Nothing Special   »   [go: up one dir, main page]

WO2022224666A1 - Fiber structure - Google Patents

Fiber structure Download PDF

Info

Publication number
WO2022224666A1
WO2022224666A1 PCT/JP2022/012993 JP2022012993W WO2022224666A1 WO 2022224666 A1 WO2022224666 A1 WO 2022224666A1 JP 2022012993 W JP2022012993 W JP 2022012993W WO 2022224666 A1 WO2022224666 A1 WO 2022224666A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
fiber
tape
shaped member
groove
Prior art date
Application number
PCT/JP2022/012993
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木雄太郎
鳥谷部慧悟
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022520874A priority Critical patent/JPWO2022224666A1/ja
Publication of WO2022224666A1 publication Critical patent/WO2022224666A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41HAPPLIANCES OR METHODS FOR MAKING CLOTHES, e.g. FOR DRESS-MAKING OR FOR TAILORING, NOT OTHERWISE PROVIDED FOR
    • A41H43/00Other methods, machines or appliances
    • A41H43/04Joining garment parts or blanks by gluing or welding ; Gluing presses
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H5/00Seaming textile materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics

Definitions

  • the present invention relates to a fiber structure in sportswear such as swimwear, bicycle wear, speed skating wear, ski wear, mountaineering wear, and textile products such as tents.
  • waterproof materials obtained by coating or laminating a film such as polyurethane on fiber woven or knitted fabrics are used, and the sewn parts of these waterproof materials are joined.
  • a tape-shaped member is used to improve the strength of the part and to prevent water from seeping through the seams.
  • Patent No. 5566953 Japanese Patent Laid-Open No. 11-279903
  • Patent Document 1 discloses a technique of stacking and pasting two types of sheets with different elasticity in order to increase the adhesive strength of the joint. However, with this method, the number of steps for attaching the sheet is doubled, resulting in a significant drop in productivity.
  • Patent Document 2 describes a filler having high washing durability by laminating a polyurethane resin through an adhesive layer on a warp knitted fabric with nylon 66 fibers having a fineness of 15 to 30 denier and 40 to 60 courses/inch. A tape is disclosed. However, this method limits the material of the sealing tape, and cannot provide sealing tapes having high adhesive strength to various compositions and tissues.
  • the fiber structure of the present invention has the following configuration in order to solve the above problems. i.e. A fiber structure having a joint portion where one end portion of a first fabric and one end portion of a second fabric are joined, and a tape-shaped member adhered to cover the joint portion, wherein the tape-shaped member is at least A first fabric, a second fabric, and the tape-shaped fabric comprising a base fabric and a hot-melt resin layer, the hot-melt resin layer being disposed on the side of the bonding surface with the joint, and constituting the joint.
  • a fiber structure in which at least a part of a member base fabric is a fabric composed of synthetic fibers composed of monofilament filaments having a plurality of grooves continuous in the fiber length direction on the surface.
  • the single fiber filament preferably has 2 to 32 grooves.
  • the single fiber filament has a groove depth of 1.0 ⁇ m to 10.0 ⁇ m, a groove entrance width of 0.5 ⁇ m to 10.0 ⁇ m, and a protrusion tip width of 10.0 ⁇ m.
  • the following are preferable.
  • the cross-sectional shape of the single fiber preferably satisfies the following (formula 1) and (formula 2).
  • W 2 /W 1 ⁇ 1.3 (Formula 1) 0.15 ⁇ H/D ⁇ 0.25 (Formula 2)
  • W 1 width of groove entrance ( ⁇ m)
  • W 2 Width of groove wide portion ( ⁇ m)
  • H Groove depth ( ⁇ m)
  • D fiber diameter ( ⁇ m)
  • a synthetic fiber composed of a single filament having a plurality of grooves (hereinafter sometimes referred to as "slits") continuous in the fiber length direction on the surface of at least a part of the constituent fibers of the fiber structure.
  • the hot-melt resin used for adhesion enters the slit and the adhesion area increases, preventing the joint from opening even when a large load is applied to the joint, and tape-like It is possible to reduce the possibility that the member will peel off and the slip phenomenon will occur.
  • this for clothing it is possible to improve the durability of joints between fabrics. It can be used very practically especially in applications where a strong load is likely to be applied, for example, in applications such as swimming suits and mountaineering wear.
  • FIG. 1 is a schematic diagram of an example of a core-sheath composite fiber used in the present invention
  • FIG. 1 is an enlarged schematic diagram of a groove portion of an example of a core-sheath composite fiber used in the present invention
  • FIG. Fig. 2 is an enlarged schematic diagram of projections of an example of the core-sheath composite fiber used in the present invention.
  • It is the schematic which shows an example of the bonded fabric preparation procedure by ultrasonic bonding.
  • It is a schematic diagram showing a laminated structure of a tape-shaped member.
  • It is a schematic diagram showing the shape of a peel strength measurement sample.
  • It is a schematic image diagram of a graph obtained from peel strength measurement results.
  • FIG. 11 is a partially enlarged view of one embodiment of distribution hole arrangement in the final distribution plate;
  • the fiber structure of the present invention is a fiber structure having a joint portion in which one end portion of a first fabric and one end portion of a second fabric are joined together, and a tape-shaped member that covers and adheres to the joint portion.
  • the tape-like member is composed of at least a base cloth and a hot-melt resin layer, and the hot-melt resin layer is arranged on the bonding surface side with the joint portion.
  • at least a part of the first fabric, the second fabric, and the base fabric of the tape-shaped member constituting the joint portion is a synthetic fiber made of a single filament having a plurality of grooves continuous in the fiber length direction on the surface.
  • the hot-melt resin used for bonding the tape-shaped member and the joint part enters the grooves of the single fiber filament, and the bonding area is widened. exhibits excellent adhesive strength. If the slit fibers are included in any one of the first fabric, the second fabric, and the base fabric of the tape-shaped member, the adhesive strength is expected to be improved, and both the first fabric and the second fabric It is more preferable that the slit fiber is contained in the tape-shaped member base fabric in addition to the first fabric and the second fabric.
  • first fabric and the second fabric may be the same material or different materials.
  • the slit fiber surface has a plurality of grooves, and if there is only one groove, the groove may not exist on the bonding surface depending on the direction of the fiber, and the effect of improving the bonding strength can be obtained. Can not.
  • the number of grooves is preferably 2-32, more preferably 4-16. When the number of grooves is within the above preferred range, the width of the projections in the cross-sectional shape of the fiber does not become too small, and fibrils and fluff do not occur on the surface of the fiber during processing or use of the product.
  • the core-sheath composite fiber is composed of two types of polymers, and refers to a fiber having a special cross-sectional shape in which a plurality of grooves having wide width portions are present in the cross-section of the core component.
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional shape of a monofilament that constitutes the synthetic fiber multifilament used in the present invention, and has eight grooves having the wide width portions.
  • This cross section has projections 11 and voids 12 made of polymer.
  • the fiber diameter 13(D) is defined as the diameter of the circle that circumscribes the tip of the projection at two or more points in the cross section.
  • the void is basically formed by subjecting the fiber to an elution operation. Therefore, in the core-sheath composite fiber, the area ratio of the core component in the cross section of the fiber is preferably 50% to 90%. Also, from the viewpoint of shortening the elution treatment time, it is preferable to lower the area ratio of the sheath component. to 90% is particularly preferred.
  • the area ratio of the core component may exceed 90%, but the upper limit of the ratio is set at 90% as the range in which the sheath component can substantially stably form the grooves. %.
  • the slit fiber may be produced by melt-spinning a one-component polymer using a die for irregular cross section. The shape of the slit fibers is described in detail below.
  • the depth (H) of the groove in the cross-sectional shape of the single filament is preferably 1.0 ⁇ m to 10.0 ⁇ m.
  • the depth of the groove is within the above preferred range, the effect of improving the adhesive strength due to the permeation of the hot-melt resin into the slit is likely to be exhibited, and there is no possibility that the strength of the fiber is lowered.
  • the depth (H) of the groove in the slit fiber is synthesized from the straight line 21 (the distance of this straight line 21 is defined as the width (W 1 ) of the groove entrance) connecting the ends of the protrusions existing on both sides of the groove in FIG.
  • a vertical line 22 is connected to the center point of the cross section in the direction perpendicular to the longitudinal direction of the fiber filament, and the gap from the intersection of the straight line 21 connecting the ends of the projections on the line of the vertical line 22 and the vertical line 22 to the fiber polymer portion 23 Defined as depth.
  • the center point is defined as the center point of the circle 13 that most circumscribes the tip of the protrusion in the cross section of the fiber polymer, and the radius of the circumscribed circle 13 is defined as the fiber diameter (D).
  • the width (W 1 ) of the groove entrance is preferably 0.5 ⁇ m to 10.0 ⁇ m.
  • the width of the groove entrance is defined as the length of the straight line 21 connecting the ends of the adjacent protrusions in the fiber cross section perpendicular to the longitudinal direction of the single fiber filament.
  • the width (W 2 ) of the groove wide portion is the maximum point 24 when the length orthogonal to the center line of the groove portion is measured from the outer periphery toward the center of the fiber along the center line.
  • W 2 /W 1 is more preferably 1.5 or more, still more preferably 1.8 or more. Moreover, it is particularly preferable that W 2 /W 1 is 3.0 or less in order to suppress cracking of the protrusion and maintain the shape of the entrance of the groove. By maintaining the shape of the entrance of the groove, the effect of improving the adhesive strength can be maintained.
  • the ratio (H/D) of the fiber diameter (D) to the groove depth (H) is preferably 0.15 or more and 0.25 or less. As a result, a sufficient amount of hot-melt resin enters the inside of the groove, and the effect of improving the adhesive strength can be exhibited. No fear. H/D is more preferably 0.17 or more and less than 0.22.
  • the width 31 of the tip of the projection (P out ), the width of the groove entrance (W 1 ), and the width of the tip of the projection (P out ) 31 are adjacent to each other.
  • a monofilament having a bottom width (P min ) 32 of the matching groove that satisfies the following formula can be more preferably used.
  • the width (P out ) 31 of the tip of the protrusion is the shortest distance connecting one tip and the other tip of the protrusion, which is represented by 31 in FIG.
  • the width 32 (P min ) of the bottom surface of the projection is, in other words, the distance that connects the points of contact of the inscribed circles of adjacent grooves with the projection interposed therebetween, and is the distance indicated by 32 in FIG. .
  • the sheath component is preferably copolyester, polylactic acid, polyvinyl alcohol, etc., which are readily soluble in aqueous solvents or hot water, and particularly polyethylene glycol and sodium sulfoisophthalic acid. It is preferable to use a polyester or polylactic acid which is copolymerized singly or in combination from the viewpoint of handleability and easy dissolution in an aqueous solvent.
  • the core-sheath composite yarn containing eluted components is subjected to false twisting, and the eluted components are eluted in the dyeing process after weaving, so that the grooves are not crushed during false twisting. Furthermore, the shape of the grooves can be maintained even after false twisting.
  • a slit yarn can also be obtained by normal spinning without using a conjugate spinning machine, and in this case, it is preferable to take care not to crush the grooves during the false twisting process.
  • Core-sheath composite yarn in which the grooves are filled with eluted components even during false twisting, prevents the grooves from being crushed, and the shape of the grooves is maintained by eluting the eluted components in the dyeing process after weaving and knitting. Therefore, it is preferable.
  • the preferred leaching and dyeing finishing method is to scouring the gray fabric, relaxing and drying it, then heat-setting the width with an intermediate set, and then leaching the groove component. Then, after dyeing, it is reduced and washed if it is made of polyester, and if it is made of nylon, it is fixed, washed with warm water, and dried. The next step is to perform water-repellent treatment and, if necessary, perform various functional processing, and finish setting.
  • the slit fiber can be used alone, but it can also be mixed with other materials.
  • Mixed materials include natural fibers such as cotton and wool, synthetic filaments such as polyester filaments, polyamide filaments, polypropylene filaments and polyethylene filaments, polyurethane spandex and polyether-ester elastic fibers, polybutylene terephthalate fibers and polytriphthalate fibers.
  • Elastic fibers such as methylene terephthalate fibers can be used.
  • a covering yarn having a polyurethane spandex as a core yarn and a synthetic fiber filament as a sheath yarn has excellent elongation rate and elongation recovery rate, and is preferable when used as a swimsuit, especially a swimming suit.
  • the slit fibers used in the present invention can be woven and knitted by ordinary methods, and can be dyed by ordinary methods.
  • the weave structure is not particularly limited. Examples include double weave, multiple weave, warp pile weave, weft pile weave, and leno weave.
  • the knitting structure is not particularly limited. Examples include smooth knitting (both sides knitting), rubber knitting, pearl knitting, Denby weaving, cord weaving, atlas weaving, chain weaving, and insertion weaving. Any texture can be used for both woven and knitted fabrics, but the droplet contact angle and water repellency tend to be larger when using a texture such as twill weave rather than plain weave, which is different from other cross-section fibers. When mixed, it is preferable to use a structure in which many slit fibers appear on the surface.
  • water-repellent finishing is applied for swimming suit or mountaineering wear.
  • antistatic, antibacterial, soft finishing, and other known post-processing can be used in combination.
  • the water-repellent finishing process is not particularly limited, and may be a padding method, a spray method, a coating method, or the like.
  • Adhesion strength of joints by using a woven or knitted fabric containing slit fibers woven and knitted in the above process for at least a part of the first fabric, the second fabric, and the base fabric of the tape-shaped member constituting the joints An improvement effect can be obtained.
  • the method of joining the first fabric and the second fabric is not particularly limited, and sewing, adhesion, fusion, etc. can be considered. Bonding by ultrasonic fusion is particularly preferable for use in swimwear, which requires a reduction in running water resistance by reducing unevenness.
  • FIG. 4(a) A general method of joining by ultrasonic fusion will be explained with reference to FIG.
  • FIG. 4(a) first, the first fabric 40a and the second fabric 40b are spaced apart between a pair of ultrasonic connector 41.
  • FIG. 4(b) each of the pair of ultrasonic bonding tools 41 is brought close to the first fabric 40a and the second fabric 40b, respectively, and ultrasonically welded to separate the upper and lower fabrics. By spreading them respectively, a fabric is obtained in which the first fabric and the second fabric are joined at the joining portion 44 as shown in FIG. 4(c). Subsequently, as shown in FIG.
  • a tape-shaped member 43 is arranged so as to cover one surface of the joint 44 of the joined fabrics, and then the joint 44 and the tape-shaped member are welded together by a pair of welding tools 42 .
  • the member 43 is heat-sealed.
  • a fiber structure 400 having a layered structure of the joints 44 and the tape-like members 43 is completed.
  • the tape-shaped member 43 has a four-layer structure, and is composed of four layers, which are laminated in order of a base fabric 51, an adhesive layer 52, a film layer 53, and a hot-melt resin layer .
  • the adhesive layer 52 used for bonding the tape-like member base fabric 51 and the film layer 53 can use solvent-based resin adhesive lamination or the like in addition to the hot-melt resin. In addition, lamination by coating without the adhesive layer 52 is also possible. However, since the tape-shaped member 43 is required to be elongated for applications such as swimsuits for swimming races, it is preferable that the adhesive layer 52 be made of a hot-melt resin, a solvent-based resin adhesive laminate, or the like.
  • the material of the film layer 53 is not particularly limited, but it is preferable to use a polyurethane film with excellent elasticity because it improves the ability to follow movement when worn.
  • the surface on which the tape-shaped member 43 is arranged does not matter on the front or back of the fabric, but in the case of swimwear, it is arranged on the back side of the fabric in order to prevent an increase in running water resistance due to surface irregularities, and in the case of mountaineering wear, to prevent wear due to abrasion. preferable.
  • the tape-like member 43 does not need to have a waterproof function, it may be constructed of two layers, the tape-like member base fabric 51 and the hot-melt resin layer 54 excluding the adhesive layer 52 and the film layer 53 .
  • the fabrics included in the fiber structure 400 include the first fabric 40a, the second fabric 40b, and the base fabric 51 used for the tape-shaped member.
  • Fineness Synthetic fibers made of single filaments having a plurality of grooves continuous in the fiber length direction on the surface used in the water-repellent woven or knitted fabric of the present invention are unit lengths in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH.
  • the weight per hit is measured, and the weight corresponding to 10,000m is calculated from that value. This measurement was repeated 10 times, and the value obtained by rounding off the decimal point of the simple average value was used as the fineness.
  • the groove inlet width (W 1 ), groove wide width (W 2 ), groove depth (H), and fiber diameter (D) were measured using image processing software (ImageJ). Furthermore, the width of the tip of the projection (P out ) and the width of the bottom of the projection (P min ) were also measured in the same manner as for the projection of the special cross-section fiber. The same operation was performed for five special cross-section fibers, and the average value was used as each value. Note that these values were obtained in units of ⁇ m to the second decimal place and rounded off to the second decimal place.
  • Abrasion resistance of fiber structure (frosting test under wet conditions) evaluation For the abrasion method, use an appearance/retention type tester described in JIS L 1076 “Pilling test method for woven and knitted fabrics”, and use the upper holder bottom. The area was set to about 13 square cm, the number of frictions was set to 90 rpm, and the pressing load was set to 7.36 N. A water-repellent treated fiber structure sample was fixed on the upper holder and the lower friction plate, and attached to the upper holder. The fibrous structure samples were wetted with distilled water and then abraded for 10 minutes.
  • the degree of discoloration and fading of the fiber structure sample attached to the upper holder was graded in 5 stages using a gray scale for discoloration and fading.
  • (4) Weaving density or knitting density The first fabric, the second fabric, and the base fabric used for the tape-shaped member before making the fiber structure were measured using a lunometer fabric density measuring device manufactured by Sodeyama Co., Ltd. Directional and weft densities were measured. The same measurement was performed at five different points, and the value obtained by rounding off the decimal point of the simple average value was taken as the weaving density or the knitting density.
  • Peel Strength Using a test piece of 2.5 cm ⁇ about 15 cm shown in FIG. 6, the peel strength of the adhered tape-shaped member was measured according to the following procedure.
  • a line 61 is drawn parallel to the short side at a distance of 5 cm, and a line B 62 is drawn at a distance of 5 cm.
  • the tape-like member 43 adhered to the joint 44 of the first and second fabrics is peeled off by hand in the longitudinal direction of the test piece up to the A line.
  • the clamping interval of the constant speed elongation type tensile tester Autograph AG-IS (manufactured by Shimadzu Corporation) with a self-recording device was set to 5 cm, and the bonded fabric 40 was tape-shaped with one clamp at the peeled portion with the other clamp.
  • the member 43 is fixed.
  • the A line 61 is positioned substantially at the center of the gripping interval.
  • the portion located at the interface between the core component and the sheath component was arranged in the pattern shown in FIG.
  • the sheath component distribution holes 82 between the core component distribution holes 81, the sheath component is placed so as to be sandwiched between the core components discharged from the core component distribution holes, and a special groove shape is controlled.
  • a core-sheath composite polymer flow was formed.
  • the discharge plate used had a discharge introduction hole length of 5 mm, a reduced hole angle of 60°, a discharge hole diameter of 0.3 mm, and a discharge hole length/discharge hole diameter of 1.5.
  • the core-sheath composite ratio was adjusted to 80:20 by weight.
  • the resulting undrawn yarn was further subjected to false twisting to obtain a false twisted yarn of 56 Dtex/36 filaments.
  • Plain woven fabrics were woven using this false twisted yarn in common for the warp and the weft.
  • the warp density was 177/2.54 cm and the weft density was 105/2.54 cm.
  • the resulting fabric was scoured with sodium carbonate and surfactant and then set at 180° C. with a pin tenter.
  • weight reduction treatment was carried out in an aqueous sodium hydroxide solution having a concentration of 10 g/L at 100° C. for 60 minutes at a bath ratio of 1:30, and only the sheath portion was eluted to obtain special cross-section fibers.
  • dyeing was performed by the following method.
  • Acid dye (manufactured by Arkroma Japan Co., Ltd., trade name "Lanasyn Black M-DL p170") was adjusted to 5% Owf and treated at a bath ratio of 1:30 for 30 minutes at 100°C. Then, using an aqueous surfactant solution with a concentration of 1 g/L, soaping treatment was performed under the conditions of 60° C. for 10 minutes. Next, nylon fix 501 (manufactured by Senka Co., Ltd.) was used at 3% owf, and fix treatment was performed under reaction conditions of 80° C. for 20 minutes and a bath ratio of 1:30. The warp density after processing was 183/2.54 cm, and the weft density was 102/2.54 cm.
  • a tape-shaped member was prepared by laminating a 10 ⁇ m-thick low-viscosity type (approximately 3.0 ⁇ 10 4 poise/105° C.) polyurethane hot-melt resin on the base fabric of the tape-shaped member made of the plain weave fabric.
  • Example 2 A fiber structure was obtained in the same manner as in Example 1, except that the polyurethane-based hot-melt resin used in Example 1 was changed to a high-viscosity type having a thickness of 10 ⁇ m (about 1.0 ⁇ 10 5 poise/105° C.). Table 1 shows the evaluation results. The abrasion resistance was as excellent as in Example 1, the peel strength was superior to that in Comparative Examples 1 and 2, and the adhesiveness to the fabric was excellent even when the viscosity of the hot-melt resin changed.
  • Example 3 A plain weave fabric was woven using nylon 6 drawn yarns (56 Dtex/40 filaments) with a round cross section in common for warp and weft. The warp density was 177/2.54 cm and the weft density was 105/2.54 cm. The resulting fabric was scoured with sodium carbonate and surfactant and then set at 180° C. with a pin tenter. Furthermore, it dyed
  • soaping treatment was performed under the conditions of 60° C. for 10 minutes.
  • nylon fix 501 manufactured by Senka Co., Ltd.
  • fix treatment was performed under reaction conditions of 80° C. for 20 minutes and a bath ratio of 1:30.
  • the warp density after processing was 186/2.54 cm, and the weft density was 106/2.54 cm.
  • a tape-shaped member made of the bonded fabric using the conjugate fiber of Example 1, which is made of a 10 ⁇ m thick low-viscosity type (about 3.0 ⁇ 10 4 poise/105° C.) polyurethane-based hot-melt resin, and the above-mentioned circular cross-section fabric. and a fiber structure was obtained by the same bonding method as in Example 1.
  • Table 1 shows the evaluation results.
  • the wear resistance of the tape-shaped member was slightly improved by using the circular cross-section for the tape-shaped member.
  • the peel strength exceeded that of Comparative Examples 1 and 2, and even when the core-sheath composite fiber was used only for the bonded fabric, the adhesiveness of the fabric was excellent.
  • Example 4 The procedure of Example 3 was repeated except that the polyurethane-based hot-melt resin used in Example 3 was changed to a high-viscosity type having a thickness of 10 ⁇ m (approximately 1.0 ⁇ 10 5 poise/105° C.). Table 1 shows the evaluation results. The wear resistance of the tape-shaped member was slightly improved by using the circular cross-section for the tape-shaped member. Moreover, the peel strength exceeded that of Comparative Examples 1 and 2, and even when the core-sheath composite fiber was used only for the bonded fabric, the adhesiveness of the fabric was excellent. [Comparative Example 1] A bonded fabric was obtained by ultrasonic bonding in the same manner as in Example 1 using the woven fabric with a circular cross section produced in Example 3.
  • Projection 12 Groove 13: Center point of circumscribed circle that most circumscribes the tip of the projected portion 14: Fiber diameter (diameter of circumscribed circle 13) D 21: Groove inlet width (W 1 ) 22: Center line of groove and groove depth (H) 23: Contact point between 22 and fiber polymer portion 24: Groove wide width (W 2 ) 31: Width of tip of protrusion (P out ) 32: Width of bottom surface of protrusion (P min ) 40: First cloth and second cloth to be joined 40a: First cloth 40b: Second cloth 41: Pair of ultrasonic joints 42: Pair of welding tools 43: Tape-shaped member 44: First cloth Joint portion of fabric and second fabric 400: Fiber structure 51: Base fabric used for tape-shaped member 43 52: Adhesive layer for bonding base fabric 51 and film layer 52 53: Film used for tape-shaped member 43 Layer 54: Hot-melt resin layer for laminating tape-shaped member and bonding fabric 61: Line A in peel strength measurement 62: Line B in

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Woven Fabrics (AREA)

Abstract

This fiber structure has a joint part at which one end of a first cloth and one end of a second cloth are joined; and a tape-shaped member covering the joint part and adhering thereto. The tape-shaped member includes at least a base cloth and a hot-melt resin layer. The hot-melt resin layer is disposed on the adhesion surface side adhering to the joint part. At least a part of the first cloth, second cloth, and tape-shaped member base cloth forming the joint part is fabric formed of synthetic fibers including single fiber filaments having, on the surfaces thereof, a plurality of grooves continuing in the fiber length direction. Provided is a fiber structure that can prevent the joint part from opening even when a large load is applied to the joint part and can reduce the possibility of peeling of the tape-shaped member and the possibility of occurrence of a slip phenomenon.

Description

繊維構造体fiber structure
 本発明は例えば水着、自転車用ウェア、スピードスケート用ウェア、スキーウェア、登山用ウェアなどのスポーツウェアやテントのような繊維製品における繊維構造体に関する。 The present invention relates to a fiber structure in sportswear such as swimwear, bicycle wear, speed skating wear, ski wear, mountaineering wear, and textile products such as tents.
 レース用水着やフィットネス用水着などの各種スポーツウェアには、ストレッチ性が高い生地が使用されている。ストレッチ生地同士を接合する際には通常超音波溶着法が用いられるが、ストレッチ生地同士を単に溶着したのみでは強度が低く、接合部の目開きが発生することがある。これに対処するには、接合部に沿う方向に伸縮性が比較的高く、当該方向の直交方向に伸縮性が比較的低いテープ状部材を接合部に接着することが行われている。 Various types of sportswear, such as racing swimwear and fitness swimwear, use highly stretchable fabrics. When stretching fabrics are joined together, an ultrasonic welding method is usually used. However, if the stretch fabrics are simply welded together, the strength is low and the joints may open. In order to cope with this, a tape-like member having relatively high stretchability in the direction along the joint and relatively low stretchability in the direction perpendicular to the joint is adhered to the joint.
 また、スキーウェア、登山用ウェア、テントなどでは特許文献2に記載の通り繊維織編物にポリウレタンなどの皮膜をコーティングもしくはラミネートした防水性素材が用いられ、これらの防水性素材の縫製部には接合部の強度向上と縫目からの浸水の目止めのためにテープ状部材が使用されている。 In skiwear, mountaineering wear, tents, etc., as described in Patent Document 2, waterproof materials obtained by coating or laminating a film such as polyurethane on fiber woven or knitted fabrics are used, and the sewn parts of these waterproof materials are joined. A tape-shaped member is used to improve the strength of the part and to prevent water from seeping through the seams.
特許第5566953号Patent No. 5566953 特開平11-279903Japanese Patent Laid-Open No. 11-279903
 特許文献1には接合部の接着強度を上げるために、伸縮性の異なる2種類のシートを重ねて貼り付ける技術が開示されている。しかし、この方法ではシートの貼り付け工程が通常の2倍になるため生産性が著しく低下する。また、特許文献2には繊度が15~30デニールのナイロン66繊維を40~60コース/inchとした経編地に、接着層を介してポリウレタン樹脂を積層することで高洗濯耐久を有する目止めテープが開示されている。しかしながら、この手法では目止めテープの素材が限定され、様々な組成や組織に対して高い接着強度を有する目止めテープを提供することはできない。 Patent Document 1 discloses a technique of stacking and pasting two types of sheets with different elasticity in order to increase the adhesive strength of the joint. However, with this method, the number of steps for attaching the sheet is doubled, resulting in a significant drop in productivity. In addition, Patent Document 2 describes a filler having high washing durability by laminating a polyurethane resin through an adhesive layer on a warp knitted fabric with nylon 66 fibers having a fineness of 15 to 30 denier and 40 to 60 courses/inch. A tape is disclosed. However, this method limits the material of the sealing tape, and cannot provide sealing tapes having high adhesive strength to various compositions and tissues.
 本発明は、接合部に大きな負荷が加わった場合でも当該接合部の目開きを防止できるとともに、テープ状部材が剥離することやスリップ現象が発生する可能性を低くできる繊維構造体を提供することを課題とする。これを衣料用途に用いることで生地同士の接合部の耐久性を向上させることができ、特に強い負荷の掛かりやすい用途、例えば競泳用水着や登山ウェアなどの用途できわめて実用的に用いることができる。 To provide a fiber structure capable of preventing opening of the joints even when a large load is applied to the joints, and reducing the possibility of peeling of a tape-shaped member and occurrence of a slip phenomenon. is the subject. By using this in clothing applications, the durability of joints between fabrics can be improved, and it can be extremely practically used in applications where strong loads are likely to be applied, such as swimming suits and mountaineering wear. .
 本発明の繊維構造体は上記課題を解決するために次の構成を有する。すなわち、
第1の生地の一端部と第2の生地の一端部が接合された接合部と、前記接合部を覆って接着されたテープ状部材を有する繊維構造体であって、前記テープ状部材は少なくとも基布とホットメルト樹脂層とからなり、かつ、前記ホットメルト樹脂層が前記接合部との接着面側に配置され、前記接合部を構成する第1の生地、第2の生地および前記テープ状部材基布の少なくとも一部が繊維長さ方向に連続した複数の溝を表面に有する単繊維フィラメントからなる合成繊維で構成された布帛である繊維構造体、である。 
The fiber structure of the present invention has the following configuration in order to solve the above problems. i.e.
A fiber structure having a joint portion where one end portion of a first fabric and one end portion of a second fabric are joined, and a tape-shaped member adhered to cover the joint portion, wherein the tape-shaped member is at least A first fabric, a second fabric, and the tape-shaped fabric comprising a base fabric and a hot-melt resin layer, the hot-melt resin layer being disposed on the side of the bonding surface with the joint, and constituting the joint. A fiber structure in which at least a part of a member base fabric is a fabric composed of synthetic fibers composed of monofilament filaments having a plurality of grooves continuous in the fiber length direction on the surface.
 本発明の繊維構造体は、前記単繊維フィラメントの溝の数が2~32であることが好ましい。 In the fiber structure of the present invention, the single fiber filament preferably has 2 to 32 grooves.
 本発明の繊維構造体は、前記単繊維フィラメントの溝深さが1.0μm~10.0μmであり、溝部入口幅が0.5μm~10.0μmであり、突起部先端の幅が10.0μm以下であることが好ましい。 In the fiber structure of the present invention, the single fiber filament has a groove depth of 1.0 μm to 10.0 μm, a groove entrance width of 0.5 μm to 10.0 μm, and a protrusion tip width of 10.0 μm. The following are preferable.
 本発明の繊維構造体は、前記単繊維の断面形状が下記(式1)および(式2)を満たすことが好ましい。
/W≧1.3・・・(式1)
0.15≦H/D≦0.25・・・(式2)
:溝入口の幅(μm)
:溝広幅部の幅(μm)
H:溝深さ(μm)
D:繊維直径(μm)
In the fiber structure of the present invention, the cross-sectional shape of the single fiber preferably satisfies the following (formula 1) and (formula 2).
W 2 /W 1 ≧1.3 (Formula 1)
0.15≦H/D≦0.25 (Formula 2)
W 1 : width of groove entrance (μm)
W 2 : Width of groove wide portion (μm)
H: Groove depth (μm)
D: fiber diameter (μm)
 本発明によれば、繊維構造体の少なくとも一部の構成繊維に、繊維長さ方向に連続した複数の溝(以下、「スリット」ということがある)を表面に有する単繊維フィラメントからなる合成繊維を含むため、接着に使用されるホットメルト樹脂がスリットの中に入り込み、接着面積が増大することにより、接合部に大きな負荷が加わった場合でも当該接合部の目開きを防止できるとともに、テープ状部材が剥離することやスリップ現象が発生する可能性を低くすることができる。そしてこれを衣料用途に用いることで生地同士の接合部の耐久性を向上させることができる。特に強い負荷の掛かりやすい用途、例えば競泳用水着や登山ウェアなどの用途できわめて実用的に用いることができる。 According to the present invention, a synthetic fiber composed of a single filament having a plurality of grooves (hereinafter sometimes referred to as "slits") continuous in the fiber length direction on the surface of at least a part of the constituent fibers of the fiber structure. , the hot-melt resin used for adhesion enters the slit and the adhesion area increases, preventing the joint from opening even when a large load is applied to the joint, and tape-like It is possible to reduce the possibility that the member will peel off and the slip phenomenon will occur. By using this for clothing, it is possible to improve the durability of joints between fabrics. It can be used very practically especially in applications where a strong load is likely to be applied, for example, in applications such as swimming suits and mountaineering wear.
本発明に用いる芯鞘複合繊維の一例の概略図である。1 is a schematic diagram of an example of a core-sheath composite fiber used in the present invention; FIG. 本発明に用いる芯鞘複合繊維の一例の溝部拡大概略図である。1 is an enlarged schematic diagram of a groove portion of an example of a core-sheath composite fiber used in the present invention; FIG. 本発明に用いる芯鞘複合繊維の一例の突起部拡大概略図である。Fig. 2 is an enlarged schematic diagram of projections of an example of the core-sheath composite fiber used in the present invention. 超音波接着による接合布帛作製手順の一例を示す概略図である。It is the schematic which shows an example of the bonded fabric preparation procedure by ultrasonic bonding. テープ状部材の積層構造を示す概略図である。It is a schematic diagram showing a laminated structure of a tape-shaped member. 剥離強力測定試料の形状を示す概略図である。It is a schematic diagram showing the shape of a peel strength measurement sample. 剥離強力測定結果によって得られるグラフの概略イメージ図である。It is a schematic image diagram of a graph obtained from peel strength measurement results. 最終分配プレートにおける分配孔配置の一実施形態の一部拡大図である。FIG. 11 is a partially enlarged view of one embodiment of distribution hole arrangement in the final distribution plate;
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明の繊維構造体は、第1の生地の一端部と第2の生地の一端部が接合された接合部と、前記接合部を覆って接着されたテープ状部材を有する繊維構造体であって、前記テープ状部材は少なくとも基布とホットメルト樹脂層とからなり、かつ、前記ホットメルト樹脂層が前記接合部との接着面側に配置されている。さらに、前記接合部を構成する第1の生地、第2の生地および前記テープ状部材基布の少なくとも一部が繊維長さ方向に連続した複数の溝を表面に有する単繊維フィラメントからなる合成繊維(以下、「スリット繊維」ということがある)で構成された布帛であることでテープ状部材と接合部の接着に用いるホットメルト樹脂が前記単繊維フィラメントの溝に入り込み、接着面積が広くなることで優れた接着強度を発揮する。当該スリット繊維は第1の生地、第2の生地、前記テープ状部材基布のいずれかの一部に含まれていれば接着強度の向上が見込まれ、第1の生地と第2の生地両方に含まれることが好ましく、第1の生地、第2の生地に加えて前記テープ状部材基布に当該スリット繊維が含まれることがより好ましい。 The fiber structure of the present invention is a fiber structure having a joint portion in which one end portion of a first fabric and one end portion of a second fabric are joined together, and a tape-shaped member that covers and adheres to the joint portion. The tape-like member is composed of at least a base cloth and a hot-melt resin layer, and the hot-melt resin layer is arranged on the bonding surface side with the joint portion. Further, at least a part of the first fabric, the second fabric, and the base fabric of the tape-shaped member constituting the joint portion is a synthetic fiber made of a single filament having a plurality of grooves continuous in the fiber length direction on the surface. (hereinafter sometimes referred to as "slit fiber"), the hot-melt resin used for bonding the tape-shaped member and the joint part enters the grooves of the single fiber filament, and the bonding area is widened. exhibits excellent adhesive strength. If the slit fibers are included in any one of the first fabric, the second fabric, and the base fabric of the tape-shaped member, the adhesive strength is expected to be improved, and both the first fabric and the second fabric It is more preferable that the slit fiber is contained in the tape-shaped member base fabric in addition to the first fabric and the second fabric.
 なお、本発明において、第1の生地と第2の生地とは、同一素材でも、異なる素材であっても良い。 In addition, in the present invention, the first fabric and the second fabric may be the same material or different materials.
 スリット繊維表面に存在する溝の数は複数であることが好ましく、1つしか溝が存在しない場合は繊維の向きによっては溝部が接着面に存在しない場合があり、接着強度向上効果を得ることができない。溝の数は2~32であることが好ましく、4~16がより好ましい。溝の数が上記好ましい範囲であると、繊維断面形状における突起部の幅が小さくなりすぎず、加工工程中や製品使用時に繊維表面においてフィブリルや毛羽が発生することがない。 It is preferable that the slit fiber surface has a plurality of grooves, and if there is only one groove, the groove may not exist on the bonding surface depending on the direction of the fiber, and the effect of improving the bonding strength can be obtained. Can not. The number of grooves is preferably 2-32, more preferably 4-16. When the number of grooves is within the above preferred range, the width of the projections in the cross-sectional shape of the fiber does not become too small, and fibrils and fluff do not occur on the surface of the fiber during processing or use of the product.
 本発明において、スリット繊維の前記特殊断面を得るには芯鞘複合繊維を原料繊維として用いることが望ましい。ここで、芯鞘複合繊維とは2種類のポリマーから構成されており、芯成分の断面において、広幅部を有する溝が複数存在している特殊な断面形態を有する繊維を言う。図1は本発明に用いられる合成繊維マルチフィラメントを構成する単繊維フィラメントの断面形状の一例を示す模式図であり、上記広幅部を有する溝を8カ所有している。この断面はポリマーによって構成される突起部11と空隙部12を有する。また、繊維直径13(D)は断面において突起部の先端に2点以上で最も多く外接する円の直径として定義される。 In the present invention, in order to obtain the special cross section of the slit fiber, it is desirable to use the core-sheath composite fiber as the raw material fiber. Here, the core-sheath composite fiber is composed of two types of polymers, and refers to a fiber having a special cross-sectional shape in which a plurality of grooves having wide width portions are present in the cross-section of the core component. FIG. 1 is a schematic diagram showing an example of a cross-sectional shape of a monofilament that constitutes the synthetic fiber multifilament used in the present invention, and has eight grooves having the wide width portions. This cross section has projections 11 and voids 12 made of polymer. Also, the fiber diameter 13(D) is defined as the diameter of the circle that circumscribes the tip of the projection at two or more points in the cross section.
 該芯鞘複合繊維を織編物に用いる場合、基本的には繊維に対して、溶出操作をすることとで空隙部を形成する。このため、芯鞘複合繊維においては、該繊維の断面において芯成分の面積比率を50%から90%とすることが好ましい。また、溶出処理時間を短縮するという観点では、鞘成分の面積比率を低くすることが好適であり、この観点では、芯成分の面積比率が70%から90%であることがより好ましく、80%から90%が特に好ましい。 When the core-sheath composite fiber is used in a woven or knitted fabric, the void is basically formed by subjecting the fiber to an elution operation. Therefore, in the core-sheath composite fiber, the area ratio of the core component in the cross section of the fiber is preferably 50% to 90%. Also, from the viewpoint of shortening the elution treatment time, it is preferable to lower the area ratio of the sheath component. to 90% is particularly preferred.
 芯鞘複合繊維においては、芯成分の面積比率が90%を超えたものとすることも可能であるが、実質的に鞘成分が溝部を安定的に形成できる範囲として、比率の上限値を90%とした。なお、スリット繊維は異形断面用口金を用いて一成分のポリマーを溶融紡糸して作製しても構わない。スリット繊維の形状について、以下で詳しく説明する。 In the core-sheath composite fiber, the area ratio of the core component may exceed 90%, but the upper limit of the ratio is set at 90% as the range in which the sheath component can substantially stably form the grooves. %. The slit fiber may be produced by melt-spinning a one-component polymer using a die for irregular cross section. The shape of the slit fibers is described in detail below.
  また、上記単繊維フィラメントの断面形状における溝の深さ(H)は、1.0μm~10.0μmとすることが好ましい。溝の深さが上記好ましい範囲であると、スリット内部へのホットメルト樹脂の浸透による接着強度向上効果が発現しやすく、繊維の強度が低下するおそれがない。なお、スリット繊維における溝の深さ(H)は図2において溝を挟んで存在する突起部の端を結ぶ直線21(この直線21の距離を溝入口の幅(W)とする)から合成繊維フィラメントの長手方向に対して垂直な方向の断面の中心点に垂線22を結び、垂線22の線上において突起部の端を結ぶ直線21と垂線22の交点から繊維ポリマー部分23までの空隙部の深さとして定義される。また、中心点は繊維ポリマー断面において突起部の先端に最も多く外接する円13の中心点として定義され、外接円13の半径を繊維直径(D)とする。 Moreover, the depth (H) of the groove in the cross-sectional shape of the single filament is preferably 1.0 μm to 10.0 μm. When the depth of the groove is within the above preferred range, the effect of improving the adhesive strength due to the permeation of the hot-melt resin into the slit is likely to be exhibited, and there is no possibility that the strength of the fiber is lowered. In addition, the depth (H) of the groove in the slit fiber is synthesized from the straight line 21 (the distance of this straight line 21 is defined as the width (W 1 ) of the groove entrance) connecting the ends of the protrusions existing on both sides of the groove in FIG. A vertical line 22 is connected to the center point of the cross section in the direction perpendicular to the longitudinal direction of the fiber filament, and the gap from the intersection of the straight line 21 connecting the ends of the projections on the line of the vertical line 22 and the vertical line 22 to the fiber polymer portion 23 Defined as depth. The center point is defined as the center point of the circle 13 that most circumscribes the tip of the protrusion in the cross section of the fiber polymer, and the radius of the circumscribed circle 13 is defined as the fiber diameter (D).
 溝入口の幅(W)は0.5μm~10.0μmであることが好ましい。溝入口の幅が上記好ましい範囲であると、スリット内部へのホットメルト樹脂の浸透による接着強度向上効果が発現しやすく、繊維の強度が低下して使用時の摩擦によりフィブリル化するなどのおそれがない。なお、溝入口の幅は単繊維フィラメントの繊維の長手方向に対して垂直方向の繊維断面において隣り合う突起部の端を結ぶ直線21の長さとして定義されるものである。 The width (W 1 ) of the groove entrance is preferably 0.5 μm to 10.0 μm. When the width of the groove entrance is within the above preferable range, the effect of improving the adhesive strength due to the permeation of the hot-melt resin into the inside of the slit is likely to occur, and the strength of the fiber is reduced, and there is a risk of fibrillation due to friction during use. do not have. The width of the groove entrance is defined as the length of the straight line 21 connecting the ends of the adjacent protrusions in the fiber cross section perpendicular to the longitudinal direction of the single fiber filament.
 本発明に用いるスリット繊維において、溝入口の幅(W)と溝広幅部の幅(W)および繊維直径(D)に対する溝部深さ(H)について好ましい範囲を次に説明する。溝広幅部の幅(W)は溝部の中心線に直交する長さを中心線に沿って外周部より繊維中心に向けて測定した際の最大箇所24とする。溝広幅部の幅(W)と溝入口の幅(W)の比W/Wを1.3以上とすることで溝内部に侵入したホットメルト樹脂が硬化した後に剥離することを防ぐことができ、接着強度向上効果を得ることができるので好ましい。W/Wは、より好ましくは1.5以上で、さらに好ましくは1.8以上である。また、突起部の割れを抑制し、溝部入り口の形状を維持するためにはW/Wは、3.0以下であることが特に好ましい。溝部入り口形状を維持することで接着強度向上効果を維持することができる。 In the slit fiber used in the present invention, preferred ranges for the groove entrance width (W 1 ), the width of the wide groove portion (W 2 ), and the groove depth (H) with respect to the fiber diameter (D) will be described below. The width (W 2 ) of the groove wide portion is the maximum point 24 when the length orthogonal to the center line of the groove portion is measured from the outer periphery toward the center of the fiber along the center line. By setting the ratio W 2 /W 1 of the width (W 2 ) of the wide portion of the groove to the width (W 1 ) of the groove entrance to 1.3 or more, the hot-melt resin that has entered the inside of the groove is cured and then peeled off. This is preferable because it is possible to prevent it and obtain the effect of improving the adhesive strength. W 2 /W 1 is more preferably 1.5 or more, still more preferably 1.8 or more. Moreover, it is particularly preferable that W 2 /W 1 is 3.0 or less in order to suppress cracking of the protrusion and maintain the shape of the entrance of the groove. By maintaining the shape of the entrance of the groove, the effect of improving the adhesive strength can be maintained.
 また、繊維径(D)と溝深さ(H)の比(H/D)が0.15以上0.25以下であることが好ましい。これにより、溝内部に十分な量のホットメルト樹脂が入り込み、接着強度向上効果を発揮することができ、一方、溝部を形成する突起部が外力を受けたときの変形や破壊で性能低下が生じるおそれがない。H/Dはより好ましくは0.17以上0.22未満である。 Also, the ratio (H/D) of the fiber diameter (D) to the groove depth (H) is preferably 0.15 or more and 0.25 or less. As a result, a sufficient amount of hot-melt resin enters the inside of the groove, and the effect of improving the adhesive strength can be exhibited. No fear. H/D is more preferably 0.17 or more and less than 0.22.
 本発明で用いる溝を表面に有する単繊維フィラメントとしては、突起部先端の幅の幅31(Pout)と溝入口の幅(W)および、突起部先端の幅(Pout)31と隣り合う溝の底面の幅(Pmin)32が下記式を満たす単繊維フィラメントをより好ましく用いることができる。なお、上記突起先端部の幅(Pout)31とは、突起部の一方の先端ともう一方の先端を結ぶ最短距離であり、図3において31で表わされる距離である。また、上記突起部底面の幅32(Pmin)とは、換言すれば、突起部を挟んで隣り合う溝部の内接円の接点を結ぶ距離であり、図3において32において示される距離である。 As the single fiber filament having grooves on the surface used in the present invention, the width 31 of the tip of the projection (P out ), the width of the groove entrance (W 1 ), and the width of the tip of the projection (P out ) 31 are adjacent to each other. A monofilament having a bottom width (P min ) 32 of the matching groove that satisfies the following formula can be more preferably used. The width (P out ) 31 of the tip of the protrusion is the shortest distance connecting one tip and the other tip of the protrusion, which is represented by 31 in FIG. The width 32 (P min ) of the bottom surface of the projection is, in other words, the distance that connects the points of contact of the inscribed circles of adjacent grooves with the projection interposed therebetween, and is the distance indicated by 32 in FIG. .
 Pout/W=2~10
 Pout/Pmin≧1.3
 これらの溝を表面に有する単繊維フィラメントは、前述のとおり芯鞘複合紡糸で作製した繊維の鞘成分を、溶剤を用いて溶出することで容易に得られる。芯成分としては、ポリエチレンテレフタレートやポリブチレンテレフタレート、ポリトリメチレンテレフタレートやポリアミドなどを用いることができる。鞘成分としては、溶出工程を簡易化するという観点では、水系溶剤あるいは熱水などに易溶出性を示す共重合ポリエステル、ポリ乳酸、ポリビニールアルコールなどが好ましく、特にポリエチレングリコール、ナトリウムスルホイソフタル酸を単独あるいは組み合わされて共重合したポリエステルやポリ乳酸を用いることが取り扱い性および水系溶剤に簡単に溶解するという観点から好ましい。
P out /W 1 =2 to 10
P out /P min ≧1.3
A single fiber filament having these grooves on the surface can be easily obtained by eluting the sheath component of the fiber produced by core-sheath composite spinning as described above using a solvent. As the core component, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, or the like can be used. From the viewpoint of simplifying the elution process, the sheath component is preferably copolyester, polylactic acid, polyvinyl alcohol, etc., which are readily soluble in aqueous solvents or hot water, and particularly polyethylene glycol and sodium sulfoisophthalic acid. It is preferable to use a polyester or polylactic acid which is copolymerized singly or in combination from the viewpoint of handleability and easy dissolution in an aqueous solvent.
 特に仮撚加工を施す場合は、溶出成分を含んだ状態の芯鞘複合糸で仮撚加工を施し、製織した後の染色工程で溶出成分を溶出することで、仮撚加工時に溝を潰さずに仮撚加工後においても溝の形状を維持することができる。複合紡糸機を用いない通常の紡糸でもスリット糸を得ることができ、この場合、仮撚加工時に溝が潰されないように配慮するのが好ましい。仮撚加工時も溶出成分が溝に満たされた芯鞘複合糸は、溝が潰されることが抑えられ、製織・編成した後の染色工程で溶出成分を溶出することで溝の形状が維持されるので好ましい。 In particular, when false twisting is applied, the core-sheath composite yarn containing eluted components is subjected to false twisting, and the eluted components are eluted in the dyeing process after weaving, so that the grooves are not crushed during false twisting. Furthermore, the shape of the grooves can be maintained even after false twisting. A slit yarn can also be obtained by normal spinning without using a conjugate spinning machine, and in this case, it is preferable to take care not to crush the grooves during the false twisting process. Core-sheath composite yarn, in which the grooves are filled with eluted components even during false twisting, prevents the grooves from being crushed, and the shape of the grooves is maintained by eluting the eluted components in the dyeing process after weaving and knitting. Therefore, it is preferable.
 好ましい溶出および染色仕上げ方法は、生機を精練、リラックスして乾燥した後に中間セットで幅を熱固定した後に溝成分を溶出させる。その後、染色してポリエステル素材であれば還元洗浄、ナイロン素材であればフィクス処理をして湯水洗し、乾燥する。次いで撥水処理や必要に応じ様々な機能加工を施し仕上げセットする工程である。 The preferred leaching and dyeing finishing method is to scouring the gray fabric, relaxing and drying it, then heat-setting the width with an intermediate set, and then leaching the groove component. Then, after dyeing, it is reduced and washed if it is made of polyester, and if it is made of nylon, it is fixed, washed with warm water, and dried. The next step is to perform water-repellent treatment and, if necessary, perform various functional processing, and finish setting.
 スリット繊維は単独での使用が可能であるが、他素材と混用することも可能である。混用される素材は綿やウールなどの天然繊維、ポリエステルフィラメント、ポリアミドフィラメント、ポリプロピレンフィラメント、ポリエチレンフィラメントなどの合成繊維フィラメメント、ポリウレタンスパンデックスやポリエーテル・エステル系弾性繊維、またはポリブチレンテレフタレート繊維やポリトリメチレンテレフタレート繊維などの弾性繊維を用いることができる。また、これらの弾性繊維を芯糸としたカバリング被覆糸を用いても良い。弾性繊維の中でも、特にポリウレタンスパンデックスを芯糸として合成繊維フィラメントを鞘糸にしたカバリング被覆糸は伸長率と伸長回復率に優れ、水着、特に競泳用水着として使用する場合には好ましい。 The slit fiber can be used alone, but it can also be mixed with other materials. Mixed materials include natural fibers such as cotton and wool, synthetic filaments such as polyester filaments, polyamide filaments, polypropylene filaments and polyethylene filaments, polyurethane spandex and polyether-ester elastic fibers, polybutylene terephthalate fibers and polytriphthalate fibers. Elastic fibers such as methylene terephthalate fibers can be used. Moreover, you may use the covering coating thread|yarn which used these elastic fibers as a core thread. Among elastic fibers, a covering yarn having a polyurethane spandex as a core yarn and a synthetic fiber filament as a sheath yarn has excellent elongation rate and elongation recovery rate, and is preferable when used as a swimsuit, especially a swimming suit.
 本発明に用いるスリット繊維は通常の方法で製織、編成することができ、また通常の方法で染色することができる。 The slit fibers used in the present invention can be woven and knitted by ordinary methods, and can be dyed by ordinary methods.
 また、織編物が織物である場合、織組織としては特に限定されず、例えば平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、絡み織などが挙げられる。また、織編物が編物である場合、編組織としては特に限定されず、例えば丸編、緯編、経編(トリコット編、ラッセル編を含む)、パイル編、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、挿入組織などが挙げられる。織物、編物いずれもどのような組織でもよいが、平織よりも綾織りのような凹凸が出やすい組織とする方が液滴接触角や撥水度が大きくなる傾向にあり、他の断面繊維と混用する場合はスリット繊維が表面に多く現れる組織が望ましい。 In addition, when the woven or knitted fabric is a woven fabric, the weave structure is not particularly limited. Examples include double weave, multiple weave, warp pile weave, weft pile weave, and leno weave. In addition, when the woven or knitted fabric is a knitted fabric, the knitting structure is not particularly limited. Examples include smooth knitting (both sides knitting), rubber knitting, pearl knitting, Denby weaving, cord weaving, atlas weaving, chain weaving, and insertion weaving. Any texture can be used for both woven and knitted fabrics, but the droplet contact angle and water repellency tend to be larger when using a texture such as twill weave rather than plain weave, which is different from other cross-section fibers. When mixed, it is preferable to use a structure in which many slit fibers appear on the surface.
 芯鞘複合糸を溶出操作し前記スリット繊維とした後、織編物として使用する場合、競泳用水着や登山用ウェア用途では撥水加工を施すが、必要に応じて、制電、難燃、吸湿、制電、抗菌、柔軟仕上げ、その他公知の後加工を併用することができる。また、撥水加工工程は、パディング法、スプレー法、コーティング法など特に限定されるものではない。 After the core-sheath composite yarn is eluted to form the slit fiber, when it is used as a woven or knitted fabric, water-repellent finishing is applied for swimming suit or mountaineering wear. , antistatic, antibacterial, soft finishing, and other known post-processing can be used in combination. Moreover, the water-repellent finishing process is not particularly limited, and may be a padding method, a spray method, a coating method, or the like.
 上記工程で製織および編成されたスリット繊維を含む織編物を、接合部を構成する第1の生地、第2の生地およびテープ状部材基布の少なくとも一部に使用することで接合部の接着強度向上効果を得ることができる。 Adhesion strength of joints by using a woven or knitted fabric containing slit fibers woven and knitted in the above process for at least a part of the first fabric, the second fabric, and the base fabric of the tape-shaped member constituting the joints An improvement effect can be obtained.
 また、第1の生地と第2の生地の接合方法は特に限定されるものではなく、縫製、接着、融着などが考えられる。凹凸を少なくすることで流水抵抗の低減が必要になる水着用途では特に超音波融着による接合が好ましい。 Also, the method of joining the first fabric and the second fabric is not particularly limited, and sewing, adhesion, fusion, etc. can be considered. Bonding by ultrasonic fusion is particularly preferable for use in swimwear, which requires a reduction in running water resistance by reducing unevenness.
 一般的な超音波融着による接合方法について図4を参照しつつ説明する。図4(a)に示すようにまず、一対の超音波接合具41の間に第1生地40aおよび第2生地40bを離間して配する。次に、図4(b)に示すように一対の超音波接合具41の各々をそれぞれ第1生地40aおよび第2生地40bに近づけていきこれらを超音波融着して上下に分離した生地をそれぞれ拡げることで図4(c)の様に第1の生地と第2の生地が接合部44で接合された生地を得る。続いて、図4(D)に示すように、接合された生地の接合部44の一方の面を覆うようにテープ状部材43を配した後、一対の溶着具42によって接合部44とテープ状部材43とを熱融着させる。これにより、図4(e)に示すように、接合部44とテープ状部材43との積層構造を有する繊維構造体400が完成する。 A general method of joining by ultrasonic fusion will be explained with reference to FIG. As shown in FIG. 4(a), first, the first fabric 40a and the second fabric 40b are spaced apart between a pair of ultrasonic connector 41. As shown in FIG. Next, as shown in FIG. 4(b), each of the pair of ultrasonic bonding tools 41 is brought close to the first fabric 40a and the second fabric 40b, respectively, and ultrasonically welded to separate the upper and lower fabrics. By spreading them respectively, a fabric is obtained in which the first fabric and the second fabric are joined at the joining portion 44 as shown in FIG. 4(c). Subsequently, as shown in FIG. 4(D), a tape-shaped member 43 is arranged so as to cover one surface of the joint 44 of the joined fabrics, and then the joint 44 and the tape-shaped member are welded together by a pair of welding tools 42 . The member 43 is heat-sealed. As a result, as shown in FIG. 4E, a fiber structure 400 having a layered structure of the joints 44 and the tape-like members 43 is completed.
 次に上記テープ状部材43の構造の一例については図5を用いて説明する。図5の例では、テープ状部材43は4層構造となっており、基布51と接着層52とフィルム層53、さらにホットメルト樹脂層54の順に積層された4層から構成されている。 Next, an example of the structure of the tape-shaped member 43 will be described with reference to FIG. In the example of FIG. 5, the tape-shaped member 43 has a four-layer structure, and is composed of four layers, which are laminated in order of a base fabric 51, an adhesive layer 52, a film layer 53, and a hot-melt resin layer .
 テープ状部材基布51とフィルム層53の接着に用いられる接着層52はホットメルト樹脂以外にも溶剤系樹脂接着ラミネートなどによる接着を用いることができる。その他に接着層52を持たないコーティングによる貼合も可能である。しかし、競泳用水着用途などではテープ状部材43が伸長することが求められるため、接着層52はホットメルト樹脂や溶剤系樹脂接着ラミネートなどで構成されることが好ましい。 The adhesive layer 52 used for bonding the tape-like member base fabric 51 and the film layer 53 can use solvent-based resin adhesive lamination or the like in addition to the hot-melt resin. In addition, lamination by coating without the adhesive layer 52 is also possible. However, since the tape-shaped member 43 is required to be elongated for applications such as swimsuits for swimming races, it is preferable that the adhesive layer 52 be made of a hot-melt resin, a solvent-based resin adhesive laminate, or the like.
 フィルム層53の素材は特に限定されるものではないが、伸縮性に優れるポリウレタンフィルムを用いることにより、着用時の運動追従性が向上するため好ましい。テープ状部材43が配置される面は生地の表裏を問わないが水着用途では表面凹凸による流水抵抗増加を防ぐ理由で、登山用ウェア用途では擦過による摩耗を防ぐ理由で生地裏面に配置することが好ましい。また、テープ状部材43に防水機能が不要な場合は接着層52とフィルム層53を除いたテープ状部材基布51とホットメルト樹脂層54の二層からなる構造とすることも可能である。 The material of the film layer 53 is not particularly limited, but it is preferable to use a polyurethane film with excellent elasticity because it improves the ability to follow movement when worn. The surface on which the tape-shaped member 43 is arranged does not matter on the front or back of the fabric, but in the case of swimwear, it is arranged on the back side of the fabric in order to prevent an increase in running water resistance due to surface irregularities, and in the case of mountaineering wear, to prevent wear due to abrasion. preferable. If the tape-like member 43 does not need to have a waterproof function, it may be constructed of two layers, the tape-like member base fabric 51 and the hot-melt resin layer 54 excluding the adhesive layer 52 and the film layer 53 .
 上記繊維構造体400に含まれる生地としては第1の生地40a、第2の生地40bおよびテープ状部材に使用される基布51がある。この中の少なくとも一部に前記スリット繊維が使用されることで接着時の接着強力向上効果を得ることができるが、2つ以上の生地に使用されることでさらに強力な接着強度向上効果を得ることができるためより好ましい。 The fabrics included in the fiber structure 400 include the first fabric 40a, the second fabric 40b, and the base fabric 51 used for the tape-shaped member. By using the slit fibers in at least a part of them, the effect of improving the adhesive strength at the time of bonding can be obtained. It is more preferable because it can
 以下実施例を上げて本発明の繊維構造体について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の各評価は以下の方法で求めたものである。
(1)繊度
 本発明の撥水性織編物に用いる繊維長さ方向に連続した複数の溝を表面に有する単繊維フィラメントからなる合成繊維は、温度20℃湿度65%RHの雰囲気下で単位長さ当たりの重量を測定し、その値から10,000mに相当する重量を算出する。これを10回繰り返して測定し、その単純平均値の小数点以下を四捨五入した値を繊度とした。
(2)繊維長さ方向に連続した複数の溝を表面に有する単繊維フィラメントの断面パラメータ
 芯鞘複合繊維を用いた織編物を、濃度10g/Lの水酸化ナトリウム水溶液中で、100℃×60分間、浴比1:30にて減量処理を行い、鞘部のみを溶出した特殊断面繊維を含む織編物とした。該織編物の一部を、特殊断面繊維の横断面形状を観察できるように繊維軸方向に垂直に切断し、(株)日立ハイテクノロジーズ製の走査電子顕微鏡(SEM)にて特殊断面繊維を抽出し、画像処理ソフト(ImageJ)を用いて溝部入口幅(W)、溝の広幅部幅(W)、溝深さ(H)、および繊維直径(D)を測定した。さらに、特殊断面繊維の突起部に関して、突起部先端の幅(Pout)および突起部底面の幅(Pmin)についても同様に測定した。同じ操作を5本の特殊断面繊維について行い、平均値をそれぞれの値とした。なお、これらの値はμm単位で小数点第2位まで求め、小数点2位以下を四捨五入した。
(3)繊維構造体の耐摩耗性(湿潤条件におけるフロスティング試験)評価
 摩耗方法についてはJIS L 1076「織物及び編物のピリング試験方法」に記載のアピアランス・リテンション形試験機を用い、上部ホルダー底面積を約13平方cm、摩擦回数を90rpm、押圧荷重を7.36Nに設定し、上部ホルダー及び下部摩擦板の上に撥水処理を行った繊維構造体試料を固定し、上部ホルダーに取り付けた繊維構造体試料を蒸留水で濡らした後に、10分間摩耗した。摩耗後、上部ホルダーに取り付けた繊維構造体試料の変退色の程度を、変退色用グレースケールを用いて5段階で等級判定した。
(4)織密度または編密度
 繊維構造体とする以前の第一の生地、第二の生地、テープ状部材に用いた基布について、袖山(株)製ルノメーター織物密度測定器を用いて、経方向および緯方向の密度を測定した。同測定を異なる5箇所において行い、その単純平均値の小数点以下を四捨五入した値を織密度または編密度とした。
(5)剥離強力
 図6に示す2.5cm×約15cmの試験片を用いて次の手順により、接着されたテープ状部材の剥離強力を測定した。
EXAMPLES The fiber structure of the present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. Each evaluation in the examples was determined by the following method.
(1) Fineness Synthetic fibers made of single filaments having a plurality of grooves continuous in the fiber length direction on the surface used in the water-repellent woven or knitted fabric of the present invention are unit lengths in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH. The weight per hit is measured, and the weight corresponding to 10,000m is calculated from that value. This measurement was repeated 10 times, and the value obtained by rounding off the decimal point of the simple average value was used as the fineness.
(2) Cross-sectional parameters of monofilament filaments having a plurality of grooves continuous in the fiber length direction on the surface A weight reduction treatment was carried out at a bath ratio of 1:30 for 1 minute to obtain a woven or knitted fabric containing special cross-section fibers in which only the sheath portion was eluted. A part of the woven or knitted fabric is cut perpendicular to the fiber axis direction so that the cross-sectional shape of the special cross-section fiber can be observed, and the special cross-section fiber is extracted with a scanning electron microscope (SEM) manufactured by Hitachi High-Technologies Corporation. Then, the groove inlet width (W 1 ), groove wide width (W 2 ), groove depth (H), and fiber diameter (D) were measured using image processing software (ImageJ). Furthermore, the width of the tip of the projection (P out ) and the width of the bottom of the projection (P min ) were also measured in the same manner as for the projection of the special cross-section fiber. The same operation was performed for five special cross-section fibers, and the average value was used as each value. Note that these values were obtained in units of μm to the second decimal place and rounded off to the second decimal place.
(3) Abrasion resistance of fiber structure (frosting test under wet conditions) evaluation For the abrasion method, use an appearance/retention type tester described in JIS L 1076 “Pilling test method for woven and knitted fabrics”, and use the upper holder bottom. The area was set to about 13 square cm, the number of frictions was set to 90 rpm, and the pressing load was set to 7.36 N. A water-repellent treated fiber structure sample was fixed on the upper holder and the lower friction plate, and attached to the upper holder. The fibrous structure samples were wetted with distilled water and then abraded for 10 minutes. After abrasion, the degree of discoloration and fading of the fiber structure sample attached to the upper holder was graded in 5 stages using a gray scale for discoloration and fading.
(4) Weaving density or knitting density The first fabric, the second fabric, and the base fabric used for the tape-shaped member before making the fiber structure were measured using a lunometer fabric density measuring device manufactured by Sodeyama Co., Ltd. Directional and weft densities were measured. The same measurement was performed at five different points, and the value obtained by rounding off the decimal point of the simple average value was taken as the weaving density or the knitting density.
(5) Peel Strength Using a test piece of 2.5 cm×about 15 cm shown in FIG. 6, the peel strength of the adhered tape-shaped member was measured according to the following procedure.
 短辺から平行に5cm離れた位置にA線61を、さらに5cm離れた位置にB線62を引く。次に、部第1の生地と第2の生地の接合部44に接着されたテープ状部材43を試験片長手方向にA線まで、手で剥離する。さらに自記記録装置付定速伸長形引張試験器オートグラフAG-IS((株)島津製作所製)の掴み間隔を5cmとし、剥離した部分において一方のクランプで接合生地40を他方のクランプでテープ状部材43を固定する。また、この際にA線61が掴み間隔のほぼ中央に来るようにする。引張速度10cm/minでB線62まで剥離し、剥離距離と剥離強力の曲線を描く。この曲線は例えば図7に示すような複数の頂点を持つ曲線となり、頂点のうち高い方から3個、および低い方から3個をそれぞれ読み取り、2.5で除すことで剥離強力をcN/cmの単位で取得することができる。
[実施例1]
  ナイロン6(N6)を芯部に、5-ナトリウムスルホイソフタル酸8.0モル%および分子量1,000のポリエチレングリコール10wt%が共重合したポリエチレンテレフタレート(共重合PET1)を鞘部に配置されるように設計された紡糸口金を用いて、芯部と鞘部を270℃で別々に溶融後、口金に流入させ、吐出孔から複合ポリマー流を吐出することで未延伸の芯鞘複合繊維(66Dtex/36フィラメント)を得た。なお、吐出プレート直上の分配プレートは、芯成分と鞘成分の界面に位置する部分を図8に示す配列パターンとし、1本の単繊維フィラメント表面に8箇所の溝部が形成されるようにした。芯成分用分配孔81の間に鞘成分分配孔82を配置することにより、芯成分分配孔から吐出された芯成分の間に挟まれるように鞘成分が設置され、特殊な溝形状が制御された芯鞘型に複合化されたポリマー流が形成された。また、吐出プレートは、吐出導入孔長5mm、縮小孔の角度60°、吐出孔径0.3mm、吐出孔長/吐出孔径1.5のものを用いた。芯鞘複合比は重量比で80:20となるように調整した。得られた未延伸糸にさらに仮撚加工を施し、56Dtex/36フィラメントの仮撚加工糸を得た。
A line 61 is drawn parallel to the short side at a distance of 5 cm, and a line B 62 is drawn at a distance of 5 cm. Next, the tape-like member 43 adhered to the joint 44 of the first and second fabrics is peeled off by hand in the longitudinal direction of the test piece up to the A line. Furthermore, the clamping interval of the constant speed elongation type tensile tester Autograph AG-IS (manufactured by Shimadzu Corporation) with a self-recording device was set to 5 cm, and the bonded fabric 40 was tape-shaped with one clamp at the peeled portion with the other clamp. The member 43 is fixed. Also, at this time, the A line 61 is positioned substantially at the center of the gripping interval. Peel to line B 62 at a tensile speed of 10 cm/min to draw a curve of peel distance and peel strength. This curve is, for example, a curve with a plurality of vertices as shown in FIG. It can be obtained in units of cm.
[Example 1]
Polyethylene terephthalate (copolymerized PET1), which is obtained by copolymerizing 8.0 mol% of 5-sodium sulfoisophthalic acid and 10 wt% of polyethylene glycol having a molecular weight of 1,000, with nylon 6 (N6) as the core, is arranged in the sheath. After separately melting the core and sheath at 270°C using a spinneret designed for 36 filaments) were obtained. In the distribution plate directly above the discharge plate, the portion located at the interface between the core component and the sheath component was arranged in the pattern shown in FIG. By arranging the sheath component distribution holes 82 between the core component distribution holes 81, the sheath component is placed so as to be sandwiched between the core components discharged from the core component distribution holes, and a special groove shape is controlled. A core-sheath composite polymer flow was formed. The discharge plate used had a discharge introduction hole length of 5 mm, a reduced hole angle of 60°, a discharge hole diameter of 0.3 mm, and a discharge hole length/discharge hole diameter of 1.5. The core-sheath composite ratio was adjusted to 80:20 by weight. The resulting undrawn yarn was further subjected to false twisting to obtain a false twisted yarn of 56 Dtex/36 filaments.
  この仮撚加工糸を経糸と緯糸に共通して用いた平織物を製織した。経糸密度は177本/2.54cm、緯糸密度は105本/2.54cmであった。得られた織物について、炭酸ナトリウムおよび界面活性剤で精練した後、180℃でピンテンターによりセットした。次いで、濃度10g/Lの水酸化ナトリウム水溶液中で、100℃×60分間、浴比1:30にて減量処理を行い、鞘部のみを溶出して特殊断面繊維とした。引き続き、次の方法で染色した。酸性染料(アークロマジャパン(株)製、商品名「Lanasyn Black M-DL p170」)を5%оwfとし、100℃×30分間、浴比1:30で処理した。次いで、濃度1g/Lの界面活性剤水溶液を使用し、60℃×10分の条件でソーピング処理した。次いで、ナイロンフィックス501(センカ(株)製)を3%owfで使用し、反応条件は80℃×20分、浴比1:30でフィックス処理を行った。また、加工後の経糸密度は183本/2.54cm、緯糸密度は102本/2.54cmであった。さらに、接合面が生地経方向と直交するように、超音波ミシン(クインライト電子精工(株)製:LWU-3015-4)を使用して、第1の生地の一端部と第2の生地の一端部が接合された布帛とした。10μm厚の低粘度タイプ(約3.0×10poise/105℃)のポリウレタン系ホットメルト樹脂を上記平織物で作製したテープ状部材基布上に積層してテープ状部材を準備した。上記接合された布帛の接合部を、ホットメルト樹脂層と接するようにテープ状部材で覆い、転写プレス機HP-4536A-12((株)ハシマ製)を用いて140℃×2.0kg/cm×10秒間の条件で接着を行い、繊維構造体を得た。この繊維構造を前記の湿潤条件におけるフロスティング試験にて耐摩耗性評価を実施したところ、変退色4級であり、フィブリルは発生しておらず耐摩耗性に優れていた。さらに本繊維構造体を用いて経緯方向それぞれの剥離強力を測定した。試験はN=3で実施し、平均値を表1に示す。耐摩耗性は丸断面対比やや劣るが、非常に優れた剥離強力であり、生地の接着性に優れていた。
[実施例2]
 実施例1で使用したポリウレタン系ホットメルト樹脂を10μm厚の高粘度タイプ(約1.0×10poise/105℃)に変更した以外は実施例1と同様にして繊維構造体を得た。評価結果を表1に示す。耐摩耗性は実施例1と同様に優れており、剥離強力は比較例1や比較例2より優れており、ホットメルト樹脂の粘度が変化した場合でも生地の接着性に優れていた。
[実施例3]
 丸断面のナイロン6延伸糸(56Dtex/40フィラメント)を経糸と緯糸に共通して用いた平織物を製織した。経糸密度は177本/2.54cm、緯糸密度は105本/2.54cmであった。得られた織物について、炭酸ナトリウムおよび界面活性剤で精練した後、180℃でピンテンターによりセットした。さらに、次の方法で染色した。酸性染料(アークロマジャパン(株)製、商品名「Lanasyn Black M-DL p170」)を5%оwfとし、100℃×30分間、浴比1:30で処理した。次いで、濃度1g/Lの界面活性剤水溶液を使用し、60℃×10分の条件でソーピング処理した。次いで、ナイロンフィックス501(センカ(株)製)を3%owfで使用し、反応条件は80℃×20分、浴比1:30でフィックス処理を行った。また、加工後の経糸密度は186本/2.54cm、緯糸密度は106本/2.54cmであった。10μm厚の低粘度タイプ(約3.0×10poise/105℃)のポリウレタン系ホットメルト樹脂を実施例1で用いた複合繊維を使用した接合布帛と上記丸断面織物で作製したテープ状部材で挟み込み、実施例1と同様の接着方法にて繊維構造体を得た。評価結果を表1に示す。テープ状部材に丸断面を使用することでテープ状部材の耐摩耗性がやや向上していた。また、剥離強力は比較例1や比較例2を上回っており、接合布帛のみに芯鞘複合繊維を使用した場合も生地の接着性に優れていた。
Plain woven fabrics were woven using this false twisted yarn in common for the warp and the weft. The warp density was 177/2.54 cm and the weft density was 105/2.54 cm. The resulting fabric was scoured with sodium carbonate and surfactant and then set at 180° C. with a pin tenter. Next, weight reduction treatment was carried out in an aqueous sodium hydroxide solution having a concentration of 10 g/L at 100° C. for 60 minutes at a bath ratio of 1:30, and only the sheath portion was eluted to obtain special cross-section fibers. Subsequently, dyeing was performed by the following method. Acid dye (manufactured by Arkroma Japan Co., Ltd., trade name "Lanasyn Black M-DL p170") was adjusted to 5% Owf and treated at a bath ratio of 1:30 for 30 minutes at 100°C. Then, using an aqueous surfactant solution with a concentration of 1 g/L, soaping treatment was performed under the conditions of 60° C. for 10 minutes. Next, nylon fix 501 (manufactured by Senka Co., Ltd.) was used at 3% owf, and fix treatment was performed under reaction conditions of 80° C. for 20 minutes and a bath ratio of 1:30. The warp density after processing was 183/2.54 cm, and the weft density was 102/2.54 cm. Furthermore, using an ultrasonic sewing machine (LWU-3015-4 manufactured by Quinlight Denshi Seiko Co., Ltd.), one end of the first fabric and the second fabric are used so that the joint surface is perpendicular to the warp direction of the fabric. It was a fabric in which one end of the was joined. A tape-shaped member was prepared by laminating a 10 μm-thick low-viscosity type (approximately 3.0×10 4 poise/105° C.) polyurethane hot-melt resin on the base fabric of the tape-shaped member made of the plain weave fabric. The joint portion of the joined fabrics is covered with a tape-shaped member so as to be in contact with the hot-melt resin layer, and a transfer press machine HP-4536A-12 (manufactured by Hashima Co., Ltd.) is used to press at 140 ° C. × 2.0 kg / cm. Bonding was performed under the conditions of 2 ×10 seconds to obtain a fiber structure. When this fiber structure was evaluated for abrasion resistance by the frosting test under the wet conditions, the discoloration and fading was grade 4, no fibrils were generated, and the abrasion resistance was excellent. Furthermore, using this fibrous structure, the peel strength in each of the longitudinal and longitudinal directions was measured. The test was performed with N=3 and the average values are shown in Table 1. Although the abrasion resistance was slightly inferior to that of the round cross section, the peeling strength was excellent and the adhesiveness to the fabric was excellent.
[Example 2]
A fiber structure was obtained in the same manner as in Example 1, except that the polyurethane-based hot-melt resin used in Example 1 was changed to a high-viscosity type having a thickness of 10 μm (about 1.0×10 5 poise/105° C.). Table 1 shows the evaluation results. The abrasion resistance was as excellent as in Example 1, the peel strength was superior to that in Comparative Examples 1 and 2, and the adhesiveness to the fabric was excellent even when the viscosity of the hot-melt resin changed.
[Example 3]
A plain weave fabric was woven using nylon 6 drawn yarns (56 Dtex/40 filaments) with a round cross section in common for warp and weft. The warp density was 177/2.54 cm and the weft density was 105/2.54 cm. The resulting fabric was scoured with sodium carbonate and surfactant and then set at 180° C. with a pin tenter. Furthermore, it dyed|stained by the following method. Acid dye (manufactured by Arkroma Japan Co., Ltd., trade name "Lanasyn Black M-DL p170") was adjusted to 5% Owf and treated at a bath ratio of 1:30 for 30 minutes at 100°C. Then, using an aqueous surfactant solution with a concentration of 1 g/L, soaping treatment was performed under the conditions of 60° C. for 10 minutes. Next, nylon fix 501 (manufactured by Senka Co., Ltd.) was used at 3% owf, and fix treatment was performed under reaction conditions of 80° C. for 20 minutes and a bath ratio of 1:30. The warp density after processing was 186/2.54 cm, and the weft density was 106/2.54 cm. A tape-shaped member made of the bonded fabric using the conjugate fiber of Example 1, which is made of a 10 μm thick low-viscosity type (about 3.0×10 4 poise/105° C.) polyurethane-based hot-melt resin, and the above-mentioned circular cross-section fabric. and a fiber structure was obtained by the same bonding method as in Example 1. Table 1 shows the evaluation results. The wear resistance of the tape-shaped member was slightly improved by using the circular cross-section for the tape-shaped member. Moreover, the peel strength exceeded that of Comparative Examples 1 and 2, and even when the core-sheath composite fiber was used only for the bonded fabric, the adhesiveness of the fabric was excellent.
  [実施例4]
  実施例3で使用したポリウレタン系ホットメルト樹脂を10μm厚の高粘度タイプ(約1.0×10poise/105℃)に変更した以外は実施例3と同様に実施した。評価結果を表1に示す。テープ状部材に丸断面を使用することでテープ状部材の耐摩耗性がやや向上していた。また、剥離強力は比較例1や比較例2を上回っており、接合布帛のみに芯鞘複合繊維を使用した場合も生地の接着性に優れていた。
[比較例1]
  実施例3で作製した丸断面織物を用いて実施例1と同じ手法の超音波接着により接合布帛を得た。この接合布帛と丸断面織編物で作成されたテープ状部材で10μm厚の低粘度タイプ(約3.0×10poise/105℃)のポリウレタン系ホットメルト樹脂を挟み込み、実施例1と同様の接着方法にて繊維構造体を得た。評価結果を表1に示す。
[比較例2]
  比較例1で使用したポリウレタン系ホットメルト樹脂を10μm厚の高粘度タイプ(約1.0×10poise/105℃)に変更した以外は比較例1と同様に実施した。評価結果を表1に示す。
[Example 4]
The procedure of Example 3 was repeated except that the polyurethane-based hot-melt resin used in Example 3 was changed to a high-viscosity type having a thickness of 10 μm (approximately 1.0×10 5 poise/105° C.). Table 1 shows the evaluation results. The wear resistance of the tape-shaped member was slightly improved by using the circular cross-section for the tape-shaped member. Moreover, the peel strength exceeded that of Comparative Examples 1 and 2, and even when the core-sheath composite fiber was used only for the bonded fabric, the adhesiveness of the fabric was excellent.
[Comparative Example 1]
A bonded fabric was obtained by ultrasonic bonding in the same manner as in Example 1 using the woven fabric with a circular cross section produced in Example 3. A 10 μm-thick low-viscosity type (approximately 3.0×10 4 poise/105° C.) polyurethane hot-melt resin was sandwiched between the bonded fabric and a tape-shaped member made of a woven or knitted fabric with a circular cross section. A fiber structure was obtained by the adhesion method. Table 1 shows the evaluation results.
[Comparative Example 2]
The procedure was carried out in the same manner as in Comparative Example 1, except that the polyurethane-based hot-melt resin used in Comparative Example 1 was changed to a high-viscosity type with a thickness of 10 μm (about 1.0×10 5 poise/105° C.). Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 11:突起部
 12:溝部
 13:突起部の先端に最も多く外接する外接円の中心点
 14:繊維直径(外接円13の直径)D
 21:溝部入口幅(W
 22:溝部の中心線および溝深さ(H)
 23:22と繊維ポリマー部分の接点
 24:溝の広幅部幅(W
 31:突起部先端の幅(Pout) 
 32:突起部底面の幅(Pmin
 40:接合される第1の生地と第2の生地
 40a:第1の生地
 40b:第2の生地
 41:一対の超音波接合具
 42:一対の溶着具
 43:テープ状部材
 44:第1の生地と第2の生地の接合部
 400:繊維構造体
 51:テープ状部材43に用いられる基布
 52:基布51とフィルム層52を貼合する接着層
 53:テープ状部材43に用いられるフィルム層
 54:テープ状部材と接合生地を貼合するホットメルト樹脂層
 61:剥離強力測定におけるA線
 62:剥離強力測定におけるB線
 81:芯成分用分配孔
 82:鞘成分用分配孔
11: Projection 12: Groove 13: Center point of circumscribed circle that most circumscribes the tip of the projected portion 14: Fiber diameter (diameter of circumscribed circle 13) D
21: Groove inlet width (W 1 )
22: Center line of groove and groove depth (H)
23: Contact point between 22 and fiber polymer portion 24: Groove wide width (W 2 )
31: Width of tip of protrusion (P out )
32: Width of bottom surface of protrusion (P min )
40: First cloth and second cloth to be joined 40a: First cloth 40b: Second cloth 41: Pair of ultrasonic joints 42: Pair of welding tools 43: Tape-shaped member 44: First cloth Joint portion of fabric and second fabric 400: Fiber structure 51: Base fabric used for tape-shaped member 43 52: Adhesive layer for bonding base fabric 51 and film layer 52 53: Film used for tape-shaped member 43 Layer 54: Hot-melt resin layer for laminating tape-shaped member and bonding fabric 61: Line A in peel strength measurement 62: Line B in peel strength measurement 81: Distribution hole for core component 82: Distribution hole for sheath component

Claims (4)

  1. 第1の生地の一端部と第2の生地の一端部が接合された接合部と、前記接合部を覆って接着されたテープ状部材を有する繊維構造体であって、前記テープ状部材は少なくとも基布とホットメルト樹脂層とからなり、かつ、前記ホットメルト樹脂層が前記接合部との接着面側に配置され、前記接合部を構成する第1の生地、第2の生地および前記テープ状部材基布の少なくとも一部が繊維長さ方向に連続した複数の溝を表面に有する単繊維フィラメントからなる合成繊維で構成された布帛である繊維構造体。 A fiber structure having a joint portion where one end portion of a first fabric and one end portion of a second fabric are joined, and a tape-shaped member adhered to cover the joint portion, wherein the tape-shaped member is at least A first fabric, a second fabric, and the tape-shaped fabric comprising a base fabric and a hot-melt resin layer, the hot-melt resin layer being disposed on the side of the bonding surface with the joint, and constituting the joint. A fiber structure in which at least a part of a member base fabric is a fabric composed of synthetic fibers composed of monofilament filaments having a plurality of grooves continuous in the fiber length direction on the surface.
  2. 前記単繊維フィラメントの溝の数が2~32であることを特徴とする請求項1に記載の繊維構造体。 2. The fiber structure according to claim 1, wherein the number of grooves of said monofilament filament is 2-32.
  3. 前記単繊維フィラメントの溝深さが1.0μm~10.0μmであり、溝部入口幅が1.0μm~10.0μmであり、突起部先端の幅が10.0μm以下である請求項1または2に記載の布帛からなる繊維構造体。 3. The single fiber filament has a groove depth of 1.0 μm to 10.0 μm, a groove entrance width of 1.0 μm to 10.0 μm, and a projection tip width of 10.0 μm or less. A fiber structure made of the fabric according to .
  4. 前記単繊維フィラメントの断面形状が下記(式1)および(式2)を満たす請求項1~3のいずれかに記載の繊維構造体。
     W/W≧1.3・・・(式1)
     0.15≦H/D ≦0.25・・・(式2)
     W:溝入口幅(μm)
     W:溝の広幅部の幅(μm)
     H:溝深さ(μm)
     D:繊維直径(μm)
    The fiber structure according to any one of claims 1 to 3, wherein the cross-sectional shape of the single filament satisfies the following (formula 1) and (formula 2).
    W 2 /W 1 ≧1.3 (Formula 1)
    0.15≦H/D≦0.25 (Formula 2)
    W 1 : Groove entrance width (μm)
    W 2 : Width of wide portion of groove (μm)
    H: Groove depth (μm)
    D: fiber diameter (μm)
PCT/JP2022/012993 2021-04-21 2022-03-22 Fiber structure WO2022224666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022520874A JPWO2022224666A1 (en) 2021-04-21 2022-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071572 2021-04-21
JP2021071572 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224666A1 true WO2022224666A1 (en) 2022-10-27

Family

ID=83722246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012993 WO2022224666A1 (en) 2021-04-21 2022-03-22 Fiber structure

Country Status (2)

Country Link
JP (1) JPWO2022224666A1 (en)
WO (1) WO2022224666A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110282U (en) * 1985-12-28 1987-07-14
JPH03231836A (en) * 1990-02-07 1991-10-15 Hagiwara Kogyo Kk Sheet-like base material
JPH05186948A (en) * 1992-01-06 1993-07-27 Toray Ind Inc Adhesion to cloth
JPH0941208A (en) * 1995-07-27 1997-02-10 Toray Ind Inc Waterproof clothes
JP2013002011A (en) * 2011-06-14 2013-01-07 Descente Ltd Fabric structure and bonding method
JP2019026944A (en) * 2017-07-26 2019-02-21 東レ株式会社 Sheath-core composite fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110282U (en) * 1985-12-28 1987-07-14
JPH03231836A (en) * 1990-02-07 1991-10-15 Hagiwara Kogyo Kk Sheet-like base material
JPH05186948A (en) * 1992-01-06 1993-07-27 Toray Ind Inc Adhesion to cloth
JPH0941208A (en) * 1995-07-27 1997-02-10 Toray Ind Inc Waterproof clothes
JP2013002011A (en) * 2011-06-14 2013-01-07 Descente Ltd Fabric structure and bonding method
JP2019026944A (en) * 2017-07-26 2019-02-21 東レ株式会社 Sheath-core composite fiber

Also Published As

Publication number Publication date
JPWO2022224666A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
EP0091676B1 (en) An improved chenille woven or knitted fabric and process for producing the same
US7896997B2 (en) Composite sheet used for artificial leather with low elongation and excellent softness
CN101331265B (en) Suede-like artificial leather having excellent strength and elongation properties
US7132024B2 (en) Artificial leather composite reinforced with ultramicrofiber nonwoven fabric
KR100540558B1 (en) Potentially Elastic Interlaced Textured Yarn and Elastic Suede-Like Woven Fabric Produced Therefrom
WO2017104338A1 (en) Hook and loop fastener and textile products
EP3549992B1 (en) Tape for producing non-quilted articles and garment using the tape
EP2501544B1 (en) Elastic fabric with adhesive
JPH0672324B2 (en) Deformed cross-section fiber
WO2022224666A1 (en) Fiber structure
JP6539495B2 (en) Laminated fabric
JP2009074187A (en) Multi-layered structure woven or knitted fabric and fiber product
JP2007308812A (en) Stretch woven fabric and method for producing the same
JPS6160183B2 (en)
JP3997592B2 (en) Artificial leather and method for producing the same
WO2001063035A1 (en) Denim-like article of clothing and method of producing the same
JP6709059B2 (en) Wide and stretchable artificial leather
JP7267820B2 (en) Insole for shoes using non-slip fabric
KR101664492B1 (en) Leather like composite sheet and method for manufacturing the same
JPH02277890A (en) Leather-like sheet
JP2019180838A (en) Hook-and-loop fastener and fiber product
JP2005068615A (en) Elastic knitted fabric for water sports wear
JP2000080572A (en) Artificial leather
JP2004107848A (en) Fibrous structure
JP2004091999A (en) Non-woven fabric for artificial leather

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022520874

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791445

Country of ref document: EP

Kind code of ref document: A1