Nothing Special   »   [go: up one dir, main page]

WO2022210504A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2022210504A1
WO2022210504A1 PCT/JP2022/014908 JP2022014908W WO2022210504A1 WO 2022210504 A1 WO2022210504 A1 WO 2022210504A1 JP 2022014908 W JP2022014908 W JP 2022014908W WO 2022210504 A1 WO2022210504 A1 WO 2022210504A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
annealing
steel sheet
rolled
cold
Prior art date
Application number
PCT/JP2022/014908
Other languages
English (en)
French (fr)
Inventor
良祐 谷
猛 今村
重宏 ▲高▼城
広 山口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022541800A priority Critical patent/JPWO2022210504A1/ja
Priority to EP22780715.3A priority patent/EP4317472A1/en
Priority to US18/284,334 priority patent/US20240150875A1/en
Priority to CN202280024766.6A priority patent/CN117062921A/zh
Priority to KR1020237036227A priority patent/KR20230159875A/ko
Publication of WO2022210504A1 publication Critical patent/WO2022210504A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a method for manufacturing a grain-oriented electrical steel sheet with low iron loss and high magnetic flux density.
  • a grain-oriented electrical steel sheet is a soft magnetic material used as a core material for transformers and generators, and has a crystal structure in which the ⁇ 001> orientation, which is the easy magnetization axis of iron, is highly aligned in the rolling direction of the steel sheet. is characteristic.
  • Such a texture causes secondary recrystallization in the finish annealing in the manufacturing process of grain-oriented electrical steel sheets, and the crystal grains of ⁇ 110 ⁇ ⁇ 001> orientation called Goss orientation are preferentially large. Formed by growing.
  • Patent Document 1 discloses a method of using MnS or MnSe as an inhibitor
  • Patent Document 2 discloses a method of using AlN or MnS as an inhibitor, both of which have been put into industrial practice.
  • the method using these inhibitors requires heating the slab to an extremely high temperature of 1300° C. or higher, but is a very effective method for stably developing secondary recrystallization.
  • Patent Document 3 discloses a method of adding Pb, Sb, Nb or Te
  • Patent Document 4 discloses Zr, Ti, B, Nb, Ta, V
  • a method of adding Cr and Mo is disclosed.
  • the steel material contains 0.010 to 0.060% of acid-soluble Al (sol. Al)
  • the slab heating temperature is suppressed to a low temperature
  • the decarburization annealing process is performed under an appropriate atmosphere.
  • a method has also been proposed in which (Al,Si)N is precipitated during secondary recrystallization in final annealing and used as an inhibitor by performing a nitriding treatment.
  • Patent Document 6 and the like disclose a technique for developing Goss-oriented grains by secondary recrystallization using a steel material that does not contain inhibitor-forming components.
  • This technology eliminates impurities such as inhibitor-forming components as much as possible and reveals the dependence of the grain boundary energy of the crystal grain boundary during primary recrystallization on the grain boundary misorientation angle.
  • This is a technique for secondary recrystallization of Goss-oriented grains, and its effect is also called texture inhibition.
  • This method does not require a treatment to purify the inhibitor-forming components, so there is no need to raise the temperature of the final annealing.Furthermore, since it does not require fine dispersion of the inhibitor, it is indispensable for solid solution of the inhibitor-forming components. There is no need for high-temperature slab heating, which is a great advantage in terms of cost and manufacturing.
  • Patent Document 7 by limiting the amount of N as AlN in the hot-rolled sheet to 25 mass ppm or less and heating to 700 ° C. or higher at a heating rate of 80 ° C./s or higher during decarburization annealing, low iron A technique for obtaining a loss-oriented electrical steel sheet is disclosed.
  • Patent Document 8 when decarburizing and annealing a cold-rolled sheet rolled to the final thickness, in a non-oxidizing atmosphere with a P H2O /P H2 of 0.2 or less, 700 ° C. at 100 ° C./s or more.
  • a technique for obtaining a grain-oriented electrical steel sheet with low iron loss by rapid heating to the above temperature is disclosed.
  • the inventors diligently studied the cause of the decrease in magnetic flux density due to rapid heating during decarburization annealing. As a result, when increasing the temperature rise rate in the heating process of the decarburization annealing, the temperature range where secondary recrystallization occurs in the final annealing is gradually heated, and only the crystal grains in the Goss orientation are grain-grown, thereby increasing the magnetic flux density
  • the present inventors have found that the iron loss can be reduced without causing a decrease in the iron loss, and have developed the present invention.
  • the present invention based on the above findings contains C: 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass% and Mn: 0.005 to 1.0 mass%, and further as an inhibitor-forming component
  • the hot-rolled sheet After the hot-rolled sheet is subjected to hot-rolled sheet annealing, it is cold-rolled once or cold-rolled twice or more with intermediate annealing to obtain a cold-rolled sheet having a final thickness, and the cold-rolled sheet is subjected to primary
  • the surface of the steel sheet After performing decarburization annealing that also serves as recrystallization annealing, the surface of the steel sheet is coated with an annealing separator, and after performing finish annealing, when forming an insulating coating, the temperature is 500 to 700 in the heating process of the decarburization annealing. While rapidly heating at 100 to 1000 ° C./s between ° C., in the section of 860 to 970 ° C.
  • the steel material used in the method for producing a grain-oriented electrical steel sheet of the present invention further includes Ni: 0.01 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0 .005 to 1.000 mass%, P: 0.005 to 0.500 mass%, Sb: 0.005 to 0.500 mass%, Sn: 0.005 to 0.500 mass%, Bi: 0.005 to 0.500 mass% %, Mo: 0.005 to 0.500 mass%, Nb: 0.0010 to 0.0100 mass%, Ta: 0.001 to 0.010 mass% and Ti: at least one of 0.001 to 0.0100 mass% It is characterized by containing seeds.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that grooves are formed in the surface of the steel sheet in a direction intersecting the rolling direction in any of the steps after the cold rolling, and magnetic domain refining treatment is performed. do.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that the surface of the steel sheet coated with the insulating coating is subjected to a magnetic domain refining treatment by irradiating an electron beam or a laser beam in a direction intersecting the rolling direction. do.
  • the heating rate in the secondary recrystallization temperature range in the final annealing is optimized, and the secondary recrystallization of grains deviated from the Goss orientation is suppressed, so even when rapid heating is performed during decarburization annealing. , it becomes possible to manufacture a grain-oriented electrical steel sheet with low core loss without causing a decrease in magnetic flux density.
  • the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1100°C for 30 seconds, followed by first cold rolling to an intermediate sheet thickness of 1.8 mm, followed by intermediate annealing at 1020°C for 100 seconds. After that, it was cold-rolled for the second time by a reverse rolling mill to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm.
  • the cold-rolled sheet was subjected to decarburization annealing, which also served as primary recrystallization annealing, at 880° C. for 60 seconds in a moist atmosphere of 50 vol % H 2 -50 vol % N 2 . At this time, the heating rate between 500 and 700° C.
  • annealing separator mainly composed of MgO was applied to the surface of the steel sheet, and the steel sheet wound into a coil was heated to 900°C at a rate of 25°C/hr in an N2 atmosphere, and held at the above temperature for 20 hours. After that, the temperature was raised to 970° C. at 25° C./hr, and further heated to 1180° C. at 25° C./hr in a mixed atmosphere of H 2 : 50 vol %-N 2 : 50 vol%. A final annealing was performed by holding the temperature for 5 hours and performing a purification treatment.
  • test piece was taken from the steel plate after the finish annealing thus obtained, and the iron loss W 17/50 (iron loss when 1.7 T was excited at a frequency of 50 Hz) and the magnetic flux density B 8 (magnetizing force 800 A /m) was measured by the method described in JIS C 2550.
  • the test pieces were taken from three locations, both ends and the center of the product coil, and the worst (highest) iron loss value and lowest (worse) magnetic flux density value were taken as representative values of the coil. The results of the above measurements are shown in Table 1 below.
  • the temperature increase rate between 500 and 700°C in the heating process of decarburization annealing is set to 200°C/s (constant), and the temperature increase rate between 860 and 970°C in the heating process of finish annealing is varied as shown in Table 2.
  • the iron loss W 17/50 and the magnetic flux density B 8 were measured in the same manner as above. The results of the above measurements are shown in Table 2 below. From this result, it is found that there is a suitable range for the rate of temperature increase in the final annealing, in which both low iron loss and high magnetic flux density can be achieved, specifically 0.5 to 4.0° C./hr. rice field.
  • the inventors consider as follows.
  • the heating rate of decarburization annealing is increased, the Goss orientation in the primary recrystallized structure and the recrystallized grains in the vicinity thereof increase.
  • the increased Goss orientation and the primary recrystallized grains in the vicinity thereof undergo secondary recrystallization in the final annealing, resulting in a secondary recrystallized structure with fine grains.
  • C 0.002 to 0.10 mass% If C is less than 0.002 mass%, the grain boundary strengthening effect of C may be lost, cracking may occur in the slab, which may interfere with production or cause surface defects. On the other hand, if it exceeds 0.10 mass%, it becomes difficult to reduce C to 0.005 mass% or less at which magnetic aging does not occur during decarburization annealing. Therefore, C should be in the range of 0.002 to 0.10 mass%. It is preferably in the range of 0.010 to 0.080 mass%.
  • Si 2.0 to 8.0 mass%
  • Si is an essential component for increasing the specific resistance of steel and reducing iron loss. If it is less than 2.0 mass%, the above effect is not sufficient, while if it exceeds 8.0 mass%, workability decreases. and difficult to roll. Therefore, Si should be in the range of 2.0 to 8.0 mass%. It is preferably in the range of 2.5 to 4.5 mass%.
  • Mn 0.005 to 1.0 mass% Mn improves the hot workability of steel, and should be contained in an amount of 0.005 mass% or more. On the other hand, if it exceeds 1.0 mass %, the magnetic flux density of the product sheet will decrease. Therefore, Mn should be in the range of 0.005 to 1.0 mass%. It is preferably in the range of 0.02 to 0.20 mass%.
  • Components other than the above C, Si and Mn must contain inhibitor-forming components necessary for developing secondary recrystallization in the final annealing.
  • AlN-based inhibitor when used as the inhibitor, it is necessary to contain Al and N in the ranges of Al: 0.010 to 0.050 mass% and N: 0.003 to 0.020 mass%, respectively. be.
  • AlN-based and MnS/MnSe-based inhibitors may be used in combination. ⁇ 0.030 mass% and/or Se: 0.003 to 0.030 mass% should be contained.
  • Al 0.013 to 0.025 mass%
  • N 0.005 to 0.010 mass%
  • S 0.004 to 0.015 mass%
  • Se 0.005 to 0.020 mass%
  • the balance other than the above components is Fe and unavoidable impurities.
  • Ni 0.01 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.005 to 1.000 mass% , P: 0.005 to 0.500 mass%, Sb: 0.005 to 0.500 mass%, Sn: 0.005 to 0.500 mass%, Bi: 0.005 to 0.500 mass%, Mo: 0.005 ⁇ 0.500 mass%, Nb: 0.0010 to 0.0100 mass%, Ta: 0.001 to 0.010 mass% and Ti: one or more selected from 0.001 to 0.0100 mass% It may be contained as appropriate.
  • a method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
  • a steel material (slab) having the chemical composition described above is heated to a predetermined temperature, hot-rolled into a hot-rolled sheet, and hot-rolled into the hot-rolled sheet.
  • the cold-rolled sheet is cold-rolled once or cold-rolled twice or more with intermediate annealing to obtain a cold-rolled sheet having a final thickness, and the cold-rolled sheet is decarburized by performing primary recrystallization annealing.
  • the steel sheet is annealed, coated with an annealing separator on the steel sheet surface, then finished annealed, and coated with an insulating coating.
  • the steel material is preferably produced by melting steel adjusted to the above chemical composition by a generally known refining process, and by continuous casting or ingot casting-slabbing rolling.
  • a thin slab with a thickness of 100 mm or less may be produced by direct casting.
  • the steel slab is heated to a temperature of 1300°C or higher and 1400°C or lower, and then subjected to hot rolling. If the slab heating temperature is less than 1300° C., the inhibitor-forming component remains undissolved, resulting in unstable secondary recrystallization and insufficient magnetic properties. On the other hand, if the temperature exceeds 1400° C., scale loss increases and surface defects occur. It is preferably in the range of 1310-1375°C.
  • the hot rolling conditions are not particularly limited as long as they are normal hot rolling conditions for grain-oriented electrical steel sheets. Also, in the case of thin slabs, hot rolling may be omitted.
  • hot-rolled sheet after hot rolling is subjected to hot-rolled sheet annealing in order to improve magnetic properties.
  • This hot-rolled sheet baking may be performed under generally known conditions, and there is no particular limitation.
  • the hot-rolled sheet after the hot rolling is pickled and descaled, and then subjected to one ordinary cold rolling or two or more cold rollings with intermediate annealing to obtain a final thickness (product sheet thickness) cold-rolled sheet.
  • the cold-rolled sheet having the final thickness is subjected to decarburization annealing that also serves as primary recrystallization annealing to obtain a preferable primary recrystallization structure, and the C content in the steel sheet is 0.0050 mass% or less, which does not cause magnetic aging.
  • the heating rate between 500°C and 700°C in the heating process of the decarburization annealing be 100 to 1000. Rapid heating as °C/s. If the heating rate is less than 100°C/s, the number of Goss-oriented grains that serve as nuclei for secondary recrystallization in the primary recrystallized structure decreases.
  • the soaking conditions for the decarburization annealing are preferably in the range of 800 to 900° C. ⁇ 60 to 300 s in a moist atmosphere.
  • the surface of the decarburized and annealed steel sheet is coated with an annealing separator, dried, wound into a coil, subjected to finish annealing while still in the coiled state, and subjected to secondary recrystallization.
  • finish annealing the crystal grains of Goss orientation are preferentially grown and the increase of secondary recrystallized grains deviating from the Goss orientation is suppressed. It is important to heat slowly at 5 to 4.0°C/hr. If the heating rate is less than 0.5°C/hr, the orientation sharpness of the Goss orientation in the secondary recrystallized structure decreases.
  • the growth rate of the secondary recrystallized grains is excessively increased, and the degree of integration of the secondary recrystallized grains in the Goss orientation is remarkably lowered.
  • it is in the range of 0.7 to 2.0°C/hr.
  • the time for slow heating at 0.5 to 4.0° C./hr as described above should be 10 hours or more to obtain the above effect. It is preferably 20 hours or longer.
  • the slow heating section may be part of the temperature range from 860 to 970° C. if the slow heating can be performed for 10 hours or longer.
  • the atmosphere in this section is preferably nitrogen, argon, or a mixed atmosphere of nitrogen and argon.
  • the temperature is raised to 1150-1250°C, and then purification treatment is performed by maintaining the temperature for 5-20 hours.
  • the atmosphere during the purification treatment is preferably hydrogen, but nitrogen or argon can also be used as necessary.
  • the heating rate up to the purification treatment temperature is 5° C./hr or more.
  • the atmosphere at that time can be nitrogen, argon, or a mixed atmosphere of nitrogen, argon and hydrogen.
  • the steel sheet after the finish annealing is subjected to flattening annealing after removing the unreacted annealing separator from the steel sheet surface, and then applying an insulating coating to obtain a product sheet.
  • the insulating coating is preferably a tension-applying insulating coating.
  • the non-oriented electrical steel sheet of the present invention is preferably subjected to a magnetic domain refining treatment from the viewpoint of further reducing iron loss.
  • a conventionally known method can be adopted as a method of magnetic domain refining.
  • a method of forming grooves continuously or intermittently in a direction intersecting the rolling direction by etching or the like on the surface of the steel sheet at predetermined intervals in the rolling direction ,
  • Employing a method of irradiating the surface of the steel sheet after the insulation coating is continuously or intermittently intersected with the rolling direction with an electron beam or laser beam at predetermined intervals in the rolling direction. can be done.
  • the cold-rolled sheet was subjected to decarburization annealing, which also served as primary recrystallization annealing, at 880° C. for 60 seconds in a moist atmosphere of 50 vol % H 2 -50 vol % N 2 .
  • the heating rate between 500 and 700° C. during the heating process was set to 700° C./s.
  • the surface of the steel sheet was coated with an annealing separator mainly composed of MgO, wound into a coil, and the steel sheet coil was subjected to finish annealing.
  • the temperature rising conditions between 860 and 970° C. and the annealing atmosphere in the heating process of the final annealing were changed as shown in Table 3.
  • test piece was taken from the steel plate after the finish annealing thus obtained, and the iron loss W 17/50 (iron loss when 1.7 T was excited at a frequency of 50 Hz) and the magnetic flux density B 8 (magnetizing force 800 A /m) was measured by the method described in JIS C 2550.
  • the test pieces were taken from three locations, both ends and the center of the product coil, and the highest (worst) iron loss value and lowest (worst) magnetic flux density value were taken as representative values of the coil.
  • Table 3 shows that steel sheets with low iron loss and high magnetic flux density are obtained when the heating rate in the 860 to 970° C. section of the final annealing is in the range of 0.5 to 4.0° C./hr.
  • Steel slabs having various chemical compositions shown in Table 4 were produced by continuous casting. Then, the slab was heated to a temperature of 1200° C. and hot rolled to finish a hot-rolled sheet having a thickness of 2.4 mm. Next, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1100° C. for 30 seconds, and then finished into a cold-rolled sheet having a final sheet thickness of 0.23 mm by the first cold rolling. Next, the cold-rolled sheet was subjected to decarburization annealing, which also served as primary recrystallization annealing, at 880° C. for 60 seconds in a moist atmosphere of 50 vol % H 2 -50 vol % N 2 .
  • the heating rate between 500 and 700° C. during the heating process was set to 300° C./s.
  • the surface of the steel sheet was coated with an annealing separator mainly composed of MgO, and the steel sheet wound into a coil was subjected to finish annealing.
  • the heating in the slow heating section from 860 to 970 ° C. is performed by slowly heating between 880 and 940 ° C. at a temperature rising rate of 1.0 ° C./hr for 60 hours in an N 2 atmosphere, and heating at other temperatures.
  • the temperature rate was 15°C/hr.
  • purification treatment was performed by raising the temperature to 1180° C. at a rate of 25° C./hr in a mixed atmosphere of H 2 : 75 vol %-N 2 : 25 vol %, and maintaining the temperature for 30 hr in an H 2 atmosphere.
  • test piece was taken from the steel plate after the finish annealing thus obtained, and the iron loss W 17/50 (iron loss when 1.7 T was excited at a frequency of 50 Hz) and the magnetic flux density B 8 (magnetizing force 800 A /m) was measured by the method described in JIS C 2550.
  • the test pieces were taken from three locations, both ends and the center of the product coil, and the highest (worst) iron loss value and lowest (worst) magnetic flux density value were taken as representative values of the coil.
  • Table 4 From these results, it can be seen that a grain-oriented electrical steel sheet with low core loss and high magnetic flux density can be stably obtained by using a steel material that satisfies the present invention and applying conditions that conform to the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

インヒビター形成成分を含有する鋼素材を用いて、低鉄損、高磁束密度の方向性電磁鋼板を製造する方法を提案する。mass%で、C:0.002~0.10%、Si:2.0~8.0%およびMn:0.005~1.0%を含有し、さらに、インヒビター形成成分を含有する鋼素材を1300℃以上1400℃以下の温度に加熱し、熱間圧延し、熱延板焼鈍し、冷間圧延して冷延板とし、該冷延板に一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍した後、絶縁被膜を被成して方向性電磁鋼板の製造するにあたり、上記脱炭焼鈍の加熱過程における500~700℃間を100~1000℃/sで急速加熱するとともに、上記仕上焼鈍の加熱過程の860~970℃の区間において、0.5~4.0℃/hrの昇温速度で少なくとも10hr徐加熱する。

Description

方向性電磁鋼板の製造方法
 本発明は、低鉄損かつ高磁束密度の方向性電磁鋼板の製造方法に関するものである。
 方向性電磁鋼板は、変圧器や発電機などの鉄心材料として用いられる軟磁性材料であり、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有することが特徴である。このような集合組織は、方向性電磁鋼板の製造工程の仕上焼鈍において二次再結晶を起こさせ、ゴス(Goss)方位と称される{110}<001>方位の結晶粒を優先的に巨大成長させることで形成される。
 上記の二次再結晶を起こさせるには、インヒビターと呼ばれる微細析出物を使用する技術が一般的に用いられている。たとえば、特許文献1には、インヒビターとしてMnSやMnSeを使用する方法が、特許文献2にはインヒビターとしてAlNやMnSを使用する方法が開示され、工業的に実用化されている。これらのインヒビターを用いる方法は、1300℃以上という極めて高温へのスラブ加熱を必要とするが、二次再結晶を安定して発現させる方法としては非常に有効な方法である。
 また、これらのインヒビターの働きを強化する技術として、特許文献3には、Pb,Sb,NbやTeを添加する方法が、特許文献4には、Zr,Ti,B,Nb,Ta,V,CrおよびMoを添加する方法が開示されている。さらに、特許文献5には、鋼素材に酸可溶性Al(sol.Al)を0.010~0.060%含有させて、スラブ加熱温度を低温に抑え、脱炭焼鈍工程で適正な雰囲気下で窒化処理を施すことで、仕上焼鈍における二次再結晶時に(Al,Si)Nを析出させてインヒビターとして用いる方法も提案されている。
 一方、インヒビター形成成分を含有しない鋼素材を用いて、ゴス方位粒を二次再結晶により発達させる技術が特許文献6等に開示されている。この技術は、インヒビター形成成分のような不純物を極力排除して、一次再結晶時の結晶粒界が有する粒界エネルギーの粒界方位差角依存性を顕在化させることで、インヒビターを用いずともGoss方位を有する粒を二次再結晶させる技術であり、その効果はテクスチャーインヒビションとも呼ばれている。この方法は、インヒビター形成成分を純化する処理が不要となるため、仕上焼鈍を高温化する必要がないこと、さらに、インヒビターの微細分散が不要であるため、インヒビター形成成分を固溶させるのに不可欠な高温スラブ加熱も不要となるなど、コストや製造面でのメリットが大きい。
 また、変圧器の特性を向上するには、無負荷損(エネルギーロス)を低減する必要があり、鉄心となる素材鋼板は低鉄損であることが不可欠である。方向性電磁鋼板における鉄損を低減する手法としては、Si含有量の増加、板厚の低減、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化や二次再結晶組織の細粒化などが有効であることが知られている。
 上記手法のうち、二次再結晶粒を細粒化する技術として、脱炭焼鈍時に急速加熱することで一次再結晶集合組織を改善する方法が提案されている。例えば、特許文献7には、熱延板中のAlNとしてのN量を25massppm以下に制限し、かつ、脱炭焼鈍時に加熱速度80℃/s以上で700℃以上まで加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。また、特許文献8には、最終板厚まで圧延した冷延板を脱炭焼鈍する際、PH2O/PH2が0.2以下の非酸化性雰囲気中で、100℃/s以上で700℃以上の温度に急速加熱することで、低鉄損の方向性電磁鋼板を得る技術が開示されている。
特公昭51-013469号公報 特公昭40-015644号公報 特公昭38-008214号公報 特開昭52-024116号公報 特開平03-002324号公報 特開2000-129356号公報 特開平10-130729号公報 特開平07-062436号公報
 しかしながら、上記特許文献7および8に開示された技術では、脱炭焼鈍時に急速加熱することで、鉄損は低減するが、磁束密度も低下するという問題があった。そこで、本発明の目的は、インヒビター形成成分を含有する鋼素材を用いる場合において、脱炭焼鈍時の急速加熱による磁束密度の低下を防止し、もって、低鉄損、高磁束密度の方向性電磁鋼板を製造する方法を提案することにある。
 発明者らは、上記脱炭焼鈍時の急速加熱により磁束密度が低下する原因について鋭意検討を行った。その結果、脱炭焼鈍の加熱過程における昇温速度を高める場合には、仕上焼鈍で二次再結晶が起こる温度域を徐加熱し、ゴス方位の結晶粒のみを粒成長させることで、磁束密度の低下を招くことなく、低鉄損化を実現できることを見出し、本発明を開発するに至った。
 上記知見に基づく本発明は、C:0.002~0.10mass%、Si:2.0~8.0mass%およびMn:0.005~1.0mass%を含有し、さらに、インヒビター形成成分として、下記A群またはB群の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を1300℃以上1400℃以下の温度に加熱し、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、該冷延板に一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍を施した後、絶縁被膜を被成するにあたり、上記脱炭焼鈍の加熱過程における500~700℃間を100~1000℃/sで急速加熱するとともに、上記仕上焼鈍の加熱過程の860~970℃の区間において、0.5~4.0℃/hrの昇温速度で少なくとも10hr徐加熱する方向性電磁鋼板の製造方法を提案する。
          記
 ・A群;Al:0.010~0.050mass%およびN:0.003~0.020mass%
 ・B群;Al:0.010~0.050mass%およびN:0.003~0.020mass%、Se:0.003~0.030mass%および/またはS:0.002~0.030mass%
 本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.005~1.000mass%、P:0.005~0.500mass%、Sb:0.005~0.500mass%、Sn:0.005~0.500mass%、Bi:0.005~0.500mass%、Mo:0.005~0.500mass%、Nb:0.0010~0.0100mass%、Ta:0.001~0.010mass%およびTi:0.001~0.0100mass%のうちの少なくとも1種を含有することを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法は、上記冷間圧延後のいずれかの工程で鋼板表面に圧延方向と交差する方向に溝を形成して磁区細分化処理を施すことを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法は、上記絶縁被膜を被成した鋼板表面に圧延方向と交差する方向に電子ビームまたはレーザービームを照射して磁区細分化処理を施すことを特徴とする。
 本発明によれば、仕上焼鈍における二次再結晶する温度域の昇温速度を適正化し、ゴス方位からずれた結晶粒の二次再結晶を抑制するので、脱炭焼鈍時に急速加熱する場合でも、磁束密度の低下を招くことなく低鉄損の方向性電磁鋼板を製造することが可能となる。
 まず、本発明を開発するに至った実験について説明する。
 C:0.030mass%、Si:3.0mass%、Mn:0.014mass%を含有し、かつ、Al:0.038mass%、N:0.011mass%、Se:0.022mass%およびS:0.009mass%を含有し、残部がFeおよび不可避的不純物の成分組成からなる鋼スラブを連続鋳造法で製造した。次いで、該スラブを1350℃の温度に加熱した後、熱間圧延して板厚2.4mmの熱延板に仕上げた。次いで、上記熱延板に1100℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延して1.8mmの中間板厚とし、1020℃×100秒の中間焼鈍を施した後、リバース圧延機で2回目の冷間圧延して最終板厚0.23mmの冷延板に仕上げた。次いで、上記冷延板に、50vol%H-50vol%Nの湿潤雰囲気下で、880℃×60秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、500~700℃間の昇温速度は、30℃/sおよび200℃/sの2水準とした。次いで、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、コイルに巻いた状態の鋼板を、N雰囲気下で、25℃/hrで900℃まで昇温し、上記温度に20hr保持した後、25℃/hrで970℃まで昇温し、さらに、H:50vol%-N:50vol%の混合雰囲気下で25℃/hrで1180℃まで昇温し、H雰囲気下で上記温度に5hr保持して純化処理する仕上焼鈍を施した。
 斯くして得た仕上焼鈍後の鋼板から試験片を採取し、鉄損W17/50(50Hzの周波数で1.7Tの励磁を行った場合の鉄損)と磁束密度B(磁化力800A/mにおける磁束密度)をJIS C 2550に記載の方法で測定した。なお、試験片は、製品コイルの両端部と中央部の3ヶ所から採取し、最も悪い(高い)鉄損値と最も低い(悪い)磁束密度の値をそのコイルの代表値とした。上記測定の結果を下記表1に示した。脱炭焼鈍加熱過程の500~700℃間の昇温速度が200℃/sでは、昇温速度30℃/sと比較して、鉄損値は改善傾向にあるが、磁束密度は逆に低下傾向にあることがわかる。
Figure JPOXMLDOC01-appb-T000001
 そこで、脱炭焼鈍の加熱過程における500~700℃間の昇温速度を200℃/s(一定)とし、仕上焼鈍の加熱過程における860~970℃間の昇温速度を表2のように種々に変化させた実験を行い、上記と同様にして鉄損W17/50と磁束密度Bを測定した。上記測定の結果を下記表2に示した。この結果から、仕上焼鈍の昇温速度には、低鉄損と高磁束密度を両立することができる好適範囲がある、具体的には0.5~4.0℃/hrであることがわかった。
Figure JPOXMLDOC01-appb-T000002
 上記のように、仕上焼鈍の860~970℃間の昇温速度を適正化することで、磁束密度の低下を招くことなく、脱炭焼鈍の急速加熱の鉄損低減効果を享受できる理由についてはまだ十分には解明されていないが、発明者らは、以下のように考えている。
 脱炭焼鈍の昇温速度を高めると、一次再結晶組織中のゴス方位とその近傍の再結晶粒が増加する。それにより、増加したゴス方位とその近傍の一次再結晶粒が仕上焼鈍において二次再結晶し、細粒化した二次再結晶組織となる。ここで、本発明が提案するように、860~970℃の温度範囲において0.5~4.0℃/hrで徐加熱した場合には、ゴス方位粒のその近傍粒に対する粒成長性が優位となり、二次再結晶組織の方位先鋭性が高まり、磁束密度Bが高まる。これに対し、昇温速度が0.5℃/hr未満では、ゴス方位粒とその近傍粒との粒成長性の差が小さく、二次再結晶組織の方位先鋭性が低下し、一方、昇温速度4.0℃/hrを超えると、ゴス方位とその近傍粒の成長速度がともに大幅に増加し、やはり、二次再結晶組織の方位先鋭性が低下するものと考えている。
 本発明は、上記の新規な知見に基づき、開発したものである。
 次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002~0.10mass%
 Cは、0.002mass%未満だと、Cによる粒界強化効果が失われ、スラブに割れが生じて、製造時に支障を来たしたり、表面欠陥が発生したりするおそれがある。一方、0.10mass%を超えると、脱炭焼鈍時に磁気時効が起こらない0.005mass%以下までCを低減することが困難となる。よって、Cは0.002~0.10mass%の範囲とする。好ましくは0.010~0.080mass%の範囲である。
Si:2.0~8.0mass%
 Siは、鋼の比抵抗を高めて鉄損を低減するのに必須の成分であり、2.0mass%未満では上記効果が十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延すること難しくなる。よって、Siは2.0~8.0mass%の範囲とする。好ましくは2.5~4.5mass%の範囲である。
Mn:0.005~1.0mass%
 Mnは、鋼の熱間加工性を改善するであり、0.005mass%以上含有させる必要がある。一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005~1.0mass%の範囲とする。好ましくは0.02~0.20mass%の範囲である。
 上記C,SiおよびMn以外の成分としては、仕上焼鈍において二次再結晶を発現させるために必要なインヒビター形成成分を含有する必要がある。具体的には、インヒビターとしてAlN系のインヒビターを利用するときには、AlおよびNを、それぞれAl:0.010~0.050mass%、N:0.003~0.020mass%の範囲で含有させる必要がある。好ましくは、Al:0.013~0.025mass%、N:0.005~0.010mass%の範囲である。また、AlN系とMnS・MnSe系のインヒビターを併用してもよく、その場合には、Al:0.010~0.050mass%、N:0.003~0.020mass%、S:0.002~0.030mass%および/またはSe:0.003~0.030mass%を含有させる必要がある。好ましくは、Al:0.013~0.025mass%、N:0.005~0.010mass%、S:0.004~0.015mass%および/またはSe:0.005~0.020mass%の範囲である。それぞれの含有量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上記上限値を超えると、インヒビター形成成分がスラブ加熱時に未固溶のまま残存してインヒビター効果が低減し、二次再結晶が不安定となったり、十分な鉄損特性が得られなくなったりする。
 本発明に用いる鋼素材は、上記の成分以外の残部はFeおよび不可避的不純物である。ただし、鉄損特性の改善を目的として、上記成分に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.005~1.000mass%、P:0.005~0.500mass%、Sb:0.005~0.500mass%、Sn:0.005~0.500mass%、Bi:0.005~0.500mass%、Mo:0.005~0.500mass%、Nb:0.0010~0.0100mass%、Ta:0.001~0.010mass%およびTi:0.001~0.0100mass%のうちから選ばれる1種または2種以上を適宜含有してもよい。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 本発明の方向性電磁鋼板の製造方法は、上記に説明した成分組成を有する鋼素材(スラブ)を所定の温度に加熱し、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、該冷延板に一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、鋼板表面に焼鈍分離剤を塗布した後、仕上焼鈍を施し、絶縁被膜を被成する一連の工程からなる。以下、具体的に説明する。
 上記鋼素材(スラブ)は、通常公知の精錬プロセスで上記成分組成に調整した鋼を溶製し、連続鋳造法または造塊-分塊圧延法で製造することが好ましい。なお、直接鋳造法で、厚さ100mm以下の薄スラブを製造してもよい。
 次いで、上記鋼スラブは、1300℃以上1400℃以下の温度に加熱した後、熱間圧延に供する。上記スラブ加熱温度が1300℃未満では、インヒビター形成成分が、未固溶のまま残存し、二次再結晶が不安定となったり、十分な磁気特性が得られなくなったりする。一方、1400℃を超えると、スケールロスが大きくなったり、表面欠陥が発生したりするようになる。好ましくは1310~1375℃の範囲である。なお、熱間圧延条件については、方向性電磁鋼板の熱延条件として通常の条件で行えばよく、特に制限はない。また、薄スラブの場合は、熱間圧延を省略してもよい。
 次いで、上記熱間圧延後の熱延板には、磁気特性を改善するため、熱延板焼鈍を施す。この熱延板焼は、通常公知の条件で行えばよく、特に制限はない。
 次いで、上記熱間圧延後の熱延板は、酸洗して脱スケールした後、通常公知の1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚(製品板厚)の冷延板とする。
 次いで、上記最終板厚とした冷延板は、一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、好ましい一次再結晶組織を得るとともに、鋼板中のCを磁気時効が起こらない0.0050mass%以下に低減する。この際、重要なことは、一次再結晶組織を改善し、二次再結晶粒を細粒化するため、上記脱炭焼鈍の加熱過程における500℃から700℃間の昇温速度を100~1000℃/sとして急速加熱することである。上記昇温速度が100℃/s未満では、一次再結晶組織に占める二次再結晶の核となるGoss方位粒の数が少なくなり、一方、1000℃/sを超えると、Goss方位粒以外の結晶粒の数が増加し、いずれの場合も磁気特性が低下するからである。好ましくは150~700℃/sの範囲である。なお、脱炭焼鈍の均熱条件は、脱炭を促進する観点から、湿潤雰囲気下で、800~900℃×60~300sの範囲で行うのが好ましい。
 次いで、上記脱炭焼鈍した鋼板は、鋼板表面に焼鈍分離剤を塗布、乾燥した後、コイルに巻き取り、コイル状態のまま仕上焼鈍を施し、二次再結晶させる。この際、上記仕上焼鈍では、ゴス方位の結晶粒を優先的に粒成長させ、ゴス方位からずれた二次再結晶粒の増加を抑制するため、加熱過程における860~970℃の範囲を0.5~4.0℃/hrで徐加熱することが重要である。上記昇温速度が0.5℃/hr未満では、二次再結晶組織中でのGoss方位の方位先鋭性が低下し、一方、4.0℃/hrを超えると、Goss方位とその近傍粒の成長速度が過度に増加し、二次再結晶粒のGoss方位への集積度が顕著に低下するようになるからである。好ましくは、0.7~2.0℃/hrの範囲である。なお、上記のように0.5~4.0℃/hrで徐加熱する時間は、上記効果を得るためには10hr以上確保する必要がある。好ましくは20hr以上である。また、徐加熱する区間は、10hr以上徐加熱できれば、860~970℃間の一部としてもよい。また、この区間の雰囲気は、窒素、アルゴン、あるいは、窒素とアルゴンの混合雰囲気とするのが好ましい。
 上記徐加熱過程に続いて、鋼板中の不純物を排除するため、1150~1250℃の温度に昇温したのち、該温度に5~20hr保持する純化処理を施す。これにより、鋼板中のAl、N,SおよびSe等のインヒビター形成成分は不純物レベルまで低減される。純化処理時の雰囲気は、水素が好ましいが、必要に応じて、窒素、アルゴンも使用することができる。また、純化処理温度に至るまでの昇温速度は5℃/hr以上とするのが好ましい。また、その時の雰囲気は、窒素、アルゴンまたは窒素、アルゴンと水素との混合雰囲気とすることができる。
 次いで、上記仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を鋼板表面から除去し、平坦化焼鈍を施した後、絶縁被膜を塗布して、製品板とする。上記絶縁被膜は、鉄損を低減する観点から、張力付与型の絶縁被膜とするのが好ましい。
 さらに、本発明の無方向性電磁鋼板は、より鉄損を低減する観点から、磁区細分化処理を施すことが好ましい。磁区細分化の方法としては、従来公知の方法を採用することができる。例えば、冷間圧延以降のいずれかの工程で、鋼板表面にエッチング等で圧延方向と交差する方向に連続的または断続的に、かつ、圧延方向に所定の間隔を開けて溝を形成する方法や、絶縁被膜被成後の鋼板表面に、電子ビームやレーザービームを圧延方向と交差する方向に連続的または断続的に、かつ、圧延方向に所定の間隔を開けて照射する方法等を採用することができる。
 C:0.004mass%、Si:4.2mass%、Mn:0.23mass%を含有し、かつ、Al:0.015mass%、N:0.005mass%、Se:0.004mass%およびS:0.005mass%を含有し、残部がFeおよび不可避的不純物の成分組成からなる鋼スラブを連続鋳造法で製造した。次いで、該スラブを1350℃の温度に加熱した後、熱間圧延して板厚2.4mmの熱延板に仕上げた。次いで、上記熱延板に1100℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延して1.8mmの中間板厚とし、1020℃×100秒の中間焼鈍を施した後、リバース圧延機で2回目の冷間圧延して最終板厚0.23mmの冷延板に仕上げた。次いで、上記冷延板に、50vol%H-50vol%Nの湿潤雰囲気下で、880℃×60秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、加熱過程の500~700℃間の昇温速度は、700℃/sとした。次いで、MgOを主体とする焼鈍分離剤を鋼板表面に塗布して、コイルに巻き取った後、該鋼板コイルに仕上焼鈍を施した。この際、仕上焼鈍の加熱過程における860~970℃間の昇温条件、焼鈍雰囲気を表3のように変化させた。
 斯くして得た仕上焼鈍後の鋼板から試験片を採取し、鉄損W17/50(50Hzの周波数で1.7Tの励磁を行った場合の鉄損)と磁束密度B(磁化力800A/mにおける磁束密度)をJIS C 2550に記載の方法で測定した。なお、試験片は、製品コイルの両端部と中央部の3ヶ所から採取し、最も高い(悪い)鉄損値と最も低い(悪い)磁束密度の値をそのコイルの代表値とした。上記測定の結果を下記表3に示した。この結果から、仕上焼鈍の860~970℃の区間の昇温速度が0.5~4.0℃/hrの範囲で、低鉄損かつ高磁束密度の鋼板が得られていることがわかる。
Figure JPOXMLDOC01-appb-T000003
 表4に示した種々の成分組成の有する鋼スラブを連続鋳造法で製造した。次いで、該スラブを1200℃の温度に加熱した後、熱間圧延して板厚2.4mmの熱延板に仕上げた。次いで、上記熱延板に1100℃×30秒の熱延板焼鈍を施した後、1回目の冷間圧延で最終板厚0.23mmの冷延板に仕上げた。次いで、上記冷延板に、50vol%H-50vol%Nの湿潤雰囲気下で、880℃×60秒の一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。この際、加熱過程の500~700℃間の昇温速度は、300℃/sとした。次いで、MgOを主体とする焼鈍分離剤を鋼板表面に塗布し、コイルに巻いた状態の鋼板に仕上焼鈍を施した。この際、860~970℃の徐加熱区間の加熱は、N雰囲気下で、880~940℃間を1.0℃/hrの昇温速度で60hr徐加熱し、それ以外の温度での昇温速度は15℃/hrとした。その後、H:75vol%-N:25vol%の混合雰囲気下で25℃/hrで1180℃まで昇温し、H雰囲気下で該温度に30hr保持する純化処理を施した。
Figure JPOXMLDOC01-appb-T000004
 斯くして得た仕上焼鈍後の鋼板から試験片を採取し、鉄損W17/50(50Hzの周波数で1.7Tの励磁を行った場合の鉄損)と磁束密度B(磁化力800A/mにおける磁束密度)をJIS C 2550に記載の方法で測定した。なお、試験片は、製品コイルの両端部と中央部の3ヶ所から採取し、最も高い(悪い)鉄損値と最も低い(悪い)磁束密度の値をそのコイルの代表値とした。上記測定の結果を表4中に併記した。この結果から、本発明を満たす鋼素材を用い、かつ、本発明に適合する条件を適用することで、低鉄損かつ高磁束密度の方向性電磁鋼板が安定して得られていることがわかる。

Claims (4)

  1. C:0.002~0.10mass%、Si:2.0~8.0mass%およびMn:0.005~1.0mass%を含有し、さらに、インヒビター形成成分として、下記A群またはB群の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を1300℃以上1400℃以下の温度に加熱し、熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、該冷延板に一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍を施した後、絶縁被膜を被成するにあたり、
    上記脱炭焼鈍の加熱過程における500~700℃間を100~1000℃/sで急速加熱するとともに、
    上記仕上焼鈍の加熱過程の860~970℃の区間において、0.5~4.0℃/hrの昇温速度で少なくとも10hr徐加熱する方向性電磁鋼板の製造方法。
              記
     ・A群;Al:0.010~0.050mass%およびN:0.003~0.020mass%
     ・B群;Al:0.010~0.050mass%およびN:0.003~0.020mass%、Se:0.003~0.030mass%および/またはS:0.002~0.030mass%
  2. 上記鋼素材は、上記成分組成に加えてさらに、Ni:0.01~1.50mass%、Cr:0.01~0.50mass%、Cu:0.005~1.000mass%、P:0.005~0.500mass%、Sb:0.005~0.500mass%、Sn:0.005~0.500mass%、Bi:0.005~0.500mass%、Mo:0.005~0.500mass%、Nb:0.0010~0.0100mass%、Ta:0.001~0.010mass%およびTi:0.001~0.0100mass%のうちの少なくとも1種を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3. 上記冷間圧延後のいずれかの工程で鋼板表面に圧延方向と交差する方向に溝を形成して磁区細分化処理を施すことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
  4. 上記絶縁被膜を被成した鋼板表面に圧延方向と交差する方向に電子ビームまたはレーザービームを照射して磁区細分化処理を施すことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
PCT/JP2022/014908 2021-03-31 2022-03-28 方向性電磁鋼板の製造方法 WO2022210504A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022541800A JPWO2022210504A1 (ja) 2021-03-31 2022-03-28
EP22780715.3A EP4317472A1 (en) 2021-03-31 2022-03-28 Method for manufacturing grain-oriented electromagnetic steel sheet
US18/284,334 US20240150875A1 (en) 2021-03-31 2022-03-28 Method for producing grain-oriented electrical steel sheet
CN202280024766.6A CN117062921A (zh) 2021-03-31 2022-03-28 取向性电磁钢板的制造方法
KR1020237036227A KR20230159875A (ko) 2021-03-31 2022-03-28 방향성 전자 강판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060885 2021-03-31
JP2021060885 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210504A1 true WO2022210504A1 (ja) 2022-10-06

Family

ID=83456281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014908 WO2022210504A1 (ja) 2021-03-31 2022-03-28 方向性電磁鋼板の製造方法

Country Status (6)

Country Link
US (1) US20240150875A1 (ja)
EP (1) EP4317472A1 (ja)
JP (1) JPWO2022210504A1 (ja)
KR (1) KR20230159875A (ja)
CN (1) CN117062921A (ja)
WO (1) WO2022210504A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469A (ja) 1974-06-04 1976-02-02 Voest Ag
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS58193373A (ja) * 1982-05-01 1983-11-11 Kawasaki Steel Corp 磁気特性のすぐれた一方向性珪素鋼板の製造方法
JPS59190325A (ja) * 1983-04-09 1984-10-29 Nippon Steel Corp 連続鋳造法を適用した鉄損の優れた一方向性珪素鋼板の製造法
JPH032324B2 (ja) 1983-06-21 1991-01-14 Shinko Electric Co Ltd
JPH04272166A (ja) * 1991-02-27 1992-09-28 Kawasaki Steel Corp 超低鉄損一方向性けい素鋼板の製造方法
JPH0762436B2 (ja) 1991-11-06 1995-07-05 厚一 植村 オープンシールド工法
JPH10130729A (ja) 1996-10-31 1998-05-19 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
WO2014132930A1 (ja) * 2013-02-28 2014-09-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2019163518A (ja) * 2018-03-20 2019-09-26 日本製鉄株式会社 一方向性電磁鋼板の製造方法
WO2020218329A1 (ja) * 2019-04-23 2020-10-29 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JP2983128B2 (ja) 1993-08-24 1999-11-29 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469A (ja) 1974-06-04 1976-02-02 Voest Ag
JPS5224116A (en) 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPS58193373A (ja) * 1982-05-01 1983-11-11 Kawasaki Steel Corp 磁気特性のすぐれた一方向性珪素鋼板の製造方法
JPS59190325A (ja) * 1983-04-09 1984-10-29 Nippon Steel Corp 連続鋳造法を適用した鉄損の優れた一方向性珪素鋼板の製造法
JPH032324B2 (ja) 1983-06-21 1991-01-14 Shinko Electric Co Ltd
JPH04272166A (ja) * 1991-02-27 1992-09-28 Kawasaki Steel Corp 超低鉄損一方向性けい素鋼板の製造方法
JPH0762436B2 (ja) 1991-11-06 1995-07-05 厚一 植村 オープンシールド工法
JPH10130729A (ja) 1996-10-31 1998-05-19 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
WO2014132930A1 (ja) * 2013-02-28 2014-09-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP2019163518A (ja) * 2018-03-20 2019-09-26 日本製鉄株式会社 一方向性電磁鋼板の製造方法
WO2020218329A1 (ja) * 2019-04-23 2020-10-29 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
KR20230159875A (ko) 2023-11-22
CN117062921A (zh) 2023-11-14
US20240150875A1 (en) 2024-05-09
JPWO2022210504A1 (ja) 2022-10-06
EP4317472A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP5988026B2 (ja) 方向性電磁鋼板の製造方法
KR101683693B1 (ko) 방향성 전자 강판의 제조 방법
WO2017006955A1 (ja) 方向性電磁鋼板とその製造方法
JP2014152392A (ja) 方向性電磁鋼板の製造方法
JP6617827B2 (ja) 方向性電磁鋼板の製造方法
JP6838601B2 (ja) 低鉄損方向性電磁鋼板とその製造方法
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
JP2015200002A (ja) 方向性電磁鋼板の製造方法
WO2020218329A1 (ja) 方向性電磁鋼板の製造方法
WO2019131853A1 (ja) 低鉄損方向性電磁鋼板とその製造方法
JP3392579B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3743707B2 (ja) 超高磁束密度一方向性電磁鋼板の製造方法
JP5846390B2 (ja) 方向性電磁鋼板の製造方法
JP3357602B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
JP5712652B2 (ja) 方向性電磁鋼板の製造方法
WO2022210504A1 (ja) 方向性電磁鋼板の製造方法
WO2022210503A1 (ja) 方向性電磁鋼板の製造方法
JP7463976B2 (ja) 方向性電磁鋼板の製造方法
JP6988845B2 (ja) 方向性電磁鋼板の製造方法
JP7338511B2 (ja) 方向性電磁鋼板の製造方法
JP3357615B2 (ja) 極めて鉄損が低い方向性けい素鋼板の製造方法
JPH0762437A (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3498978B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2011208196A (ja) 著しく鉄損が低い方向性電磁鋼板の製造方法
JP3061515B2 (ja) 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022541800

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024766.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18284334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317068748

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237036227

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036227

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022780715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780715

Country of ref document: EP

Effective date: 20231024

NENP Non-entry into the national phase

Ref country code: DE