turned from OFF to ON.
  • the distributed power supply 403 that constitutes the solar cell is electrically connected to the main electric line 10 via the bypass electric line 13 and the DC/DC converter 212 .
  • the power of the distributed power supply 403 is transferred from the bypass electric line 13 to the DC/DC converter 212. and supplied to the electric load 500 via the main electric line 10 .
  • FIG. 4 is a diagram showing a conceptual configuration of the circuit of the DC/DC converter 211.
  • the DC/DC converter 211 will be described as a representative example.
  • FIG. 4 illustrates a case where an electric load 501 is connected to the electric line 11 and an electric load 502 is connected to the electric line 12 .
  • the DC/DC converter 211 includes a control section 21 , a power conversion section 22 , a current detection section 23 , a current determination section 24 and a storage section 25 .
  • the control unit 21, the power conversion unit 22, the current detection unit 23, and the current determination unit 24 are implemented by a memory that stores programs related to processing procedures, and a processor that executes processing based on the programs. That is, the functions provided by the control unit 21 and the like are provided by, for example, software recorded in a physical memory device, a computer executing the software, hardware, a CPU (Central Processing Unit), or a combination thereof.
  • a CPU Central Processing Unit
  • the power converter 22 is connected to the main electric line 10 .
  • the power conversion unit 22 converts DC power supplied from the main electric line 10 into DC power having a magnitude corresponding to the electric load 501 .
  • the controller 21 of the DC/DC converter 211 is configured to communicate with the controller 21 of the adjacent DC/DC converter 212 by wireless communication or the like.
  • the current detection section 23 detects the current output from the power conversion section 22 .
  • the current detection section 23 transmits the detected current to the current determination section 24 .
  • the current determination unit 24 determines whether or not the current detected by the current detection unit 23 is overcurrent.
  • the storage unit 25 stores a first threshold value and a second threshold value for the current determination unit 24 to determine overcurrent.
  • the first threshold is used when the opening/closing switch 311 of the electric circuit 11 is ON and the bypass switch 313 of the bypass electric circuit 13 is OFF.
  • the first threshold is a value corresponding to the case where the current flowing through DC/DC converter 211 is supplied only to electrical load 501 .
  • the second threshold is used when the open/close switch 311 of the electric line 11 is ON, the open/close switch 312 of the electric line 12 is OFF, and the bypass switch 313 of the bypass electric line 13 is ON.
  • the second threshold is a value corresponding to the case where the current flowing through DC/DC converter 211 is supplied to electrical load 501 and electrical load 502 .
  • the second threshold is a value that takes into consideration the magnitude of power supplied to electrical load 501 and electrical load 502 . Therefore, the second threshold is greater than the first threshold.
  • the current determination unit 24 compares the current value detected by the current detection unit 23 with the first threshold, and determines that the current value detected by the current detection unit 23 exceeds the first threshold.
  • the current determination unit 24 transmits the determination result to the control unit 21.
  • the control unit 21 switches the opening/closing switch 311 of the electric circuit 11 from ON to OFF.
  • the electric path 11 is changed from the conductive state to the open state.
  • the control unit 21 notifies the DC/DC converter 212 that the open/close switch 311 has been switched from ON to OFF.
  • the control unit 21 switches the bypass switch 313 of the bypass electric line 13 from OFF to ON. Thereby, the electric circuit 11 and the electric circuit 12 are electrically connected through the bypass electric circuit 13 .
  • DC/DC converter 211 power is supplied from the DC/DC converter 211 to the electrical load 501 , and power is supplied from the DC/DC converter 211 to the electrical load 502 via the bypass electric line 13 .
  • DC/DC converter 211 is loaded with electric load 501 and electric load 502 . If the electric load 501 and the electric load 502 are the same, the magnitude of the current flowing through the electric path 11 is double that when the DC/DC converter 212 does not have an abnormality.
  • the current determination unit 24 of the DC/DC converter 211 switches the threshold used for determination from the first threshold to the second threshold when the electric circuit 11 is electrically connected to the adjacent electric circuit 12 through the bypass electric circuit 13.
  • the current determination section 24 compares the current value detected by the current detection section 23 with the second threshold. When the current value detected by the current detection unit 23 exceeds the second threshold, the current determination unit 24 determines overcurrent.
  • the current determination unit 24 transmits the determination result to the control unit 21.
  • the control unit 21 switches the opening/closing switch 311 of the electric circuit 11 from ON to OFF.
  • the electric path 11 is changed from the conductive state to the open state.
  • no current flows through the bypass electric line 13 that connects the electric lines 11 and 12 . Therefore, it is possible to prevent the electrical loads 501 and 502 from being adversely affected by the overcurrent.
  • the control unit 21 may switch the open/close switch 311 from ON to OFF and also switch the bypass switch 313 from ON to OFF. As a result, it is possible to prevent the bypass switch 313 from being kept on when the abnormal current generated in the DC/DC converters 211 and 212 is resolved.
  • the DC/DC converter 211 supplies power only to the electric load 501 , the electric load 502 corresponding to the adjacent DC/DC converter 212 via the bypass electric line 13
  • the threshold for judging an overcurrent is switched between when power is supplied to the
  • the power supply system 1 has two advantages. First, in a state where the DC/DC converter 211 is supplying power to the electrical load 501 and the DC/DC converter 212 is supplying power to the electrical load 502, the DC/DC converters 211 and 212 are overloaded. Generation of current can be determined appropriately. Secondly, occurrence of overcurrent in the DC/DC converter 211 can be determined appropriately while the DC/DC converter 211 is supplying electric power to the electrical loads 501 and 502 .
  • the DC/DC converter 212 also has a circuit configuration similar to that of the DC/DC converter 211, and the DC/DC converter 212 detects an abnormality in the same way as the DC/DC converter 211. Operate.
  • the current detection unit 23 may detect an abnormality in the current output from the distributed power sources 403 and 404 .
  • FIG. 5 is a time chart showing the flow of processing when an abnormality is detected in the DC/DC converter 211.
  • FIG. The flow of processing will be described below based on the time chart.
  • an electric load 501 is connected to the DC/DC converter 211 and an electric load 502 is connected to the DC/DC converter 212 .
  • the normally operating DC/DC converter 211 detects an abnormality such as overcurrent at time t1.
  • an abnormality such as overcurrent at time t1.
  • the opening/closing switch 311 provided in the electric circuit 11 of the DC/DC converter 211 is switched from ON to OFF.
  • the electric path 11 is changed from the conducting state to the open state.
  • the power supply to the electrical load 501 corresponding to the DC/DC converter 211 is interrupted.
  • the DC/DC converter 211 stops operating. It should be noted that the DC/DC converter 211 itself maintains an active state by being supplied with separate power not shown in FIG. Therefore, stopping the operation shown in FIG. 5 means a state in which power is not supplied from the DC/DC converter 211 to the electrical load 501 .
  • the bypass switch 313 is switched from OFF to ON.
  • the DC/DC converter 212 arranged next to the DC/DC converter 211 temporarily stops operating.
  • the bypass electric line 13 connects the electric line 11 of the DC/DC converter 211 and the electric line 12 of the DC/DC converter 212 arranged next to the DC/DC converter 211. Connecting. At time t3, the DC/DC converter 212 resumes operation. Thereby, the electric power supplied by the DC/DC converter 212 is supplied to the electric line 11 through the bypass electric line 13 . As a result, power is supplied to the electrical load 501 corresponding to the DC/DC converter 211 and the electrical load 502 corresponding to the DC/DC converter 212 .
  • FIG. 6 is a flow chart showing the procedure of processing when an abnormality is detected in the DC/DC converter 211 .
  • the DC/DC converters 211 and 212 cooperate to perform processing to deal with the abnormality.
  • the DC/DC converter 211 and the DC/DC converter 212 in the area 603 shown in FIG. 1 will be taken up as a representative example and explained.
  • the DC/DC converter 211 determines whether or not an abnormality has been detected (step S11). If an abnormality such as overcurrent is not detected (NO in step S11), DC/DC converter 211 ends the process.
  • the DC/DC converter 211 When an abnormality such as overcurrent is detected (YES in step S11), the DC/DC converter 211 notifies the DC/DC converter 212 of the occurrence of the abnormality.
  • the DC/DC converter 212 determines whether or not there is a notification of the occurrence of an abnormality from the DC/DC converter 211 (step S21).
  • DC/DC converter 212 receives notification of the occurrence of an abnormality from DC/DC converter 211 (YES in step S21)
  • DC/DC converter 212 stops operation (step S22).
  • power supply to the electrical load 502 connected to the DC/DC converter 212 via the electric line 12 is temporarily interrupted.
  • the DC/DC converter 212 waits until receiving a notification that the bypass switch 313 is ON from the DC/DC converter 211 (step S23).
  • step S12 the DC/DC converter 211 switches the open/close switch 311 from ON to OFF (step S13). As a result, the power supply to the electric load 501 connected to the DC/DC converter 211 via the electric line 11 is cut off. As a result, the electrical load 501 is not adversely affected by overcurrent.
  • step S14 the DC/DC converter 211 switches the bypass switch 313 from OFF to ON (step S14).
  • step S15 the DC/DC converter 211 notifies the DC/DC converter 212 that the bypass switch 313 has been turned ON (step S15), and finishes the process.
  • step S24 the electric power of the DC/DC converter 212 is supplied to the electric load 502 through the electric line 12 and is also supplied to the electric load 501 through the electric line 13 and the electric line 11 .
  • the flowchart corresponding to the DC/DC converter 211 shown in FIG. 6 is executed by the controller 21 of the DC/DC converter 211. More specifically, the flowchart corresponding to the DC/DC converter 212 is executed by the controller 21 of the DC/DC converter 212 .
  • FIG. 7 is a flow chart showing a modification of the procedure when an abnormality is detected in the DC/DC converters 211 and 212.
  • the control device 50 controls ON/OFF of the open/close switches 311 and 312 and the bypass switch 313.
  • the control device 50 communicates with a plurality of DC/DC converters 211 and 212 arranged in the power supply system 1 and detects whether or not an abnormality has occurred in the DC/DC converters 211 and 212.
  • the control unit 21 provided in the DC/DC converters 211 and 212 transmits abnormality information to the control device 50, for example, when detecting an abnormality in the circuits of the DC/DC converters 211 and 212 in addition to the presence or absence of overcurrent. do. At that time, the control unit 21 also transmits identification information with which the control device 50 can identify which of the plurality of DC/DC converters 211 and 212 is to the control device 50 .
  • the control device 50 determines whether or not an abnormality has been detected in the DC/DC converter 211 (step S31).
  • step S31 When abnormality is detected in DC/DC converter 211 (YES in step S31), operation of DC/DC converter 212 arranged in the same region as DC/DC converter 211 in which abnormality is detected is stopped. Stop (step S32). For example, when an abnormality is detected in DC/DC converter 211 in area 601 , controller 50 stops operation of DC/DC converter 212 in area 601 .
  • control device 50 switches from ON to OFF the open/close switch 311 provided in the electric circuit 11 of the DC/DC converter 211 in which the abnormality has been detected (step S33).
  • control device 50 switches from OFF to ON the bypass switch 313 of the bypass electric line 13 corresponding to the electric line 11 of the DC/DC converter 211 in which the abnormality has been detected (step S34).
  • the control device 50 restarts the operation of the DC/DC converter 212, which was stopped in step S32 (step S35), and finishes the process.
  • steps S32, S33, S34, and S35 above are the same as the processes of steps S22, S13, S14, and S24 in FIG. 6, respectively.
  • control device 50 determines NO in step S31, it determines whether or not an abnormality has been detected in the DC/DC converter 212 (step S36). NO in step S36), the control device 50 ends the process.
  • step S36 When an abnormality is detected in DC/DC converter 212 (YES in step S36), operation of DC/DC converter 211 arranged in the same region as DC/DC converter 212 in which abnormality is detected is stopped. Stop (step S37). For example, when an abnormality is detected in DC/DC converter 212 in area 601 , controller 50 stops operation of DC/DC converter 211 in area 601 .
  • control device 50 switches from ON to OFF the open/close switch 312 provided in the electric circuit 12 of the DC/DC converter 212 in which the abnormality has been detected (step S38).
  • control device 50 switches from OFF to ON the bypass switch 313 of the bypass electric line 13 corresponding to the electric line 12 of the DC/DC converter 212 in which the abnormality has been detected (step S39).
  • the control device 50 restarts the operation of the DC/DC converter 211, which was stopped in step S37 (step S40), and finishes the process.
  • steps S37, S38, S39, and S40 described above are different from the processes of steps S22, S13, S14, and S24 in FIG. is the same except that is reversed.
  • the controller 50 can centrally monitor not only the states of the distributed power sources 400 and the electric loads 500 but also the states of the DC/DC converters 211 and 212 .
  • FIG. 8 is a configuration diagram showing a modification in which a sensor for detecting overcurrent is provided in the bypass electric line 13. As shown in FIG. In the description using FIG. 4, an example was described in which the DC/DC converter 211 determines whether or not an overcurrent has occurred while the bypass switch 313 is ON. In this modification, the bypass electric line 13 is provided with a sensor for detecting overcurrent. This sensor is composed of a thermal relay (thermal relay) 314, for example. When a current exceeding a predetermined value flows through the bypass electric path 13, the thermal relay 314 is switched from an ON state to an OFF state due to heat generated by the current.
  • a thermal relay thermal relay
  • bypass electric circuit 13 By providing the bypass electric circuit 13 with a thermal relay 314 that reacts to a current having a magnitude corresponding to the overcurrent, the bypass electric circuit 13 physically changes from a conducting state to an open state when an overcurrent flows through the bypass electric circuit 13. .
  • the DC/DC converters 211 and 212 do not need to determine whether or not an overcurrent has occurred while the bypass switch 313 is ON. Therefore, when bypass switch 313 is ON, distributed power supply 400 or electric load 500 can be protected from overcurrent without using DC/DC converters 211 and 212 .
  • the control of the power supply system 1 can be simplified.
  • the DC/DC converters 211 and 212 may fail due to an abnormality such as overcurrent occurring in the DC/DC converters 211 and 212 .
  • DC/DC converters 211 and 212 cannot control bypass switch 313 .
  • the thermal relay 314 in the bypass electric line 13 the distributed power supply 400 or the electric load 500 can be protected from overcurrent.
  • the thermal relay 314 may be provided in the bypass electric line 13 while the DC/DC converters 211 and 212 have the function of controlling the bypass switch 313 .
  • the bypass switch 313 itself may be configured by the thermal relay 314 .
  • the distributed power sources 400 connected to the power supply system 1 can be effectively used. Further, it becomes possible to continuously supply power to the electric load 500 connected to the power supply system 1 .
  • the technique of switching the on-off switches 311 and 312 and the bypass switch 313 by detecting the occurrence of an abnormality in the DC/DC converters 211 and 212 has been described.
  • the open/close switches 311 and 312 and the bypass switch 313 may be configured to be turned ON/OFF by human operation.
  • the power supply system 1 As a result, maintenance of the power supply system 1 can be performed without stopping the services for the distributed power sources 400 and the electric loads 500 . Moreover, even if it becomes necessary to replace one of the DC/DC converter 211 and the DC/DC converter 212 as a result of the inspection, the equipment can be replaced without affecting the distributed power supply 400 and the electric load 500. can be done. Therefore, according to the power supply system 1, it is possible to provide a system that can prevent deterioration of reliability as much as possible.
  • FIG. 9 is a configuration diagram showing a power supply system 2 related to Embodiment 2. As shown in FIG. In Embodiment 1, a DC power distribution network is used to convert AC power supplied from system power supply 100 to DC power, but in Embodiment 2, electric load 500 is provided in an AC power distribution network.
  • the electric load 500 is supplied with AC power from the system power supply 100 .
  • the second embodiment differs from the first embodiment.
  • one AC/DC converter 221 is connected corresponding to one DC/DC converter 211, and one AC/DC converter 221 is connected corresponding to one DC/DC converter 212. 222 is connected.
  • the power supply system 2 conceptually includes a plurality of regions 611, 612, . can be divided into The circuit configuration of region 611 will be described below as a typical example of the circuit configuration of regions 611, 612, .
  • the DC/DC converters 211 in area 611 are arranged on the power converter board 201 along with the corresponding AC/DC converters 221 .
  • DC/DC converters 212 in region 611 are located on power converter board 202 along with corresponding AC/DC converters 222 .
  • the AC/DC converter 221 and the DC/DC converter 211 arranged on the power converter board 201 are connected by an electric line 11 branching from the main electric line 10 .
  • Electric circuit 11 further extends from DC/DC converter 211 through distribution board 300 to distributed power supply 401 .
  • the AC/DC converter 222 and the DC/DC converter 212 arranged on the power converter board 202 are connected by the electric line 12 branching from the main electric line 10 .
  • Electrical path 12 further extends from DC/DC converter 212 through distribution board 300 to distributed power supply 402 .
  • the electric line 11 is provided with an open/close switch 311 and the electric line 12 is provided with an open/close switch 312 .
  • the bypass electric line 13 is connected between the electric lines 11 and 12 and the bypass switch 313 is provided in the bypass electric line 13 .
  • the DC/DC converters 211 and 212 cooperate to execute processing when an abnormality occurs.
  • an overcurrent is detected in DC/DC converter 211 in region 611
  • open/close switch 311 switches from ON to OFF
  • bypass switch 313 switches from OFF to ON.
  • overcurrent does not flow through the distributed power sources 401 .
  • Power is supplied to the distributed power supply 401 from the DC/DC converter 212 via the bypass electric line 13 .
  • the open/close switch 311 is switched from ON to OFF, and the bypass switch 313 is switched from OFF to ON.
  • the distributed power supply 403 that constitutes the solar cell is electrically connected to the main electric line 10 via the bypass electric line 13 , the DC/DC converter 212 and the AC/DC converter 222 .
  • the power of the distributed power supply 403 is transferred from the bypass electric line 13 to the DC/DC converter 212, AC /DC converter 222 and main electric line 10 to electric load 500 .
  • the electric load 500 is supplied with AC power from the system power supply 100 . Therefore, it is not necessary to provide the DC/DC converters 211 and 212 individually for the electrical loads 501, 502, 503 and 504, respectively. As a result, it is not necessary to provide the bypass electric line 13 and the bypass switch 313 as shown in FIG. Also, the AC/DC converter 210 that handles the total power supply capacity of the power supply system can be reduced. Therefore, according to the power supply system 2 according to the second embodiment, the size of the power supply system can be reduced.
  • the AC/DC converters 221 and 222 may have a function of detecting anomalies, similar to the DC/DC converters 211 and 212.
  • AC/DC converters 221 and 222 may have a circuit configuration similar to that of DC/DC converter 211 shown in FIG.
  • the AC/DC converters 221 and 222 may switch and control the open/close switches 311 and 312 and the bypass switch 313 in the same manner as the DC/DC converters 211 and 212 when overcurrent is detected.
  • the control device 50 may apply the processing based on the flowchart shown in FIG. 7 to the AC/DC converters 221 and 222.
  • the opening/closing switch 311 is connected between at least one of the distributed power sources 400 such as storage batteries and solar cells and between the electric loads 500 .
  • the distributed power sources 400 such as storage batteries and solar cells
  • the electric loads 500 .
  • 312 and a bypass switch 313 are provided.
  • the ON/OFF switch 311 is the only switch involved in the path from the system power supply 100 to the distributed power supply 400 or the electric load 500. Further, even when an abnormality occurs in either the DC/DC converter 211 or the DC/DC converter 212, the path from the system power supply 100 to the distributed power supply 400 or the electric load 500 via the bypass electric line 13 Only two switches are involved: the on/off switch 312 and the bypass switch 313 . Therefore, it is possible to minimize the loss caused by the switch on the direct-current electric line that supplies electric power.
  • Embodiments 1 and 2 it is possible to provide highly redundant power supply systems 1 and 2 that enable effective use of supplied power and continuous operation of electric load 500 .
  • an AC system power supply is given as an example of the system power supply 100 .
  • the system power supply 100 may be a DC system power supply.
  • AC/DC converter 210 in FIG. 1 may not be provided.
  • the present disclosure relates to a power supply system (1, 2) connected to a grid power supply (100) and forming a power distribution network for a plurality of power sources (400) or a plurality of electrical loads (500).
  • the multiple power sources or multiple electrical loads include a first device or a second device.
  • the power supply system includes a main electric line (10) connected to a system power supply, a first conversion device (211) and a second conversion device (212) connected in parallel to the main electric line and converting electric power, and a second A first electric line (11) connecting the first conversion device and the first device (401, 403, 501, 503), and a second connecting the second conversion device and the second device (402, 404, 502, 504) 2 electrical paths (12), a first switch (311) arranged in the first electrical path and switching between a conducting state and an open state, and a second switch (312) arranged in the second electrical path and switching between a conducting state and an open state. ), a connection node between the first device and the first switch and a connection node between the second device and the second switch; and a first bypass switch (313) that switches between a conducting state and an open state.
  • the power supply system switches the first switch from the conducting state to the open state and switches the first bypass switch from the open state to the conducting state when an abnormality occurs in the first converter (21, 50 ) is further provided.
  • the control device switches the first bypass switch from the open state to the conducting state, and after switching the first bypass switch from the open state to the conducting state, the second conversion device Operation is resumed (FIG. 5, steps S32 to S35, steps S37 to S40).
  • the first converter determines that an abnormality has occurred (step S11, FIG. 4). is set to a first threshold, and if the first bypass switch is conductive, the threshold is set to a second threshold that is greater than the first threshold (FIG. 4).
  • the power supply system further includes a sensor (314) that detects overcurrent flowing through the first bypass electric circuit.
  • the senor is composed of a thermal relay (314).
  • the system power supply is an AC system power supply, and further includes an AC/DC converter (210) that is arranged in the main electric circuit and converts the AC power of the system power supply into DC power.
  • the system power supply is the power supply of the AC system.
  • a second AC/DC converter (222) disposed between the electrical path and the second converter for converting AC power to DC power, the first converter being converted by the first AC/DC converter;
  • a first DC/DC conversion device (211) that converts the DC power into DC power corresponding to the first device, and the second conversion device converts the DC power converted by the second AC/DC conversion device to the second device It is composed of a second DC/DC converter (212) that converts to DC power corresponding to .
  • the power supply system consists of a group of a first conversion device, a second conversion device, a first electric circuit, a second electric circuit, a first bypass electric circuit, a first switch, a second switch, and a first bypass switch.
  • Sometimes there are multiple groups of configurations regions 601-604, 611, 612).
  • the first device and the second device constitute a plurality of power sources (401 to 404), further comprise a third device (501) and a fourth device (502) that constitute a plurality of electrical loads, and a third conversion device (DC/DC converter 211 in region 603) and a fourth conversion device (DC/DC converter 212 in region 603) connected in parallel to each other and converting power; 3 device (the electric circuit 11 in the region 603), the fourth electric circuit (the electric circuit 12 in the region 603) that connects the fourth conversion device and the fourth device, and the A third switch (the open/close switch 311 in the region 603) that switches between the state and the open state, a fourth switch (the open/close switch 312 in the region 603) that is arranged in the fourth electrical path and switches between the conducting state and the open state, and the third switch (the open/close switch 312 in the region 603) a second bypass line (bypass line 13 in region 603) connecting a connection node between the device and the third switch and a connection node between the fourth device and the
  • 1, 2 power supply system 10 main electric circuit, 11, 12 electric circuit, 13 bypass electric circuit, 21 control unit, 22 power conversion unit, 23 current detection unit, 24 current determination unit, 25 storage unit, 50 control device, 51 processor, 52 memory, 100 system power supply, 200 to 202 power converter board, 210, 221, 222 AC/DC converter, 211, 212 DC/DC converter, 300 distribution board, 311, 312 open/close switch, 313 bypass switch, 314 thermal relay, 400-404 distributed power supply, 500-504 electric load, 601-604, 611, 612 area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

This power supply system (1) comprises: a main electrical path (10) connected to a system power supply (100); a first conversion device (211) and a second conversion device (212) for converting power; a first electrical path (11) through which a first device (401) constituting an electrical load or a power supply is connected to the first conversion device; a second electrical path (12) through which a second device (402) constituting an electrical load or a power supply is connected to the second conversion device; a first switch (311) configured so as to switch the first electrical path to a conduction state and an open state; a second switch (312) configured so as to switch the second electrical path to the conduction state and the open state; a first bypass electrical path (13); and a first bypass switch (313) configured so as to switch the first bypass electrical path to the conduction state and the open state.

Description

電力供給システムpower supply system
 本開示は、系統電源と接続され、複数の電源または複数の電気負荷に対する配電網が形成された電力供給システムに関する。 The present disclosure relates to a power supply system connected to a grid power supply and forming a power distribution network for multiple power supplies or multiple electrical loads.
 従来、複数の電力系統のうち、一部の電力系統において異常が生じた場合でも、異常が生じた電力系統を構成する負荷を使用可能にすることによって、異常発生時の信頼性を向上させた電力供給システムが知られている。 Conventionally, even if an abnormality occurs in some power systems among multiple power systems, the load that constitutes the power system where the abnormality occurred can be used, thereby improving reliability in the event of an abnormality. Power supply systems are known.
 たとえば、特許文献1には、複数の電力系統のうち一部の電力系統において異常が生じた場合であっても、系統間スイッチおよび系統内スイッチの操作により、異常が生じた電力系統を構成する電力出力部および電気負荷の少なくとも一方の使用を継続できるようにした電力供給システムが記載されている。 For example, in Patent Document 1, even if an abnormality occurs in a part of a plurality of power systems, by operating the inter-system switch and the intra-system switch, the power system in which the abnormality has occurred is configured. A power supply system is described that allows continued use of at least one of a power output and an electrical load.
特開2019-62727号公報JP 2019-62727 A
 しかしながら、従来の電力供給システムでは、電力系統における異常の発生の有無にかかわらず、負荷へ電力を供給する場合に複数のスイッチを経由しているため、スイッチで発生する電力損失が大きくなってしまう。その結果、電力を有効に利用できないという問題が発生する。 However, in conventional power supply systems, regardless of whether there is an abnormality in the power system, power is supplied to the load via multiple switches, resulting in large power loss at the switches. . As a result, there arises a problem that electric power cannot be used effectively.
 本開示は、上記のような問題点を解決するためになされたものであり、電力系統における発生損失を極力抑えつつも、冗長性の高い電力供給システムを得ることを目的とする。 The present disclosure has been made to solve the above problems, and aims to obtain a power supply system with high redundancy while minimizing the loss generated in the power system.
 本開示は、系統電源と接続され、複数の電源または複数の電気負荷に対する配電網が形成された電力供給システムに関する。複数の電源または複数の電気負荷は、第1装置または第2装置を含む。電力供給システムは、系統電源と接続される主電路と、主電路に対して並列に接続され、電力を変換する第1変換装置および第2変換装置と、第1変換装置と第1装置とを接続する第1電路と、第2変換装置と第2装置とを接続する第2電路と、第1電路に配置され、導通状態と開放状態とに切り替わる第1スイッチと、第2電路に配置され、導通状態と開放状態とに切り替わる第2スイッチと、第1装置と第1スイッチとの間の接続ノードと、第2装置と第2スイッチとの間の接続ノードとを接続する第1バイパス電路と、第1バイパス電路に配置され、導通状態と開放状態とに切り替わる第1バイパススイッチとを備える。 The present disclosure relates to a power supply system connected to a grid power supply and forming a power distribution network for multiple power sources or multiple electrical loads. The multiple power sources or multiple electrical loads include a first device or a second device. The power supply system includes a main electric line connected to a system power supply, a first converter and a second converter connected in parallel to the main electric line and converting electric power, and a first converter and a first device. A first electric circuit to be connected, a second electric circuit to connect the second conversion device and the second device, a first switch arranged in the first electric circuit and switched between a conductive state and an open state, and a second electric circuit. , a first bypass line connecting a second switch that switches between a conductive state and an open state, a connection node between the first device and the first switch, and a connection node between the second device and the second switch; and a first bypass switch arranged in the first bypass electric path and switched between a conductive state and an open state.
 本開示によれば、電力系統における発生損失を極力抑えつつも、冗長性の高い電力供給システムを得ることができる。 According to the present disclosure, it is possible to obtain a highly redundant power supply system while minimizing the loss generated in the power system.
実施の形態1に関わる電力供給システムを示す構成図である。1 is a configuration diagram showing a power supply system according to Embodiment 1; FIG. 実施の形態1に関わる電力供給システムのDC/DC変換器と、開閉スイッチと、バイパススイッチとの関係を示す図である。3 is a diagram showing the relationship between a DC/DC converter, an open/close switch, and a bypass switch in the power supply system according to Embodiment 1; FIG. 実施の形態1に関わる電力供給システムの一部のDC/DC変換器において異常が発生した場合の開閉スイッチおよびバイパススイッチの動作を示す図である。FIG. 4 is a diagram showing operations of opening/closing switches and bypass switches when an abnormality occurs in a part of the DC/DC converters of the power supply system according to Embodiment 1; DC/DC変換器の回路の概念的な構成を示す図である。It is a figure which shows the conceptual structure of the circuit of a DC/DC converter. DC/DC変換器で異常が検出された場合の処理の流れを示すタイムチャートである。4 is a time chart showing the flow of processing when an abnormality is detected in the DC/DC converter; DC/DC変換器で異常が検出された場合の処理の手順を示すフローチャートである。4 is a flow chart showing a procedure of processing when an abnormality is detected in a DC/DC converter; DC/DC変換器で異常が検出された場合の処理の手順の変形例を示すフローチャートである。9 is a flow chart showing a modified example of the procedure of processing when an abnormality is detected in the DC/DC converter; バイパス電路に過電流を検出するセンサを設けた変形例を示す構成図である。It is a block diagram which shows the modification which provided the sensor which detects overcurrent in a bypass electric circuit. 実施の形態2に関わる電力供給システムを示す構成図である。FIG. 10 is a configuration diagram showing a power supply system according to Embodiment 2;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 <電力供給システム1の構成>
 図1は、実施の形態1に関わる電力供給システム1を示す構成図である。電力供給システム1には、系統電源100から電力が供給される。系統電源100は、たとえば、交流電源である。電力供給システム1は、電力変換器盤200と、分電盤300と、制御装置(中央監視装置)50とを備える。
Embodiment 1.
<Configuration of Power Supply System 1>
FIG. 1 is a configuration diagram showing a power supply system 1 according to Embodiment 1. As shown in FIG. Power is supplied to the power supply system 1 from a system power supply 100 . System power supply 100 is, for example, an AC power supply. The power supply system 1 includes a power converter board 200 , a distribution board 300 , and a control device (central monitoring device) 50 .
 電力変換器盤200には、AC/DC変換器210と、複数のDC/DC変換器211,212とが配置されている。AC/DC変換器210は、系統電源100から供給される交流電力を直流電力に変換する。電力変換器盤200には、主電路10が配線されている。主電路10は、系統電源100とAC/DC変換器210とを接続するとともに、AC/DC変換器210と複数のDC/DC変換器211,212とを接続する。複数のDC/DC変換器211,212は、主電路10に対して並列に接続されている。 An AC/DC converter 210 and a plurality of DC/ DC converters 211 and 212 are arranged on the power converter board 200 . AC/DC converter 210 converts AC power supplied from system power supply 100 into DC power. The power converter board 200 is wired with the main electric line 10 . Main electric line 10 connects system power supply 100 and AC/DC converter 210 , and connects AC/DC converter 210 and a plurality of DC/ DC converters 211 and 212 . A plurality of DC/ DC converters 211 and 212 are connected in parallel to the main electric line 10 .
 複数のDC/DC変換器211,212は、分電盤300を経由して、それぞれ、様々な装置と接続される。図1には、様々な装置の例として、分散電源400と電気負荷500とが示されている。分散電源400は、図1に描かれる分散電源401~404の総称である。電気負荷500は、図1に描かれる電気負荷501~504の総称である。 A plurality of DC/ DC converters 211 and 212 are connected to various devices via a distribution board 300, respectively. FIG. 1 shows a distributed power supply 400 and an electrical load 500 as examples of various devices. Distributed power source 400 is a generic term for distributed power sources 401-404 depicted in FIG. Electrical load 500 is a generic term for electrical loads 501-504 depicted in FIG.
 図1に示されるように、電力供給システム1は、概念的に、一対のDC/DC変換器211,212を含む複数の領域601,602,603,604,…に区画することができる。各領域601,602,603,604の回路構成は共通している。以下、領域601の回路構成を領域601,602,603,604,…の回路構成の代表例として説明する。 As shown in FIG. 1, the power supply system 1 can be conceptually partitioned into a plurality of regions 601, 602, 603, 604, . The circuit configuration of each area 601, 602, 603, 604 is common. The circuit configuration of region 601 will be described below as a representative example of the circuit configuration of regions 601, 602, 603, 604, .
 領域601に配置されるDC/DC変換器211は、電力変換器盤200および分電盤300を通る電路11によって、蓄電池を構成する分散電源401と接続される。領域601に配置されるDC/DC変換器212は、電力変換器盤200および分電盤300を通る電路12によって、蓄電池を構成する分散電源402と接続される。分散電源401,402は、たとえば、同じ蓄電池である。 The DC/DC converter 211 arranged in the area 601 is connected to the distributed power supply 401 that constitutes the storage battery by the electric line 11 passing through the power converter board 200 and the distribution board 300 . DC/DC converter 212 arranged in area 601 is connected to distributed power supply 402 that constitutes a storage battery by electric line 12 passing through power converter board 200 and distribution board 300 . Distributed power sources 401 and 402 are, for example, the same storage battery.
 DC/DC変換器211,212は、たとえば、AC/DC変換器210からの直流電力を分散電源401,402に応じた大きさに変換する。DC/DC変換器211は分散電源401に電力を供給する。DC/DC変換器212は分散電源402に電力を供給する。これにより、蓄電池を構成する分散電源401,402は充電される。 The DC/ DC converters 211 and 212, for example, convert the DC power from the AC/DC converter 210 into a magnitude corresponding to the distributed power sources 401 and 402. DC/DC converter 211 supplies power to distributed power supply 401 . DC/DC converter 212 supplies power to distributed power source 402 . As a result, the distributed power sources 401 and 402 that constitute the storage batteries are charged.
 電路11には、開閉スイッチ311が設けられている。開閉スイッチ311は、電路11において、導通状態(スイッチON)と開放状態(スイッチOFF)とに切り替わる。電路12には、開閉スイッチ312が設けられている。開閉スイッチ312は、電路12において、導通状態(スイッチON)と開放状態(スイッチOFF)とに切り替わる。電路11と電路12との間には、電路11と電路12とを接続するバイパス電路13が設けられる。バイパス電路13には、バイパススイッチ313が設けられる。バイパススイッチ313は、バイパス電路13において、導通状態(スイッチON)と開放状態(スイッチOFF)とに切り替わる。 An open/close switch 311 is provided on the electric circuit 11 . The opening/closing switch 311 switches between a conductive state (switch ON) and an open state (switch OFF) in the electric circuit 11 . An open/close switch 312 is provided in the electric line 12 . The open/close switch 312 switches between a conductive state (switch ON) and an open state (switch OFF) in the electric path 12 . A bypass electric circuit 13 that connects the electric circuit 11 and the electric circuit 12 is provided between the electric circuit 11 and the electric circuit 12 . A bypass switch 313 is provided in the bypass electric line 13 . The bypass switch 313 switches between a conductive state (switch ON) and an open state (switch OFF) in the bypass electric line 13 .
 このように、領域601には、AC/DC変換器210を経由して主電路10から供給された電力を変換するDC/DC変換器211,212が主電路10に対して並列に接続されている。DC/DC変換器211と分散電源401とを接続する電路11には、開閉スイッチ311が設けられ、DC/DC変換器212と分散電源402とを接続する電路12には、開閉スイッチ312が設けられる。さらに、電路11と電路12とを接続するバイパス電路13には、バイパススイッチ313が設けられる。 Thus, in the area 601, the DC/ DC converters 211 and 212 for converting the power supplied from the main electric line 10 via the AC/DC converter 210 are connected in parallel to the main electric line 10. there is An open/close switch 311 is provided on the electric line 11 that connects the DC/DC converter 211 and the distributed power supply 401, and an open/close switch 312 is provided on the electric line 12 that connects the DC/DC converter 212 and the distributed power supply 402. be done. Furthermore, a bypass switch 313 is provided in the bypass electric line 13 that connects the electric lines 11 and 12 .
 領域602~604には、これまでに説明した領域601と同様の回路構成が含まれている。本実施の形態では、各領域601~604の電路11,12に接続する分散電源400または電気負荷500の種類を領域601~604ごとに異ならせた例を示している。以下、領域602~604の電路11,12に接続する分散電源400および電気負荷500を説明する。 Areas 602 to 604 include the same circuit configuration as area 601 described so far. This embodiment shows an example in which the types of distributed power sources 400 or electric loads 500 connected to the electric lines 11 and 12 of each of the regions 601-604 are different for each of the regions 601-604. Distributed power sources 400 and electric loads 500 connected to electric lines 11 and 12 in regions 602 to 604 will be described below.
 領域602の電路11,12には、太陽電池を構成する分散電源403,404が接続される。分散電源403,404は、たとえば、同じ太陽電池である。領域602に配置されるDC/DC変換器211,212は、たとえば、分散電源403,404からの直流電力をAC/DC変換器210が供給する直流電力の大きさに変換する。 Distributed power sources 403 and 404 constituting solar cells are connected to the electric circuits 11 and 12 in the region 602 . Distributed power sources 403 and 404 are, for example, the same solar cell. DC/ DC converters 211 and 212 located in region 602 convert DC power from, for example, distributed power sources 403 and 404 into the magnitude of DC power supplied by AC/DC converter 210 .
 領域603の電路11,12には、照明を構成する電気負荷501,502が接続される。電気負荷501,502は、たとえば、同じ照明である。領域603に配置されるDC/DC変換器211,212は、たとえば、AC/DC変換器210からの直流電力を電気負荷501,502に応じた大きさに変換する。 Electric loads 501 and 502 constituting lighting are connected to the electric circuits 11 and 12 in the region 603 . Electrical loads 501 and 502 are, for example, the same lighting. The DC/ DC converters 211 and 212 arranged in the area 603 convert the DC power from the AC/DC converter 210 into magnitudes corresponding to the electric loads 501 and 502, for example.
 領域604の電路11,12には、空調装置を構成する電気負荷503,504が接続される。電気負荷503,504は、たとえば、同じ空調装置である。領域604に配置されるDC/DC変換器211,212は、たとえば、AC/DC変換器210からの直流電力を電気負荷503,504に応じた大きさに変換する。 Electric loads 503 and 504 that constitute an air conditioner are connected to the electric circuits 11 and 12 in the region 604 . Electrical loads 503 and 504 are, for example, the same air conditioner. The DC/ DC converters 211 and 212 arranged in the area 604 convert the DC power from the AC/DC converter 210 into magnitudes corresponding to the electric loads 503 and 504, for example.
 以上の説明において、電気負荷501~504は、系統電源100または分散電源401~404から電力が供給される装置である。太陽電池を構成する分散電源403,404は、電源として機能する装置である。蓄電池を構成する分散電源401,402は、系統電源100、または分散電源401~404のうち自身以外から充電のための電力が供給される装置であり、かつ、電源として機能する装置でもある。 In the above description, the electrical loads 501-504 are devices to which power is supplied from the system power supply 100 or distributed power supplies 401-404. Distributed power sources 403 and 404 that constitute solar cells are devices that function as power sources. Distributed power sources 401 and 402 constituting storage batteries are devices to which power for charging is supplied from sources other than system power source 100 or distributed power sources 401 to 404, and also devices that function as power sources.
 たとえば、蓄電池を構成する分散電源401,402は、系統電源100から主電路10に対して電力が供給されている場合には系統電源100から電力が供給される装置として機能し、系統電源100から主電路10に対する電力の供給が途絶えている場合には電気負荷500に対して電力を供給する電源として機能する。 For example, distributed power sources 401 and 402 that constitute storage batteries function as devices to which power is supplied from system power source 100 when power is supplied from system power source 100 to main electric line 10, and from system power source 100 It functions as a power source that supplies power to the electrical load 500 when the power supply to the main electric line 10 is interrupted.
 制御装置50は、プロセッサ51と、メモリ52と、図示しない通信インターフェース等とを含む。プロセッサ51は、メモリ52に記憶されたデータおよび通信インターフェースを経由して得た情報に従って、分散電源400および電気負荷500の状態を監視する。制御装置50は、AC/DC変換器210、およびDC/DC変換器211,212を制御してもよい。また、制御装置50は、開閉スイッチ311,312、およびバイパススイッチ313を制御してもよい。 The control device 50 includes a processor 51, a memory 52, and a communication interface (not shown). Processor 51 monitors the status of distributed power sources 400 and electrical loads 500 according to data stored in memory 52 and information obtained via a communication interface. Controller 50 may control AC/DC converter 210 and DC/ DC converters 211 and 212 . The control device 50 may also control the open/ close switches 311 and 312 and the bypass switch 313 .
 メモリ52は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。フラッシュメモリには、オペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。制御装置50は、プロセッサ51がメモリ52に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。アプリケーションプログラムの実行の際、プロセッサ51は、メモリ52に記憶されている各種のデータを参照する。 The memory 52 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), and flash memory. The flash memory stores an operating system, application programs, and various data. Control device 50 is implemented by processor 51 executing an operating system and application programs stored in memory 52 . When executing the application program, the processor 51 refers to various data stored in the memory 52 .
 制御装置50は、電力変換器盤200および分電盤300の付近に配置してもよく、電力変換器盤200および分電盤300とは離れた遠隔地にしてもよい。制御装置50を遠隔地に配置する場合、インターネットなどのネットワークを通じて電力変換器盤200および分電盤300のインターフェースに制御装置50を接続するように構成してもよい。 The control device 50 may be placed near the power converter board 200 and the distribution board 300, or may be located in a remote location away from the power converter board 200 and the distribution board 300. When the control device 50 is placed in a remote location, the control device 50 may be configured to be connected to interfaces of the power converter board 200 and the distribution board 300 through a network such as the Internet.
 図1には、電力変換器盤200にAC/DC変換器210とDC/DC変換器211,212とを設け、分電盤300に開閉スイッチ311,312とバイパススイッチ313とを設ける構成を示した。しかし、電力変換器盤200に開閉スイッチ311,312とバイパススイッチ313とを設けてもよい。また、電力変換器盤200と分電盤300とをひとつの基盤で構成してもよい。 FIG. 1 shows a configuration in which an AC/DC converter 210 and DC/ DC converters 211 and 212 are provided on a power converter board 200, and open/ close switches 311 and 312 and a bypass switch 313 are provided on a distribution board 300. rice field. However, the power converter board 200 may be provided with the open/ close switches 311 and 312 and the bypass switch 313 . Also, the power converter board 200 and the distribution board 300 may be configured on a single board.
 図2は、実施の形態1に関わる電力供給システム1のDC/DC変換器211,212と、開閉スイッチ311,312と、バイパススイッチ313との関係を示す図である。 FIG. 2 is a diagram showing the relationship between the DC/ DC converters 211 and 212, the open/ close switches 311 and 312, and the bypass switch 313 of the power supply system 1 according to the first embodiment.
 図2において、DC/DC変換器211,212から延びる破線の矢印は、DC/DC変換器211,212が制御する開閉スイッチ311,312またはバイパススイッチ313を示している。 In FIG. 2, dashed arrows extending from the DC/ DC converters 211 and 212 indicate open/ close switches 311 and 312 or bypass switches 313 controlled by the DC/ DC converters 211 and 212.
 領域601の回路構成を代表例として、DC/DC変換器211,212のスイッチング動作を説明する。DC/DC変換器211は、電路11に配置される開閉スイッチ311のON/OFFを制御する。DC/DC変換器212は、電路12に配置される開閉スイッチ312のON/OFFを制御する。DC/DC変換器211およびDC/DC変換器212は、バイパス電路13に配置されるバイパススイッチ313のON/OFFを制御する。 The switching operations of the DC/ DC converters 211 and 212 will be described using the circuit configuration of the area 601 as a representative example. The DC/DC converter 211 controls ON/OFF of the open/close switch 311 arranged on the electric line 11 . The DC/DC converter 212 controls ON/OFF of an open/close switch 312 arranged on the electric line 12 . DC/DC converter 211 and DC/DC converter 212 control ON/OFF of bypass switch 313 arranged in bypass electric line 13 .
 たとえば、DC/DC変換器211は、過電流などの異常電流を検出した場合に開閉スイッチ311をONからOFFに切り替えるとともにバイパススイッチ313をOFFからONに切り替える。DC/DC変換器212は、過電流などの異常電流を検出した場合に開閉スイッチ312をONからOFFに切り替えるとともにバイパススイッチ313をOFFからONに切り替える。 For example, the DC/DC converter 211 switches the open/close switch 311 from ON to OFF and switches the bypass switch 313 from OFF to ON when an abnormal current such as an overcurrent is detected. When an abnormal current such as an overcurrent is detected, the DC/DC converter 212 switches the open/close switch 312 from ON to OFF and switches the bypass switch 313 from OFF to ON.
 各領域602~604に配置されるDC/DC変換器211,212は、各々の領域602~604において、領域601に配置されるDC/DC変換器211,212と同様のスイッチング動作を実行する。 The DC/ DC converters 211, 212 arranged in each of the regions 602-604 perform the same switching operation as the DC/ DC converters 211, 212 arranged in the region 601 in each of the regions 602-604.
 図3は、実施の形態1に関わる電力供給システム1の一部のDC/DC変換器211,212において異常が発生した場合の開閉スイッチ311,312およびバイパススイッチ313の動作を示す図である。図3には、領域601のDC/DC変換器211と、領域604のDC/DC変換器212とにおいて過電流などの異常が発生した場合が例示されている。 FIG. 3 is a diagram showing operations of the open/ close switches 311 and 312 and the bypass switch 313 when an abnormality occurs in some of the DC/ DC converters 211 and 212 of the power supply system 1 according to the first embodiment. FIG. 3 illustrates a case where an abnormality such as overcurrent occurs in the DC/DC converter 211 in the area 601 and the DC/DC converter 212 in the area 604 .
 ここで、DC/DC変換器211,212における異常とは、たとえば、DC/DC変換器211,212内の過電流、過電圧、低電圧、過温度、および制御電源の低下を含む。さらに、DC/DC変換器211,212における異常は、DC/DC変換器211,212がシステムから切り離された状態も含んでもよい。 Here, the abnormalities in the DC/ DC converters 211 and 212 include, for example, overcurrent, overvoltage, undervoltage, overtemperature, and control power drop in the DC/ DC converters 211 and 212. Furthermore, an abnormality in the DC/ DC converters 211, 212 may also include a state in which the DC/ DC converters 211, 212 are disconnected from the system.
 システムの保守およびメンテナンス時においては、開閉スイッチ311,312およびバイパススイッチ313を作業員が手動で切り替えることができるように構成してもよい。 During system maintenance and maintenance, the on-off switches 311 and 312 and the bypass switch 313 may be configured so that the operator can manually switch them.
 電力供給システム1が備えるDC/DC変換器211,212のいずれにおいても異常が検出されていない場合、たとえば、電力供給システム1が備えるすべての開閉スイッチ311,312はONし、すべてのバイパススイッチ313はOFFしている。これにより、すべての電路11,12は導通状態となり、主電路10と、分散電源401および電気負荷500との間に電流が流れる。 When no abnormality is detected in any of the DC/ DC converters 211 and 212 provided in the power supply system 1, for example, all the open/ close switches 311 and 312 provided in the power supply system 1 are turned on, and all the bypass switches 313 are turned on. is OFF. As a result, all the electric circuits 11 and 12 are brought into a conductive state, and current flows between the main electric circuit 10 and the distributed power sources 401 and electric loads 500 .
 なお、DC/DC変換器211,212のいずれにも異常が検出されていない場合でも、状況に応じて、いずれかの開閉スイッチ311または開閉スイッチ312はOFFであってもよい。たとえば、電気負荷503を使用しない場合には、対応する領域604の開閉スイッチ311をOFFとしてもよい。 Even if no abnormality is detected in any of the DC/ DC converters 211 and 212, one of the open/ close switches 311 or 312 may be OFF depending on the situation. For example, when the electric load 503 is not used, the opening/closing switch 311 of the corresponding area 604 may be turned off.
 ただし、以下においては、電力供給システム1が備えるDC/DC変換器211,212のいずれにおいても異常が検出されていない場合、電力供給システム1が備えるすべての開閉スイッチ311,312はONし、すべてのバイパススイッチ313はOFFしているものとして説明する。 However, in the following, when no abnormality is detected in any of the DC/ DC converters 211 and 212 provided in the power supply system 1, all the opening/closing switches 311 and 312 provided in the power supply system 1 are turned on, , the bypass switch 313 is turned off.
 領域601のDC/DC変換器211と、領域604のDC/DC変換器212とにおいて過電流などの異常が発生した場合、電力供給システム1が備える開閉スイッチ311,312、およびバイパススイッチ313は、図3に示される状態となる。 When an abnormality such as an overcurrent occurs in the DC/DC converter 211 in the area 601 and the DC/DC converter 212 in the area 604, the on-off switches 311 and 312 and the bypass switch 313 included in the power supply system 1 The state shown in FIG. 3 is obtained.
 <領域601での動作>
 まず、領域601のDC/DC変換器211で検出された異常に関連する動作について説明する。領域601のDC/DC変換器211で異常が検出されると、DC/DC変換器211の電路11に対応する開閉スイッチ311はONからOFFとなる。これにより、DC/DC変換器211で検出された異常電流が充電中の分散電源401に悪影響を及ぼすことを防止できる。さらに、バイパス電路13に対応するバイパススイッチ313はOFFからONとなる。このとき、DC/DC変換器212の電路12に対応する開閉スイッチ312は、ONである。したがって、図3に示されるように、AC/DC変換器210からの直流電力は、DC/DC変換器212からバイパス電路13を経由して分散電源401に供給される。このため、DC/DC変換器211と分散電源401との間が開放状態となっても、バイパス電路13を経由して分散電源401に電力が供給される。
<Operation in Area 601>
First, the operation associated with an abnormality detected in DC/DC converter 211 in area 601 will be described. When an abnormality is detected in the DC/DC converter 211 in the region 601, the open/close switch 311 corresponding to the electric circuit 11 of the DC/DC converter 211 is turned from ON to OFF. This prevents the abnormal current detected by the DC/DC converter 211 from adversely affecting the distributed power supply 401 during charging. Furthermore, the bypass switch 313 corresponding to the bypass electric line 13 is turned on from off. At this time, the opening/closing switch 312 corresponding to the electric line 12 of the DC/DC converter 212 is ON. Therefore, as shown in FIG. 3 , DC power from AC/DC converter 210 is supplied from DC/DC converter 212 to distributed power supply 401 via bypass electric line 13 . Therefore, even if the DC/DC converter 211 and the distributed power supply 401 are open, power is supplied to the distributed power supply 401 via the bypass electric line 13 .
 ここで、DC/DC変換器211で異常が発生していないときに、系統電源100から分散電源401に電力が供給されるまでの経路で関与するスイッチは、開閉スイッチ311のみである。また、DC/DC変換器211で異常が発生しているときでも、系統電源100からバイパス電路13を経由して分散電源401に至るまでの経路で関与するスイッチは、開閉スイッチ312およびバイパススイッチ313のわずか2つである。したがって、電力供給システム1によれば、電力を供給する直流電路上でのスイッチによる発生損失を極力抑えることができる。 Here, when there is no abnormality in the DC/DC converter 211, the only switch involved in the path from the system power supply 100 to the distributed power supply 401 is the open/close switch 311. Further, even when an abnormality occurs in the DC/DC converter 211, the switches involved in the path from the system power supply 100 to the distributed power supply 401 via the bypass electric line 13 are the open/close switch 312 and the bypass switch 313. are only two. Therefore, according to the power supply system 1, it is possible to minimize the loss caused by the switch on the DC electric line that supplies power.
 <領域604での動作>
 次に、領域604のDC/DC変換器212で検出された異常に関連する動作について説明する。領域604のDC/DC変換器212で異常が検出されると、DC/DC変換器212の電路12に対応する開閉スイッチ312はONからOFFとなる。これにより、異常電流が電気負荷504に悪影響を及ぼすことを防止できる。さらに、バイパス電路13に対応するバイパススイッチ313はOFFからONとなる。このとき、DC/DC変換器211の電路11に対応する開閉スイッチ311は、ONである。したがって、図3に示されるように、AC/DC変換器210からの直流電力は、DC/DC変換器211からバイパス電路13を経由して電気負荷504に供給される。このため、DC/DC変換器212と電気負荷504との間が開放状態となっても、バイパス電路13を経由して電気負荷504に電力が供給される。
<Operation in area 604>
Operation associated with an anomaly detected in DC/DC converter 212 in region 604 will now be described. When an abnormality is detected in the DC/DC converter 212 in the region 604, the open/close switch 312 corresponding to the electric circuit 12 of the DC/DC converter 212 is turned from ON to OFF. This can prevent the abnormal current from adversely affecting the electrical load 504 . Furthermore, the bypass switch 313 corresponding to the bypass electric line 13 is turned on from off. At this time, the opening/closing switch 311 corresponding to the electric line 11 of the DC/DC converter 211 is ON. Therefore, as shown in FIG. 3 , DC power from AC/DC converter 210 is supplied to electrical load 504 from DC/DC converter 211 via bypass line 13 . Therefore, even if the DC/DC converter 212 and the electric load 504 are in an open state, power is supplied to the electric load 504 via the bypass electric line 13 .
 ここで、DC/DC変換器212で異常が発生していないときに、系統電源100から電気負荷504に電力が供給されるまでの経路で関与するスイッチは、開閉スイッチ312のみである。また、DC/DC変換器212で異常が発生しているときでも、系統電源100からバイパス電路13を経由して電気負荷504に至るまでの経路で関与するスイッチは、開閉スイッチ311およびバイパススイッチ313のわずか2つである。したがって、電力供給システム1によれば、電力を供給する直流電路上でのスイッチによる発生損失を極力抑えることができる。 Here, when there is no abnormality in the DC/DC converter 212 , the ON/OFF switch 312 is the only switch involved in the path from the system power supply 100 to the electric load 504 . Further, even when an abnormality occurs in the DC/DC converter 212, the switches involved in the path from the system power supply 100 to the electric load 504 via the bypass electric line 13 are the open/close switch 311 and the bypass switch 313. are only two. Therefore, according to the power supply system 1, it is possible to minimize the loss caused by the switch on the DC electric line that supplies power.
 ここでは、領域601のDC/DC変換器211、および領域604のDC/DC変換器212において異常が検出された場合を例に挙げて説明した。しかしながら、電力供給システム1は、図3に示される他のDC/DC変換器211,212において異常が検出された場合にも同様に動作する。たとえば、領域602のDC/DC変換器211において異常が検出された場合には、電路11に対応する開閉スイッチ311がONからOFFとなり、バイパス電路13に設けられたバイパススイッチ313がOFFからONになる。これにより、太陽電池を構成する分散電源403は、バイパス電路13およびDC/DC変換器212を経由して主電路10と導通する。 Here, the case where an abnormality is detected in the DC/DC converter 211 in the area 601 and the DC/DC converter 212 in the area 604 has been described as an example. However, the power supply system 1 operates similarly even when an abnormality is detected in the other DC/ DC converters 211 and 212 shown in FIG. For example, when an abnormality is detected in the DC/DC converter 211 in the region 602, the opening/closing switch 311 corresponding to the electric line 11 is turned from ON to OFF, and the bypass switch 313 provided in the bypass electric line 13 is turned from OFF to ON. Become. As a result, the distributed power supply 403 that constitutes the solar cell is electrically connected to the main electric line 10 via the bypass electric line 13 and the DC/DC converter 212 .
 たとえば、分散電源403が電気負荷500に電力を供給している状態で、DC/DC変換器211において異常が検出された場合、分散電源403の電力は、バイパス電路13からDC/DC変換器212および主電路10を経由して電気負荷500に供給される。 For example, when an abnormality is detected in the DC/DC converter 211 while the distributed power supply 403 is supplying power to the electric load 500, the power of the distributed power supply 403 is transferred from the bypass electric line 13 to the DC/DC converter 212. and supplied to the electric load 500 via the main electric line 10 .
 図4は、DC/DC変換器211の回路の概念的な構成を示す図である。ここでは、DC/DC変換器211を代表例として説明する。また、図4は、電路11に電気負荷501が接続され、電路12に電気負荷502が接続される場合を例示している。 4 is a diagram showing a conceptual configuration of the circuit of the DC/DC converter 211. FIG. Here, the DC/DC converter 211 will be described as a representative example. Further, FIG. 4 illustrates a case where an electric load 501 is connected to the electric line 11 and an electric load 502 is connected to the electric line 12 .
 DC/DC変換器211は、制御部21と、電力変換部22と、電流検出部23と、電流判定部24と、記憶部25とを備える。これらの制御部21、電力変換部22、電流検出部23、および電流判定部24は、処理手順に関わるプログラムなどを記憶したメモリと、プログラムに基づいた処理を実行するプロセッサとによって実現される。すなわち、制御部21等が提供する機能は、たとえば、実体的なメモリ装置に記録されたソフトウェアおよびそれを実行するコンピュータ、ハードウェア、CPU(Central Processing Unit)、またはそれらの組み合わせによって提供される。 The DC/DC converter 211 includes a control section 21 , a power conversion section 22 , a current detection section 23 , a current determination section 24 and a storage section 25 . The control unit 21, the power conversion unit 22, the current detection unit 23, and the current determination unit 24 are implemented by a memory that stores programs related to processing procedures, and a processor that executes processing based on the programs. That is, the functions provided by the control unit 21 and the like are provided by, for example, software recorded in a physical memory device, a computer executing the software, hardware, a CPU (Central Processing Unit), or a combination thereof.
 電力変換部22は、主電路10と接続される。電力変換部22は、主電路10から供給される直流電力を電気負荷501に対応する大きさの直流電力に変換する。DC/DC変換器211の制御部21は、無線通信などによって、隣のDC/DC変換器212の制御部21と通信可能に構成されている。 The power converter 22 is connected to the main electric line 10 . The power conversion unit 22 converts DC power supplied from the main electric line 10 into DC power having a magnitude corresponding to the electric load 501 . The controller 21 of the DC/DC converter 211 is configured to communicate with the controller 21 of the adjacent DC/DC converter 212 by wireless communication or the like.
 電流検出部23は、電力変換部22から出力される電流を検出する。電流検出部23は、検出した電流を電流判定部24に送信する。電流判定部24は、電流検出部23が検出した電流が過電流であるか否かを判定する。記憶部25には、電流判定部24が過電流を判定するための第1閾値と第2閾値とが格納されている。 The current detection section 23 detects the current output from the power conversion section 22 . The current detection section 23 transmits the detected current to the current determination section 24 . The current determination unit 24 determines whether or not the current detected by the current detection unit 23 is overcurrent. The storage unit 25 stores a first threshold value and a second threshold value for the current determination unit 24 to determine overcurrent.
 第1閾値は、電路11の開閉スイッチ311がONし、バイパス電路13のバイパススイッチ313がOFFしているときに用いられる。換言すると、第1閾値は、DC/DC変換器211を流れる電流が電気負荷501にのみ供給される場合に対応する値である。 The first threshold is used when the opening/closing switch 311 of the electric circuit 11 is ON and the bypass switch 313 of the bypass electric circuit 13 is OFF. In other words, the first threshold is a value corresponding to the case where the current flowing through DC/DC converter 211 is supplied only to electrical load 501 .
 第2閾値は、電路11の開閉スイッチ311がONし、電路12の開閉スイッチ312がOFFし、バイパス電路13のバイパススイッチ313がONしているときに用いられる。換言すると、第2閾値は、DC/DC変換器211を流れる電流が電気負荷501と電気負荷502とに供給される場合に対応する値である。第2閾値は、電気負荷501と電気負荷502とに供給される電力の大きさを考慮した値である。したがって、第2閾値は、第1閾値よりも大きい。 The second threshold is used when the open/close switch 311 of the electric line 11 is ON, the open/close switch 312 of the electric line 12 is OFF, and the bypass switch 313 of the bypass electric line 13 is ON. In other words, the second threshold is a value corresponding to the case where the current flowing through DC/DC converter 211 is supplied to electrical load 501 and electrical load 502 . The second threshold is a value that takes into consideration the magnitude of power supplied to electrical load 501 and electrical load 502 . Therefore, the second threshold is greater than the first threshold.
 <第1閾値が用いられる場合>
 DC/DC変換器211,212のいずれにおいても異常電流が検出されていない場合、電路11の開閉スイッチ311がONし、電路12の開閉スイッチ312がONし、バイパス電路13のバイパススイッチ313がOFFしている。このとき、電気負荷501に対しては電路11により電力が供給され、電気負荷502に対しては電路12により電力が供給される。
<When the first threshold is used>
When no abnormal current is detected in any of the DC/ DC converters 211 and 212, the open/close switch 311 of the electric line 11 is turned on, the open/close switch 312 of the electric line 12 is turned on, and the bypass switch 313 of the bypass electric line 13 is turned off. is doing. At this time, electric power is supplied to the electric load 501 through the electric line 11 and electric power is supplied to the electric load 502 through the electric line 12 .
 DC/DC変換器211に異常電流が流れた場合を考える。この場合、電流判定部24は、電流検出部23が検出した電流値と第1閾値とを比較し、電流検出部23が検出した電流値が第1閾値を超えることを判定する。 Consider a case where an abnormal current flows through the DC/DC converter 211. In this case, the current determination unit 24 compares the current value detected by the current detection unit 23 with the first threshold, and determines that the current value detected by the current detection unit 23 exceeds the first threshold.
 電流判定部24は、判定結果を制御部21に送信する。制御部21は、電流判定部24から過電流の判定結果を受信した場合、電路11の開閉スイッチ311をONからOFFに切り替える。これにより、電路11は導通状態から開放状態となる。また、制御部21は、開閉スイッチ311をONからOFFに切り替えたことをDC/DC変換器212に通知する。さらに、制御部21は、バイパス電路13のバイパススイッチ313をOFFからONに切り替える。これにより、電路11と電路12とがバイパス電路13を通じて導通する。 The current determination unit 24 transmits the determination result to the control unit 21. When receiving the overcurrent determination result from the current determination unit 24 , the control unit 21 switches the opening/closing switch 311 of the electric circuit 11 from ON to OFF. As a result, the electric path 11 is changed from the conductive state to the open state. In addition, the control unit 21 notifies the DC/DC converter 212 that the open/close switch 311 has been switched from ON to OFF. Furthermore, the control unit 21 switches the bypass switch 313 of the bypass electric line 13 from OFF to ON. Thereby, the electric circuit 11 and the electric circuit 12 are electrically connected through the bypass electric circuit 13 .
 <第2閾値が用いられる場合>
 DC/DC変換器211の隣に配置されるDC/DC変換器212に異常電流が流れた場合を考える。この場合、DC/DC変換器211は、すでに説明したDC/DC変換器211と同様の手順で異常を検出する。その結果、電路12の開閉スイッチ312がOFFし、バイパス電路13のバイパススイッチ313がONする。このとき、電路11の開閉スイッチ311はONである。
<When the second threshold is used>
Consider a case where an abnormal current flows through the DC/DC converter 212 arranged next to the DC/DC converter 211 . In this case, the DC/DC converter 211 detects an abnormality in the same procedure as the DC/DC converter 211 already described. As a result, the opening/closing switch 312 of the electric line 12 is turned off, and the bypass switch 313 of the bypass electric line 13 is turned on. At this time, the opening/closing switch 311 of the electric circuit 11 is ON.
 この場合、電気負荷501に対してはDC/DC変換器211から電力が供給され、電気負荷502に対してはバイパス電路13経由でDC/DC変換器211から電力が供給される。このような状態では、DC/DC変換器211に対して電気負荷501および電気負荷502の負荷がかかる。電気負荷501と電気負荷502とが同じであれば、電路11に流れる電流の大きさは、DC/DC変換器212に異常が発生していない場合の2倍となる。 In this case, power is supplied from the DC/DC converter 211 to the electrical load 501 , and power is supplied from the DC/DC converter 211 to the electrical load 502 via the bypass electric line 13 . In this state, DC/DC converter 211 is loaded with electric load 501 and electric load 502 . If the electric load 501 and the electric load 502 are the same, the magnitude of the current flowing through the electric path 11 is double that when the DC/DC converter 212 does not have an abnormality.
 そこで、DC/DC変換器211の電流判定部24は、電路11がバイパス電路13を通じて隣の電路12と導通している場合には、判定に用いる閾値を第1閾値から第2閾値に切り替える。次に、電流判定部24は、電流検出部23が検出した電流値と第2閾値とを比較する。電流判定部24は、電流検出部23が検出した電流値が第2閾値を超える場合、過電流と判定する。 Therefore, the current determination unit 24 of the DC/DC converter 211 switches the threshold used for determination from the first threshold to the second threshold when the electric circuit 11 is electrically connected to the adjacent electric circuit 12 through the bypass electric circuit 13. Next, the current determination section 24 compares the current value detected by the current detection section 23 with the second threshold. When the current value detected by the current detection unit 23 exceeds the second threshold, the current determination unit 24 determines overcurrent.
 電流判定部24は、判定結果を制御部21に送信する。制御部21は、電流判定部24から過電流の判定結果を受信した場合、電路11の開閉スイッチ311をONからOFFに切り替える。これにより、電路11は導通状態から開放状態となる。その結果、電路11と電路12とを接続するバイパス電路13にも電流が流れなくなる。したがって、電気負荷501,502が過電流による悪影響を受けることを防止できる。 The current determination unit 24 transmits the determination result to the control unit 21. When receiving the overcurrent determination result from the current determination unit 24 , the control unit 21 switches the opening/closing switch 311 of the electric circuit 11 from ON to OFF. As a result, the electric path 11 is changed from the conductive state to the open state. As a result, no current flows through the bypass electric line 13 that connects the electric lines 11 and 12 . Therefore, it is possible to prevent the electrical loads 501 and 502 from being adversely affected by the overcurrent.
 なお、制御部21は、開閉スイッチ311をONからOFFに切り替えるとともに、バイパススイッチ313もONからOFFに切り替えてもよい。これにより、DC/DC変換器211およびDC/DC変換器212で発生していた異常電流が解消したときに、バイパススイッチ313がONしている状態が維持されてしまうことを防止できる。 The control unit 21 may switch the open/close switch 311 from ON to OFF and also switch the bypass switch 313 from ON to OFF. As a result, it is possible to prevent the bypass switch 313 from being kept on when the abnormal current generated in the DC/ DC converters 211 and 212 is resolved.
 以上、説明したように、DC/DC変換器211は、電気負荷501のみに電力を供給しているときと、バイパス電路13を経由して隣のDC/DC変換器212に対応する電気負荷502にも電力を供給しているときとで、過電流を判定するときの閾値を切り替える。 As described above, when the DC/DC converter 211 supplies power only to the electric load 501 , the electric load 502 corresponding to the adjacent DC/DC converter 212 via the bypass electric line 13 The threshold for judging an overcurrent is switched between when power is supplied to the
 このため、本実施の形態に係る電力供給システム1は、2つの利点を有する。第1に、DC/DC変換器211が電気負荷501に電力を供給し、DC/DC変換器212が電気負荷502に電力を供給している状態において、DC/DC変換器211,212において過電流の発生を適切に判定できる。第2に、DC/DC変換器211が電気負荷501,502に電力を供給している状態において、DC/DC変換器211において過電流の発生を適切に判定できる。 Therefore, the power supply system 1 according to this embodiment has two advantages. First, in a state where the DC/DC converter 211 is supplying power to the electrical load 501 and the DC/DC converter 212 is supplying power to the electrical load 502, the DC/ DC converters 211 and 212 are overloaded. Generation of current can be determined appropriately. Secondly, occurrence of overcurrent in the DC/DC converter 211 can be determined appropriately while the DC/DC converter 211 is supplying electric power to the electrical loads 501 and 502 .
 なお、図4を用いた説明において、DC/DC変換器211とDC/DC変換器212とを入れ替えた場合にも、DC/DC変換器211,212において同様の動作が実現されることはいうまでもない。つまり、DC/DC変換器212も、DC/DC変換器211と同様の回路構成を有しており、DC/DC変換器212は、異常を検出した場合にDC/DC変換器211と同様に動作する。 In the description using FIG. 4, even if the DC/ DC converters 211 and 212 are interchanged, the same operations are realized in the DC/ DC converters 211 and 212. Not even. That is, the DC/DC converter 212 also has a circuit configuration similar to that of the DC/DC converter 211, and the DC/DC converter 212 detects an abnormality in the same way as the DC/DC converter 211. Operate.
 ここでは、DC/DC変換器211,212に電気負荷501,502が接続される場合を例に挙げて説明した。しかし、DC/DC変換器211,212に太陽電池を構成する分散電源403,404が接続される場合も、DC/DC変換器211,212は同様に動作する。この場合、電流検出部23は、分散電源403,404側から出力される電流の異常を検出してもよい。 Here, the case where the electrical loads 501 and 502 are connected to the DC/ DC converters 211 and 212 has been described as an example. However, the DC/ DC converters 211 and 212 operate similarly even when the distributed power sources 403 and 404 forming solar cells are connected to the DC/ DC converters 211 and 212 . In this case, the current detection unit 23 may detect an abnormality in the current output from the distributed power sources 403 and 404 .
 図5は、DC/DC変換器211で異常が検出された場合の処理の流れを示すタイムチャートである。以下、タイムチャートに基づいて処理の流れを説明する。ここでは、DC/DC変換器211に電気負荷501が接続され、DC/DC変換器212に電気負荷502が接続されている場合を想定する。 FIG. 5 is a time chart showing the flow of processing when an abnormality is detected in the DC/DC converter 211. FIG. The flow of processing will be described below based on the time chart. Here, it is assumed that an electric load 501 is connected to the DC/DC converter 211 and an electric load 502 is connected to the DC/DC converter 212 .
 正常に運転しているDC/DC変換器211が時刻t1で過電流などの異常を検出する。DC/DC変換器211が異常を検出すると、DC/DC変換器211の電路11に設けた開閉スイッチ311がONからOFFに切り替わる。これによって、電路11が導通状態から開放状態になる。その結果、DC/DC変換器211に対応する電気負荷501への電力の供給が途切れる。 The normally operating DC/DC converter 211 detects an abnormality such as overcurrent at time t1. When the DC/DC converter 211 detects an abnormality, the opening/closing switch 311 provided in the electric circuit 11 of the DC/DC converter 211 is switched from ON to OFF. As a result, the electric path 11 is changed from the conducting state to the open state. As a result, the power supply to the electrical load 501 corresponding to the DC/DC converter 211 is interrupted.
 したがって、DC/DC変換器211は運転を停止した状態になる。なお、DC/DC変換器211自体は、図1に示されない別途の電力の供給を受けてアクティブの状態を維持するものとする。したがって、図5に示される運転の停止とは、DC/DC変換器211から電気負荷501へ電力が供給されない状態を意味する。 Therefore, the DC/DC converter 211 stops operating. It should be noted that the DC/DC converter 211 itself maintains an active state by being supplied with separate power not shown in FIG. Therefore, stopping the operation shown in FIG. 5 means a state in which power is not supplied from the DC/DC converter 211 to the electrical load 501 .
 開閉スイッチ311がONからOFFに切り替わってから微小時間が経過し、時刻t2となる。時刻t2では、バイパススイッチ313がOFFからONに切り替わる。時刻t2では、DC/DC変換器211の隣に配置されるDC/DC変換器212が一旦、運転を停止する。 A minute time has passed since the open/close switch 311 was switched from ON to OFF, and it is time t2. At time t2, the bypass switch 313 is switched from OFF to ON. At time t2, the DC/DC converter 212 arranged next to the DC/DC converter 211 temporarily stops operating.
 バイパススイッチ313がOFFからONに切り替わることにより、バイパス電路13がDC/DC変換器211の電路11と、DC/DC変換器211の隣に配置されるDC/DC変換器212の電路12とを接続する。時刻t3になると、DC/DC変換器212が運転を再開する。これにより、DC/DC変換器212が供給する電力がバイパス電路13を通じて電路11に供給される。その結果、DC/DC変換器211に対応する電気負荷501とDC/DC変換器212に対応する電気負荷502とに電力が供給される。 By switching the bypass switch 313 from OFF to ON, the bypass electric line 13 connects the electric line 11 of the DC/DC converter 211 and the electric line 12 of the DC/DC converter 212 arranged next to the DC/DC converter 211. Connecting. At time t3, the DC/DC converter 212 resumes operation. Thereby, the electric power supplied by the DC/DC converter 212 is supplied to the electric line 11 through the bypass electric line 13 . As a result, power is supplied to the electrical load 501 corresponding to the DC/DC converter 211 and the electrical load 502 corresponding to the DC/DC converter 212 .
 なお、図5を用いた説明において、DC/DC変換器211とDC/DC変換器212とを入れ替えた場合にも、DC/DC変換器211,212において同様の動作が実現されることはいうまでもない。また、時刻t2において、DC/DC変換器212は一旦運転を停止するものとして説明したが、DC/DC変換器212は時刻t2において運転を停止しなくてもよい。 In the description using FIG. 5, even if the DC/ DC converters 211 and 212 are interchanged, the same operations are realized in the DC/ DC converters 211 and 212. Not even. Further, although the DC/DC converter 212 temporarily stops operating at the time t2, the DC/DC converter 212 does not have to stop operating at the time t2.
 <DC/DC変換器211,212の処理手順を示すフローチャート>
 図6は、DC/DC変換器211で異常が検出された場合の処理の手順を示すフローチャートである。以下に説明するとおり、DC/DC変換器211で異常が検出された場合、DC/DC変換器211とDC/DC変換器212とは協同して異常に対応する処理を実行する。
<Flow chart showing the processing procedure of the DC/ DC converters 211 and 212>
FIG. 6 is a flow chart showing the procedure of processing when an abnormality is detected in the DC/DC converter 211 . As will be described below, when an abnormality is detected in the DC/DC converter 211, the DC/ DC converters 211 and 212 cooperate to perform processing to deal with the abnormality.
 ここでは、図1に示される領域603のDC/DC変換器211とDC/DC変換器212とを代表例として採り上げて説明する。 Here, the DC/DC converter 211 and the DC/DC converter 212 in the area 603 shown in FIG. 1 will be taken up as a representative example and explained.
 まず、DC/DC変換器211は、異常を検出したか否か判定する(ステップS11)。過電流などの異常が検出されない場合(ステップS11にてNO)、DC/DC変換器211は処理を終える。 First, the DC/DC converter 211 determines whether or not an abnormality has been detected (step S11). If an abnormality such as overcurrent is not detected (NO in step S11), DC/DC converter 211 ends the process.
 過電流などの異常が検出された場合(ステップS11にてYES)、DC/DC変換器211は、異常の発生をDC/DC変換器212に通知する。 When an abnormality such as overcurrent is detected (YES in step S11), the DC/DC converter 211 notifies the DC/DC converter 212 of the occurrence of the abnormality.
 DC/DC変換器212は、DC/DC変換器211から異常の発生の通知の有無を判定する(ステップS21)。DC/DC変換器212は、DC/DC変換器211から異常の発生の通知を受信した場合(ステップS21にてYES)、運転を停止する(ステップS22)。これにより、DC/DC変換器212と電路12を介して接続される電気負荷502への電源の供給が一旦途絶える。その後、DC/DC変換器212は、DC/DC変換器211からバイパススイッチ313のONの通知を受けるまで待機する(ステップS23)。 The DC/DC converter 212 determines whether or not there is a notification of the occurrence of an abnormality from the DC/DC converter 211 (step S21). When DC/DC converter 212 receives notification of the occurrence of an abnormality from DC/DC converter 211 (YES in step S21), DC/DC converter 212 stops operation (step S22). As a result, power supply to the electrical load 502 connected to the DC/DC converter 212 via the electric line 12 is temporarily interrupted. After that, the DC/DC converter 212 waits until receiving a notification that the bypass switch 313 is ON from the DC/DC converter 211 (step S23).
 ステップS12の処理を終えたDC/DC変換器211は、開閉スイッチ311をONからOFFに切り替える(ステップS13)。これにより、DC/DC変換器211と電路11を介して接続される電気負荷501への電源の供給が途絶える。これにより、過電流による悪影響が電気負荷501に及ぶことがない。その後、DC/DC変換器211は、バイパススイッチ313をOFFからONに切り替える(ステップS14)。次に、DC/DC変換器211は、バイパススイッチ313がONしたことをDC/DC変換器212へ通知し(ステップS15)、処理を終える。 After completing the process of step S12, the DC/DC converter 211 switches the open/close switch 311 from ON to OFF (step S13). As a result, the power supply to the electric load 501 connected to the DC/DC converter 211 via the electric line 11 is cut off. As a result, the electrical load 501 is not adversely affected by overcurrent. After that, the DC/DC converter 211 switches the bypass switch 313 from OFF to ON (step S14). Next, the DC/DC converter 211 notifies the DC/DC converter 212 that the bypass switch 313 has been turned ON (step S15), and finishes the process.
 DC/DC変換器212は、バイパススイッチ313がONしたことの通知を受けると(ステップS23にてYES)、運転を再開し(ステップS24)、処理を終える。これにより、DC/DC変換器212の電力は、電路12によって電気負荷502に供給されるとともに、バイパス電路13および電路11を通じて電気負荷501にも供給される。 When the DC/DC converter 212 receives notification that the bypass switch 313 has been turned ON (YES in step S23), it resumes operation (step S24) and finishes the process. Thereby, the electric power of the DC/DC converter 212 is supplied to the electric load 502 through the electric line 12 and is also supplied to the electric load 501 through the electric line 13 and the electric line 11 .
 図6に示したDC/DC変換器211に対応するフローチャートは、より詳しくは、DC/DC変換器211の制御部21により実行される。DC/DC変換器212に対応するフローチャートは、より詳しくは、DC/DC変換器212の制御部21により実行される。 More specifically, the flowchart corresponding to the DC/DC converter 211 shown in FIG. 6 is executed by the controller 21 of the DC/DC converter 211. More specifically, the flowchart corresponding to the DC/DC converter 212 is executed by the controller 21 of the DC/DC converter 212 .
 図6を用いた説明においては、DC/DC変換器211が異常を検出した場合の処理の流れを説明した。しかし、DC/DC変換器212は、DC/DC変換器211と同じ機能を備えており、DC/DC変換器211と同様に異常を検出する。DC/DC変換器212が異常を検出した場合の処理の流れは、図6のDC/DC変換器211の処理をDC/DC変換器212とし、図6のDC/DC変換器211の処理をDC/DC変換器212の処理としたものである。したがって、ここではその説明を繰り返さない。 In the description using FIG. 6, the flow of processing when the DC/DC converter 211 detects an abnormality has been described. However, the DC/DC converter 212 has the same function as the DC/DC converter 211 and detects anomalies in the same way as the DC/DC converter 211 does. In the flow of processing when the DC/DC converter 212 detects an abnormality, the processing of the DC/DC converter 211 in FIG. This is the processing of the DC/DC converter 212 . Therefore, its description will not be repeated here.
  <フローチャートの変形例>
 図7は、DC/DC変換器211,212で異常が検出された場合の処理の手順の変形例を示すフローチャートである。ここでは、制御装置50が開閉スイッチ311,312およびバイパススイッチ313のON/OFFを制御する例を説明する。
<Modified Example of Flowchart>
FIG. 7 is a flow chart showing a modification of the procedure when an abnormality is detected in the DC/ DC converters 211 and 212. In FIG. Here, an example in which the control device 50 controls ON/OFF of the open/ close switches 311 and 312 and the bypass switch 313 will be described.
 制御装置50は、たとえば、電力供給システム1に配置される複数のDC/DC変換器211,212と通信し、DC/DC変換器211,212での異常の発生の有無を検出する。DC/DC変換器211,212が備える制御部21は、たとえば、過電流の有無の他、DC/DC変換器211,212の回路の異常を検出した場合に、異常情報を制御装置50に送信する。その際、制御部21は、複数のDC/DC変換器211,212のいずれであるかを制御装置50が特定できる識別情報を併せて制御装置50に送信する。 The control device 50, for example, communicates with a plurality of DC/ DC converters 211 and 212 arranged in the power supply system 1 and detects whether or not an abnormality has occurred in the DC/ DC converters 211 and 212. The control unit 21 provided in the DC/ DC converters 211 and 212 transmits abnormality information to the control device 50, for example, when detecting an abnormality in the circuits of the DC/ DC converters 211 and 212 in addition to the presence or absence of overcurrent. do. At that time, the control unit 21 also transmits identification information with which the control device 50 can identify which of the plurality of DC/ DC converters 211 and 212 is to the control device 50 .
 以下、図7を参照して制御装置50の処理手順を説明する。制御装置50は、DC/DC変換器211で異常が検出されたか否かを判定する(ステップS31)。DC/DC変換器211で異常が検出されている場合(ステップS31にてYES)、異常が検出されているDC/DC変換器211と同じ領域に配置されるDC/DC変換器212の運転を停止する(ステップS32)。たとえば、領域601のDC/DC変換器211で異常が検出された場合、制御装置50は、領域601のDC/DC変換器212の運転を停止する。 The processing procedure of the control device 50 will be described below with reference to FIG. The control device 50 determines whether or not an abnormality has been detected in the DC/DC converter 211 (step S31). When abnormality is detected in DC/DC converter 211 (YES in step S31), operation of DC/DC converter 212 arranged in the same region as DC/DC converter 211 in which abnormality is detected is stopped. Stop (step S32). For example, when an abnormality is detected in DC/DC converter 211 in area 601 , controller 50 stops operation of DC/DC converter 212 in area 601 .
 次に、制御装置50は、異常が検出されたDC/DC変換器211の電路11に設けられた開閉スイッチ311をONからOFFに切り替える(ステップS33)。次に、制御装置50は、異常が検出されたDC/DC変換器211の電路11に対応するバイパス電路13のバイパススイッチ313をOFFからONに切り替える(ステップS34)。次に、制御装置50は、ステップS32にて運転を停止させたDC/DC変換器212の運転を再開させ(ステップS35)、処理を終える。 Next, the control device 50 switches from ON to OFF the open/close switch 311 provided in the electric circuit 11 of the DC/DC converter 211 in which the abnormality has been detected (step S33). Next, the control device 50 switches from OFF to ON the bypass switch 313 of the bypass electric line 13 corresponding to the electric line 11 of the DC/DC converter 211 in which the abnormality has been detected (step S34). Next, the control device 50 restarts the operation of the DC/DC converter 212, which was stopped in step S32 (step S35), and finishes the process.
 以上のステップS32,S33,S34,S35の処理は、それぞれ、図6のステップS22,S13,S14,S24の処理と同様である。 The processes of steps S32, S33, S34, and S35 above are the same as the processes of steps S22, S13, S14, and S24 in FIG. 6, respectively.
 制御装置50は、ステップS31においてNOと判定した場合、DC/DC変換器212で異常が検出されたか否かを判定する(ステップS36)DC/DC変換器212で異常が検出されていない場合(ステップS36にてNO)、制御装置50は処理を終える。 If the control device 50 determines NO in step S31, it determines whether or not an abnormality has been detected in the DC/DC converter 212 (step S36). NO in step S36), the control device 50 ends the process.
 DC/DC変換器212で異常が検出されている場合(ステップS36にてYES)、異常が検出されているDC/DC変換器212と同じ領域に配置されるDC/DC変換器211の運転を停止する(ステップS37)。たとえば、領域601のDC/DC変換器212で異常が検出された場合、制御装置50は、領域601のDC/DC変換器211の運転を停止する。 When an abnormality is detected in DC/DC converter 212 (YES in step S36), operation of DC/DC converter 211 arranged in the same region as DC/DC converter 212 in which abnormality is detected is stopped. Stop (step S37). For example, when an abnormality is detected in DC/DC converter 212 in area 601 , controller 50 stops operation of DC/DC converter 211 in area 601 .
 次に、制御装置50は、異常が検出されたDC/DC変換器212の電路12に設けられた開閉スイッチ312をONからOFFに切り替える(ステップS38)。次に、制御装置50は、異常が検出されたDC/DC変換器212の電路12に対応するバイパス電路13のバイパススイッチ313をOFFからONに切り替える(ステップS39)。次に、制御装置50は、ステップS37にて運転を停止させたDC/DC変換器211の運転を再開させ(ステップS40)、処理を終える。 Next, the control device 50 switches from ON to OFF the open/close switch 312 provided in the electric circuit 12 of the DC/DC converter 212 in which the abnormality has been detected (step S38). Next, the control device 50 switches from OFF to ON the bypass switch 313 of the bypass electric line 13 corresponding to the electric line 12 of the DC/DC converter 212 in which the abnormality has been detected (step S39). Next, the control device 50 restarts the operation of the DC/DC converter 211, which was stopped in step S37 (step S40), and finishes the process.
 以上のステップS37,S38,S39,S40の処理は、それぞれ、図6のステップS22,S13,S14,S24の処理と比較して、DC/DC変換器211とDC/DC変換器212との関係が逆転することを除いて同様である。 The processes of steps S37, S38, S39, and S40 described above are different from the processes of steps S22, S13, S14, and S24 in FIG. is the same except that is reversed.
 図7に示される変形例によれば、制御装置50によって、分散電源400および電気負荷500の状態のみならず、DC/DC変換器211,212の状態をも集中的に監視することができる。 According to the modification shown in FIG. 7, the controller 50 can centrally monitor not only the states of the distributed power sources 400 and the electric loads 500 but also the states of the DC/ DC converters 211 and 212 .
 <サーマルリレーに関する変形例>
 図8は、バイパス電路13に過電流を検出するセンサを設けた変形例を示す構成図である。図4を用いた説明においては、バイパススイッチ313がONしているときに過電流が発生したか否かをDC/DC変換器211が判定する例を説明した。この変形例においては、バイパス電路13に過電流を検出するセンサが設けられている。このセンサは、たとえば、サーマルリレー(熱動継電器)314により構成されている。サーマルリレー314は、予め定めた値を超える電流がバイパス電路13を流れると、電流による発熱でONの状態からOFFの状態に切り替わる。
<Modified example of thermal relay>
FIG. 8 is a configuration diagram showing a modification in which a sensor for detecting overcurrent is provided in the bypass electric line 13. As shown in FIG. In the description using FIG. 4, an example was described in which the DC/DC converter 211 determines whether or not an overcurrent has occurred while the bypass switch 313 is ON. In this modification, the bypass electric line 13 is provided with a sensor for detecting overcurrent. This sensor is composed of a thermal relay (thermal relay) 314, for example. When a current exceeding a predetermined value flows through the bypass electric path 13, the thermal relay 314 is switched from an ON state to an OFF state due to heat generated by the current.
 過電流に対応する大きさの電流に反応するサーマルリレー314をバイパス電路13に設けることにより、バイパス電路13に過電流が流れた場合には物理的にバイパス電路13が導電状態から開放状態となる。この変形例によれば、DC/DC変換器211,212は、バイパススイッチ313がONしているときに過電流が発生したか否かを判定する必要がない。このため、バイパススイッチ313がONしているとき、DC/DC変換器211,212を用いることなく、過電流から分散電源400または電気負荷500を保護することができる。 By providing the bypass electric circuit 13 with a thermal relay 314 that reacts to a current having a magnitude corresponding to the overcurrent, the bypass electric circuit 13 physically changes from a conducting state to an open state when an overcurrent flows through the bypass electric circuit 13. . According to this modification, the DC/ DC converters 211 and 212 do not need to determine whether or not an overcurrent has occurred while the bypass switch 313 is ON. Therefore, when bypass switch 313 is ON, distributed power supply 400 or electric load 500 can be protected from overcurrent without using DC/ DC converters 211 and 212 .
 その結果、電力供給システム1の制御を単純化できる。また、過電流などの異常がDC/DC変換器211,212で発生することで、DC/DC変換器211,212が故障するかもしれない。この場合、DC/DC変換器211,212は、バイパススイッチ313を制御できない。このような場合でも、サーマルリレー314をバイパス電路13に設けておくことにより、過電流から分散電源400または電気負荷500を保護することができる。 As a result, the control of the power supply system 1 can be simplified. In addition, the DC/ DC converters 211 and 212 may fail due to an abnormality such as overcurrent occurring in the DC/ DC converters 211 and 212 . In this case, DC/ DC converters 211 and 212 cannot control bypass switch 313 . Even in such a case, by providing the thermal relay 314 in the bypass electric line 13, the distributed power supply 400 or the electric load 500 can be protected from overcurrent.
 したがって、DC/DC変換器211,212にバイパススイッチ313を制御する機能を持たせつつも、サーマルリレー314をバイパス電路13に設けてもよい。なお、バイパススイッチ313自体をサーマルリレー314により構成してもよい。 Therefore, the thermal relay 314 may be provided in the bypass electric line 13 while the DC/ DC converters 211 and 212 have the function of controlling the bypass switch 313 . Incidentally, the bypass switch 313 itself may be configured by the thermal relay 314 .
 以上、説明した電力供給システム1によれば、対となるDC/DC変換器211,212の一方に異常が発生し、電力を変換する処理を継続することができない状態となっても、他方のDC/DC変換器211,212を用いて電力を変換する処理を継続することができる。このため、電力供給システム1に接続される分散電源400を有効に利用することができる。また、電力供給システム1に接続される電気負荷500に対して継続的に電力を供給することが可能となる。 According to the power supply system 1 described above, even if an abnormality occurs in one of the paired DC/ DC converters 211 and 212 and the process of converting power cannot be continued, the other The process of converting power using DC/ DC converters 211 and 212 may continue. Therefore, the distributed power sources 400 connected to the power supply system 1 can be effectively used. Further, it becomes possible to continuously supply power to the electric load 500 connected to the power supply system 1 .
 本実施の形態においては、DC/DC変換器211,212における異常の発生を検出することで、開閉スイッチ311,312およびバイパススイッチ313をスイッチングする技術を説明した。しかし、開閉スイッチ311,312およびバイパススイッチ313は、人が操作することによってON/OFFするように構成してもよい。 In the present embodiment, the technique of switching the on-off switches 311 and 312 and the bypass switch 313 by detecting the occurrence of an abnormality in the DC/ DC converters 211 and 212 has been described. However, the open/ close switches 311 and 312 and the bypass switch 313 may be configured to be turned ON/OFF by human operation.
 これにより、電力供給システム1の保守およびメンテナンスの際に、分散電源400および電気負荷500に対するサービスを停止させることなく、作業をすることが可能となる。また、点検の結果、DC/DC変換器211およびDC/DC変換器212の一方を交換する必要が生じた場合でも、分散電源400および電気負荷500に影響を与えることなく、機器を交換することができる。したがって、電力供給システム1によれば、信頼性の低下を極力防止できるシステムを提供できる。 As a result, maintenance of the power supply system 1 can be performed without stopping the services for the distributed power sources 400 and the electric loads 500 . Moreover, even if it becomes necessary to replace one of the DC/DC converter 211 and the DC/DC converter 212 as a result of the inspection, the equipment can be replaced without affecting the distributed power supply 400 and the electric load 500. can be done. Therefore, according to the power supply system 1, it is possible to provide a system that can prevent deterioration of reliability as much as possible.
 実施の形態2.
 <電力供給システム2の構成>
 次に、実施の形態2を説明する。図9は、実施の形態2に関わる電力供給システム2を示す構成図である。実施の形態1においては、系統電源100から供給される交流電力を直流電力に変換する直流配電網で構成したが、実施の形態2においては、交流配電網に電気負荷500が設けられている。
Embodiment 2.
<Configuration of Power Supply System 2>
Next, Embodiment 2 will be described. FIG. 9 is a configuration diagram showing a power supply system 2 related to Embodiment 2. As shown in FIG. In Embodiment 1, a DC power distribution network is used to convert AC power supplied from system power supply 100 to DC power, but in Embodiment 2, electric load 500 is provided in an AC power distribution network.
 実施の形態2において、電気負荷500には、系統電源100の交流電力が供給される。この点において、実施の形態2は実施の形態1と異なる。さらに、実施の形態2において、1つのDC/DC変換器211に対応して1つのAC/DC変換器221が接続され、1つのDC/DC変換器212に対応して1つのAC/DC変換器222が接続されている。 In the second embodiment, the electric load 500 is supplied with AC power from the system power supply 100 . In this respect, the second embodiment differs from the first embodiment. Furthermore, in the second embodiment, one AC/DC converter 221 is connected corresponding to one DC/DC converter 211, and one AC/DC converter 221 is connected corresponding to one DC/DC converter 212. 222 is connected.
 図9に示されるように、電力供給システム2は、概念的に、一対のDC/DC変換器211,212と一対のAC/DC変換器221,222とを含む複数の領域611,612,…に区画することができる。以下、領域611の回路構成を領域611,612,…の回路構成の代表例として説明する。 As shown in FIG. 9, the power supply system 2 conceptually includes a plurality of regions 611, 612, . can be divided into The circuit configuration of region 611 will be described below as a typical example of the circuit configuration of regions 611, 612, .
 領域611のDC/DC変換器211は、対応するAC/DC変換器221とともに電力変換器盤201に配置される。領域611のDC/DC変換器212は、対応するAC/DC変換器222とともに電力変換器盤202に配置される。 The DC/DC converters 211 in area 611 are arranged on the power converter board 201 along with the corresponding AC/DC converters 221 . DC/DC converters 212 in region 611 are located on power converter board 202 along with corresponding AC/DC converters 222 .
 電力変換器盤201に配置されるAC/DC変換器221およびDC/DC変換器211は、主電路10から分岐する電路11によって接続される。電路11は、さらにDC/DC変換器211から分電盤300を通って分散電源401に延びる。 The AC/DC converter 221 and the DC/DC converter 211 arranged on the power converter board 201 are connected by an electric line 11 branching from the main electric line 10 . Electric circuit 11 further extends from DC/DC converter 211 through distribution board 300 to distributed power supply 401 .
 電力変換器盤202に配置されるAC/DC変換器222およびDC/DC変換器212は、主電路10から分岐する電路12によって接続される。電路12は、さらにDC/DC変換器212から分電盤300を通って分散電源402に延びる。 The AC/DC converter 222 and the DC/DC converter 212 arranged on the power converter board 202 are connected by the electric line 12 branching from the main electric line 10 . Electrical path 12 further extends from DC/DC converter 212 through distribution board 300 to distributed power supply 402 .
 実施の形態1と同様に、電路11には開閉スイッチ311が設けられ、電路12には開閉スイッチ312が設けられる。実施の形態1と同様に、電路11と電路12との間にはバイパス電路13が接続されており、バイパス電路13にはバイパススイッチ313が設けられる。 As in the first embodiment, the electric line 11 is provided with an open/close switch 311 and the electric line 12 is provided with an open/close switch 312 . As in the first embodiment, the bypass electric line 13 is connected between the electric lines 11 and 12 and the bypass switch 313 is provided in the bypass electric line 13 .
 実施の形態2に係る電力供給システム2は、実施の形態1に係る電力供給システム1と同様に、DC/DC変換器211,212が協同して異常発生時の処理を実行する。その結果、たとえば、領域611のDC/DC変換器211において過電流が検出された場合、開閉スイッチ311がONからOFFに切り替わり、バイパススイッチ313がOFFからONに切り替わる。これにより、分散電源401に過電流が流れることがない。また、分散電源401には、バイパス電路13を経由して、DC/DC変換器212から電力が供給される。 In the power supply system 2 according to the second embodiment, similar to the power supply system 1 according to the first embodiment, the DC/ DC converters 211 and 212 cooperate to execute processing when an abnormality occurs. As a result, for example, when an overcurrent is detected in DC/DC converter 211 in region 611, open/close switch 311 switches from ON to OFF, and bypass switch 313 switches from OFF to ON. As a result, overcurrent does not flow through the distributed power sources 401 . Power is supplied to the distributed power supply 401 from the DC/DC converter 212 via the bypass electric line 13 .
 同様に、領域612のDC/DC変換器211において過電流が検出された場合、開閉スイッチ311がONからOFFに切り替わり、バイパススイッチ313がOFFからONに切り替わる。これにより、太陽電池を構成する分散電源403は、バイパス電路13、DC/DC変換器212およびAC/DC変換器222を経由して主電路10と導通する。 Similarly, when an overcurrent is detected in the DC/DC converter 211 in the area 612, the open/close switch 311 is switched from ON to OFF, and the bypass switch 313 is switched from OFF to ON. As a result, the distributed power supply 403 that constitutes the solar cell is electrically connected to the main electric line 10 via the bypass electric line 13 , the DC/DC converter 212 and the AC/DC converter 222 .
 分散電源403が電気負荷500に電力を供給している状態で、DC/DC変換器211において異常が検出された場合、分散電源403の電力は、バイパス電路13からDC/DC変換器212、AC/DC変換器222、および主電路10を経由して電気負荷500に供給される。 When an abnormality is detected in the DC/DC converter 211 while the distributed power supply 403 is supplying power to the electric load 500, the power of the distributed power supply 403 is transferred from the bypass electric line 13 to the DC/DC converter 212, AC /DC converter 222 and main electric line 10 to electric load 500 .
 実施の形態2に関わる電力供給システム2によれば、電気負荷500には、系統電源100の交流電力が供給される。このため、電気負荷501,502,503,504に対して、個別にDC/DC変換器211,212を設ける必要がない。その結果、電気負荷500側の分電盤300に対して、図1に示すようなバイパス電路13およびバイパススイッチ313を設ける必要がない。また、電源システムの全電源容量を扱うAC/DC変換器210を削減することができる。したがって、実施の形態2に関わる電力供給システム2によれば、電源システムの小型化を図ることができる。 According to the power supply system 2 according to the second embodiment, the electric load 500 is supplied with AC power from the system power supply 100 . Therefore, it is not necessary to provide the DC/ DC converters 211 and 212 individually for the electrical loads 501, 502, 503 and 504, respectively. As a result, it is not necessary to provide the bypass electric line 13 and the bypass switch 313 as shown in FIG. Also, the AC/DC converter 210 that handles the total power supply capacity of the power supply system can be reduced. Therefore, according to the power supply system 2 according to the second embodiment, the size of the power supply system can be reduced.
 電力供給システム2において、AC/DC変換器221,222は、DC/DC変換器211,212と同様に異常を検出する機能を備えてもよい。たとえば、AC/DC変換器221,222は、図4に示されるDC/DC変換器211の回路構成と同様の回路構成を備えてもよい。この場合、AC/DC変換器221,222は、過電流を検出した場合に、DC/DC変換器211,212と同様に開閉スイッチ311,312およびバイパススイッチ313を切り替え制御してもよい。また、制御装置50は、図7に示したフローチャートに基づく処理をAC/DC変換器221,222に適用してもよい。 In the power supply system 2, the AC/ DC converters 221 and 222 may have a function of detecting anomalies, similar to the DC/ DC converters 211 and 212. For example, AC/ DC converters 221 and 222 may have a circuit configuration similar to that of DC/DC converter 211 shown in FIG. In this case, the AC/ DC converters 221 and 222 may switch and control the open/ close switches 311 and 312 and the bypass switch 313 in the same manner as the DC/ DC converters 211 and 212 when overcurrent is detected. Further, the control device 50 may apply the processing based on the flowchart shown in FIG. 7 to the AC/ DC converters 221 and 222.
 以上説明したように、実施の形態1,2に関わる電力供給システム1,2においては、蓄電池および太陽電池等の分散電源400の間、および電気負荷500の間の少なくともいずれか一方に開閉スイッチ311,312およびバイパススイッチ313が備えられている。これにより、DC/DC変換器211,212が故障した場合でも分散電源400を有効利用でき、かつ、電気負荷500の運転を継続することができる。 As described above, in the power supply systems 1 and 2 according to the first and second embodiments, the opening/closing switch 311 is connected between at least one of the distributed power sources 400 such as storage batteries and solar cells and between the electric loads 500 . , 312 and a bypass switch 313 are provided. As a result, even if the DC/ DC converters 211 and 212 fail, the distributed power supply 400 can be effectively used and the electric load 500 can continue to operate.
 また、DC/DC変換器211,212で異常が発生していないときに、系統電源100から分散電源400または電気負荷500に至るまでの経路で関与するスイッチは、開閉スイッチ311のみである。また、DC/DC変換器211およびDC/DC変換器212のいずれかで異常が発生しているときでも、系統電源100からバイパス電路13を経由して分散電源400または電気負荷500に至る経路で関与するスイッチは、開閉スイッチ312およびバイパススイッチ313のわずか2つである。したがって、電力を供給する直流電路上でのスイッチによる発生損失を極力抑えることができる。 In addition, when there is no abnormality in the DC/ DC converters 211 and 212, the ON/OFF switch 311 is the only switch involved in the path from the system power supply 100 to the distributed power supply 400 or the electric load 500. Further, even when an abnormality occurs in either the DC/DC converter 211 or the DC/DC converter 212, the path from the system power supply 100 to the distributed power supply 400 or the electric load 500 via the bypass electric line 13 Only two switches are involved: the on/off switch 312 and the bypass switch 313 . Therefore, it is possible to minimize the loss caused by the switch on the direct-current electric line that supplies electric power.
 したがって、実施の形態1,2によれば、供給される電力の有効利用と電気負荷500の継続的な運転とが可能な、冗長性の高い電力供給システム1,2を提供できる。 Therefore, according to Embodiments 1 and 2, it is possible to provide highly redundant power supply systems 1 and 2 that enable effective use of supplied power and continuous operation of electric load 500 .
 実施の形態1,2においては、系統電源100の一例として交流系統の電源を挙げた。しかし、系統電源100は直流系統の電源であってもよい。この場合、たとえば、図1においてAC/DC変換器210は設けなくてもよい。 In Embodiments 1 and 2, an AC system power supply is given as an example of the system power supply 100 . However, the system power supply 100 may be a DC system power supply. In this case, for example, AC/DC converter 210 in FIG. 1 may not be provided.
 (まとめ)
 以上の実施の形態について、再び図面を参照して総括する。
(summary)
The above embodiments will be summarized with reference to the drawings again.
 (1) 本開示は、系統電源(100)と接続され、複数の電源(400)または複数の電気負荷(500)に対する配電網が形成された電力供給システム(1,2)に関する。複数の電源または複数の電気負荷は、第1装置または第2装置を含む。電力供給システムは、系統電源と接続される主電路(10)と、主電路に対して並列に接続され、電力を変換する第1変換装置(211)および第2変換装置(212)と、第1変換装置と第1装置(401,403,501,503)とを接続する第1電路(11)と、第2変換装置と第2装置(402,404,502,504)とを接続する第2電路(12)と、第1電路に配置され、導通状態と開放状態とに切り替わる第1スイッチ(311)と、第2電路に配置され、導通状態と開放状態とに切り替わる第2スイッチ(312)と、第1装置と第1スイッチとの間の接続ノードと、第2装置と第2スイッチとの間の接続ノードとを接続する第1バイパス電路(13)と、第1バイパス電路に配置され、導通状態と開放状態とに切り替わる第1バイパススイッチ(313)とを備える。 (1) The present disclosure relates to a power supply system (1, 2) connected to a grid power supply (100) and forming a power distribution network for a plurality of power sources (400) or a plurality of electrical loads (500). The multiple power sources or multiple electrical loads include a first device or a second device. The power supply system includes a main electric line (10) connected to a system power supply, a first conversion device (211) and a second conversion device (212) connected in parallel to the main electric line and converting electric power, and a second A first electric line (11) connecting the first conversion device and the first device (401, 403, 501, 503), and a second connecting the second conversion device and the second device (402, 404, 502, 504) 2 electrical paths (12), a first switch (311) arranged in the first electrical path and switching between a conducting state and an open state, and a second switch (312) arranged in the second electrical path and switching between a conducting state and an open state. ), a connection node between the first device and the first switch and a connection node between the second device and the second switch; and a first bypass switch (313) that switches between a conducting state and an open state.
 (2) 電力供給システムは、第1変換装置で異常が発生した場合に、第1スイッチを導通状態から開放状態に切り替え、第1バイパススイッチを開放状態から導通状態に切り替える制御装置(21,50)をさらに備える。 (2) The power supply system switches the first switch from the conducting state to the open state and switches the first bypass switch from the open state to the conducting state when an abnormality occurs in the first converter (21, 50 ) is further provided.
 (3) 制御装置は、第2変換装置の運転を停止させた後に第1バイパススイッチを開放状態から導通状態に切り替え、第1バイパススイッチを開放状態から導通状態に切り替えた後に第2変換装置の運転を再開させる(図5、ステップS32~ステップS35、ステップS37~ステップS40)。 (3) After stopping the operation of the second conversion device, the control device switches the first bypass switch from the open state to the conducting state, and after switching the first bypass switch from the open state to the conducting state, the second conversion device Operation is resumed (FIG. 5, steps S32 to S35, steps S37 to S40).
 (4) 第1変換装置は、出力電流が閾値を超える場合、異常が発生したと判定し(ステップS11、図4)、第1変換装置は、第1バイパススイッチが開放状態である場合、閾値を第1閾値に設定し、第1バイパススイッチが導通状態である場合、閾値を第1閾値よりも大きい第2閾値に設定する(図4)。 (4) If the output current exceeds the threshold, the first converter determines that an abnormality has occurred (step S11, FIG. 4). is set to a first threshold, and if the first bypass switch is conductive, the threshold is set to a second threshold that is greater than the first threshold (FIG. 4).
 (5) 電力供給システムは、第1バイパス電路に流れる過電流を検出するセンサ(314)をさらに備える。 (5) The power supply system further includes a sensor (314) that detects overcurrent flowing through the first bypass electric circuit.
 (6) 電力供給システムにおいて、センサはサーマルリレー(314)により構成されている。 (6) In the power supply system, the sensor is composed of a thermal relay (314).
 (7) 系統電源は交流系統の電源であり、主電路に配置され、系統電源の交流電力を直流電力に変換するAC/DC変換装置(210)をさらに備え、第1変換装置は、AC/DC変換装置により変換された直流電力を第1装置に対応する直流電力に変換する第1DC/DC変換装置(211)により構成され、第2変換装置は、AC/DC変換装置により変換された直流電力を第2装置に対応する直流電力に変換する第2DC/DC変換装置(212)により構成されている。 (7) The system power supply is an AC system power supply, and further includes an AC/DC converter (210) that is arranged in the main electric circuit and converts the AC power of the system power supply into DC power. a first DC/DC conversion device (211) for converting DC power converted by the DC conversion device into DC power corresponding to the first device; It consists of a second DC/DC conversion device (212) that converts the electrical power into DC power corresponding to the second device.
 (8) 系統電源は交流系統の電源であり、主電路と第1変換装置との間に配置され、系統電源の交流電力を直流電力に変換する第1AC/DC変換装置(221)と、主電路と第2変換装置との間に配置され、交流電力を直流電力に変換する第2AC/DC変換装置(222)とをさらに備え、第1変換装置は、第1AC/DC変換装置により変換された直流電力を第1装置に対応する直流電力に変換する第1DC/DC変換装置(211)により構成され、第2変換装置は、第2AC/DC変換装置により変換された直流電力を第2装置に対応する直流電力に変換する第2DC/DC変換装置(212)により構成されている。 (8) The system power supply is the power supply of the AC system. a second AC/DC converter (222) disposed between the electrical path and the second converter for converting AC power to DC power, the first converter being converted by the first AC/DC converter; a first DC/DC conversion device (211) that converts the DC power into DC power corresponding to the first device, and the second conversion device converts the DC power converted by the second AC/DC conversion device to the second device It is composed of a second DC/DC converter (212) that converts to DC power corresponding to .
 (9) 電力供給システムは、第1変換装置、第2変換装置、第1電路、第2電路、第1バイパス電路、第1スイッチ、第2スイッチ、および第1バイパススイッチを一群の構成としたときに、一群の構成を複数備える(領域601~604,611,612)。 (9) The power supply system consists of a group of a first conversion device, a second conversion device, a first electric circuit, a second electric circuit, a first bypass electric circuit, a first switch, a second switch, and a first bypass switch. Sometimes there are multiple groups of configurations (regions 601-604, 611, 612).
 (10) 第1装置および第2装置は複数の電源(401~404)を構成し、複数の電気負荷を構成する第3装置(501)および第4装置(502)をさらに備え、主電路に対して並列に接続され、電力を変換する第3変換装置(領域603のDC/DC変換器211)および第4変換装置(領域603のDC/DC変換器212)と、第3変換装置と第3装置とを接続する第3電路(領域603の電路11)と、第4変換装置と第4装置とを接続する第4電路(領域603の電路12)と、第3電路に配置され、導通状態と開放状態とに切り替わる第3スイッチ(領域603の開閉スイッチ311)と、第4電路に配置され、導通状態と開放状態とに切り替わる第4スイッチ(領域603の開閉スイッチ312)と、第3装置と第3スイッチとの間の接続ノードと、第4装置と第4スイッチとの間の接続ノードとを接続する第2バイパス電路(領域603のバイパス電路13)と、第2バイパス電路に配置され、導通状態と開放状態とに切り替わる第2バイパススイッチ(領域603のバイパススイッチ313)とをさらに備える。 (10) The first device and the second device constitute a plurality of power sources (401 to 404), further comprise a third device (501) and a fourth device (502) that constitute a plurality of electrical loads, and a third conversion device (DC/DC converter 211 in region 603) and a fourth conversion device (DC/DC converter 212 in region 603) connected in parallel to each other and converting power; 3 device (the electric circuit 11 in the region 603), the fourth electric circuit (the electric circuit 12 in the region 603) that connects the fourth conversion device and the fourth device, and the A third switch (the open/close switch 311 in the region 603) that switches between the state and the open state, a fourth switch (the open/close switch 312 in the region 603) that is arranged in the fourth electrical path and switches between the conducting state and the open state, and the third switch (the open/close switch 312 in the region 603) a second bypass line (bypass line 13 in region 603) connecting a connection node between the device and the third switch and a connection node between the fourth device and the fourth switch; and a second bypass switch (bypass switch 313 in region 603) that switches between a conducting state and an open state.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1,2 電力供給システム、10 主電路、11,12 電路、13 バイパス電路、21 制御部、22 電力変換部、23 電流検出部、24 電流判定部、25 記憶部、50 制御装置、51 プロセッサ、52 メモリ、100 系統電源、200~202 電力変換器盤、210,221,222 AC/DC変換器、211,212 DC/DC変換器、300 分電盤、311,312 開閉スイッチ、313 バイパススイッチ、314 サーマルリレー、400~404 分散電源、500~504 電気負荷、601~604,611,612 領域。 1, 2 power supply system, 10 main electric circuit, 11, 12 electric circuit, 13 bypass electric circuit, 21 control unit, 22 power conversion unit, 23 current detection unit, 24 current determination unit, 25 storage unit, 50 control device, 51 processor, 52 memory, 100 system power supply, 200 to 202 power converter board, 210, 221, 222 AC/DC converter, 211, 212 DC/DC converter, 300 distribution board, 311, 312 open/close switch, 313 bypass switch, 314 thermal relay, 400-404 distributed power supply, 500-504 electric load, 601-604, 611, 612 area.

Claims (10)

  1.  系統電源と接続され、複数の電源または複数の電気負荷に対する配電網が形成された電力供給システムであって、
     前記複数の電源または前記複数の電気負荷は、第1装置または第2装置を含み、
     前記系統電源と接続される主電路と、
     前記主電路に対して並列に接続され、電力を変換する第1変換装置および第2変換装置と、
     前記第1変換装置と前記第1装置とを接続する第1電路と、
     前記第2変換装置と前記第2装置とを接続する第2電路と、
     前記第1電路に配置され、導通状態と開放状態とに切り替わる第1スイッチと、
     前記第2電路に配置され、導通状態と開放状態とに切り替わる第2スイッチと、
     前記第1装置と前記第1スイッチとの間の接続ノードと、前記第2装置と前記第2スイッチとの間の接続ノードとを接続する第1バイパス電路と、
     前記第1バイパス電路に配置され、導通状態と開放状態とに切り替わる第1バイパススイッチとを備える、電力供給システム。
    A power supply system connected to a system power supply and forming a distribution network for a plurality of power sources or a plurality of electrical loads,
    wherein said plurality of power sources or said plurality of electrical loads comprise a first device or a second device;
    a main electric circuit connected to the system power supply;
    A first conversion device and a second conversion device connected in parallel to the main electrical circuit and converting power;
    a first electrical path connecting the first conversion device and the first device;
    a second electric circuit connecting the second conversion device and the second device;
    a first switch that is arranged in the first electrical path and switches between a conductive state and an open state;
    a second switch arranged in the second electrical path and switched between a conducting state and an open state;
    a first bypass electric line connecting a connection node between the first device and the first switch and a connection node between the second device and the second switch;
    A power supply system comprising: a first bypass switch arranged in the first bypass circuit and switched between a conductive state and an open state.
  2.  前記第1変換装置で異常が発生した場合に、前記第1スイッチを導通状態から開放状態に切り替え、前記第1バイパススイッチを開放状態から導通状態に切り替える制御装置をさらに備える、請求項1に記載の電力供給システム。 2. The control device according to claim 1, further comprising a control device that switches said first switch from a conductive state to an open state and switches said first bypass switch from an open state to a conductive state when an abnormality occurs in said first conversion device. power supply system.
  3.  前記制御装置は、前記第2変換装置の運転を停止させた後に前記第1バイパススイッチを開放状態から導通状態に切り替え、前記第1バイパススイッチを開放状態から導通状態に切り替えた後に前記第2変換装置の運転を再開させる、請求項2に記載の電力供給システム。 The control device switches the first bypass switch from an open state to a conductive state after stopping the operation of the second conversion device, and switches the first bypass switch from the open state to the conductive state before the second conversion. 3. The power supply system of claim 2, which resumes operation of the device.
  4.  前記第1変換装置は、出力電流が閾値を超える場合、前記異常が発生したと判定し、
     前記第1変換装置は、前記第1バイパススイッチが開放状態である場合、前記閾値を第1閾値に設定し、前記第1バイパススイッチが導通状態である場合、前記閾値を前記第1閾値よりも大きい第2閾値に設定する、請求項2または請求項3に記載の電力供給システム。
    The first conversion device determines that the abnormality has occurred when the output current exceeds a threshold,
    The first conversion device sets the threshold to a first threshold when the first bypass switch is in an open state, and sets the threshold to be higher than the first threshold when the first bypass switch is in a conducting state. 4. The power supply system according to claim 2 or 3, wherein a large second threshold is set.
  5.  前記第1バイパス電路に流れる過電流を検出するセンサをさらに備える、請求項1~請求項4のいずれか1項に記載の電力供給システム。 The power supply system according to any one of claims 1 to 4, further comprising a sensor that detects overcurrent flowing through the first bypass electric circuit.
  6.  前記センサはサーマルリレーにより構成されている、請求項5に記載の電力供給システム。 The power supply system according to claim 5, wherein the sensor is configured by a thermal relay.
  7.  前記系統電源は交流系統の電源であり、
     前記主電路に配置され、前記系統電源の交流電力を直流電力に変換するAC/DC変換装置をさらに備え、
     前記第1変換装置は、前記AC/DC変換装置により変換された直流電力を前記第1装置に対応する直流電力に変換する第1DC/DC変換装置により構成され、
     前記第2変換装置は、前記AC/DC変換装置により変換された直流電力を前記第2装置に対応する直流電力に変換する第2DC/DC変換装置により構成されている、請求項1~請求項6のいずれか1項に記載の電力供給システム。
    The system power supply is an AC system power supply,
    Further comprising an AC/DC converter arranged in the main electric circuit for converting AC power of the system power supply to DC power,
    The first conversion device comprises a first DC/DC conversion device that converts the DC power converted by the AC/DC conversion device into DC power corresponding to the first device,
    The second conversion device is configured by a second DC/DC conversion device that converts the DC power converted by the AC/DC conversion device into DC power corresponding to the second device. 7. The power supply system according to any one of 6.
  8.  前記系統電源は交流系統の電源であり、
     前記主電路と前記第1変換装置との間に配置され、前記系統電源の交流電力を直流電力に変換する第1AC/DC変換装置と、
     前記主電路と前記第2変換装置との間に配置され、前記交流電力を前記直流電力に変換する第2AC/DC変換装置とをさらに備え、
     前記第1変換装置は、前記第1AC/DC変換装置により変換された直流電力を前記第1装置に対応する直流電力に変換する第1DC/DC変換装置により構成され、
     前記第2変換装置は、前記第2AC/DC変換装置により変換された直流電力を前記第2装置に対応する直流電力に変換する第2DC/DC変換装置により構成されている、請求項1~請求項6のいずれか1項に記載の電力供給システム。
    The system power supply is an AC system power supply,
    a first AC/DC converter arranged between the main electric circuit and the first converter for converting AC power of the system power supply into DC power;
    A second AC/DC converter disposed between the main electric circuit and the second converter for converting the AC power to the DC power,
    The first conversion device comprises a first DC/DC conversion device that converts the DC power converted by the first AC/DC conversion device into DC power corresponding to the first device,
    The second converter is configured by a second DC/DC converter that converts the DC power converted by the second AC/DC converter into DC power corresponding to the second device. Item 7. The power supply system according to any one of Items 6.
  9.  前記第1変換装置、前記第2変換装置、前記第1電路、前記第2電路、前記第1バイパス電路、前記第1スイッチ、前記第2スイッチ、および前記第1バイパススイッチを一群の構成としたときに、前記一群の構成を複数備える、請求項1~請求項8のいずれか1項に記載の電力供給システム。 The first conversion device, the second conversion device, the first electric line, the second electric line, the first bypass electric line, the first switch, the second switch, and the first bypass switch are configured as a group. A power supply system according to any preceding claim, sometimes comprising a plurality of said group of configurations.
  10.  前記第1装置および前記第2装置は前記複数の電源を構成し、
     前記複数の電気負荷を構成する第3装置および第4装置をさらに備え、
     前記主電路に対して並列に接続され、電力を変換する第3変換装置および第4変換装置と、
     前記第3変換装置と前記第3装置とを接続する第3電路と、
     前記第4変換装置と前記第4装置とを接続する第4電路と、
     前記第3電路に配置され、導通状態と開放状態とに切り替わる第3スイッチと、
     前記第4電路に配置され、導通状態と開放状態とに切り替わる第4スイッチと、
     前記第3装置と前記第3スイッチとの間の接続ノードと、前記第4装置と前記第4スイッチとの間の接続ノードとを接続する第2バイパス電路と、
     前記第2バイパス電路に配置され、導通状態と開放状態とに切り替わる第2バイパススイッチとをさらに備える、請求項1~請求項9のいずれか1項に記載の電力供給システム。
    the first device and the second device constitute the plurality of power sources;
    Further comprising a third device and a fourth device that configure the plurality of electrical loads,
    A third conversion device and a fourth conversion device connected in parallel to the main electrical circuit and converting power;
    a third cable connecting the third conversion device and the third device;
    a fourth cable connecting the fourth conversion device and the fourth device;
    a third switch arranged in the third electrical path and switched between a conductive state and an open state;
    a fourth switch arranged in the fourth electrical path and switched between a conducting state and an open state;
    a second bypass electric line connecting a connection node between the third device and the third switch and a connection node between the fourth device and the fourth switch;
    10. The power supply system according to any one of claims 1 to 9, further comprising a second bypass switch that is arranged in the second bypass line and switches between a conducting state and an open state.
PCT/JP2021/017859 2021-05-11 2021-05-11 Power supply system WO2022239103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/017859 WO2022239103A1 (en) 2021-05-11 2021-05-11 Power supply system
JP2023520621A JP7499958B2 (en) 2021-05-11 2021-05-11 Power Supply System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017859 WO2022239103A1 (en) 2021-05-11 2021-05-11 Power supply system

Publications (1)

Publication Number Publication Date
WO2022239103A1 true WO2022239103A1 (en) 2022-11-17

Family

ID=84028531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017859 WO2022239103A1 (en) 2021-05-11 2021-05-11 Power supply system

Country Status (2)

Country Link
JP (1) JP7499958B2 (en)
WO (1) WO2022239103A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036550A (en) * 2012-08-10 2014-02-24 Sharp Corp Power conditioner and power supply system
JP2015119526A (en) * 2013-12-17 2015-06-25 Dxアンテナ株式会社 Power supply device
US20200059111A1 (en) * 2018-08-20 2020-02-20 Delta Electronics,Inc. Direct current power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036550A (en) * 2012-08-10 2014-02-24 Sharp Corp Power conditioner and power supply system
JP2015119526A (en) * 2013-12-17 2015-06-25 Dxアンテナ株式会社 Power supply device
US20200059111A1 (en) * 2018-08-20 2020-02-20 Delta Electronics,Inc. Direct current power supply system

Also Published As

Publication number Publication date
JPWO2022239103A1 (en) 2022-11-17
JP7499958B2 (en) 2024-06-14

Similar Documents

Publication Publication Date Title
JP7003706B2 (en) Power system
US9935494B2 (en) Elevator power supply for inverter controller
JP5401235B2 (en) Uninterruptible power supply system
JP2001075880A (en) Device for electronically monitoring supply currents of module connected with bus
JPWO2019003332A1 (en) Uninterruptible power supply system
JP4732403B2 (en) Storage battery system control method and control circuit
US20210328454A1 (en) Power supply device and power supply system
JP5813426B2 (en) Individual bypass type parallel uninterruptible power supply system
WO2022239103A1 (en) Power supply system
JP2012175885A (en) Electric power unit
JP4527064B2 (en) Uninterruptible power supply system
JPWO2020230264A1 (en) Independent operation control system
US11283286B2 (en) Uninterruptible power supply
KR101549583B1 (en) Ring reactor device for load power duplexing
US11476702B2 (en) Method for controlling power supply system
US11469611B2 (en) Power supply system
KR102518223B1 (en) System for supplying power
US11990791B2 (en) Power supply device and power supply system
JP2011160639A (en) Instantaneous voltage drop countermeasure apparatus
KR20200110725A (en) Module for supplying power and system for supplying power
US20220052550A1 (en) Power supply device and power supply system
JPH10304598A (en) Power source switching equipment
JP2017041919A (en) Power conversion system
KR102351794B1 (en) System for supplying power
KR20180099277A (en) Uninterruptible power supply system including energy storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941837

Country of ref document: EP

Kind code of ref document: A1