Nothing Special   »   [go: up one dir, main page]

WO2022213400A1 - 电池单体及其制造方法和制造系统、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造系统、电池以及用电装置 Download PDF

Info

Publication number
WO2022213400A1
WO2022213400A1 PCT/CN2021/086744 CN2021086744W WO2022213400A1 WO 2022213400 A1 WO2022213400 A1 WO 2022213400A1 CN 2021086744 W CN2021086744 W CN 2021086744W WO 2022213400 A1 WO2022213400 A1 WO 2022213400A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
pole piece
electrode assembly
electrode
casing
Prior art date
Application number
PCT/CN2021/086744
Other languages
English (en)
French (fr)
Inventor
孙东升
朱琳琳
方堃
柴志生
迟庆魁
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to EP21926071.8A priority Critical patent/EP4095966A4/en
Priority to US17/864,295 priority patent/US20220344698A1/en
Publication of WO2022213400A1 publication Critical patent/WO2022213400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more particularly, to a battery cell, a manufacturing method and a manufacturing system thereof, a battery, and an electrical device.
  • Battery cells are widely used in electronic equipment, such as mobile phones, notebook computers, battery cars, electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes, and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery cell, a manufacturing method and a manufacturing system thereof, a battery and an electrical device, which can enhance the overcurrent capability of the battery cell.
  • an embodiment of the present application provides a battery cell, which includes: an electrode assembly including a first pole piece; a casing for accommodating the electrode assembly and including an electrode lead-out portion; and an adapter member for electrically connecting the electrodes The lead-out part and the first pole piece, and the first pole piece is configured such that the first pole piece is at least partially wound on the transfer member and attached to the transfer member.
  • the first pole piece is wound on the transfer member, so a part of the first pole piece can be attached to the transfer member through its own tension to ensure the electrical connection between the first pole piece and the transfer member. .
  • the first pole piece does not need to be connected with the transition member through a welding process, thereby reducing the metal particles generated during the production process of the battery cell and reducing the risk of short circuit.
  • the part of the first pole piece attached to the transfer member is in surface contact with the transfer member, thereby increasing the contact area between the first pole piece and the transfer member and improving the overcurrent capability.
  • the electrode assembly has a first through hole, and at least part of the adapter member is accommodated in the first through hole.
  • the adapter member is provided with a slot, and a part of the first pole piece is inserted into the slot and connected to the adapter member.
  • the first pole piece includes a first coated portion coated with the first active material and a first uncoated portion uncoated with the first active material, and the first uncoated portion is connected to the first The coating part is located at the end of the first pole piece along the winding direction. At least part of the first uncoated portion is inserted into the card slot.
  • the first uncoated portion is a metal foil material not coated with the first active material, and has good electrical conductivity, which can reduce the contact resistance and improve the overcurrent capability.
  • the first uncoated portion includes a first portion and a second portion, the first portion is inserted into the slot, and the second portion connects the first portion and the first coated portion.
  • the second portion is at least partially wrapped around the outside of the transition member and is attached to the transition member.
  • the second part is a metal foil material that is not coated with the first active material, and has good electrical conductivity, and the second part is attached to the transition member to improve the overcurrent capability.
  • the second part is wound around the transition member at least once, so that the contact area between the second part and the transition member can be maximized and the current flow capacity can be improved.
  • the transition member includes a first reel and a second reel at least partially spaced apart, the first reel and the second reel are fixed to the electrode lead-out portion, and a slot is formed between the first reel and the second reel. The first reel and the second reel are used to clamp the first pole piece.
  • the transition member is provided with a second through hole for receiving the electrolyte.
  • the second through hole can serve as a flow channel for the electrolyte, which can improve the wettability of the electrode assembly and the efficiency of electrolyte injection.
  • the first pole piece protrudes beyond the transition member in a direction away from the electrode lead-out portion.
  • the transfer member only fills a part of the first through hole, and the part of the first through hole that is not filled by the transfer member can be used for accommodating the electrolyte, which can increase the content of the electrolyte in the battery cell.
  • the electrode lead-out portion is welded to the transition member.
  • the electrode lead-out portion includes a first concave portion recessed relative to an outer surface, the outer surface is located on a side of the electrode lead-out portion away from the electrode assembly, and the adapter member is welded to the bottom wall of the first concave portion.
  • the electrode lead-out portion includes a first positioning portion
  • the adapter member includes a second positioning portion for matching with the first positioning portion.
  • the first positioning part cooperates with the second positioning part to realize the positioning of the electrode lead-out part and the transfer member during assembly.
  • the first positioning portion includes a protrusion and the second positioning portion includes a groove. In other embodiments, the first positioning portion includes a groove, and the second positioning portion includes a protrusion.
  • the housing includes a casing for accommodating the electrode assembly, and the electrode lead-out portion is insulated from the casing.
  • the electrode assembly further includes a second pole piece, the second pole piece at least partially wound around the transfer member, and the second pole piece is electrically connected to the housing.
  • the case and the electrode lead-out portion are respectively used as two output electrodes of the battery cell.
  • the case includes a side wall, the side wall surrounds the outer side of the electrode assembly, and a part of the second pole piece is attached to the side wall.
  • the sidewall is an interference fit with the electrode assembly.
  • the second pole piece includes a second coated portion coated with the second active material and a second uncoated portion uncoated with the second active material, the second uncoated portion being connected to the second
  • the coating part is located at the end of the second pole piece along the winding direction. At least part of the second uncoated portion is attached to the side wall.
  • the second uncoated part is a metal foil material not coated with the second active material, and has good electrical conductivity, which can reduce the contact resistance between the second pole piece and the casing and improve the overcurrent capability.
  • the second uncoated portion is wound multiple times around the transition member.
  • the second uncoated portion is welded to the side wall to improve the flow capacity.
  • the second uncoated portion is wound into multiple turns, so that the risk of the second coated portion and the isolation membrane being burned can be reduced when the housing and the second uncoated portion are welded.
  • the case further includes a case bottom wall and a transition wall
  • the case bottom wall is disposed on a side of the electrode assembly away from the electrode lead-out portion
  • the transition wall connects the side wall and the case bottom wall
  • the transition wall is The inner surface is arc surface. The transition wall can reduce stress concentration during the molding process of the shell, reducing the risk of shell cracking.
  • the projection of the second coating portion is located within the projection of the bottom wall of the casing.
  • the second coating part can avoid the transition wall.
  • the battery cell further includes a spacer disposed between the bottom wall of the case and the electrode assembly to separate the second coating portion from the arc surface.
  • the gasket can support the electrode assembly, so that the distance between the second coating part and the bottom wall of the casing is greater than or equal to the radius of the arc surface, thereby reducing the risk of the arc surface pressing the second coating part.
  • an embodiment of the present application provides a battery, including at least one battery cell according to any embodiment of the first aspect.
  • an embodiment of the present application provides an electrical device, including the battery of the second aspect, where the battery is used to provide electrical energy.
  • an embodiment of the present application provides a method for manufacturing a battery cell, including: providing an adapter member; providing an electrode assembly, where the electrode assembly includes a first pole piece, and the first pole piece is at least partially wound around the adapter member and attaching to the adapter member; providing a casing, the casing including an electrode lead-out portion; placing the adapter member and the electrode assembly in the casing.
  • the transfer member electrically connects the electrode lead-out portion and the first pole piece.
  • an embodiment of the present application provides a battery cell manufacturing system, including: a first providing device for providing an adapter member; a second providing device for providing an electrode assembly, where the electrode assembly includes a first electrode sheet, the first pole piece is at least partially wound on the transfer member and attached to the transfer member; the third providing device is used to provide a casing, the casing includes an electrode lead-out portion; an assembly device is used to connect the transfer member and the electrode The components are placed into the housing. Wherein, the transfer member electrically connects the electrode lead-out portion and the first pole piece.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is an exploded schematic diagram of the battery module shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a battery cell provided by some embodiments of the present application.
  • FIG. 5 is an exploded schematic diagram of the battery cell shown in FIG. 4;
  • FIG. 6 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • FIG. 7 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application.
  • FIG. 8 is an enlarged schematic view of the battery cell shown in FIG. 7 at block A;
  • FIG. 9 is a schematic cross-sectional view of an adapter member of a battery cell provided by a specific embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electrode assembly of a battery cell provided by some embodiments of the present application before being wound on an adapter member;
  • FIG. 11 is a schematic structural diagram of an electrode assembly of a battery cell provided by some embodiments of the present application after being wound on an adapter member;
  • FIG. 12 is an enlarged schematic view of the battery cell shown in FIG. 7 at block B;
  • FIG. 13 is a partial cross-sectional schematic diagram of a battery cell according to further embodiments of the present application.
  • FIG. 14 is a schematic flowchart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • FIG. 15 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • multiple refers to two or more (including two)
  • multiple refers to two or more (including two)
  • multilayer refers to two or more (including two) Floor).
  • the battery cells may include lithium-ion secondary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc. Not limited.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the part of the positive electrode current collector that is not coated with the positive electrode active material layer serves as a positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes a positive electrode active material, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the part of the negative electrode current collector that is not coated with the negative electrode active material layer serves as a negative electrode tab.
  • the material of the negative electrode current collector can be copper, the negative electrode active material layer contains negative electrode active material, and the negative electrode active material can be carbon or silicon or the like.
  • the material of the separator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), and the like.
  • the electrode assembly may be a rolled structure.
  • the battery cell also includes a housing for containing the electrode assembly and the electrolyte.
  • the housing includes a housing and an end cap connected to the housing, the housing and the end cap forming a receiving cavity to accommodate the electrode assembly and the electrolyte.
  • the battery cell further includes an adapter member for electrically connecting the electrode assembly to the end cap or electrode terminals provided on the end cap.
  • the adapter member is usually arranged between the electrode assembly and the end cap and connected to the electrode assembly, and the space between the electrode assembly and the end cap is limited.
  • the shape and volume of the adapter member are also limited. will be limited, resulting in a small electrical connection area between the transition member and the electrode assembly, which affects the overcurrent capability of the battery cell. If the overcurrent capability of the battery cell is insufficient, the output power and charge-discharge rate of the battery cell will be low, and the battery cell is prone to local overheating.
  • the battery cell includes: an electrode assembly, including a first pole piece; a casing for accommodating the electrode assembly and including an electrode lead-out portion; an adapter member for electrically connecting the electrode lead-out and the first pole piece, and the first pole piece is configured such that the first pole piece is at least partially wound on the transfer member and attached to the transfer member.
  • the battery cell with this structure can increase the connection area between the first pole piece and the transition member, and improve the overcurrent capability of the battery cell.
  • Electrical devices can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and power tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include airplanes, rockets, space shuttles, spacecraft, etc.
  • electric toys include fixed Electric toys that are portable or mobile, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers, etc.
  • the embodiments of the present application do not impose special restrictions on the above-mentioned electrical device.
  • the electric device is a vehicle as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 according to some embodiments of the present application.
  • the interior of the vehicle 1 is provided with a battery 2 , and the battery 2 may be provided at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4, and the controller 3 is used to control the battery 2 to supply power to the motor 4, for example, for starting, navigating, and driving the vehicle 1 for work power requirements.
  • the battery 2 can not only be used as the operating power source of the vehicle 1 , but can also be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 instead of or partially instead of fuel or natural gas.
  • FIG. 2 is an exploded schematic diagram of a battery 2 provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and battery cells (not shown in FIG. 2 ), and the battery cells are accommodated in the case 5 .
  • the box body 5 is used for accommodating the battery cells, and the box body 5 can have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 are covered with each other, and the first box body part 51 and the second box body part 52 cover each other.
  • the two box parts 52 together define an accommodating space for accommodating the battery cells.
  • the second box portion 52 may be a hollow structure with one end open, the first box portion 51 is a plate-like structure, and the first box portion 51 is covered with the opening side of the second box portion 52 to form a housing with an accommodating space.
  • first box portion 51 and the second box portion 52 can also be hollow structures with one side open, and the opening side of the first box portion 51 is covered with the opening side of the second box portion 52, In order to form the box body 5 with the accommodating space.
  • first box body portion 51 and the second box body portion 52 may have various shapes, such as a cylinder, a rectangular parallelepiped, and the like.
  • a sealing member such as a sealant, a sealing ring, etc., may also be provided between the first case part 51 and the second case part 52 .
  • the first case portion 51 may also be referred to as an upper case cover, and the second case portion 52 may also be referred to as a lower case body.
  • the battery 2 there may be one battery cell or a plurality of battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series or in parallel or in a mixed connection.
  • a mixed connection means that there are both series and parallel connections in the multiple battery cells. Multiple battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box 5; of course, multiple battery cells can also be connected in series or in parallel or
  • the battery modules 6 are formed in a mixed connection, and a plurality of battery modules 6 are connected in series or in parallel or in a mixed connection to form a whole, and are accommodated in the box 5 .
  • FIG. 3 is an exploded schematic view of the battery module 6 shown in FIG. 2 .
  • there are multiple battery cells 7 and the multiple battery cells 7 are first connected in series or in parallel or mixed to form a battery module 6 .
  • a plurality of battery modules 6 are connected in series or in parallel or mixed to form a whole, and are accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a bus component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • FIG. 4 is a schematic structural diagram of a battery cell provided by some embodiments of the present application
  • FIG. 5 is an exploded schematic diagram of the battery cell shown in FIG. 4
  • the battery cell 7 of the embodiment of the present application includes an electrode assembly 10 and a casing 20 , and the electrode assembly 10 is accommodated in the casing 20 .
  • the housing 20 may also be used to contain an electrolyte, such as an electrolyte.
  • the housing 20 can be in a variety of configurations.
  • the housing 20 may include a housing 21 and an end cap 22, the housing 21 is a hollow structure with an opening, and the end cap 22 is closed at the opening of the housing 21 and forms a sealing connection to form a housing for receiving The sealed space of the electrode assembly 10 and the electrolyte.
  • the housing 21 can be in various shapes, such as a cylinder, a rectangular parallelepiped, and the like.
  • the shape of the case 21 may be determined according to the specific shape of the electrode assembly 10 .
  • the end cap 22 may also have various structures, for example, the end cap 22 is a plate-like structure, a hollow structure with one end open, and the like.
  • the casing 21 is a cylindrical structure
  • the end cover 22 is a plate-like structure
  • the end cover 22 covers the opening of the casing 21 .
  • the battery cell 7 also includes a sealing member 30 that separates the end cap 22 from the housing 21 .
  • the sealing member 30 is used to seal the opening of the case 21 to improve the sealing performance of the battery cells 7 .
  • the material of the sealing member 30 may be PP (polypropylene, polypropylene), PE (polyethylene, polyethylene) or fluororubber.
  • the sealing member 30 is made of an insulating material capable of insulating the end cap 22 from the housing 21 .
  • the housing 20 includes a housing 21 and an end cap 22 , the housing 21 is a hollow structure with an opening on one side, and the end cap 22 covers the opening of the housing 21 and forms a sealing connection.
  • the sealing member 30 insulates the end cap 22 from the housing 21 .
  • the housing 20 includes a housing 21 and two end caps 22 , the housing 21 is a hollow structure with openings on opposite sides, and each end cap 22 is correspondingly covered with a corresponding opening of the housing 21 . And a sealed connection is formed to form a sealed space for accommodating the electrode assembly 10 and the electrolyte.
  • one end cap 22 may be directly connected to the housing 21 , eg welded to the housing 21 , and the sealing member 30 insulates the other end cap 22 from the housing 21 .
  • the end cap 22 is provided with an electrolyte injection hole 221 , and the electrolyte injection hole 221 penetrates the end cap 22 along the thickness direction of the end cap 22 .
  • the electrolyte injection hole 221 penetrates the end cap 22 along the thickness direction of the end cap 22 .
  • the electrolyte enters the inside of the battery cell 7 through the electrolyte injection hole 221 .
  • the battery cell 7 further includes a sealing plate (not shown) connected to the end cap 22 and covering the electrolyte injection hole 221 for sealing the electrolyte injection hole 221 after the electrolyte injection process is completed.
  • the housing 20 includes an electrode lead-out portion, and the electrode lead-out portion is used to lead out the current in the electrode assembly 10 to output the electrical energy generated by the electrode assembly 10 .
  • the end cap 22 acts as an electrode lead-out and is electrically connected to the electrode assembly 10.
  • the battery cell 7 further includes an adapter member 40 for electrically connecting the electrode lead-out portion and the electrode assembly 10 .
  • FIG. 6 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • the housing 20 further includes an electrode terminal 60 disposed on the end cap 22 .
  • the electrode terminal 60 serves as an electrode lead-out portion and is electrically connected to the electrode assembly 10 .
  • the adapter member 40 is welded to the electrode terminal 60 .
  • FIG. 7 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application;
  • FIG. 8 is an enlarged schematic view of the battery cell shown in FIG. 7 at block A.
  • FIG. 7 is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application;
  • FIG. 8 is an enlarged schematic view of the battery cell shown in FIG. 7 at block A.
  • the electrode assembly 10 includes a first pole piece 11 and a second pole piece 12 arranged in layers.
  • the first pole piece 11 and the second pole piece 12 are both strip-shaped structures, and the first pole piece 11 and the second pole piece 12 are wound together along the winding direction to form a winding structure.
  • the coiled structure is a cylindrical structure.
  • first pole piece 11 and the second pole piece 12 are opposite.
  • first pole piece 11 is a positive pole piece
  • second pole piece 12 is a negative pole piece.
  • first pole piece 11 is a negative pole piece
  • second pole piece 12 is a positive pole piece.
  • the electrode assembly 10 further includes a separator 13 for separating the first pole piece 11 and the second pole piece 12 .
  • a separator 13 for separating the first pole piece 11 and the second pole piece 12 .
  • the first pole piece 11 , the second pole piece 12 and the isolation film 13 are wound together.
  • the first pole piece 11 includes a first coated portion 111 coated with the first active material and a first uncoated portion 112 not coated with the first active material.
  • the first pole piece 11 is a positive pole piece, and the first active material may be lithium cobalt oxide, lithium iron phosphate, ternary lithium, lithium manganate, or the like.
  • the second pole piece 12 includes a second coated portion coated with the second active material and a second uncoated portion not coated with the second active material.
  • the second pole piece 12 is a negative pole piece, and the second active material may be carbon or silicon or the like.
  • the inventor tried to set the first uncoated portion on the side of the first coated portion close to the end cap, and electrically connect the first uncoated portion with an adapter member and end caps.
  • the first uncoated portion is wound into a multi-layer structure, and the transition member is disposed between the first uncoated portion and the end cap, and is connected to the first uncoated portion and the end cap by a welding process.
  • metal particles are easily generated when welding the first uncoated portion and the transition member, and the metal particles falling into the electrode assembly may cause a risk of short circuit.
  • the first uncoated portion is made of metal foil with a small thickness, so the end of the first uncoated portion is in approximate line contact with the transition member, resulting in a low overcurrent capability of the battery cell.
  • the inventors flattened the end of the first uncoated portion to form a dense layer, however, the dense layer would block electrolyte and affect the wettability of the electrode assembly.
  • the inventors improve the structure of the battery cell, which will be described in detail below with reference to different embodiments.
  • the first pole piece 11 is configured such that the first pole piece 11 is at least partially wound on the adapter member 40 and attached to the adapter member 40 .
  • the first pole piece 11 is wound on the adapter member 40, so a part of the first pole piece 11 can be attached to the adapter member 40 through its own tension, so as to ensure the connection between the first pole piece 11 and the adapter member 40. electrical connection.
  • the first pole piece 11 does not need to be connected with the transition member 40 through a welding process, thereby reducing the metal particles generated during the production process of the battery cell 7 and reducing the risk of short circuit.
  • the first pole piece 11 does not need to be flattened, thereby improving the wettability of the electrode assembly 10 .
  • the first pole piece 11 is at least partially wound on the adapter member 40 and attached to the adapter member 40 , so the part of the first pole piece 11 that is attached to the adapter member 40 is in surface contact with the adapter member 40 , thereby The contact area between the first pole piece 11 and the transition member 40 is increased to improve the overcurrent capability.
  • the second pole piece 12 is wound at least partially around the transition member 40 .
  • the second pole piece 12 is wound around the transfer member 40 as the central axis.
  • isolation membrane 13 is at least partially wrapped around transition member 40 .
  • the isolation film 13 is wound around the transfer member 40 as the central axis.
  • the transition member 40 can serve as the central axis of the electrode assembly 10 being wound and formed.
  • the first pole piece 11 , the separator 13 and the second pole piece 12 are stacked and then wound together on the adapter member 40 to form the electrode assembly 10 having a wound structure.
  • the winding direction of the electrode assembly 10 is perpendicular to the axial direction Z.
  • the axial direction Z is parallel to the length direction of the adapter member 40 .
  • the electrode assembly 10 has a first through hole 14 , and at least part of the adapter member 40 is accommodated in the first through hole 14 .
  • the electrode assembly 10 is wound on the transfer member 40 . Due to the existence of the transfer member 40 , the electrode assembly 10 forms a first through hole 14 at the winding center. Using the first through hole 14 at the winding center to accommodate the adapter member 40 can make the structure of the battery cell 7 compact, which is beneficial to improve the energy density of the battery cell 7 .
  • the first pole piece 11 protrudes beyond the adapter member 40 in a direction away from the end cap 22 .
  • the second pole piece 12 and isolation membrane 13 also extend beyond the transition member 40 in a direction away from the end cap 22 .
  • the transfer member 40 only fills a part of the first through hole 14 , and the part of the first through hole 14 that is not filled by the transfer member 40 can be used for accommodating the electrolyte, which can increase the electrolyte content in the battery cell 7 .
  • the end cap 22 is attached to the adapter member 40 .
  • the end cap 22 is connected to the adapter member 40 by welding, bonding or abutting or the like.
  • the end cap 22 is integrally formed with the adapter member 40 .
  • the end cap 22 includes a first concave portion 223 recessed relative to the outer surface 222 , the outer surface 222 is located on the side of the end cap 22 away from the electrode assembly 10 , and the adapter member 40 is welded to the bottom wall 224 of the first concave portion. .
  • the outer surface 222 is generally planar.
  • the bottom wall 224 of the first recess includes a connection area 224a and a weak area 224b disposed around the connection area 224a, the connection area 224a is welded to the transition member 40, and the weak area 224b surrounds the outer side of the connection area 224a and uses It ruptures when the internal pressure or temperature of the battery cell 7 reaches a threshold value.
  • Emissions from battery cells include, but are not limited to, electrolytes, dissolved or split pole pieces, fragments of separators, high-temperature and high-pressure gases from reactions, flames, and the like.
  • the portion of the end cap 22 that surrounds the outside of the weakened region 224b is disconnected from the connection region 224a, under the internal pressure of the battery cell 7, the portion of the end cap 22 is disconnected from the connection region 224a. Flush and disengage the housing 21 for quick discharge of emissions.
  • the bottom wall 224 of the first concave portion is provided with a second concave portion 224c, and the weak area 224b is the bottom wall of the second concave portion 224c.
  • the second recess 224c is provided to reduce the thickness of the weak region 224b, so that the weak region 224b can be ruptured when the internal pressure or temperature of the battery cell 7 reaches a predetermined threshold, so as to quickly discharge the exhaust.
  • the weak area 224b can be made of a temperature-sensitive material, and when the temperature of the battery cell 7 reaches a predetermined threshold, the weak area 224b is melted, so as to quickly discharge the emissions.
  • the end cover 22 is provided with a mounting hole (not shown) penetrating through its thickness direction, and the adapter member 40 is inserted into the mounting hole and welded to the end cover 22 .
  • the adapter member 40 can be exposed, and the adapter member 40 and the end cover 22 can be connected by seam welding.
  • FIG. 9 is a schematic cross-sectional view of an adapter member of a battery cell provided by a specific embodiment of the present application.
  • the transition member 40 is provided with a second through hole 45 for receiving the electrolyte.
  • the second through hole 45 can serve as a flow channel for the electrolyte, which can improve the wettability of the electrode assembly. In the electrolyte injection process, the second through holes 45 can also improve the electrolyte injection efficiency.
  • the second through holes 45 are provided in plural. Exemplarily, some of the second through holes 45 extend along the axial direction Z of the adapter member 40 , and some other second through holes 45 extend along the radial direction of the adapter member 40 . The second through holes 45 extending in the axial direction Z may communicate with the second through holes 45 extending in the radial direction.
  • FIG. 10 is a schematic diagram of the electrode assembly of the battery cell provided by some embodiments of the present application before being wound to the transfer member
  • FIG. 11 is the electrode assembly of the battery cell provided by some embodiments of the present application before being wound to the transfer member Schematic diagram of the subsequent structure.
  • the adapter member 40 is provided with a slot 41 , and a part of the first pole piece 11 is inserted into the slot 41 and connected to the adapter member 40 .
  • the card slot 41 By arranging the card slot 41 in the embodiment of the present application, the contact area between the first pole piece 11 and the adapter member 40 can be increased, and the overcurrent capability can be improved.
  • the portion of the first pole piece 11 inserted into the clamping slot 41 is clamped by the adapter member 40 .
  • a layer of isolation film 13 , the second pole piece 12 , another layer of isolation film 13 and the first pole piece 11 are sequentially stacked, and the end of the first pole piece 11 is inserted into the The slot 41 of the transfer member 40 is clamped, and then the winding device drives the transfer member 40 to rotate, and the transfer member 40 drives the first pole piece 11 to take the tape and is wound on the transfer member 40; Driven by the force, the second pole piece 12 and the isolation film 13 also travel along with the first pole piece 11 and are wound around the transition member 40 .
  • the adapter member 40 is provided with a first limiting structure
  • the portion of the first pole piece 11 inserted into the slot 41 is provided with a second limiting structure that cooperates with the first limiting structure.
  • the first pole piece 11 can be fixed to the adapter member 40 .
  • the first limiting structure may include a plurality of protrusions, and the protrusions protrude from the groove wall of the locking groove 41 .
  • the second limiting structure includes a groove into which the protrusion is inserted. Through the cooperation of the protrusion and the groove, the first pole piece 11 can be fixed to the adapter member 40 .
  • the first pole piece 11 is adhered to the groove wall of the card groove 41 by conductive glue.
  • the first uncoated portion 112 is connected to the first coated portion 111 and is located at an end of the first pole piece 11 along the winding direction X.
  • the first uncoated portion 112 is located at the inner end of the first pole piece 11 along the winding direction X.
  • At least part of the first uncoated portion 112 is inserted into the card slot 41 .
  • the first uncoated portion 112 is attached to the groove wall of the clamping groove 41 .
  • the first uncoated portion 112 is a metal foil material that is not coated with the first active material, and has good electrical conductivity, which can reduce the contact resistance and improve the overcurrent capability.
  • the part of the first pole piece 11 inserted into the card slot 41 cannot realize the de-intercalation of lithium ions.
  • the first uncoated part 112 is inserted into the card slot 41 .
  • the technical solution of the groove 41 can save the first active material and reduce the waste of the first active material.
  • the first uncoated portion 112 includes a first portion 112 a and a second portion 112 b, the first portion 112 a is inserted into the slot 41 , and the second portion 112 b is connected to the first portion 112 a and the first coated portion 111 .
  • the second portion 112b at least partially wraps around the outside of the transition member 40 and is attached to the transition member 40 .
  • the second portion 112b is a metal foil material not coated with the first active material, and has good electrical conductivity. The second portion 112b is attached to the transition member 40 to improve the overcurrent capability.
  • the second portion 112b wraps at least one turn around the transition member 40 . In this way, the contact area between the second portion 112b and the adapter member 40 can be maximized, thereby improving the flow capacity.
  • the adapter member 40 includes a first reel 42 and a second reel 43 that are at least partially spaced apart, the first reel 42 and the second reel 43 are fixed to the end cap 22 , and the first reel 42 and the second reel 43 A card slot 41 is formed between 43 .
  • the first reel 42 and the second reel 43 are two semicircular shafts. In the process of winding the electrode assembly 10, the first reel 42 and the second reel 43 may clamp the first portion 112a. After the electrode assembly 10 is completed, the first reel 42 and the second reel 43 are fixed to the end cap 22 by welding or the like.
  • FIG. 12 is an enlarged schematic view of the battery cell shown in FIG. 7 at block B.
  • FIG. 12 is an enlarged schematic view of the battery cell shown in FIG. 7 at block B.
  • the end cover 22 is provided insulated from the casing 21 , and the second pole piece 12 is electrically connected to the casing 21 .
  • the case 21 and the end cap 22 are respectively used as the two output poles of the battery cell 7 , so that the two electrode terminals in the conventional battery cell 7 are omitted.
  • the housing 21 includes a side wall 211 that surrounds the outside of the electrode assembly 10 .
  • the side wall 211 is cylindrical.
  • a part of the second pole piece 12 is attached to the side wall 211 , so that the second pole piece 12 is electrically connected to the side wall 211 .
  • the second uncoated portion 122 is connected to the second coated portion 121 and is located at an end of the second pole piece 12 along the winding direction.
  • the second uncoated portion 122 is located at the outer end of the second pole piece 12 along the winding direction. At least part of the second uncoated portion 122 is attached to the side wall 211 .
  • the second uncoated portion 122 is a metal foil material not coated with the second active material, and has good electrical conductivity, which can reduce the contact resistance between the second pole piece 12 and the casing 21 and improve the overcurrent capability.
  • the second uncoated portion 122 is wound around the transition member 40 at least once.
  • the outermost ring of the electrode assembly 10 is the second uncoated portion 122 .
  • the second uncoated portion 122 is wound multiple times around the transition member 40 .
  • the second uncoated portion 122 is welded to the side wall 211 . After the electrode assembly 10 is put into the casing 21, the side wall 211 and the second uncoated portion 122 are welded from the outside, so that the resistance between the second uncoated portion 122 and the casing 21 can be reduced, and the flow capability.
  • the second uncoated portion 122 is made of metal foil with a small thickness and is easily melted through.
  • the second uncoated portion 122 is wound into multiple turns, so that when the shell 21 and the second uncoated portion are welded, When the part 122 is coated, the risk of the second coating part 121 and the isolation film 13 being burned can be reduced.
  • the housing 21 is a hollow structure with one end open.
  • the casing 21 further includes a casing bottom wall 212 .
  • the casing bottom wall 212 is connected to the side wall 211 and is disposed on the side of the electrode assembly 10 away from the end cap.
  • the housing 21 further includes a transition wall 213, the transition wall 213 connects the side wall 211 and the housing bottom wall 212, and the inner surface of the transition wall 213 is an arc surface.
  • the housing 21 is formed by a stamping process, and the transition wall 213 is a fillet formed by stamping.
  • the inner surface of the transition wall 213 is an arc surface, when the electrode assembly 10 vibrates up and down, the inner surface of the transition wall 213 may press the electrode assembly 10 .
  • the projection of the second coating portion 121 is located within the projection of the casing bottom wall 212; that is, in the thickness direction of the casing bottom wall 212, the first The second coating portion 121 can avoid the transition wall 213.
  • the electrode assembly 10 is vibrated by an external force, the risk of the inner surface of the transition wall 213 pressing the second coating portion 121 is reduced, and the second coating portion 121 is reduced. 2. Exfoliation of active material.
  • the second uncoated portion 122 is wound around the transition member 40 for multiple turns, and the total thickness of the multiple turns of the second uncoated portion 122 is greater than or equal to the radius of the inner surface of the transition wall 213, so that the The second coating portion 121 avoids the transition wall 213 .
  • the second uncoated portion 122 is made of metal foil, and even if it is pressed by the inner surface of the transition wall 213 , the second active material will not fall off.
  • the battery cell 7 further includes a spacer 50 disposed between the bottom wall 212 of the case and the electrode assembly 10 to separate the second coating portion 121 from the arc surface.
  • the gasket 50 can support the electrode assembly 10 so that the distance between the second coating portion 121 and the bottom wall 212 of the casing is greater than or equal to the radius of the arc surface, thereby reducing the risk of the arc surface pressing the second coating portion 121 .
  • both ends of the isolation membrane 13 extend beyond the second pole piece 12 . Therefore, the isolation membrane 13 can support the second coating portion 121 to a certain extent, and the thickness of the gasket 50 can be slightly smaller than that of the second pole piece 12 .
  • the radius of the arc is the radius of the arc.
  • FIG. 13 is a partial cross-sectional schematic diagram of a battery cell according to further embodiments of the present application.
  • the end cap 22 includes a first positioning portion 225
  • the adapter member 40 includes a second positioning portion 44 for matching with the first positioning portion 225 .
  • the first positioning portion 225 can be matched with the second positioning portion 44 to realize the positioning between the end cover 22 and the adapter member 40 .
  • the first positioning portion 225 includes a protrusion
  • the second positioning portion 44 includes a groove.
  • the first positioning portion 225 includes a groove
  • the second positioning portion 44 includes a protrusion.
  • the first positioning portion 225 includes a first protrusion and a first groove
  • the second positioning portion 44 includes a second groove and a second protrusion
  • the first protrusion cooperates with the second groove
  • the second protrusion is matched with the first groove.
  • both the first reel 42 and the second reel 43 are provided with a second positioning portion 44 .
  • FIG. 14 is a schematic flowchart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • the manufacturing method of the battery cell according to the embodiment of the present application includes:
  • the electrode assembly includes a first pole piece, and the first pole piece is at least partially wound on the adapter member and attached to the adapter member;
  • the transfer member electrically connects the electrode lead-out portion and the first pole piece.
  • step S100 and step S300 is not sequential, and may be executed simultaneously.
  • FIG. 15 is a schematic block diagram of a battery cell manufacturing system provided by some embodiments of the present application.
  • the battery cell manufacturing system 8 includes: a first providing device 81 for providing an adapter member; a second providing device 82 for providing an electrode assembly, the electrode assembly includes a first Pole piece, the first pole piece is at least partially wound on the transfer member and attached to the transfer member; the third providing device 83 is used to provide a housing, the housing includes an electrode lead-out portion; an assembly device 84 is used to connect the transfer member. The components and electrode assemblies are placed into the housing. Wherein, the transfer member electrically connects the electrode lead-out portion and the first pole piece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体及其制造方法和制造系统、电池以及用电装置。本申请实施例的电池单体包括:电极组件,包括第一极片;外壳,用于容纳电极组件且包括电极引出部;转接构件,用于电连接电极引出部和第一极片,且第一极片被配置为第一极片至少部分卷绕在转接构件上并贴合于转接构件。第一极片卷绕在转接构件上,其可通过自身的张力使第一极片的一部分贴合于转接构件,保证第一极片与转接构件之间的电连接。此时,第一极片无需通过焊接工艺与转接构件相连,从而减少在电池单体的生产过程中产生的金属颗粒,降低短路风险。第一极片的贴合于转接构件的部分与转接构件为面接触,从而增大第一极片与转接构件的接触面积,提高过流能力。

Description

电池单体及其制造方法和制造系统、电池以及用电装置
相关申请的交叉引用
本申请要求享有于2021年04月09日提交的名称为“电池单体及其制造方法和制造系统、电池以及用电装置”的中国专利申请202110380328.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体及其制造方法和制造系统、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
随着市场越来越多地需要较大电流的电池单体,如何提高电池单体的过流能力,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池单体及其制造方法和制造系统、电池以及用电装置,能够增强电池单体的过流能力。
第一方面,本申请实施例提供了一种电池单体,其包括:电极组件,包括第一极片;外壳,用于容纳电极组件且包括电极引出部;转接构件,用于电连接电极引出部和第一极片,且第一极片被配置为第一极片至少部分卷绕在转接构件上并贴合于转接构件。
上述方案中,第一极片卷绕在转接构件上,所以可以通过自身的张力使第一极片的一部分贴合于转接构件,保证第一极片与转接构件之间的电连接。此时,第一极片无需通过焊接工艺与转接构件相连,从而减少在电池单体的生产过程中产生的金属颗粒,降低短路风险。第一极片的贴合于转接构件的部分与转接构件为面接触,从而增大第一极片与转接构件的接触面积,提高过流能力。
在一些实施例中,电极组件具有第一通孔,转接构件的至少部分容纳于第一通孔内。
在一些实施例中,转接构件设置有卡槽,第一极片的一部分插入卡槽并连接于转接构件。本申请实施例通过设置卡槽,可以增大第一极片与转接构件的接触面积,提高过流能力。示例性地,第一极片插入卡槽的部分被转接构件卡紧。
在一些实施例中,第一极片包括涂覆有第一活性材料的第一涂覆部和未涂覆第一活性材料的第一未涂覆部,第一未涂覆部连接于第一涂覆部且位于第一极片沿卷绕方向的端部。第一未涂覆部的至少部分插入卡槽。第一未涂覆部为未涂覆第一活性材料的金属箔材,导电性好,这样可以减小接触电阻,提高过流能力。
在一些实施例中,第一未涂覆部包括第一部分和第二部分,第一部分插入卡槽,第二部分连接第一部分和第一涂覆部。第二部分至少部分卷绕在转接构件的外侧并贴合于转接构件。第二部分为未涂覆第一活性材料的金属箔材,导电性好,第二部分贴合于转接构件可以提高过流能力。
在一些实施例中,第二部分绕转接构件卷绕至少一圈,这样可以使第二部分与转接构件的接触面积最大化,提高过流能力。
在一些实施例中,转接构件包括至少部分间隔设置的第一卷轴和第二卷轴,第一卷轴和第二卷轴固定于电极引出部,且第一卷轴和第二卷轴之间形成卡槽。第一卷轴和第二卷轴用于夹紧第一极片。
在一些实施例中,转接构件设置有用于容纳电解质的第二通孔。第二通孔可以作为电解质的流动通道,这样可以提高电极组件的浸润性以及电解质注入效率。
在一些实施例中,在背离电极引出部的方向上,第一极片超出转接构件。转接构件仅填充第一通孔的一部分,第一通孔的未被转接构件填充的部分可用于容纳电解质,这样可以增大电池单体中电解质的含量。
在一些实施例中,电极引出部焊接于转接构件。
在一些实施例中,电极引出部包括相对于外表面凹陷的第一凹部,外表面位于电极引出部背离电极组件的一侧,转接构件焊接于第一凹部的底壁。本申请实施例通过设置第一凹部,可以减小第一凹部的底壁的厚度,这样,可以从电极引出部的外表面的一侧进行焊接,降低焊接所产生的金属颗粒溅射到电极组件上的风险。
在一些实施例中,电极引出部包括第一定位部,转接构件包括用于与第一定位部配合的第二定位部。第一定位部与第二定位部配合能实现电极引出部和转接构件在装配时的定位。
在一些实施例中,第一定位部包括凸起,第二定位部包括凹槽。在另一些实施例中,第一定位部包括凹槽,第二定位部包括凸起。
在一些实施例中,外壳包括用于容纳电极组件的壳体,电极引出部与壳体绝缘设置。电极组件还包括第二极片,第二极片至少部分绕转接构件卷绕,且第二极片电连接于壳体。壳体和电极引出部分别作为电池单体的两个输出极。
在一些实施例中,壳体包括侧壁,侧壁环绕在电极组件的外侧,第二极片的一部分贴合于侧壁。示例性地,侧壁与电极组件过盈配合。
在一些实施例中,第二极片包括涂覆有第二活性材料的第二涂覆部和未涂覆第二活性材料的第二未涂覆部,第二未涂覆部连接于第二涂覆部且位于第二极片沿卷绕 方向的端部。第二未涂覆部的至少部分贴合于侧壁。第二未涂覆部为未涂覆第二活性材料的金属箔材,导电性好,这样可以减小第二极片与壳体的接触电阻,提高过流能力。
在一些实施例中,第二未涂覆部绕转接构件卷绕多圈。第二未涂覆部焊接于侧壁,以提高过流能力。本申请实施例将第二未涂覆部卷绕为多圈,这样,在焊接壳体和第二未涂覆部时,可以降低第二涂覆部和隔离膜被烧伤的风险。
在一些实施例中,壳体还包括壳体底壁和过渡壁,壳体底壁设置于电极组件的背离电极引出部的一侧,过渡壁连接侧壁和壳体底壁,且过渡壁的内表面为弧面。过渡壁可以在壳体的成型过程中减小应力集中,降低壳体破裂的风险。
在一些实施例中,沿壳体底壁的厚度方向,第二涂覆部的投影位于壳体底壁的投影之内。在壳体底壁的厚度方向,第二涂覆部可以避开过渡壁,当电极组件受到外力作用发生震动时,降低过渡壁的内表面挤压第二涂覆部的风险,减少第二涂覆部的第二活性材料的脱落。
在一些实施例中,电池单体还包括垫片,垫片设置于壳体底壁和电极组件之间,以将第二涂覆部与弧面隔开。垫片可以支撑电极组件,使第二涂覆部与壳体底壁的间距大于或等于弧面的半径,从而降低弧面挤压第二涂覆部的风险。
第二方面,本申请实施例提供了一种电池,包括至少一个第一方面任一实施例的电池单体。
第三方面,本申请实施例提供了一种用电装置,包括第二方面的电池,电池用于提供电能。
第四方面,本申请实施例提供了一种电池单体的制造方法,包括:提供转接构件;提供电极组件,电极组件包括第一极片,第一极片至少部分卷绕在转接构件上并贴合于转接构件;提供外壳,外壳包括电极引出部;将转接构件和电极组件放置到外壳内。其中,转接构件电连接电极引出部和第一极片。
第五方面,本申请实施例提供了一种电池单体的制造系统,包括:第一提供装置,用于提供转接构件;第二提供装置,用于提供电极组件,电极组件包括第一极片,第一极片至少部分卷绕在转接构件上并贴合于转接构件;第三提供装置,用于提供外壳,外壳包括电极引出部;组装装置,用于将转接构件和电极组件放置到外壳内。其中,转接构件电连接电极引出部和第一极片。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的爆炸示意图;
图4为本申请一些实施例提供的电池单体的结构示意图;
图5为图4所示的电池单体的爆炸示意图;
图6为本申请另一些实施例提供的电池单体的爆炸示意图;
图7为本申请一些实施例提供的电池单体的剖视示意图;
图8为图7所示的电池单体在方框A处的放大示意图;
图9为本申请具体实施例提供的电池单体的转接构件的剖视示意图;
图10为本申请一些实施例提供的电池单体的电极组件在卷绕到转接构件之前的示意图;
图11为本申请一些实施例提供的电池单体的电极组件在卷绕到转接构件之后的结构示意图;
图12为图7所示的电池单体在方框B处的放大示意图;
图13为本申请又一些实施例提供的电池单体的局部剖视示意图;
图14为本申请一些实施例提供的电池单体的制造方法的流程示意图;
图15为本申请一些实施例提供的电池单体的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存 在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个),“多圈”指的是两圈以上(包括两圈),“多层”指的是两层以上(包括两层)。
本申请中,电池单体可以包括锂离子二次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,正极集流体的未涂覆正极活性物质层的部分作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层中包含正极活性材料,正极活性材料可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,负极集流体的未涂覆负极活性物质层的部分作为负极极耳。负极集流体的材料可以为铜,负极活性物质层中包含负极活性材料,负极活性材料可为碳或硅等。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。在一些示例中,电极组件可以是卷绕式结构。
电池单体还包括外壳,外壳用于容纳电极组件和电解质。外壳包括壳体和连接于壳体的端盖,壳体和端盖形成容纳腔,以容纳电极组件和电解质。在一些实施例中,电池单体还包括转接构件,转接构件用于将电极组件电连接到端盖或设置于端盖上的电极端子。
发明人发现,在相关技术中,转接构件通常设置于电极组件和端盖之间并连接于电极组件,电极组件与端盖之间的空间有限,对应地,转接构件的形状、体积也会受到限制,从而造成转接构件与电极组件的电连接面积偏小,影响电池单体的过流能力。如果电池单体的过流能力不足,会造成电池单体的输出功率和充放电速率偏低,电池单体容易出现局部过热。
鉴于此,本申请实施例提供一种技术方案,电池单体包括:电极组件,包括第一极片;外壳,用于容纳电极组件且包括电极引出部;转接构件,用于电连接电极引 出部和第一极片,且第一极片被配置为第一极片至少部分卷绕在转接构件上并贴合于转接构件。这种结构的电池单体可以增大第一极片与转接构件的连接面积,提高电池单体的过流能力。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆1的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一些实施例提供的电池2的爆炸示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体的容纳空间。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容纳空间的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容纳空间的箱体5。当然,第一箱体部51和第二箱体部52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个 电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3为图2所示的电池模块6的爆炸示意图。在一些实施例中,如图3所示,电池单体7为多个,多个电池单体7先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
图4为本申请一些实施例提供的电池单体的结构示意图;图5为图4所示的电池单体的爆炸示意图。如图4和图5所示,本申请实施例的电池单体7包括电极组件10和外壳20,电极组件10容纳于外壳20内。
在一些实施例中,外壳20还可用于容纳电解质,例如电解液。外壳20可以是多种结构形式。
在一些实施例中,外壳20可以包括壳体21和端盖22,壳体21为具有开口的空心结构,端盖22盖合于壳体21的开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。当然,端盖22也可以是多种结构,比如,端盖22为板状结构、一端开口的空心结构等。示例性的,在图4和图5中,壳体21为圆柱体结构,端盖22为板状结构,端盖22盖合于壳体21的开口处。
在一些实施例中,电池单体7还包括密封构件30,密封构件30将端盖22和壳体21隔开。密封构件30用于密封壳体21的开口,提高电池单体7的密封性能。密封构件30的材质可为PP(polypropylene,聚丙烯)、PE(polyethylene,聚乙烯)或者氟橡胶。在一些实施例中,密封构件30由绝缘材料制成,能够将端盖22和壳体21绝缘隔开。
在一些实施例中,外壳20包括壳体21和一个端盖22,壳体21为在一侧开口的空心结构,端盖22盖合于壳体21的开口处并形成密封连接。密封构件30将端盖22和壳体21绝缘隔开。
在另一些实施例中,外壳20包括壳体21和两个端盖22,壳体21为相对的两侧开口的空心结构,每个端盖22对应盖合于壳体21的对应一个开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。在一些示例中,一个端盖22可直接连接于壳体21,例如焊接于壳体21,密封构件30将另一个端盖22与壳体21绝缘隔开。
在一些实施例中,端盖22设有电解质注入孔221,电解质注入孔221沿端盖22的厚度方向贯通端盖22。在电池单体7的电解质注入工序中,电解质经由电解质注入孔221进入电池单体7内部。电池单体7还包括密封板(未示出),连接于端盖22并覆盖电解质注入孔221,用于在电解质注入工序完成后,密封电解质注入孔221。
外壳20包括电极引出部,电极引出部用于将电极组件10中的电流引出,以输出电极组件10所产生的电能。在一些实施例中,端盖22作为电极引出部并电连接于电 极组件10。
在一些实施例中,电池单体7还包括转接构件40,转接构件40用于电连接电极引出部和电极组件10。
图6为本申请另一些实施例提供的电池单体的爆炸示意图。如图6所示,在一些实施例中,外壳20还包括设置于端盖22的电极端子60,电极端子60作为电极引出部并电连接于电极组件10。示例性地,转接构件40焊接于电极端子60。
为了便于描述,下面以端盖22作为电极引出部来描述本申请的实施例。
图7为本申请一些实施例提供的电池单体的剖视示意图;图8为图7所示的电池单体在方框A处的放大示意图。
如图7和图8所示,在一些实施例中,电极组件10包括层叠设置的第一极片11和第二极片12。在一些实施例中,第一极片11和第二极片12均为带状结构,第一极片11和第二极片12沿卷绕方向卷绕为一体并形成卷绕结构。在一些示例中,卷绕结构为圆柱体结构。
第一极片11与第二极片12的极性相反。在一些示例中,第一极片11为正极极片,第二极片12为负极极片。在另一些示例中,第一极片11为负极极片,第二极片12为正极极片。
在一些实施例中,电极组件10还包括隔离膜13,用于将第一极片11和第二极片12隔开。示例性地,第一极片11、第二极片12和隔离膜13卷绕在一起。
在一些实施例中,第一极片11包括涂覆有第一活性材料的第一涂覆部111和未涂覆第一活性材料的第一未涂覆部112。示例性地,第一极片11为正极极片,第一活性材料可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。第二极片12包括涂覆有第二活性材料的第二涂覆部和未涂覆第二活性材料的第二未涂覆部。示例性地,第二极片12为负极极片,第二活性材料可为碳或硅等。
为了将第一极片电连接到端盖,发明人尝试使第一未涂覆部设置于第一涂覆部的靠近端盖的一侧,并利用转接构件电连接第一未涂覆部和端盖。第一未涂覆部卷绕为多层结构,转接构件设置在第一未涂覆部和端盖之间,并通过焊接工艺连接到第一未涂覆部和端盖。然而,在焊接第一未涂覆部和转接构件时容易产生金属颗粒,金属颗粒掉入电极组件中可能引发短路风险。第一未涂覆部为金属箔材,厚度小,所以第一未涂覆部的端部与转接构件近似为线接触,从而造成电池单体的过流能力偏低。为了实现焊接,发明人将第一未涂覆部的端部揉平以形成致密层,然而,致密层会阻挡电解质,影响电极组件的浸润性。
基于发明人发现的上述问题,发明人对电池单体的结构进行改进,下面结合不同的实施例详细描述。
在本申请实施例的电池单体7中,第一极片11被配置为第一极片11至少部分卷绕在转接构件40上并贴合于转接构件40。第一极片11卷绕在转接构件40上,所以可以通过自身的张力使第一极片11的一部分贴合于转接构件40,保证第一极片11与转接构件40之间的电连接。此时,第一极片11无需通过焊接工艺与转接构件40相连,从而减少在电池单体7的生产过程中产生的金属颗粒,降低短路风险。对应地,本申 请实施例无需对第一极片11进行揉平处理,从而改善电极组件10的浸润性。
第一极片11至少部分卷绕在转接构件40上并贴合于转接构件40,所以第一极片11的贴合于转接构件40的部分与转接构件40为面接触,从而增大第一极片11与转接构件40的接触面积,提高过流能力。
在一些实施例中,第二极片12至少部分绕转接构件40卷绕。示例性地,第二极片12以转接构件40为中心轴进行卷绕。
在一些实施例中,隔离膜13至少部分绕转接构件40卷绕。示例性地,隔离膜13以转接构件40为中心轴进行卷绕。
在一些实施例中,转接构件40可作为电极组件10卷绕成型的中心轴。在制备电极组件10时,先将第一极片11、隔离膜13以及第二极片12层叠设置,然后再一起卷绕到转接构件40上,以形成具有卷绕结构的电极组件10。示例性地,电极组件10的卷绕方向垂直于轴向Z。可选地,轴向Z平行于转接构件40的长度方向。
在一些实施例中,电极组件10具有第一通孔14,转接构件40的至少部分容纳于第一通孔14内。电极组件10卷绕在转接构件40上,由于转接构件40的存在,电极组件10在卷绕中心处形成第一通孔14。利用卷绕中心处的第一通孔14来容纳转接构件40,可以使电池单体7的结构紧凑,有利于提高电池单体7的能量密度。
在一些实施例中,在背离端盖22的方向上,第一极片11超出转接构件40。在一些实施例中,在背离端盖22的方向上,第二极片12和隔离膜13也超出转接构件40。转接构件40仅填充第一通孔14的一部分,第一通孔14的未被转接构件40填充的部分可用于容纳电解质,这样可以增大电池单体7中电解质的含量。
在一些实施例中,端盖22连接于转接构件40。示例性地,端盖22通过焊接、粘接或抵接等方式连接于转接构件40。在另一些实施例中,端盖22与转接构件40一体成形。
在一些实施例中,端盖22包括相对于外表面222凹陷的第一凹部223,外表面222位于端盖22背离电极组件10的一侧,转接构件40焊接于第一凹部的底壁224。示例性地,外表面222大体为平面。本申请实施例通过设置第一凹部223,可以减小端盖22的焊接于转接构件40的部分(即第一凹部的底壁224)的厚度;此时,激光可以作用在第一凹部的底壁224上,以焊接端盖22和转接构件40。换句话说,本申请实施例可以从端盖22的外表面222的一侧进行焊接,降低焊接所产生的金属颗粒溅射到电极组件10上的风险。
在一些实施例中,第一凹部的底壁224包括连接区224a和环绕连接区224a设置的薄弱区224b,连接区224a焊接于转接构件40,薄弱区224b环绕在连接区224a的外侧且用于在电池单体7的内部压力或温度达到阈值时破裂。当发生短路、过充等现象时,可能会导致电池单体7内部发生热失控从而压力或温度骤升;在这种情况下,电池单体7的内部压力或温度达到预定阈值,薄弱区224b被破坏,从而形成可供电池单体的排放物泄放的开口或通道,以防止电池单体7爆炸、起火。电池单体的排放物包括但不限于:电解质、被溶解或分裂的极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
在一些实施例中,当薄弱区224b破裂时,端盖22的环绕在薄弱区224b外侧的部分与连接区224a断开连接,在电池单体7的内部压力下,端盖22的该部分被冲开并脱离壳体21,从而快速泄放排放物。
在一些实施例中,第一凹部的底壁224设置有第二凹部224c,薄弱区224b为第二凹部224c的底壁。本申请实施例通过设置第二凹部224c减小薄弱区224b的厚度,使薄弱区224b能够在电池单体7的内部压力或温度达到预定阈值时破裂,以快速泄放排放物。
在另一些实施例中,薄弱区224b可以采用温敏材料,在电池单体7温度达到预定阈值时,薄弱区224b熔化,以快速泄放排放物。
在一些实施例中,端盖22设置有沿自身厚度方向贯通的安装孔(未示出),转接构件40插入安装孔并焊接于端盖22。通过设置安装孔,可以将转接构件40露出,转接构件40和端盖22可以采用对缝焊接的方式相连。
图9为本申请具体实施例提供的电池单体的转接构件的剖视示意图。在一些实施例中,转接构件40设置有用于容纳电解质的第二通孔45。第二通孔45可以作为电解质的流动通道,这样可以提高电极组件的浸润性。在电解质注入工序中,第二通孔45也可以提高电解质注入效率。
在一些实施例中,第二通孔45设置为多个。示例性地,一些第二通孔45沿转接构件40的轴向Z延伸,另一些第二通孔45沿转接构件40的径向延伸。沿轴向Z延伸的第二通孔45可以与沿径向延伸的第二通孔45相连通。
图10为本申请一些实施例提供的电池单体的电极组件在卷绕到转接构件之前的示意图;图11为本申请一些实施例提供的电池单体的电极组件在卷绕到转接构件之后的结构示意图。
请一并参照图8至图11,在一些实施例中,转接构件40设置有卡槽41,第一极片11的一部分插入卡槽41并连接于转接构件40。本申请实施例通过设置卡槽41,可以增大第一极片11与转接构件40的接触面积,提高过流能力。
在一些实施例中,第一极片11插入卡槽41的部分被转接构件40卡紧。具体地,当需要制备电极组件10时,将一层隔离膜13、第二极片12、另一层隔离膜13以及第一极片11依次层叠,并将第一极片11的端部插入转接构件40的卡槽41并被卡紧,然后卷绕设备驱动转接构件40转动,转接构件40带动第一极片11走带并卷绕在转接构件40上;同时,在摩擦力的带动下,第二极片12和隔离膜13也会随着第一极片11走带并卷绕在转接构件40。
在一些实施例中,转接构件40设置有第一限位结构,第一极片11的插入卡槽41的部分设有与第一限位结构配合的第二限位结构。通过第一限位结构与第二限位结构的配合,能够将第一极片11固定到转接构件40。示例性地,第一限位结构可包括多个凸起,凸起凸出于卡槽41的槽壁。第二限位结构包括供凸起插入的凹槽。通过凸起和凹槽的配合,可以将第一极片11固定到转接构件40。
在另一些实施例中,第一极片11通过导电胶粘接于卡槽41的槽壁。
在一些实施例中,第一未涂覆部112连接于第一涂覆部111且位于第一极片11 沿卷绕方向X的端部。示例性地,第一未涂覆部112位于第一极片11沿卷绕方向X的内端。第一未涂覆部112的至少部分插入卡槽41。第一未涂覆部112贴合于卡槽41的槽壁。第一未涂覆部112为未涂覆第一活性材料的金属箔材,导电性好,这样可以减小接触电阻,提高过流能力。另外,第一极片11的插入卡槽41的部分无法实现锂离子的脱嵌,因此,相较于第一涂覆部111插入卡槽41的技术方案,第一未涂覆部112插入卡槽41的技术方案可以节省第一活性材料,减少第一活性材料的浪费。
在一些实施例中,第一未涂覆部112包括第一部分112a和第二部分112b,第一部分112a插入卡槽41,第二部分112b连接第一部分112a和第一涂覆部111。第二部分112b至少部分卷绕在转接构件40的外侧并贴合于转接构件40。第二部分112b为未涂覆第一活性材料的金属箔材,导电性好,第二部分112b贴合于转接构件40可以提高过流能力。
在一些实施例中,第二部分112b绕转接构件40卷绕至少一圈。这样可以使第二部分112b与转接构件40的接触面积最大化,提高过流能力。
在一些实施例中,转接构件40包括至少部分间隔设置的第一卷轴42和第二卷轴43,第一卷轴42和第二卷轴43固定于端盖22,且第一卷轴42和第二卷轴43之间形成卡槽41。在一些实施例中,第一卷轴42和第二卷轴43为两个半圆状的轴。在卷绕电极组件10的过程中,第一卷轴42和第二卷轴43可以夹紧第一部分112a。当电极组件10完成后,第一卷轴42和第二卷轴43再通过焊接等方式固定于端盖22。
图12为图7所示的电池单体在方框B处的放大示意图。
如图12所示,在一些实施例中,端盖22与壳体21绝缘设置,第二极片12电连接于壳体21。此时,壳体21和端盖22分别作为电池单体7的两个输出极,从而省去常规电池单体7中的两个电极端子。
在一些实施例中,壳体21包括侧壁211,侧壁211环绕在电极组件10的外侧。示例性地,侧壁211为圆筒状。第二极片12的一部分贴合于侧壁211,以使第二极片12电连接于侧壁211。
在一些实施例中,第二未涂覆部122连接于第二涂覆部121且位于第二极片12沿卷绕方向的端部。示例性地,第二未涂覆部122位于第二极片12沿卷绕方向的外端。第二未涂覆部122的至少部分贴合于侧壁211。第二未涂覆部122为未涂覆第二活性材料的金属箔材,导电性好,这样可以减小第二极片12与壳体21的接触电阻,提高过流能力。
第二未涂覆部122绕转接构件40卷绕至少一圈。电极组件10的最外圈为第二未涂覆部122。在装配电极组件10和壳体21时,可先加热壳体21时壳体21膨胀,然后再将电极组件10放入壳体21内。壳体21冷却后收缩并与电极组件10过盈配合,从而保证第二未涂覆部122与侧壁211贴合。
在一些实施例中,第二未涂覆部122绕转接构件40卷绕多圈。第二未涂覆部122焊接于侧壁211。在将电极组件10放入壳体21内后,从外侧焊接侧壁211和第二未涂覆部122,这样可以减小第二未涂覆部122与壳体21之间的电阻,提高过流能力。第二未涂覆部122为金属箔材,厚度较小,容易被熔穿,本申请实施例将第二未涂覆 部122卷绕为多圈,这样,在焊接壳体21和第二未涂覆部122时,可以降低第二涂覆部121和隔离膜13被烧伤的风险。
在一些实施例中,壳体21为一端开口的空心结构。壳体21还包括壳体底壁212,壳体底壁212连接于侧壁211且设置于电极组件10的背离端盖的一侧。
在一些实施例中,壳体21还包括过渡壁213,过渡壁213连接侧壁211和壳体底壁212,且过渡壁213的内表面为弧面。示例性地,壳体21通过冲压工艺形成,过渡壁213为冲压形成的圆角。通过设置过渡壁213,可以减小应力集中,降低壳体21破裂的风险。
由于过渡壁213的内表面为弧面,所以当电极组件10上下震动时,过渡壁213的内表面可能会挤压电极组件10。在一些实施例中,沿壳体底壁212的厚度方向,第二涂覆部121的投影位于壳体底壁212的投影之内;也就是说,在壳体底壁212的厚度方向,第二涂覆部121可以避开过渡壁213,当电极组件10受到外力作用发生震动时,降低过渡壁213的内表面挤压第二涂覆部121的风险,减少第二涂覆部121的第二活性材料的脱落。
在一些实施例中,第二未涂覆部122绕转接构件40卷绕多圈,多圈第二未涂覆部122的总厚度大于或等于过渡壁213的内表面的半径,这样可以使第二涂覆部121避开过渡壁213。第二未涂覆部122为金属箔材,即使受到过渡壁213的内表面的挤压,也不会造成第二活性材料的脱落。
在一些实施例中,电池单体7还包括垫片50,垫片50设置于壳体底壁212和电极组件10之间,以将第二涂覆部121与弧面隔开。垫片50可以支撑电极组件10,使第二涂覆部121与壳体底壁212的间距大于或等于弧面的半径,从而降低弧面挤压第二涂覆部121的风险。
在壳体底壁212的厚度方向上,隔离膜13的两端超出第二极片12,因此,隔离膜13可以在一定程度上支撑第二涂覆部121,垫片50的厚度可以略小于弧面的半径。
图13为本申请又一些实施例提供的电池单体的局部剖视示意图。
如图13所示,端盖22包括第一定位部225,转接构件40包括用于与第一定位部225配合的第二定位部44。在装配端盖22和转接构件40时,可以将第一定位部225与第二定位部44配合,实现端盖22和转接构件40之间的定位。
在一些实施例中,第一定位部225包括凸起,第二定位部44包括凹槽。在另一些实施例中,第一定位部225包括凹槽,第二定位部44包括凸起。在有一些实施例中,第一定位部225包括第一凸起和第一凹槽,第二定位部44包括第二凹槽和第二凸起,第一凸起与第二凹槽配合,第二凸起与第一凹槽配合。
在一些实施例中,第一卷轴42和第二卷轴43均设有第二定位部44。
图14为本申请一些实施例提供的电池单体的制造方法的流程示意图。
如图14所示,本申请实施例的电池单体的制造方法包括:
S100、提供转接构件;
S200、提供电极组件,电极组件包括第一极片,第一极片至少部分卷绕在转接构件上并贴合于转接构件;
S300、提供外壳,外壳包括电极引出部;
S400、将转接构件和电极组件放置到外壳内。
其中,转接构件电连接电极引出部和第一极片。
需要说明的是,通过上述电池单体的制造方法制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
在基于上述的电池单体的制造方法组装电池单体时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100和步骤S300的执行不分先后,也可以同时进行。
图15为本申请一些实施例提供的电池单体的制造系统的示意性框图。
如图15所示,本申请实施例的电池单体的制造系统8包括:第一提供装置81,用于提供转接构件;第二提供装置82,用于提供电极组件,电极组件包括第一极片,第一极片至少部分卷绕在转接构件上并贴合于转接构件;第三提供装置83,用于提供外壳,外壳包括电极引出部;组装装置84,用于将转接构件和电极组件放置到外壳内。其中,转接构件电连接电极引出部和第一极片。
通过上述制造系统制造出的电池单体的相关结构,可参见上述各实施例提供的电池单体。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种电池单体,包括:
    电极组件,包括第一极片;
    外壳,用于容纳所述电极组件且包括电极引出部;
    转接构件,用于电连接所述电极引出部和所述第一极片,且所述第一极片被配置为所述第一极片至少部分卷绕在所述转接构件上并贴合于所述转接构件。
  2. 根据权利要求1所述的电池单体,其中,所述电极组件具有第一通孔,所述转接构件的至少部分容纳于所述第一通孔内。
  3. 根据权利要求1所述的电池单体,其中,所述转接构件设置有卡槽,所述第一极片的一部分插入所述卡槽并连接于所述转接构件。
  4. 根据权利要求3所述的电池单体,其中,所述第一极片包括涂覆有第一活性材料的第一涂覆部和未涂覆所述第一活性材料的第一未涂覆部,所述第一未涂覆部连接于所述第一涂覆部且位于所述第一极片沿卷绕方向的端部;
    所述第一未涂覆部的至少部分插入所述卡槽。
  5. 根据权利要求4所述的电池单体,其中,所述第一未涂覆部包括第一部分和第二部分,所述第一部分插入所述卡槽,所述第二部分连接所述第一部分和所述第一涂覆部;
    所述第二部分至少部分卷绕在所述转接构件的外侧并贴合于所述转接构件。
  6. 根据权利要求5所述的电池单体,其中,所述第二部分绕所述转接构件卷绕至少一圈。
  7. 根据权利要求3-6中任一项所述的电池单体,其中,所述转接构件包括至少部分间隔设置的第一卷轴和第二卷轴,所述第一卷轴和所述第二卷轴固定于所述电极引出部,且所述第一卷轴和所述第二卷轴之间形成所述卡槽。
  8. 根据权利要求1-7中任一项所述的电池单体,其中,所述转接构件设置有用于容纳电解质的第二通孔。
  9. 根据权利要求1-8中任一项所述的电池单体,其中,在背离所述电极引出部的方向上,所述第一极片超出所述转接构件。
  10. 根据权利要求1-9中任一项所述的电池单体,其中,所述电极引出部焊接于所述转接构件。
  11. 根据权利要求10所述的电池单体,其中,所述电极引出部包括相对于外表面凹陷的第一凹部,所述外表面位于所述电极引出部背离所述电极组件的一侧,所述转接构件焊接于所述第一凹部的底壁。
  12. 根据权利要求1-11中任一项所述的电池单体,其中,所述电极引出部包括第一定位部,所述转接构件包括用于与所述第一定位部配合的第二定位部。
  13. 根据权利要求12所述的电池单体,其中,
    所述第一定位部包括凸起,所述第二定位部包括凹槽;或者,
    所述第一定位部包括凹槽,所述第二定位部包括凸起。
  14. 根据权利要求1-13中任一项所述的电池单体,其中,
    所述外壳包括用于容纳所述电极组件的壳体,所述电极引出部与所述壳体绝缘设置;
    所述电极组件还包括第二极片,所述第二极片至少部分绕所述转接构件卷绕,且所述第二极片电连接于所述壳体。
  15. 根据权利要求14所述的电池单体,其中,所述壳体包括侧壁,所述侧壁环绕在所述电极组件的外侧,所述第二极片的一部分贴合于所述侧壁。
  16. 根据权利要求15所述的电池单体,其中,所述第二极片包括涂覆有第二活性材料的第二涂覆部和未涂覆所述第二活性材料的第二未涂覆部,所述第二未涂覆部连接于所述第二涂覆部且位于所述第二极片沿卷绕方向的端部;
    所述第二未涂覆部的至少部分贴合于所述侧壁。
  17. 根据权利要求16所述的电池单体,其中,所述第二未涂覆部绕所述转接构件卷绕多圈;
    所述第二未涂覆部焊接于所述侧壁。
  18. 根据权利要求17所述的电池单体,其中,
    所述壳体还包括壳体底壁和过渡壁,所述壳体底壁设置于所述电极组件的背离所述电极引出部的一侧,所述过渡壁连接所述侧壁和所述壳体底壁,且所述过渡壁的内表面为弧面。
  19. 根据权利要求18所述的电池单体,其中,沿所述壳体底壁的厚度方向,所述第二涂覆部的投影位于所述壳体底壁的投影之内。
  20. 根据权利要求18或19所述的电池单体,其中,所述电池单体还包括垫片,所述垫片设置于所述壳体底壁和所述电极组件之间,以将所述第二涂覆部与所述弧面隔开。
  21. 一种电池,包括至少一个如权利要求1-20中任一项所述的电池单体。
  22. 一种用电装置,包括如权利要求21所述的电池,所述电池用于提供电能。
  23. 一种电池单体的制造方法,包括:
    提供转接构件;
    提供电极组件,所述电极组件包括第一极片,所述第一极片至少部分卷绕在所述转接构件上并贴合于所述转接构件;
    提供外壳,所述外壳包括电极引出部;
    将所述转接构件和所述电极组件放置到所述外壳内;
    其中,所述转接构件电连接所述电极引出部和所述第一极片。
  24. 一种电池单体的制造系统,包括:
    第一提供装置,用于提供转接构件;
    第二提供装置,用于提供电极组件,所述电极组件包括第一极片,所述第一极片至少部分卷绕在所述转接构件上并贴合于所述转接构件;
    第三提供装置,用于提供外壳,所述外壳包括电极引出部;
    组装装置,用于将所述转接构件和所述电极组件放置到所述外壳内;
    其中,所述转接构件电连接所述电极引出部和所述第一极片。
PCT/CN2021/086744 2021-04-09 2021-04-12 电池单体及其制造方法和制造系统、电池以及用电装置 WO2022213400A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21926071.8A EP4095966A4 (en) 2021-04-09 2021-04-12 BATTERY CELL, AND MANUFACTURING SYSTEM AND METHOD THEREFOR, BATTERY AND ELECTRICAL DEVICE
US17/864,295 US20220344698A1 (en) 2021-04-09 2022-07-13 Battery cell, manufacturing method and manufacturing system therefor, battery and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110380328.0A CN112768845B (zh) 2021-04-09 2021-04-09 电池单体及其制造方法和制造系统、电池以及用电装置
CN202110380328.0 2021-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/864,295 Continuation US20220344698A1 (en) 2021-04-09 2022-07-13 Battery cell, manufacturing method and manufacturing system therefor, battery and electric device

Publications (1)

Publication Number Publication Date
WO2022213400A1 true WO2022213400A1 (zh) 2022-10-13

Family

ID=75691271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086744 WO2022213400A1 (zh) 2021-04-09 2021-04-12 电池单体及其制造方法和制造系统、电池以及用电装置

Country Status (4)

Country Link
US (1) US20220344698A1 (zh)
EP (1) EP4095966A4 (zh)
CN (1) CN112768845B (zh)
WO (1) WO2022213400A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220161480A (ko) * 2021-05-26 2022-12-06 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 고정 부재, 전지, 전기 장치 및 전지의 제조 방법, 제조 시스템
WO2023272464A1 (zh) * 2021-06-29 2023-01-05 宁德新能源科技有限公司 电池和具有所述电池的用电装置
CN115603013B (zh) * 2021-07-09 2024-01-30 宁德时代新能源科技股份有限公司 隔离部件、电池组及能源装置
CN115917866B (zh) * 2021-07-30 2024-09-06 宁德时代新能源科技股份有限公司 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023050281A1 (zh) * 2021-09-30 2023-04-06 宁德时代新能源科技股份有限公司 电池单体及其制造方法和制造系统、电池以及用电装置
CN115764181A (zh) * 2022-09-21 2023-03-07 江苏时代新能源科技有限公司 电池单体、电池、用电装置以及焊接设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325935A (ja) * 1992-05-26 1993-12-10 Sony Corp 円筒型渦巻式電池の製造方法
CN101393995A (zh) * 2007-09-21 2009-03-25 深圳市比克电池有限公司 圆柱形电池的电芯及将该电芯装入电池壳体的方法
CN101393973A (zh) * 2007-09-21 2009-03-25 深圳市比克电池有限公司 圆柱形二次电池
CN106848419A (zh) * 2017-04-15 2017-06-13 陈学琴 连续极耳双膜安全阀有孔集流盘卷绕式铅酸蓄电池
CN106848415A (zh) * 2017-04-15 2017-06-13 陈学琴 不对称混合电极有孔集流盘双膜安全阀卷绕式蓄电池
CN106848417A (zh) * 2017-04-15 2017-06-13 陈学琴 对称复合电极有孔集流盘囊膜安全阀卷绕式蓄电池
CN106848418A (zh) * 2017-04-15 2017-06-13 陈学琴 不对称混合网状电极有孔集流盘双膜安全阀卷绕电池
CN107069114A (zh) * 2017-04-15 2017-08-18 陈学琴 对称复合网状极片同向电极囊膜安全阀卷绕电池
CN110034326A (zh) * 2019-04-08 2019-07-19 江苏金赛尔电池科技有限公司 一种无极耳的锂电池及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902648A1 (de) * 1989-01-30 1990-08-09 Varta Batterie Galvanisches element
KR100189808B1 (ko) * 1996-06-10 1999-06-01 손욱 권취 극판군
US7070881B2 (en) * 2001-10-18 2006-07-04 Quallion Llc Electrical battery assembly and method of manufacture
US8703327B2 (en) * 2008-06-20 2014-04-22 Samsung Sdi Co., Ltd. Rechargeable battery and manufacturing method thereof
KR101473389B1 (ko) * 2012-02-08 2014-12-17 주식회사 엘지화학 원통형 이차전지
KR101850181B1 (ko) * 2015-02-05 2018-04-18 주식회사 엘지화학 원통형 리튬 이온 이차전지
KR102477634B1 (ko) * 2015-10-23 2022-12-13 삼성에스디아이 주식회사 이차 전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325935A (ja) * 1992-05-26 1993-12-10 Sony Corp 円筒型渦巻式電池の製造方法
CN101393995A (zh) * 2007-09-21 2009-03-25 深圳市比克电池有限公司 圆柱形电池的电芯及将该电芯装入电池壳体的方法
CN101393973A (zh) * 2007-09-21 2009-03-25 深圳市比克电池有限公司 圆柱形二次电池
CN106848419A (zh) * 2017-04-15 2017-06-13 陈学琴 连续极耳双膜安全阀有孔集流盘卷绕式铅酸蓄电池
CN106848415A (zh) * 2017-04-15 2017-06-13 陈学琴 不对称混合电极有孔集流盘双膜安全阀卷绕式蓄电池
CN106848417A (zh) * 2017-04-15 2017-06-13 陈学琴 对称复合电极有孔集流盘囊膜安全阀卷绕式蓄电池
CN106848418A (zh) * 2017-04-15 2017-06-13 陈学琴 不对称混合网状电极有孔集流盘双膜安全阀卷绕电池
CN107069114A (zh) * 2017-04-15 2017-08-18 陈学琴 对称复合网状极片同向电极囊膜安全阀卷绕电池
CN110034326A (zh) * 2019-04-08 2019-07-19 江苏金赛尔电池科技有限公司 一种无极耳的锂电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095966A4 *

Also Published As

Publication number Publication date
EP4095966A4 (en) 2024-06-19
CN112768845A (zh) 2021-05-07
CN112768845B (zh) 2021-09-14
US20220344698A1 (en) 2022-10-27
EP4095966A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20240234989A1 (en) Battery cell, battery cell manufacturing method and equipment, battery, and electrical device
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2022226971A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2022247292A1 (zh) 电池单体、电池以及用电装置
WO2023004824A1 (zh) 电池单体、电池、用电设备及电池单体的制造设备
WO2023142894A1 (zh) 电池单体、电池及用电装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2023028815A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023087285A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023023916A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20240283059A1 (en) Battery cell, method and system for manufacturing battery cell, battery, and electrical device
US20240154251A1 (en) Current collecting component, battery cell, battery, and electric device
WO2022188484A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电设备
WO2023092441A1 (zh) 电池单体及其制造方法和装置、电池、用电装置
WO2023000184A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
US20230378574A1 (en) End cover assembly, battery cell, battery, and electric device
WO2024221747A1 (zh) 电池单体、电池及用电装置
WO2023065241A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021926071

Country of ref document: EP

Effective date: 20220826

NENP Non-entry into the national phase

Ref country code: DE