Nothing Special   »   [go: up one dir, main page]

WO2022230485A1 - 経肺又は経鼻投与用ワクチン組成物 - Google Patents

経肺又は経鼻投与用ワクチン組成物 Download PDF

Info

Publication number
WO2022230485A1
WO2022230485A1 PCT/JP2022/014205 JP2022014205W WO2022230485A1 WO 2022230485 A1 WO2022230485 A1 WO 2022230485A1 JP 2022014205 W JP2022014205 W JP 2022014205W WO 2022230485 A1 WO2022230485 A1 WO 2022230485A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
mrna
pulmonary
vaccine composition
nasal administration
Prior art date
Application number
PCT/JP2022/014205
Other languages
English (en)
French (fr)
Inventor
均 佐々木
友亮 ▲黒▼▲崎▼
幸修 兒玉
謙二 平山
公一 森田
修作 水上
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Priority to JP2023517165A priority Critical patent/JPWO2022230485A1/ja
Publication of WO2022230485A1 publication Critical patent/WO2022230485A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/165Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs

Definitions

  • the present invention relates to vaccine compositions for pulmonary or nasal administration.
  • This application claims priority based on Japanese Patent Application No. 2021-074100 filed in Japan on April 26, 2021, the content of which is incorporated herein.
  • Novel coronavirus infection (COVID-19; Coronavirus disease 2019) is caused by severe acute respiratory syndrome (Severe acute respiratory syndrome) coronavirus 2 (SARS-CoV-2) (hereinafter referred to as "SARS coronavirus-2") It is an infection caused by Several types of mRNA vaccines have been developed so far against the spread of novel coronavirus infections.
  • SARS coronavirus-2 severe acute respiratory syndrome coronavirus 2
  • An advantage of mRNA vaccines is that antigens are expressed immediately after being taken up into cells. Moreover, since it is not inserted into host DNA, it is also excellent in safety.
  • a drug-delivery complex containing a complex of a drug and a cationic molecule and an anionic molecule encapsulating it, and having a substantially uncharged or negative surface charge.
  • the anionic molecule is ⁇ -polyglutamic acid or a salt thereof, a drug delivery complex (see, for example, Patent Document 1, etc.), or a complex consisting of a nucleic acid and dendrigraft poly-L-lysine is ⁇ -
  • a drug carrier for pulmonary delivery that is coated with polyglutamic acid, has a negative surface charge, and has a diameter of 50 nm to 250 nm (see, for example, Patent Document 2, etc.). These drug carriers have been shown to be less toxic to the body and capable of selectively delivering drugs to cells at the target site.
  • the currently developed mRNA vaccine is a formulation optimized for intramuscular administration, and although it can induce IgG antibodies in the blood and systemic cell-mediated immunity, it can induce infection and viral proliferation in local lungs. Inducing immunity is difficult. For this reason, the mRNA vaccines currently in use have been shown to be effective in preventing the onset and severity of COVID-19, but post-vaccination infections have also been confirmed. still have doubts.
  • the present invention has been made in view of the above circumstances, and provides a novel vaccine composition for pulmonary or nasal administration that can effectively induce immunity in the lungs or the whole body.
  • a vaccine composition for pulmonary or nasal administration comprising a nucleic acid-containing carrier in which a complex comprising a nucleic acid encoding an antigen protein and a cationic molecule is coated with ⁇ -polyglutamic acid or a salt thereof.
  • Vaccine composition for administration comprising a nucleic acid-containing carrier in which a complex comprising a nucleic acid encoding an antigen protein and a cationic molecule is coated with ⁇ -polyglutamic acid or a salt thereof.
  • Composition. (5) The vaccine composition for pulmonary or nasal administration according to any one of (1) to (4), wherein the nucleic acid is mRNA.
  • nucleic acid is mRNA encoding the spike protein of SARS coronavirus-2.
  • nucleic acid comprises an mRNA encoding the receptor-binding domain of the SARS coronavirus-2 spike protein consisting of the amino acid sequence represented by SEQ ID NO: 1; A vaccine composition for pulmonary or nasal administration as described.
  • nucleic acid is operably linked to the 5' end or 3' end of a secretory signal sequence. Composition.
  • the vaccine composition for pulmonary or nasal administration of the above aspect it is possible to provide a novel vaccine composition for pulmonary or nasal administration that can effectively induce immunity in the lungs or the whole body.
  • FIG. 1 is a schematic diagram showing an example of an antigen carrier contained in a vaccine composition for pulmonary or nasal administration of the present embodiment.
  • FIG. 2 is a graph showing luciferase activity in lung tissue of mice to which each complex in Reference Example 1 was pulmonally administered.
  • 1 is a graph showing luciferase activity in lung tissue of mice to which each nucleic acid-containing carrier in Reference Example 1 was pulmonally administered.
  • 2 is an image showing the fluorescence of rhodamine and the luminescence of luciferin oxidized by luciferase in each organ of mice to which a nucleic acid-containing carrier and rhodamine-labeled phospholipid in Reference Example 1 were pulmonally administered.
  • FIG. 1 is a graph showing luciferase activity in each organ of mice to which a nucleic acid-containing carrier in Reference Example 1 was pulmonally administered.
  • 2 is a graph showing luciferase activity in the lung tissue of mice to which the nucleic acid-containing carrier in Reference Example 1 was pulmonally administered at each dosage.
  • 2 is a graph showing changes over time in luciferase activity in lung tissue of mice to which a nucleic acid-containing carrier in Reference Example 1 was pulmonally administered.
  • FIG. 1 is a diagram showing the structure of each mRNA in Example 1.
  • FIG. 1 is a diagram showing the results of measuring the expression levels of antigen proteins in the lysate and culture supernatant of HepG2 cells transfected with mRNA encoding each antigen protein in Example 1 by Western blotting.
  • FIG. 1 is a diagram showing the results of measuring the expression levels of antigen proteins in the lysate and culture supernatant of HepG2 cells transfected with mRNA encoding each antigen protein in Example 1 by Western blotting.
  • 1 is a graph showing the results of evaluating the inducibility of cell-mediated immunity in the lung and spleen of mice to which each nucleic acid-containing carrier in Example 1 was pulmonally administered.
  • 1 is a graph showing the results of evaluating the induction of humoral immunity with serum and bronchoalveolar lavage fluid of mice to which each nucleic acid-containing carrier in Example 1 was pulmonally administered.
  • 1 is a graph showing the results of evaluating the inducibility of cell-mediated immunity in the lung and spleen of mice to which each nucleic acid-containing carrier in Example 1 was pulmonally administered.
  • Example 1 is a graph showing the results of evaluating the induction of humoral immunity with serum and bronchoalveolar lavage fluid of mice to which each nucleic acid-containing carrier in Example 1 was pulmonally administered.
  • 2 is a graph showing the results of evaluating the induction of humoral immunity with serum and bronchoalveolar lavage fluid of mice to which a nucleic acid-containing carrier and various adjuvants in Example 2 were pulmonally administered.
  • 2 is a graph showing the results of evaluating the induction of humoral immunity with serum and bronchoalveolar lavage fluid of mice to which each nucleic acid-containing carrier in Example 4 was pulmonally administered.
  • FIG. 10 is a graph showing the results of evaluation of serum-induced humoral immunity induction and splenic cell-mediated immunity induction of mice to which each nucleic acid-containing carrier was pulmonally administered in Example 6.
  • FIG. Fig. 10 is a graph showing the results of evaluating the inducibility of cell-mediated immunity in the lungs and spleens of mice to which each nucleic acid-containing carrier in Example 7 was administered through the lungs or through the nose.
  • a vaccine composition for pulmonary or nasal administration according to one embodiment of the present invention (hereinafter referred to as "vaccine composition for pulmonary or nasal administration of this embodiment") comprises a nucleic acid encoding an antigen protein and a cation.
  • a complex consisting of a sexual molecule contains a nucleic acid-containing carrier coated with ⁇ -polyglutamic acid or a salt thereof.
  • the vaccine composition for transpulmonary or nasal administration of the present embodiment can effectively induce immunity in the lungs or the whole body by having the above configuration.
  • Immunity here includes cell-mediated immunity and humoral immunity. Both cell-mediated immunity and humoral immunity can be effectively induced.
  • the nucleic acid is encapsulated in a nucleic acid-containing carrier and can maintain a stable structure. Therefore, conventional RNA vaccines are basically stored frozen at ⁇ 80° C., and it is recommended that they be used within a short period of time, such as within 6 hours after thawing. Vaccine compositions can be stored more stably even when the nucleic acid is easily degraded by RNA or the like.
  • Cell-mediated immunity refers to an immune mechanism that uses cells as the main effectors in eliminating foreign substances such as pathogens themselves, virus-infected cells, and cancer cells. It is an elimination mechanism by immunocompetent cells such as macrophages, cytotoxic T cells (CTL, killer T cells), and natural killer cells (NK cells).
  • humoral immunity refers to an immune system centered on B cells and antibodies. Cytokines produced by helper T cells (Th2 cells) stimulate B cells to differentiate into plasma cells and produce large amounts of antibodies, which circulate in body fluids and spread throughout the body. . In addition, some of the stimulated B cells become memory B cells that store antigen information, and when reinfected, they react more quickly than the initial response and have higher affinity for the antigen. Antibodies can be produced in large amounts.
  • FIG. 1 is a schematic diagram showing an example of a nucleic acid-containing carrier 10.
  • FIG. A nucleic acid-containing carrier 10 is obtained by coating a complex 3 composed of a nucleic acid 1 encoding an antigen protein and a cationic molecule 2 with ⁇ -polyglutamic acid or a salt 4 thereof.
  • the size of the nucleic acid-containing carrier 10 is nanoscale.
  • the average particle diameter of the nucleic acid-containing carrier 10 can be 1 nm or more and 1000 nm or less, preferably 10 nm or more and 500 nm or less, and 30 nm. It is more preferably 300 nm or less, and further preferably 50 nm or more and 150 nm or less.
  • the average particle size can be calculated from the scattering intensity distribution obtained using, for example, a dynamic light scattering measurement device.
  • the charge ratio of the nucleic acid 1, the cationic molecule 2, and ⁇ -polyglutamic acid or its salt 4 is preferably 1:2 or more and 8 or less: 4 or more and 16 or less, more preferably 1:2 or more and 6 or less: 6 or more and 10 or less, and further preferably 1:4:8. preferable.
  • the charge ratio is within the above numerical range, it is possible to further suppress the formation of fine particles composed of surplus lipids and macromolecules that do not contain nucleic acids.
  • the nucleic acid-containing carrier 10 has a neutral to negative surface charge.
  • a nucleic acid encodes an antigen protein.
  • nucleic acid is not particularly limited, and includes, for example, DNA, RNA, chimeric nucleic acids of DNA and RNA, DNA/RNA hybrids, and the like.
  • the nucleic acid may be single-stranded or more and three-stranded or less, preferably single-stranded or double-stranded.
  • Nucleic acids may be other types of nucleotides that are N-glycosides of purine or pyrimidine bases, or other oligomers with non-nucleotide backbones (such as commercially available peptide nucleic acids (PNA)) or other oligomers containing special linkages.
  • PNA peptide nucleic acids
  • the oligomer contains nucleotides with a configuration that permits base pairing and base attachment as found in DNA and RNA.
  • those with known modifications such as those with labels known in the art, those with caps, those that are methylated, those in which one or more natural nucleotides are replaced with analogues,
  • Intramolecular nucleotide modifications such as those with uncharged linkages (e.g., methylphosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages or sulfur-containing linkages (e.g., phosphorothioates, phosphorothioates, dithioates, etc.), such as proteins (nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, etc.), sugars (e.g., monosaccharides, etc.), intercurrent compounds ( acridine, psoralen, etc.), those containing chelating compounds (e.g., metal
  • the type of DNA can be appropriately selected depending on the purpose of use, and is not particularly limited, but examples include cDNA, chromosomal DNA, and the like.
  • a form in which these cDNAs and chromosomal DNAs are introduced into plasmid DNAs may also be used.
  • Circular DNA such as plasmid DNA can be appropriately digested with a restriction enzyme or the like and used as linear DNA.
  • RNA messenger RNA
  • mRNA messenger RNA
  • double-stranded RNA genome double-stranded RNA genome
  • RNA replicon transfer RNA
  • transfer RNA transfer RNA
  • mRNA messenger RNA
  • RNA replicon transfer RNA
  • ribosomal RNA RNA is preferable.
  • the size of the nucleic acid is not particularly limited, and ranges from huge nucleic acid molecules such as chromosomes (such as artificial chromosomes) (for example, about 100 kb (p) in size) to low-molecular nucleic acids (for example, in about 5 b (p) in size). However, considering the efficiency of nucleic acid introduction into cells, it is preferably 15 kbp or less.
  • the size of macromolecular nucleic acids such as chromosomal DNA, plasmid DNA, and mRNA can be 2 kb (p) or more and 15 kb (p) or less, and can be 2 kb (p) or more and 10 kb (p) or less.
  • the size of relatively low-molecular-weight nucleic acids can be 5b(p) or more and 2000b(p) or less, preferably 10b(p) or more and 1000b(p) or less, and 15b(p) or more. It is more preferably 800b(p) or less.
  • the unit for a single-stranded nucleic acid is b (base), while the unit for a double-stranded nucleic acid is bp (base pair).
  • Nucleic acids may be either naturally occurring or synthesized nucleic acids, but if they have a size of about 100b(p) or less, they can be synthesized by a commonly used automatic nucleic acid synthesizer by the phosphotriethyl method, the phosphodiester method, or the like. can be synthesized using
  • the type of antigen protein encoded by the nucleic acid is not particularly limited. origin, etc.). Among them, it is preferably a virus antigen protein. That is, the nucleic acid is preferably mRNA encoding a viral antigen protein.
  • the type of virus is not particularly limited, but includes, for example, SARS coronavirus-2, MERS coronavirus, influenza virus, cytomegalovirus, and the like.
  • SARS coronavirus-2 is preferred.
  • the SARS coronavirus-2 spike protein consists of the amino acid sequence represented by SEQ ID NO: 3, and the nucleic acid is mRNA encoding the SARS coronavirus-2 spike protein.
  • the mRNA encoding the SARS coronavirus-2 spike protein consists of the base sequence represented by SEQ ID NO:4.
  • the SARS coronavirus-2 spike protein may be a full-length protein or a partial protein, but preferably comprises at least the receptor-binding domain of the SARS coronavirus-2 spike protein.
  • the receptor binding domain of the SARS coronavirus-2 spike protein consists of the amino acid sequence represented by SEQ ID NO:1. More preferably, the nucleic acid comprises an mRNA encoding the receptor-binding domain of the SARS coronavirus-2 spike protein consisting of the amino acid sequence represented by SEQ ID NO:1. The mRNA encoding the receptor-binding domain of the spike protein of SARS coronavirus-2 consists of the base sequence represented by SEQ ID NO:2.
  • the nucleic acid is operably linked to the 5' end of a secretory signal sequence.
  • a secretory signal sequence means a nucleic acid expression control sequence (e.g., promoter, a series of transcription factor binding sites, a specific modification structure, etc.) and a nucleic acid to be expressed (in this embodiment, an antigen nucleic acid encoding a protein).
  • a secretory signal sequence means an amino acid sequence that encodes a secretory signal peptide, and is not particularly limited as long as it can function in a subject animal in which the nucleic acid is expressed.
  • Secretory signals include, for example, a signal peptide (amino acid sequence: SEQ ID NO: 17, mRNA base sequence: SEQ ID NO: 18) derived from secretory luciferase (Lucia (registered trademark)), a signal peptide derived from IL-6 (amino acid Sequence: SEQ ID NO: 21, mRNA base sequence: SEQ ID NO: 22), and the like.
  • the secretory signal sequence is preferably a sequence encoding a signal peptide derived from a secretory luciferase (Lucia (registered trademark)).
  • a polyadenylation signal required for polyadenylation of the 3' end of mRNA may be operably linked downstream (3' side) thereof.
  • polyadenylation signals include polyadenylation signals contained in the above-mentioned virus-derived, various human or non-human animal-derived genes, e.g., SV40 late gene or early gene, rabbit ⁇ -globin gene, bovine growth hormone gene, human A3. Examples include polyadenylation signals of adenosine receptor genes and the like.
  • the nucleic acid is DNA
  • nucleic acid is RNA
  • a cap structure may be operably linked upstream (5' side) or a polyadenine (poly A) chain downstream (3' side).
  • the nucleic acid can further contain an untranslated region within a range that does not impede the effects of the vaccine composition for pulmonary or nasal administration of the present embodiment.
  • the cationic molecule may be one that can form a complex by electrostatic interaction with nucleic acids, and examples thereof include cationic polymers and cationic lipids.
  • cationic polymers examples include polyethyleneimine (hereinafter sometimes abbreviated as "PEI”); polycationic polysaccharides such as chitin and chitosan; polycationic polypeptides such as polylysine, polyarginine, polyornithine, and protamine. etc., but not limited to these.
  • PEI polyethyleneimine
  • polycationic polysaccharides such as chitin and chitosan
  • polycationic polypeptides such as polylysine, polyarginine, polyornithine, and protamine. etc., but not limited to these.
  • cationic lipids include phosphatidylcholines such as soybean phosphatidylcholine, egg yolk phosphatidylcholine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine; phosphatidylethanolamines such as distearoylphosphatidylethanolamine; , sphingomyelin, egg yolk lecithin, soybean lecithin, hydrogenated phospholipids; A quaternary ammonium group such as an amino group, an alkylamino group, a dialkylamino group, a trialkylammonium group, a monoacyloxyalkyl-dialkylammonium group, or a diacyloxyalkyl-monoalkylammonium group is introduced into a glycosphingolipid such as a ganglioside.
  • phosphatidylcholines such as soybean phosphatidylcholine, egg yolk phosphatidylcholine, di
  • lipids N-(2,3-dioleyloxy)propyl-N,N,N-trimethylammonium (DOTMA), didodecyldimethylammonium bromide (DDAB), 1,2-dioleoyloxy-3-trimethylammonium Propane (DOTAP), 1,2-distearoyl-3-trimethylammoniumpropane (DSTAP), dioleoyl-3-dimethylammonium propane (DODAP), dioctadecyl-dimethylammonium chloride (DODAC), 1,2-dimyristoyloxypropyl -3-dimethylhydroxyethylammonium (DMRIE), 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanamium trifluoroacetate (DOSPA), 3 ⁇ -N-(N',N'-dimethyl-aminoethane-carbamoy
  • cationic lipids are preferred, and 1,2-dioleoyloxy-3-trimethylammonium propane (DOTAP) is more preferred.
  • DOTAP 1,2-dioleoyloxy-3-trimethylammonium propane
  • cationic molecules may be prepared by known methods or may be commercially available products.
  • ⁇ -polyglutamic acid or its salt examples include ⁇ -polyglutamic acid and alkali metal atoms such as sodium, potassium and lithium; , tertiary amines such as ethanolamine; and salts with quaternary amines such as tetramethylamine and tetraethylamine.
  • the weight average molecular weight of ⁇ -polyglutamic acid or a salt thereof can be 500 or more and 100,000 or less, preferably 1,000 or more and 50,000 or less, and 1,500 or more and 8,000 or less. is more preferable, and more preferably 2,000 or more and 3,000 or less.
  • a weight average molecular weight can be measured by a gel permeation chromatography (GPC), for example.
  • ⁇ -polyglutamic acid or a salt thereof may be prepared by a known method, or a commercially available product may be used.
  • the vaccine composition for pulmonary or nasal administration of the present embodiment preferably further contains an adjuvant in addition to the nucleic acid-containing carrier.
  • immunity particularly humoral immunity
  • the adjuvant is not particularly limited as long as it is commonly used in vaccines, and examples thereof include ligands for innate immune receptors and cyclic dinucleotides such as cyclic diguanylate monophosphate (c-di-GMP).
  • ligand means a substance that specifically binds to a receptor, and in particular, substances that specifically bind to a receptor and exhibit various physiological actions can be used. Such substances are also called "agonists".
  • TLR toll-like receptors
  • RIG-I-like receptors RIG-I-like receptors
  • NOD-like receptors NLR
  • CLR C-type lectin receptor
  • TLR ligands include, for example, at least one TLR selected from the group consisting of TLR-2, TLR-3, TLR-4, TLR-5, TLR-6, TLR-7, TLR-8 and TLR-9 Anything that interacts with can be selected as appropriate.
  • TLR-2 ligands include Pam3CSK4 and the like.
  • TLR-3 ligands include poly ICLC, polyinosine:polycytidylic acid (poly I:C), and the like.
  • TLR-4 ligands include R-type lipopolysaccharide, S-type lipopolysaccharide, paclitaxel, lipid A, monophosphoryl lipid A and the like.
  • TLR-5 ligands include flagellin and the like.
  • TLR-2 and TLR-6 ligands include MALP-2 and the like.
  • TLR-7 and TLR-8 ligands include, for example, resiquimod (R848), imiquimod (R837), gardiquimod, loxoribine, and the like.
  • TLR-9 ligands include CpG oligodeoxynucleotides and the like.
  • CpG oligodeoxynucleotides include A-class TLR-9 ligand D35, B-class TLR-9 ligand K3, and the like. Among them, CpG oligodeoxynucleotides are preferred as adjuvants.
  • the vaccine composition for pulmonary or nasal administration of the present embodiment can be administered alone, or can be administered together with a pharmacologically acceptable carrier by conventional means for pulmonary or nasal administration. It can be used as a pharmaceutical composition.
  • a pharmaceutical composition for pulmonary or nasal administration for example, the above nucleic acid-containing carrier and water or other physiologically acceptable liquids (e.g., physiological saline, phosphate-buffered saline ( PBS), etc., and may also contain physiologically acceptable excipients, vehicles, preservatives, stabilizers, binders, lyophilization aids, and the like.
  • the vaccine composition for pulmonary or nasal administration of the present embodiment can be prepared by preparing the above nucleic acid-containing carrier and then mixing it with an adjuvant or a pharmacologically acceptable carrier, if necessary.
  • nucleic acid-containing carrier For the nucleic acid-containing carrier, first, a nucleic acid and a cationic molecule are mixed to form a complex (first step), and then the complex is mixed with ⁇ -polyglutamic acid or a salt thereof to form a complex. It is obtained by coating with ⁇ -polyglutamic acid (second step).
  • the charge ratio between the nucleic acid and the cationic molecule is preferably 1:2 to 1:8, more preferably is 1: 2 to 1: 6, more preferably 1: 4, and incubated at 15 ° C. or higher and 25 ° C. or lower for 30 seconds or more and 300 minutes or less, preferably 10 minutes or more and 180 minutes or less. Assembled to create a composite.
  • the concentration of the nucleic acid in the mixture can be appropriately set in consideration of the application, size (molecular weight), etc., and can be, for example, 0.01 ng/ ⁇ L or more and 1000 ng/ ⁇ L or less.
  • the complex prepared in the first step and ⁇ -polyglutamic acid are combined with the nucleic acid, the cationic molecule, and the charge ratio of ⁇ -polyglutamic acid (the phosphate group of the nucleic acid, the cationic group of the cationic molecule (for example, , amino groups) and ⁇ -polyglutamic acid carboxy groups) is preferably 1:2 or more and 8 or less: 4 or more and 16 or less, more preferably 1:2 or more and 6 or less: 6 or more and 10 or less, still more preferably is mixed at a ratio of 1:4:8 and incubated at 15 ° C. or higher and 25 ° C.
  • nucleic acid-containing carrier having a negative surface charge can be obtained.
  • the adjuvant is a nucleic acid
  • the nucleic acid in the first step, may be mixed with the cationic molecule and encapsulated in the nucleic acid-containing carrier.
  • the adjuvant may be appropriately mixed with the produced nucleic acid-containing carrier to obtain the vaccine composition for pulmonary or nasal administration of the present embodiment.
  • Subjects to whom the vaccine composition for pulmonary or nasal administration of the present embodiment is administered are animals classified as mammals including humans (monkeys, marmosets, mice, rats, cows, horses, cats, dogs, pigs, sheep, goats, rabbits, etc.).
  • the dose of the vaccine composition for pulmonary or nasal administration of the present embodiment can be appropriately selected in consideration of the type of administration subject (including age, sex, etc.), the type of nucleic acid, etc., but generally For example, in humans (with a body weight of 60 kg), the nucleic acid amount can be about 0.1 ⁇ g or more and 3000 mg or less per administration.
  • transpulmonary or nasal administration of the vaccine composition for transpulmonary or nasal administration of the present embodiment is not particularly limited. Examples include direct administration of the vaccine composition for pulmonary administration of the present embodiment, inhalation using an aerosol, dry powder, or nebulizer, and administration using a humidifier. Examples of nasal administration include methods such as direct dripping of the vaccine composition for nasal administration of the present embodiment, aerosol, dry powder, and intranasal spraying using a nebulizer. In particular, these forms do not require injections and can play an important role in unmedicated villages and developing countries.
  • the frequency of administration may be a single administration of the above doses, and the above doses are given once every 1 week, 2 weeks, 3 weeks, 4 weeks, 1 month, 2 months, 3 months, or every six months. It may be administered multiple times, such as two times or more.
  • Diseases to which the vaccine composition for pulmonary or nasal administration of the present embodiment is applied include, for example, influenza virus, respiratory syncytial virus, adenovirus, human metapneumovirus, cytomegalovirus, MERS coronavirus, and SARS coronavirus-2.
  • Viral pneumonia caused by known viruses such as measles virus, varicella virus, etc., or viruses of emerging infectious diseases that will occur in the future; Examples include infectious respiratory diseases.
  • the vaccine composition for pulmonary or nasal administration of the present embodiment can effectively prevent the infectious respiratory diseases described above. That is, in one embodiment, the present invention provides a method for preventing infectious respiratory diseases, comprising pulmonary or nasal administration of the vaccine composition for pulmonary or nasal administration to a subject animal.
  • mRNA containing mRNA encoding luciferase (SEQ ID NO: 5) was obtained from Trilink.
  • cationic molecules include polyethyleneimine (PEI) (manufactured by Sigma-Aldrich), dendrigraft poly-L-lysine (DGL) (manufactured by COLCOM, trade name “dendrigraft poly-L-lysine (G5)”, and 1 , 2-dioleoyl-3-trimethylammonium propane (DOTAP) (manufactured by NOF CORPORATION) was used.
  • DOTAP 2-dioleoyl-3-trimethylammonium propane
  • ⁇ -PGA weight average molecular weight 2,500, 5,000, and 7,500
  • luciferase activity was particularly high in complexes using DOTAP as the cationic molecule. Therefore, it was decided to use DOTAP as the cationic molecule in subsequent tests.
  • nucleic acid-containing carrier 1 a complex consisting of mRNA encoding luciferase and DOTAP was charged with the charge ratio of the mRNA, DOTAP and ⁇ -PGA (the molar ratio of the phosphate group of mRNA, the amino group of the cationic molecule and the carboxyl group of ⁇ -PGA ⁇ -PGA with a weight average molecular weight of 2,500, 5,000, or 7,500 is mixed so that the ratio) is 1:4:8, and left to stand at room temperature (about 25° C.) for 15 minutes. , constructed a nucleic acid-containing carrier in which a complex consisting of mRNA encoding luciferase and DOTAP was coated with ⁇ -PGA.
  • these nucleic acid-containing carriers were pulmonally administered to mice (5 weeks old) so that the mRNA amount was 10 ⁇ g/mouse (the solution amount was 50 ⁇ L/mouse).
  • the lungs were excised, homogenized in a buffer for cell disruption, the homogenate was centrifuged, and the supernatant was collected.
  • a substrate Picagene luminescence kit, manufactured by Toyo Benet Co., Ltd.
  • RLU luminescence units
  • luciferase activity was particularly high in nucleic acid-containing carriers using ⁇ -PGA with a weight average molecular weight of 2,500. Therefore, ⁇ -PGA with a weight average molecular weight of 2,500 was used in subsequent tests.
  • a complex composed of mRNA encoding luciferase and DOTAP was obtained by adding a small amount of rhodamine-labeled phospholipid to a nucleic acid-containing carrier coated with ⁇ -PGA having a weight average molecular weight of 2,500, and the amount of mRNA was It was pulmonary administered to mice (5 weeks old) at a concentration of 10 ⁇ g/mouse (50 ⁇ L/mouse as solution volume). Six hours after administration, various organs were excised from the mice, and fluorescence in the excised liver, kidney, spleen, heart, and lung was measured using an in vivo imaging device (IVIS Lumina II; manufactured by Caliper Life Sciences Inc.). The results are shown in FIG.
  • a complex consisting of mRNA encoding luciferase and DOTAP was coated with ⁇ -PGA having a weight average molecular weight of 2,500, and the amount of mRNA was 10 ⁇ g/mouse (the solution amount was 10 ⁇ g/mouse).
  • 50 ⁇ L/mouse was pulmonary administered to mice (5 weeks old).
  • the substrate luciferin was administered intraperitoneally to 12 mg/mouse, various organs were excised from the mice, and the excised liver, kidney, spleen, heart, and lung were examined for luciferase expression levels. It was measured using a vivo imaging device (IVIS Lumina II; manufactured by Caliper Life Sciences Inc.). The results are shown in FIG. 4 (right side).
  • a complex consisting of mRNA encoding luciferase and DOTAP was coated with ⁇ -PGA having a weight average molecular weight of 2,500, and the amount of mRNA was 10 ⁇ g/mouse (the solution amount was 10 ⁇ g/mouse). 50 ⁇ L/mouse) was pulmonary administered to mice (5 weeks old). Six hours after administration, the liver, kidney, spleen, heart and lung were excised, each homogenized in a cell disruption buffer, the homogenate was centrifuged, and the supernatant was collected.
  • a substrate (Picagene luminescence kit, manufactured by Toyo Benet Co., Ltd.) was added, and luciferase activity in the supernatant was measured as luminescence units (RLU) using a luminometer (Lumat LB 9507; manufactured by Berthold). The results are shown in FIG.
  • luciferase activity was below the detection limit in organs other than the lung.
  • luciferase activity tended to improve as the amount of mRNA increased. Based on this result, the dose of mRNA was set at 10 ⁇ g/mouse (50 ⁇ L/mouse as solution volume) in subsequent tests.
  • a complex consisting of mRNA encoding luciferase and DOTAP is coated with ⁇ -PGA having a weight average molecular weight of 2,500. It was pulmonary administered to mice (5 weeks old) at a concentration of 10 ⁇ g/mouse (50 ⁇ L/mouse as solution volume). 6, 24, 48, or 72 hours after administration, lungs were excised, homogenized in buffer for cell disruption, the homogenate was centrifuged, and the supernatant was collected.
  • a substrate (Picagene luminescence kit, manufactured by Toyo Benet Co., Ltd.) was added, and the luciferase activity in the supernatant was measured as luminescence units (RLU) using a luminometer. The results are shown in FIG.
  • a complex consisting of mRNA encoding OVA and DOTAP was added to the charge ratio of mRNA, DOTAP and ⁇ -PGA (the molar ratio of the phosphate group of mRNA, the amino group of the cationic molecule and the carboxyl group of ⁇ -PGA ⁇ -PGA (weight average molecular weight: 2,500) was mixed so that the ratio) was 1:4:8 and allowed to stand at room temperature (about 25°C) for 15 minutes to mix OVA-encoding mRNA and DOTAP.
  • a nucleic acid-containing carrier coated with ⁇ -PGA was constructed.
  • mice were fed to mice (5 weeks old) at 2-week intervals for a total of 4 times so that the amount of mRNA was 10 ⁇ g/mouse (the amount of solution was 50 ⁇ L/mouse). It was administered pulmonary.
  • mice were administered with a nucleic acid-containing carrier in which only mRNA encoding OVA and a complex consisting of mRNA encoding luciferase and DOTAP were coated with ⁇ -PGA having a weight average molecular weight of 2,500. Groups were also prepared. Serum and bronchoalveolar lavage fluid were collected from mice two weeks after the last dose.
  • OVA-specific IgG and IgA antibodies in serum and bronchoalveolar lavage fluid were measured by ELISA. Specifically, OVA was added to the immunoplate, incubated for a certain period of time, and then blocked. Mouse serum was added to this plate, incubated for a certain period of time, and then washed with PBS containing a surfactant. After that, HRP-modified anti-mouse IgG or IgA antibody was added and incubated for a certain period of time. After washing, HRP substrate was added and the amount of each antibody was measured. The results are shown in FIG.
  • the production of antibodies specific to OVA was not observed in either the mRNA encoding OVA alone or the nucleic acid-containing carrier (carrier containing luciferase-encoding mRNA) containing no OVA-encoding mRNA. I didn't.
  • carriers containing OVA-encoding mRNA increased not only IgG in serum but also IgG and IgA antibodies in bronchoalveolar lavage fluid. That is, it was revealed that both pulmonary and systemic cell-mediated immunity and humoral immunity can be induced by using the vaccine composition for transpulmonary or nasal administration of the present embodiment.
  • Example 1 (Immune Induction Confirmation Test Using mRNA-Containing Carrier Encoding Viral Antigen Protein)
  • SARS coronavirus-2 spike protein As a virus antigen protein, the immunity-inducing effect of the nucleic acid-containing carrier was examined.
  • the amino acid sequence of the spike protein of SARS coronavirus-2 is shown in SEQ ID NO:3, and the nucleotide sequence of mRNA encoding the spike protein of SARS coronavirus-2 is shown in SEQ ID NO:4.
  • Synthetic mRNA containing the mRNA encoding the spike protein of SARS coronavirus-2 (SEQ ID NO: 4) was obtained from Trilink.
  • S1 protein and RBD-DTE showed low protein expression levels, whereas RBD and IgE-RBD showed distinct protein bands. Furthermore, in secretory Luc-RBD, expression of a large amount of antigenic proteins was observed, and antigenic proteins secreted in the culture supernatant were also detected. From the above, it was confirmed that the antigen protein of SARS coronavirus-2 was synthesized from the designed mRNA.
  • the charge ratio of mRNA, DOTAP and ⁇ -PGA (the molar ratio of the phosphate group of mRNA, the amino group of the cationic molecule and the carboxyl group of ⁇ -PGA) is ⁇ -PGA (weight average molecular weight: 2,500) was mixed at a ratio of 1:4:8 and allowed to stand at room temperature (about 25°C) for 15 minutes to form a complex consisting of each mRNA and DOTAP.
  • a nucleic acid-containing carrier coated with ⁇ -PGA was constructed.
  • each of the nucleic acid-containing carriers obtained (S1 mRNA-containing carrier, RBD mRNA-containing carrier, IgE-RBD mRNA-containing carrier, and RBD-DTE mRNA-containing carrier) was added to an amount of mRNA of 10 ⁇ g/mouse (solution amount of 50 ⁇ L/mouse) was administered to mice (5 weeks old) by pulmonary administration a total of 4 times at 2-week intervals. Spleens and lungs were harvested from mice two weeks after the final dose.
  • Lung cells and splenocytes were isolated from harvested lungs and spleens, respectively, and cultured in media containing fragment peptides of SARS coronavirus-2 spike protein. INF- ⁇ secreted into the culture supernatant was measured as an index of cell-mediated immunity. The results are shown in FIG.
  • the administration of the nucleic acid-containing carrier partially activated cell-mediated immunity in the lungs and the whole body.
  • IgG antibodies specific for the SARS coronavirus-2 spike protein in serum and bronchoalveolar lavage fluid were measured by ELISA. Specifically, the SARS coronavirus-2 spike protein was added to the immunoplate, incubated for a certain period of time, and then blocked. Mouse serum was added to this plate, incubated for a certain period of time, and then washed with PBS containing a surfactant. After that, HRP-modified anti-mouse IgG antibody was added and incubated for a certain period of time. After washing, HRP substrate was added and the amount of antibody was measured. The results are shown in FIG.
  • nucleic acid-containing carrier did not increase IgG antibodies in serum and bronchoalveolar lavage fluid.
  • each of the obtained nucleic acid-containing carriers (RBD mRNA-containing carrier, RBD-DTE mRNA-containing carrier, and secretory Luc-RBD mRNA-containing carrier) was added to an amount of mRNA of 10 ⁇ g/mouse (50 ⁇ L/mouse as a solution amount). It was pulmonary administered to mice (5-week-old) for a total of 4 times at 2-week intervals (1 mouse). Spleens and lungs were harvested from mice two weeks after the final dose.
  • Lung cells and splenocytes were isolated from harvested lungs and spleens, respectively, and cultured in media containing fragment peptides of SARS coronavirus-2 spike protein. INF- ⁇ secreted into the culture supernatant was measured as an index of cell-mediated immunity. The results are shown in FIG.
  • the administration of the secretory Luc-RBD mRNA-containing carrier markedly increased local and systemic cell-mediated immunity in the lung.
  • administration of the secretory Luc-RBD mRNA-containing carrier increased 1gG antibody in only one case.
  • Example 2 Human immunity induction confirmation test 1 using a carrier containing mRNA encoding a virus antigen protein and an adjuvant
  • the secretory Luc-RBD mRNA-containing carrier prepared in Example 1 was combined with various adjuvants to examine the inducibility of humoral immunity.
  • the secretory Luc-RBD mRNA-containing carrier obtained in Example 1 was mixed with the amount of mRNA of 10 ⁇ g/mouse (50 ⁇ L/mouse of solution) and polyinosine:polycytidylic acid (PolyI:C ) or 10 ⁇ g each of CpG oligodeoxynucleotides were simultaneously pulmonally administered to mice (5 weeks old) for a total of 4 times at 2-week intervals. Serum and bronchoalveolar lavage fluid were collected from mice two weeks after the last dose. IgG antibodies specific for the SARS coronavirus-2 spike protein in serum and bronchoalveolar lavage fluid were measured by ELISA using the same method as in Example 1 (3) above. The results are shown in FIG.
  • the combined use of a secretory Luc-RBD mRNA-containing carrier and a CpG oligodeoxynucleotide as an adjuvant resulted in a reduction in IgG antibody production compared to administration of only a secretory Luc-RBD mRNA-containing carrier. It was found to increase more than 20 times.
  • Example 3 (Acute Toxicity Test of mRNA-Containing Carrier Encoding Viral Antigen Protein)
  • the RBD mRNA-containing carrier prepared in Example 1 was used to conduct an acute toxicity test by intratracheal administration to rats, which was commissioned to the Japan Food Research Laboratories. Carried out. Specifically, the contents of the test are as shown below.
  • test groups (3 groups) and a control group (1 group) were set.
  • Each was administered as a single intratracheal dose of .05 mg/kg.
  • a control group was similarly administered a 5 w/v % glucose solution containing Tris as a solvent control.
  • the observation periods were 1 and 14 days, and 4 males and 4 females/group were used for the 1-day observation period, and 6 males and 6 females/group were used for the 14-day observation period. General condition observation and weight measurement were performed during the test period.
  • hematological and blood biochemical tests will be performed during the 1-day observation period, and organ weight measurement, bronchoalveolar lavage fluid test, macroscopic examination of systemic organs, and pathological tissue will be performed during the 14-day observation period. A medical examination was performed.
  • the median lethal dose (LD50 value) of the nucleic acid-containing carrier was evaluated as exceeding 0.2 mg/kg as the amount of mRNA for both males and females.
  • Example 4 Human immunity induction confirmation test 2 using a carrier containing mRNA encoding a virus antigen protein and an adjuvant
  • the secretory Luc-RBD mRNA-containing carrier prepared in Example 1 was combined with an adjuvant to examine the effect of inducing immunity, and spike proteins introduced with two mutations used in commercially available mRNA vaccines. Comparison with full-length mRNA was performed.
  • SEQ ID NO: 23 shows the base sequence of the spike protein full-length mRNA with two mutations introduced. Using the full-length spike protein mRNA into which two mutations had been introduced, a carrier containing full-length spike protein mRNA into which two mutations had been introduced was produced in the same manner as in (2) of Example 1 above.
  • 1 mouse and 10 ⁇ g of CpG oligodeoxynucleotide (D35) as an adjuvant were simultaneously administered to mice (6 weeks old) via the lungs for a total of 4 times at 2-week intervals.
  • Serum and bronchoalveolar lavage fluid were collected from mice two weeks after the last dose.
  • IgG antibodies specific for the SARS coronavirus-2 spike protein in serum and bronchoalveolar lavage fluid were measured by ELISA using the same method as in Example 1 (3) above. The results are shown in FIG.
  • Example 5 (Test to confirm the effect of neutralizing antibody on suppressing virus proliferation) The effect of neutralizing antibody contained in the serum of mice inoculated with the vaccine composition for pulmonary or nasal administration of the present embodiment to suppress virus proliferation was examined.
  • the secretory Luc-RBD mRNA-containing carrier obtained in Example 1 was used alone or as an adjuvant with CpG oligodeoxynucleotide at 10 ⁇ g/mouse as the amount of mRNA (50 ⁇ L/mouse as the amount of solution).
  • D35 10 ⁇ g was simultaneously administered to mice (6 weeks old) by pulmonary administration every 2 weeks for a total of 4 times. Serum was collected from mice two weeks after the last dose.
  • ACE2 and Fc ⁇ R co-expressing cells were infected with SARS-CoV-2 in 10-fold, 40-fold, 160-fold, or 640-fold dilutions of serum and neutralizing activity was assessed by the plaque assay.
  • the results are shown in Table 1 below.
  • + means an increase in plaques
  • +/- means no change
  • - means a decrease in plaques.
  • the control is a group with serum from mice that received vehicle only.
  • Example 6 Human immunity induction confirmation test 3 using a carrier containing mRNA encoding a virus antigen protein and an adjuvant
  • the secretory Luc-RBD mRNA-containing carrier prepared in Example 1 was combined with three types of nucleic acid-based adjuvants to examine the effect of inducing immunity.
  • Three adjuvants include D35, a CpG oligodeoxynucleotide and A-class TLR-9 ligand, K3, a CpG oligodeoxynucleotide and B-class TLR-9 ligand, and cyclic diguanylate monophosphate.
  • c-di-GMP was used. It is known that D35 has a strong effect of stimulating cell-mediated immunity, and K3 has a strong effect of stimulating humoral immunity.
  • c-di-GMP is known to act on nucleic acid receptors in cells to induce immunity.
  • the secretory Luc-RBD mRNA-containing carrier obtained in Example 1 was mixed with the amount of mRNA of 10 ⁇ g/mouse (50 ⁇ L/mouse of solution) and CpG oligodeoxynucleotide (D35 or K3 ), or 10 ⁇ g each of c-di-GMP was simultaneously pulmonally administered to mice (6 weeks old) for a total of 4 times at 2-week intervals. Serum and spleens were collected from mice two weeks after the last dose. IgG antibodies specific to the spike protein of SARS coronavirus-2 in serum were measured by ELISA using the same method as in (3) of Example 1 above.
  • Splenocytes were isolated from harvested spleens and cultured in medium containing fragment peptides of SARS-CoV-2 spike protein. INF- ⁇ secreted into the culture supernatant was measured as an index of cell-mediated immunity. The results are shown in FIG.
  • Example 7 administering method and adjuvant effect confirmation test on immune induction effect
  • the effects of pulmonary or nasal administration methods and adjuvants on cell-mediated immunity induction were investigated.
  • the secretory Luc-RBD mRNA-containing carrier obtained in Example 1 was mixed with the amount of mRNA of 10 ⁇ g/mouse (50 ⁇ L/mouse of solution) and CpG oligodeoxynucleotides (D35, K3 , or a mixture thereof) was simultaneously administered to mice (6 weeks old) by pulmonary or nasal administration for a total of 4 times at 2-week intervals. Two weeks after the last dose, spleens and lungs in the case of pulmonary administration were harvested from the mice. Splenocytes and lung cells were isolated from the harvested spleen and lung, respectively, and cultured in a medium containing fragment peptides of SARS-CoV-2 spike protein. INF- ⁇ secreted into the culture supernatant was measured as an index of cell-mediated immunity. The results are shown in FIG.
  • immunity can be effectively induced in the lungs or the whole body.
  • nucleic acid-containing carrier 1... nucleic acid encoding antigen protein, 2... cationic molecule, 3... complex, 4... ⁇ -polyglutamic acid or its salt, 10... nucleic acid-containing carrier.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

経肺又は経鼻投与用ワクチン組成物は、抗原タンパク質をコードする核酸及びカチオン性分子からなる複合体が、γ-ポリグルタミン酸又はその塩で被覆されてなる核酸含有担体を含む。前記経肺又は経鼻投与用ワクチン組成物において、前記核酸、前記カチオン性分子、及び前記γ-ポリグルタミン酸又はその塩の電荷比が、1:2以上8以下:4以上16以下であってもよい。前記カチオン性分子が1,2-ジオレオイル-3-トリメチルアンモニウムプロパンであってもよい。

Description

経肺又は経鼻投与用ワクチン組成物
 本発明は、経肺又は経鼻投与用ワクチン組成物に関する。
 本願は、2021年4月26日に、日本に出願された特願2021-074100号に基づき優先権を主張し、その内容をここに援用する。
 新型コロナウイルス感染症(COVID-19;Coronavirus disease 2019)は、重症急性呼吸器症候群(Severe acute respiratory syndrome)コロナウイルス2(SARS-CoV-2)(以下、「SARSコロナウイルス-2」という)に起因する感染症である。新型コロナウイルス感染症の蔓延に対して、これまでに数種のmRNAワクチンが開発されている。mRNAワクチンは細胞内に取り込まれた後、すぐに抗原が発現するという利点がある。また、宿主のDNAに挿入されることもないため、安全性にも優れている。
 一方、発明者らは、これまでに、薬物とカチオン性分子との複合体及びそれを内包するアニオン性分子を含有し、実質的に非荷電であるか負の表面電荷を有する薬物送達複合体であって、該アニオン性分子がγ-ポリグルタミン酸、及びその塩である、薬物送達複合体(例えば、特許文献1等参照)や、核酸及びdendrigraft poly-L-lysineからなる複合体がγ-ポリグルタミン酸によって被覆されており、かつ、負の表面電荷を有し、直径が50nm~250nmである、肺送達用薬物担体(例えば、特許文献2等参照)を開発している。これらの薬物担体は、生体への障害性が少なく、且つ目標部位の細胞に選択的に薬物を送達し得ることが示されている。
 現在開発されているmRNAワクチンは筋肉内投与に最適化された製剤であり、血液中のIgG抗体や全身性の細胞性免疫を誘導することはできても、感染やウイルス増殖が起こる肺局所における免疫を誘導することは難しい。このため、現在使用されているmRNAワクチンには新型コロナウイルス感染症の発症予防や重症化予防について一定の効果は認められているが、ワクチン接種後の感染も確認されており、感染予防効果については依然疑問が残っている。
日本国特許第5382682号公報 日本国特開2020-193160号公報
 本発明は、上記事情に鑑みてなされたものであって、肺又は全身において免疫を効果的に誘導できる新規の経肺又は経鼻投与用ワクチン組成物を提供する。
 すなわち、本発明は、以下の態様を含む。
(1) 抗原タンパク質をコードする核酸及びカチオン性分子からなる複合体が、γ-ポリグルタミン酸又はその塩で被覆されてなる核酸含有担体を含む、経肺又は経鼻投与用ワクチン組成物。
(2) 前記核酸、前記カチオン性分子、及び前記γ-ポリグルタミン酸又はその塩の電荷比が、1:2以上8以下:4以上16以下である、(1)に記載の経肺又は経鼻投与用ワクチン組成物。
(3) 前記カチオン性分子が1,2-ジオレオイル-3-トリメチルアンモニウムプロパンである、(1)又は(2)に記載の経肺又は経鼻投与用ワクチン組成物。
(4) 前記γ-ポリグルタミン酸又はその塩の重量平均分子量が2,000以上3,000以下である、(1)~(3)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(5) 前記核酸がmRNAである、(1)~(4)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(6) 前記核酸がウイルスの抗原タンパク質をコードするmRNAである、(1)~(5)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(7) 前記核酸がSARSコロナウイルス-2のスパイクタンパク質をコードするmRNAである、(1)~(6)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(8) 前記核酸が配列番号1で表されるアミノ酸配列からなるSARSコロナウイルス-2のスパイクタンパク質の受容体結合ドメインをコードするmRNAを含む、(1)~(7)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(9) 前記核酸は、5’末端又は3’末端に分泌シグナル配列が作動可能に連結している、(1)~(8)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(10) 前記分泌シグナル配列が分泌型ルシフェラーゼに由来するシグナルペプチドをコードする配列である、(9)に記載の経肺又は経鼻投与用ワクチン組成物。
(11) アジュバントを更に含む、(1)~(10)のいずれか一つに記載の経肺又は経鼻投与用ワクチン組成物。
(12) 前記アジュバントがCpGオリゴデオキシヌクレオチドである、(11)に記載の経肺又は経鼻投与用ワクチン組成物。
 上記態様の経肺又は経鼻投与用ワクチン組成物によれば、肺又は全身において免疫を効果的に誘導できる新規の経肺又は経鼻投与用ワクチン組成物を提供することができる。
本実施形態の経肺又は経鼻投与用ワクチン組成物に含まれる抗原担体の一例を示す概略図である。 参考例1における各複合体を経肺投与したマウスの肺組織でのルシフェラーゼ活性を示すグラフである。 参考例1における各核酸含有担体を経肺投与したマウスの肺組織でのルシフェラーゼ活性を示すグラフである。 参考例1における核酸含有担体及びローダミン標識リン脂質を経肺投与したマウスの各臓器でのローダミンの蛍光及びルシフェラーゼにより酸化されたルシフェリンの発光を示す像である。 参考例1における核酸含有担体を経肺投与したマウスの各臓器でのルシフェラーゼ活性を示すグラフである。 参考例1における核酸含有担体を各投与量で経肺投与したマウスの肺組織でのルシフェラーゼ活性を示すグラフである。 参考例1における核酸含有担体を経肺投与したマウスの肺組織でのルシフェラーゼ活性の経時変化を示すグラフである。 参考例2におけるオボアルブミン(OVA)をコードするmRNA含有担体を経肺投与したマウスの血清及び気管支肺胞洗浄液中の抗OVA IgG抗体及び抗OVA IgA抗体を、ELISAを用いて測定した結果を示すグラフである。 実施例1における各mRNAの構造を示す図である。 実施例1における各抗原タンパク質をコードするmRNAを導入したHepG2細胞の溶解液及び培養上清中の抗原タンパク質の発現量をウエスタンブロッティング法により測定した結果を示す図である。 実施例1における各核酸含有担体を経肺投与したマウスの肺及び脾臓での細胞性免疫の誘導性を評価した結果を示すグラフである。 実施例1における各核酸含有担体を経肺投与したマウスの血清及び気管支肺胞洗浄液での液性免疫の誘導性を評価した結果を示すグラフである。 実施例1における各核酸含有担体を経肺投与したマウスの肺及び脾臓での細胞性免疫の誘導性を評価した結果を示すグラフである。 実施例1における各核酸含有担体を経肺投与したマウスの血清及び気管支肺胞洗浄液での液性免疫の誘導性を評価した結果を示すグラフである。 実施例2における核酸含有担体及び各種アジュバントを経肺投与したマウスの血清及び気管支肺胞洗浄液での液性免疫の誘導性を評価した結果を示すグラフである。 実施例4における各核酸含有担体を経肺投与したマウスの血清及び気管支肺胞洗浄液での液性免疫の誘導性を評価した結果を示すグラフである。 実施例6における各核酸含有担体を経肺投与したマウスの血清での液性免疫の誘導性及び脾臓での細胞性免疫の誘導性を評価した結果を示すグラフである。 実施例7における各核酸含有担体を経肺又は経鼻投与したマウスの肺及び脾臓での細胞性免疫の誘導性を評価した結果を示すグラフである。
≪経肺又は経鼻投与用ワクチン組成物≫
 本発明の一実施形態に係る経肺又は経鼻投与用ワクチン組成物(以下、「本実施形態の経肺又は経鼻投与用ワクチン組成物」と称する)は、抗原タンパク質をコードする核酸及びカチオン性分子からなる複合体が、γ-ポリグルタミン酸又はその塩で被覆されてなる核酸含有担体を含む。
 本実施形態の経肺又は経鼻投与用ワクチン組成物は、上記構成を有することで、肺又は全身において免疫を効果的に誘導することができる。ここでいう免疫には、細胞性免疫及び液性免疫が含まれ、後述する実施例に示すように、本実施形態の経肺又は経鼻投与用ワクチン組成物を用いることで、肺又は全身において細胞性免疫及び液性免疫のいずれも効果的に誘導することができる。
 また、本実施形態の経肺又は経鼻投与用ワクチン組成物では、核酸は核酸含有担体に内包されており、安定した構造を保つことができる。そのため、従来のRNAワクチンでは、-80℃等の冷凍保存が基本であり、解凍後6時間以内等の短時間での使用が推奨されているが、本実施形態の経肺又は経鼻投与用ワクチン組成物では核酸がRNA等分解されやすいものである場合にも、より安定に保存できる。
 なお、細胞性免疫とは、病原体そのものやウイルス感染細胞、癌細胞等の異物の排除において、細胞を主なエフェクターとした免疫機構のことをいう。マクロファージ、細胞傷害性T細胞(CTL、キラーT細胞)、ナチュラルキラー細胞(NK細胞)等の免疫担当細胞自体による排除機構である。一方、液性免疫とは、B細胞と抗体が中心となる免疫機構のことをいう。ヘルパーT細胞(Th2細胞)の産生するサイトカインにより、B細胞が刺激されることで、B細胞が形質細胞へと分化し、大量の抗体を産生し、抗体は体液中を循環して全身に広がる。また、刺激されたB細胞の一部は、抗原の情報を記憶しているメモリーB細胞となって、再度の感染の際には、最初の反応より迅速に、そしてより抗原に親和性が高い抗体を大量に産生することができる。
 次いで、本実施形態の経肺又は経鼻投与用ワクチン組成物に含まれる各構成成分について以下に詳細を説明する。
<核酸含有担体>
 図1は、核酸含有担体10の一例を示す概略図である。
 核酸含有担体10は、抗原タンパク質をコードする核酸1及びカチオン性分子2からなる複合体3が、γ-ポリグルタミン酸又はその塩4で被覆されてなるものである。
 核酸含有担体10の大きさは、ナノスケールであり、具体的には、核酸含有担体10の平均粒径は、1nm以上1000nm以下とすることができ、10nm以上500nm以下であることが好ましく、30nm以上300nm以下であることがより好ましく、50nm以上150nm以下であることがさらに好ましい。
 平均粒径が上記下限値以上であることで、より十分量の核酸を含有させることができ、一方で、上記上限値以下であることで、より十分な滞留性を実現することができ、且つ、肺や鼻の周辺の細胞への核酸の送達効率をより向上させる。
 平均粒径は、例えば動的光散乱測定装置を用いて得られる散乱強度分布から算出することができる。
 核酸1、カチオン性分子2、及びγ-ポリグルタミン酸又はその塩4の電荷比(核酸のリン酸基、カチオン性分子のカチオン性基(例えば、アミノ基)、及びγ-ポリグルタミン酸のカルボキシ基のモル比)が、1:2以上8以下:4以上16以下であることが好ましく、1:2以上6以下:6以上10以下であることがより好ましく、1:4:8であることがさらに好ましい。電荷比が上記数値範囲内であることで、核酸を含まない余剰の脂質や高分子からなる微粒子の形成をより抑制することができる。
 核酸含有担体10は、中性から負の表面荷電を有する。
[核酸]
 核酸は、抗原タンパク質をコードするものである。
 核酸の種類としては、特に制限はなく、例えば、DNA、RNA、DNAとRNAのキメラ核酸、DNA/RNAのハイブリッド等が挙げられる。また、核酸は1本鎖以上3本鎖以下のものを用いることができるが、好ましくは1本鎖又は2本鎖である。核酸は、プリン又はピリミジン塩基のN-グリコシドであるその他のタイプのヌクレオチド、あるいは非ヌクレオチド骨格を有するその他のオリゴマー(例えば、市販のペプチド核酸(PNA)等)又は特殊な結合を含有するその他のオリゴマー(但し、該オリゴマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)等であってもよい。さらには公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメート等)をもつもの、電荷を有する結合又は硫黄含有結合(例えば、ホスホロチオエート、ホスホロジチオエート等)をもつもの、例えば蛋白質(ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド等)や糖(例えば、モノサッカライド等)等の側鎖基を有しているもの、インターカレント化合物(例えば、アクリジン、プソラレン等)をもつもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属等)を含有するもの、アルキル化剤を含有するもの、修飾された結合をもつもの(例えば、αアノマー型の核酸等)であってもよい。
 例えば、DNAの種類は、使用の目的に応じて適宜選択することができ、特に限定されないが、例えばcDNA、染色体DNA等が挙げられる。これらcDNAや染色体DNAがプラスミドDNAに導入された形態であってもよい。プラスミドDNA等の環状DNAは適宜制限酵素等により消化され、線形DNAとして用いることもできる。
 また、RNAの種類は、使用の目的に応じて適宜選択することができ、特に限定されないが、例えばメッセンジャーRNA(mRNA)、一本鎖RNAゲノム、二本鎖RNAゲノム、RNAレプリコン、トランスファーRNA、リボゾーマルRNA等が挙げられる。中でも、mRNAであることが好ましい。
 核酸の大きさは、特に限定されず、染色体(人工染色体等)等の巨大な核酸分子(例えば約100kb(p)の大きさ)から、低分子核酸(例えば約5b(p)の大きさ)を導入することが可能であるが、細胞内への核酸導入効率を考慮すると、15kbp以下であることが好ましい。例えば染色体DNAやプラスミドDNA、mRNAのような高分子核酸の大きさとしては、2kb(p)以上15kb(p)以下とすることができ、2kb(p)以上10kb(p)以下であることが好ましく、4kb(p)以上10kb(p)以下であることがより好ましい。また、比較的低分子の核酸の大きさとしては5b(p)以上2000b(p)以下とすることができ、10b(p)以上1000b(p)以下であることが好ましく、15b(p)以上800b(p)以下であることがより好ましい。なお、核酸が一本鎖の場合の単位はb(base;塩基)であり、一方で、二本鎖の場合の単位はbp(base pair;塩基対)である。
 核酸は天然に存在するもの、又は合成されたもののいずれでもよいが、100b(p)程度以下の大きさのものであれば、ホスホトリエチル法、ホスホジエステル法等により、通常用いられる核酸自動合成装置を利用して合成することが可能である。
 核酸がコードする抗原タンパク質の種類としては、特に限定されないが、例えば細菌由来、ウイルス由来、真菌由来、原生動物由来、寄生虫由来(例えば、マイコプラズマ由来等)、又は感染性因子由来(例えば、プリオン由来等)の蛋白質のいずれであってもよい。中でも、ウイルスの抗原タンパク質であることが好ましい。すなわち、核酸は、ウイルスの抗原タンパク質をコードするmRNAであることが好ましい。
 ウイルスの種類としては、特に限定されないが、例えば、SARSコロナウイルス-2、MERSコロナウイルス、インフルエンザウイルス、サイトメガロウイルス等が挙げられる。中でも、SARSコロナウイルス-2が好ましい。
 SARSコロナウイルス-2のスパイクタンパク質は、配列番号3で表されるアミノ酸配列からなり、核酸は、SARSコロナウイルス-2のスパイクタンパク質をコードするmRNAであることがより好ましい。SARSコロナウイルス-2のスパイクタンパク質をコードするmRNAは、配列番号4で表される塩基配列からなる。
 SARSコロナウイルス-2のスパイクタンパク質は、全長タンパク質であってもよく、部分タンパク質であってもよいが、SARSコロナウイルス-2のスパイクタンパク質の受容体結合ドメインを少なくとも含むことが好ましい。SARSコロナウイルス-2のスパイクタンパク質の受容体結合ドメインは、配列番号1で表されるアミノ酸配列からなる。すなわち、核酸は、配列番号1で表されるアミノ酸配列からなるSARSコロナウイルス-2のスパイクタンパク質の受容体結合ドメインをコードするmRNAを含むことがより好ましい。SARSコロナウイルス-2のスパイクタンパク質の受容体結合ドメインをコードするmRNAは、配列番号2で表される塩基配列からなる。
 核酸は、5’末端に分泌シグナル配列が作動可能に連結していることが好ましい。これにより、後述する実施例に示すように、肺又は全身において免疫(特に細胞性免疫)をより効果的に誘導することができる。本明細書において、「作動可能に連結」とは、核酸の発現制御配列(例えば、プロモーター、一連の転写因子結合部位、特定の修飾構造等)と発現させたい核酸(本実施形態においては、抗原タンパク質をコードする核酸)との間の機能的連結を意味する。
 分泌シグナル配列とは、分泌シグナルペプチドをコードするアミノ酸配列を意味し、核酸を発現させる被験動物において機能し得るものであれば特に限定されない。分泌シグナルとしては、例えば、分泌型ルシフェラーゼ(Lucia(登録商標))に由来するシグナルペプチド(アミノ酸配列:配列番号17、mRNAの塩基配列:配列番号18)、IL-6に由来するシグナルペプチド(アミノ酸配列:配列番号21、mRNAの塩基配列:配列番号22)等が挙げられる。中でも、分泌シグナル配列は分泌型ルシフェラーゼ(Lucia(登録商標))に由来するシグナルペプチドをコードする配列であることが好ましい。
 また、核酸がDNAである場合に、その下流(3’側)に、mRNAの3’末端のポリアデニル化に必要なポリアデニル化シグナルが作動可能に連結されていてもよい。ポリアデニル化シグナルとしては、上記のウイルス由来、各種ヒト又は非ヒト動物由来の各遺伝子に含まれるポリアデニル化シグナル、例えば、SV40の後期遺伝子又は初期遺伝子、ウサギβグロビン遺伝子、ウシ成長ホルモン遺伝子、ヒトA3アデノシン受容体遺伝子等のポリアデニル化シグナル等が挙げられる。
 また、核酸がDNAである場合に、抗原タンパク質を生体内で高発現させるために、スプライシングシグナル、エンハンサー領域、イントロンの一部等が、プロモーター領域の上流(5’側)、プロモーター領域と翻訳領域間、又は翻訳領域の下流(3’側)に連結されていてもよい。
 或いは、核酸がRNAである場合に、その上流(5’側)にキャップ構造、或いは、その下流(3’側)にポリアデニン(ポリA)鎖が、作動可能に連結されていてもよい。
 また、核酸は、翻訳領域に加えて、本実施形態の経肺又は経鼻投与用ワクチン組成物が奏する効果を妨げない範囲内で、非翻訳領域を更に含むことができる。
[カチオン性分子]
 カチオン性分子は、核酸と静電的相互作用により複合体を形成し得るものであればよく、例えば、カチオン性ポリマー、カチオン性脂質等が挙げられる。
 カチオン性ポリマーとしては、例えば、ポリエチレンイミン(以下、「PEI」と略記する場合がある);キチンやキトサン等のポリカチオン性多糖;ポリリジン、ポリアルギニン、ポリオルニチン、プロタミン等のポリカチオン性ポリペプチド等が挙げられるが、これらに限定されない。
 カチオン性脂質としては、例えば、大豆ホスファチジルコリン、卵黄ホスファチジルコリン、ジステアロイルホスファチジルコリン、ジパルミトイルホスファチジルコリン等のホスファチジルコリン;ジステアロイルホスファチジルエタノールアミン等のホスファチジルエタノールアミン;ホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、リゾホスファチジルコリン、スフィンゴミエリン、卵黄レシチン、大豆レシチン、水素添加リン脂質等のリン脂質;スルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジグリセリド等のグリセロ糖脂質;ガラクトシルセレブロシド、ラクトシルセレブロシド、ガングリオシド等のスフィンゴ糖脂質に、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアンモニウム基、モノアシルオキシアルキル-ジアルキルアンモニウム基、ジアシルオキシアルキル-モノアルキルアンモニウム基等の第4級アンモニウム基が導入された脂質;N-(2,3-ジオレイルオキシ)プロピル-N,N,N-トリメチルアンモニウム(DOTMA)、ジドデシルジメチルアンモニウムブロミド(DDAB)、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパン(DOTAP)、1,2-ジステアロイル-3-トリメチルアンモニウムプロパン(DSTAP)、ジオレオイル-3-ジメチルアンモニウムプロパン(DODAP)、ジオクタデシル-ジメチルアンモニウムクロリド(DODAC)、1,2-ジミリストイルオキシプロピル-3-ジメチルヒドロキシエチルアンモニウム(DMRIE)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキサミド)エチル]-N,N-ジメチル-1-プロパナミウムトリフルオロアセテート(DOSPA)、3β-N-(N’,N’-ジメチル-アミノエタン-カルバモイル-コレステロール)(DC-Chol、O,O’-ジテトラデカノイル-N-(α-トリメチルアンモニオアセチル)ジエタノールアミンクロリド等が挙げられるが、これらに限定されない。
 中でも、カチオン性脂質が好ましく、1,2-ジオレオイルオキシ-3-トリメチルアンモニウムプロパン(DOTAP)がより好ましい。
 これらのカチオン性分子は、公知の方法により調製してもよく、市販品を用いてもよい。
[γ-ポリグルタミン酸又はその塩]
 γ-ポリグルタミン酸の塩としては、γ-ポリグルタミン酸と、例えば、ナトリウム、カリウム、リチウム等のアルカリ金属原子;トリメチルアミン、トリエチルアミン、ジメチルアミン、ジエチルアミン、トリエタノールアミン、トリメタノールアミン、ジエタノールアミン、ジメタノールアミン、エタノールアミン等の第三級アミン;テトラメチルアミン、テトラエチルアミン等の第四級アミンとの塩が挙げられる。
 γ-ポリグルタミン酸又はその塩の重量平均分子量は、500以上100,000以下とすることができ、1,000以上50,000以下であることが好ましく、1,500以上8,000以下であることがより好ましく、2,000以上3,000以下であることがさらに好ましい。重量平均分子量が上記下限値以上であることで、より安定な微粒子を形成することができ、一方で、上記上限値以下であることで、強い負電荷による核酸のカチオン性化合物からの乖離をより抑制でき、より効果的に抗原タンパク質を発現させることができる。
 重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。
 γ-ポリグルタミン酸又はその塩は、公知の方法により調製してもよく、市販品を用いてもよい。
<アジュバント>
 本実施形態の経肺又は経鼻投与用ワクチン組成物は、上記核酸含有担体に加えて、アジュバントを更に含むことが好ましい。これにより、後述する実施例に示すように、肺又は全身において免疫(特に液性免疫)をより効果的に誘導することができる。
 アジュバントとしては、ワクチンに通常用いられるものであれば特に限定されないが、例えば、自然免疫受容体に対するリガンドや、環状ジグアニル酸一リン酸(c-di-GMP)等の環状ジヌクレオチド等が挙げられる。ここでいう「リガンド」とは、受容体に特異的に結合するものを意味し、特に、受容体に特異的に結合して、種々の生理作用を示す物質を用いることができる。このような物質を「アゴニスト」ともいう。
 自然免疫受容体としては、例えば、トール様受容体(toll-like receptor;TLR)、RIG-I様受容体(RIG-I-like receptor;RLR)、NOD様受容体(NOD-like receptor;NLR)、C型レクチン受容体(C-type lectin receptor;CLR)等が挙げられる。
 TLRリガンドとしては、例えば、TLR-2、TLR-3、TLR-4、TLR-5、TLR-6、TLR-7、TLR-8及びTLR-9からなる群より選択される少なくとも1種のTLRと相互作用するものを適宜選択すればよい。
 TLR-2リガンドとしては、例えば、Pam3CSK4等が挙げられる。
 TLR-3リガンドとしては、例えば、ポリICLC、ポリイノシン:ポリシチジル酸(ポリI:C)等が挙げられる。
 TLR-4リガンドとしては、例えば、R型リポ多糖、S型リポ多糖、パクリタキセル(Paclitaxel)、リピドA、モノホスホリルリピドA等が挙げられる。
 TLR-5リガンドとしては、例えば、フラジェリン(Flagellin)等が挙げられる。
 TLR-2及びTLR-6リガンドとしては、例えば、MALP-2等が挙げられる。
 TLR-7及びTLR-8リガンドとしては、例えば、レシキモド(R848)、イミキモド(imiquimod、R837)、ガルジキモド(gardiquimod)、ロキソリビン(loxoribine)等が挙げられる。
 TLR-9リガンドとしては、例えば、CpGオリゴデオキシヌクレオチド等が挙げられる。CpGオリゴデオキシヌクレオチドとしては、A-クラスTLR-9リガンドD35、B-クラスTLR-9リガンドK3等が挙げられる。
 中でも、アジュバントとしては、CpGオリゴデオキシヌクレオチドが好ましい。
<その他成分>
 本実施形態の経肺又は経鼻投与用ワクチン組成物は、単独で経肺又は経鼻投与することもできるし、あるいは薬理学上許容されうる担体とともに常套手段に従って、経肺又は経鼻投与用医薬組成物として使用することができる。経肺又は経鼻投与用医薬組成物として使用する場合は、例えば、上記核酸含有担体と、水もしくはそれ以外の生理学的に許容し得る液(例えば、生理食塩水、リン酸緩衝生理食塩水(PBS)等を混合してもよく、生理学的に許容し得る賦形剤、ベヒクル、防腐剤、安定剤、結合剤、凍結乾燥補助剤等を含むこともできる。
<経肺又は経鼻投与用ワクチン組成物の製造方法>
 本実施形態の経肺又は経鼻投与用ワクチン組成物は、上記核酸含有担体を調製した後、必要に応じて、アジュバントや、薬理学上許容されうる担体と混合して調製することができる。
 上記核酸含有担体は、まず、核酸とカチオン性分子とを混合して複合体を作製した(第1工程)後、該複合体とγ-ポリグルタミン酸又はその塩とを混合して、複合体をγ-ポリグルタミン酸によって被覆すること(第2工程)で得られる。
 第1工程では、核酸とカチオン性分子との電荷比(核酸のリン酸基と、カチオン性分子のカチオン性基(例えば、アミノ基))が、好ましくは1:2~1:8、より好ましくは1:2~1:6、さらに好ましくは1:4となるように混合し、15℃以上25℃以下で30秒間以上300分間以下、好ましくは10分間以上180分間以下インキュベートすることで、自己組織化させて複合体を作製する。混合物中の核酸の濃度は、用途やサイズ(分子量)等を考慮し適宜設定できるが、例えば、0.01ng/μL以上1000ng/μL以下とすることができる。
 第2工程では、第1工程で作製した複合体とγ-ポリグルタミン酸とを、核酸、カチオン性分子及びγ-ポリグルタミン酸の電荷比(核酸のリン酸基、カチオン性分子のカチオン性基(例えば、アミノ基)、及びγ-ポリグルタミン酸のカルボキシ基のモル比)が、好ましくは1:2以上8以下:4以上16以下、より好ましくは1:2以上6以下:6以上10以下、さらに好ましくは1:4:8になるように混合し、15℃以上25℃以下で30秒間以上300分間以下、好ましくは10分間以上180分間以下インキュベートすることで、自己組織化させて複合体をγ-ポリグルタミン酸によって被覆する。これによって、負の表面電荷を有する核酸含有担体を得ることができる。
 アジュバントが核酸である場合には、上記第1工程において、核酸と共にカチオン性分子と混合させて、核酸含有担体に内包させてもよい。或いは、アジュバントは、作製された核酸含有担体と適宜混合することで、本実施形態の経肺又は経鼻投与用ワクチン組成物を得てもよい。
 本実施形態の経肺又は経鼻投与用ワクチン組成物を投与する対象は、ヒトを含む哺乳類に分類される動物(サル、マーモセット、マウス、ラット、ウシ、ウマ、ネコ、イヌ、ブタ、ヒツジ、ヤギ、ウサギ等)が挙げられる。
 本実施形態の経肺又は経鼻投与用ワクチン組成物の投与量は、投与対象の種類(年齢や性別等も含む)、核酸の種類等を考慮して適宜選択することができるが、一般的に例えばヒト(体重60kgとして)においては、1回あたり、核酸量として約0.1μg以上3000mg以下とすることができる。
 本実施形態の経肺又は経鼻投与用ワクチン組成物による経肺又は経鼻投与の具体的な形態は特に限定されないが、経肺投与には、気管支内視鏡やCTガイド下穿刺による肺組織への本実施形態の経肺投与用ワクチン組成物の直接投与、エアゾール、ドライパウダー、ネブライザーによる吸入、加湿器による投与等の方法を例示することができる。経鼻投与には、本実施形態の経鼻投与用ワクチン組成物の直接滴下やエアゾール、ドライパウダー、ネブライザーを用いた鼻腔内噴霧による投与等の方法を例示することができる。特にこれらの形態は、注射が不必要で、無医村や発展途上国で重要な役割を果たすことができる。
 投与回数は、上述した投与量の単回投与であってもよく、上述した投与量を、1週間、2週間、3週間、4週間、1ヶ月、2ヶ月、3ヶ月、又は半年毎に1回等、2回以上の複数回投与であってもよい。
 本実施形態の経肺又は経鼻投与用ワクチン組成物を適用する疾患としては、例えば、インフルエンザウイルス、RSウイルス、アデノウイルス、ヒトメタニューモウイルス、サイトメガロウイルス、MERSコロナウイルス、SARSコロナウイルス-2、麻疹ウイルス、水痘ウイルス等の既知のウイルスや、今後発生する新興感染症のウイルスによるウイルス性肺炎;肺結核、肺非結核性抗酸菌症、肺真菌症等のウイルスや細菌の感染により発症する感染性呼吸器疾患等が挙げられる。
 本実施形態の経肺又は経鼻投与用ワクチン組成物によれば、上述した感染性呼吸器疾患を効果的に予防することができる。すなわち、一実施形態において、本発明は、被験動物に、上記経肺又は経鼻投与用ワクチン組成物を経肺又は経鼻投与することを含む、感染性呼吸器疾患の予防方法を提供する。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[参考例1]
(核酸含有担体の条件検討1)
 モデル核酸として、ルシフェラーゼをコードするmRNA(配列番号5)を用いて、最適なカチオン性分子の種類及びγ-ポリグルタミン酸の分子量について検討した。
(1)材料
 ルシフェラーゼをコードするmRNA(配列番号5)を含む合成mRNAは、Trilink社から入手した。
 カチオン性分子としては、ポリエチレンイミン(PEI)(Sigma-Aldrich社製)、dendrigraft poly-L-lysine(DGL)(COLCOM社製、商品名「dendrigraft poly-L-lysine(G5)」、及び、1,2-ジオレオイル-3-トリメチルアンモニウムプロパン(DOTAP)(日本油脂社製)を使用した。
 また、γ-ポリグルタミン酸(γ-PGA:重量平均分子量2,500、5,000、及び7,500)(ペプチド研究所社製)を使用した。
(2)複合体の作製
 ルシフェラーゼをコードするmRNAと、PEI、DGL、又はDOTAPを電荷比(mRNAのリン酸基とカチオン性分子のアミノ基とのモル比)が1:4又は1:8となるように混合し、室温(25℃程度)で15分間静置して、ルシフェラーゼをコードするmRNAと、PEI、DGL、又はDOTAPとからなる複合体を構築した。
 次いで、これらの複合体をmRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6時間後に肺を摘出し、細胞破砕用のバッファー中でホモジナイズし、ホモジネートを遠心分離した後、上清を採取した。基質(ピッカジーン発光キット、東洋ビーネット社製)を加えて、上清中のルシフェラーゼ活性を、ルミノメーター(Lumat LB 9507;Berthold社製)を用いて発光量(RLU)として測定した。結果を図2に示す。
 図2に示すように、カチオン性分子としてDOTAPを使用した複合体においてルシフェラーゼ活性が特に高かった。よって、以降の試験において、カチオン性分子としてDOTAPを使用することとした。
(3)核酸含有担体の作製1
 次いで、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体に、mRNAとDOTAPとγ-PGAとの電荷比(mRNAのリン酸基とカチオン性分子のアミノ基とγ-PGAのカルボキシ基とのモル比)が1:4:8となるように、重量平均分子量が2,500、5,000、又は7,500のγ-PGAを混合し、室温(25℃程度)で15分間静置して、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体がγ-PGAで被覆された核酸含有担体を構築した。
 次いで、これらの核酸含有担体をmRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6時間後に肺を摘出し、細胞破砕用のバッファー中でホモジナイズし、ホモジネートを遠心分離した後、上清を採取した。基質(ピッカジーン発光キット、東洋ビーネット社製)を加えて、上清中のルシフェラーゼ活性を、ルミノメーターを用いて発光量(RLU)として測定した。結果を図3に示す。
 図3に示すように、重量平均分子量が2,500であるγ-PGAを用いた核酸含有担体においてルシフェラーゼ活性が特に高かった。よって、以降の試験において、重量平均分子量が2,500であるγ-PGAを使用することとした。
 また、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体が、重量平均分子量が2,500であるγ-PGAで被覆された核酸含有担体に少量のローダミン標識リン脂質を添加し、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6時間後にマウスから各種臓器を摘出し、摘出した肝臓、腎臓、脾臓、心臓、肺における蛍光をin vivoイメージング装置(IVIS Lumina II;Caliper Life Sciences Inc製)を用いて測定した。結果を図4(左側)に示す。
 また、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体が、重量平均分子量が2,500であるγ-PGAで被覆された核酸含有担体をmRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6時間後に基質であるルシフェリンを12mg/マウス1匹となるように腹腔内へ投与し、マウスから各種臓器を摘出し、摘出した肝臓、腎臓、脾臓、心臓、肺におけるルシフェラーゼ発現量をin vivoイメージング装置(IVIS Lumina II;Caliper Life Sciences Inc製)を用いて測定した。結果を図4(右側)に示す。
 図4に示すように、肺のみに核酸含有担体の蓄積とルシフェラーゼの発現が認められた。
 また、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体が、重量平均分子量が2,500であるγ-PGAで被覆された核酸含有担体をmRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6時間後に肝臓、腎臓、脾臓、心臓、肺を摘出し、それぞれ細胞破砕用のバッファー中でホモジナイズし、ホモジネートを遠心分離した後、上清を採取した。基質(ピッカジーン発光キット、東洋ビーネット社製)を加えて、上清中のルシフェラーゼ活性を、ルミノメーター(Lumat LB 9507;Berthold社製)を用いて発光量(RLU)として測定した。結果を図5に示す。
 図5に示すように、肺以外の臓器では、ルシフェラーゼ活性は検出限界以下であった。
(4)核酸の投与量の検討
 次いで、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体が、重量平均分子量が2,500であるγ-PGAで被覆された核酸含有担体をmRNAの量として2.5μg、5.0μg、又は10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6時間後に肺を摘出し、細胞破砕用のバッファー中でホモジナイズし、ホモジネートを遠心分離した後、上清を採取した。基質(ピッカジーン発光キット、東洋ビーネット社製)を加えて、上清中のルシフェラーゼ活性を、ルミノメーターを用いて発光量(RLU)として測定した。結果を図6に示す。
 図6に示すように、mRNAの量の増加に伴い、ルシフェラーゼ活性が向上する傾向がみられた。この結果から、以降の試験において、mRNAの投与量を10μg/マウス1匹(溶液量としては50μL/マウス1匹)とした。
(5)タンパク質の発現持続時間の検討
 次いで、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体が、重量平均分子量が2,500であるγ-PGAで被覆された核酸含有担体をmRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ経肺投与した。投与から6、24、48、又は72時間後に肺を摘出し、細胞破砕用のバッファー中でホモジナイズし、ホモジネートを遠心分離した後、上清を採取した。基質(ピッカジーン発光キット、東洋ビーネット社製)を加えて、上清中のルシフェラーゼ活性を、ルミノメーターを用いて発光量(RLU)として測定した。結果を図7に示す。
 図7に示すように、核酸含有担体の肺でのルシフェラーゼの発現は48時間程度持続することが明らかとなった。
[参考例2]
(オボアルブミンをコードするmRNA含有担体を用いた免疫誘導確認試験)
 モデル抗原タンパク質としてオボアルブミンを用いて、核酸含有担体の免疫誘導効果を検討した。オボアルブミン(OVA)をコードするmRNA(配列番号6)を含む合成mRNAは、Trilink社から入手した。
(1)核酸含有担体の作製
 OVAをコードするmRNAと、DOTAPを電荷比(mRNAのリン酸基とカチオン性分子のアミノ基とのモル比)が1:4となるように混合し、室温(25℃程度)で15分間静置して、OVAをコードするmRNAとDOTAPとからなる複合体を構築した。
 次いで、OVAをコードするmRNAとDOTAPとからなる複合体に、mRNAとDOTAPとγ-PGAとの電荷比(mRNAのリン酸基とカチオン性分子のアミノ基とγ-PGAのカルボキシ基とのモル比)が1:4:8となるように、γ-PGA(重量平均分子量:2,500)を混合し、室温(25℃程度)で15分間静置して、OVAをコードするmRNAとDOTAPとからなる複合体がγ-PGAで被覆された核酸含有担体を構築した。
 次いで、得られた核酸含有担体を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ2週間おきに計4回、経肺投与した。対照群として、OVAをコードするmRNAのみ、及び、ルシフェラーゼをコードするmRNAとDOTAPとからなる複合体が、重量平均分子量が2,500であるγ-PGAで被覆された核酸含有担体を投与したマウス群も準備した。
 最終投与から2週間後にマウスから血清と気管支肺胞洗浄液を採取した。血清中と気管支肺胞洗浄液中のOVAに特異的なIgG抗体及びIgA抗体を、ELISAにより測定した。具体的には、イムノプレートにOVAを添加し、一定時間インキュベートした後に、ブロッキングを行った。このプレートに、マウス血清を添加し、一定時間インキュベートした後に、界面活性剤を含むPBSを用いて洗浄した。その後、HRP修飾抗マウスIgG又はIgA抗体を添加し、一定時間インキュベートした。洗浄後、HRP基質を添加して、各抗体量を測定した。結果を図8に示す。
 図8に示すように、この結果、OVAをコードするmRNA単独やOVAをコードするmRNAを含まない核酸含有担体(ルシフェラーゼをコードするmRNA含有担体)では、OVAに特異的な抗体の産生は認められなかった。一方で、OVAをコードするmRNAを内包した担体では血清中のIgGだけでなく、気管支肺胞洗浄液中のIgG抗体やIgA抗体も上昇した。すなわち、本実施形態の経肺又は経鼻投与用ワクチン組成物を用いることで、肺及び全身の細胞性免疫及び液性免疫のいずれも誘導できることが明らかとなった。
[実施例1]
(ウイルスの抗原タンパク質をコードするmRNA含有担体を用いた免疫誘導確認試験)
 次いで、ウイルスの抗原タンパク質として、SARSコロナウイルス-2のスパイクタンパク質を用いて、核酸含有担体の免疫誘導効果を検討した。SARSコロナウイルス-2のスパイクタンパク質のアミノ酸配列を配列番号3に、SARSコロナウイルス-2のスパイクタンパク質をコードするmRNAの塩基配列を配列番号4に示す。SARSコロナウイルス-2のスパイクタンパク質をコードするmRNA(配列番号4)を含む合成mRNAは、Trilink社から入手した。
(1)抗原タンパク質をコードするmRNAの設計
 以下に示す抗原タンパク質をコードするmRNAを含む合成mRNAを設計した(図9参照)。3)~5)については、各種シグナルペプチドの配列を付加したものである。
1)S1 mRNA(S1のアミノ酸配列:配列番号7、S1 mRNAの塩基配列:配列番号8)
2)RBD(受容体結合ドメイン) mRNA(RBDのアミノ酸配列:配列番号1、RBD mRNAの塩基配列:配列番号2)
3)IgEシグナルペプチド(IgE)-RBD mRNA(IgEのアミノ酸配列:配列番号9、IgE mRNAの塩基配列:配列番号10、IgE-RBDのアミノ酸配列:配列番号11、IgE-RBDmRNAの塩基配列:配列番号12)
4)RBD-ジフテリア毒素T細胞エピトープ(DTE) mRNA(DTEのアミノ酸配列:配列番号13、DTE mRNAの塩基配列:配列番号14、RBD-DTEのアミノ酸配列:配列番号15、RBD-DTE mRNAの塩基配列:配列番号16)
5)Lucia(登録商標)ルシフェラーゼコドン最適化シグナル配列(分泌型Luc)-RBD mRNA(分泌型Lucのアミノ酸配列:配列番号17、分泌型Luc mRNAの塩基配列:配列番号18、分泌型Luc-RBDのアミノ酸配列:配列番号19、分泌型Luc-RBD mRNAの塩基配列:配列番号20)
 次いで、合成した上記1)~5)のmRNAを、Lipofectamine(登録商標) messenger Maxを用いてHepG2細胞に導入し、細胞溶解液中の抗原タンパク質の発現をウエスタンブロッティング法により評価した。また、分泌型Luc-RBDについては培養上清中のタンパク量もウエスタンブロッティング法により測定した。結果を図10に示す。
 図10に示すように、S1タンパク質とRBD-DTEでは、タンパク発現量が低かったが、RBD、IgE-RBDではタンパク質の明確なバンドが認められた。さらに、分泌型Luc-RBDでは非常に多くの抗原タンパク質の発現が認められ、培養上清中に分泌された抗原タンパク質も検出された。
 以上より、設計したmRNAからSARSコロナウイルス-2の抗原タンパク質が合成されることを確認した。
(2)核酸含有担体の作製
 (1)で合成した1)~5)の各mRNAと、DOTAPを電荷比(mRNAのリン酸基とカチオン性分子のアミノ基とのモル比)が1:4となるように混合し、室温(25℃程度)で15分間静置して、各mRNAとDOTAPとからなる複合体を構築した。
 次いで、各mRNAとDOTAPとからなる複合体に、mRNAとDOTAPとγ-PGAとの電荷比(mRNAのリン酸基とカチオン性分子のアミノ基とγ-PGAのカルボキシ基とのモル比)が1:4:8となるように、γ-PGA(重量平均分子量:2,500)を混合し、室温(25℃程度)で15分間静置して、各mRNAとDOTAPとからなる複合体がγ-PGAで被覆された核酸含有担体を構築した。
(3)核酸含有担体を用いた免疫誘導効果確認試験1
 次いで、得られた各核酸含有担体(S1 mRNA含有担体、RBD mRNA含有担体、IgE-RBD mRNA含有担体、及びRBD-DTE mRNA含有担体)を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ2週間おきに計4回、経肺投与した。最終投与から2週間後にマウスから脾臓と肺を採取した。採取した肺と脾臓からそれぞれ肺細胞と脾細胞を単離し、SARSコロナウイルス-2のスパイクタンパク質の断片ペプチドを含む培地中で培養した。培養上清中に分泌されたINF-γを細胞性免疫の指標として測定した。結果を図11に示す。
 図11に示すように、核酸含有担体の投与によって、肺及び全身において細胞性免疫の活性化が一部認められた。
 また、最終投与から2週間後にマウスから血清と気管支肺胞洗浄液を採取した。血清中と気管支肺胞洗浄液中のSARSコロナウイルス-2のスパイクタンパク質に特異的なIgG抗体を、ELISAにより測定した。具体的には、イムノプレートにSARSコロナウイルス-2のスパイクタンパク質を添加し、一定時間インキュベートした後に、ブロッキングを行った。このプレートに、マウス血清を添加し、一定時間インキュベートした後に、界面活性剤を含むPBSを用いて洗浄した。その後、HRP修飾抗マウスIgG抗体を添加し、一定時間インキュベートした。洗浄後、HRP基質を添加して、抗体量を測定した。結果を図12に示す。
 図12に示すように、核酸含有担体の投与によって、血清中及び気管支肺胞洗浄液中のIgG抗体は上昇しなかった。
(4)核酸含有担体を用いた免疫誘導効果確認試験2
 次いで、得られた各核酸含有担体(RBD mRNA含有担体、RBD-DTE mRNA含有担体、及び分泌型Luc-RBD mRNA含有担体)を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)となるように、マウス(5週齢)へ2週間おきに計4回、経肺投与した。最終投与から2週間後にマウスから脾臓と肺を採取した。採取した肺と脾臓からそれぞれ肺細胞と脾細胞を単離し、SARSコロナウイルス-2のスパイクタンパク質の断片ペプチドを含む培地中で培養した。培養上清中に分泌されたINF-γを細胞性免疫の指標として測定した。結果を図13に示す。
 図13に示すように、分泌型Luc-RBD mRNA含有担体の投与によって肺局所及び全身の細胞性免疫が顕著に増大した。
 また、最終投与から2週間後にマウスから血清と気管支肺胞洗浄液を採取した。血清中と気管支肺胞洗浄液中のSARSコロナウイルス-2のスパイクタンパク質に特異的なIgG抗体を、上記(3)と同様の方法を用いて、ELISAにより測定した。結果を図14に示す。
 図14に示すように、分泌型Luc-RBD mRNA含有担体の投与によって、1例のみ1gG抗体の上昇が認められた。
[実施例2]
(ウイルスの抗原タンパク質をコードするmRNA含有担体及びアジュバントを併用した液性免疫誘導確認試験1)
 次いで、実施例1で作製した分泌型Luc-RBD mRNA含有担体と、各種アジュバントとを組み合わせて、液性免疫の誘導性を検討した。
 実施例1で得られた分泌型Luc-RBD mRNA含有担体を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)と、アジュバントとして、ポリイノシン:ポリシチジル酸(PolyI:C)又はCpGオリゴデオキシヌクレオチド各10μgを同時に、マウス(5週齢)へ2週間おきに計4回、経肺投与した。最終投与から2週間後にマウスから血清と気管支肺胞洗浄液を採取した。血清中と気管支肺胞洗浄液中のSARSコロナウイルス-2のスパイクタンパク質に特異的なIgG抗体を、上記実施例1の(3)と同様の方法を用いて、ELISAによりを用いて測定した。結果を図15に示す。
 図15に示すように、分泌型Luc-RBD mRNA含有担体と、アジュバントとしてCpGオリゴデオキシヌクレオチドを併用することで、分泌型Luc-RBD mRNA含有担体のみを投与した場合と比較して、IgG抗体が20倍以上上昇することが明らかとなった。
 以上のことから、本実施形態の経肺又は経鼻投与用ワクチン組成物を用いることで、肺及び全身において細胞性免疫及び液性免疫のいずれも誘導できることが明らかとなった。
[実施例3]
(ウイルスの抗原タンパク質をコードするmRNA含有担体の急性毒性試験)
 次いで、核酸含有担体の被験動物に対する安全性を確認するために、実施例1で作製したRBD mRNA含有担体を用いて、ラットへの気管内投与による急性毒性試験を日本食品分析センターに委託して実施した。試験内容として具体的には、以下に示すとおりである。
 試験群(3群)及び対照群(1群)を設定した。試験群には、RBD mRNA含有担体中のmRNA濃度が0.2、0.1及び0.05mg/mLとなるように調製した試験液を、mRNA投与用量として0.2、0.1及び0.05mg/kgとなるようにそれぞれ単回気管内投与した。また、対照群には溶媒対照としてトリス含有5w/v%グルコース溶液を同様に投与した。観察期間は1及び14日とし、観察期間1日については雌雄各4匹/群、観察期間14日については雌雄各6匹/群のラットを使用した。
 試験期間中は一般状態観察及び体重測定を行った。観察期間終了時に,観察期間1日については血液学的検査及び血液生化学的検査を行い、観察期間14日については器官重量測定、気管支肺胞洗浄液検査、全身諸器官の肉眼的検査及び病理組織学的検査を行った。
 その結果、全ての試験動物において死亡例及び一般状態の異常は認められず、体重、血液学的検査、血液生化学的検査、器官重量、気管支肺胞洗浄液検査、全身諸器官の肉眼的検査及び病理組織学的検査において、RBD mRNA含有担体の毒性を示唆する変化は認められなかった。
 以上のことから、本試験条件下において、核酸含有担体の半数致死量(LD50値)は雌雄ともにmRNA量として0.2mg/kgを超えるものと評価された。
[実施例4]
(ウイルスの抗原タンパク質をコードするmRNA含有担体及びアジュバントを併用した液性免疫誘導確認試験2)
 次いで、実施例1で作製した分泌型Luc-RBD mRNA含有担体と、アジュバントとを組み合わせて、免疫誘導効果を検討し、且つ、市販のmRNAワクチンに用いられている変異を2箇所導入したスパイクタンパク質全長mRNAとの比較を行った。
 変異を2箇所導入したスパイクタンパク質全長mRNAの塩基配列を配列番号23に示す。変異を2箇所導入したスパイクタンパク質全長mRNAを用いて、上記実施例1の(2)と同様の方法を用いて、変異を2箇所導入したスパイクタンパク質全長mRNA含有担体を作製した。
 実施例1で得られた分泌型Luc-RBD mRNA含有担体、又は、上記変異を2箇所導入したスパイクタンパク質全長mRNA含有担体を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)と、アジュバントとして、CpGオリゴデオキシヌクレオチド(D35)10μgを同時に、マウス(6週齢)へ2週間おきに計4回、経肺投与した。最終投与から2週間後にマウスから血清と気管支肺胞洗浄液を採取した。血清中と気管支肺胞洗浄液中のSARSコロナウイルス-2のスパイクタンパク質に特異的なIgG抗体を、上記実施例1の(3)と同様の方法を用いて、ELISAによりを用いて測定した。結果を図16に示す。
 図16に示すように、分泌型Luc-RBD mRNA含有担体と、アジュバントとしてCpGオリゴデオキシヌクレオチド(D35)を併用した場合にのみ、特に顕著な抗体誘導(液性免疫誘導)が認められた。
[実施例5]
(中和抗体のウイルス増殖抑制効果確認試験)
 本実施形態の経肺又は経鼻投与用ワクチン組成物を接種したマウスの血清中に含まれる中和抗体のウイルス増殖抑制効果を検討した。
 実施例1で得られた分泌型Luc-RBD mRNA含有担体を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)で、単独、又は、アジュバントとして、CpGオリゴデオキシヌクレオチド(D35)10μgを同時に、マウス(6週齢)へ2週間おきに計4回、経肺投与した。最終投与から2週間後にマウスから血清を採取した。10倍、40倍、160倍、又は640倍に希釈した血清中で、ACE2及びFcγR共発現細胞にSARS-CoV-2を感染させ、プラーク法で中和活性を評価した。結果を以下の表1に示す。表1中において、+はプラークの増加、+/-は変化なし、-はプラークの減少を意味する。コントロールは、溶媒のみを投与したマウスの血清を用いた群である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、分泌型Luc-RBD mRNA含有担体と、アジュバントとしてCpGオリゴデオキシヌクレオチド(D35)を併用したマウス4匹中3匹の血清において、ウイルスのプラークの減少(中和活性)が認められた。また、プラークの増加(抗体依存性感染増強)は認められなかった。
[実施例6]
(ウイルスの抗原タンパク質をコードするmRNA含有担体及びアジュバントを併用した液性免疫誘導確認試験3)
 次いで、実施例1で作製した分泌型Luc-RBD mRNA含有担体と、核酸系アジュバントとして3種のアジュバントとを組み合わせて、免疫誘導効果を検討した。3種のアジュバントとしては、CpGオリゴデオキシヌクレオチドであり、A-クラスTLR-9リガンドであるD35、CpGオリゴデオキシヌクレオチドであり、B-クラスTLR-9リガンドであるK3、及び環状ジグアニル酸一リン酸(c-di-GMP)を用いた。D35は、細胞性免疫の賦活効果が強く、K3は液性免疫の賦活効果が強いことが知られている。また、c-di-GMPは細胞内で核酸受容体に作用し、免疫を惹起することが知られている。
 実施例1で得られた分泌型Luc-RBD mRNA含有担体を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)と、アジュバントとして、CpGオリゴデオキシヌクレオチド(D35若しくはK3)、又は、c-di-GMP 各10μgを同時に、マウス(6週齢)へ2週間おきに計4回、経肺投与した。最終投与から2週間後にマウスから血清と脾臓を採取した。血清中のSARSコロナウイルス-2のスパイクタンパク質に特異的なIgG抗体を、上記実施例1の(3)と同様の方法を用いて、ELISAにより測定した。採取した脾臓から脾細胞を単離し、SARS-CoV-2のスパイクタンパク質の断片ペプチドを含む培地中で培養した。培養上清中に分泌されたINF-γを細胞性免疫の指標として測定した。結果を図17に示す。
 図17に示すように、アジュバントとしてK3を用いた場合に血清中のIgG抗体が最も高い値を示し(液性免疫が特に顕著に誘導され)、D35を用いた場合にINF-γが最も高い値を示す(細胞性免疫が特に顕著に誘導される)ことが分かった。
[実施例7]
(免疫誘導効果に対する投与法及びアジュバントの影響確認試験)
 経肺投与又は経鼻投与の投与方法及びアジュバントの違いによる細胞性免疫誘導性への影響を検討した。
 実施例1で得られた分泌型Luc-RBD mRNA含有担体を、mRNAの量として10μg/マウス1匹(溶液量としては50μL/マウス1匹)と、アジュバントとして、CpGオリゴデオキシヌクレオチド(D35、K3、又はそれらの混合物)各10μg(D35及びK3の混合物の場合には各5μg)を同時に、マウス(6週齢)へ2週間おきに計4回、経肺又は経鼻投与した。最終投与から2週間後にマウスから脾臓及び経肺投与の場合は肺を採取した。採取した脾臓と肺からそれぞれ脾細胞と肺細胞を単離し、SARS-CoV-2のスパイクタンパク質の断片ペプチドを含む培地中で培養した。培養上清中に分泌されたINF-γを細胞性免疫の指標として測定した。結果を図18に示す。
 図18に示すように、分泌型Luc-RBD mRNA含有担体と、アジュバントとしてCpGオリゴデオキシヌクレオチド(D35)を併用した場合には、経肺投与後に全身及び肺の細胞性免疫が有意に上昇した。
 一方で、分泌型Luc-RBD mRNA含有担体と、アジュバントとしてCpGオリゴデオキシヌクレオチド(K3)を併用した場合には、経肺投与後に有意な細胞性免疫の上昇は認められなかった。
 また、分泌型Luc-RBD mRNA含有担体と、アジュバントとして1種のCpGオリゴデオキシヌクレオチド(D35)を併用した場合、及び、分泌型Luc-RBD mRNA含有担体と、アジュバントとして2種のCpGオリゴデオキシヌクレオチド(D35及びK3の混合物)を併用した場合には、経鼻投与後に全身の細胞性免疫が有意に上昇した。
 本実施形態の経肺又は経鼻投与用ワクチン組成物によれば、肺又は全身において免疫を効果的に誘導することができる。
 1…抗原タンパク質をコードする核酸、2…カチオン性分子、3…複合体、4…γ-ポリグルタミン酸又はその塩、10…核酸含有担体。

Claims (12)

  1.  抗原タンパク質をコードする核酸及びカチオン性分子からなる複合体が、γ-ポリグルタミン酸又はその塩で被覆されてなる核酸含有担体を含む、経肺又は経鼻投与用ワクチン組成物。
  2.  前記核酸、前記カチオン性分子、及び前記γ-ポリグルタミン酸又はその塩の電荷比が、1:2以上8以下:4以上16以下である、請求項1に記載の経肺又は経鼻投与用ワクチン組成物。
  3.  前記カチオン性分子が1,2-ジオレオイル-3-トリメチルアンモニウムプロパンである、請求項1又は2に記載の経肺又は経鼻投与用ワクチン組成物。
  4.  前記γ-ポリグルタミン酸又はその塩の重量平均分子量が2,000以上3,000以下である、請求項1~3のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  5.  前記核酸がmRNAである、請求項1~4のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  6.  前記核酸がウイルスの抗原タンパク質をコードするmRNAである、請求項1~5のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  7.  前記核酸がSARSコロナウイルス-2のスパイクタンパク質をコードするmRNAである、請求項1~6のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  8.  前記核酸が配列番号1で表されるアミノ酸配列からなるSARSコロナウイルス-2のスパイクタンパク質の受容体結合ドメインをコードするmRNAを含む、請求項1~7のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  9.  前記核酸は、5’末端又は3’末端に分泌シグナル配列が作動可能に連結している、請求項1~8のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  10.  前記分泌シグナル配列が分泌型ルシフェラーゼに由来するシグナルペプチドをコードする配列である、請求項9に記載の経肺又は経鼻投与用ワクチン組成物。
  11.  アジュバントを更に含む、請求項1~10のいずれか一項に記載の経肺又は経鼻投与用ワクチン組成物。
  12.  前記アジュバントがCpGオリゴデオキシヌクレオチドである、請求項11に記載の経肺又は経鼻投与用ワクチン組成物。
PCT/JP2022/014205 2021-04-26 2022-03-25 経肺又は経鼻投与用ワクチン組成物 WO2022230485A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023517165A JPWO2022230485A1 (ja) 2021-04-26 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074100 2021-04-26
JP2021074100 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230485A1 true WO2022230485A1 (ja) 2022-11-03

Family

ID=83847424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014205 WO2022230485A1 (ja) 2021-04-26 2022-03-25 経肺又は経鼻投与用ワクチン組成物

Country Status (2)

Country Link
JP (1) JPWO2022230485A1 (ja)
WO (1) WO2022230485A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515851A (ja) * 2004-10-05 2008-05-15 サイトス バイオテクノロジー アーゲー Vlp−抗原コンジュゲートとワクチンとしてのその使用
WO2011105520A1 (ja) * 2010-02-26 2011-09-01 国立大学法人 長崎大学 抗原または薬物送達複合体
JP2014508153A (ja) * 2011-03-02 2014-04-03 キュアバック ゲーエムベーハー 高齢患者におけるワクチン接種
JP2019531090A (ja) * 2016-09-14 2019-10-31 ウニベルシテ カソリーク デ ルーベン 改変されたvsv−gおよびそのワクチン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515851A (ja) * 2004-10-05 2008-05-15 サイトス バイオテクノロジー アーゲー Vlp−抗原コンジュゲートとワクチンとしてのその使用
WO2011105520A1 (ja) * 2010-02-26 2011-09-01 国立大学法人 長崎大学 抗原または薬物送達複合体
JP2014508153A (ja) * 2011-03-02 2014-04-03 キュアバック ゲーエムベーハー 高齢患者におけるワクチン接種
JP2019531090A (ja) * 2016-09-14 2019-10-31 ウニベルシテ カソリーク デ ルーベン 改変されたvsv−gおよびそのワクチン

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAMADA ERI, KUROSAKI TOMOAKI, HASHIZUME JUNYA, HARASAWA HITOMI, NAKAGAWA HIROO, NAKAMURA TADAHIRO, KODAMA YUKINOBU, SASAKI HITOSHI: "Anionic Complex with Efficient Expression and Good Safety Profile for mRNA Delivery", PHARMACEUTICS, vol. 13, no. 1, pages 126, XP055982264, DOI: 10.3390/pharmaceutics13010126 *
KLASSE P. J., NIXON DOUGLAS F., MOORE JOHN P.: "Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans", SCIENCE ADVANCES, vol. 7, no. 12, 19 March 2021 (2021-03-19), pages 8065 - 19, XP055982266, DOI: 10.1126/sciadv.abe8065 *
TAI WANBO; ZHANG XIUJUAN; DRELICH ALEKSANDRA; SHI JUAN; HSU JASON C.; LUCHSINGER LARRY; HILLYER CHRISTOPHER D.; TSENG CHIEN-TE K.;: "A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2", CELL RESEARCH, SPRINGER SINGAPORE, SINGAPORE, vol. 30, no. 10, 5 August 2020 (2020-08-05), Singapore , pages 932 - 935, XP037260927, ISSN: 1001-0602, DOI: 10.1038/s41422-020-0387-5 *

Also Published As

Publication number Publication date
JPWO2022230485A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
Ibba et al. Advances in mRNA non-viral delivery approaches
Wiethoff et al. Barriers to nonviral gene delivery
US20240041785A1 (en) Compositions and methods for stabilization of lipid nanoparticle mrna vaccines
CA2516188C (en) Chitosan-derivatives for gene delivery and expression
JP5835741B2 (ja) 抗原または薬物送達複合体
US20220001025A1 (en) RNA Particles Comprising Polysarcosine
US20210330600A1 (en) Nanoparticle compositions for efficient nucleic acid delivery and methods of making and using the same
US9730893B2 (en) Lipid assemblies comprising anionic lysolipids and use thereof
Even-Or et al. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS). II. Studies in mice and ferrets and mechanism of adjuvanticity
US20240327841A1 (en) Compositions comprising doped silicon particles, and related methods
WO2020069718A1 (en) Rna particles comprising polysarcosine
JP5382682B2 (ja) 薬物送達複合体
EP4351649A1 (en) Nucleic acid vector compositions
US20230149535A1 (en) Vaccines for coronavirus and methods of using the same
WO2022230485A1 (ja) 経肺又は経鼻投与用ワクチン組成物
CN116685331A (zh) 用融合相关的小跨膜蛋白配制的蛋白脂质囊泡
Kinsey et al. Non-viral gene delivery to the lungs
EP2968598A2 (en) Treatment for exposure to nerve agent
Sun et al. Enhanced in vivo gene expression mediated by listeriolysin O incorporated anionic LPDII: Its utility in cytotoxic T lymphocyte-inducing DNA vaccine
US20220378905A1 (en) Composite-type nano-vaccine particle
JP2005287309A (ja) 遺伝子導入を増強するための薬剤および方法
US20230190653A1 (en) Method for reducing off-target uptake or accumulation of agents
through Antisense 505. Effective Transgene Expression in the Murine Lung Using Compacted DNA Nanoparticles Formulated with Plasmid DNAs of 5, 10, and 20 kbp
CN118434400A (zh) 递送包含核酸的活性剂的组合物和方法
CN117460537A (zh) 核酸递送

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22793508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517165

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22793508

Country of ref document: EP

Kind code of ref document: A1