WO2022224387A1 - Laser oscillator and laser processing device - Google Patents
Laser oscillator and laser processing device Download PDFInfo
- Publication number
- WO2022224387A1 WO2022224387A1 PCT/JP2021/016225 JP2021016225W WO2022224387A1 WO 2022224387 A1 WO2022224387 A1 WO 2022224387A1 JP 2021016225 W JP2021016225 W JP 2021016225W WO 2022224387 A1 WO2022224387 A1 WO 2022224387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- processing
- guide
- oscillation
- laser beam
- Prior art date
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 87
- 230000007246 mechanism Effects 0.000 claims abstract description 71
- 230000005540 biological transmission Effects 0.000 claims abstract description 24
- 238000001816 cooling Methods 0.000 claims description 41
- 238000003754 machining Methods 0.000 claims description 39
- 239000000110 cooling liquid Substances 0.000 claims description 10
- 238000012423 maintenance Methods 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000007723 transport mechanism Effects 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 4
- 230000004308 accommodation Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 22
- 239000008186 active pharmaceutical agent Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 239000002826 coolant Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 238000010330 laser marking Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910009372 YVO4 Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
Definitions
- the present invention relates to a laser oscillator and a laser processing apparatus using the same, and more particularly to a laser oscillator that separately oscillates a processing laser beam and a guide laser beam and a laser processing apparatus that uses this to perform a predetermined processing on a work.
- a laser processing device such as a laser cutting machine, a laser welding machine, or a laser marking device transmits a laser beam output from a laser oscillator to irradiate a work, and by relatively moving the laser beam and the work, a predetermined Can be processed.
- a laser processing apparatus using a laser oscillator that oscillates both a processing laser beam for performing predetermined processing on a workpiece and a guide laser beam for adjusting the irradiation position of the processing laser beam.
- a laser processing apparatus intended to solve such a problem
- a laser processing apparatus if a returned laser beam is not detected for a predetermined time due to cable disconnection or the like, an abnormality is determined and an emergency stop is made. It is disclosed that actions are performed. According to such a laser processing apparatus, it is said that not only the disconnection of the optical fiber but also the wear of the optical element incorporated in the laser light source can be effectively determined.
- a shutter mechanical opening/closing placed near the output end of the laser oscillator.
- means is generally provided additionally.
- the shutter that blocks the laser beam continues to absorb the laser beam, shortening the life of the shutter itself. There is another problem of stowage.
- a shutter is arranged on a common optical path of the processing laser beam and the guide laser beam. become. For this reason, when it is attempted to stop the emission of the machining laser beam, the emission of the guide laser beam is also stopped at the same time. was there.
- a laser oscillator capable of independently oscillating a processing laser beam and a guide laser beam is required to have a configuration capable of selectively emitting the guide laser beam without using opening/closing means on the optical path. ing.
- a guide laser oscillation source that oscillates a guide laser beam, a guide power supply that supplies power to the guide laser oscillation source, and an oscillation control device that outputs a control signal for controlling the operation of the processing power supply and the guide power supply
- the oscillation control device is configured to output a stop command as a control signal only to the processing power source when a safety device provided in the laser processing device is activated.
- the oscillation control device for the laser oscillator when the safety device provided in the laser processing apparatus is activated, is configured to output a stop command as a control signal to the power source for processing.
- the guide laser beam can be selectively emitted without using opening/closing means on the optical path.
- FIG. 2 is a block diagram showing the relationship between a laser oscillator and a main controller of the laser processing apparatus shown in FIG. 1;
- FIG. 4 is a time chart showing an example of emergency stop operation when an emergency stop signal is detected in the laser processing apparatus according to the first embodiment;
- 5 is a time chart showing an example of an operation of stopping processing laser light when a safety device actuation signal is detected in the laser processing apparatus according to the first embodiment;
- FIG. 3 is a block diagram showing the relationship between a laser oscillator and a main controller of a laser processing apparatus according to a second embodiment of the present invention
- FIG. 11 is a block diagram showing the relationship between a laser oscillator and a main controller of a laser processing apparatus according to a third embodiment of the present invention
- 1 is a schematic diagram
- "emergency stop” means that if the processing operation of the laser processing device is continued as it is, a dangerous situation in which the body of the operator or the constituent elements of the laser processing device may be seriously damaged. , means to forcibly stop the control operation of the entire laser processing apparatus.
- a fire occurs in the laser processing apparatus itself or its surroundings, or a certain scale of fire occurs. For example, when an earthquake is detected, and further when it is detected that some of the constituent elements of the laser processing apparatus are damaged.
- the term "safety device” refers to a device for preventing the operator from being exposed to the processing laser beam, or a device for suppressing minor damage to each component of the laser processing apparatus. Includes equipment. Specific examples of such a “safety device” include a sensor for detecting the closed state of an open/close door provided in the housing cover of the laser processing apparatus, which will be described later, and a coolant temperature control for a cooling mechanism that cools a part of the laser oscillator. A sensor etc. which detect is mentioned.
- FIG. 1 is a schematic diagram showing the configuration of a laser oscillator and a laser processing apparatus including the same according to a first embodiment, which is a typical example of the present invention.
- FIG. 2 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus shown in FIG.
- the laser processing apparatus 1 includes, as an example, a laser oscillator 100 that separately oscillates a processing laser beam LP and a guide laser beam LG, and a work holding mechanism that holds a work W. 10, a transmission mechanism 20 that irradiates the workpiece W with the processing laser beam LP and the guide laser beam LG, a transport mechanism 30 that relatively moves the transmission mechanism 20 with respect to the workpiece holding mechanism 10, and at least the workpiece holding mechanism 10 and the transport An accommodation cover 40 that accommodates the mechanism 30 inside, a cooling mechanism 50 that circulates and supplies a cooling liquid LQ (coolant) for cooling the inside of the laser oscillator 100, and a main controller 60 that controls the machining operation for the workpiece W.
- a laser oscillator 100 that separately oscillates a processing laser beam LP and a guide laser beam LG
- a work holding mechanism that holds a work W.
- a transmission mechanism 20 that irradiates the workpiece W with the processing laser beam LP and the guide laser beam LG
- the laser processing apparatus 1 shown in FIG. 1 performs predetermined processing such as laser welding, laser cutting, laser drilling (trepanning), laser marking, laser dicing, or laser annealing by irradiating a workpiece W with processing laser light. It can be applied as any processing device that performs
- the work holding mechanism 10 includes a chuck mechanism (not shown) for attaching the work W, and grips and fixes the work W. Further, the work holding mechanism 10 may include a rotation mechanism in addition to a mechanism for moving the work W in the three axial directions of XYZ, for example.
- the transmission mechanism 20 includes a processing head 22 that collects and irradiates the processing laser beam LP and the guide laser beam LG to the workpiece W, and the processing laser beam LP and the guide laser beam that are oscillated from the laser oscillator 100.
- Transmission lines 24p and 24g for transmitting LG to the processing head 22 and optical connectors 26p and 26g for connecting the transmission lines 24p and 24g to the processing head 22 are included.
- FIG. 1 illustrates a case in which the processing laser beam LP and the guide laser beam LG are transmitted through separate transmission paths. may be configured as follows.
- the processing head 22 has a structure in which a superimposition optical unit and a scanning optical unit (not shown) are built in a housing.
- the superimposing optical unit includes, for example, a superimposing optical system such as a beam splitter or a half mirror that guides the processing laser beam LP and the guide laser beam LG so as to be substantially coaxial, and the processing laser beam LP that is substantially coaxially superimposed. and a condensing optical system such as a condensing lens for adjusting the focal length of the guide laser beam LG.
- the processing head 22 may have a known configuration such as a cooling mechanism for cooling various built-in optical systems.
- the scanning optical unit includes, for example, a galvanometer scanner that scans the optical axis of the superimposed processing laser beam LP and guide laser beam LG in a two-dimensional area, and a lens unit such as an f ⁇ lens for making the light incident on the work W at a substantially right angle.
- a transmission mechanism 20 so-called long-focus laser processing (remote processing), in which the laser beam is focused on the work W, can be performed.
- the scanning optical unit is built in the processing head 22 is illustrated, but only the condenser lens for adjusting the focus of the superimposed processing laser beam LP and guide laser beam LG is placed on the optical path. It may be arranged such that the scanning of the optical axis of each beam on the workpiece W is performed by the transport mechanism 30, which will be described later.
- the processing laser beam LP and the guide laser beam LG are superimposed substantially coaxially and irradiated onto the workpiece W has been illustrated, the processing laser beam LP and the guide laser beam LG are each transmitted from different optical paths by separate optical systems. A method of irradiating the workpiece W may be employed.
- the transmission lines 24p and 24g are composed of, for example, known optical fibers.
- known connectors can be used according to the material and type of the optical fibers used for the transmission lines 24p and 24g.
- the transmission paths 24p and 24g may be configured as optical paths in which mirrors are arranged on cover members according to the wavelength of the processing laser beam LP or guide laser beam LG to be transmitted.
- the transport mechanism 30 is configured as a 6-axis or 7-axis industrial robot that includes a base member 32 and a robot arm 34 at least at the tip.
- the processing head 22 of the transmission mechanism 20 is attached to the tip of the robot arm 34, and the processing head 22 is moved to any position and angle within the swivel range.
- the storage cover 40 has a structure in which a closed space S is formed inside by combining the side surfaces other than the floor surface and the ceiling surface with panel members. As shown in FIG. 1, at least the workpiece holding mechanism 10 and the transfer mechanism 30 are housed in the closed space S, so that the housing cover 40 shuts off the closed space S from the outside as a substantially processing chamber.
- the laser oscillator 100 is arranged outside the housing cover 40, and the transmission lines 24p and 24g of the transmission mechanism 20 pass through through holes formed in part of the side surface of the housing cover 40. are arranged as follows.
- an access door 42 for allowing an operator to enter and exit a part of the side surface of the housing cover 40 and a door 42 for carrying in/out the workpiece W from the outside to/from the workpiece holding mechanism 10 are provided on a part of the side surface of the housing cover 40 as shown in FIG.
- An opening/closing member including a loading/unloading door 44 is provided.
- a plurality of loading/unloading doors 42 and loading/unloading doors 44 may be provided on the side surface of the housing cover 40 .
- an opening/closing sensor (not shown) for detecting whether these doors are open (or closed) is attached to each of the entrance/exit door 42 and the loading/unloading door 44. It is By setting the processing laser beam LP from the processing head 22 not to irradiate the workpiece W when the loading/unloading door 42 or the loading/unloading door 44 is open, the loading/unloading door 42 and the loading/unloading door 44 and the open/close sensor constitutes the "safety device" described above.
- an emergency stop button (not shown) may be provided on the side surface of the storage cover 40 on the closed space S side so that an emergency stop can be made when the operator is trapped.
- the cooling mechanism 50 includes a circulation pump and a circulation power supply (both not shown) that feed a cooling liquid (coolant) LQ therein, and a laser that will be described later.
- a cooling member 130 that cools at least the machining laser oscillation source 110p and the machining power source 112p of the oscillator 100 is connected via the circulation path 52 .
- the cooling mechanism 50 is driven based on a command signal from a main controller 60 of the laser processing apparatus 1, which will be described later.
- the main controller 60 outputs command signals to the work holding mechanism 10, the transmission mechanism 20, the transfer mechanism 30, and the cooling mechanism 50, which are objects to be controlled, based on a predetermined program.
- a main control unit 62 that controls these operations by receiving signals from the outside (for example, detection signals from various sensors, emergency stop signals from emergency stop buttons, etc.) and receiving signals of any kind. and a signal discrimination unit 64 that discriminates whether.
- the main controller 60 further includes a console unit 66 including a display screen, and an emergency stop button 68 for emergency stopping the operation of the entire laser processing apparatus 1 in an emergency.
- Main controller 60 is connected to work holding mechanism 10, transmission mechanism 20, transfer mechanism 30, cooling mechanism 50 and laser oscillator 100 shown in FIG. It is also connected to various sensors to receive detection signals. Then, the main controller 62 of the main controller 60 also outputs a command signal SC including an oscillator drive start command and a drive end command to the oscillation controller 120 of the laser oscillator 100 .
- the signal determination unit 64 receives input signals from an operator such as the console unit 66 and the emergency stop button 68, and opening/closing sensors provided on the entrance door 42 and the loading/unloading door 44. Also, the signal determination unit 64 includes a first determination unit 64a that outputs a first signal S1 when determining that the received signal is of the first layer, and a first determination unit 64a that outputs a first signal S1 and a second discriminator 64b that outputs a second signal S2 when the received signal is discriminated to be of the second layer.
- the first determination unit 64a when there is a signal input due to disaster detection such as an emergency stop button, a fire alarm, or a seismometer, the first determination unit 64a performs the first determination based on the signal input.
- 1 signal (emergency stop signal) S1 is output to the main controller 62 and the oscillation controller 120 of the laser oscillator 100, respectively.
- the second discriminator 64b outputs a second signal (safety device actuation signal) S2 to the laser oscillator 100 based on the signal input from the open/close sensor provided on each of the loading/unloading door 42 or loading/unloading door 44 described above. Output to the control device 120 .
- the main control unit 62 receives the first signal S1 from the first determination unit 64a, it outputs an emergency stop command signal to the control object of the laser processing apparatus 1 .
- the laser oscillator 100 includes a processing laser oscillation source 110p that oscillates processing laser light LP, a processing power supply 112p that supplies power to this, and a guide laser light LG.
- a guide laser oscillation source 110g that oscillates, a guide power source 112g that supplies power to the same, and a control signal (drive command DP, DG or stop command DS) for controlling the operation of the processing power source 112p and the guide power source 112g.
- a cooling member 130 supplied with cooling liquid LQ for cooling at least the machining laser oscillation source 110p and the machining power supply 112p; 140 and .
- the processing laser oscillation source 110p a laser source with a wavelength having a high absorption efficiency depending on the material of the workpiece W to be processed is applied.
- a processing laser oscillation source 110p a YAG laser, a YVO4 laser, a fiber laser, a disk laser, or the like capable of fiber transmission can be exemplified.
- the machining power source 112p supplies drive power to the machining laser oscillation source 110p based on control commands (drive command DP and stop command DS) from the oscillation control device 120, which will be described later.
- the guide laser oscillation source 110g is, for example, a laser source with a wavelength of visible light (360 to 830 nm) in order to simulate and visualize the position where the surface of the work W is irradiated with the processing laser beam LP. Applies. A green laser with a wavelength of 515 nm can be exemplified as such a guide laser oscillation source 110g.
- the guide power source 112g supplies drive power to the guide laser oscillation source 110g based on control commands (a drive command DG and a stop command DS) from the oscillation control device 120, which will be described later.
- the oscillation control device 120 outputs control signals to the processing power source 112p and the guide power source 112g based on various commands from the main control device 60 of the laser processing apparatus 1, respectively.
- the processing power source 112p and the guide power source 112g are driven and controlled independently, and as a result, even if the output of the processing laser beam LP is stopped, the guide laser The output of light LG is maintained.
- the cooling member 130 is configured as a substantially plate-shaped hollow member, and is arranged so that one surface thereof is in contact with at least the processing laser oscillation source 110p and the processing power source 112p. As shown in FIG. 2 , the cooling member 130 is connected to the cooling mechanism 50 via two circulation paths 52 , and together with the cooling mechanism 50 constitutes a cooling system for the laser oscillator 100 . Thereby, the coolant LQ circulates between the cooling mechanism 50 and the cooling member 130, and can cool at least the processing laser oscillation source 110p and the processing power source 112p during oscillation driving.
- the maintenance door 140 is configured as a window that is opened and closed when performing maintenance on various components incorporated inside the housing of the laser oscillator 100 .
- an open/close sensor (not shown) for detecting the open/close state of the maintenance door 140 may be provided, and the output of the open/close sensor may be input to the signal determination section 64 of the main controller 60 . That is, the maintenance door 140 and the open/close sensor provided thereon are also configured as one of the safety devices for the laser oscillator 100 and the laser processing apparatus 1 .
- FIG. 3A is a time chart showing an example of emergency stop operation when an emergency stop signal is detected in the laser processing apparatus according to the first embodiment.
- FIG. 3B is a time chart showing an example of the operation of stopping the processing laser beam when the safety device activation signal is detected in the laser processing apparatus according to the first embodiment.
- a command signal SC is received from 60 to start outputting the processing laser beam LP and the guide laser beam LG.
- the oscillation control device 120 Upon receiving the command signal SC, the oscillation control device 120 outputs control signals of drive commands DP and DG to the power source 112p for machining and the power source 112g for guiding, respectively, at time T2. As a result, the oscillation and output of the processing laser beam LP and the guide laser beam LG are continued until the output stop command signal SC is received from the main controller 60 .
- the emergency stop signal S1 is output to the oscillation control device 120 from the first discriminator 64a that has received the detection signal. Subsequently, at time T4, the oscillation control device 120 that has received the emergency stop signal S1 outputs a control signal of a stop command DS to each of the machining power source 112p and the guiding power source 112g.
- the laser processing apparatus 1 when the operation of stopping the processing laser light LP by the safety device is performed, first, at time T1, oscillation control of the laser oscillator 100 is performed as shown in FIG. 3B.
- the device 120 receives a command signal SC from the main controller 60 of the laser processing apparatus 1 to start outputting the processing laser beam LP and the guide laser beam LG.
- the oscillation control device 120 Upon receiving the command signal SC, the oscillation control device 120 outputs control signals of drive commands DP and DG to the power source 112p for machining and the power source 112g for guiding, respectively, at time T2.
- the oscillation and output of the processing laser beam LP and the guide laser beam LG are continued until the output stop command signal SC is received from the main controller 60 .
- the second determination unit 64b that receives the detection signal Safety device actuation signal S2 is output to oscillation control device 120 .
- the oscillation control device 120 that has received the safety device actuation signal S2 outputs a control signal of the stop command DS only to the machining power supply 112p.
- the machining power supply 112p that has received the control signal of the stop command DS stops power output to the machining laser oscillation source 110p.
- the guiding power source 112g that has not received the control signal continues to output power to the guiding laser oscillation source 110g.
- the oscillation and output of the processing laser beam LP from the laser oscillator 100 are stopped, and the oscillation and output of the guide laser beam LG are maintained.
- the laser oscillator and the laser processing apparatus are such that when the safety device provided in the laser processing apparatus is activated, the oscillation control device of the laser oscillator is switched off to the power supply for processing. Therefore, in a laser oscillator that can independently oscillate the processing laser beam and the guide laser beam, the guide laser beam can be emitted without using opening/closing means on the optical path. Can be executed selectively.
- FIG. 4 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus according to the second embodiment of the present invention.
- the same reference numerals are given to the components that can adopt the same or common configuration as the first embodiment. The repeated description of is omitted.
- the main controller 60 outputs a command signal to the controlled object based on a predetermined program to perform these operations. It includes a main control section 62 for control, and a signal discrimination section 64 for receiving a signal from the outside (for example, an emergency stop signal from an emergency stop button) and discriminating whether or not the signal is an emergency stop signal.
- a signal from the outside for example, an emergency stop signal from an emergency stop button
- the laser oscillator 200 includes, as an example, a processing laser oscillation source 110p that oscillates the processing laser beam LP, a processing power supply 112p that supplies power to this, and a guide laser that oscillates the guide laser beam LG.
- An oscillation control device that outputs a control signal (drive command DP, DG or stop command DS) for controlling the operations of the laser oscillation source 110g, the guide power source 112g that supplies power to the same, the processing power source 112p and the guide power source 112g.
- a cooling member 130 supplied with a cooling liquid LQ for cooling at least the machining laser oscillation source 110p and the machining power source 112p, and a signal received from the outside (for example, a detection signal from various sensors) and the signal is and a signal discriminator 250 for discriminating whether it is a safety device activation signal.
- the main controller 60 is provided with the signal determination section 64 that outputs the first signal S1 to the oscillation control device 120 of the laser oscillator 200, and the second signal
- the laser oscillator 200 is characterized by incorporating a signal discrimination device 250 that outputs S2.
- the structure of the main controller 60 can be simplified, and the laser oscillator 200 can have a structure in which a function for determining whether the safety device is operating is integrated and added.
- the oscillation control device 120 outputs control signals to the machining power supply 112p and the guide power supply 112g based on the received command signal SC, first signal S1 or second signal S2.
- the processing power supply 112p and the guide power supply 112g are driven and controlled independently.
- the laser oscillator and the laser processing apparatus according to the second embodiment have the effect of outputting the second signal (safety device activation signal) in addition to the effects described in the first embodiment.
- the discrimination device By incorporating the discrimination device into the laser oscillator, the structure of the main controller of the laser processing apparatus can be simplified, and a laser oscillator with added value (additional function) can be provided.
- FIG. 5 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus according to the third embodiment of the present invention. Also in the third embodiment, in the schematic diagrams and the like shown in FIGS. 1 to 3, the same or common configurations as those of the first embodiment are denoted by the same reference numerals. The repeated description of is omitted.
- the laser oscillator 300 includes, for example, a processing laser oscillation source 110p that oscillates processing laser light LP, a processing power supply 112p that supplies power to this, and a guide laser light LG. and an internal cooling mechanism 360 including a guide laser oscillation source 110g that oscillates and a guide power source 112g that supplies power thereto, a circulation pump 310 and a circulation power source 312 that supplies power to the circulation pump 310, and the above-described power sources. and an oscillation control device 120 that outputs a control signal for control (drive command DP, DG, DC or stop command DS).
- a control signal for control drive command DP, DG, DC or stop command DS
- the laser processing apparatus 1 integrates the cooling mechanism 50 and the circulation path 52 shown in FIGS. characterized by That is, as shown in FIG. 5, the internal cooling mechanism 360 includes a circulation pump 310 that circulates a coolant LQ therein, a circulation power supply 312 that supplies power to the circulation pump 310, and a substantially plate-like hollow member. and a cooling member 330 in which the cooling liquid LQ circulates.
- the laser oscillator 300 can be manufactured and sold as a unit in which the internal cooling mechanism 360 is integrated.
- the oscillation control device 120 outputs control signals to the machining power supply 112p, the guide power supply 112g, and the circulation power supply 312 based on the received command signal SC, first signal S1 or second signal S2. Accordingly, in the laser oscillator 300 according to the third embodiment, the processing power source 112p, the guide power source 112g, and the circulation power source 312 are independently driven and controlled. Even if it stops, driving of the guide power supply 112g and the circulation power supply 312 is maintained.
- the cooling member 330 is provided with an internal pressure sensor (not shown) for detecting the pressure of the cooling liquid LQ circulating therein, and the detected value of the internal pressure sensor is input to the signal determination unit 64 of the main controller 60. It may be configured as That is, the internal cooling mechanism 360 and the internal pressure sensor are also configured as one of the safety devices of the laser oscillator 300 and the laser processing apparatus 1 according to the third embodiment.
- the second determination unit 64b When the internal pressure of the cooling member 330 decreases, it is determined that a leak (coolant leakage) has occurred in the internal cooling mechanism 360, and the second determination unit 64b outputs and receives the safety device actuation signal S2. An operation in which the oscillation control device 120 outputs control signals of the stop command DS to the machining power source 112p and the circulation power source 312 is sequentially executed. Therefore, it is possible to prevent damage to other components in the laser oscillator 300 due to leakage of the cooling liquid LQ.
- the laser oscillator and the laser processing apparatus according to the third embodiment have the effects described in the first embodiment, as well as the internal
- a cooling mechanism it becomes possible to manufacture and sell the laser oscillator as a unit in which the internal cooling mechanism is integrated.
- the internal cooling mechanism by providing a function for detecting liquid leakage from the internal cooling mechanism, it is possible to prevent damage to other components in the laser oscillator due to liquid leakage of the cooling liquid.
- the power supply for machining and the power supply for guide of the laser oscillator are independent of the drive power supply for each mechanism of the laser processing apparatus, and when the emergency stop button is pressed, the oscillation control device
- the power source for processing and the power source for guide are respectively stopped by a signal
- the power source for processing and the power source for guide may be configured to be interlocked with the driving power source.
- the specific examples shown in the first to third embodiments may be applied by combining their features.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
A laser processing device according to the present invention includes: laser oscillators that individually oscillate a processing laser beam and a guide laser beam; a workpiece holding mechanism that holds a workpiece; a transmission mechanism that emits the processing laser beam and the guide laser beam onto the workpiece; a conveying mechanism that causes the transmission mechanism to move relative to the workpiece holding mechanism; an accommodating cover that accommodates therein at least the workpiece holding mechanism and the conveying mechanism; and a main control device. The laser oscillator further includes a processing laser oscillation source and a processing power source that oscillate the processing laser beam, a guide laser oscillation source and a guide power source that oscillate the guide laser beam, and an oscillation control device that outputs control signals to the processing power source and the guide power source. The oscillation control device is configured to output a stop command as a control signal only to the processing power source when a safety device provided to the laser processing device is actuated.
Description
本発明は、レーザ発振器及びこれを用いたレーザ加工装置に関し、特に、加工レーザ光及びガイドレーザ光を個別に発振するレーザ発振器及びこれを用いてワークに所定の加工を行うレーザ加工装置に関する。
The present invention relates to a laser oscillator and a laser processing apparatus using the same, and more particularly to a laser oscillator that separately oscillates a processing laser beam and a guide laser beam and a laser processing apparatus that uses this to perform a predetermined processing on a work.
レーザ切断機やレーザ溶接機あるいはレーザマーキング装置等のレーザ加工装置は、レーザ発振器から出力されたレーザ光を伝送してワークに照射し、当該レーザ光とワークとを相対移動させることにより、所定の加工を行うことができる。特に、ワークに所定の加工を行う加工レーザ光と当該加工レーザ光の照射位置を調整するためのガイドレーザ光とを併せて発振するレーザ発振器を用いたレーザ加工装置が知られている。
A laser processing device such as a laser cutting machine, a laser welding machine, or a laser marking device transmits a laser beam output from a laser oscillator to irradiate a work, and by relatively moving the laser beam and the work, a predetermined Can be processed. In particular, there is known a laser processing apparatus using a laser oscillator that oscillates both a processing laser beam for performing predetermined processing on a workpiece and a guide laser beam for adjusting the irradiation position of the processing laser beam.
このようなレーザ加工装置において、レーザ加工中にワーク以外の物やオペレータがレーザ光に曝されると危険であるため、通常はこれらの物や人などをセンサ等の安全装置が検知したり、オペレータが非常停止スイッチや非常停止ボタン等の非常停止入力手段を操作すると、自動的にレーザ加工装置全体の制御動作を非常停止する安全動作が実行される。この安全動作では、火災や誤動作等の二次的被害を防止するために、通常はレーザ加工装置に含まれるレーザ発振器や加工ヘッド駆動装置等のすべての装置に対する駆動電源の供給も停止される。しかしながら、特にレーザ発振器及びその付属装置である冷却装置がいったん停止すると、その復旧には相当な時間を要するという問題があった。
In such a laser processing apparatus, it is dangerous to expose an object other than the work or an operator to the laser beam during laser processing. When the operator operates an emergency stop input means such as an emergency stop switch or an emergency stop button, a safety operation is automatically executed to stop the control operation of the entire laser processing apparatus. In this safety operation, in order to prevent secondary damage such as fire and malfunction, the supply of drive power to all devices such as a laser oscillator and a processing head drive device, which are normally included in the laser processing device, is also stopped. However, there is a problem that once the laser oscillator and its accessory cooling device stop, it takes a considerable amount of time to recover.
このような問題を解決することを意図したレーザ加工装置の一例として、例えば特許文献1には、レーザ加工装置において、ケーブルの断線等により戻りレーザ光が所定時間検出されない場合、異常判定とともに非常停止動作が実行されるものが開示されている。このようなレーザ加工装置によれば、光ファイバの断線だけでなく、レーザ光発生源に組み込まれた光学素子の損耗を有効に判定できるとされている。
As an example of a laser processing apparatus intended to solve such a problem, for example, in Patent Document 1, in a laser processing apparatus, if a returned laser beam is not detected for a predetermined time due to cable disconnection or the like, an abnormality is determined and an emergency stop is made. It is disclosed that actions are performed. According to such a laser processing apparatus, it is said that not only the disconnection of the optical fiber but also the wear of the optical element incorporated in the laser light source can be effectively determined.
上記のように、非常停止時にレーザ加工装置のすべての電源供給を停止せずにレーザ光の出力のみを停止する場合には、レーザ発振器の出力端の近傍に配置されたシャッタ(機械的な開閉手段)を追加的に設けることが一般的である。しかしながら、レーザ発振器から出射されるレーザ光は通常、ワークの加工に適したパワーで発振されるため、これを遮断するシャッタはレーザ光を吸収し続けることから、当該シャッタ自体の寿命が短くなってしまうという別の課題がある。
As described above, in order to stop only the output of the laser beam without stopping the power supply to the laser processing equipment during an emergency stop, a shutter (mechanical opening/closing) placed near the output end of the laser oscillator is required. means) is generally provided additionally. However, since the laser beam emitted from the laser oscillator is normally oscillated at a power suitable for machining the workpiece, the shutter that blocks the laser beam continues to absorb the laser beam, shortening the life of the shutter itself. There is another problem of stowage.
また、特許文献1に開示されるような加工レーザ光とガイドレーザ光とを略同軸に出射する構成のレーザ発振器では、加工レーザ光及びガイドレーザ光の共通の光路上にシャッタが配置されることになる。このため、加工レーザ光の出射を停止しようとすると、同時にガイドレーザ光の出射も停止されてしまい、加工動作停止後の復旧作業等においてガイドレーザ光のみを選択的に使用することが難しいという問題があった。
Further, in a laser oscillator configured to emit a processing laser beam and a guide laser beam substantially coaxially as disclosed in Patent Document 1, a shutter is arranged on a common optical path of the processing laser beam and the guide laser beam. become. For this reason, when it is attempted to stop the emission of the machining laser beam, the emission of the guide laser beam is also stopped at the same time. was there.
このような経緯から、加工レーザ光とガイドレーザ光とを個別に発振できるレーザ発振器において、光路上の開閉手段を用いることなく、ガイドレーザ光の出射を選択的に実行できる構成のものが求められている。
Under these circumstances, a laser oscillator capable of independently oscillating a processing laser beam and a guide laser beam is required to have a configuration capable of selectively emitting the guide laser beam without using opening/closing means on the optical path. ing.
本発明の一態様による、加工レーザ光及びガイドレーザ光を個別に発振してレーザ加工装置に出力するレーザ発振器は、加工レーザ光を発振する加工レーザ発振源及びこれに電力を供給する加工用電源と、ガイドレーザ光を発振するガイドレーザ発振源及びこれに電力を供給するガイド用電源と、これら加工用電源及びガイド用電源の動作を制御する制御信号を出力する発振制御装置と、を含み、発振制御装置は、レーザ加工装置に設けられた安全装置が作動した場合に、加工用電源にのみ制御信号として停止指令を出力するように構成される。
According to one aspect of the present invention, a laser oscillator that separately oscillates a processing laser beam and a guide laser beam and outputs them to a laser processing apparatus includes a processing laser oscillation source that oscillates the processing laser beam and a processing power source that supplies power to the processing laser oscillation source. a guide laser oscillation source that oscillates a guide laser beam, a guide power supply that supplies power to the guide laser oscillation source, and an oscillation control device that outputs a control signal for controlling the operation of the processing power supply and the guide power supply, The oscillation control device is configured to output a stop command as a control signal only to the processing power source when a safety device provided in the laser processing device is activated.
また、本発明の一態様による、ワークに対してガイドレーザ光及び加工レーザ光を照射して所定の加工を行うレーザ加工装置は、加工レーザ光及びガイドレーザ光を個別に発振するレーザ発振器と、ワークを保持するワーク保持機構と、ワークに加工レーザ光及びガイドレーザ光を照射する伝送機構と、当該伝送機構をワーク保持機構に対して相対移動させる搬送機構と、少なくともワーク保持機構及び搬送機構を内部に収容する収容カバーと、ワークに対する加工動作を制御する主制御装置と、を含み、上記レーザ発振器は、加工レーザ光を発振する加工レーザ発振源及びこれに電力を供給する加工用電源と、ガイドレーザ光を発振するガイドレーザ発振源及びこれに電力を供給するガイド用電源と、これら加工用電源及びガイド用電源の動作を制御する制御信号を出力する発振制御装置と、をさらに含み、発振制御装置は、レーザ加工装置に設けられた安全装置が作動した場合に、加工用電源にのみ制御信号として停止指令を出力するように構成される。
Further, according to one aspect of the present invention, a laser processing apparatus for performing predetermined processing by irradiating a guide laser beam and a processing laser beam onto a workpiece includes a laser oscillator that separately oscillates the processing laser beam and the guide laser beam; A work holding mechanism that holds a work, a transmission mechanism that irradiates the work with a processing laser beam and a guide laser beam, a transfer mechanism that moves the transmission mechanism relative to the work holding mechanism, and at least the work holding mechanism and the transfer mechanism a housing cover to be housed inside; and a main controller for controlling a processing operation for a work; further comprising a guide laser oscillation source that oscillates a guide laser beam, a guide power supply that supplies power to the guide laser oscillation source, and an oscillation control device that outputs a control signal for controlling the operation of the machining power supply and the guide power supply, The control device is configured to output a stop command as a control signal only to the processing power source when a safety device provided in the laser processing device is activated.
本発明の一態様によれば、レーザ加工装置に設けられた安全装置が作動した場合に、レーザ発振器の発振制御装置が加工用電源に制御信号として停止指令を出力するように構成されているため、加工レーザ光とガイドレーザ光とを個別に発振できるレーザ発振器において、光路上の開閉手段を用いることなく、ガイドレーザ光の出射を選択的に実行できる。
According to one aspect of the present invention, when the safety device provided in the laser processing apparatus is activated, the oscillation control device for the laser oscillator is configured to output a stop command as a control signal to the power source for processing. In a laser oscillator capable of separately oscillating a processing laser beam and a guide laser beam, the guide laser beam can be selectively emitted without using opening/closing means on the optical path.
以下、本発明の代表的な一例によるレーザ発振器及びこれを用いたレーザ加工装置の実施形態を図面と共に説明する。
An embodiment of a laser oscillator and a laser processing apparatus using the same according to a representative example of the present invention will be described below with reference to the drawings.
ここで、以下の説明において、「非常停止」とは、そのままレーザ加工装置の加工動作を継続すると、オペレータの身体やレーザ加工装置の構成要素に大きな損傷が及ぶような危険状態を回避するために、レーザ加工装置全体の制御動作を強制的に停止することを意味するものとする。このような「非常停止」が実行される場合の具体例としては、上述したオペレータによる非常停止入力手段による入力に加えて、例えば、レーザ加工装置自体やその周囲での火災発生やある程度の規模の地震を検知した場合、さらにはレーザ加工装置の構成要素の一部が破損したことが検知された場合等が挙げられる。
Here, in the following explanation, "emergency stop" means that if the processing operation of the laser processing device is continued as it is, a dangerous situation in which the body of the operator or the constituent elements of the laser processing device may be seriously damaged. , means to forcibly stop the control operation of the entire laser processing apparatus. As a specific example of when such an "emergency stop" is executed, in addition to the above-described operator's input by the emergency stop input means, for example, a fire occurs in the laser processing apparatus itself or its surroundings, or a certain scale of fire occurs. For example, when an earthquake is detected, and further when it is detected that some of the constituent elements of the laser processing apparatus are damaged.
また、以下の説明において、「安全装置」とは、特にオペレータの加工レーザ光への暴露を防止するための装置や、あるいはレーザ加工装置を構成する各構成要素の軽微な損傷を抑制するための装置が含まれる。このような「安全装置」の具体例としては、後述するレーザ加工装置の収容カバーに設けられた開閉扉の閉鎖状態を検知するセンサや、レーザ発振器の一部を冷却する冷却機構のクーラント温度を検知するセンサ等が挙げられる。
In the following description, the term "safety device" refers to a device for preventing the operator from being exposed to the processing laser beam, or a device for suppressing minor damage to each component of the laser processing apparatus. Includes equipment. Specific examples of such a "safety device" include a sensor for detecting the closed state of an open/close door provided in the housing cover of the laser processing apparatus, which will be described later, and a coolant temperature control for a cooling mechanism that cools a part of the laser oscillator. A sensor etc. which detect is mentioned.
<第1の実施形態>
図1は、本発明の代表的な一例である第1の実施形態によるレーザ発振器及びこれを含むレーザ加工装置の構成を示す概略図である。また、図2は、図1で示したレーザ発振器及びレーザ加工装置の主制御装置との関係を示すブロック図である。 <First Embodiment>
FIG. 1 is a schematic diagram showing the configuration of a laser oscillator and a laser processing apparatus including the same according to a first embodiment, which is a typical example of the present invention. FIG. 2 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus shown in FIG.
図1は、本発明の代表的な一例である第1の実施形態によるレーザ発振器及びこれを含むレーザ加工装置の構成を示す概略図である。また、図2は、図1で示したレーザ発振器及びレーザ加工装置の主制御装置との関係を示すブロック図である。 <First Embodiment>
FIG. 1 is a schematic diagram showing the configuration of a laser oscillator and a laser processing apparatus including the same according to a first embodiment, which is a typical example of the present invention. FIG. 2 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus shown in FIG.
図1に示すように、第1の実施形態によるレーザ加工装置1は、その一例として、加工レーザ光LP及びガイドレーザ光LGを個別に発振するレーザ発振器100と、ワークWを保持するワーク保持機構10と、ワークWに加工レーザ光LP及びガイドレーザ光LGを照射する伝送機構20と、当該伝送機構20をワーク保持機構10に対して相対移動させる搬送機構30と、少なくともワーク保持機構10及び搬送機構30を内部に収容する収容カバー40と、レーザ発振器100の内部を冷却する冷却液LQ(クーラント)を循環供給する冷却機構50と、ワークWに対する加工動作を制御する主制御装置60と、を含む。図1に示すレーザ加工装置1は、例えばレーザ溶接、レーザ切断、レーザ穴あけ(トレパニング)、レーザマーキング、レーザダイシングあるいはレーザアニール等のワークWに対して加工レーザ光を照射することにより、所定の加工を実行する任意の加工装置として適用し得る。
As shown in FIG. 1, the laser processing apparatus 1 according to the first embodiment includes, as an example, a laser oscillator 100 that separately oscillates a processing laser beam LP and a guide laser beam LG, and a work holding mechanism that holds a work W. 10, a transmission mechanism 20 that irradiates the workpiece W with the processing laser beam LP and the guide laser beam LG, a transport mechanism 30 that relatively moves the transmission mechanism 20 with respect to the workpiece holding mechanism 10, and at least the workpiece holding mechanism 10 and the transport An accommodation cover 40 that accommodates the mechanism 30 inside, a cooling mechanism 50 that circulates and supplies a cooling liquid LQ (coolant) for cooling the inside of the laser oscillator 100, and a main controller 60 that controls the machining operation for the workpiece W. include. The laser processing apparatus 1 shown in FIG. 1 performs predetermined processing such as laser welding, laser cutting, laser drilling (trepanning), laser marking, laser dicing, or laser annealing by irradiating a workpiece W with processing laser light. It can be applied as any processing device that performs
ワーク保持機構10は、その一例として、ワークWを取り付けるチャック機構(図示せず)を備え、ワークWを把持固定する。また、ワーク保持機構10は、例えばワークWをXYZの3軸方向に移動させる機構だけでなく、回転機構を備えてもよい。
As an example, the work holding mechanism 10 includes a chuck mechanism (not shown) for attaching the work W, and grips and fixes the work W. Further, the work holding mechanism 10 may include a rotation mechanism in addition to a mechanism for moving the work W in the three axial directions of XYZ, for example.
伝送機構20は、その一例として、ワークWに対して加工レーザ光LP及びガイドレーザ光LGを集光して照射する加工ヘッド22と、レーザ発振器100から発振される加工レーザ光LP及びガイドレーザ光LGを加工ヘッド22に伝送する伝送路24p、24gと、当該伝送路24p、24gを加工ヘッド22に接続する光コネクタ26p、26gと、を含む。図1においては、加工レーザ光LP及びガイドレーザ光LGをそれぞれ別の伝送経路で伝送する場合を例示しているが、2本の伝送経路を物理的に束ねて1本となるように集約して構成するようにしてもよい。
As an example, the transmission mechanism 20 includes a processing head 22 that collects and irradiates the processing laser beam LP and the guide laser beam LG to the workpiece W, and the processing laser beam LP and the guide laser beam that are oscillated from the laser oscillator 100. Transmission lines 24p and 24g for transmitting LG to the processing head 22 and optical connectors 26p and 26g for connecting the transmission lines 24p and 24g to the processing head 22 are included. FIG. 1 illustrates a case in which the processing laser beam LP and the guide laser beam LG are transmitted through separate transmission paths. may be configured as follows.
加工ヘッド22は、その一例として、図示を省略する重畳光学ユニットと走査光学ユニットとを筐体内に内蔵した構造を備えている。ここで、重畳光学ユニットは、例えば、加工レーザ光LPとガイドレーザ光LGとを略同軸となるように導くビームスプリッタやハーフミラー等の重畳光学系と、略同軸に重畳された加工レーザ光LPとガイドレーザ光LGとの焦点距離を調整する集光レンズ等の集光光学系と、を含む。また、加工ヘッド22は、内蔵される種々の光学系を冷却する冷却機構等の公知の構成を備えてもよい。
As an example, the processing head 22 has a structure in which a superimposition optical unit and a scanning optical unit (not shown) are built in a housing. Here, the superimposing optical unit includes, for example, a superimposing optical system such as a beam splitter or a half mirror that guides the processing laser beam LP and the guide laser beam LG so as to be substantially coaxial, and the processing laser beam LP that is substantially coaxially superimposed. and a condensing optical system such as a condensing lens for adjusting the focal length of the guide laser beam LG. Moreover, the processing head 22 may have a known configuration such as a cooling mechanism for cooling various built-in optical systems.
また、走査光学ユニットは、その一例として、重畳された加工レーザ光LPとガイドレーザ光LGとの光軸を2次元領域で走査するガルバノスキャナと、走査された加工レーザ光LP及びガイドレーザ光LGをワークWに対して略直角に入射させるfθレンズ等のレンズユニットと、を含む。このような伝送機構20を用いることにより、ワークW上に焦点を結ぶ、いわゆる長焦点レーザ加工(リモート加工)を行うことができる。
Further, the scanning optical unit includes, for example, a galvanometer scanner that scans the optical axis of the superimposed processing laser beam LP and guide laser beam LG in a two-dimensional area, and a lens unit such as an fθ lens for making the light incident on the work W at a substantially right angle. By using such a transmission mechanism 20, so-called long-focus laser processing (remote processing), in which the laser beam is focused on the work W, can be performed.
なお、図1に示す具体例では、加工ヘッド22に走査光学ユニットを内蔵した場合を例示したが、重畳された加工レーザ光LP及びガイドレーザ光LGの焦点を調整する集光レンズのみ光路上に配置して、ワークW上における各ビームの光軸の走査を後述する搬送機構30によって行うように構成してもよい。また、加工レーザ光LPとガイドレーザ光LGとを略同軸に重畳してワークWに照射する場合を例示したが、加工レーザ光LPとガイドレーザ光LGとをそれぞれ別々の光学系により異なる光路からワークWに照射する方式を採用してもよい。
In the specific example shown in FIG. 1, the case where the scanning optical unit is built in the processing head 22 is illustrated, but only the condenser lens for adjusting the focus of the superimposed processing laser beam LP and guide laser beam LG is placed on the optical path. It may be arranged such that the scanning of the optical axis of each beam on the workpiece W is performed by the transport mechanism 30, which will be described later. Moreover, although the case where the processing laser beam LP and the guide laser beam LG are superimposed substantially coaxially and irradiated onto the workpiece W has been illustrated, the processing laser beam LP and the guide laser beam LG are each transmitted from different optical paths by separate optical systems. A method of irradiating the workpiece W may be employed.
伝送路24p、24gは、例えば、公知の光ファイバ等により構成される。また、光コネクタ26p、26gは、伝送路24p、24gに使用される光ファイバの材質や種類等に応じて公知のコネクタを使用できる。なお、伝送路24p、24gは、伝送される加工レーザ光LPあるいはガイドレーザ光LGの波長に応じて、カバー部材にミラーを配した光路として構成してもよい。
The transmission lines 24p and 24g are composed of, for example, known optical fibers. For the optical connectors 26p and 26g, known connectors can be used according to the material and type of the optical fibers used for the transmission lines 24p and 24g. The transmission paths 24p and 24g may be configured as optical paths in which mirrors are arranged on cover members according to the wavelength of the processing laser beam LP or guide laser beam LG to be transmitted.
搬送機構30は、その一例として、ベース部材32と、少なくとも先端にロボットアーム34と、を備えた6軸又は7軸タイプの産業用ロボットとして構成される。そして、ロボットアーム34の先端に上記伝送機構20の加工ヘッド22が取り付けられ、当該加工ヘッド22を旋回範囲内の任意の位置及び角度に移動させる。
As an example, the transport mechanism 30 is configured as a 6-axis or 7-axis industrial robot that includes a base member 32 and a robot arm 34 at least at the tip. The processing head 22 of the transmission mechanism 20 is attached to the tip of the robot arm 34, and the processing head 22 is moved to any position and angle within the swivel range.
収容カバー40は、その一例として、床面以外の側面及び天井面をそれぞれパネル部材で覆うように組合せることにより、その内部に閉鎖空間Sを形成する構造を有している。そして、閉鎖空間Sには、図1に示すように、少なくともワーク保持機構10及び搬送機構30が収容されており、これにより、収容カバー40は閉鎖空間Sを略加工室として外部から遮断する。なお、図1において、レーザ発振器100が収容カバー40の外部に配置されており、伝送機構20の伝送路24p、24gは、収容カバー40の側面の一部に貫通穴を形成してこれを通るように配置される。
As an example, the storage cover 40 has a structure in which a closed space S is formed inside by combining the side surfaces other than the floor surface and the ceiling surface with panel members. As shown in FIG. 1, at least the workpiece holding mechanism 10 and the transfer mechanism 30 are housed in the closed space S, so that the housing cover 40 shuts off the closed space S from the outside as a substantially processing chamber. In FIG. 1, the laser oscillator 100 is arranged outside the housing cover 40, and the transmission lines 24p and 24g of the transmission mechanism 20 pass through through holes formed in part of the side surface of the housing cover 40. are arranged as follows.
また、収容カバー40の側面の一部には、その一例として図1に示すように、オペレータが出入りするための出入扉42と、ワーク保持機構10に対して外部からワークWを搬入出するための搬入出扉44と、を含む開閉部材が設けられている。ここで、出入扉42と搬入出扉44とは、収容カバー40の側面にそれぞれ複数設けてもよい。
As shown in FIG. 1, an access door 42 for allowing an operator to enter and exit a part of the side surface of the housing cover 40 and a door 42 for carrying in/out the workpiece W from the outside to/from the workpiece holding mechanism 10 are provided on a part of the side surface of the housing cover 40 as shown in FIG. An opening/closing member including a loading/unloading door 44 is provided. Here, a plurality of loading/unloading doors 42 and loading/unloading doors 44 may be provided on the side surface of the housing cover 40 .
第1の実施形態によるレーザ加工装置1において、出入扉42及び搬入出扉44には、これらの扉が開いている(あるいは閉じている)ことを検知する開閉センサ(図示せず)がそれぞれ取り付けられている。そして、出入扉42あるいは搬入出扉44が開いている状態では加工レーザ光LPが加工ヘッド22からワークWに照射されないように設定することにより、これらの出入扉42及び搬入出扉44と開閉センサとの組合せは、上記した「安全装置」を構成する。一方、収容カバー40の閉鎖空間S側の側面には、オペレータが閉じ込められた際に非常停止できるように非常停止ボタン(図示せず)を設けてもよい。
In the laser processing apparatus 1 according to the first embodiment, an opening/closing sensor (not shown) for detecting whether these doors are open (or closed) is attached to each of the entrance/exit door 42 and the loading/unloading door 44. It is By setting the processing laser beam LP from the processing head 22 not to irradiate the workpiece W when the loading/unloading door 42 or the loading/unloading door 44 is open, the loading/unloading door 42 and the loading/unloading door 44 and the open/close sensor constitutes the "safety device" described above. On the other hand, an emergency stop button (not shown) may be provided on the side surface of the storage cover 40 on the closed space S side so that an emergency stop can be made when the operator is trapped.
また、第1の実施形態によるレーザ加工装置1において、冷却機構50は、その内部に冷却液(クーラント)LQを送り込む循環ポンプ及び循環用電源(いずれも図示せず)を含むとともに、後述するレーザ発振器100の少なくとも加工レーザ発振源110pと加工用電源112pとを冷却する冷却部材130と循環路52を介して接続されている。そして、冷却機構50は、後述するレーザ加工装置1の主制御装置60からの指令信号に基づいて駆動する。
In addition, in the laser processing apparatus 1 according to the first embodiment, the cooling mechanism 50 includes a circulation pump and a circulation power supply (both not shown) that feed a cooling liquid (coolant) LQ therein, and a laser that will be described later. A cooling member 130 that cools at least the machining laser oscillation source 110p and the machining power source 112p of the oscillator 100 is connected via the circulation path 52 . The cooling mechanism 50 is driven based on a command signal from a main controller 60 of the laser processing apparatus 1, which will be described later.
主制御装置60は、その一例として図2に示すように、所定のプログラムに基づいて制御対象物であるワーク保持機構10、伝送機構20、搬送機構30及び冷却機構50に対して指令信号を出力してこれらの動作を制御する主制御部62と、外部からの信号(例えば各種センサからの検出信号や非常停止ボタンからの非常停止信号等)を受信してその信号がどのような種類のものか判別する信号判別部64と、を含む。また、主制御装置60は、図1に示すように、表示画面を含むコンソールユニット66と、緊急時にレーザ加工装置1全体の動作を非常停止させるための非常停止ボタン68と、をさらに含む。
As shown in FIG. 2 as an example, the main controller 60 outputs command signals to the work holding mechanism 10, the transmission mechanism 20, the transfer mechanism 30, and the cooling mechanism 50, which are objects to be controlled, based on a predetermined program. A main control unit 62 that controls these operations by receiving signals from the outside (for example, detection signals from various sensors, emergency stop signals from emergency stop buttons, etc.) and receiving signals of any kind. and a signal discrimination unit 64 that discriminates whether. In addition, as shown in FIG. 1, the main controller 60 further includes a console unit 66 including a display screen, and an emergency stop button 68 for emergency stopping the operation of the entire laser processing apparatus 1 in an emergency.
また、主制御装置60は、図1に示したワーク保持機構10、伝送機構20、搬送機構30、冷却機構50及びレーザ発振器100と有線あるいは無線で接続されるとともに、収容カバー40等に設けられた各種センサとも接続されて検出信号を受信する。そして、主制御装置60の主制御部62は、レーザ発振器100の発振制御装置120に対しても、発振器の駆動開始指令と駆動終了指令を含む指令信号SCを出力する。
Main controller 60 is connected to work holding mechanism 10, transmission mechanism 20, transfer mechanism 30, cooling mechanism 50 and laser oscillator 100 shown in FIG. It is also connected to various sensors to receive detection signals. Then, the main controller 62 of the main controller 60 also outputs a command signal SC including an oscillator drive start command and a drive end command to the oscillation controller 120 of the laser oscillator 100 .
信号判別部64は、その一例として図2に示すように、コンソールユニット66や非常停止ボタン68等のオペレータによる入力信号や、上述した出入扉42や搬入出扉44に設けられた開閉センサ等からの検出信号を受信するように構成されている、また、信号判別部64は、受信した信号が第1階層のものであると判別した場合に第1信号S1を出力する第1判別部64aと、受信した信号が第2階層のものであると判別した場合に第2信号S2を出力する第2判別部64bと、を含む。
As an example, as shown in FIG. 2, the signal determination unit 64 receives input signals from an operator such as the console unit 66 and the emergency stop button 68, and opening/closing sensors provided on the entrance door 42 and the loading/unloading door 44. Also, the signal determination unit 64 includes a first determination unit 64a that outputs a first signal S1 when determining that the received signal is of the first layer, and a first determination unit 64a that outputs a first signal S1 and a second discriminator 64b that outputs a second signal S2 when the received signal is discriminated to be of the second layer.
ここで、第1の実施形態において、第1判別部64aは、その一例として、非常停止ボタン又は火災報知器や地震計等の災害検知による信号入力があった場合、その信号入力に基づいて第1信号(非常停止信号)S1を主制御部62及びレーザ発振器100の発振制御装置120にそれぞれ出力する。同様に、第2判別部64bは、上述した出入扉42あるいは搬入出扉44に各々設けられた開閉センサからの信号入力に基づいて第2信号(安全装置作動信号)S2をレーザ発振器100の発振制御装置120に出力する。そして、主制御部62は、第1判別部64aから第1信号S1を受信すると、レーザ加工装置1の制御対象物に対して非常停止の指令信号を出力する。
Here, in the first embodiment, as an example, when there is a signal input due to disaster detection such as an emergency stop button, a fire alarm, or a seismometer, the first determination unit 64a performs the first determination based on the signal input. 1 signal (emergency stop signal) S1 is output to the main controller 62 and the oscillation controller 120 of the laser oscillator 100, respectively. Similarly, the second discriminator 64b outputs a second signal (safety device actuation signal) S2 to the laser oscillator 100 based on the signal input from the open/close sensor provided on each of the loading/unloading door 42 or loading/unloading door 44 described above. Output to the control device 120 . Then, when the main control unit 62 receives the first signal S1 from the first determination unit 64a, it outputs an emergency stop command signal to the control object of the laser processing apparatus 1 .
第1の実施形態によるレーザ発振器100は、その一例として図2に示すように、加工レーザ光LPを発振する加工レーザ発振源110p及びこれに電力を供給する加工用電源112pと、ガイドレーザ光LGを発振するガイドレーザ発振源110g及びこれに電力を供給するガイド用電源112gと、加工用電源112p及びガイド用電源112gの動作を制御する制御信号(駆動指令DP、DGあるいは停止指令DS)を出力する発振制御装置120と、少なくとも加工レーザ発振源110p及び加工用電源112pを冷却する冷却液LQが供給される冷却部材130と、レーザ発振器100の筐体内部をメンテナンスする際に開閉されるメンテナンス扉140と、を含む。
As shown in FIG. 2 as an example, the laser oscillator 100 according to the first embodiment includes a processing laser oscillation source 110p that oscillates processing laser light LP, a processing power supply 112p that supplies power to this, and a guide laser light LG. A guide laser oscillation source 110g that oscillates, a guide power source 112g that supplies power to the same, and a control signal (drive command DP, DG or stop command DS) for controlling the operation of the processing power source 112p and the guide power source 112g. a cooling member 130 supplied with cooling liquid LQ for cooling at least the machining laser oscillation source 110p and the machining power supply 112p; 140 and .
加工レーザ発振源110pは、その一例として、加工されるワークWの材質に応じて吸収効率が高い波長のレーザ源が適用される。このような加工レーザ発振源110pとしては、YAGレーザ、YVO4レーザ、ファイバレーザ、ディスクレーザ等のファイバ伝送が可能なものが例示できる。また、加工用電源112pは、後述する発振制御装置120からの制御指令(駆動指令DP及び停止指令DS)に基づいて加工レーザ発振源110pに駆動電力を供給する。
As an example of the processing laser oscillation source 110p, a laser source with a wavelength having a high absorption efficiency depending on the material of the workpiece W to be processed is applied. As such a processing laser oscillation source 110p, a YAG laser, a YVO4 laser, a fiber laser, a disk laser, or the like capable of fiber transmission can be exemplified. Further, the machining power source 112p supplies drive power to the machining laser oscillation source 110p based on control commands (drive command DP and stop command DS) from the oscillation control device 120, which will be described later.
同様に、ガイドレーザ発振源110gは、その一例として、ワークWの表面に加工レーザ光LPが照射される位置を模擬的に可視化するために、可視光の波長(360~830nm)のレーザ源が適用される。このようなガイドレーザ発振源110gとしては、波長が515nmのグリーンレーザ等が例示できる。また、ガイド用電源112gは、後述する発振制御装置120からの制御指令(駆動指令DG及び停止指令DS)に基づいてガイドレーザ発振源110gに駆動電力を供給する。
Similarly, the guide laser oscillation source 110g is, for example, a laser source with a wavelength of visible light (360 to 830 nm) in order to simulate and visualize the position where the surface of the work W is irradiated with the processing laser beam LP. Applies. A green laser with a wavelength of 515 nm can be exemplified as such a guide laser oscillation source 110g. Further, the guide power source 112g supplies drive power to the guide laser oscillation source 110g based on control commands (a drive command DG and a stop command DS) from the oscillation control device 120, which will be described later.
発振制御装置120は、レーザ加工装置1の主制御装置60からの各種指令に基づいて、加工用電源112p及びガイド用電源112gにそれぞれ制御信号を出力する。これにより、第1の実施形態によるレーザ発振器100では、加工用電源112pとガイド用電源112gとが独立して駆動制御され、結果として、例えば加工レーザ光LPの出力が停止されたとしてもガイドレーザ光LGの出力が維持される。
The oscillation control device 120 outputs control signals to the processing power source 112p and the guide power source 112g based on various commands from the main control device 60 of the laser processing apparatus 1, respectively. As a result, in the laser oscillator 100 according to the first embodiment, the processing power source 112p and the guide power source 112g are driven and controlled independently, and as a result, even if the output of the processing laser beam LP is stopped, the guide laser The output of light LG is maintained.
冷却部材130は、その一例として、略板状の中空部材として構成され、その一面が少なくとも加工レーザ発振源110p及び加工用電源112pと接触するように配置される。冷却部材130は、図2に示すように、2本の循環路52を介して冷却機構50と接続されており、当該冷却機構50とともにレーザ発振器100の冷却システムを構成する。これにより、冷却機構50と冷却部材130との間で冷却液LQが循環し、発振駆動中の少なくとも加工レーザ発振源110p及び加工用電源112pを冷却することができる。
As an example, the cooling member 130 is configured as a substantially plate-shaped hollow member, and is arranged so that one surface thereof is in contact with at least the processing laser oscillation source 110p and the processing power source 112p. As shown in FIG. 2 , the cooling member 130 is connected to the cooling mechanism 50 via two circulation paths 52 , and together with the cooling mechanism 50 constitutes a cooling system for the laser oscillator 100 . Thereby, the coolant LQ circulates between the cooling mechanism 50 and the cooling member 130, and can cool at least the processing laser oscillation source 110p and the processing power source 112p during oscillation driving.
メンテナンス扉140は、その一例として、レーザ発振器100の筐体内部に組み込まれた各種の構成要素をメンテナンスする際に開閉される窓として構成される。このとき、例えばメンテナンス扉140にその開閉状態を検知する開閉センサ(図示せず)を設け、当該開閉センサの出力を主制御装置60の信号判別部64に入力させるように構成してもよい。すなわち、メンテナンス扉140及びこれに設けられた開閉センサもレーザ発振器100及びレーザ加工装置1の安全装置の一つとして構成される。
As an example, the maintenance door 140 is configured as a window that is opened and closed when performing maintenance on various components incorporated inside the housing of the laser oscillator 100 . At this time, for example, an open/close sensor (not shown) for detecting the open/close state of the maintenance door 140 may be provided, and the output of the open/close sensor may be input to the signal determination section 64 of the main controller 60 . That is, the maintenance door 140 and the open/close sensor provided thereon are also configured as one of the safety devices for the laser oscillator 100 and the laser processing apparatus 1 .
次に、図3A及び図3Bを用いて、第1の実施形態によるレーザ加工装置におけるレーザ発振器の発振制御の具体例について説明する。
Next, a specific example of oscillation control of the laser oscillator in the laser processing apparatus according to the first embodiment will be described with reference to FIGS. 3A and 3B.
図3Aは、第1の実施形態によるレーザ加工装置において、非常停止信号が検出された場合の非常停止動作の一例を示すタイムチャートである。また、図3Bは、第1の実施形態によるレーザ加工装置において、安全装置作動信号が検出された場合の加工レーザ光の停止動作の一例を示すタイムチャートである。
FIG. 3A is a time chart showing an example of emergency stop operation when an emergency stop signal is detected in the laser processing apparatus according to the first embodiment. FIG. 3B is a time chart showing an example of the operation of stopping the processing laser beam when the safety device activation signal is detected in the laser processing apparatus according to the first embodiment.
第1の実施形態によるレーザ加工装置1において非常停止動作が実行される場合、図3Aに示すように、まず時刻T1において、レーザ発振器100の発振制御装置120は、レーザ加工装置1の主制御装置60から加工レーザ光LP及びガイドレーザ光LGの出力を開始する指令信号SCを受ける。当該指令信号SCを受信した発振制御装置120は、時刻T2において、加工用電源112p及びガイド用電源112gに対してそれぞれ駆動指令DP、DGの制御信号を出力する。これにより、主制御装置60から出力停止の指令信号SCを受信するまでは、加工レーザ光LP及びガイドレーザ光LGの発振及び出力が継続される。
When an emergency stop operation is performed in the laser processing apparatus 1 according to the first embodiment, as shown in FIG. A command signal SC is received from 60 to start outputting the processing laser beam LP and the guide laser beam LG. Upon receiving the command signal SC, the oscillation control device 120 outputs control signals of drive commands DP and DG to the power source 112p for machining and the power source 112g for guiding, respectively, at time T2. As a result, the oscillation and output of the processing laser beam LP and the guide laser beam LG are continued until the output stop command signal SC is received from the main controller 60 .
一方、例えば時刻T3において、主制御装置60に設けられた非常停止ボタン68が押された場合、検知信号を受けた第1判別部64aから非常停止信号S1が発振制御装置120に出力される。続いて時刻T4において、非常停止信号S1を受信した発振制御装置120が、加工用電源112p及びガイド用電源112gに対してそれぞれ停止指令DSの制御信号を出力する。
On the other hand, at time T3, for example, when the emergency stop button 68 provided in the main controller 60 is pressed, the emergency stop signal S1 is output to the oscillation control device 120 from the first discriminator 64a that has received the detection signal. Subsequently, at time T4, the oscillation control device 120 that has received the emergency stop signal S1 outputs a control signal of a stop command DS to each of the machining power source 112p and the guiding power source 112g.
続いて、時刻T5において、停止指令DSの制御信号を受信した加工用電源112p及びガイド用電源112gは、それぞれ加工レーザ発振源110p及びガイドレーザ発振源110gへの電源出力を停止する。これにより、時刻T6において、レーザ発振器100からの加工レーザ光LP及びガイドレーザ光LGの発振及び出力が停止され、非常停止動作が完了する。
Subsequently, at time T5, the machining power supply 112p and the guiding power supply 112g that have received the control signal of the stop command DS stop power output to the machining laser oscillation source 110p and the guiding laser oscillation source 110g, respectively. As a result, at time T6, the oscillation and output of the processing laser beam LP and the guide laser beam LG from the laser oscillator 100 are stopped, and the emergency stop operation is completed.
これに対して、第1の実施形態によるレーザ加工装置1において安全装置による加工レーザ光LPの停止動作が実行される場合、図3Bに示すように、まず時刻T1において、レーザ発振器100の発振制御装置120は、レーザ加工装置1の主制御装置60から加工レーザ光LP及びガイドレーザ光LGの出力を開始する指令信号SCを受ける。当該指令信号SCを受信した発振制御装置120は、時刻T2において、加工用電源112p及びガイド用電源112gに対してそれぞれ駆動指令DP、DGの制御信号を出力する。これにより、図3Aに示した場合と同様に、主制御装置60から出力停止の指令信号SCを受信するまでは、加工レーザ光LP及びガイドレーザ光LGの発振及び出力が継続される。
On the other hand, in the laser processing apparatus 1 according to the first embodiment, when the operation of stopping the processing laser light LP by the safety device is performed, first, at time T1, oscillation control of the laser oscillator 100 is performed as shown in FIG. 3B. The device 120 receives a command signal SC from the main controller 60 of the laser processing apparatus 1 to start outputting the processing laser beam LP and the guide laser beam LG. Upon receiving the command signal SC, the oscillation control device 120 outputs control signals of drive commands DP and DG to the power source 112p for machining and the power source 112g for guiding, respectively, at time T2. Thus, similarly to the case shown in FIG. 3A, the oscillation and output of the processing laser beam LP and the guide laser beam LG are continued until the output stop command signal SC is received from the main controller 60 .
一方、例えば時刻T3において、収容カバー40に設けられた出入扉42が開いている(あるいは閉じられていない)との状態を開閉センサが検知した場合、検知信号を受けた第2判別部64bから安全装置作動信号S2が発振制御装置120に出力される。続いて時刻T4において、安全装置作動信号S2を受信した発振制御装置120が、加工用電源112pに対してのみ停止指令DSの制御信号を出力する。
On the other hand, for example, at time T3, when the open/close sensor detects that the access door 42 provided in the housing cover 40 is open (or not closed), the second determination unit 64b that receives the detection signal Safety device actuation signal S2 is output to oscillation control device 120 . Subsequently, at time T4, the oscillation control device 120 that has received the safety device actuation signal S2 outputs a control signal of the stop command DS only to the machining power supply 112p.
続いて、時刻T5において、停止指令DSの制御信号を受信した加工用電源112pは、加工レーザ発振源110pへの電源出力を停止する。一方、上記制御信号を受信していないガイド用電源112gでは、ガイドレーザ発振源110gへの電源出力が継続される。これにより、時刻T6において、レーザ発振器100からの加工レーザ光LPの発振及び出力が停止され、ガイドレーザ光LGの発振及び出力が維持される。
Subsequently, at time T5, the machining power supply 112p that has received the control signal of the stop command DS stops power output to the machining laser oscillation source 110p. On the other hand, the guiding power source 112g that has not received the control signal continues to output power to the guiding laser oscillation source 110g. As a result, at time T6, the oscillation and output of the processing laser beam LP from the laser oscillator 100 are stopped, and the oscillation and output of the guide laser beam LG are maintained.
上記のような構成を備えることにより、第1の実施形態によるレーザ発振器及びレーザ加工装置は、レーザ加工装置に設けられた安全装置が作動した場合に、レーザ発振器の発振制御装置が加工用電源にのみ制御信号として停止指令を出力するように構成されているため、加工レーザ光とガイドレーザ光とを個別に発振できるレーザ発振器において、光路上の開閉手段を用いることなく、ガイドレーザ光の出射を選択的に実行できる。
With the configuration as described above, the laser oscillator and the laser processing apparatus according to the first embodiment are such that when the safety device provided in the laser processing apparatus is activated, the oscillation control device of the laser oscillator is switched off to the power supply for processing. Therefore, in a laser oscillator that can independently oscillate the processing laser beam and the guide laser beam, the guide laser beam can be emitted without using opening/closing means on the optical path. Can be executed selectively.
<第2の実施形態>
図4は、本発明の第2の実施形態によるレーザ発振器及びレーザ加工装置の主制御装置との関係を示すブロック図である。なお、第2の実施形態においては、図1~図3に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。 <Second embodiment>
FIG. 4 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus according to the second embodiment of the present invention. In the second embodiment, in the schematic diagrams and the like shown in FIGS. 1 to 3, the same reference numerals are given to the components that can adopt the same or common configuration as the first embodiment. The repeated description of is omitted.
図4は、本発明の第2の実施形態によるレーザ発振器及びレーザ加工装置の主制御装置との関係を示すブロック図である。なお、第2の実施形態においては、図1~図3に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。 <Second embodiment>
FIG. 4 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus according to the second embodiment of the present invention. In the second embodiment, in the schematic diagrams and the like shown in FIGS. 1 to 3, the same reference numerals are given to the components that can adopt the same or common configuration as the first embodiment. The repeated description of is omitted.
第2の実施形態によるレーザ加工装置1において、主制御装置60は、その一例として図4に示すように、所定のプログラムに基づいて制御対象物に対して指令信号を出力してこれらの動作を制御する主制御部62と、外部からの信号(例えば非常停止ボタンからの非常停止信号)を受信してその信号が非常停止信号であるかどうか判別する信号判別部64と、を含む。
In the laser processing apparatus 1 according to the second embodiment, as shown in FIG. 4 as an example, the main controller 60 outputs a command signal to the controlled object based on a predetermined program to perform these operations. It includes a main control section 62 for control, and a signal discrimination section 64 for receiving a signal from the outside (for example, an emergency stop signal from an emergency stop button) and discriminating whether or not the signal is an emergency stop signal.
一方、第2の実施形態によるレーザ発振器200は、その一例として、加工レーザ光LPを発振する加工レーザ発振源110p及びこれに電力を供給する加工用電源112pと、ガイドレーザ光LGを発振するガイドレーザ発振源110g及びこれに電力を供給するガイド用電源112gと、加工用電源112p及びガイド用電源112gの動作を制御する制御信号(駆動指令DP、DGあるいは停止指令DS)を出力する発振制御装置120と、少なくとも加工レーザ発振源110p及び加工用電源112pを冷却する冷却液LQが供給される冷却部材130と、外部からの信号(例えば各種センサからの検出信号等)を受信してその信号が安全装置作動信号であるかどうか判別する信号判別装置250と、を含む。
On the other hand, the laser oscillator 200 according to the second embodiment includes, as an example, a processing laser oscillation source 110p that oscillates the processing laser beam LP, a processing power supply 112p that supplies power to this, and a guide laser that oscillates the guide laser beam LG. An oscillation control device that outputs a control signal (drive command DP, DG or stop command DS) for controlling the operations of the laser oscillation source 110g, the guide power source 112g that supplies power to the same, the processing power source 112p and the guide power source 112g. 120, a cooling member 130 supplied with a cooling liquid LQ for cooling at least the machining laser oscillation source 110p and the machining power source 112p, and a signal received from the outside (for example, a detection signal from various sensors) and the signal is and a signal discriminator 250 for discriminating whether it is a safety device activation signal.
上記のような構成の第2の実施形態によるレーザ加工装置1は、レーザ発振器200の発振制御装置120に第1信号S1を出力する信号判別部64を主制御装置60に設けるとともに、第2信号S2を出力する信号判別装置250をレーザ発振器200に内蔵したことを特徴とする。これらの構成により、主制御装置60の構造が簡素化されるとともに、レーザ発振器200は安全装置が作動しているかどうかを判別する機能を一体化して付加した構造とすることができる。
In the laser processing apparatus 1 according to the second embodiment having the above configuration, the main controller 60 is provided with the signal determination section 64 that outputs the first signal S1 to the oscillation control device 120 of the laser oscillator 200, and the second signal The laser oscillator 200 is characterized by incorporating a signal discrimination device 250 that outputs S2. With these configurations, the structure of the main controller 60 can be simplified, and the laser oscillator 200 can have a structure in which a function for determining whether the safety device is operating is integrated and added.
そして、発振制御装置120は、受信した指令信号SC、第1信号S1あるいは第2信号S2に基づいて、加工用電源112p及びガイド用電源112gにそれぞれ制御信号を出力する。これにより、第2の実施形態によるレーザ発振器200においても、加工用電源112pとガイド用電源112gとが独立して駆動制御される。
Then, the oscillation control device 120 outputs control signals to the machining power supply 112p and the guide power supply 112g based on the received command signal SC, first signal S1 or second signal S2. Thus, in the laser oscillator 200 according to the second embodiment as well, the processing power supply 112p and the guide power supply 112g are driven and controlled independently.
上記のような構成を備えることにより、第2の実施形態によるレーザ発振器及びレーザ加工装置は、第1の実施形態で説明した効果に加えて、第2信号(安全装置作動信号)を出力する信号判別装置をレーザ発振器に内蔵したことにより、レーザ加工装置の主制御装置の構造を簡素化し得るとともに、付加価値(付加機能)を加えたレーザ発振器を提供することができる。
With the configuration as described above, the laser oscillator and the laser processing apparatus according to the second embodiment have the effect of outputting the second signal (safety device activation signal) in addition to the effects described in the first embodiment. By incorporating the discrimination device into the laser oscillator, the structure of the main controller of the laser processing apparatus can be simplified, and a laser oscillator with added value (additional function) can be provided.
<第3の実施形態>
図5は、本発明の第3の実施形態によるレーザ発振器及びレーザ加工装置の主制御装置との関係を示すブロック図である。なお、第3の実施形態においても、図1~図3に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。 <Third Embodiment>
FIG. 5 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus according to the third embodiment of the present invention. Also in the third embodiment, in the schematic diagrams and the like shown in FIGS. 1 to 3, the same or common configurations as those of the first embodiment are denoted by the same reference numerals. The repeated description of is omitted.
図5は、本発明の第3の実施形態によるレーザ発振器及びレーザ加工装置の主制御装置との関係を示すブロック図である。なお、第3の実施形態においても、図1~図3に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。 <Third Embodiment>
FIG. 5 is a block diagram showing the relationship between the laser oscillator and the main controller of the laser processing apparatus according to the third embodiment of the present invention. Also in the third embodiment, in the schematic diagrams and the like shown in FIGS. 1 to 3, the same or common configurations as those of the first embodiment are denoted by the same reference numerals. The repeated description of is omitted.
第3の実施形態によるレーザ加工装置1において、レーザ発振器300は、その一例として、加工レーザ光LPを発振する加工レーザ発振源110p及びこれに電力を供給する加工用電源112pと、ガイドレーザ光LGを発振するガイドレーザ発振源110g及びこれに電力を供給するガイド用電源112gと、循環ポンプ310及びこれに電力を供給する循環用電源312を含む内部冷却機構360と、上記した各位電源の動作を制御する制御信号(駆動指令DP、DG、DCあるいは停止指令DS)を出力する発振制御装置120と、を含む。
In the laser processing apparatus 1 according to the third embodiment, the laser oscillator 300 includes, for example, a processing laser oscillation source 110p that oscillates processing laser light LP, a processing power supply 112p that supplies power to this, and a guide laser light LG. and an internal cooling mechanism 360 including a guide laser oscillation source 110g that oscillates and a guide power source 112g that supplies power thereto, a circulation pump 310 and a circulation power source 312 that supplies power to the circulation pump 310, and the above-described power sources. and an oscillation control device 120 that outputs a control signal for control (drive command DP, DG, DC or stop command DS).
上記のような構成の第3の実施形態によるレーザ加工装置1は、図1及び図2で示した冷却機構50及び循環路52をレーザ発振器300の内部に統合して、内部冷却機構360を構成することを特徴とする。すなわち、内部冷却機構360は、図5に示すように、その内部に冷却液(クーラント)LQを循環させる循環ポンプ310と、これに電力を供給する循環用電源312と、略板状の中空部材として構成されて内部に冷却液LQが循環する冷却部材330と、を含むように構成される。これらの構成により、レーザ発振器300は内部冷却機構360を一体化したユニットして製造・販売が可能となる。
The laser processing apparatus 1 according to the third embodiment configured as described above integrates the cooling mechanism 50 and the circulation path 52 shown in FIGS. characterized by That is, as shown in FIG. 5, the internal cooling mechanism 360 includes a circulation pump 310 that circulates a coolant LQ therein, a circulation power supply 312 that supplies power to the circulation pump 310, and a substantially plate-like hollow member. and a cooling member 330 in which the cooling liquid LQ circulates. With these configurations, the laser oscillator 300 can be manufactured and sold as a unit in which the internal cooling mechanism 360 is integrated.
そして、発振制御装置120は、受信した指令信号SC、第1信号S1あるいは第2信号S2に基づいて、加工用電源112p、ガイド用電源112g及び循環用電源312にそれぞれ制御信号を出力する。これにより、第3の実施形態によるレーザ発振器300においても、加工用電源112pとガイド用電源112g及び循環用電源312とが独立して駆動制御されるため、例えば加工用電源112pが停止指令DSにより停止したとしても、ガイド用電源112g及び循環用電源312の駆動が維持される。
Then, the oscillation control device 120 outputs control signals to the machining power supply 112p, the guide power supply 112g, and the circulation power supply 312 based on the received command signal SC, first signal S1 or second signal S2. Accordingly, in the laser oscillator 300 according to the third embodiment, the processing power source 112p, the guide power source 112g, and the circulation power source 312 are independently driven and controlled. Even if it stops, driving of the guide power supply 112g and the circulation power supply 312 is maintained.
このとき、例えば冷却部材330にその内部に循環する冷却液LQの圧力を検知する内圧センサ(図示せず)を設け、当該内圧センサの検出値を主制御装置60の信号判別部64に入力させるように構成してもよい。すなわち、内部冷却機構360及び内圧センサも第3の実施形態によるレーザ発振器300及びレーザ加工装置1の安全装置の一つとして構成する。
At this time, for example, the cooling member 330 is provided with an internal pressure sensor (not shown) for detecting the pressure of the cooling liquid LQ circulating therein, and the detected value of the internal pressure sensor is input to the signal determination unit 64 of the main controller 60. It may be configured as That is, the internal cooling mechanism 360 and the internal pressure sensor are also configured as one of the safety devices of the laser oscillator 300 and the laser processing apparatus 1 according to the third embodiment.
そして、冷却部材330の内圧が低下した場合に、内部冷却機構360にリーク(冷却液漏れ)が発生したと判断され、第2判別部64bが安全装置作動信号S2を出力し、これを受けた発振制御装置120が加工用電源112p及び循環用電源312にそれぞれ停止指令DSの制御信号を出力する、との動作が順次実行される。したがって、冷却液LQの液漏れによるレーザ発振器300における他の構成要素の損傷を抑止することが可能となる。
When the internal pressure of the cooling member 330 decreases, it is determined that a leak (coolant leakage) has occurred in the internal cooling mechanism 360, and the second determination unit 64b outputs and receives the safety device actuation signal S2. An operation in which the oscillation control device 120 outputs control signals of the stop command DS to the machining power source 112p and the circulation power source 312 is sequentially executed. Therefore, it is possible to prevent damage to other components in the laser oscillator 300 due to leakage of the cooling liquid LQ.
上記のような構成を備えることにより、第3の実施形態によるレーザ発振器及びレーザ加工装置は、第1の実施形態で説明した効果に加えて、循環ポンプと循環用電源と冷却部材とを含む内部冷却機構をさらに備えることにより、当該内部冷却機構を一体化したユニットとしてレーザ発振器を製造・販売することが可能となる。また、内部冷却機構の液漏れを検出する機能を持たせることにより、冷却液の液漏れによるレーザ発振器における他の構成要素の損傷を抑止することも可能となる。
With the configuration as described above, the laser oscillator and the laser processing apparatus according to the third embodiment have the effects described in the first embodiment, as well as the internal By further providing a cooling mechanism, it becomes possible to manufacture and sell the laser oscillator as a unit in which the internal cooling mechanism is integrated. Further, by providing a function for detecting liquid leakage from the internal cooling mechanism, it is possible to prevent damage to other components in the laser oscillator due to liquid leakage of the cooling liquid.
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention. Within the scope of the invention, any component of the embodiment can be modified, or any component of the embodiment can be omitted.
例えば、上記の実施形態において、レーザ発振器の加工用電源及びガイド用電源が、レーザ加工装置の各機構の駆動電源と独立しており、非常停止ボタンが押された際に、発振制御装置からの信号により加工用電源及びガイド用電源がそれぞれ停止される構成を例示したが、これらの加工用電源及びガイド用電源が上記駆動電源と連動するように構成してもよい。これにより、非常停ボタンが押された際に、主制御装置からの非常停止信号によりすべての電源を同時に連動して停止させることができる。
For example, in the above embodiment, the power supply for machining and the power supply for guide of the laser oscillator are independent of the drive power supply for each mechanism of the laser processing apparatus, and when the emergency stop button is pressed, the oscillation control device Although the power source for processing and the power source for guide are respectively stopped by a signal, the power source for processing and the power source for guide may be configured to be interlocked with the driving power source. As a result, when the emergency stop button is pushed, all the power sources can be simultaneously interlocked and stopped by the emergency stop signal from the main control device.
また、第1の実施形態から第3の実施形態で示した具体例は、それぞれの特徴を組合せて適用してもよい。例えば、第2の実施形態で示した信号判別装置と第3の実施形態で示した内部冷却機構とをレーザ発振器に一体化して構成することも可能である。
Further, the specific examples shown in the first to third embodiments may be applied by combining their features. For example, it is possible to integrate the signal discrimination device shown in the second embodiment and the internal cooling mechanism shown in the third embodiment into a laser oscillator.
1 レーザ加工装置
10 ワーク保持機構
20 伝送機構
22 加工ヘッド
24p、24g 伝送路
26p、26g 光コネクタ
30 搬送機構
32 ベース部材
34 ロボットアーム
40 収容カバー
42 出入扉
44 搬入出扉
50 冷却機構
52 循環路
60 主制御装置
62 主制御部
64 信号判別部
64a 第1判別部
64b 第2判別部
66 コンソールユニット
68 非常停止ボタン
100、200、300 レーザ発振器
110p 加工レーザ発振源
110g ガイドレーザ発振源
112p 加工用電源
112g ガイド用電源
120 発振制御装置
130 冷却部材
140 メンテナンス扉
250 信号判別装置
310 循環ポンプ
312 循環用電源
330 冷却部材
360 内部冷却機構 Reference Signs List 1laser processing device 10 workpiece holding mechanism 20 transmission mechanism 22 processing head 24p, 24g transmission path 26p, 26g optical connector 30 transport mechanism 32 base member 34 robot arm 40 accommodation cover 42 door 44 loading/unloading door 50 cooling mechanism 52 circulation path 60 Main controller 62 Main control section 64 Signal discrimination section 64a First discrimination section 64b Second discrimination section 66 Console unit 68 Emergency stop button 100, 200, 300 Laser oscillator 110p Processing laser oscillation source 110g Guide laser oscillation source 112p Processing power source 112g Guide Power Supply 120 Oscillation Control Device 130 Cooling Member 140 Maintenance Door 250 Signal Discriminating Device 310 Circulation Pump 312 Power Supply for Circulation 330 Cooling Member 360 Internal Cooling Mechanism
10 ワーク保持機構
20 伝送機構
22 加工ヘッド
24p、24g 伝送路
26p、26g 光コネクタ
30 搬送機構
32 ベース部材
34 ロボットアーム
40 収容カバー
42 出入扉
44 搬入出扉
50 冷却機構
52 循環路
60 主制御装置
62 主制御部
64 信号判別部
64a 第1判別部
64b 第2判別部
66 コンソールユニット
68 非常停止ボタン
100、200、300 レーザ発振器
110p 加工レーザ発振源
110g ガイドレーザ発振源
112p 加工用電源
112g ガイド用電源
120 発振制御装置
130 冷却部材
140 メンテナンス扉
250 信号判別装置
310 循環ポンプ
312 循環用電源
330 冷却部材
360 内部冷却機構 Reference Signs List 1
Claims (10)
- 加工レーザ光及びガイドレーザ光を個別に発振してレーザ加工装置に出力するレーザ発振器であって、
前記加工レーザ光を発振する加工レーザ発振源及びこれに電力を供給する加工用電源と、前記ガイドレーザ光を発振するガイドレーザ発振源及びこれに電力を供給するガイド用電源と、前記加工用電源及び前記ガイド用電源の動作を制御する制御信号を出力する発振制御装置と、を含み、
前記発振制御装置は、前記レーザ加工装置に設けられた安全装置が作動した場合に、前記加工用電源にのみ前記制御信号として停止指令を出力する
レーザ発振器。 A laser oscillator that separately oscillates a processing laser beam and a guide laser beam and outputs them to a laser processing device,
A machining laser oscillation source that oscillates the machining laser beam and a machining power supply that supplies power thereto, a guide laser oscillation source that oscillates the guide laser beam and a guide power supply that supplies power thereto, and the machining power supply and an oscillation control device that outputs a control signal for controlling the operation of the guide power supply,
The oscillation control device is a laser oscillator that outputs a stop command as the control signal only to the processing power source when a safety device provided in the laser processing device is activated. - 外部から入力される信号に基づいて、前記発振制御装置から前記停止指令を出力させるかどうかを判別する信号判別装置をさらに含む
請求項1に記載のレーザ発振器。 2. The laser oscillator according to claim 1, further comprising a signal discriminating device that discriminates whether or not to output said stop command from said oscillation control device based on a signal input from the outside. - 少なくとも前記加工レーザ発振源及び前記加工用電源に対して冷却液を循環させる循環ポンプ及びこれに電力を供給する循環用電源を備えた内部冷却機構をさらに含み、
前記発振制御装置は、前記循環用電源の動作も併せて制御する
請求項1又は2に記載のレーザ発振器。 further comprising an internal cooling mechanism comprising a circulation pump for circulating cooling liquid to at least the machining laser oscillation source and the machining power supply, and a circulation power supply for supplying power to the circulation pump;
3. The laser oscillator according to claim 1, wherein said oscillation control device also controls the operation of said circulating power supply. - 前記レーザ発振器に含まれる各構成要素のメンテナンス時に開閉される開閉部材をさらに含み、
前記発振制御装置は、前記開閉部材が開いている場合にも、前記加工用電源に前記停止指令を出力する
請求項1~3のいずれか1項に記載のレーザ発振器。 further comprising an opening/closing member that is opened/closed during maintenance of each component included in the laser oscillator;
4. The laser oscillator according to any one of claims 1 to 3, wherein said oscillation control device outputs said stop command to said machining power supply even when said opening/closing member is open. - 前記加工レーザ発振源は、ファイバレーザ発振装置又はディスクレーザ発振装置で構成される
請求項1~4のいずれか1項に記載のレーザ発振器。 5. The laser oscillator according to any one of claims 1 to 4, wherein the processing laser oscillation source comprises a fiber laser oscillator or a disk laser oscillator. - ワークに対してガイドレーザ光及び加工レーザ光を照射して所定の加工を行うレーザ加工装置であって、
前記加工レーザ光及び前記ガイドレーザ光を個別に発振するレーザ発振器と、
前記ワークを保持するワーク保持機構と、
前記ワークに前記加工レーザ光及び前記ガイドレーザ光を照射する伝送機構と、前記伝送機構を前記ワーク保持機構に対して相対移動させる搬送機構と、
少なくとも前記ワーク保持機構及び前記搬送機構を内部に収容する収容カバーと、
前記ワークに対する加工動作を制御する主制御装置と、
を含み、
前記レーザ発振器は、
前記加工レーザ光を発振する加工レーザ発振源及びこれに電力を供給する加工用電源と、
前記ガイドレーザ光を発振するガイドレーザ発振源及びこれに電力を供給するガイド用電源と、
前記加工用電源及び前記ガイド用電源の動作を制御する制御信号を出力する発振制御装置と、
をさらに含み、
前記発振制御装置は、前記レーザ加工装置に設けられた安全装置が作動した場合に、前記加工用電源にのみ前記制御信号として停止指令を出力する
レーザ加工装置。 A laser processing device for performing predetermined processing by irradiating a guide laser beam and a processing laser beam to a work,
a laser oscillator that separately oscillates the processing laser beam and the guide laser beam;
a work holding mechanism for holding the work;
a transmission mechanism for irradiating the workpiece with the processing laser beam and the guide laser beam; a transfer mechanism for relatively moving the transmission mechanism with respect to the workpiece holding mechanism;
an accommodation cover that accommodates at least the workpiece holding mechanism and the transport mechanism;
a main controller that controls machining operations on the workpiece;
including
The laser oscillator is
a machining laser oscillation source that oscillates the machining laser light and a machining power source that supplies power to the machining laser oscillation source;
a guide laser oscillation source that oscillates the guide laser light and a guide power source that supplies power to the guide laser oscillation source;
an oscillation control device that outputs a control signal for controlling operations of the machining power supply and the guide power supply;
further comprising
The oscillation control device outputs a stop command as the control signal only to the power source for processing when a safety device provided in the laser processing device is activated. - 前記レーザ発振器は、外部から入力される信号に基づいて、前記発振制御装置から前記停止指令を出力させるかどうかを判別する信号判別装置をさらに含む
請求項6に記載のレーザ加工装置。 7. The laser processing apparatus according to claim 6, wherein the laser oscillator further includes a signal discriminating device that discriminates whether or not to output the stop command from the oscillation control device based on an externally input signal. - 前記レーザ発振器は、少なくとも前記加工レーザ発振源及び前記加工用電源に対して冷却液を循環させる循環ポンプ及びこれに電力を供給する循環用電源を備えた冷却機構をさらに含み、
前記レーザ発振器の前記発振制御装置は、前記循環用電源の動作も併せて制御する
請求項6又は7に記載のレーザ加工装置。 The laser oscillator further includes a cooling mechanism comprising a circulation pump for circulating cooling liquid to at least the machining laser oscillation source and the machining power supply, and a circulation power supply for supplying power to the circulation pump,
8. The laser processing apparatus according to claim 6, wherein the oscillation control device of the laser oscillator also controls the operation of the circulating power supply. - 前記レーザ発振器は、各構成要素のメンテナンス時に開閉される開閉部材をさらに含み、
前記レーザ発振器の前記発振制御装置は、前記開閉部材が開いている場合にも、前記加工用電源に前記停止指令を出力する
請求項6~8のいずれか1項に記載のレーザ加工装置。 The laser oscillator further includes an opening/closing member that is opened/closed during maintenance of each component,
The laser processing apparatus according to any one of claims 6 to 8, wherein the oscillation control device of the laser oscillator outputs the stop command to the processing power supply even when the opening/closing member is open. - 前記レーザ発振器の前記加工レーザ発振源は、ファイバレーザ発振装置又はディスクレーザ発振装置で構成される
請求項6~9のいずれか1項に記載のレーザ加工装置。 10. The laser processing apparatus according to claim 6, wherein said processing laser oscillation source of said laser oscillator is composed of a fiber laser oscillation device or a disk laser oscillation device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/016225 WO2022224387A1 (en) | 2021-04-21 | 2021-04-21 | Laser oscillator and laser processing device |
JP2023515959A JPWO2022224387A1 (en) | 2021-04-21 | 2021-04-21 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/016225 WO2022224387A1 (en) | 2021-04-21 | 2021-04-21 | Laser oscillator and laser processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022224387A1 true WO2022224387A1 (en) | 2022-10-27 |
Family
ID=83722162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016225 WO2022224387A1 (en) | 2021-04-21 | 2021-04-21 | Laser oscillator and laser processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022224387A1 (en) |
WO (1) | WO2022224387A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205375A (en) * | 2002-01-09 | 2003-07-22 | Shiseido Co Ltd | Method of forming engraved letter on label with laser beam |
JP2012148317A (en) * | 2011-01-19 | 2012-08-09 | Keyence Corp | Laser beam machining apparatus |
JP2017191833A (en) * | 2016-04-12 | 2017-10-19 | ファナック株式会社 | Laser device capable of using small-sized chiller |
-
2021
- 2021-04-21 WO PCT/JP2021/016225 patent/WO2022224387A1/en active Application Filing
- 2021-04-21 JP JP2023515959A patent/JPWO2022224387A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205375A (en) * | 2002-01-09 | 2003-07-22 | Shiseido Co Ltd | Method of forming engraved letter on label with laser beam |
JP2012148317A (en) * | 2011-01-19 | 2012-08-09 | Keyence Corp | Laser beam machining apparatus |
JP2017191833A (en) * | 2016-04-12 | 2017-10-19 | ファナック株式会社 | Laser device capable of using small-sized chiller |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022224387A1 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2720744B2 (en) | Laser processing machine | |
WO2022004610A1 (en) | Laser welding device and laser welding method | |
US11052491B2 (en) | Galvano scanner and laser machining system | |
US10232468B2 (en) | Rotary table device and laser machining system | |
US10987756B2 (en) | Laser processing system | |
JP2021104523A (en) | Laser processing device | |
JPH07116878A (en) | Yag laser beam machine | |
WO2022224387A1 (en) | Laser oscillator and laser processing device | |
JP6251684B2 (en) | Fiber laser processing machine, fiber connecting method, and fiber laser oscillator | |
CN110168820B (en) | Laser device | |
CN110023025B (en) | Core adjusting method | |
JP6422549B2 (en) | Safety equipment for laser processing machines | |
JP7142312B2 (en) | LASER PROCESSING APPARATUS AND LASER OSCILLATION CONTROL METHOD | |
US8461480B2 (en) | Orthogonal integrated cleaving device | |
JP2018024009A (en) | Water jet laser processing device | |
JP4632248B2 (en) | Laser processing equipment | |
JP2019192757A (en) | Laser oscillator, laser processing device using the same, and inspection method of the laser oscillator | |
JP4575825B2 (en) | Laser processing equipment | |
JPH08267261A (en) | Laser beam machine provided with fiber damage monitor | |
JP2013226590A (en) | Laser cutting apparatus and laser cutting method | |
JP2017209687A (en) | Optical processing device | |
JP2004105973A (en) | Automatic laser beam welding apparatus | |
US20170304940A1 (en) | Direct diode laser oscillator, direct diode laser processing apparatus, and reflected light detecting method | |
JPH02258185A (en) | Laser beam machine | |
JP7142197B2 (en) | Laser processing head, optical fiber inspection device, and optical fiber inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21937881 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023515959 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21937881 Country of ref document: EP Kind code of ref document: A1 |