Nothing Special   »   [go: up one dir, main page]

WO2022224599A1 - Biological information measuring garment for quadruped, garment type biological information measuring device for quadruped, abnormal respiration detection method for quadruped, and abnormal respiration detection device for quadruped - Google Patents

Biological information measuring garment for quadruped, garment type biological information measuring device for quadruped, abnormal respiration detection method for quadruped, and abnormal respiration detection device for quadruped Download PDF

Info

Publication number
WO2022224599A1
WO2022224599A1 PCT/JP2022/009671 JP2022009671W WO2022224599A1 WO 2022224599 A1 WO2022224599 A1 WO 2022224599A1 JP 2022009671 W JP2022009671 W JP 2022009671W WO 2022224599 A1 WO2022224599 A1 WO 2022224599A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiration
abnormal
biological information
quadruped
base fabric
Prior art date
Application number
PCT/JP2022/009671
Other languages
French (fr)
Japanese (ja)
Inventor
陽子 小松
翔太 森本
智之 宮本
雄一郎 表
Original Assignee
東洋紡株式会社
東洋紡Stc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 東洋紡Stc株式会社 filed Critical 東洋紡株式会社
Priority to JP2023516319A priority Critical patent/JPWO2022224599A1/ja
Publication of WO2022224599A1 publication Critical patent/WO2022224599A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K13/00Devices for grooming or caring of animals, e.g. curry-combs; Fetlock rings; Tail-holders; Devices for preventing crib-biting; Washing devices; Protection against weather conditions or insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry

Definitions

  • the present invention relates to clothing capable of measuring biological information of a quadruped, a clothing-type device capable of measuring biological information of a quadruped, a method of detecting abnormal breathing of a quadruped, and an apparatus for detecting abnormal breathing of a quadruped.
  • Patent Document 1 an electrode section made of a flexible conductive material, a connector section, and a wiring section that electrically connects the electrode section and the connector section are provided on the first surface of a flexible substrate. and an electrode member provided with a member for attaching to the clothing on the second surface of the flexible substrate.
  • non-human quadrupeds can cough and sneeze when their health deteriorates. Coughing and sneezing are often intermittent and often go unnoticed by owners, especially in the early stages of poor health. Therefore, if the occurrence of coughing and sneezing can be measured as biological information, changes in the health condition of tetrapods can be recognized at an early stage when the health condition of the tetrapod deteriorates, and appropriate treatment can be given to the tetrapod. It is thought that it can suppress the deterioration of
  • the present invention has been made in view of the circumstances described above, and its object is to provide a garment capable of measuring the biological information of a quadruped and a clothing-type apparatus capable of measuring the biological information of the quadruped. It is in. It is another object of the present invention to provide a method for detecting abnormal respiration in a quadruped and a device capable of detecting abnormal respiration in a quadruped.
  • the present invention is as follows. [1] It has a base fabric arranged around the torso and a stretch sensor provided in the base fabric, and the base fabric is stretched by 20% in the direction around the torso measured under the following conditions.
  • a biological information measuring garment for quadruped animals characterized by having a strength of 0.3 N/cm or more and 3.0 N/cm or less.
  • the biological information measurement clothing according to [1], wherein the stretch sensor is detachable from the base fabric.
  • a garment for measuring biological information for quadrupeds characterized by having a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less at 20% elongation in the direction around the trunk.
  • the center of the belt-shaped fabric is placed in the center between the chucks, and the belt-shaped fabric is clamped so that the distance between the chucks is 50 mm, and the strip is stretched at a tensile speed of 100 mm/min.
  • the biological information measurement clothing according to any one of [1] to [8], wherein the base fabric has electrodes on the side of the skin.
  • a clothing-type biological information measuring device for a quadruped animal comprising: a calculation unit for calculating data received by a device; and electrodes arranged on the side of the skin of the base fabric.
  • a four-limbed animal obtains a temporal variation waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. and the time at which the waveform becomes the maximum value are T 1 , T 2 , . . . , T i , .
  • a method for detecting abnormal respiration in a four-legged animal comprising the step of detecting that abnormal respiration has occurred when the condition becomes.
  • a four-limbed animal obtains a temporal variation waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. and the time at which the waveform becomes the maximum value are T 1 , T 2 , . . . , T i , .
  • a four-limbed animal obtains a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. and the time at which the waveform becomes the maximum value are T 1 , T 2 , . . . , T i , .
  • a quadruped animal is provided with a time-varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. T 1 , T 2 , . . .
  • a four-limbed animal obtains a temporally fluctuating waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration.
  • T i ⁇ T i ⁇ 1 for a plurality of points continuously, an average value calculating unit for calculating the average value of the calculated time differences, the average value of the calculated time differences, and the time difference (T i ⁇ and a detection unit for detecting occurrence of abnormal respiration when the difference from T i-1 ) is 0.8 seconds or more.
  • a quadruped animal with a temporal variation waveform of the depth of respiration which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration.
  • a time difference calculation unit that continuously calculates T i ⁇ T i ⁇ 1 ) for a plurality of locations, an average value calculation unit that calculates an average value of the calculated time differences, and a time difference (T i ⁇ and a detection unit for detecting occurrence of abnormal respiration when the value of T i-1 ) is 80% or less.
  • the belt-like fabric that constitutes the clothing to be worn by the quadruped animal, or a member that is separate from the base fabric is used. Since the stretch sensor is provided in the fabric and the base fabric or the belt-shaped fabric is given a predetermined stretchability, it is possible to measure the biometric information derived from the respiration of the tetrapod, among the tetrapod's biometric information. According to the method for detecting abnormal breathing in a quadruped and the device for detecting abnormal breathing in a quadruped according to the present invention, abnormal breathing in a quadruped can be detected.
  • FIG. 1 is a schematic diagram for explaining the difference (T i -T i-1 ) between time T i and time T i-1 .
  • FIG. 2 is a graph showing an example of temporal variation waveforms of respiration depth acquired from a quadruped animal.
  • FIG. 3 is a schematic diagram of a quadruped animal wearing an exemplary embodiment of the second garment.
  • a biological information measurement garment for quadrupeds has a base fabric arranged around the body and a stretch sensor provided on the base fabric, and the base fabric is measured under the following conditions. It is characterized by a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less at 20% elongation in the direction around the trunk.
  • the biological information measurement clothing for quadrupeds having the stretch sensor on the base fabric may be referred to as the first clothing.
  • another biological information measurement garment for quadrupeds has a base fabric arranged around the trunk, a belt-like cloth arranged around the trunk, and a stretch sensor provided on the belt-shaped cloth.
  • the belt-shaped fabric has a tensile strength of 0.3 N / cm or more and 3.0 N / cm or less when stretched 20% in the direction around the torso measured under the following conditions.
  • the biological information measurement clothing for quadrupeds in which the stretch sensor is provided on the belt-shaped fabric may be referred to as the second clothing.
  • the first garment and the second garment are the same in that they have a base fabric arranged around the torso and a stretch sensor, and the second garment further has a belt-like shape arranged around the torso. It has fabric.
  • the stretch sensor in the first clothing is provided in the base fabric, while the stretch sensor in the second clothing is provided in the belt-shaped fabric. There is a difference.
  • the first garment has a base fabric arranged around the torso and a stretch sensor, the stretch sensor being provided on the base fabric.
  • the base fabric is the fabric that makes up the clothing worn by the quadruped and is placed around the torso of the quadruped.
  • Torso circumference means the circumference of the torso, including the back and abdomen of a quadruped.
  • the base fabric in the lengthwise direction of the quadruped may, for example, cover the area from the withers to the waist.
  • the base fabric may also cover the prothorax of the tetrapod.
  • Knitted fabrics include weft knitted fabrics or warp knitted fabrics.
  • the weft knitted fabric includes a circular knitted fabric.
  • Weft knitted fabrics include, for example, jersey knitting (flat knitting), bare jersey knitting, welted jersey knitting, milling knitting (rubber knitting), pearl knitting, single bag knitting, smooth knitting, tuck knitting, float knitting, and single knitting. Examples include hem knitting, lace knitting, and additional hair knitting.
  • warp knitted fabrics include single denby knitting, open denby knitting, single atlas knitting, double cord knitting, half knitting, half base knitting, satin knitting, single tricot knitting, double tricot knitting, half tricot knitting, single Russell knitting, Examples include double Russell knitting and jacquard knitting.
  • woven fabrics include woven fabrics formed by plain weave, twill weave, satin weave, and the like.
  • the woven fabric is not limited to a single woven fabric, and may be a multiple woven fabric such as a double woven fabric or a triple woven fabric.
  • the base fabric may be formed in a mesh shape.
  • Knitted fabrics and woven fabrics preferably contain at least one type of fiber selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, and semi-synthetic fibers.
  • Natural fibers include, for example, cotton, hemp, wool, and silk. Among these, cotton is preferred. Moisture absorption, water absorption, heat retention, etc. are improved by including cotton.
  • the natural fibers may be used as they are, or may be subjected to post-processing such as hydrophilic treatment and antifouling treatment.
  • Examples of synthetic fibers include acrylic; polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene isophthalate, polylactic acid, and polyacrylate; polyamides such as nylon 6 and nylon 66; be done.
  • Examples of regenerated fibers include rayon such as modal, cupra, polynosic, and lyocell.
  • Examples of semi-synthetic fibers include acetate, triacetate, and the like. These may use only 1 type, and may use 2 or more types.
  • the extension sensor is a sensor that can detect the degree of extension and contraction, and is not particularly limited as long as it is a sensor that can measure changes in the chest circumference based on respiration of the quadruped animal by extension and retraction.
  • the stretch sensor includes, for example, a stretchable capacitor.
  • a stretchable capacitor is an element whose capacitance changes due to expansion and contraction, and the change in the capacitance can be used to measure the respiratory state of a quadruped animal.
  • the expansion/contraction sensor preferably has at least a capacitor element whose capacitance changes due to expansion and contraction, and a skin contact electrode.
  • the capacitor element whose capacitance changes due to expansion and contraction is a capacitor-type element having at least a structure in which at least a first stretchable conductor layer, an stretchable dielectric layer, and a second stretchable conductor layer are laminated in this order. is preferred.
  • the skin contact surface of the skin contact electrode is preferably an elastic conductor layer.
  • a stretch sensor is provided on the base fabric, and the stretch sensor is arranged so as to be able to detect the stretch in the direction around the trunk of the tetrapod, thereby measuring the degree of stretch around the trunk based on the respiration of the tetrapod. can be detected.
  • the base fabric with the stretch sensor has a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less when stretched 20% in the direction around the torso.
  • the stretch sensor can be fixed at a desired position of the quadruped animal, so that the measurement accuracy can be improved. Therefore, the tensile strength at 20% elongation is 0.3 N/cm or more, preferably 0.5 N/cm or more, more preferably 1.0 N/cm or more.
  • the tensile strength at 20% elongation exceeds 3.0 N/cm, the base fabric is difficult to stretch, so the stretch sensor is also difficult to stretch, resulting in poor measurement accuracy. Therefore, the tensile strength at 20% elongation is 3.0 N/cm or less, preferably 2.5 N/cm or less, more preferably 2.0 N/cm or less.
  • the tensile strength at 20% elongation in the direction around the body was measured by placing the center of the test piece made of the base fabric in the center between the chucks of the tensile tester and chucking the test piece so that the distance between the chucks was 50 mm. It can be measured by pinching and elongating at a tensile speed of 100 mm/min.
  • the ratio of the area covered with the base fabric to the body surface area of the quadruped is, for example, preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the upper limit of the ratio of the area covered with the base fabric is, for example, preferably 70% or less, more preferably 65% or less, still more preferably 60% or less.
  • the base fabric preferably has electrodes on the side of the skin. By having electrodes on the lateral side of the skin, it is also possible to measure temporal fluctuations in the heart rate as biological information of the tetrapod.
  • the position where the electrodes are placed should be close to the heart of the tetrapod.
  • the stretch sensor may be fixed to the base fabric, but it is preferably removable. By making it detachable, the base fabric can be washed with the expansion/contraction sensor removed. In addition, since the stretch sensor is detachable, the stretch sensor can be used in common even if the wearer has a plurality of clothes.
  • the expansion/contraction sensor can be detachable using, for example, hook-and-loop fasteners such as Velcro (registered trademark) and Free Velcro (registered trademark).
  • the second garment has a base fabric arranged around the torso, a strip-shaped fabric arranged around the torso, and a stretch sensor, and the stretch sensor is provided on the strip-shaped fabric.
  • the base fabric like the first clothing, is a fabric that constitutes the clothing worn by the tetrapod, and is arranged around the body of the tetrapod.
  • the belt-shaped fabric is a separate member from the base fabric, and is a circular fabric that is arranged around the body of the tetrapod.
  • Torso circumference means the circumference of the torso, including the back and abdomen of a quadruped.
  • the width of the belt-shaped fabric is preferably 5% or more, more preferably 10% or more, still more preferably 15% or more and 30% or less with respect to the width of the base fabric in the body length direction of the tetrapod. is preferably 25% or less, and still more preferably 20% or less.
  • the strip-shaped fabric may be partially or entirely laminated on the base fabric.
  • both ends of the strip-shaped fabric are laminated on the base fabric.
  • a configuration example is given.
  • the material of the base fabric can be referred to, and the material of the strip-shaped fabric may be the same as or different from the material of the base fabric.
  • the belt-like fabric may be formed in a mesh shape.
  • a stretch sensor is provided on the belt-shaped fabric, and by arranging the stretch sensor so as to be able to detect the stretch in the direction around the trunk of the quadruped animal, the degree of stretch around the trunk based on the respiration of the quadruped animal can be measured. can be detected.
  • the description of the stretch sensor the description of the first garment can be referred to.
  • the belt-shaped fabric provided with the stretch sensor has a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less when stretched 20% in the direction around the torso.
  • the stretch sensor can be fixed at a desired position of the quadruped animal, so that the measurement accuracy can be improved. Therefore, the tensile strength at 20% elongation is 0.3 N/cm or more, preferably 0.5 N/cm or more, more preferably 1.0 N/cm or more.
  • the tensile strength at 20% elongation exceeds 3.0 N/cm, the belt-shaped fabric is difficult to stretch, so the stretch sensor also becomes difficult to stretch, resulting in poor measurement accuracy. Therefore, the tensile strength at 20% elongation is 3.0 N/cm or less, preferably 2.5 N/cm or less, more preferably 2.0 N/cm or less.
  • the tensile strength at 20% elongation in the direction around the body was measured by placing the center of a strip-shaped fabric test piece in the center between chucks using a tensile tester, and placing the test piece so that the distance between chucks was 50 mm. It can be measured by pinching with a chuck and elongating at a tensile speed of 100 mm/min.
  • the tensile strength at 20% elongation in the direction around the torso of the base fabric in the second clothing is not particularly limited, and the tensile strength at 20% elongation may be less than 0.3 N/cm. Although it may exceed 0 N/cm, it preferably satisfies the range of 0.3 N/cm or more and 3.0 N/cm or less.
  • the tensile strength at 20% elongation in the direction around the torso of the base fabric satisfies the range of 0.3 N / cm or more and 3.0 N / cm or less
  • the tensile strength at 20% elongation in the direction around the torso of the base fabric may be different or the same, and are preferably the same. By being the same, there is no difference in the degree of expansion and contraction between the belt-shaped fabric and the base fabric, so the measurement accuracy can be improved.
  • the stretch sensor may be fixed to the belt-shaped fabric, but it is preferably removable. By making it detachable, it is possible to wash the belt-like fabric with the expansion/contraction sensor removed. In addition, since the stretch sensor is detachable, the stretch sensor can be used in common even if the wearer has a plurality of clothes.
  • the expansion/contraction sensor can be detachable using, for example, hook-and-loop fasteners such as Velcro (registered trademark) and Free Velcro (registered trademark).
  • the belt-shaped fabric may be fixed to the base fabric, but it is preferably removable. By making it detachable, the belt-like fabric and the base fabric can be washed separately. In addition, since the belt-like fabric is detachable, the belt-like fabric and clothing can be used in any combination.
  • the belt-like fabric can be made removable using, for example, hook-and-loop fasteners such as Velcro (registered trademark) and Free Velcro (registered trademark), buckles, hooks, buttons, and the like.
  • Tetrapods are amphibians, reptiles, or mammals, with mammals being preferred. Examples of mammals other than humans include dogs, cats, cows, horses, and pigs, preferably dogs, cats, or cows.
  • the present invention also includes a clothing-type biological information measuring device for quadrupeds.
  • the clothing-type biological information measuring device for quadrupeds according to the present invention transmits the biological information measuring clothing (that is, the first clothing or the second clothing) and the data detected by the stretch sensor to a receiver.
  • the present invention is characterized in that it has a transmitter that transmits data, a receiver that receives data transmitted from the transmitter, and a computing unit that computes the data received by the receiver.
  • the extension sensor is electrically connected to the transmitter by wiring or the like.
  • the transmitter and the receiver are wirelessly connected.
  • the transmitter is preferably provided on the base fabric in the first garment, and preferably provided on the belt-shaped fabric in the second garment.
  • the receiver and the arithmetic unit may be provided on the base fabric or the belt-like fabric, but preferably they are not provided on the base fabric or the belt-like fabric and are separately provided. By separating them, the weight of the clothing-type biological information measuring device can be reduced, so that the load on the quadrupeds can be reduced.
  • the calculation unit detects whether abnormal respiration has occurred in the quadruped animal based on the data detected by the extension sensor.
  • a calculation unit for example, at least a central processing unit (CPU) or the like may be provided. It is also preferable to have a storage unit (for example, memory) for storing ecological information data obtained from the quadruped.
  • CPU central processing unit
  • storage unit for example, memory
  • the clothing-type biological information measuring device for quadrupeds further includes electrodes arranged on the side of the skin of the base fabric.
  • electrodes arranged on the side of the skin of the base fabric it is also possible to measure temporal fluctuations in the heart rate as biological information of the quadruped animal.
  • Examples of the abnormal breathing detection method for quadrupeds according to the present invention include the following three methods.
  • the first detection method is a time-varying waveform of the depth of breathing, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration.
  • a step of acquiring a waveform from a quadruped animal (hereinafter sometimes referred to as a measurement respiratory waveform acquisition step), and a time at which the waveform has a maximum value T 1 , T 2 , . . . , T i , . . .
  • a step of continuously calculating the time difference (T i ⁇ T i ⁇ 1 ) for a plurality of locations (hereinafter sometimes referred to as a time difference calculation step); If the difference between the time difference (T i -T i-1 ) and the time difference (T i-1 -T i-2 ) is 1 second or more, the step of detecting that abnormal breathing has occurred (hereinafter referred to as the first (sometimes referred to as an abnormal respiration detection step).
  • the second detection method is a time-varying waveform of the depth of breathing, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration.
  • the third detection method is a time-varying waveform of the depth of breathing, which has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession.
  • the first detection method to the third detection method are identical in that they have a measured respiratory waveform acquisition step, a time difference calculation step, and an abnormal breathing detection step.
  • T i-1 and the time difference (T i-1 ⁇ T i-2 ) to determine whether abnormal breathing has occurred. Based on the difference between (T i -T i - 1 ), it is determined whether abnormal breathing has occurred.
  • ) is different in that it is determined whether or not abnormal respiration has occurred based on the rate of decrease in the value of .
  • a temporal variation waveform of respiration depth (hereinafter sometimes referred to as a measured respiration wave) is acquired from the quadruped animal.
  • the measured respiratory wave has successive maxima and minima, the maxima indicating the turning point from inspiration (inhalation) to expiration (exhalation), and the minima from expiration (exhalation) to inspiration (inhalation). It shows the turning point to
  • Time difference calculation step In the time difference calculating step, when the times T 1 , T 2 , . . . , T i , .
  • the time difference (T i -T i-1 ) between the time T i at which the respiratory wave reaches its maximum value and the time T i -1 at which the measured respiratory wave reaches its maximum value is continuously calculated for a plurality of points. do.
  • the number of times the time difference is measured is not particularly limited, and is preferably 2 or more, more preferably 3 or more, and the upper limit is preferably 5 or less, more preferably 4 or less.
  • curve 1 indicated by a solid line indicates the measured respiratory waveform obtained from a quadruped animal. i-1 , and the difference between the time T i at which the measured respiratory waveform reaches its maximum value and the time T i -1 is the time difference (T i -T i-1 ).
  • the horizontal axis indicates time, and the vertical axis indicates the depth of breathing.
  • the present invention focuses on the time at which the measured respiratory waveform reaches its maximum value, not the time at which the measured respiratory waveform reaches its minimum value. By measuring the time difference at the position where the measured respiration waveform has the maximum value, the measurement accuracy is higher than measuring the time difference at the position where the minimum value t is obtained.
  • Seconds or more (preferably 1.2 seconds or more, more preferably 1.5 seconds or more) is detected as occurrence of abnormal respiration.
  • any one of coughing, sneezing, belching, vomiting, and spitting can be detected as abnormal respiration.
  • Time difference calculation step For the time difference calculation step in the second detection method, the description of the time difference calculation step in the first detection method can be referred to.
  • Average calculation step an average value of the time differences for a plurality of locations calculated in the time difference calculation step is calculated.
  • the difference between the average value of the time differences calculated in the average value calculation step and the time difference (T i ⁇ T i-1 ) is calculated, and the difference is 0.8 seconds or more (preferably is 1.0 seconds or more, preferably 1.2 seconds or more), it is detected that abnormal respiration has occurred. Breathing differs depending on the species of tetrapods , and there are individual differences even within the same species. It is possible to detect whether or not abnormal breathing is occurring by taking into account the breathing that is occurring.
  • Time difference calculation step For the time difference calculation step in the third detection method, the description of the time difference calculation step in the first detection method can be referred to.
  • Average calculation step For the average value calculation step in the third detection method, the description of the average value calculation step in the second detection method can be referred to.
  • the value of the time difference (T i ⁇ T i-1 ) is 80% or less (preferably 75% or less, more preferably 75% or less, more preferably 70% or less), it is detected that abnormal respiration has occurred. Breathing differs depending on the type of tetrapods , and there are individual differences even within the same type. It is possible to detect whether or not abnormal breathing is occurring by taking into account the breathing that is occurring.
  • the first to third detection methods may be used individually, or two or more may be used in any combination.
  • Fig. 2 shows an example of the temporal fluctuation waveform of the respiration depth obtained from a quadruped. Breathing depth was measured using a stretch sensor with a stretchable capacitor whose capacitance changes with stretching. The horizontal axis of FIG. 2 indicates time (seconds), and the vertical axis indicates the depth of breathing. The depth of respiration was indicated by capacitance (unit: pF).
  • the present invention also includes a device that detects abnormal respiration of a quadruped using any one of the first to third detection methods described above.
  • An abnormal respiration detection device includes a respiration sensor that detects the depth of respiration, and a computing unit that computes data detected by the respiration sensor.
  • this device may be referred to as the first abnormal respiration detection device.
  • another abnormal breathing detection device includes a breathing sensor for detecting the depth of breathing, a transmitter for transmitting data detected by the breathing sensor to a receiver, and data transmitted from the transmitter. and a calculator for calculating the data received by the receiver.
  • this device may be referred to as a second abnormal breathing detection device.
  • a known respirometer may be used as the respiration sensor.
  • the depth of respiration can be detected by using the above-described extension sensor.
  • the calculation unit calculates the data detected by the respiration sensor, and detects abnormal respiration of the quadruped animal using any of the first to third detection methods described above.
  • calculation unit for example, at least a central processing unit (CPU) or the like may be provided. It is also preferable to have a storage unit (for example, memory) for storing data obtained from the quadruped.
  • CPU central processing unit
  • storage unit for example, memory
  • a known respirometer may be used as the respiration sensor.
  • the depth of respiration can be detected by using the stretchable sensor described above.
  • the second abnormal respiration detection device transfers the data detected by the respiration sensor from the transmitter to the receiver.
  • the data received by the receiver is calculated by the calculation unit, and any one of the above first detection method to third detection method may be used to detect abnormal respiration of the quadruped animal.
  • the calculation unit for example, at least a central processing unit (CPU) or the like may be provided. It is also preferable to have a storage unit (for example, memory) for storing data obtained from the quadruped.
  • the present invention also includes the following third to fifth abnormal respiration detection devices.
  • the third abnormal breathing detection device is a time-varying waveform of the depth of breathing, and has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession.
  • a time difference calculator that continuously calculates the time difference (T i -T i-1 ) for a plurality of locations, and the time difference (T i -T i-1 ) and the time difference (T i-1 -T i- 2 ), and a detection unit that detects occurrence of abnormal respiration when the difference from the time is one second or more.
  • the fourth abnormal breathing detection device is a time-varying waveform of the depth of breathing, and has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession.
  • a time difference calculation unit that continuously calculates the time difference (T i ⁇ T i-1 ) for a plurality of locations, an average value calculation unit that calculates the average value of the calculated time differences, and the average value of the calculated time differences , and the time difference (T i -T i-1 ) is 0.8 seconds or more, it detects that abnormal respiration has occurred.
  • the fifth abnormal breathing detection device is a time-varying waveform of the depth of breathing, and has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession.
  • a time difference calculation unit that continuously calculates the time difference (T i ⁇ T i-1 ) for a plurality of locations, an average value calculation unit that calculates the average value of the calculated time differences, and the calculated average value and a detection unit for detecting occurrence of abnormal respiration when the value of the time difference (T i -T i-1 ) is 80% or less.
  • the temporal fluctuation waveform of the depth of respiration which is a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration, is continuously obtained.
  • a respiration sensor can be used, and a known respiration meter may be used.
  • the depth of respiration can be detected by using the stretch sensor described above.
  • the time at which the waveform obtained by the acquisition unit has the maximum value is defined as T 1 , T 2 , . . . , Ti , . Then, the time difference (T i -T i-1 ) is continuously calculated for a plurality of points.
  • the difference between the time difference (T i ⁇ T i-1 ) calculated by the time difference calculation unit and the time difference (T i-1 ⁇ T i-2 ) is 1 second or more. (Preferably 1.2 seconds or longer, more preferably 1.5 seconds or longer) is detected as occurrence of abnormal respiration.
  • the average value calculation unit calculates the average value of the time differences calculated by the time difference calculation unit.
  • the difference between the average value of the time differences calculated by the time difference calculation unit and the time difference (T i ⁇ T i-1 ) is 0.8 seconds or more (preferably 1.0 seconds or more, preferably 1.2 seconds or more), it is detected that abnormal respiration has occurred.
  • the acquisition unit, the time difference calculation unit, and the average value calculation unit in the fifth abnormal respiration detection device are equivalent to the acquisition unit, the time difference calculation unit, and the average value calculation in the above third abnormal respiration detection device and the fourth abnormal respiration detection device. You can refer to the description of the part.
  • the value of the time difference (T i ⁇ T i-1 ) is 80% or less (preferably 75% or less, more preferably 75% or less, more preferably 70% or less), it is detected that abnormal respiration has occurred.
  • FIG. 3 is a schematic diagram showing an example of the quadruped animal 10 wearing the second clothing 2.
  • the tetrapod 10 is a dog, and the arrow X indicates the lengthwise direction of the tetrapod.
  • the second garment 2 is composed of a base fabric 21 arranged around the trunk of the quadruped 10, a belt-like cloth 22 arranged around the trunk, and a stretch sensor 23 provided on the belt-like cloth 22. - ⁇
  • the base fabric 21 is arranged around the body so as to cover the back, abdomen, and rib cage of the quadruped animal 10 .
  • a part of the base fabric 21 covers the front chest of the quadruped 10
  • the base fabric 21 arranged around the end of the base fabric 21a covering the front chest and the body of the quadruped animal 10 covers the shoulders of the quadruped. It is connected using a buckle 24 in the vicinity.
  • a strip-shaped fabric 22 is provided on the side opposite to the skin side of the base fabric 21, and the strip-shaped fabric 22 is provided with an expansion/contraction sensor 23. is detected by the extension sensor 23, the biological information of the tetrapod 10 can be measured.
  • the strip-shaped fabric 22 is provided along the thorax between the back and abdomen of the quadruped 10, but the placement position of the strip-shaped fabric 22 is not limited to this. It may be placed on the back or in the direction connecting the back and the chest.
  • connection member 25 with a transmitter (not shown) that transmits data detected by the extension sensor 23 to a receiver.
  • a clasp for example, can be used as the connecting member.
  • the clasp may be, for example, a metal snap hook, preferably a stainless steel snap hook.
  • An electrical connection can be made between the conductor and the transmitter through the clasp.
  • electrodes are provided on the side of the skin of the base fabric 21a covering the front chest of the tetrapod 10, and data detected by the electrodes are provided on the side opposite to the side of the skin.
  • a connection 26 with a transmitter is provided for transmitting to the receiver.
  • Reference Signs List 1 measured respiratory waveform obtained from a quadruped animal 2 second clothing 10 tetrapod 21 base fabric 21a base fabric covering the fore chest 22 strip fabric 23 stretch sensor 24 buckle 25 connecting member 26 connecting part

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided are: a garment which can measure biological information about a quadruped; and a garment type device which can measure biological information about a quadruped. This biological information measuring garment for a quadruped has a base fabric arranged around a torso, and an expanding/contracting sensor provided to the base fabric, wherein the base fabric has a tensile strength of 0.3 N/cm to 3.0 N/cm during 20% stretching in a direction around the torso measured under the following condition. [Condition] The center of the base fabric is disposed in the center between chucks using a tensile testing machine, the base fabric is clamped by the chucks such that the distance between the chucks is 50 mm, and stretching is performed at a tensile speed of 100 mm/minute.

Description

四肢動物用の生体情報計測衣類、四肢動物用の衣類型生体情報計測装置、四肢動物の異常呼吸検知方法、および四肢動物の異常呼吸検知装置Biological information measuring clothing for quadrupeds, clothing-type biological information measuring device for quadrupeds, abnormal breathing detection method for quadrupeds, and abnormal breathing detection device for quadrupeds
 本発明は、四肢動物の生体情報を計測できる衣類、四肢動物の生体情報を計測できる衣類型の装置、四肢動物の異常呼吸検知方法、および四肢動物の異常呼吸検知装置に関するものである。 The present invention relates to clothing capable of measuring biological information of a quadruped, a clothing-type device capable of measuring biological information of a quadruped, a method of detecting abnormal breathing of a quadruped, and an apparatus for detecting abnormal breathing of a quadruped.
 近年、ヘルスモニタリング分野や医療分野、療育分野、リハビリテーション分野において、人間が着用することにより生体情報を計測できる衣類が注目されている。また、近年では、ペットや家畜として飼っている犬、猫、牛などの四肢動物の健康状態を把握するために、四肢動物の生体情報を計測したいというニーズがある。そこで本発明者らは、特許文献1において、フレキシブルな基板の第1の面に、フレキシブルな導電性素材からなる電極部と、コネクタ部と、電極部とコネクタ部を電気的に接続する配線部を備え、フレキシブルな基板の第2の面に、衣類へ付着させるための部材を備える電極部材を有する動物用の生体情報計測衣類を提案した。特許文献1において提案した動物用の生体情報計測衣類を用いれば、生体情報として心拍数の変動を計測できる。 In recent years, clothing that can measure biological information when worn by humans has attracted attention in the fields of health monitoring, medical care, nursing care, and rehabilitation. Moreover, in recent years, there is a need to measure biological information of four-limbed animals such as dogs, cats, and cows kept as pets or livestock in order to grasp the health condition of the four-limbed animals. Therefore, the present inventors disclosed in Patent Document 1 that an electrode section made of a flexible conductive material, a connector section, and a wiring section that electrically connects the electrode section and the connector section are provided on the first surface of a flexible substrate. and an electrode member provided with a member for attaching to the clothing on the second surface of the flexible substrate. By using the biological information measurement clothing for animals proposed in Patent Document 1, fluctuations in heart rate can be measured as biological information.
国際公開第2019/035420号WO2019/035420
 人間と同様、人間以外の四肢動物も健康状態が悪くなると、咳をしたり、くしゃみをすることがある。咳やくしゃみは、断続的に生じることが多く、特に健康状態が悪化する初期の段階では飼い主は気づかないことが多い。そこで咳やくしゃみなどの発生を生体情報として計測できれば、四肢動物の健康状態が悪化する初期の段階で健康状態の変化を認識でき、四肢動物に対して適切な処置を施すことができ、健康状態の悪化を抑制できると考えられる。 Like humans, non-human quadrupeds can cough and sneeze when their health deteriorates. Coughing and sneezing are often intermittent and often go unnoticed by owners, especially in the early stages of poor health. Therefore, if the occurrence of coughing and sneezing can be measured as biological information, changes in the health condition of tetrapods can be recognized at an early stage when the health condition of the tetrapod deteriorates, and appropriate treatment can be given to the tetrapod. It is thought that it can suppress the deterioration of
 本発明は上記の様な事情に着目してなされたものであって、その目的は、四肢動物の生体情報を計測できる衣類、および四肢動物の生体情報を計測できる衣類型の装置を提供することにある。本発明の他の目的は、四肢動物の異常呼吸を検知する方法、および四肢動物の異常呼吸を検知できる装置を提供することにある。 The present invention has been made in view of the circumstances described above, and its object is to provide a garment capable of measuring the biological information of a quadruped and a clothing-type apparatus capable of measuring the biological information of the quadruped. It is in. It is another object of the present invention to provide a method for detecting abnormal respiration in a quadruped and a device capable of detecting abnormal respiration in a quadruped.
 本発明は、以下の通りである。
 [1] 胴体周りに配置されるベース生地と、前記ベース生地に備えられた伸縮センサとを有しており、前記ベース生地は、下記条件で測定される胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下であることを特徴とする四肢動物用の生体情報計測衣類。
 [条件]
 引張試験機を用いてチャック間の中心に前記ベース生地の中心を配置し、且つチャック間距離が50mmとなるように前記ベース生地をチャックで挟み、引張速度を100mm/分で伸長する。
 [2] 前記伸縮センサは、前記ベース生地に脱着可能である[1]に記載の生体情報計測衣類。
 [3] 胴体周りに配置されるベース生地と、胴体周りに配置される帯状生地と、前記帯状生地に備えられた伸縮センサとを有しており、前記帯状生地は、下記条件で測定される胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下であることを特徴とする四肢動物用の生体情報計測衣類。
 [条件]
 引張試験機を用いてチャック間の中心に前記帯状生地の中心を配置し、且つチャック間距離が50mmとなるように前記帯状生地をチャックで挟み、引張速度を100mm/分で伸長する。
 [4] 前記伸縮センサは、前記帯状生地に脱着可能である[3]に記載の生体情報計測衣類。
 [5] 前記帯状生地は、前記ベース生地に脱着可能である[3]または[4]に記載の生体情報計測衣類。
 [6] 前記伸縮センサは、伸縮により静電容量が変化する伸縮性コンデンサを有している[1]~[5]のいずれかに記載の生体情報計測衣類。
 [7] 前記伸縮センサは、該伸縮センサで検知されたデータを受信器へ発信する発信器との接続部材を有する[1]~[6]のいずれかに記載の生体情報計測衣類。
 [8] 前記四肢動物は、犬、猫、または牛のいずれかである[1]~[7]のいずれかに記載の生体情報計測衣類。
 [9] 前記ベース生地は、肌側面側に電極を有する[1]~[8]のいずれかに記載の生体情報計測衣類。
 [10] [1]~[8]のいずれかに記載の生体情報計測衣類と、前記伸縮センサで検知されたデータを受信器へ発信する発信器と、前記発信器から発信されたデータを受信する受信器と、前記受信器で受信したデータを演算する演算部とを有することを特徴とする四肢動物用の衣類型生体情報計測装置。
 [11] [9]に記載の生体情報計測衣類と、前記伸縮センサで検知されたデータを受信器へ発信する発信器と、前記発信器から発信されたデータを受信する受信器と、前記受信器で受信したデータを演算する演算部と、前記ベース生地の肌側面側に配置される電極とを有することを特徴とする四肢動物用の衣類型生体情報計測装置。
 [12] 呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップと、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップと、前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上になった場合は、異常呼吸が発生したと検知するステップとを有することを特徴とする四肢動物の異常呼吸検知方法。
 [13] 呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップと、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップと、算出した時間差の平均値を算出するステップと、算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上になった場合は、異常呼吸が発生したと検知するステップとを有することを特徴とする四肢動物の異常呼吸検知方法。
 [14] 呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップと、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップと、算出した時間差の平均値を算出するステップと、算出された平均値に対し、時間差(Ti-Ti-1)の値が80%以下になった場合は、異常呼吸が発生したと検知するステップとを有することを特徴とする四肢動物の異常呼吸検知方法。
 [15] 前記異常呼吸は、咳、くしゃみ、げっぷ、嘔吐、吐出のいずれかである[12]~[14]のいずれかに記載の異常呼吸検知方法。
 [16] [12]~[15]のいずれかに記載の異常呼吸検知方法を用いて四肢動物の異常呼吸を検知する装置であって、呼吸の深度を検知する呼吸センサと、前記呼吸センサで検知されたデータを演算する演算部とを有することを特徴とする四肢動物の異常呼吸検知装置。
 [17] [12]~[15]のいずれかに記載の異常呼吸検知方法を用いて四肢動物の異常呼吸を検知する装置であって、呼吸の深度を検知する呼吸センサと、前記呼吸センサで検知されたデータを受信器へ発信する発信器と、前記発信器から発信されたデータを受信する受信器と、前記受信器で受信したデータを演算する演算部とを有することを特徴とする四肢動物の異常呼吸検知装置。
 [18] 呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上になった場合は、異常呼吸が発生したと検知する検知部とを有することを特徴とする四肢動物の異常呼吸検知装置。
 [19] 呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、算出した時間差の平均値を算出する平均値算出部と、算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上になった場合は、異常呼吸が発生したと検知する検知部とを有することを特徴とする四肢動物の異常呼吸検知装置。
 [20] 呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、算出した時間差の平均値を算出する平均値算出部と、算出された平均値に対し、時間差(Ti-Ti-1)の値が80%以下になった場合は、異常呼吸が発生したと検知する検知部とを有することを特徴とする四肢動物の異常呼吸検知装置。
The present invention is as follows.
[1] It has a base fabric arranged around the torso and a stretch sensor provided in the base fabric, and the base fabric is stretched by 20% in the direction around the torso measured under the following conditions. A biological information measuring garment for quadruped animals, characterized by having a strength of 0.3 N/cm or more and 3.0 N/cm or less.
[conditions]
Using a tensile tester, the center of the base fabric is placed in the center between the chucks, and the base fabric is clamped so that the distance between the chucks is 50 mm, and the tensile speed is 100 mm/min.
[2] The biological information measurement clothing according to [1], wherein the stretch sensor is detachable from the base fabric.
[3] It has a base fabric arranged around the torso, a strip-shaped fabric arranged around the torso, and a stretch sensor provided on the strip-shaped fabric, and the strip-shaped fabric is measured under the following conditions. A garment for measuring biological information for quadrupeds, characterized by having a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less at 20% elongation in the direction around the trunk.
[conditions]
Using a tensile tester, the center of the belt-shaped fabric is placed in the center between the chucks, and the belt-shaped fabric is clamped so that the distance between the chucks is 50 mm, and the strip is stretched at a tensile speed of 100 mm/min.
[4] The biological information measurement clothing according to [3], wherein the stretch sensor is detachable from the belt-like fabric.
[5] The biological information measurement clothing according to [3] or [4], wherein the belt-shaped fabric is detachable from the base fabric.
[6] The biological information measurement clothing according to any one of [1] to [5], wherein the stretch sensor has a stretchable capacitor whose capacitance changes with stretching.
[7] The biological information measuring garment according to any one of [1] to [6], wherein the stretch sensor has a connection member with a transmitter that transmits data detected by the stretch sensor to a receiver.
[8] The biological information measurement clothing according to any one of [1] to [7], wherein the quadruped animal is a dog, cat, or cow.
[9] The biological information measurement clothing according to any one of [1] to [8], wherein the base fabric has electrodes on the side of the skin.
[10] The garment for measuring biological information according to any one of [1] to [8], a transmitter for transmitting data detected by the stretch sensor to a receiver, and receiving the data transmitted from the transmitter. and a calculator for calculating the data received by the receiver.
[11] The biological information measuring clothing according to [9], a transmitter that transmits data detected by the stretch sensor to a receiver, a receiver that receives the data transmitted from the transmitter, and the receiver. A clothing-type biological information measuring device for a quadruped animal, comprising: a calculation unit for calculating data received by a device; and electrodes arranged on the side of the skin of the base fabric.
[12] A four-limbed animal obtains a temporal variation waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. and the time at which the waveform becomes the maximum value are T 1 , T 2 , . . . , T i , . i - T i - 1 ) for a plurality of points continuously ; A method for detecting abnormal respiration in a four-legged animal, comprising the step of detecting that abnormal respiration has occurred when the condition becomes.
[13] A four-limbed animal obtains a temporal variation waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. and the time at which the waveform becomes the maximum value are T 1 , T 2 , . . . , T i , . i −T i−1 ) for a plurality of points continuously, a step of computing an average value of the calculated time differences, an average value of the calculated time differences, and the time difference (T i −T i−1 ) and detecting that abnormal respiration has occurred when the difference between the two is equal to or greater than 0.8 seconds.
[14] A four-limbed animal obtains a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. and the time at which the waveform becomes the maximum value are T 1 , T 2 , . . . , T i , . i −T i - 1 ) for a plurality of points continuously; calculating an average value of the calculated time differences; and detecting that abnormal respiration has occurred when the value is 80% or less.
[15] The abnormal respiration detection method according to any one of [12] to [14], wherein the abnormal respiration is coughing, sneezing, burping, vomiting, or exhaling.
[16] A device for detecting abnormal respiration of a quadruped animal using the abnormal respiration detection method according to any one of [12] to [15], comprising: a respiration sensor for detecting respiration depth; and a computing unit for computing detected data.
[17] A device for detecting abnormal respiration of a quadruped animal using the abnormal respiration detection method according to any one of [12] to [15], comprising: a respiration sensor for detecting respiration depth; A limb characterized by having a transmitter that transmits detected data to a receiver, a receiver that receives the data transmitted from the transmitter, and a computing unit that computes the data received by the receiver. Abnormal breathing detection device for animals.
[18] A quadruped animal is provided with a time-varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. T 1 , T 2 , . . . , T i , . T i −T i-1 ) for a plurality of points continuously, and the difference between the time difference (T i −T i-1 ) and the time difference (T i-1 −T i-2 ) is and a detection unit for detecting occurrence of abnormal respiration when the duration is longer than 1 second.
[19] A four-limbed animal obtains a temporally fluctuating waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. T 1 , T 2 , . . . , T i , . T i −T i−1 ) for a plurality of points continuously, an average value calculating unit for calculating the average value of the calculated time differences, the average value of the calculated time differences, and the time difference (T i − and a detection unit for detecting occurrence of abnormal respiration when the difference from T i-1 ) is 0.8 seconds or more.
[20] A quadruped animal with a temporal variation waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. T 1 , T 2 , . . . , T i , . A time difference calculation unit that continuously calculates T i −T i−1 ) for a plurality of locations, an average value calculation unit that calculates an average value of the calculated time differences, and a time difference (T i − and a detection unit for detecting occurrence of abnormal respiration when the value of T i-1 ) is 80% or less.
 本発明に係る四肢動物用の生体情報計測衣類および四肢動物用の衣類型生体情報計測装置によれば、四肢動物に着用させる衣類を構成するベース生地、またはベース生地とは別の部材である帯状生地に伸縮センサを設けると共に、ベース生地または帯状生地に所定の伸縮性を持たせているため、四肢動物の生体情報のうち、特に四肢動物の呼吸に由来する生体情報を計測できる。本発明に係る四肢動物の異常呼吸検知方法および四肢動物の異常呼吸検知装置によれば、四肢動物の異常呼吸を検知できる。 According to the biological information measuring clothing for quadrupeds and the clothing-type biological information measuring device for quadrupeds according to the present invention, the belt-like fabric that constitutes the clothing to be worn by the quadruped animal, or a member that is separate from the base fabric, is used. Since the stretch sensor is provided in the fabric and the base fabric or the belt-shaped fabric is given a predetermined stretchability, it is possible to measure the biometric information derived from the respiration of the tetrapod, among the tetrapod's biometric information. According to the method for detecting abnormal breathing in a quadruped and the device for detecting abnormal breathing in a quadruped according to the present invention, abnormal breathing in a quadruped can be detected.
図1は、時間Tiと時間Ti-1との差(Ti-Ti-1)を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the difference (T i -T i-1 ) between time T i and time T i-1 . 図2は、四肢動物から取得した呼吸の深度の時間的な変動波形の一例を示すグラフである。FIG. 2 is a graph showing an example of temporal variation waveforms of respiration depth acquired from a quadruped animal. 図3は、四肢動物に、第2の衣類の実施形態の一例を着用させた模式図である。FIG. 3 is a schematic diagram of a quadruped animal wearing an exemplary embodiment of the second garment.
 本発明に係る四肢動物用の生体情報計測衣類は、胴体周りに配置されるベース生地と、前記ベース生地に備えられた伸縮センサとを有しており、前記ベース生地は、下記条件で測定される胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下である点に特徴を有している。以下、伸縮センサがベース生地に備えられた四肢動物用の生体情報計測衣類を、第1の衣類ということがある。
 [条件]
 引張試験機を用いてチャック間の中心に前記ベース生地の中心を配置し、且つチャック間距離が50mmとなるように前記ベース生地をチャックで挟み、引張速度を100mm/分で伸長する。
A biological information measurement garment for quadrupeds according to the present invention has a base fabric arranged around the body and a stretch sensor provided on the base fabric, and the base fabric is measured under the following conditions. It is characterized by a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less at 20% elongation in the direction around the trunk. Hereinafter, the biological information measurement clothing for quadrupeds having the stretch sensor on the base fabric may be referred to as the first clothing.
[conditions]
Using a tensile tester, the center of the base fabric is placed in the center between the chucks, and the base fabric is clamped so that the distance between the chucks is 50 mm, and the tensile speed is 100 mm/min.
 また、本発明に係る他の四肢動物用の生体情報計測衣類は、胴体周りに配置されるベース生地と、胴体周りに配置される帯状生地と、前記帯状生地に備えられた伸縮センサとを有しており、前記帯状生地は、下記条件で測定される胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下である点に特徴を有している。以下、伸縮センサが帯状生地に備えられた四肢動物用の生体情報計測衣類を、第2の衣類ということがある。
 [条件]
 引張試験機を用いてチャック間の中心に前記帯状生地の中心を配置し、且つチャック間距離が50mmとなるように前記帯状生地をチャックで挟み、引張速度を100mm/分で伸長する。
Further, another biological information measurement garment for quadrupeds according to the present invention has a base fabric arranged around the trunk, a belt-like cloth arranged around the trunk, and a stretch sensor provided on the belt-shaped cloth. The belt-shaped fabric has a tensile strength of 0.3 N / cm or more and 3.0 N / cm or less when stretched 20% in the direction around the torso measured under the following conditions. there is Hereinafter, the biological information measurement clothing for quadrupeds in which the stretch sensor is provided on the belt-shaped fabric may be referred to as the second clothing.
[conditions]
Using a tensile tester, the center of the belt-shaped fabric is placed in the center between the chucks, and the belt-shaped fabric is clamped so that the distance between the chucks is 50 mm, and the strip is stretched at a tensile speed of 100 mm/min.
 第1の衣類と第2の衣類は、胴体周りに配置されるベース生地と、伸縮センサとを有している点で一致しており、第2の衣類は、更に、胴回りに配置される帯状生地を有しているものである。一方、第1の衣類と第2の衣類は、第1の衣類における前記伸縮センサは前記ベース生地に備えられているのに対し、第2の衣類における前記伸縮センサは前記帯状生地に備えられている点で相違している。 The first garment and the second garment are the same in that they have a base fabric arranged around the torso and a stretch sensor, and the second garment further has a belt-like shape arranged around the torso. It has fabric. On the other hand, in the first clothing and the second clothing, the stretch sensor in the first clothing is provided in the base fabric, while the stretch sensor in the second clothing is provided in the belt-shaped fabric. There is a difference.
 まず、第1の衣類について説明する。第1の衣類は、胴体周りに配置されるベース生地と、伸縮センサを有しており、伸縮センサはベース生地に備えられている。 First, the first clothing will be explained. The first garment has a base fabric arranged around the torso and a stretch sensor, the stretch sensor being provided on the base fabric.
 ベース生地は、四肢動物に着用させる衣類を構成する生地であり、四肢動物の胴体周りに配置される。胴体周りとは、四肢動物の背と腹を含む胴の周囲を意味する。四肢動物の体長方向におけるベース生地は、例えば、キ甲から腰までの範囲を覆っていてもよい。また、ベース生地は、四肢動物の前胸を覆っていてもよい。 The base fabric is the fabric that makes up the clothing worn by the quadruped and is placed around the torso of the quadruped. Torso circumference means the circumference of the torso, including the back and abdomen of a quadruped. The base fabric in the lengthwise direction of the quadruped may, for example, cover the area from the withers to the waist. The base fabric may also cover the prothorax of the tetrapod.
 ベース生地の素材としては、編物、織物、不織布等が挙げられる。これらのうち伸縮性に優れるため編物が好ましい。編物として、緯編物または経編物が挙げられる。なお緯編物には丸編物も含まれる。緯編物(丸編物)としては、例えば、天竺編(平編)、ベア天竺編、ウエルト天竺編、フライス編(ゴム編)、パール編、片袋編、スムース編、タック編、浮き編、片畔編、レース編、添え毛編等が挙げられる。経編物としては、例えば、シングルデンビー編、開目デンビー編、シングルアトラス編、ダブルコード編、ハーフ編、ハーフベース編、サテン編、シングルトリコット編、ダブルトリコット編、ハーフトリコット編、シングルラッセル編、ダブルラッセル編、ジャガード編等が挙げられる。織物としては、例えば、平織り、綾織り、朱子織り等で形成された織物が挙げられる。また織物は、一重織物に限定されず、二重織物、三重織物等の多重織物であってもよい。なお、ベース生地は、メッシュ状に形成されていてもよい。 Materials for the base fabric include knitted fabrics, woven fabrics, and non-woven fabrics. Of these, knitted fabrics are preferred because of their excellent stretchability. Knitted fabrics include weft knitted fabrics or warp knitted fabrics. The weft knitted fabric includes a circular knitted fabric. Weft knitted fabrics (circular knitted fabrics) include, for example, jersey knitting (flat knitting), bare jersey knitting, welted jersey knitting, milling knitting (rubber knitting), pearl knitting, single bag knitting, smooth knitting, tuck knitting, float knitting, and single knitting. Examples include hem knitting, lace knitting, and additional hair knitting. Examples of warp knitted fabrics include single denby knitting, open denby knitting, single atlas knitting, double cord knitting, half knitting, half base knitting, satin knitting, single tricot knitting, double tricot knitting, half tricot knitting, single Russell knitting, Examples include double Russell knitting and jacquard knitting. Examples of woven fabrics include woven fabrics formed by plain weave, twill weave, satin weave, and the like. Moreover, the woven fabric is not limited to a single woven fabric, and may be a multiple woven fabric such as a double woven fabric or a triple woven fabric. Note that the base fabric may be formed in a mesh shape.
 編物および織物は、天然繊維、合成繊維、再生繊維、および半合成繊維よりなる群から選ばれる少なくとも1種の繊維を含むものが好ましい。天然繊維としては、例えば、綿、麻、羊毛、絹等が挙げられる。これらのうち綿が好ましい。綿を含むことにより、吸湿性、吸水性、保温性等が向上する。なお天然繊維は、そのまま用いてもよいが親水処理や防汚処理等の後加工が施されていてもよい。合成繊維としては、例えば、アクリル;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンイソフタレート、ポリ乳酸、ポリアクリレート等のポリエステル;ナイロン6、ナイロン66等のポリアミド;等が挙げられる。再生繊維としては、例えば、モダール等のレーヨン、キュプラ、ポリノジック、リヨセル等が挙げられる。半合成繊維としては、例えば、アセテート、トリアセテート等が挙げられる。これらは1種のみを用いてもよいし、2種以上を用いてもよい。 Knitted fabrics and woven fabrics preferably contain at least one type of fiber selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, and semi-synthetic fibers. Natural fibers include, for example, cotton, hemp, wool, and silk. Among these, cotton is preferred. Moisture absorption, water absorption, heat retention, etc. are improved by including cotton. The natural fibers may be used as they are, or may be subjected to post-processing such as hydrophilic treatment and antifouling treatment. Examples of synthetic fibers include acrylic; polyesters such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene isophthalate, polylactic acid, and polyacrylate; polyamides such as nylon 6 and nylon 66; be done. Examples of regenerated fibers include rayon such as modal, cupra, polynosic, and lyocell. Examples of semi-synthetic fibers include acetate, triacetate, and the like. These may use only 1 type, and may use 2 or more types.
 伸縮センサとは、伸縮度合いを検出できるセンサであり、伸縮により四肢動物の呼吸に基づく胸囲の変化を測定できるセンサであれば特に限定されず、伸縮センサの伸縮により四肢動物の呼吸状態を測定できる。伸縮センサは、例えば、伸縮性コンデンサを備えるものが挙げられる。伸縮性コンデンサは、伸縮により静電容量が変化する素子であり、当該静電容量の変化を利用して、四肢動物の呼吸状態を計測できる。伸縮センサは、伸縮により静電容量が変化するコンデンサ素子と、皮膚接触型電極とを少なくとも有することが好ましい。伸縮により静電容量が変化するコンデンサ素子は、少なくとも第1の伸縮性導体層、伸縮性誘電体層、第2の伸縮性導体層の順序で積層された構造を少なくとも有するコンデンサ型素子であることが好ましい。皮膚接触型電極の皮膚接触面は、伸縮性導体層であることが好ましい。伸縮センサの詳細は、例えば、特開2019-072048号公報を参照できる。 The extension sensor is a sensor that can detect the degree of extension and contraction, and is not particularly limited as long as it is a sensor that can measure changes in the chest circumference based on respiration of the quadruped animal by extension and retraction. . The stretch sensor includes, for example, a stretchable capacitor. A stretchable capacitor is an element whose capacitance changes due to expansion and contraction, and the change in the capacitance can be used to measure the respiratory state of a quadruped animal. The expansion/contraction sensor preferably has at least a capacitor element whose capacitance changes due to expansion and contraction, and a skin contact electrode. The capacitor element whose capacitance changes due to expansion and contraction is a capacitor-type element having at least a structure in which at least a first stretchable conductor layer, an stretchable dielectric layer, and a second stretchable conductor layer are laminated in this order. is preferred. The skin contact surface of the skin contact electrode is preferably an elastic conductor layer. For details of the expansion/contraction sensor, for example, reference can be made to Japanese Patent Application Laid-Open No. 2019-072048.
 第1の衣類は、伸縮センサが上記ベース生地に備えられており、伸縮センサを四肢動物の胴体周り方向における伸縮を検出できるように配置することによって、四肢動物の呼吸に基づく胴体周りの伸縮度合いを検出できる。 In the first garment, a stretch sensor is provided on the base fabric, and the stretch sensor is arranged so as to be able to detect the stretch in the direction around the trunk of the tetrapod, thereby measuring the degree of stretch around the trunk based on the respiration of the tetrapod. can be detected.
 第1の衣類では、伸縮センサを備えるベース生地が、胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下を満足することが重要である。20%伸長時の引張強さを0.3N/cm以上とすることにより、四肢動物の所望の位置に伸縮センサを固定できるため、測定精度を高めることができる。従って20%伸長時の引張強さは0.3N/cm以上であり、好ましくは0.5N/cm以上、より好ましくは1.0N/cm以上である。しかし、20%伸長時の引張強さが3.0N/cmを超えると、ベース生地が伸びにくいため、伸縮センサも伸びにくくなり、測定精度が悪くなる。従って20%伸長時の引張強さは3.0N/cm以下であり、好ましくは2.5N/cm以下、より好ましくは2.0N/cm以下である。 In the first garment, it is important that the base fabric with the stretch sensor has a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less when stretched 20% in the direction around the torso. By setting the tensile strength at 20% elongation to 0.3 N/cm or more, the stretch sensor can be fixed at a desired position of the quadruped animal, so that the measurement accuracy can be improved. Therefore, the tensile strength at 20% elongation is 0.3 N/cm or more, preferably 0.5 N/cm or more, more preferably 1.0 N/cm or more. However, if the tensile strength at 20% elongation exceeds 3.0 N/cm, the base fabric is difficult to stretch, so the stretch sensor is also difficult to stretch, resulting in poor measurement accuracy. Therefore, the tensile strength at 20% elongation is 3.0 N/cm or less, preferably 2.5 N/cm or less, more preferably 2.0 N/cm or less.
 胴体周り方向における20%伸長時の引張強さは、引張試験機のチャック間の中心にベース生地からなる試験片の中心を配置し、且つチャック間距離が50mmとなるように試験片をチャックで挟み、引張速度を100mm/分で伸長することにより測定すればよい。 The tensile strength at 20% elongation in the direction around the body was measured by placing the center of the test piece made of the base fabric in the center between the chucks of the tensile tester and chucking the test piece so that the distance between the chucks was 50 mm. It can be measured by pinching and elongating at a tensile speed of 100 mm/min.
 四肢動物の体表面積に対してベース生地に覆われている面積の割合は、例えば、四肢動物の体表面積の30%以上が好ましく、より好ましくは40%以上、更に好ましくは50%以上である。ベース生地に覆われている面積の割合の上限は、例えば、70%以下が好ましく、より好ましくは65%以下、更に好ましくは60%以下である。 The ratio of the area covered with the base fabric to the body surface area of the quadruped is, for example, preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more. The upper limit of the ratio of the area covered with the base fabric is, for example, preferably 70% or less, more preferably 65% or less, still more preferably 60% or less.
 ベース生地は、肌側面側に電極を有することが好ましい。肌側面側に電極を有することにより四肢動物の生体情報として心拍数の時間的な変動も併せて測定できる。 The base fabric preferably has electrodes on the side of the skin. By having electrodes on the lateral side of the skin, it is also possible to measure temporal fluctuations in the heart rate as biological information of the tetrapod.
 電極を配置する位置は、四肢動物の心臓に近い位置であればよく、例えば、四肢動物に着用させたときに前胸を覆うベース生地の肌側面側に電極を配置することが好ましい。 The position where the electrodes are placed should be close to the heart of the tetrapod. For example, it is preferable to place the electrodes on the side of the skin of the base fabric that covers the anterior chest when worn by the tetrapod.
 伸縮センサは、ベース生地に固定されていてもよいが、脱着可能であることが好ましい。脱着可能とすることにより伸縮センサを取り外した状態で、ベース生地を洗濯等できる。また、伸縮センサが脱着可能であることにより、衣類を複数有していても伸縮センサを共用できる。伸縮センサは、例えば、マジックテープ(登録商標)、フリーマジックテープ(登録商標)などの面ファスナーなどを用いて脱着可能とすることができる。 The stretch sensor may be fixed to the base fabric, but it is preferably removable. By making it detachable, the base fabric can be washed with the expansion/contraction sensor removed. In addition, since the stretch sensor is detachable, the stretch sensor can be used in common even if the wearer has a plurality of clothes. The expansion/contraction sensor can be detachable using, for example, hook-and-loop fasteners such as Velcro (registered trademark) and Free Velcro (registered trademark).
 次に、第2の衣類について説明する。第2の衣類は、胴体周りに配置されるベース生地と、胴体周りに配置される帯状生地と、伸縮センサを有しており、伸縮センサは帯状生地に備えられている。 Next, the second clothing will be explained. The second garment has a base fabric arranged around the torso, a strip-shaped fabric arranged around the torso, and a stretch sensor, and the stretch sensor is provided on the strip-shaped fabric.
 ベース生地は、上記第1の衣類と同様、四肢動物に着用させる衣類を構成する生地であり、四肢動物の胴体周りに配置される。 The base fabric, like the first clothing, is a fabric that constitutes the clothing worn by the tetrapod, and is arranged around the body of the tetrapod.
 第2の衣類で用いる伸縮センサの説明は、上記第1の衣類で用いる伸縮センサの説明が参照される。 For the description of the stretch sensor used in the second clothing, refer to the description of the stretch sensor used in the first clothing.
 帯状生地とは、ベース生地とは別部材であり、四肢動物の胴体周りに配置する環状に構成されている生地である。胴体周りとは、四肢動物の背と腹を含む胴の周囲を意味する。帯状生地の幅は、四肢動物の体長方向におけるベース生地の幅に対して、5%以上であることが好ましく、より好ましくは10%以上、更に好ましくは15%以上であり、30%以下であることが好ましく、より好ましくは25%以下、更に好ましくは20%以下である。 The belt-shaped fabric is a separate member from the base fabric, and is a circular fabric that is arranged around the body of the tetrapod. Torso circumference means the circumference of the torso, including the back and abdomen of a quadruped. The width of the belt-shaped fabric is preferably 5% or more, more preferably 10% or more, still more preferably 15% or more and 30% or less with respect to the width of the base fabric in the body length direction of the tetrapod. is preferably 25% or less, and still more preferably 20% or less.
 帯状生地は、その一部または全部がベース生地に積層されていてもよく、例えば、帯状生地の一部がベース生地に積層している場合は、帯状生地の両端部がベース生地に積層されている構成例が挙げられる。 The strip-shaped fabric may be partially or entirely laminated on the base fabric. For example, when part of the strip-shaped fabric is laminated on the base fabric, both ends of the strip-shaped fabric are laminated on the base fabric. A configuration example is given.
 帯状生地の素材は、上記ベース生地の素材を参照でき、帯状生地の素材は、ベース生地の素材と同じであってもよいし、異なっていてもよい。また、帯状生地は、メッシュ状に形成されていてもよい。 For the material of the strip-shaped fabric, the material of the base fabric can be referred to, and the material of the strip-shaped fabric may be the same as or different from the material of the base fabric. Also, the belt-like fabric may be formed in a mesh shape.
 第2の衣類は、伸縮センサが上記帯状生地に備えられており、伸縮センサを四肢動物の胴体周り方向における伸縮を検出できるように配置することによって、四肢動物の呼吸に基づく胴体周りの伸縮度合いを検出できる。伸縮センサの説明は、上記第1の衣類における説明を参照できる。 In the second garment, a stretch sensor is provided on the belt-shaped fabric, and by arranging the stretch sensor so as to be able to detect the stretch in the direction around the trunk of the quadruped animal, the degree of stretch around the trunk based on the respiration of the quadruped animal can be measured. can be detected. For the description of the stretch sensor, the description of the first garment can be referred to.
 第2の衣類では、伸縮センサを備える帯状生地が、胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下を満足することが重要である。20%伸長時の引張強さを0.3N/cm以上とすることにより、四肢動物の所望の位置に伸縮センサを固定できるため、測定精度を高めることができる。従って20%伸長時の引張強さは0.3N/cm以上であり、好ましくは0.5N/cm以上、より好ましくは1.0N/cm以上である。しかし、20%伸長時の引張強さが3.0N/cmを超えると、帯状生地が伸びにくいため、伸縮センサも伸びにくくなり、測定精度が悪くなる。従って20%伸長時の引張強さは3.0N/cm以下であり、好ましくは2.5N/cm以下、より好ましくは2.0N/cm以下である。 In the second garment, it is important that the belt-shaped fabric provided with the stretch sensor has a tensile strength of 0.3 N/cm or more and 3.0 N/cm or less when stretched 20% in the direction around the torso. By setting the tensile strength at 20% elongation to 0.3 N/cm or more, the stretch sensor can be fixed at a desired position of the quadruped animal, so that the measurement accuracy can be improved. Therefore, the tensile strength at 20% elongation is 0.3 N/cm or more, preferably 0.5 N/cm or more, more preferably 1.0 N/cm or more. However, if the tensile strength at 20% elongation exceeds 3.0 N/cm, the belt-shaped fabric is difficult to stretch, so the stretch sensor also becomes difficult to stretch, resulting in poor measurement accuracy. Therefore, the tensile strength at 20% elongation is 3.0 N/cm or less, preferably 2.5 N/cm or less, more preferably 2.0 N/cm or less.
 胴体周り方向における20%伸長時の引張強さは、引張試験機を用いてチャック間の中心に帯状生地からなる試験片の中心を配置し、且つチャック間距離が50mmとなるように試験片をチャックで挟み、引張速度を100mm/分で伸長することにより測定すればよい。 The tensile strength at 20% elongation in the direction around the body was measured by placing the center of a strip-shaped fabric test piece in the center between chucks using a tensile tester, and placing the test piece so that the distance between chucks was 50 mm. It can be measured by pinching with a chuck and elongating at a tensile speed of 100 mm/min.
 第2の衣類におけるベース生地の胴体周り方向における20%伸長時の引張強さは特に限定されず、20%伸長時の引張強さが0.3N/cm未満であってもよいし、3.0N/cmを超えていてもよいが、0.3N/cm以上、3.0N/cm以下の範囲を満足することが好ましい。ベース生地の胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下の範囲を満足する場合は、ベース生地の胴体周り方向における20%伸長時の引張強さと、上記帯状生地の20%伸長時の引張強さは、異なっていてもよいし、同じであってもよく、同じであることが好ましい。同じであることにより、帯状生地とベース生地の伸縮度合いにズレが生じないため、測定精度を高めることができる。 The tensile strength at 20% elongation in the direction around the torso of the base fabric in the second clothing is not particularly limited, and the tensile strength at 20% elongation may be less than 0.3 N/cm. Although it may exceed 0 N/cm, it preferably satisfies the range of 0.3 N/cm or more and 3.0 N/cm or less. If the tensile strength at 20% elongation in the direction around the torso of the base fabric satisfies the range of 0.3 N / cm or more and 3.0 N / cm or less, the tensile strength at 20% elongation in the direction around the torso of the base fabric The strength and the tensile strength at 20% elongation of the belt-like fabric may be different or the same, and are preferably the same. By being the same, there is no difference in the degree of expansion and contraction between the belt-shaped fabric and the base fabric, so the measurement accuracy can be improved.
 伸縮センサは、帯状生地に固定されていてもよいが、脱着可能であることが好ましい。脱着可能とすることにより伸縮センサを取り外した状態で、帯状生地を洗濯等できる。また、伸縮センサが脱着可能であることにより、衣類を複数有していても伸縮センサを共用できる。伸縮センサは、例えば、マジックテープ(登録商標)、フリーマジックテープ(登録商標)などの面ファスナーなどを用いて脱着可能とすることができる。 The stretch sensor may be fixed to the belt-shaped fabric, but it is preferably removable. By making it detachable, it is possible to wash the belt-like fabric with the expansion/contraction sensor removed. In addition, since the stretch sensor is detachable, the stretch sensor can be used in common even if the wearer has a plurality of clothes. The expansion/contraction sensor can be detachable using, for example, hook-and-loop fasteners such as Velcro (registered trademark) and Free Velcro (registered trademark).
 帯状生地は、ベース生地に固定されていてもよいが、脱着可能であることが好ましい。脱着可能とすることにより帯状生地とベース生地とを別々に洗濯等できる。また、帯状生地が脱着可能であることにより、帯状生地と衣類とを任意の組み合わせで使用できる。帯状生地は、例えば、マジックテープ(登録商標)、フリーマジックテープ(登録商標)などの面ファスナー、バックル、ホック、ボタンなどを用いて脱着可能とすることができる。 The belt-shaped fabric may be fixed to the base fabric, but it is preferably removable. By making it detachable, the belt-like fabric and the base fabric can be washed separately. In addition, since the belt-like fabric is detachable, the belt-like fabric and clothing can be used in any combination. The belt-like fabric can be made removable using, for example, hook-and-loop fasteners such as Velcro (registered trademark) and Free Velcro (registered trademark), buckles, hooks, buttons, and the like.
 四肢動物とは、両生類、爬虫類、または哺乳類であり、これらのなかでも哺乳類が好ましい。哺乳類としては、人間を除き、例えば、犬、猫、牛、馬、豚などが挙げられ、犬、猫、または牛のいずれかであることが好ましい。 Tetrapods are amphibians, reptiles, or mammals, with mammals being preferred. Examples of mammals other than humans include dogs, cats, cows, horses, and pigs, preferably dogs, cats, or cows.
 本発明には、四肢動物用の衣類型生態情報計測装置も含まれる。本発明に係る四肢動物用の衣類型生態情報計測装置は、上記の生体情報計測衣類(即ち、第1の衣類または第2の衣類)と、前記伸縮センサで検知されたデータを受信器へ発信する発信器と、前記発信器から発信されたデータを受信する受信器と、前記受信器で受信したデータを演算する演算部とを有するところに特徴がある。 The present invention also includes a clothing-type biological information measuring device for quadrupeds. The clothing-type biological information measuring device for quadrupeds according to the present invention transmits the biological information measuring clothing (that is, the first clothing or the second clothing) and the data detected by the stretch sensor to a receiver. The present invention is characterized in that it has a transmitter that transmits data, a receiver that receives data transmitted from the transmitter, and a computing unit that computes the data received by the receiver.
 伸縮センサは、配線等によって発信器と電気的に接続されていることが好ましい。一方、前記発信器と前記受信器は、無線で接続されていることが好ましい。 It is preferable that the extension sensor is electrically connected to the transmitter by wiring or the like. On the other hand, it is preferable that the transmitter and the receiver are wirelessly connected.
 発信器は、第1の衣類においてはベース生地に備えられていることが好ましく、第2の衣類においては帯状生地に備えられていることが好ましい。一方、前記受信器および前記演算部は、ベース生地や帯状生地に備えられていてもよいが、ベース生地や帯状生地には備えず、別にすることが好ましい。別にすることで、衣類型生態情報計測装置を軽量化できるため、四肢動物への負荷を軽減できる。 The transmitter is preferably provided on the base fabric in the first garment, and preferably provided on the belt-shaped fabric in the second garment. On the other hand, the receiver and the arithmetic unit may be provided on the base fabric or the belt-like fabric, but preferably they are not provided on the base fabric or the belt-like fabric and are separately provided. By separating them, the weight of the clothing-type biological information measuring device can be reduced, so that the load on the quadrupeds can be reduced.
 演算部では、伸縮センサで検知されたデータに基づいて、四肢動物に異常呼吸が発生したかどうかを検知することが好ましい。 It is preferable that the calculation unit detects whether abnormal respiration has occurred in the quadruped animal based on the data detected by the extension sensor.
 演算部としては、例えば、中央演算処理装置(CPU)などを少なくとも備えていればよい。また、四肢動物から取得した生態情報のデータを記憶する記憶部(例えば、メモリなど)を備えていることも好ましい。  As a calculation unit, for example, at least a central processing unit (CPU) or the like may be provided. It is also preferable to have a storage unit (for example, memory) for storing ecological information data obtained from the quadruped.
 上記四肢動物用の衣類型生体情報計測装置は、更に、前記ベース生地の肌側面側に配置される電極を有することも好ましい。ベース生地の肌側面側に配置される電極を有することにより四肢動物の生体情報として、心拍数の時間的な変動も併せて測定できる。 It is also preferable that the clothing-type biological information measuring device for quadrupeds further includes electrodes arranged on the side of the skin of the base fabric. By having electrodes arranged on the side of the skin of the base fabric, it is also possible to measure temporal fluctuations in the heart rate as biological information of the quadruped animal.
 本発明に係る四肢動物の異常呼吸検知方法は、例えば、次の3つの方法が挙げられる。 Examples of the abnormal breathing detection method for quadrupeds according to the present invention include the following three methods.
 即ち、第1の検知方法は、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップ(以下、計測呼吸波形取得ステップということがある)と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップ(以下、時間差算出ステップということがある)と、前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上になった場合は、異常呼吸が発生したと検知するステップ(以下、第1異常呼吸検知ステップということがある)とを有するところに特徴がある。 That is, the first detection method is a time-varying waveform of the depth of breathing, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. a step of acquiring a waveform from a quadruped animal (hereinafter sometimes referred to as a measurement respiratory waveform acquisition step), and a time at which the waveform has a maximum value T 1 , T 2 , . . . , T i , . . . , T n , where n is a natural number of 3 or more, a step of continuously calculating the time difference (T i −T i−1 ) for a plurality of locations (hereinafter sometimes referred to as a time difference calculation step); If the difference between the time difference (T i -T i-1 ) and the time difference (T i-1 -T i-2 ) is 1 second or more, the step of detecting that abnormal breathing has occurred (hereinafter referred to as the first (sometimes referred to as an abnormal respiration detection step).
 第2の検知方法は、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップ(計測呼吸波形取得ステップ)と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップ(時間差算出ステップ)と、算出した時間差の平均値を算出するステップ(以下、平均値算出ステップということがある)と、算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上になった場合は、異常呼吸が発生したと検知するステップ(以下、第2異常呼吸検知ステップということがある)とを有するところに特徴がある。 The second detection method is a time-varying waveform of the depth of breathing, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. a step of acquiring a waveform from a quadruped animal (measured respiratory waveform acquisition step) ; and T 1 , T 2 , . When the natural number is 3 or more, a step of continuously calculating the time difference (T i −T i-1 ) for a plurality of locations (time difference calculation step), and a step of calculating the average value of the calculated time differences (hereinafter referred to as the average value calculation step), the calculated average value of the time difference, and the time difference (T i −T i-1 ), if the difference is 0.8 seconds or more, it is detected that abnormal respiration has occurred. step (hereinafter sometimes referred to as a second abnormal breathing detection step).
 第3の検知方法は、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップ(計測呼吸波形取得ステップ)と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップ(時間差算出ステップ)と、算出した時間差の平均値を算出するステップ(平均値算出ステップ)と、算出された平均値に対し、時間差(Ti-Ti-1)の値が80%以下になった場合は、異常呼吸が発生したと検知するステップ(以下、第3異常呼吸検知ステップということがある)とを有するところに特徴がある。 The third detection method is a time-varying waveform of the depth of breathing, which has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession. a step of acquiring a waveform from a quadruped animal (measured respiratory waveform acquisition step) ; and T 1 , T 2 , . When the natural number is 3 or more, a step of continuously calculating the time difference (T i -T i-1 ) for a plurality of locations (time difference calculation step), and a step of calculating the average value of the calculated time differences (average value calculation step ), and when the time difference (T i −T i-1 ) is 80% or less with respect to the calculated average value, a step of detecting that abnormal breathing has occurred (hereinafter referred to as the third abnormal breathing detection (sometimes referred to as a step).
 上記第1の検知方法~第3の検知方法は、計測呼吸波形取得ステップ、時間差算出ステップ、および異常呼吸検知ステップを有する点で一致しており、第1の検知方法では、時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差に基づいて、異常呼吸が発生したかどうかを判断し、第2の検知方法では、時間差の平均値と、時間差(Ti-Ti-1)との差に基づいて、異常呼吸が発生したかどうかを判断し、第3の検知方法では、時間差の平均値に対し、時間差(Ti-Ti-1)の値の低下割合に基づいて、異常呼吸が発生したかどうかを判断している点で相違している。 The first detection method to the third detection method are identical in that they have a measured respiratory waveform acquisition step, a time difference calculation step, and an abnormal breathing detection step. T i-1 ) and the time difference (T i-1 −T i-2 ) to determine whether abnormal breathing has occurred. Based on the difference between (T i -T i - 1 ), it is determined whether abnormal breathing has occurred. ) is different in that it is determined whether or not abnormal respiration has occurred based on the rate of decrease in the value of .
 以下、各検知方法について説明する。 Each detection method will be explained below.
 [第1の検知方法]
 (計測呼吸波形取得ステップ)
 計測呼吸波形取得ステップでは、四肢動物から、呼吸の深度の時間的な変動波形(以下、計測呼吸波ということがある)を取得する。計測呼吸波は、極大値および極小値を連続して有しており、極大値は吸気(吸う)から呼気(吐く)への転換点を示し、極小値は呼気(吐く)から吸気(吸う)への転換点を示している。
[First detection method]
(Measured respiratory waveform acquisition step)
In the measured respiration waveform acquisition step, a temporal variation waveform of respiration depth (hereinafter sometimes referred to as a measured respiration wave) is acquired from the quadruped animal. The measured respiratory wave has successive maxima and minima, the maxima indicating the turning point from inspiration (inhalation) to expiration (exhalation), and the minima from expiration (exhalation) to inspiration (inhalation). It shows the turning point to
 (時間差算出ステップ)
 時間差算出ステップでは、前記計測呼吸波が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、前記計測呼吸波が極大値となる位置の時間Tiと、該計測呼吸波が極大値となる位置の時間Ti-1との時間差(Ti-Ti-1)を複数箇所分連続して算出する。前記時間差を測定する回数は特に限定されず、例えば、2回以上が好ましく、より好ましくは3回以上であり、上限は5回以下が好ましく、より好ましくは4回以下である。
(Time difference calculation step)
In the time difference calculating step, when the times T 1 , T 2 , . . . , T i , . The time difference (T i -T i-1 ) between the time T i at which the respiratory wave reaches its maximum value and the time T i -1 at which the measured respiratory wave reaches its maximum value is continuously calculated for a plurality of points. do. The number of times the time difference is measured is not particularly limited, and is preferably 2 or more, more preferably 3 or more, and the upper limit is preferably 5 or less, more preferably 4 or less.
 時間Tiと時間Ti-1との差(Ti-Ti-1)を測定する手順について図面を用いて説明する。図1において、実線で示す曲線1は、四肢動物から取得した計測呼吸波形を示しており、計測呼吸波形が極大値となる位置における時間をTi、隣り合う極大値となる位置における時間をTi-1とし、計測呼吸波形が極大値となる位置の時間Tiと時間Ti-1の差が時間差(Ti-Ti-1)となる。図1において、横軸は時間、縦軸は呼吸の深度を示している。 A procedure for measuring the difference (T i -T i-1 ) between time T i and time T i-1 will be described with reference to the drawings. In FIG. 1, curve 1 indicated by a solid line indicates the measured respiratory waveform obtained from a quadruped animal. i-1 , and the difference between the time T i at which the measured respiratory waveform reaches its maximum value and the time T i -1 is the time difference (T i -T i-1 ). In FIG. 1, the horizontal axis indicates time, and the vertical axis indicates the depth of breathing.
 本発明では、計測呼吸波形が極小値となる位置の時間ではなく、計測呼吸波形が極大値となる位置の時間に着目している。計測呼吸波形が極大値となる位置の時間における時間差を計測することにより、最小値tなる位置の時間における時間差を計測するよりも測定精度が高くなる。 The present invention focuses on the time at which the measured respiratory waveform reaches its maximum value, not the time at which the measured respiratory waveform reaches its minimum value. By measuring the time difference at the position where the measured respiration waveform has the maximum value, the measurement accuracy is higher than measuring the time difference at the position where the minimum value t is obtained.
 (第1異常呼吸検知ステップ)
 第1異常呼吸検知ステップでは、上記の時間差算出ステップで算出した時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差を算出し、この差が1秒以上(好ましくは1.2秒以上、より好ましくは1.5秒以上)になった場合を、異常呼吸が発生したと検知する。時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差に基づいて判断することにより、後述する第2の検知方法や第3の検知方法のように平均値を算出することなく、異常呼吸の発生の有無を簡便に検知できる。
(First abnormal respiration detection step)
In the first abnormal breathing detection step, the difference between the time difference (T i -T i-1 ) calculated in the time difference calculation step and the time difference (T i-1 -T i-2 ) is calculated. Seconds or more (preferably 1.2 seconds or more, more preferably 1.5 seconds or more) is detected as occurrence of abnormal respiration. By making a judgment based on the difference between the time difference (T i -T i-1 ) and the time difference (T i-1 -T i-2 ), like the second detection method and the third detection method described later, The presence or absence of abnormal respiration can be easily detected without calculating the average value.
 異常呼吸としては、例えば、咳、くしゃみ、げっぷ、嘔吐、吐出のいずれかを検出できる。 For example, any one of coughing, sneezing, belching, vomiting, and spitting can be detected as abnormal respiration.
 [第2の検知方法]
 (計測呼吸波形取得ステップ)
 第2の検知方法における計測呼吸波形取得ステップは、上記の第1の検知方法における計測呼吸波形取得ステップの説明が参照できる。
[Second detection method]
(Measured respiratory waveform acquisition step)
For the measured respiratory waveform acquisition step in the second detection method, the description of the measured respiratory waveform acquisition step in the first detection method can be referred to.
 (時間差算出ステップ)
 第2の検知方法における時間差算出ステップは、上記の第1の検知方法における時間差算出ステップの説明が参照できる。
(Time difference calculation step)
For the time difference calculation step in the second detection method, the description of the time difference calculation step in the first detection method can be referred to.
 (平均値算出ステップ)
 平均値算出ステップでは、前記時間差算出ステップで算出した複数箇所分の時間差の平均値を算出する。
(Average calculation step)
In the average value calculation step, an average value of the time differences for a plurality of locations calculated in the time difference calculation step is calculated.
 (第2異常呼吸検知ステップ)
 第2異常呼吸検知ステップでは、上記の平均値算出ステップで算出した時間差の平均値と、時間差(Ti-Ti-1)との差を算出し、この差が0.8秒以上(好ましくは1.0秒以上、より好ましくは1.2秒以上)になった場合を、異常呼吸が発生したと検知する。呼吸は四肢動物の種類によって異なり、同じ種類でも個体差があるが、時間差の平均値と、時間差(Ti-Ti-1)との差に基づいて判断することにより、四肢動物が日常行っている呼吸を加味して、異常呼吸が発生しているかどうかを検知できる。
(Second abnormal breathing detection step)
In the second abnormal breathing detection step, the difference between the average value of the time differences calculated in the average value calculation step and the time difference (T i −T i-1 ) is calculated, and the difference is 0.8 seconds or more (preferably is 1.0 seconds or more, preferably 1.2 seconds or more), it is detected that abnormal respiration has occurred. Breathing differs depending on the species of tetrapods , and there are individual differences even within the same species. It is possible to detect whether or not abnormal breathing is occurring by taking into account the breathing that is occurring.
 [第3の検知方法]
 (計測呼吸波形取得ステップ)
 第3の検知方法における計測呼吸波形取得ステップは、上記の第1の検知方法における計測呼吸波形取得ステップの説明が参照できる。
[Third detection method]
(Measured respiratory waveform acquisition step)
For the measured respiratory waveform acquisition step in the third detection method, the description of the measured respiratory waveform acquisition step in the first detection method can be referred to.
 (時間差算出ステップ)
 第3の検知方法における時間差算出ステップは、上記の第1の検知方法における時間差算出ステップの説明が参照できる。
(Time difference calculation step)
For the time difference calculation step in the third detection method, the description of the time difference calculation step in the first detection method can be referred to.
 (平均値算出ステップ)
 第3の検知方法における平均値算出ステップは、上記の第2の検知方法における平均値算出ステップの説明が参照できる。
(Average calculation step)
For the average value calculation step in the third detection method, the description of the average value calculation step in the second detection method can be referred to.
 (第3異常呼吸検知ステップ)
 第3異常呼吸検知ステップでは、上記の平均値算出ステップで算出した時間差の平均値に対し、時間差(Ti-Ti-1)の値が80%以下(好ましくは75%以下、より好ましくは70%以下)になった場合を、異常呼吸が発生したと検知する。呼吸は四肢動物の種類によって異なり、同じ種類でも個体差があるが、時間差の平均値に対する、時間差(Ti-Ti-1)の値に基づいて判断することにより、四肢動物が日常行っている呼吸を加味して、異常呼吸が発生しているかどうかを検知できる。
(Third abnormal breathing detection step)
In the third abnormal breathing detection step, the value of the time difference (T i −T i-1 ) is 80% or less (preferably 75% or less, more preferably 75% or less, more preferably 70% or less), it is detected that abnormal respiration has occurred. Breathing differs depending on the type of tetrapods , and there are individual differences even within the same type. It is possible to detect whether or not abnormal breathing is occurring by taking into account the breathing that is occurring.
 第1の検知方法~第3の検知方法は、それぞれ単独で用いてもよいし、2つ以上を任意の組み合わせで用いてもよい。 The first to third detection methods may be used individually, or two or more may be used in any combination.
 図2に、四肢動物から取得した呼吸の深度の時間的な変動波形の一例を示す。呼吸の深度は、伸縮により静電容量が変化する伸縮性コンデンサを有する伸縮センサを用いて測定した。図2の横軸は時間(秒)を示しており、縦軸は呼吸の深度を示している。呼吸の深度は、静電容量(単位はpF)で示した。 Fig. 2 shows an example of the temporal fluctuation waveform of the respiration depth obtained from a quadruped. Breathing depth was measured using a stretch sensor with a stretchable capacitor whose capacitance changes with stretching. The horizontal axis of FIG. 2 indicates time (seconds), and the vertical axis indicates the depth of breathing. The depth of respiration was indicated by capacitance (unit: pF).
 上記第1の検知方法~第3の検知方法で評価したところ、いずれの検知方法においても図2に矢印で示した位置で、異常呼吸が発生していることが検知された。 When the first to third detection methods were evaluated, abnormal breathing was detected at the positions indicated by the arrows in FIG. 2 in all detection methods.
 本発明には、上記の第1の検知方法~第3の検知方法のいずれかを用いて四肢動物の異常呼吸を検知する装置も含まれる。 The present invention also includes a device that detects abnormal respiration of a quadruped using any one of the first to third detection methods described above.
 本発明に係る異常呼吸検知装置は、呼吸の深度を検知する呼吸センサと、前記呼吸センサで検知されたデータを演算する演算部とを有するものである。以下、この装置を第1の異常呼吸検知装置ということがある。 An abnormal respiration detection device according to the present invention includes a respiration sensor that detects the depth of respiration, and a computing unit that computes data detected by the respiration sensor. Hereinafter, this device may be referred to as the first abnormal respiration detection device.
 また、本発明に係る他の異常呼吸検知装置は、呼吸の深度を検知する呼吸センサと、前記呼吸センサで検知されたデータを受信器へ発信する発信器と、前記発信器から発信されたデータを受信する受信器と、前記受信器で受信したデータを演算する演算部とを有するものである。以下、この装置を第2の異常呼吸検知装置ということがある。 Further, another abnormal breathing detection device according to the present invention includes a breathing sensor for detecting the depth of breathing, a transmitter for transmitting data detected by the breathing sensor to a receiver, and data transmitted from the transmitter. and a calculator for calculating the data received by the receiver. Hereinafter, this device may be referred to as a second abnormal breathing detection device.
 [第1の異常呼吸検知装置]
 第1の異常呼吸検知装置において、呼吸センサとしては、公知の呼吸計を用いればよく、例えば、上述した伸縮センサを用いることにより呼吸の深度を検知できる。
[First Abnormal Breath Detection Device]
In the first abnormal respiration detector, a known respirometer may be used as the respiration sensor. For example, the depth of respiration can be detected by using the above-described extension sensor.
 演算部では、呼吸センサで検知されたデータを演算し、上記の第1の検知方法~第3の検知方法のいずれかを用いて四肢動物の異常呼吸を検知する。 The calculation unit calculates the data detected by the respiration sensor, and detects abnormal respiration of the quadruped animal using any of the first to third detection methods described above.
 演算部としては、例えば、中央演算処理装置(CPU)などを少なくとも備えていればよい。また、四肢動物から取得したデータを記憶する記憶部(例えば、メモリなど)を備えていることも好ましい。  As a calculation unit, for example, at least a central processing unit (CPU) or the like may be provided. It is also preferable to have a storage unit (for example, memory) for storing data obtained from the quadruped.
 [第2の異常呼吸検知装置]
 第2の異常呼吸検知装置において、呼吸センサとしては、公知の呼吸計を用いればよく、例えば、上述した伸縮センサを用いることにより呼吸の深度を検知できる。
[Second Abnormal Breath Detection Device]
In the second abnormal respiration detector, a known respirometer may be used as the respiration sensor. For example, the depth of respiration can be detected by using the stretchable sensor described above.
 第2の異常呼吸検出装置では、前記呼吸センサで検知されたデータを発信器から受信器へ転送する。 The second abnormal respiration detection device transfers the data detected by the respiration sensor from the transmitter to the receiver.
 受信器で受信したデータは、演算部で演算され、上記の第1の検知方法~第3の検知方法のいずれかを用いて四肢動物の異常呼吸を検知すればよい。演算部としては、例えば、中央演算処理装置(CPU)などを少なくとも備えていればよい。また、四肢動物から取得したデータを記憶する記憶部(例えば、メモリなど)を備えていることも好ましい。 The data received by the receiver is calculated by the calculation unit, and any one of the above first detection method to third detection method may be used to detect abnormal respiration of the quadruped animal. As the calculation unit, for example, at least a central processing unit (CPU) or the like may be provided. It is also preferable to have a storage unit (for example, memory) for storing data obtained from the quadruped.
 また、本発明には、下記第3の異常呼吸検知装置~第5の異常呼吸検知装置も含まれる。 The present invention also includes the following third to fifth abnormal respiration detection devices.
 第3の異常呼吸検知装置は、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上になった場合は、異常呼吸が発生したと検知する検知部とを有するものである。 The third abnormal breathing detection device is a time-varying waveform of the depth of breathing, and has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession. an acquiring unit for acquiring a waveform from a tetrapod , and T 1 , T 2 , . . . , T i , . , a time difference calculator that continuously calculates the time difference (T i -T i-1 ) for a plurality of locations, and the time difference (T i -T i-1 ) and the time difference (T i-1 -T i- 2 ), and a detection unit that detects occurrence of abnormal respiration when the difference from the time is one second or more.
 第4の異常呼吸検知装置は、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、算出した時間差の平均値を算出する平均値算出部と、算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上になった場合は、異常呼吸が発生したと検知する検知部とを有するものである。 The fourth abnormal breathing detection device is a time-varying waveform of the depth of breathing, and has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession. an acquiring unit for acquiring a waveform from a tetrapod , and T 1 , T 2 , . . . , T i , . , a time difference calculation unit that continuously calculates the time difference (T i −T i-1 ) for a plurality of locations, an average value calculation unit that calculates the average value of the calculated time differences, and the average value of the calculated time differences , and the time difference (T i -T i-1 ) is 0.8 seconds or more, it detects that abnormal respiration has occurred.
 第5の異常呼吸検知装置は、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、算出した時間差の平均値を算出する平均値算出部と、算出された平均値に対し、時間差(Ti-Ti-1)の値が80%以下になった場合は、異常呼吸が発生したと検知する検知部とを有するものである。 The fifth abnormal breathing detection device is a time-varying waveform of the depth of breathing, and has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration in succession. an acquiring unit for acquiring a waveform from a tetrapod , and T 1 , T 2 , . . . , T i , . Then, a time difference calculation unit that continuously calculates the time difference (T i −T i-1 ) for a plurality of locations, an average value calculation unit that calculates the average value of the calculated time differences, and the calculated average value and a detection unit for detecting occurrence of abnormal respiration when the value of the time difference (T i -T i-1 ) is 80% or less.
 [第3の異常呼吸検知装置]
 第3の異常呼吸検知装置における取得部では、呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する。取得部としては、例えば、呼吸センサを用いることができ、公知の呼吸計を用いればよい。例えば、上述した伸縮センサを用いることにより呼吸の深度を検知できる。
[Third Abnormal Breath Detection Device]
In the acquisition unit of the third abnormal respiration detection device, the temporal fluctuation waveform of the depth of respiration, which is a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration, is continuously obtained. Obtain a waveform from the tetrapod. As the acquisition unit, for example, a respiration sensor can be used, and a known respiration meter may be used. For example, the depth of respiration can be detected by using the stretch sensor described above.
 時間差算出部では、上記取得部で得られた前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する。 In the time difference calculation unit, the time at which the waveform obtained by the acquisition unit has the maximum value is defined as T 1 , T 2 , . . . , Ti , . Then, the time difference (T i -T i-1 ) is continuously calculated for a plurality of points.
 第3の異常呼吸検知装置における検知部では、上記時間差算出部で算出した前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上(好ましくは1.2秒以上、より好ましくは1.5秒以上)になった場合を、異常呼吸が発生したと検知する。 In the detection unit of the third abnormal breathing detection device, the difference between the time difference (T i −T i-1 ) calculated by the time difference calculation unit and the time difference (T i-1 −T i-2 ) is 1 second or more. (Preferably 1.2 seconds or longer, more preferably 1.5 seconds or longer) is detected as occurrence of abnormal respiration.
 [第4の異常呼吸検知装置]
 第4の異常呼吸検知装置における取得部と時間差算出部は、上記第3の異常呼吸検知装置における取得部と時間差算出部の説明が参照できる。
[Fourth Abnormal Breath Detection Device]
For the acquisition unit and time difference calculation unit in the fourth abnormal respiration detection device, the description of the acquisition unit and time difference calculation unit in the third abnormal respiration detection device can be referred to.
 平均値算出部では、上記時間差算出部で算出した時間差の平均値を算出する。 The average value calculation unit calculates the average value of the time differences calculated by the time difference calculation unit.
 第4の異常呼吸検知装置における検知部では、上記時間差算出部で算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上(好ましくは1.0秒以上、より好ましくは1.2秒以上)になった場合を、異常呼吸が発生したと検知する。 In the detection unit of the fourth abnormal breathing detection device, the difference between the average value of the time differences calculated by the time difference calculation unit and the time difference (T i −T i-1 ) is 0.8 seconds or more (preferably 1.0 seconds or more, preferably 1.2 seconds or more), it is detected that abnormal respiration has occurred.
 [第5の異常呼吸検知装置]
 第5の異常呼吸検知装置における取得部、時間差算出部、平均値算出部は、上記第3の異常呼吸検知装置における取得部、時間差算出部、並びに上記第4の異常呼吸検知装置における平均値算出部の説明が参照できる。
[Fifth Abnormal Breath Detection Device]
The acquisition unit, the time difference calculation unit, and the average value calculation unit in the fifth abnormal respiration detection device are equivalent to the acquisition unit, the time difference calculation unit, and the average value calculation in the above third abnormal respiration detection device and the fourth abnormal respiration detection device. You can refer to the description of the part.
 第5の異常呼吸検知装置における検知部では、上記時間差算出部で算出した平均値に対し、時間差(Ti-Ti-1)の値が80%以下(好ましくは75%以下、より好ましくは70%以下)になった場合を、異常呼吸が発生したと検知する。 In the detection unit in the fifth abnormal breathing detection device, the value of the time difference (T i −T i-1 ) is 80% or less (preferably 75% or less, more preferably 75% or less, more preferably 70% or less), it is detected that abnormal respiration has occurred.
 次に、第2の衣類の実施の形態の一例について、図面を用いて説明する。本発明は図面によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。また、図面における種々部材の寸法は、実際の寸法とは異なる場合がある。 Next, an example of an embodiment of the second clothing will be described using the drawings. The present invention is not limited by the drawings, and it is of course possible to make modifications within the scope of the above and later descriptions, all of which are included in the technical scope of the present invention. . Also, the dimensions of various members in the drawings may differ from the actual dimensions.
 図3は、四肢動物10に、第2の衣類2を着用させた一例を示す模式図である。四肢動物10は犬であり、矢印Xは四肢動物の体長方向を示している。第2の衣類2は、四肢動物10の胴体周りに配置されるベース生地21と、胴体周りに配置される帯状生地22と、帯状生地22に備えられた伸縮センサ23で構成されている。 FIG. 3 is a schematic diagram showing an example of the quadruped animal 10 wearing the second clothing 2. FIG. The tetrapod 10 is a dog, and the arrow X indicates the lengthwise direction of the tetrapod. The second garment 2 is composed of a base fabric 21 arranged around the trunk of the quadruped 10, a belt-like cloth 22 arranged around the trunk, and a stretch sensor 23 provided on the belt-like cloth 22. - 特許庁
 ベース生地21は、四肢動物10の背および腹、並びに胸郭を覆うように胴体周りに配置されている。また、ベース生地21の一部は、四肢動物10の前胸を覆っており、前胸を覆っているベース生地21aの端部と胴体周りに配置されるベース生地21は、四肢動物10の肩付近でバックル24を用いて接続されている。 The base fabric 21 is arranged around the body so as to cover the back, abdomen, and rib cage of the quadruped animal 10 . A part of the base fabric 21 covers the front chest of the quadruped 10, and the base fabric 21 arranged around the end of the base fabric 21a covering the front chest and the body of the quadruped animal 10 covers the shoulders of the quadruped. It is connected using a buckle 24 in the vicinity.
 ベース生地21の肌側面とは反対側の面には、帯状生地22が備えられており、帯状生地22には、伸縮センサ23が備えられており、四肢動物10の呼吸による胴回りの拡張、収縮を伸縮センサ23で検知することによって、四肢動物10の生体情報を計測できる。 A strip-shaped fabric 22 is provided on the side opposite to the skin side of the base fabric 21, and the strip-shaped fabric 22 is provided with an expansion/contraction sensor 23. is detected by the extension sensor 23, the biological information of the tetrapod 10 can be measured.
 図3では、帯状生地22が四肢動物10の背と腹との間の胸郭に沿って備えられているが、帯状生地22の配置位置はこれに限定されず、例えば、キ甲と腹とを結ぶ方向に配置してもよいし、背と前胸とを結ぶ方向に配置してもよい。 In FIG. 3, the strip-shaped fabric 22 is provided along the thorax between the back and abdomen of the quadruped 10, but the placement position of the strip-shaped fabric 22 is not limited to this. It may be placed on the back or in the direction connecting the back and the chest.
 伸縮センサ23の端部には、伸縮センサ23で検知されたデータを受信器へ発信する発信器(図示せず)との接続部材25が備えられている。接続部材としては、例えば、留め金を用いることができる。留め金として、例えば、金属製のスナップホックが挙げられ、ステンレススチール製のスナップホックが好ましい。留め金を介して導線と発信器とを電気的に接続できる。 At the end of the extension sensor 23, there is provided a connection member 25 with a transmitter (not shown) that transmits data detected by the extension sensor 23 to a receiver. A clasp, for example, can be used as the connecting member. The clasp may be, for example, a metal snap hook, preferably a stainless steel snap hook. An electrical connection can be made between the conductor and the transmitter through the clasp.
 また、四肢動物10の前胸を覆っているベース生地21aの肌側面側には電極(図示せず)が備えられており、肌側面とは反対側の面には、電極で検知されたデータを受信器へ発信する発信器(図示せず)との接続部26が備えられている。 Further, electrodes (not shown) are provided on the side of the skin of the base fabric 21a covering the front chest of the tetrapod 10, and data detected by the electrodes are provided on the side opposite to the side of the skin. A connection 26 with a transmitter (not shown) is provided for transmitting to the receiver.
 本願は、2021年4月20日に出願された日本国特許出願第2021-071156号に基づく優先権の利益を主張するものである。前記日本国特許出願第2021-071156号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2021-071156 filed on April 20, 2021. The entire contents of the specification of Japanese Patent Application No. 2021-071156 are incorporated herein by reference.
 1   四肢動物から取得した計測呼吸波形
 2   第2の衣類
 10  四肢動物
 21  ベース生地
 21a 前胸を覆っているベース生地
 22  帯状生地
 23  伸縮センサ
 24  バックル
 25  接続部材
 26  接続部
Reference Signs List 1 measured respiratory waveform obtained from a quadruped animal 2 second clothing 10 tetrapod 21 base fabric 21a base fabric covering the fore chest 22 strip fabric 23 stretch sensor 24 buckle 25 connecting member 26 connecting part

Claims (20)

  1.  胴体周りに配置されるベース生地と、
     前記ベース生地に備えられた伸縮センサと
    を有しており、
     前記ベース生地は、下記条件で測定される胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下であることを特徴とする四肢動物用の生体情報計測衣類。
     [条件]
     引張試験機を用いてチャック間の中心に前記ベース生地の中心を配置し、且つチャック間距離が50mmとなるように前記ベース生地をチャックで挟み、引張速度を100mm/分で伸長する。
    A base fabric placed around the torso,
    and a stretch sensor provided on the base fabric,
    Biological information for quadrupeds, wherein the base fabric has a tensile strength of 0.3 N / cm or more and 3.0 N / cm or less at 20% elongation in the trunk circumference direction measured under the following conditions. measurement clothing.
    [conditions]
    Using a tensile tester, the center of the base fabric is placed in the center between the chucks, and the base fabric is clamped so that the distance between the chucks is 50 mm, and the tensile speed is 100 mm/min.
  2.  前記伸縮センサは、前記ベース生地に脱着可能である請求項1に記載の生体情報計測衣類。 The biological information measurement clothing according to claim 1, wherein the stretch sensor is detachable from the base fabric.
  3.  胴体周りに配置されるベース生地と、
     胴体周りに配置される帯状生地と、
     前記帯状生地に備えられた伸縮センサと
    を有しており、
     前記帯状生地は、下記条件で測定される胴体周り方向における20%伸長時の引張強さが0.3N/cm以上、3.0N/cm以下であることを特徴とする四肢動物用の生体情報計測衣類。
     [条件]
     引張試験機を用いてチャック間の中心に前記帯状生地の中心を配置し、且つチャック間距離が50mmとなるように前記帯状生地をチャックで挟み、引張速度を100mm/分で伸長する。
    A base fabric placed around the torso,
    A strip of fabric placed around the torso,
    and a stretch sensor provided on the belt-shaped fabric,
    The strip-shaped fabric has a tensile strength of 0.3 N / cm or more and 3.0 N / cm or less at 20% elongation in the direction around the trunk measured under the following conditions. Biological information for quadrupeds measurement clothing.
    [conditions]
    Using a tensile tester, the center of the belt-shaped fabric is placed in the center between the chucks, and the belt-shaped fabric is clamped so that the distance between the chucks is 50 mm, and the strip is stretched at a tensile speed of 100 mm/min.
  4.  前記伸縮センサは、前記帯状生地に脱着可能である請求項3に記載の生体情報計測衣類。 The biological information measurement clothing according to claim 3, wherein the stretch sensor is detachable from the belt-like fabric.
  5.  前記帯状生地は、前記ベース生地に脱着可能である請求項3または4に記載の生体情報計測衣類。 The biological information measurement clothing according to claim 3 or 4, wherein the belt-shaped fabric is detachable from the base fabric.
  6.  前記伸縮センサは、伸縮により静電容量が変化する伸縮性コンデンサを有している請求項1~5のいずれかに記載の生体情報計測衣類。 The biological information measurement clothing according to any one of claims 1 to 5, wherein the stretch sensor has a stretchable capacitor whose capacitance changes due to stretching.
  7.  前記伸縮センサは、該伸縮センサで検知されたデータを受信器へ発信する発信器との接続部材を有する請求項1~6のいずれかに記載の生体情報計測衣類。 The biological information measuring clothing according to any one of claims 1 to 6, wherein the stretch sensor has a connection member with a transmitter that transmits data detected by the stretch sensor to a receiver.
  8.  前記四肢動物は、犬、猫、または牛のいずれかである請求項1~7のいずれかに記載の生体情報計測衣類。 The biological information measurement clothing according to any one of claims 1 to 7, wherein the four-legged animal is either a dog, a cat, or a cow.
  9.  前記ベース生地は、肌側面側に電極を有する請求項1~8のいずれかに記載の生体情報計測衣類。 The biological information measurement clothing according to any one of claims 1 to 8, wherein the base fabric has electrodes on the side of the skin.
  10.  請求項1~8のいずれかに記載の生体情報計測衣類と、
     前記伸縮センサで検知されたデータを受信器へ発信する発信器と、
     前記発信器から発信されたデータを受信する受信器と、
     前記受信器で受信したデータを演算する演算部と
    を有することを特徴とする四肢動物用の衣類型生体情報計測装置。
    The biological information measurement clothing according to any one of claims 1 to 8,
    a transmitter that transmits data detected by the expansion/contraction sensor to a receiver;
    a receiver for receiving data transmitted from the transmitter;
    and a computing unit for computing data received by the receiver.
  11.  請求項9に記載の生体情報計測衣類と、
     前記伸縮センサで検知されたデータを受信器へ発信する発信器と、
     前記発信器から発信されたデータを受信する受信器と、
     前記受信器で受信したデータを演算する演算部と、
     前記ベース生地の肌側面側に配置される電極と
    を有することを特徴とする四肢動物用の衣類型生体情報計測装置。
    the biological information measurement clothing according to claim 9;
    a transmitter that transmits data detected by the expansion/contraction sensor to a receiver;
    a receiver for receiving data transmitted from the transmitter;
    a computing unit that computes data received by the receiver;
    and electrodes arranged on the skin side of the base fabric.
  12.  呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップと、
     前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップと、
     前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上になった場合は、異常呼吸が発生したと検知するステップとを有することを特徴とする四肢動物の異常呼吸検知方法。
    Acquire from a tetrapod a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. a step;
    T 1 , T 2 , . . . , T i , . ) continuously for a plurality of locations;
    and detecting that abnormal respiration has occurred when the difference between the time difference (T i -T i-1 ) and the time difference (T i-1 -T i-2 ) is 1 second or more. A method for detecting abnormal respiration in a quadruped animal, characterized by:
  13.  呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップと、
     前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップと、
     算出した時間差の平均値を算出するステップと、
     算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上になった場合は、異常呼吸が発生したと検知するステップと
    を有することを特徴とする四肢動物の異常呼吸検知方法。
    Acquire from a tetrapod a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. a step;
    T 1 , T 2 , . . . , T i , . ) continuously for a plurality of locations;
    calculating an average value of the calculated time differences;
    detecting the occurrence of abnormal respiration when the difference between the calculated average time difference and the time difference (T i -T i-1 ) is 0.8 seconds or more. Abnormal respiration detection method for quadrupeds.
  14.  呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得するステップと、
     前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出するステップと、
     算出した時間差の平均値を算出するステップと、
     算出された平均値に対し、時間差(Ti-Ti-1)の値が80%以下になった場合は、異常呼吸が発生したと検知するステップと
    を有することを特徴とする四肢動物の異常呼吸検知方法。
    Acquire from a tetrapod a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. a step;
    T 1 , T 2 , . . . , T i , . ) continuously for a plurality of locations;
    calculating an average value of the calculated time differences;
    and detecting that abnormal respiration has occurred when the value of the time difference (T i -T i-1 ) is 80% or less with respect to the calculated average value. Abnormal breathing detection method.
  15.  前記異常呼吸は、咳、くしゃみ、げっぷ、嘔吐、吐出のいずれかである請求項12~14のいずれかに記載の異常呼吸検知方法。 The abnormal respiration detection method according to any one of claims 12 to 14, wherein the abnormal respiration is any one of coughing, sneezing, belching, vomiting, and exhaling.
  16.  請求項12~15のいずれかに記載の異常呼吸検知方法を用いて四肢動物の異常呼吸を検知する装置であって、
     呼吸の深度を検知する呼吸センサと、
     前記呼吸センサで検知されたデータを演算する演算部と
    を有することを特徴とする四肢動物の異常呼吸検知装置。
    A device for detecting abnormal breathing of a quadruped animal using the abnormal breathing detection method according to any one of claims 12 to 15,
    a respiration sensor that detects the depth of respiration;
    and a computing unit for computing data detected by the respiratory sensor.
  17.  請求項12~15のいずれかに記載の異常呼吸検知方法を用いて四肢動物の異常呼吸を検知する装置であって、
     呼吸の深度を検知する呼吸センサと、
     前記呼吸センサで検知されたデータを受信器へ発信する発信器と、
     前記発信器から発信されたデータを受信する受信器と、
     前記受信器で受信したデータを演算する演算部と
    を有することを特徴とする四肢動物の異常呼吸検知装置。
    A device for detecting abnormal breathing of a quadruped animal using the abnormal breathing detection method according to any one of claims 12 to 15,
    a respiration sensor that detects the depth of respiration;
    a transmitter that transmits data detected by the respiratory sensor to a receiver;
    a receiver for receiving data transmitted from the transmitter;
    an abnormal respiration detection device for a quadruped animal, comprising: a calculation unit for calculating data received by the receiver.
  18.  呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、
     前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、
     前記時間差(Ti-Ti-1)と時間差(Ti-1-Ti-2)との差が1秒以上になった場合は、異常呼吸が発生したと検知する検知部と
    を有することを特徴とする四肢動物の異常呼吸検知装置。
    Acquire from a tetrapod a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. an acquisition unit;
    T 1 , T 2 , . . . , T i , . ) continuously for a plurality of locations;
    and a detection unit for detecting occurrence of abnormal respiration when the difference between the time difference (T i -T i-1 ) and the time difference (T i-1 -T i-2 ) is 1 second or more. An abnormal respiration detection device for a quadruped animal, characterized by:
  19.  呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、
     前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、
     算出した時間差の平均値を算出する平均値算出部と、
     算出した時間差の平均値と、時間差(Ti-Ti-1)との差が0.8秒以上になった場合は、異常呼吸が発生したと検知する検知部と
    を有することを特徴とする四肢動物の異常呼吸検知装置。
    Acquire from a tetrapod a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. an acquisition unit;
    T 1 , T 2 , . . . , T i , . ) continuously for a plurality of locations;
    an average value calculation unit that calculates an average value of the calculated time differences;
    and a detection unit that detects occurrence of abnormal respiration when the difference between the calculated average time difference and the time difference (T i -T i-1 ) is 0.8 seconds or more. Abnormal respiration detection device for quadruped animals.
  20.  呼吸の深度の時間的な変動波形であって吸気から呼気への転換点を示す極大値および呼気から吸気への転換点を示す極小値を連続して有している波形を四肢動物から取得する取得部と、
     前記波形が極大値となる位置の時間をT1、T2、・・・、Ti、・・・、Tn、nを3以上の自然数としたとき、時間差(Ti-Ti-1)を複数箇所分連続して算出する時間差算出部と、
     算出した時間差の平均値を算出する平均値算出部と、
     算出された平均値に対し、時間差(Ti-Ti-1)の値が80%以下になった場合は、異常呼吸が発生したと検知する検知部と
    を有することを特徴とする四肢動物の異常呼吸検知装置。
    Acquire from a tetrapod a temporally varying waveform of the depth of respiration, which continuously has a maximum value indicating a turning point from inspiration to expiration and a minimum value indicating a turning point from expiration to inspiration. an acquisition unit;
    T 1 , T 2 , . . . , T i , . ) continuously for a plurality of locations;
    an average value calculation unit that calculates an average value of the calculated time differences;
    A quadruped animal characterized by comprising a detection unit for detecting that abnormal respiration has occurred when the value of the time difference (T i -T i-1 ) is 80% or less with respect to the calculated average value. abnormal breath detection device.
PCT/JP2022/009671 2021-04-20 2022-03-07 Biological information measuring garment for quadruped, garment type biological information measuring device for quadruped, abnormal respiration detection method for quadruped, and abnormal respiration detection device for quadruped WO2022224599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516319A JPWO2022224599A1 (en) 2021-04-20 2022-03-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071156 2021-04-20
JP2021071156 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022224599A1 true WO2022224599A1 (en) 2022-10-27

Family

ID=83722812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009671 WO2022224599A1 (en) 2021-04-20 2022-03-07 Biological information measuring garment for quadruped, garment type biological information measuring device for quadruped, abnormal respiration detection method for quadruped, and abnormal respiration detection device for quadruped

Country Status (2)

Country Link
JP (1) JPWO2022224599A1 (en)
WO (1) WO2022224599A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187521A (en) * 1994-09-21 1997-07-22 Medtronic Inc Stimulator for upper airway muscle, stimulation controller for upper airway muscle, supplier for respiratory movement waveform, initialization device for respiratory movement waveform, propriety decision device for respiratory movement waveform and medical device for obstructive sleep apnea processing
JP2007097678A (en) * 2005-09-30 2007-04-19 Hokkaido Univ Information processing device, heartbeat information obtaining/analyzing device, sleep apnea syndrome preventive device, program, recording medium and respiration interval calculation method
JP2008068019A (en) * 2006-09-15 2008-03-27 Gac Corp Method and apparatus for outputting exhalation time
JP3144383U (en) * 2008-06-16 2008-08-28 琢 横山 Quadruped pet clothes
JP2011098214A (en) * 2004-03-24 2011-05-19 Dainippon Sumitomo Pharma Co Ltd Biological information measuring garment having sensor, biological information measuring system and equipment, and control method of equipment
US20130066409A1 (en) * 2010-03-31 2013-03-14 Teresa Hilton Protective clothing and apparel for pets and animals and method of use
JP2016165362A (en) * 2015-03-09 2016-09-15 富士通株式会社 Mealtime estimation method, mealtime estimation device, and mealtime estimation program
JP2017056042A (en) * 2015-09-17 2017-03-23 富士通株式会社 Drowsiness detection device, drowsiness detection method, and drowsiness detection program
JP2018114059A (en) * 2017-01-17 2018-07-26 東洋紡株式会社 Tool for body measurement and body size measurement method, clothing selection system, and custom-made clothing design system
JP2018527969A (en) * 2015-08-06 2018-09-27 エクスヘイル アシュアランス インコーポレイティッド Method and apparatus for monitoring respiration using a photoplethysmographic sensor
JP2018187090A (en) * 2017-05-08 2018-11-29 有限会社アルファ Respiration detection device, respiration detection method and computer program
WO2019035420A1 (en) * 2017-08-16 2019-02-21 東洋紡株式会社 Electrode member for measuring biological information, biological information measurement device, garment for measuring biological information, attachment method for electrode member for measuring biological information, and biological information measurement method
JP2019072048A (en) * 2017-10-13 2019-05-16 東洋紡株式会社 Wearable biological information measuring device and biological information measuring method
JP2020191799A (en) * 2019-05-27 2020-12-03 東洋紡株式会社 Animal clothing, and animal biological information measurement device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187521A (en) * 1994-09-21 1997-07-22 Medtronic Inc Stimulator for upper airway muscle, stimulation controller for upper airway muscle, supplier for respiratory movement waveform, initialization device for respiratory movement waveform, propriety decision device for respiratory movement waveform and medical device for obstructive sleep apnea processing
JP2011098214A (en) * 2004-03-24 2011-05-19 Dainippon Sumitomo Pharma Co Ltd Biological information measuring garment having sensor, biological information measuring system and equipment, and control method of equipment
JP2007097678A (en) * 2005-09-30 2007-04-19 Hokkaido Univ Information processing device, heartbeat information obtaining/analyzing device, sleep apnea syndrome preventive device, program, recording medium and respiration interval calculation method
JP2008068019A (en) * 2006-09-15 2008-03-27 Gac Corp Method and apparatus for outputting exhalation time
JP3144383U (en) * 2008-06-16 2008-08-28 琢 横山 Quadruped pet clothes
US20130066409A1 (en) * 2010-03-31 2013-03-14 Teresa Hilton Protective clothing and apparel for pets and animals and method of use
JP2016165362A (en) * 2015-03-09 2016-09-15 富士通株式会社 Mealtime estimation method, mealtime estimation device, and mealtime estimation program
JP2018527969A (en) * 2015-08-06 2018-09-27 エクスヘイル アシュアランス インコーポレイティッド Method and apparatus for monitoring respiration using a photoplethysmographic sensor
JP2017056042A (en) * 2015-09-17 2017-03-23 富士通株式会社 Drowsiness detection device, drowsiness detection method, and drowsiness detection program
JP2018114059A (en) * 2017-01-17 2018-07-26 東洋紡株式会社 Tool for body measurement and body size measurement method, clothing selection system, and custom-made clothing design system
JP2018187090A (en) * 2017-05-08 2018-11-29 有限会社アルファ Respiration detection device, respiration detection method and computer program
WO2019035420A1 (en) * 2017-08-16 2019-02-21 東洋紡株式会社 Electrode member for measuring biological information, biological information measurement device, garment for measuring biological information, attachment method for electrode member for measuring biological information, and biological information measurement method
JP2019072048A (en) * 2017-10-13 2019-05-16 東洋紡株式会社 Wearable biological information measuring device and biological information measuring method
JP2020191799A (en) * 2019-05-27 2020-12-03 東洋紡株式会社 Animal clothing, and animal biological information measurement device

Also Published As

Publication number Publication date
JPWO2022224599A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
CA2604969C (en) Systems and methods for non-invasive physiological monitoring of non-human animals
ES2968214T3 (en) Biosignal detection garment
US11253203B2 (en) Object, method, and system for detecting heartbeat or whether or not electrodes are in proper contact
EP2716172B1 (en) Item of clothing
US7762953B2 (en) Systems and methods for non-invasive physiological monitoring of non-human animals
JP2008503287A (en) Garment with integrated sensor system
CN108024749A (en) Biological information measurement utensil
WO2010139087A1 (en) Garment for making a diagnosis and giving treatment
TW201635932A (en) Device for monitoring a physiological parameter of a user as a clothing item
TWI837181B (en) Biological signal monitoring clothing
WO2022224599A1 (en) Biological information measuring garment for quadruped, garment type biological information measuring device for quadruped, abnormal respiration detection method for quadruped, and abnormal respiration detection device for quadruped
US20240049992A1 (en) Elongation sensor and wearable article including the elongation sensor
JP7308313B1 (en) clothing for quadrupeds
EP3530183B1 (en) Wearable electrode
JP6516356B2 (en) Swallow detection clothing and swallow detector
WO2023013249A1 (en) Biological information measurement clothing
NL2028936B1 (en) Knitted strain sensor
Catarino et al. Biosignal monitoring implemented in a swimsuit for athlete performance evaluation
GB2604111A (en) Electronics module and assembly comprising electronics module and fabric article
JP2023112597A (en) Clothing, and use thereof
JP2020162946A (en) Biological information measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12/12/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 22791380

Country of ref document: EP

Kind code of ref document: A1