WO2022210554A1 - Resin-coated aluminum alloy plate - Google Patents
Resin-coated aluminum alloy plate Download PDFInfo
- Publication number
- WO2022210554A1 WO2022210554A1 PCT/JP2022/015045 JP2022015045W WO2022210554A1 WO 2022210554 A1 WO2022210554 A1 WO 2022210554A1 JP 2022015045 W JP2022015045 W JP 2022015045W WO 2022210554 A1 WO2022210554 A1 WO 2022210554A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- aluminum alloy
- alloy plate
- coated aluminum
- polyesteramide
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 238
- 239000011347 resin Substances 0.000 title claims abstract description 238
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 109
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims abstract description 59
- -1 diol compound Chemical class 0.000 claims abstract description 39
- 239000011342 resin composition Substances 0.000 claims abstract description 38
- 239000002253 acid Substances 0.000 claims abstract description 31
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 31
- 229920003180 amino resin Polymers 0.000 claims abstract description 19
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims description 86
- 239000011248 coating agent Substances 0.000 claims description 85
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 24
- 238000010521 absorption reaction Methods 0.000 claims description 22
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 21
- 239000000194 fatty acid Substances 0.000 claims description 21
- 229930195729 fatty acid Natural products 0.000 claims description 21
- 150000004665 fatty acids Chemical class 0.000 claims description 21
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical group NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 claims description 13
- 238000012844 infrared spectroscopy analysis Methods 0.000 claims description 9
- 150000001408 amides Chemical class 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 8
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000007334 copolymerization reaction Methods 0.000 claims description 6
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 20
- 238000010409 ironing Methods 0.000 abstract description 14
- 238000000465 moulding Methods 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 28
- 238000006116 polymerization reaction Methods 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000539 dimer Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 6
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 6
- 229920001225 polyester resin Polymers 0.000 description 6
- 239000004645 polyester resin Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 150000007974 melamines Chemical class 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical group NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 2
- 238000005698 Diels-Alder reaction Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- VKONPUDBRVKQLM-UHFFFAOYSA-N cyclohexane-1,4-diol Chemical compound OC1CCC(O)CC1 VKONPUDBRVKQLM-UHFFFAOYSA-N 0.000 description 2
- 238000005237 degreasing agent Methods 0.000 description 2
- 239000013527 degreasing agent Substances 0.000 description 2
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 2
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- QQHJDPROMQRDLA-UHFFFAOYSA-N hexadecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCCCC(O)=O QQHJDPROMQRDLA-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N isopropyl alcohol Natural products CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- 150000000185 1,3-diols Chemical class 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- DWFUTNJGNBYHNN-UHFFFAOYSA-N 2,2,4-trimethylhexanedioic acid Chemical compound OC(=O)CC(C)CC(C)(C)C(O)=O DWFUTNJGNBYHNN-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- QBDAFARLDLCWAT-UHFFFAOYSA-N 2,3-dihydropyran-6-one Chemical compound O=C1OCCC=C1 QBDAFARLDLCWAT-UHFFFAOYSA-N 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JJOJFIHJIRWASH-UHFFFAOYSA-N Eicosanedioic acid Natural products OC(=O)CCCCCCCCCCCCCCCCCCC(O)=O JJOJFIHJIRWASH-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- XMSVKICKONKVNM-UHFFFAOYSA-N bicyclo[2.2.1]heptane-3,4-diamine Chemical compound C1CC2(N)C(N)CC1C2 XMSVKICKONKVNM-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 description 1
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- OUHSAXWCDWCIDW-UHFFFAOYSA-N cyclopenta-1,3-diene-1,2-diol Chemical compound OC1=C(O)C=CC1 OUHSAXWCDWCIDW-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- CJMZLCRLBNZJQR-UHFFFAOYSA-N ethyl 2-amino-4-(4-fluorophenyl)thiophene-3-carboxylate Chemical compound CCOC(=O)C1=C(N)SC=C1C1=CC=C(F)C=C1 CJMZLCRLBNZJQR-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- XVEOUOTUJBYHNL-UHFFFAOYSA-N heptane-2,4-diol Chemical compound CCCC(O)CC(C)O XVEOUOTUJBYHNL-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/088—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/09—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/26—Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
Definitions
- the present invention relates to a resin-coated aluminum alloy plate that is drawn into a cylinder or rectangular tube, and more particularly to a resin-coated aluminum alloy plate that is used in applications where high-temperature water resistance is required depending on the usage environment of the product.
- many aluminum electrolytic capacitors house a capacitor element impregnated with an electrolytic solution in a bottomed cylindrical case formed by drawing and ironing an aluminum alloy plate, and the opening is sealed with rubber or the like. Further, the outer peripheral surface is covered with a heat-shrinkable tube made of vinyl chloride resin, olefin resin, or the like for the purpose of electrical insulation and display of contents.
- a resin-coated aluminum plate is used as the aluminum alloy plate used to manufacture the bottomed cylindrical case by drawing and ironing.
- Patent Document 1 describes "a surface-treated aluminum material for insert molding that is composited with a resin containing polyamide, comprising a base material containing aluminum as a main component, and this base material
- a surface-treated aluminum material comprising a resin film laminated directly or via an underlying film on a surface-treated aluminum material, wherein the resin film contains, as a main component, a polyesteramide having a terminal hydroxyl group or amino group. is disclosed.
- Patent Document 2 describes "an aluminum alloy plate on which a chemical conversion film is formed, and a drawing and drawing made of a resin coating film formed on the surface of the chemical conversion film.
- a resin-coated aluminum alloy plate for ironing, wherein the resin coating film comprises (a) a polyester resin having a number average molecular weight of 7000 to 30000 and a glass transition temperature of ⁇ 20° C.
- a resin-coated aluminum alloy sheet for drawing and ironing, characterized by having a weight of ⁇ 30 parts by mass.” is disclosed.
- the resin-coated aluminum alloy plate of Patent Document 2 has good moldability even in severe drawing and ironing, and the problem of resin peeling does not occur.
- the resin-coated aluminum alloy plate of Patent Document 2 uses a polyester resin that is easily hydrolyzed as the coating resin, so there is a problem of poor high-temperature water resistance.
- the present invention (1) has a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
- the polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue
- the cross-linking agent (b) is an amino resin
- the thickness of the coating resin layer is 1.0 to 20.0 ⁇ m
- the present invention (2) also provides the resin-coated aluminum alloy sheet of (1), wherein the cross-linking agent (b) is an amino resin having a benzoguanamine skeleton.
- the present invention (3) also provides the resin-coated aluminum alloy sheet of (2), wherein the cross-linking agent (b) is methylated benzoguanamine.
- any one of (1) to (3), wherein the polymerized residue of dibasic acid constituting the polyesteramide resin (a) is a polymerized residue of polymerized fatty acid. provides a resin-coated aluminum alloy sheet.
- the present invention (5) is characterized in that the copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is 10:90 to 90:10 (1) to (4) To provide any resin-coated aluminum alloy sheet.
- the height of the absorption peak near 2925 cm -1 is X
- the height of the absorption peak near 1735 cm -1 is X2
- the present invention provides a resin-coated aluminum alloy sheet according to any one of (1) to (5), which satisfies the following:
- the present invention (7) is characterized in that, in infrared spectroscopic analysis (IR) of the polyesteramide resin (a), the height X2 of the absorption peak near 1645 cm -1 relative to the height X1 of the absorption peak near 1735 cm -1
- IR infrared spectroscopic analysis
- the present invention (8) is characterized in that the content of the cross-linking agent (b) is 5.0 to 30.0 parts by mass with respect to 100 parts by mass of the polyesteramide resin (a) ( A resin-coated aluminum alloy sheet according to any one of 1) to (7) is provided.
- the content of the catalyst (c) is 0.050 to 0.90 parts by mass with respect to a total of 100 parts by mass of the polyesteramide resin (a) and the cross-linking agent (b).
- the present invention provides the resin-coated aluminum alloy plate according to any one of (1) to (9), wherein the catalyst (c) is dodecylbenzenesulfonic acid.
- any one of (1) to (10) is characterized in that a cured product of the resin composition for forming a coating resin layer has a gel fraction of 4.0 to 14.0%.
- the object is to provide such a resin-coated aluminum alloy sheet.
- the resin-coated aluminum alloy plate comprises an aluminum alloy plate, a chemical conversion film formed on the surface of the aluminum alloy plate, and the coating resin formed on the surface of the chemical conversion film.
- FIG. 1 is a schematic cross-sectional view of a form example of a resin-coated aluminum alloy sheet of the present invention
- the resin-coated aluminum alloy plate of the present invention has a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
- the polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue
- the cross-linking agent (b) is an amino resin
- the thickness of the coating resin layer is 1.0 to 20.0 ⁇ m
- FIG. 1 is a schematic cross-sectional view of a form example of the resin-coated aluminum alloy sheet of the present invention.
- a resin-coated aluminum alloy plate 1 comprises a chemical conversion film 3 formed on the surface of an aluminum alloy plate (aluminum plate) 2 and a coating resin layer 4 formed on the surface of the chemical conversion film 3 .
- the resin-coated aluminum alloy plate of the embodiment shown in FIG. 1 has a chemical conversion film as a base of the coating resin layer, but in the present invention, the chemical conversion film is optional, and the coating resin layer is an aluminum alloy It may be formed directly on the surface of the plate (aluminum plate).
- the coating resin layer may be directly formed on the surface of an aluminum alloy plate (aluminum plate) washed with an organic solvent, alkali or acid.
- the resin-coated aluminum alloy plate of the present invention includes (i) an aluminum alloy plate (including an aluminum plate), a chemical conversion film formed on the surface of the aluminum alloy plate, and a chemical conversion film formed on the surface of the aluminum alloy plate. (ii) an aluminum alloy plate (for example, an aluminum alloy plate washed with an organic solvent, an alkali or an acid) (including an aluminum plate), and the aluminum alloy plate and a coating resin layer formed on the surface of the resin-coated aluminum alloy plate.
- Examples of organic solvents used for cleaning aluminum alloy plates include acetone, methylene chloride, and methyl ethyl ketone.
- Examples of alkalis include aqueous sodium hydroxide solutions and commercially available degreasing solutions for aluminum (alkali builders, chelating agents, surfactants, etc.). and the like, and examples of the acid include nitric acid, sulfuric acid, and the like.
- the aluminum alloy plate is a plate made of either aluminum or an aluminum alloy.
- the aluminum alloy plate is not particularly limited as long as it is an aluminum alloy such as 1050, 1100, 3003, 3004, 5052, 5182, etc., which is usually used for deep drawing and ironing, and is appropriately selected according to the application. .
- the thickness of the aluminum alloy plate is appropriately selected depending on the application. For example, it is about 0.2 to 0.4 ⁇ m for a capacitor case.
- the resin-coated aluminum alloy plate of the present invention has a chemical conversion film
- it is a chemical conversion film that is usually used as a base for coating the aluminum alloy plate with a resin, that is, as a base for forming a coating resin layer.
- a resin that is, as a base for forming a coating resin layer.
- Examples of chemical conversion coatings include alkali-chromate-based, chromate-based, phosphoric acid-chromate-based, zinc phosphate-based, non-chromate-based, oxide-based coatings, and more specifically.
- a mixed coating of aluminum oxide and chromium oxide is a mixed coating of aluminum oxide and chromium oxide, a mixed coating of chromium phosphate and aluminum phosphate, a zinc phosphate coating, a mixed coating of aluminum oxide and phosphate, chromium oxide and polyacrylic acid resin and a hydrated oxide coating of aluminum.
- the method for forming the chemical conversion film is not particularly limited as long as it is a method normally used for forming a chemical conversion film as a base for forming a coating resin layer on an aluminum alloy plate.
- a method normally used for forming a chemical conversion film as a base for forming a coating resin layer on an aluminum alloy plate For example, the surface of an aluminum alloy plate obtained by rolling etc. is washed with a neutral detergent, a weakly acidic detergent, a weakly alkaline detergent or a degreasing agent, etc., or etched, and the aluminum alloy obtained by rolling etc.
- a method of forming a chemical conversion film on the surface of the aluminum alloy plate by removing grease such as lubricating oil adhering to the surface of the plate and then coating the surface of the obtained degreased aluminum alloy plate. mentioned.
- the coating treatment includes phosphate chromate treatment in which a degreased aluminum alloy plate is immersed in a treatment solution containing phosphoric acid, chromic anhydride, and hydrogen fluoride; Chromate chromate treatment by immersion; Treatment of immersing a degreased aluminum alloy plate in a treatment solution containing a compound mainly composed of a zirconium compound or a titanium compound; Treatment solution containing an organic resin and a metal salt is applied to the degreased aluminum alloy plate A coating type treatment of coating and drying may be mentioned.
- the coating resin layer is made of a cured resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c). That is, the coating resin layer is obtained by thermally curing the resin composition for forming the coating resin layer.
- the resin composition for forming the coating resin layer contains a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c).
- the polyesteramide resin (a) is a resin having a polymerized dibasic acid residue, a polymerized residue of a diol compound, and a polymerized residue of a diamine compound. That is, the polyesteramide resin (a) has an ester component and an amide component.
- the polyester amide resin (a) is a resin obtained by reacting a dibasic acid with a diol compound and a diamine compound. and the amide bond resulting from the amidation reaction of the diamine compound, the polymerized residue of the dibasic acid and the polymerized residue of the diol compound are linked, and the polymerized residue of the dibasic acid and the polymerized residue of the diamine compound are linked.
- the polymerization residue and the ester component of the diol compound refer to "-O-R1-O- ” part. Further, in the present invention, the polymerization residue of the diamine compound and the amide component refer to "-NH - R2- NH—” portion.
- the dibasic acid polymerization residue in the polyesteramide resin (a) is generated by reacting the dibasic acid with a diol compound or a diamine compound. If the dibasic acid used as the starting material for polymerization is HOOC-R3-COOH, the polymerization residue of the dibasic acid refers to the portion of "--CO--R3--CO--" in the polyesteramide resin (a).
- the dibasic acid polymerization residue in the polyesteramide resin (a) is derived from the dibasic acid.
- Dibasic acids used as polymerization raw materials for the polyesteramide resin (a) include polymerized fatty acids, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, hexadecanedioic acid, eicosandioic acid, and diglycol. acid, 2,2,4-trimethyladipic acid, xylylenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid.
- a polymerized fatty acid is preferable in terms of high temperature water resistance.
- a polymerized fatty acid obtained by Diels-Alder reaction of a monobasic unsaturated fatty acid having at least one double bond or triple bond of 10 to 24 carbon atoms is used.
- natural fatty acids such as soybean oil fatty acid, tall oil fatty acid, rapeseed oil fatty acid, and refined oleic acid, linoleic acid, erucic acid, etc., are used as raw materials, and obtained by Diels-Alder reaction.
- the polymerized fatty acid is usually composed mainly of a dimer acid (dimerized fatty acid), and is obtained as a mixture of a raw material fatty acid and a trimerized or higher fatty acid.
- the polymerized fatty acid has a dimer acid (dimerized fatty acid) content of 70% by weight or more, preferably 95% by weight or more, and is hydrogenated (hydrogenation reaction) to lower the degree of unsaturation. is preferably used because of its excellent oxidation resistance, especially its low coloration at high temperatures.
- the polymer residue of the diol compound in the polyesteramide resin (a) is derived from the diol compound.
- diol compounds used as starting materials for polymerization of the polyesteramide resin (a) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and neopentyl glycol.
- 1,5-pentanediol 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,4-heptanediol, 2,2-diethyl- Aliphatic diol compounds such as 1,3-propanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, cyclopentadiene-1,2-diol, cyclohexane- Examples include alicyclic diols such as 1,3-diol,
- the diol compound ethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, cyclohexane-1,4-diol, and dimer diol are used in the resin composition for forming the coating resin layer. It is preferable in that the high-temperature water resistance of the cured product of is increased.
- the polymer residue of the diamine compound in the polyesteramide resin (a) is derived from the diamine compound.
- the diamine compound used as a polymerization raw material for the polyesteramide resin (a) include hexamethylenediamine, tetramethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, methylpentamethylenediamine, 2,2,4- or 2 ,4,4-trimethylhexamethylenediamine, aliphatic diamine compounds such as dimer diamine derived from polymerized fatty acids having 20 to 48 carbon atoms, bis-(4,4-aminocyclohexyl)methane, metaxylylenediamine, isophorone diamine , norbornanediamine, piperazine and the like.
- hexamethylenediamine, dodecamethylenediamine, bis-(4,4-aminocyclohexyl)methane, and metaxylylenediamine are preferable as the diamine compound because they are excellent in solvent solubility of the polyesteramide resin.
- the copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is preferably 10:90 to 90:10, particularly preferably 15:85 to 60:40.
- the copolymerization ratio of the ester component and the amide component in the polyesteramide resin (a) is within the above range, the drawing and ironing moldability are improved, and high-temperature water resistance is improved.
- the copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is derived from the molar ratio of the diol compound and the diamine compound in the polymerization raw materials.
- the polyesteramide resin (a) is preferably prepared with a dibasic acid and a , a diol compound and a diamine compound are preferably copolymerized. Since the polyesteramide resin (a) is obtained by copolymerizing the diol compound and the diamine compound in the polymerization raw materials at the molar ratio within the above range, the drawability is good and the high-temperature water resistance is good. become good.
- the polyesteramide resin (a) contains monobasic acids, trivalent or higher Polymerized residues of acids such as polybasic acids, polymerized residues of alcohol compounds such as monoalcohols and trivalent or higher polyhydric alcohols, monoamino compounds, and polymerization of amine compounds such as trivalent or higher polyvalent amino compounds It may have a residue or the like.
- the weight average molecular weight of the polyesteramide resin (a) is preferably 1,000 to 100,000, particularly preferably 5,000 to 50,000. When the molecular weight of the polyesteramide resin (a) is within the above range, the handleability of the paint is improved.
- the weight average molecular weight of the polyesteramide resin (a) is the styrene equivalent molecular weight in gel permeation chromatography (GPC) analysis.
- the polyesteramide resin (a) when the polyesteramide resin (a) is subjected to infrared spectroscopic analysis (IR), in the infrared absorption spectrum obtained, the height of the absorption peak near 2925 cm ⁇ 1 is X, 1735 cm ⁇ When the height of the absorption peak near 1 is X1 and the height of the absorption peak near 1645 cm ⁇ 1 is X2, the following formulas (1) and (2): 0.5 ⁇ (X1/X) ⁇ 2.0 (1) 0.5 ⁇ (X2/X) ⁇ 3.0 (2) Those satisfying the following (1') and (2'): 0.7 ⁇ (X1/X) ⁇ 1.5 (1′) 0.7 ⁇ (X2/X) ⁇ 1.5 (2′) is particularly preferred. When the polyesteramide resin (a) satisfies the above formula, drawability is improved and high-temperature water resistance is improved.
- IR infrared spectroscopic analysis
- the polyesteramide resin (a) when the polyesteramide resin (a) is subjected to infrared spectroscopic analysis (IR), in the infrared absorption spectrum obtained, the height of the absorption peak near 1735 cm ⁇ 1 is X1, 1645 cm ⁇
- the ratio of the height X2 of the absorption peak near 1645 cm -1 to the height X1 of the absorption peak near 1735 cm -1 is preferably 0.1. 25 to 6.0, more preferably 0.50 to 3.0, particularly preferably 0.50 to 1.5.
- the ratio (X2/X1) of the height X2 of the absorption peak near 1645 cm -1 to the height X1 of the absorption peak near 1735 cm -1 of the polyesteramide resin (a) is within the above range, resulting in good drawability. and high-temperature water resistance is improved.
- the cross-linking agent (b) is a component that cross-links the polyester amide resin (a) to form a cross-linked structure, thereby increasing the mechanical strength of the resin layer and improving the high-temperature water resistance and solvent resistance.
- the cross-linking agent (b) is an amino resin.
- amino resins for the cross-linking agent (b) include amino resins having a benzoguanamine skeleton, amino resins having a melamine skeleton, and the like.
- amino resins having a benzoguanamine skeleton examples include methylated benzoguanamine, butylated benzoguanamine, methylbutylated benzoguanamine, and ethylated benzoguanamine, among which methylated benzoguanamine is preferred.
- the amino resin having a melamine skeleton includes methylated melamine, butylated melamine, butylmethylated melamine, etc. Among these, methylated melamine is preferred.
- the catalyst (c) is a cross-linking reaction catalyst that promotes the cross-linking reaction.
- the catalyst (c) include dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, dodecylbenzenesulfonic acid, p-toluenesulfonic acid, phosphoric acid, etc. Among these, dodecylbenzenesulfonic acid is preferred.
- the content of the cross-linking agent (b) in the resin composition for forming the coating resin layer is preferably 5.0 to 30.0 parts by mass, particularly preferably 5.0 parts by mass, based on 100 parts by mass of the polyesteramide resin (a). ⁇ 20.0 parts by mass.
- the content of the cross-linking agent (b) in the resin composition for forming the coating resin layer is within the above range, good moldability, high-temperature water resistance, and solvent resistance are obtained.
- the content of the catalyst (c) is preferably 0.050 to 0.90 parts by mass with respect to a total of 100 parts by mass of the polyesteramide resin (a) and the cross-linking agent (b). is.
- the content of the catalyst (c) in the resin composition for forming the coating resin layer is within the above range, good moldability, high-temperature water resistance, and solvent resistance are obtained.
- the resin composition for forming the coating resin layer may contain, if necessary, a wax, a surface conditioner, an antifoaming agent, etc., in addition to the polyesteramide resin (a), the cross-linking agent (b) and the catalyst (c). can.
- the resin composition for forming the coating resin layer used in the resin-coated aluminum alloy sheet of the present invention that is, the polyesteramide resin (a), the cross-linking agent (b), the catalyst (c), and the optional components, Generally, it is dissolved or dispersed in an organic solvent to form a solution or paste, and applied to the surface of an aluminum alloy plate or an aluminum alloy plate having a chemical conversion film formed thereon.
- the organic solvent is not particularly limited, but includes aromatic hydrocarbons, alcohols, and the like.
- the amount of the organic solvent used relative to the resin composition for forming the coating resin layer is appropriately selected according to the viscosity of the resin composition for forming the coating resin layer.
- the coating resin layer is obtained by curing the coating resin layer-forming resin composition by heating.
- the curing temperature for curing the coating resin layer-forming resin composition is preferably 200 to 250°C, particularly preferably 220 to 240°C.
- the coating resin layer is, for example, a solution or paste in which a resin composition for forming a coating resin layer is dissolved or dispersed in an organic solvent, and an aluminum alloy sheet or a chemical conversion film is formed.
- the coated resin layer-forming resin composition is coated on the surface of the aluminum alloy plate, then dried to remove the organic solvent to form a coating film, and then heated at a curing temperature for a predetermined time. It is formed by curing.
- the gel fraction of the cured product of the resin composition for forming the coating resin layer is preferably 4.0 to 14.0%, more preferably 5.0 to 12.0%. Particularly preferably, it is 6.0 to 8.0%.
- the fact that the gel fraction of the cured product of the resin composition for forming the coating resin layer is within the above range indicates that the cross-linking reaction between the main resin and the cross-linking agent is progressing properly, and the resin layer has sufficient high temperature resistance. It becomes a state having water resistance and solvent resistance.
- the gel fraction of the cured product of the resin composition for forming the coating resin layer is obtained by coating and baking the resin composition for forming the coating resin layer on an aluminum alloy plate and curing the resin-coated aluminum alloy plate. is immersed in methyl ethyl ketone heated to 80 ° C. for 1 hour, and the weight loss rate per unit area before and after immersion is measured. The obtained weight loss rate is the gel fraction, which was measured by the following procedure. value. (1) Measure the resin layer weight x1 (g/m 2 ) per unit area of the resin-coated aluminum plate. The weight of the resin layer is calculated by subtracting the weight of an aluminum plate having the same material, thickness and dimensions as those used for the resin coating from the weight of the resin-coated aluminum plate.
- the thickness of the coating resin layer (the thickness of the cured product of the resin composition for forming the coating resin layer) is 1.0 to 20.0 ⁇ m, preferably 4.0 to 8.0 ⁇ m. be.
- the thickness of the cured product of the resin composition for forming the coating resin layer is within the above range, the moldability by drawing and ironing is improved.
- the thickness of the cured product of the resin composition for forming the coating resin layer is less than the above range, the corrosion resistance may be insufficient depending on the environment, and the aluminum alloy plate may corrode due to long-term use. When it exceeds, drawability and ironing formability deteriorate.
- the thickness of the coating resin layer is the thickness indicated by symbol t in FIG.
- the resin-coated aluminum alloy sheet of the present invention uses a polyesteramide resin (a) as a raw material resin for forming the coating resin layer, uses an amino resin as a cross-linking agent, and has a predetermined thickness of the coating resin layer after curing. By doing so, cracking or peeling of the coating resin layer is less likely to occur during drawing, good moldability is obtained, and peeling of the coating resin layer is less likely to occur even when exposed to a hot and humid environment, and high-temperature water resistance becomes good.
- Apps of the resin-coated aluminum alloy plate of the present invention include aluminum electrolytic capacitor cases and capacitor cases.
- Example 1 Aluminum alloy plate JIS A 3003, thickness 0.30 mm, width 200 mm, length 300 mm
- resin composition paint for forming a coating resin layer The main resin, cross-linking agent and catalyst shown in Table 1 are mixed in an organic solvent in the amounts shown in Table 1, and a resin composition paint for forming a coating resin layer is prepared.
- ⁇ Polyesteramide resin (main resin) Polymerized fatty acid (dimerization of unsaturated fatty acid having 18 carbon atoms, 1 carboxyl group, and 1 to 3 unsaturated bonds) as a dibasic acid, and dimerdiol (18 carbon atoms, 1 carboxyl group, 1 to 3 unsaturated bonds) as a diol compound.
- a diol obtained by hydrogenating a dimer acid obtained by dimerizing an unsaturated fatty acid having 1 to 3 unsaturated bonds and further reducing it) is polymerized using hexamethylenediamine as a diamine compound, and an ester component. and an amide component copolymerization ratio (molar ratio) of 40:60, a weight average molecular weight of 20,000, an infrared spectroscopic (IR) X1/X value of 1.2, an X2/X value of 0.9, X2/X1 value is 0.76 ⁇ Polyester resin (main resin)
- a commercially available polyester resin (RV600, manufactured by Byron) was used.
- ⁇ Benzoguanamine-based amino resin crosslinking agent: methylated benzoguanamine
- Melamine-based amino resin crosslinking agent
- methylated melamine ⁇ Catalyst: dodecylbenzenesulfonic acid (DDBSA)
- IR Infrared spectroscopic analysis
- the polyesteramide resin (a) is analyzed by infrared spectroscopy (IR), the height of the absorption peak near 2925 cm -1 is X, the height of the absorption peak near 1735 cm -1 is X1, and the absorption peak near 1645 cm -1 . The height was obtained as X2.
- a resin composition paint for forming a coating resin layer having a blending amount shown in Table 1 is applied to an aluminum alloy plate having a chemical conversion film formed thereon by a bar coater, and then baked and cured. A coating was formed. At this time, the coating amount of the coating resin composition for forming the coating resin layer was adjusted so that the thickness of the coating resin layer after curing would be the thickness shown in Table 1.
- the aluminum alloy plate on which the coating film of the resin composition for forming the coating resin layer is formed is heated in an air furnace until the temperature of the aluminum alloy reaches 240° C. to cure the resin composition for forming the coating resin layer. to form a coating resin layer to produce a resin-coated aluminum alloy sheet. Next, the formability and high-temperature water resistance of the obtained resin-coated aluminum alloy plate were evaluated. Table 1 shows the results.
- the resin-coated aluminum alloy plate was formed by five deep-draw cylinders each having a diameter of 10 mm and a height of 20 mm using aluminum plate forming oil. Visually observe the resin layer on the side surface after molding, "O” if there is no peeling of the resin layer on all 5 pieces, “ ⁇ ” if there is peeling on 1 to 4 resin layers, 5 A case where the resin layer was peeled off on all the pieces was evaluated as "x".
- solder flux cleaning solution was heated to 40° C. and subjected to ultrasonic cleaning for seconds, and the appearance of the resin layer before and after immersion was compared. When there was no discoloration, it was evaluated as " ⁇ "; when discoloration occurred partially, it was evaluated as " ⁇ ";
- the upper part of the amount of the catalyst is the part by mass with respect to 100 parts by mass of the main resin, and the lower part is the part by mass when the total of the main resin and the amino resin is 100 parts by mass.
- the gel fraction of the cured product is the gel fraction of the cured product of the coating resin-forming resin composition.
Landscapes
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Abstract
Provided is a resin-coated aluminum alloy plate characterized by comprising a coated resin layer formed from a cured product of a resin composition for forming the coated resin layer, the resin composition containing a polyesteramide resin (a), a crosslinking agent (b), and a catalyst (c). The polyesteramide resin (a) has a polymerized residue of a dibasic acid, a polymerized residue of a diol compound and a polymerized residue of a diamine compound, the crosslinking agent (b) is an amino resin, and the thickness of the coated resin layer is 1.0-20.0 µm. According to the present invention, a resin-coated aluminum alloy plate can be provided that is used in drawing and ironing molding and exhibits excellent moldability and excellent high-temperature water resistance.
Description
本発明は、円筒又は角筒に絞り成形される樹脂被覆アルミニウム合金板に関し、特に製品の使用環境により耐高温水性が必要とされる用途に使用される樹脂被覆アルミニウム合金板に関する。
The present invention relates to a resin-coated aluminum alloy plate that is drawn into a cylinder or rectangular tube, and more particularly to a resin-coated aluminum alloy plate that is used in applications where high-temperature water resistance is required depending on the usage environment of the product.
従来、例えば、アルミニウム電解コンデンサの多くは、アルミニウム合金板を絞り及びしごき成形した有底円筒形のケース内に、電解液を含浸させたコンデンサ素子を収納し、開口部をゴム等で封口し、さらに外周面に電気絶縁や内容物表示を目的とした塩化ビニル樹脂やオレフィン樹脂等の熱収縮性チューブで被覆された構成になっている。
Conventionally, for example, many aluminum electrolytic capacitors house a capacitor element impregnated with an electrolytic solution in a bottomed cylindrical case formed by drawing and ironing an aluminum alloy plate, and the opening is sealed with rubber or the like. Further, the outer peripheral surface is covered with a heat-shrinkable tube made of vinyl chloride resin, olefin resin, or the like for the purpose of electrical insulation and display of contents.
そして、絞り及びしごき成形による有底円筒形のケースの製造に用いられるアルミニウム合金板としては、樹脂被覆アルミニウム板が用いられる。
A resin-coated aluminum plate is used as the aluminum alloy plate used to manufacture the bottomed cylindrical case by drawing and ironing.
樹脂被覆アルミニウム板としては、例えば、特許文献1には、「ポリアミドを含有する樹脂と複合化するインサート成形用の表面処理アルミニウム材であって、アルミニウムを主成分とする基材と、この基材に直接又は下地膜を介して積層される樹脂膜とを備え、上記樹脂膜が、主成分として末端にヒドロキシル基又はアミノ基を有するポリエステルアミドを含有することを特徴とする表面処理アルミニウム材。」が開示されている。
As a resin-coated aluminum plate, for example, Patent Document 1 describes "a surface-treated aluminum material for insert molding that is composited with a resin containing polyamide, comprising a base material containing aluminum as a main component, and this base material A surface-treated aluminum material comprising a resin film laminated directly or via an underlying film on a surface-treated aluminum material, wherein the resin film contains, as a main component, a polyesteramide having a terminal hydroxyl group or amino group. is disclosed.
しかしながら、近年の電子部品の小型化により、アルミニウム電解コンデンサの小型化も求められているが、このような小型のアルミニウム電解コンデンサ用の有底円筒ケースの絞り及びしごき成形では、成形条件が過酷なため、引用文献1の表面処理アルミニウム材では、成形に耐えられず、樹脂層の剥離等が起こってしまう。
However, due to the recent miniaturization of electronic components, there is a demand for miniaturization of aluminum electrolytic capacitors. Therefore, the surface-treated aluminum material of Cited Document 1 cannot withstand molding, and peeling of the resin layer or the like occurs.
そこで、絞り成形性に優れる樹脂被覆アルミニウム合金板として、特許文献2には、「化成皮膜が形成されているアルミニウム合金板、及び該化成皮膜の表面に形成されている樹脂塗膜からなる絞り及びしごき加工用樹脂被覆アルミニウム合金板であって、該樹脂塗膜が、(a)数平均分子量が7000~30000であり且つガラス転移温度が-20℃以上であるポリエステル樹脂、(b)エポキシ樹脂、及び(c)アミノ樹脂を含有する樹脂混合物の硬化物であり、硬化前の該樹脂混合物中の該(a)ポリエステル樹脂、該(b)エポキシ樹脂及び該(c)アミノ樹脂の合計含有量を100質量部としたときの該(a)ポリエステル樹脂の含有量が50~90質量部、該(b)エポキシ樹脂の含有量が3~40質量部、該(c)アミノ樹脂の含有量が5~30質量部であることを特徴とする絞り及びしごき加工用樹脂被覆アルミニウム合金板。」が開示されている。
Therefore, as a resin-coated aluminum alloy plate having excellent drawing formability, Patent Document 2 describes "an aluminum alloy plate on which a chemical conversion film is formed, and a drawing and drawing made of a resin coating film formed on the surface of the chemical conversion film. A resin-coated aluminum alloy plate for ironing, wherein the resin coating film comprises (a) a polyester resin having a number average molecular weight of 7000 to 30000 and a glass transition temperature of −20° C. or higher, (b) an epoxy resin, and (c) a cured product of a resin mixture containing an amino resin, wherein the total content of the (a) polyester resin, the (b) epoxy resin and the (c) amino resin in the resin mixture before curing is Per 100 parts by mass, the content of the (a) polyester resin is 50 to 90 parts by mass, the content of the (b) epoxy resin is 3 to 40 parts by mass, and the content of the (c) amino resin is 5 parts by mass. A resin-coated aluminum alloy sheet for drawing and ironing, characterized by having a weight of ∼30 parts by mass.” is disclosed.
特許文献2の樹脂被覆アルミニウム合金板は、過酷な絞り及びしごき成形に対しても、成形性が良好であり、樹脂の剥離の問題は生じない。
The resin-coated aluminum alloy plate of Patent Document 2 has good moldability even in severe drawing and ironing, and the problem of resin peeling does not occur.
ところが、最近の自動車用、屋外で使用される機器用等の用途に用いられる電子部品では、使用環境が過酷であり、耐高温水性が求められるようになってきた。
However, recent electronic components used in automobiles and outdoor equipment are required to be resistant to high temperature water due to the harsh operating environment.
そして、特許文献2の樹脂被覆アルミニウム合金板では、被覆樹脂として、加水分解し易いポリエステル樹脂を用いているため、耐高温水性に劣るという問題があった。
In addition, the resin-coated aluminum alloy plate of Patent Document 2 uses a polyester resin that is easily hydrolyzed as the coating resin, so there is a problem of poor high-temperature water resistance.
従って、本発明は、絞り及びしごき成形に供される樹脂被覆アルミニウム合金板であって、絞り及びしごき成形性が良好であり且つ耐高温水性が良好である樹脂被覆アルミニウム合金板を提供することを目的とする。
Accordingly, it is an object of the present invention to provide a resin-coated aluminum alloy sheet to be subjected to drawing and ironing, which has good drawing and ironing formability and good high-temperature water resistance. aim.
上記課題は、以下の本発明によって解決される。
すなわち、本発明(1)は、ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)を含有する被覆樹脂層形成用樹脂組成物の硬化物からなる被覆樹脂層を有し、
該ポリエステルアミド樹脂(a)は、二塩基酸の重合残基と、ジオール化合物の重合残基及びジアミン化合物の重合残基と、を有し、
該架橋剤(b)が、アミノ樹脂であり、
該被覆樹脂層の厚みが、1.0~20.0μmであること、
を特徴とする樹脂被覆アルミニウム合金板を提供するものである。 The above problems are solved by the present invention described below.
That is, the present invention (1) has a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
The polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue,
The cross-linking agent (b) is an amino resin,
The thickness of the coating resin layer is 1.0 to 20.0 μm,
To provide a resin-coated aluminum alloy plate characterized by
すなわち、本発明(1)は、ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)を含有する被覆樹脂層形成用樹脂組成物の硬化物からなる被覆樹脂層を有し、
該ポリエステルアミド樹脂(a)は、二塩基酸の重合残基と、ジオール化合物の重合残基及びジアミン化合物の重合残基と、を有し、
該架橋剤(b)が、アミノ樹脂であり、
該被覆樹脂層の厚みが、1.0~20.0μmであること、
を特徴とする樹脂被覆アルミニウム合金板を提供するものである。 The above problems are solved by the present invention described below.
That is, the present invention (1) has a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
The polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue,
The cross-linking agent (b) is an amino resin,
The thickness of the coating resin layer is 1.0 to 20.0 μm,
To provide a resin-coated aluminum alloy plate characterized by
また、本発明(2)は、前記架橋剤(b)が、ベンゾグアナミン骨格を有するアミノ樹脂であることを特徴とする(1)の樹脂被覆アルミニウム合金板を提供するものである。
The present invention (2) also provides the resin-coated aluminum alloy sheet of (1), wherein the cross-linking agent (b) is an amino resin having a benzoguanamine skeleton.
また、本発明(3)は、前記架橋剤(b)が、メチル化ベンゾグアナミンであることを特徴とする(2)の樹脂被覆アルミニウム合金板を提供するものである。
The present invention (3) also provides the resin-coated aluminum alloy sheet of (2), wherein the cross-linking agent (b) is methylated benzoguanamine.
また、本発明(4)は、前記ポリエステルアミド樹脂(a)を構成する二塩基酸の重合残基が、重合脂肪酸の重合残基であることを特徴とする(1)~(3)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
Further, according to the present invention (4), any one of (1) to (3), wherein the polymerized residue of dibasic acid constituting the polyesteramide resin (a) is a polymerized residue of polymerized fatty acid. provides a resin-coated aluminum alloy sheet.
また、本発明(5)は、前記ポリエステルアミド樹脂(a)におけるエステル成分とアミド成分の共重合比(モル比)が、10:90~90:10であることを特徴とする(1)~(4)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
Further, the present invention (5) is characterized in that the copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is 10:90 to 90:10 (1) to (4) To provide any resin-coated aluminum alloy sheet.
また、本発明(6)は、前記ポリエステルアミド樹脂(a)の赤外分光分析(IR)において、2925cm-1付近の吸収ピークの高さをX、1735cm-1付近の吸収ピークの高さをX1、1645cm-1付近の吸収ピークの高さをX2としたとき、以下の式(1)及び(2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
を満たすことを特徴とする(1)~(5)いずれかの樹脂被覆アルミニウム合金板を提供するものである。 Further, in the present invention (6), in the infrared spectroscopic analysis (IR) of the polyesteramide resin (a), the height of the absorption peak near 2925 cm -1 is X, and the height of the absorption peak near 1735 cm -1 is When the height of the absorption peak near X1, 1645 cm −1 is X2, the following formulas (1) and (2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
The present invention provides a resin-coated aluminum alloy sheet according to any one of (1) to (5), which satisfies the following:
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
を満たすことを特徴とする(1)~(5)いずれかの樹脂被覆アルミニウム合金板を提供するものである。 Further, in the present invention (6), in the infrared spectroscopic analysis (IR) of the polyesteramide resin (a), the height of the absorption peak near 2925 cm -1 is X, and the height of the absorption peak near 1735 cm -1 is When the height of the absorption peak near X1, 1645 cm −1 is X2, the following formulas (1) and (2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
The present invention provides a resin-coated aluminum alloy sheet according to any one of (1) to (5), which satisfies the following:
また、本発明(7)は、前記ポリエステルアミド樹脂(a)の赤外分光分析(IR)において、1735cm-1付近の吸収ピークの高さX1に対する1645cm-1付近の吸収ピークの高さX2の比が、0.25~6.0であることを特徴とする(1)~(5)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
Further, the present invention (7) is characterized in that, in infrared spectroscopic analysis (IR) of the polyesteramide resin (a), the height X2 of the absorption peak near 1645 cm -1 relative to the height X1 of the absorption peak near 1735 cm -1 A resin-coated aluminum alloy sheet according to any one of (1) to (5) characterized by a ratio of 0.25 to 6.0.
また、本発明(8)は、前記架橋剤(b)の含有量が、前記ポリエステルアミド樹脂(a)100質量部に対し、5.0~30.0質量部であることを特徴とする(1)~(7)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
In addition, the present invention (8) is characterized in that the content of the cross-linking agent (b) is 5.0 to 30.0 parts by mass with respect to 100 parts by mass of the polyesteramide resin (a) ( A resin-coated aluminum alloy sheet according to any one of 1) to (7) is provided.
また、本発明(9)は、前記触媒(c)の含有量が、前記ポリエステルアミド樹脂(a)及び前記架橋剤(b)の合計100質量部に対し、0.050~0.90質量部であることを特徴とする(1)~(8)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
Further, in the present invention (9), the content of the catalyst (c) is 0.050 to 0.90 parts by mass with respect to a total of 100 parts by mass of the polyesteramide resin (a) and the cross-linking agent (b). A resin-coated aluminum alloy sheet according to any one of (1) to (8) characterized by:
本発明(10)は、前記触媒(c)が、ドデシルベンゼンスルホン酸であることを特徴とする(1)~(9)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
The present invention (10) provides the resin-coated aluminum alloy plate according to any one of (1) to (9), wherein the catalyst (c) is dodecylbenzenesulfonic acid.
また、本発明(11)は、前記被覆樹脂層形成用樹脂組成物の硬化物のゲル分率が、4.0~14.0%であることを特徴とする(1)~(10)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
Further, according to the present invention (11), any one of (1) to (10) is characterized in that a cured product of the resin composition for forming a coating resin layer has a gel fraction of 4.0 to 14.0%. The object is to provide such a resin-coated aluminum alloy sheet.
また、本発明(12)は、前記樹脂被覆アルミニウム合金板が、アルミニウム合金板と、該アルミニウム合金板の表面に形成されている化成皮膜と、該化成皮膜の表面に形成されている前記被覆樹脂層と、からなることを特徴とする(1)~(11)いずれかの樹脂被覆アルミニウム合金板を提供するものである。
Further, in the present invention (12), the resin-coated aluminum alloy plate comprises an aluminum alloy plate, a chemical conversion film formed on the surface of the aluminum alloy plate, and the coating resin formed on the surface of the chemical conversion film. A resin-coated aluminum alloy sheet according to any one of (1) to (11), characterized by comprising:
本発明によれば、絞り及びしごき成形に供される樹脂被覆アルミニウム合金板であって、絞り及びしごき成形性が良好であり且つ耐高温水性が良好である樹脂被覆アルミニウム合金板を提供することができる。
According to the present invention, it is possible to provide a resin-coated aluminum alloy sheet to be subjected to drawing and ironing, which has good drawing and ironing formability and good high-temperature water resistance. can.
本発明の樹脂被覆アルミニウム合金板は、ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)を含有する被覆樹脂層形成用樹脂組成物の硬化物からなる被覆樹脂層を有し、
該ポリエステルアミド樹脂(a)は、二塩基酸の重合残基と、ジオール化合物の重合残基及びジアミン化合物の重合残基と、を有し、
該架橋剤(b)が、アミノ樹脂であり、
該被覆樹脂層の厚みが、1.0~20.0μmであること、
を特徴とする樹脂被覆アルミニウム合金板である。 The resin-coated aluminum alloy plate of the present invention has a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
The polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue,
The cross-linking agent (b) is an amino resin,
The thickness of the coating resin layer is 1.0 to 20.0 μm,
A resin-coated aluminum alloy plate characterized by
該ポリエステルアミド樹脂(a)は、二塩基酸の重合残基と、ジオール化合物の重合残基及びジアミン化合物の重合残基と、を有し、
該架橋剤(b)が、アミノ樹脂であり、
該被覆樹脂層の厚みが、1.0~20.0μmであること、
を特徴とする樹脂被覆アルミニウム合金板である。 The resin-coated aluminum alloy plate of the present invention has a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
The polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue,
The cross-linking agent (b) is an amino resin,
The thickness of the coating resin layer is 1.0 to 20.0 μm,
A resin-coated aluminum alloy plate characterized by
本発明の樹脂被覆アルミニウム合金板について、図1を参照して説明する。図1は、本発明の樹脂被覆アルミニウム合金板の形態例の模式的な断面図である。図1中、樹脂被覆アルミニウム合金板1は、アルミニウム合金板(アルミニウム板)2の表面に形成されている化成皮膜3及び該化成皮膜3の表面に形成されている被覆樹脂層4からなる。なお、図1に示す形態例の樹脂被覆アルミニウム合金板は、被覆樹脂層の下地として、化成皮膜を有しているが、本発明において、化成皮膜は任意であり、被覆樹脂層は、アルミニウム合金板(アルミニウム板)の表面に直接形成されていてもよい。例えば、被覆樹脂層は、有機溶剤、アルカリ又は酸で洗浄されたアルミニウム合金板(アルミニウム板)の表面に直接形成されていてもよい。本発明の樹脂被覆アルミニウム合金板としては、(i)アルミニウム合金板(アルミニウム板を含む。)と、該アルミニウム合金板の表面に形成されている化成皮膜と、該化成皮膜の表面に形成されている被覆樹脂層と、からなる樹脂被覆アルミニウム合金板、(ii)アルミニウム合金板(例えば、有機溶剤、アルカリ又は酸で洗浄されたアルミニウム合金板)(アルミニウム板を含む。)と、該アルミニウム合金板の表面に形成されている被覆樹脂層と、からなる樹脂被覆アルミニウム合金板が挙げられる。アルミニウム合金板の洗浄に用いられる有機溶剤としては、アセトン、塩化メチレン、メチルエチルケトン等が挙げられ、また、アルカリとしては、水酸化ナトリウム水溶液、市販のアルミニウム用脱脂液(アルカリビルダー、キレート剤、界面活性剤等を含む。)等が挙げられ、また、酸としては、硝酸、硫酸等が挙げられる。
The resin-coated aluminum alloy plate of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a form example of the resin-coated aluminum alloy sheet of the present invention. In FIG. 1, a resin-coated aluminum alloy plate 1 comprises a chemical conversion film 3 formed on the surface of an aluminum alloy plate (aluminum plate) 2 and a coating resin layer 4 formed on the surface of the chemical conversion film 3 . The resin-coated aluminum alloy plate of the embodiment shown in FIG. 1 has a chemical conversion film as a base of the coating resin layer, but in the present invention, the chemical conversion film is optional, and the coating resin layer is an aluminum alloy It may be formed directly on the surface of the plate (aluminum plate). For example, the coating resin layer may be directly formed on the surface of an aluminum alloy plate (aluminum plate) washed with an organic solvent, alkali or acid. The resin-coated aluminum alloy plate of the present invention includes (i) an aluminum alloy plate (including an aluminum plate), a chemical conversion film formed on the surface of the aluminum alloy plate, and a chemical conversion film formed on the surface of the aluminum alloy plate. (ii) an aluminum alloy plate (for example, an aluminum alloy plate washed with an organic solvent, an alkali or an acid) (including an aluminum plate), and the aluminum alloy plate and a coating resin layer formed on the surface of the resin-coated aluminum alloy plate. Examples of organic solvents used for cleaning aluminum alloy plates include acetone, methylene chloride, and methyl ethyl ketone. Examples of alkalis include aqueous sodium hydroxide solutions and commercially available degreasing solutions for aluminum (alkali builders, chelating agents, surfactants, etc.). and the like, and examples of the acid include nitric acid, sulfuric acid, and the like.
本発明の樹脂被覆アルミニウム合金板において、アルミニウム合金板とは、アルミニウム又はアルミニウム合金のいずれかからなる板である。アルミニウム合金板としては、通常、1050、1100、3003、3004、5052、5182等の深絞り成形やしごき成形に用いられるアルミニウム合金であれば、特に制限されず、用途に応じて、適宜選択される。
In the resin-coated aluminum alloy plate of the present invention, the aluminum alloy plate is a plate made of either aluminum or an aluminum alloy. The aluminum alloy plate is not particularly limited as long as it is an aluminum alloy such as 1050, 1100, 3003, 3004, 5052, 5182, etc., which is usually used for deep drawing and ironing, and is appropriately selected according to the application. .
アルミニウム合金板の厚みは、用途により適宜選択される。例えば、コンデンサケース用の場合0.2~0.4μm程度である。
The thickness of the aluminum alloy plate is appropriately selected depending on the application. For example, it is about 0.2 to 0.4 μm for a capacitor case.
本発明の樹脂被覆アルミニウム合金板が化成皮膜を有する場合、アルミニウム合金板に、樹脂を被覆するための下地、すなわち、被覆樹脂層を形成させるための下地として、通常用いられている化成皮膜であれば、特に制限されない。化成皮膜としては、例えば、アルカリ-クロム酸塩系、クロム酸塩系、リン酸-クロム酸塩系、リン酸亜鉛系、非クロム酸塩系、酸化被膜系等が挙げられ、更に具体的には、アルミニウムの酸化物及びクロムの酸化物の混合被膜、リン酸クロム及びリン酸アルミニウムの混合被膜、リン酸亜鉛被膜、酸化アルミニウム及びリン酸エステルの混合被膜、クロムの酸化物及びポリアクリル酸樹脂の混合被膜、アルミニウムの水和酸化物被膜が挙げられる。
When the resin-coated aluminum alloy plate of the present invention has a chemical conversion film, it is a chemical conversion film that is usually used as a base for coating the aluminum alloy plate with a resin, that is, as a base for forming a coating resin layer. is not particularly limited. Examples of chemical conversion coatings include alkali-chromate-based, chromate-based, phosphoric acid-chromate-based, zinc phosphate-based, non-chromate-based, oxide-based coatings, and more specifically. is a mixed coating of aluminum oxide and chromium oxide, a mixed coating of chromium phosphate and aluminum phosphate, a zinc phosphate coating, a mixed coating of aluminum oxide and phosphate, chromium oxide and polyacrylic acid resin and a hydrated oxide coating of aluminum.
化成皮膜を形成させる方法としては、通常、アルミニウム合金板に被覆樹脂層を形成させるための下地としての化成皮膜の形成に用いられる方法であれば、特に制限されない。例えば、圧延等により得られたアルミニウム合金板の表面を、中性洗剤、弱酸性洗剤、弱アルカリ性洗剤又は脱脂剤等で洗浄するか、あるいは、エッチング処理して、圧延等により得られたアルミニウム合金板の表面に付着している潤滑油等の油脂分を除去し、次いで、得られた脱脂アルミニウム合金板の表面を、被膜処理することにより、アルミニウム合金板の表面に化成皮膜を形成させる方法が挙げられる。被膜処理としては、リン酸、無水クロム酸、フッ化水素を含有する処理液に、脱脂アルミニウム合金板を浸漬するリン酸クロメート処理;無水クロム酸等を含有する処理液に、脱脂アルミニウム合金板を浸漬するクロム酸クロメート処理;ジルコニウム化合物又はチタン化合物を主とする化合物を含有する処理液に、脱脂アルミニウム合金板を浸漬する処理;有機樹脂及び金属塩を含有する処理液を、脱脂アルミニウム合金板に塗布及び乾燥する塗布型処理等が挙げられる。
The method for forming the chemical conversion film is not particularly limited as long as it is a method normally used for forming a chemical conversion film as a base for forming a coating resin layer on an aluminum alloy plate. For example, the surface of an aluminum alloy plate obtained by rolling etc. is washed with a neutral detergent, a weakly acidic detergent, a weakly alkaline detergent or a degreasing agent, etc., or etched, and the aluminum alloy obtained by rolling etc. A method of forming a chemical conversion film on the surface of the aluminum alloy plate by removing grease such as lubricating oil adhering to the surface of the plate and then coating the surface of the obtained degreased aluminum alloy plate. mentioned. The coating treatment includes phosphate chromate treatment in which a degreased aluminum alloy plate is immersed in a treatment solution containing phosphoric acid, chromic anhydride, and hydrogen fluoride; Chromate chromate treatment by immersion; Treatment of immersing a degreased aluminum alloy plate in a treatment solution containing a compound mainly composed of a zirconium compound or a titanium compound; Treatment solution containing an organic resin and a metal salt is applied to the degreased aluminum alloy plate A coating type treatment of coating and drying may be mentioned.
被覆樹脂層は、ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)を含有する被覆樹脂層形成用樹脂組成物の硬化物からなる。つまり、被覆樹脂層は、該被覆樹脂層形成用樹脂組成物を熱硬化させて得られる。
The coating resin layer is made of a cured resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c). That is, the coating resin layer is obtained by thermally curing the resin composition for forming the coating resin layer.
被覆樹脂層形成用樹脂組成物は、ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)を含有する。
The resin composition for forming the coating resin layer contains a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c).
ポリエステルアミド樹脂(a)は、二塩基酸の重合残基と、ジオール化合物の重合残基及びジアミン化合物の重合残基と、を有する樹脂である。つまり、ポリエステルアミド樹脂(a)は、エステル成分と、アミド成分と、を有する。言い換えると、ポリエステルアミド樹脂(a)は、二塩基酸と、ジオール化合物及びジアミン化合物とを、反応させて得られる樹脂であり、二塩基酸とジオール化合物のエステル化反応によるエステル結合及び二塩基酸とジアミン化合物のアミド化反応によるアミド結合により、二塩基酸の重合残基とジオール化合物の重合残基が結合しており且つ二塩基酸の重合残基とジアミン化合物の重合残基が結合している樹脂である。なお、本発明において、ジオール化合物の重合残基及びエステル成分とは、重合原料のジオール化合物がHO-R1-OHであるとすると、ポリエステルアミド樹脂(a)中の「-O-R1-O-」の部分を指す。また、本発明において、ジアミン化合物の重合残基及びアミド成分とは、重合原料のジアミン化合物がNH2-R2-NH2であるとすると、ポリエステルアミド樹脂(a)中の「-NH-R2-NH-」の部分を指す。
The polyesteramide resin (a) is a resin having a polymerized dibasic acid residue, a polymerized residue of a diol compound, and a polymerized residue of a diamine compound. That is, the polyesteramide resin (a) has an ester component and an amide component. In other words, the polyester amide resin (a) is a resin obtained by reacting a dibasic acid with a diol compound and a diamine compound. and the amide bond resulting from the amidation reaction of the diamine compound, the polymerized residue of the dibasic acid and the polymerized residue of the diol compound are linked, and the polymerized residue of the dibasic acid and the polymerized residue of the diamine compound are linked. It is a resin that contains In the present invention, the polymerization residue and the ester component of the diol compound refer to "-O-R1-O- ” part. Further, in the present invention, the polymerization residue of the diamine compound and the amide component refer to "-NH - R2- NH—” portion.
ポリエステルアミド樹脂(a)中の二塩基酸の重合残基は、二塩基酸が、ジオール化合物又はジアミン化合物と反応することにより生成する。二塩基酸の重合残基とは、重合原料の二塩基酸がHOOC-R3-COOHであるとすると、ポリエステルアミド樹脂(a)中の「-CO-R3-CO-」の部分を指す。
The dibasic acid polymerization residue in the polyesteramide resin (a) is generated by reacting the dibasic acid with a diol compound or a diamine compound. If the dibasic acid used as the starting material for polymerization is HOOC-R3-COOH, the polymerization residue of the dibasic acid refers to the portion of "--CO--R3--CO--" in the polyesteramide resin (a).
ポリエステルアミド樹脂(a)中の二塩基酸の重合残基は、二塩基酸に由来する。ポリエステルアミド樹脂(a)の重合原料となる二塩基酸としては、重合脂肪酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ヘキサデカンジオン酸、エイコサンジオン酸、ジグリコール酸、2,2,4-トリメチルアジピン酸、キシリレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸が挙げられる。
The dibasic acid polymerization residue in the polyesteramide resin (a) is derived from the dibasic acid. Dibasic acids used as polymerization raw materials for the polyesteramide resin (a) include polymerized fatty acids, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, hexadecanedioic acid, eicosandioic acid, and diglycol. acid, 2,2,4-trimethyladipic acid, xylylenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid.
ポリエステルアミド樹脂(a)の重合原料となる二塩基酸としては、重合脂肪酸が、耐高温水性が高くなる点で好ましい。重合脂肪酸としては、炭素数10~24の二重結合又は三重結合を1個以上有する一塩基性不飽和脂肪酸をディールス-アルダー反応させて得られた重合脂肪酸が用いられる。例えば、重合脂肪酸としては、大豆油脂肪酸、トール油脂肪酸、菜種油脂肪酸等の天然の脂肪酸及びこれらを精製したオレイン酸、リノール酸、エルカ酸等を原料に用いてディールス-アルダー反応させて得られた重合脂肪酸が用いられる。重合脂肪酸は、通常、ダイマー酸(二量体化脂肪酸)を主成分とし、他に、原料の脂肪酸や三量体化以上の脂肪酸の混合物として得られるものである。中でも、重合脂肪酸としては、ダイマー酸(二量体化脂肪酸)含有量が70重量%以上、好ましくは95重量%以上であり、且つ、水素添加(水添反応)して不飽和度を下げたものが、耐酸化性に優れる点、特に高温域における着色が少ない点で、好適に用いられる。
As the dibasic acid that is the starting material for polymerization of the polyesteramide resin (a), a polymerized fatty acid is preferable in terms of high temperature water resistance. As the polymerized fatty acid, a polymerized fatty acid obtained by Diels-Alder reaction of a monobasic unsaturated fatty acid having at least one double bond or triple bond of 10 to 24 carbon atoms is used. For example, as the polymerized fatty acid, natural fatty acids such as soybean oil fatty acid, tall oil fatty acid, rapeseed oil fatty acid, and refined oleic acid, linoleic acid, erucic acid, etc., are used as raw materials, and obtained by Diels-Alder reaction. Polymerized fatty acids are used. The polymerized fatty acid is usually composed mainly of a dimer acid (dimerized fatty acid), and is obtained as a mixture of a raw material fatty acid and a trimerized or higher fatty acid. Among them, the polymerized fatty acid has a dimer acid (dimerized fatty acid) content of 70% by weight or more, preferably 95% by weight or more, and is hydrogenated (hydrogenation reaction) to lower the degree of unsaturation. is preferably used because of its excellent oxidation resistance, especially its low coloration at high temperatures.
ポリエステルアミド樹脂(a)中のジオール化合物の重合残基は、ジオール化合物に由来する。ポリエステルアミド樹脂(a)の重合原料となるジオール化合物としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2,4-ヘプタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオール、2-ブチル-2-エチル-1,3-プロパンジオール等の脂肪族ジオール化合物、シクロペンタジエン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等の脂環族ジオール、ダイマー酸(二量体化脂肪酸)を還元反応したダイマージオールなどが挙げられる。これらのうち、ジオール化合物としては、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、シクロヘキサン-1,4-ジオール、ダイマージオールが、被覆樹脂層形成用樹脂組成物の硬化物の耐高温水性が高くなる点で好ましい。
The polymer residue of the diol compound in the polyesteramide resin (a) is derived from the diol compound. Examples of diol compounds used as starting materials for polymerization of the polyesteramide resin (a) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and neopentyl glycol. , 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,4-heptanediol, 2,2-diethyl- Aliphatic diol compounds such as 1,3-propanediol, 2-ethyl-1,3-hexanediol, 2-butyl-2-ethyl-1,3-propanediol, cyclopentadiene-1,2-diol, cyclohexane- Examples include alicyclic diols such as 1,3-diol, cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol, and dimer diol obtained by reduction reaction of dimer acid (dimerized fatty acid). Among these, as the diol compound, ethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, cyclohexane-1,4-diol, and dimer diol are used in the resin composition for forming the coating resin layer. It is preferable in that the high-temperature water resistance of the cured product of is increased.
ポリエステルアミド樹脂(a)中のジアミン化合物の重合残基は、ジアミン化合物に由来する。ポリエステルアミド樹脂(a)の重合原料となるジアミン化合物としては、ヘキサメチレンジアミン、テトラメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メチルペンタメチレンジアミン、2,2,4-または2,4,4-トリメチルヘキサメチレンジアミン、炭素数20~48の重合脂肪酸から誘導されるダイマージアミン等の脂肪族ジアミン化合物、ビス-(4,4-アミノシクロヘキシル)メタン、メタキシリレンジアミン、イソホロンジアミン、ノルボルナンジアミン、ピペラジンなどが挙げられる。これらのうち、ジアミン化合物としては、ヘキサメチレンジアミン、ドデカメチレンジアミン、ビス-(4,4-アミノシクロヘキシル)メタン、メタキシリレンジアミンが、ポリエステルアミド樹脂の溶剤溶解性に優れる点で、好ましい。
The polymer residue of the diamine compound in the polyesteramide resin (a) is derived from the diamine compound. Examples of the diamine compound used as a polymerization raw material for the polyesteramide resin (a) include hexamethylenediamine, tetramethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, methylpentamethylenediamine, 2,2,4- or 2 ,4,4-trimethylhexamethylenediamine, aliphatic diamine compounds such as dimer diamine derived from polymerized fatty acids having 20 to 48 carbon atoms, bis-(4,4-aminocyclohexyl)methane, metaxylylenediamine, isophorone diamine , norbornanediamine, piperazine and the like. Among these, hexamethylenediamine, dodecamethylenediamine, bis-(4,4-aminocyclohexyl)methane, and metaxylylenediamine are preferable as the diamine compound because they are excellent in solvent solubility of the polyesteramide resin.
ポリエステルアミド樹脂(a)におけるエステル成分とアミド成分の共重合比(モル比)は、好ましくは10:90~90:10、特に好ましくは15:85~60:40である。ポリエステルアミド樹脂(a)におけるエステル成分とアミド成分の共重合比が上記範囲にあることにより、絞り及びしごき成形性が良好となり、且つ、耐高温水性が良好となる。
The copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is preferably 10:90 to 90:10, particularly preferably 15:85 to 60:40. When the copolymerization ratio of the ester component and the amide component in the polyesteramide resin (a) is within the above range, the drawing and ironing moldability are improved, and high-temperature water resistance is improved.
ポリエステルアミド樹脂(a)中のエステル成分とアミド成分の共重合比(モル比)は、重合原料中のジオール化合物とジアミン化合物のモル比に由来する。つまり、ポリエステルアミド樹脂(a)は、重合原料中のジオール化合物とジアミン化合物のモル比を、好ましくは10:90~90:10、特に好ましくは15:85~60:40として、二塩基酸と、ジオール化合物及びジアミン化合物と、を共重合させて得られるものが好ましい。ポリエステルアミド樹脂(a)が、重合原料中のジオール化合物とジアミン化合物のモル比を、上記範囲として共重合させて得られるものであることより、絞り成形性が良好となり、且つ、耐高温水性が良好となる。
The copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is derived from the molar ratio of the diol compound and the diamine compound in the polymerization raw materials. In other words, the polyesteramide resin (a) is preferably prepared with a dibasic acid and a , a diol compound and a diamine compound are preferably copolymerized. Since the polyesteramide resin (a) is obtained by copolymerizing the diol compound and the diamine compound in the polymerization raw materials at the molar ratio within the above range, the drawability is good and the high-temperature water resistance is good. become good.
ポリエステルアミド樹脂(a)は、本発明の効果を損なわない範囲で、二塩基酸の重合残基、ジオール化合物の重合残基及びジアミン化合物の重合残基以外に、一塩基酸や、3価以上の多塩基酸等の酸の重合残基、モノアルコールや、3価以上の多価アルコール等のアルコール化合物の重合残基、モノアミノ化合物や、3価以上の多価アミノ化合物等のアミン化合物の重合残基等を有していてもよい。
The polyesteramide resin (a) contains monobasic acids, trivalent or higher Polymerized residues of acids such as polybasic acids, polymerized residues of alcohol compounds such as monoalcohols and trivalent or higher polyhydric alcohols, monoamino compounds, and polymerization of amine compounds such as trivalent or higher polyvalent amino compounds It may have a residue or the like.
ポリエステルアミド樹脂(a)の重量平均分子量は、好ましくは1,000~100,000、特に好ましくは5,000~50,000である。ポリエステルアミド樹脂(a)の分子量が上記範囲にあることにより、塗料としたときのハンドリング性が良好となる。なお、本発明において、ポリエステルアミド樹脂(a)の重量平均分子量は、ゲル浸透型クロマトグラフィー(GPC)分析におけるスチレン換算の分子量である。
The weight average molecular weight of the polyesteramide resin (a) is preferably 1,000 to 100,000, particularly preferably 5,000 to 50,000. When the molecular weight of the polyesteramide resin (a) is within the above range, the handleability of the paint is improved. In the present invention, the weight average molecular weight of the polyesteramide resin (a) is the styrene equivalent molecular weight in gel permeation chromatography (GPC) analysis.
ポリエステルアミド樹脂(a)としては、ポリエステルアミド樹脂(a)を赤外分光分析(IR)したときに、得られる赤外吸収スペクトル中、2925cm-1付近の吸収ピークの高さをX、1735cm-1付近の吸収ピークの高さをX1、1645cm-1付近の吸収ピークの高さをX2としたとき、以下の式(1)及び(2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
を満たすものが好ましく、下記(1’)及び(2’):
0.7≦(X1/X)≦1.5 (1’)
0.7≦(X2/X)≦1.5 (2’)
を満たすものが特に好ましい。ポリエステルアミド樹脂(a)が上記式を満たすものであることにより、絞り成形性が良好となり、且つ、耐高温水性が良好となる。 As for the polyesteramide resin (a), when the polyesteramide resin (a) is subjected to infrared spectroscopic analysis (IR), in the infrared absorption spectrum obtained, the height of the absorption peak near 2925 cm −1 is X, 1735 cm − When the height of the absorption peak near 1 is X1 and the height of the absorption peak near 1645 cm −1 is X2, the following formulas (1) and (2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
Those satisfying the following (1') and (2'):
0.7≦(X1/X)≦1.5 (1′)
0.7≦(X2/X)≦1.5 (2′)
is particularly preferred. When the polyesteramide resin (a) satisfies the above formula, drawability is improved and high-temperature water resistance is improved.
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
を満たすものが好ましく、下記(1’)及び(2’):
0.7≦(X1/X)≦1.5 (1’)
0.7≦(X2/X)≦1.5 (2’)
を満たすものが特に好ましい。ポリエステルアミド樹脂(a)が上記式を満たすものであることにより、絞り成形性が良好となり、且つ、耐高温水性が良好となる。 As for the polyesteramide resin (a), when the polyesteramide resin (a) is subjected to infrared spectroscopic analysis (IR), in the infrared absorption spectrum obtained, the height of the absorption peak near 2925 cm −1 is X, 1735 cm − When the height of the absorption peak near 1 is X1 and the height of the absorption peak near 1645 cm −1 is X2, the following formulas (1) and (2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
Those satisfying the following (1') and (2'):
0.7≦(X1/X)≦1.5 (1′)
0.7≦(X2/X)≦1.5 (2′)
is particularly preferred. When the polyesteramide resin (a) satisfies the above formula, drawability is improved and high-temperature water resistance is improved.
ポリエステルアミド樹脂(a)としては、ポリエステルアミド樹脂(a)を赤外分光分析(IR)したときに、得られる赤外吸収スペクトル中、1735cm-1付近の吸収ピークの高さをX1、1645cm-1付近の吸収ピークの高さをX2としたとき、1735cm-1付近の吸収ピークの高さX1に対する1645cm-1付近の吸収ピークの高さX2の比(X2/X1)は、好ましくは0.25~6.0、より好ましくは0.50~3.0、特に好ましくは0.50~1.5である。ポリエステルアミド樹脂(a)の1735cm-1付近の吸収ピークの高さX1に対する1645cm-1付近の吸収ピークの高さX2の比(X2/X1)が上記範囲にあることにより、絞り成形性が良好となり、且つ、耐高温水性が良好となる。
As the polyesteramide resin (a), when the polyesteramide resin (a) is subjected to infrared spectroscopic analysis (IR), in the infrared absorption spectrum obtained, the height of the absorption peak near 1735 cm −1 is X1, 1645 cm − When the height of the absorption peak near 1 is X2, the ratio of the height X2 of the absorption peak near 1645 cm -1 to the height X1 of the absorption peak near 1735 cm -1 (X2/X1) is preferably 0.1. 25 to 6.0, more preferably 0.50 to 3.0, particularly preferably 0.50 to 1.5. The ratio (X2/X1) of the height X2 of the absorption peak near 1645 cm -1 to the height X1 of the absorption peak near 1735 cm -1 of the polyesteramide resin (a) is within the above range, resulting in good drawability. and high-temperature water resistance is improved.
架橋剤(b)は、ポリエステルアミド樹脂(a)を架橋し、架橋構造を形成することにより、樹脂層の機械的強度を高め、耐高温水性や耐溶剤性を向上させる成分である。
The cross-linking agent (b) is a component that cross-links the polyester amide resin (a) to form a cross-linked structure, thereby increasing the mechanical strength of the resin layer and improving the high-temperature water resistance and solvent resistance.
架橋剤(b)は、アミノ樹脂である。架橋剤(b)に係るアミノ樹脂としては、ベンゾグアナミン骨格を有するアミノ樹脂、メラミン骨格を有するアミノ樹脂等が挙げられる。
The cross-linking agent (b) is an amino resin. Examples of amino resins for the cross-linking agent (b) include amino resins having a benzoguanamine skeleton, amino resins having a melamine skeleton, and the like.
ベンゾグアナミン骨格を有するアミノ樹脂としては、メチル化ベンゾグアナミン、ブチル化ベンゾグアナミン、メチルブチル化ベンゾグアナミン、エチル化ベンゾグアナミン等が挙げられ、これらのうち、メチル化ベンゾグアナミンが好ましい。
Examples of amino resins having a benzoguanamine skeleton include methylated benzoguanamine, butylated benzoguanamine, methylbutylated benzoguanamine, and ethylated benzoguanamine, among which methylated benzoguanamine is preferred.
メラミン骨格を有するアミノ樹脂としては、メチル化メラミン、ブチル化メラミン、ブチルメチル化メラミン等が挙げられ、これらのうち、メチル化メラミンが好ましい。
The amino resin having a melamine skeleton includes methylated melamine, butylated melamine, butylmethylated melamine, etc. Among these, methylated melamine is preferred.
触媒(c)は、架橋反応を促進させる架橋反応用触媒である。触媒(c)としては、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、ドデシルベンゼンスルホン酸、パラトルエンスルホン酸、リン酸等が挙げられ、これらのうち、ドデシルベンゼンスルホン酸が好ましい。
The catalyst (c) is a cross-linking reaction catalyst that promotes the cross-linking reaction. Examples of the catalyst (c) include dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, dodecylbenzenesulfonic acid, p-toluenesulfonic acid, phosphoric acid, etc. Among these, dodecylbenzenesulfonic acid is preferred.
被覆樹脂層形成用樹脂組成物中、架橋剤(b)の含有量は、ポリエステルアミド樹脂(a)100質量部に対し、好ましくは5.0~30.0質量部、特に好ましくは5.0~20.0質量部である。被覆樹脂層形成用樹脂組成物中の架橋剤(b)の含有量が上記範囲にあることにより、成形性、耐高温水性、耐溶剤性が良好となる。
The content of the cross-linking agent (b) in the resin composition for forming the coating resin layer is preferably 5.0 to 30.0 parts by mass, particularly preferably 5.0 parts by mass, based on 100 parts by mass of the polyesteramide resin (a). ~20.0 parts by mass. When the content of the cross-linking agent (b) in the resin composition for forming the coating resin layer is within the above range, good moldability, high-temperature water resistance, and solvent resistance are obtained.
被覆樹脂層形成用樹脂組成物中、触媒(c)の含有量は、ポリエステルアミド樹脂(a)及び架橋剤(b)の合計100質量部に対し、好ましくは0.050~0.90質量部である。被覆樹脂層形成用樹脂組成物中の触媒(c)の含有量が上記範囲にあることにより、成形性、耐高温水性、耐溶剤性が良好となる。
In the resin composition for forming the coating resin layer, the content of the catalyst (c) is preferably 0.050 to 0.90 parts by mass with respect to a total of 100 parts by mass of the polyesteramide resin (a) and the cross-linking agent (b). is. When the content of the catalyst (c) in the resin composition for forming the coating resin layer is within the above range, good moldability, high-temperature water resistance, and solvent resistance are obtained.
被覆樹脂層形成用樹脂組成物は、ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)以外に、必要に応じて、ワックス、表面調整剤、消泡剤等を含有することができる。
The resin composition for forming the coating resin layer may contain, if necessary, a wax, a surface conditioner, an antifoaming agent, etc., in addition to the polyesteramide resin (a), the cross-linking agent (b) and the catalyst (c). can.
本発明の樹脂被覆アルミニウム合金板に用いられる被覆樹脂層形成用樹脂組成物、すなわち、ポリエステルアミド樹脂(a)、架橋剤(b)、触媒(c)及び必要に応じて含有される成分は、通常、有機溶媒に、溶解又は分散され、溶液状又はペースト状とされて、アルミニウム合金板又は化成皮膜が形成されたアルミニウム合金板の表面に塗布される。
The resin composition for forming the coating resin layer used in the resin-coated aluminum alloy sheet of the present invention, that is, the polyesteramide resin (a), the cross-linking agent (b), the catalyst (c), and the optional components, Generally, it is dissolved or dispersed in an organic solvent to form a solution or paste, and applied to the surface of an aluminum alloy plate or an aluminum alloy plate having a chemical conversion film formed thereon.
有機溶媒としては、特に制限されないが、芳香族炭化水素、アルコール等が挙げられる。また、被覆樹脂層形成用樹脂組成物に対する有機溶媒の使用量は、被覆樹脂層形成用樹脂組成物の粘度等により、適宜選択される。
The organic solvent is not particularly limited, but includes aromatic hydrocarbons, alcohols, and the like. In addition, the amount of the organic solvent used relative to the resin composition for forming the coating resin layer is appropriately selected according to the viscosity of the resin composition for forming the coating resin layer.
本発明の樹脂被覆アルミニウム合金板において、被覆樹脂層は、被覆樹脂層形成用樹脂組成物を加熱することにより硬化させたものである。被覆樹脂層形成用樹脂組成物を硬化させる際の硬化温度は、好ましくは200~250℃、特に好ましくは220~240℃である。
In the resin-coated aluminum alloy sheet of the present invention, the coating resin layer is obtained by curing the coating resin layer-forming resin composition by heating. The curing temperature for curing the coating resin layer-forming resin composition is preferably 200 to 250°C, particularly preferably 220 to 240°C.
本発明の樹脂被覆アルミニウム合金板において、被覆樹脂層は、例えば、被覆樹脂層形成用樹脂組成物が、有機溶媒に溶解又は分散された溶液又はペースト状物を、アルミニウム合金板又は化成皮膜が形成されたアルミニウム合金板の表面に塗布し、次いで、乾燥して有機溶媒を除去して塗膜を形成し、次いで、硬化温度で所定の時間加熱することにより、被覆樹脂層形成用樹脂組成物を硬化させることにより形成される。
In the resin-coated aluminum alloy sheet of the present invention, the coating resin layer is, for example, a solution or paste in which a resin composition for forming a coating resin layer is dissolved or dispersed in an organic solvent, and an aluminum alloy sheet or a chemical conversion film is formed. The coated resin layer-forming resin composition is coated on the surface of the aluminum alloy plate, then dried to remove the organic solvent to form a coating film, and then heated at a curing temperature for a predetermined time. It is formed by curing.
本発明の樹脂被覆アルミニウム合金板において、被覆樹脂層形成用樹脂組成物の硬化物のゲル分率は、好ましくは4.0~14.0%、より好ましくは5.0~12.0%、特に好ましくは6.0~8.0%である。被覆樹脂層形成用樹脂組成物の硬化物のゲル分率が上記範囲にあることは、主樹脂と架橋剤の架橋反応が適正に進んでいることを示しており、樹脂層が十分な耐高温水性、耐溶剤性を有する状態となる。なお、本発明において、被覆樹脂層形成用樹脂組成物の硬化物のゲル分率は、被覆樹脂層形成用樹脂組成物をアルミニウム合金板上に塗装焼付して硬化させ、その樹脂被覆アルミニウム合金板を80℃に加熱したメチルエチルケトンに1時間浸漬し、浸漬前後の単位面積当たりの重量減少率を測定することにより求められ、得られる重量減少率がゲル分率であり、以下の操作により測定された値である。
(1)樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x1(g/m2)を測定する。なお、樹脂層重量については、樹脂被覆アルミニウム板の重量から樹脂被覆に用いたものと同じ材質、厚さ及び寸法のアルミニウム板の重量を差し引いて算出する。
(2)樹脂被覆アルミニウム合金板を80℃に加熱したメチルエチルケトンに1時間浸漬する。
(3)樹脂被覆アルミニウム合金板を100℃にて15分以上乾燥する。
(4)樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x2(g/m2)を測定する。
(5)以下の式にて、ゲル分率を算出する。
ゲル分率(%)=((x1-x2)/x1)×100 In the resin-coated aluminum alloy sheet of the present invention, the gel fraction of the cured product of the resin composition for forming the coating resin layer is preferably 4.0 to 14.0%, more preferably 5.0 to 12.0%. Particularly preferably, it is 6.0 to 8.0%. The fact that the gel fraction of the cured product of the resin composition for forming the coating resin layer is within the above range indicates that the cross-linking reaction between the main resin and the cross-linking agent is progressing properly, and the resin layer has sufficient high temperature resistance. It becomes a state having water resistance and solvent resistance. In the present invention, the gel fraction of the cured product of the resin composition for forming the coating resin layer is obtained by coating and baking the resin composition for forming the coating resin layer on an aluminum alloy plate and curing the resin-coated aluminum alloy plate. is immersed in methyl ethyl ketone heated to 80 ° C. for 1 hour, and the weight loss rate per unit area before and after immersion is measured. The obtained weight loss rate is the gel fraction, which was measured by the following procedure. value.
(1) Measure the resin layer weight x1 (g/m 2 ) per unit area of the resin-coated aluminum plate. The weight of the resin layer is calculated by subtracting the weight of an aluminum plate having the same material, thickness and dimensions as those used for the resin coating from the weight of the resin-coated aluminum plate.
(2) The resin-coated aluminum alloy plate is immersed in methyl ethyl ketone heated to 80° C. for 1 hour.
(3) Dry the resin-coated aluminum alloy plate at 100° C. for 15 minutes or longer.
(4) Measure the resin layer weight x2 (g/m 2 ) per unit area of the resin-coated aluminum plate.
(5) Calculate the gel fraction by the following formula.
Gel fraction (%) = ((x1-x2)/x1) x 100
(1)樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x1(g/m2)を測定する。なお、樹脂層重量については、樹脂被覆アルミニウム板の重量から樹脂被覆に用いたものと同じ材質、厚さ及び寸法のアルミニウム板の重量を差し引いて算出する。
(2)樹脂被覆アルミニウム合金板を80℃に加熱したメチルエチルケトンに1時間浸漬する。
(3)樹脂被覆アルミニウム合金板を100℃にて15分以上乾燥する。
(4)樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x2(g/m2)を測定する。
(5)以下の式にて、ゲル分率を算出する。
ゲル分率(%)=((x1-x2)/x1)×100 In the resin-coated aluminum alloy sheet of the present invention, the gel fraction of the cured product of the resin composition for forming the coating resin layer is preferably 4.0 to 14.0%, more preferably 5.0 to 12.0%. Particularly preferably, it is 6.0 to 8.0%. The fact that the gel fraction of the cured product of the resin composition for forming the coating resin layer is within the above range indicates that the cross-linking reaction between the main resin and the cross-linking agent is progressing properly, and the resin layer has sufficient high temperature resistance. It becomes a state having water resistance and solvent resistance. In the present invention, the gel fraction of the cured product of the resin composition for forming the coating resin layer is obtained by coating and baking the resin composition for forming the coating resin layer on an aluminum alloy plate and curing the resin-coated aluminum alloy plate. is immersed in methyl ethyl ketone heated to 80 ° C. for 1 hour, and the weight loss rate per unit area before and after immersion is measured. The obtained weight loss rate is the gel fraction, which was measured by the following procedure. value.
(1) Measure the resin layer weight x1 (g/m 2 ) per unit area of the resin-coated aluminum plate. The weight of the resin layer is calculated by subtracting the weight of an aluminum plate having the same material, thickness and dimensions as those used for the resin coating from the weight of the resin-coated aluminum plate.
(2) The resin-coated aluminum alloy plate is immersed in methyl ethyl ketone heated to 80° C. for 1 hour.
(3) Dry the resin-coated aluminum alloy plate at 100° C. for 15 minutes or longer.
(4) Measure the resin layer weight x2 (g/m 2 ) per unit area of the resin-coated aluminum plate.
(5) Calculate the gel fraction by the following formula.
Gel fraction (%) = ((x1-x2)/x1) x 100
本発明の樹脂被覆アルミニウム合金板において、被覆樹脂層の厚み(被覆樹脂層形成用樹脂組成物の硬化物の厚み)は、1.0~20.0μm、好ましくは4.0~8.0μmである。被覆樹脂層形成用樹脂組成物の硬化物の厚みが上記範囲にあることにより、絞り及びしごき成形性が良好となる。一方、被覆樹脂層形成用樹脂組成物の硬化物の厚みが、上記範囲未満だと、環境によっては耐食性が不足し、長期の使用によりアルミニウム合金板が腐食する場合があり、また、上記範囲を超えると、絞り及びしごき成形性が悪くなる。なお、被覆樹脂層の厚みとは、図1中、符号tで示す厚みである。
In the resin-coated aluminum alloy plate of the present invention, the thickness of the coating resin layer (the thickness of the cured product of the resin composition for forming the coating resin layer) is 1.0 to 20.0 μm, preferably 4.0 to 8.0 μm. be. When the thickness of the cured product of the resin composition for forming the coating resin layer is within the above range, the moldability by drawing and ironing is improved. On the other hand, if the thickness of the cured product of the resin composition for forming the coating resin layer is less than the above range, the corrosion resistance may be insufficient depending on the environment, and the aluminum alloy plate may corrode due to long-term use. When it exceeds, drawability and ironing formability deteriorate. In addition, the thickness of the coating resin layer is the thickness indicated by symbol t in FIG.
本発明の樹脂被覆アルミニウム合金板は、被覆樹脂層の形成原料の樹脂として、ポリエステルアミド樹脂(a)を用い、架橋剤としてアミノ樹脂を用い、且つ、硬化後の被覆樹脂層を所定の厚みとすることにより、絞り加工時に、被覆樹脂層の割れ又は剥離が発生し難く、成形性が良好となり、且つ、高温多湿環境に曝されても、被覆樹脂層の剥離が発生し難く、耐高温水性が良好となる。
The resin-coated aluminum alloy sheet of the present invention uses a polyesteramide resin (a) as a raw material resin for forming the coating resin layer, uses an amino resin as a cross-linking agent, and has a predetermined thickness of the coating resin layer after curing. By doing so, cracking or peeling of the coating resin layer is less likely to occur during drawing, good moldability is obtained, and peeling of the coating resin layer is less likely to occur even when exposed to a hot and humid environment, and high-temperature water resistance becomes good.
本発明の樹脂被覆アルミニウム合金板の用途としては、アルミニウム電解コンデンサケース、キャパシタケース等が挙げられる。
Applications of the resin-coated aluminum alloy plate of the present invention include aluminum electrolytic capacitor cases and capacitor cases.
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
Next, the present invention will be described in more detail with reference to examples, but these are merely examples and do not limit the present invention.
(実施例1~5及び比較例1)
(1)アルミニウム合金板
JIS A 3003、厚さ0.30mm、幅200mm、長さ300mm (Examples 1 to 5 and Comparative Example 1)
(1) Aluminum alloy plate JIS A 3003, thickness 0.30 mm, width 200 mm, length 300 mm
(1)アルミニウム合金板
JIS A 3003、厚さ0.30mm、幅200mm、長さ300mm (Examples 1 to 5 and Comparative Example 1)
(1) Aluminum alloy plate JIS A 3003, thickness 0.30 mm, width 200 mm, length 300 mm
(2)化成皮膜の形成
上記アルミニウム合金板を、市販の弱アルカリ性脱脂剤ファインクリーナー4377(日本パーカライジング製、10g/L、65℃)に、1分間浸漬した後、上水で水洗して、脱脂した。次いで、アルサーフ401(日本ペイント社製)30gとアルサーフ41(日本ペイント社製)3gの混合液に、上水を加え、全量を1リットルとした、42℃の溶液に、脱脂したアルミニウム合金板を、20秒間浸漬することにより、リン酸クロメート処理を行い、化成皮膜が形成されたアルミニウム合金板を得た。この時、リン酸クロメート処理の目付け量を、クロム量で20mg/m2とした。 (2) Formation of chemical conversion film The aluminum alloy plate is immersed in a commercially available weakly alkaline degreasing agent Fine Cleaner 4377 (manufactured by Nippon Parkerizing, 10 g / L, 65 ° C.) for 1 minute, then washed with tap water and degreased. did. Next, clean water was added to a mixed solution of 30 g of Alsurf 401 (manufactured by Nippon Paint Co., Ltd.) and 3 g of Alsurf 41 (manufactured by Nippon Paint Co., Ltd.) to make thetotal amount 1 liter. , and immersed for 20 seconds to perform chromate phosphoric acid treatment to obtain an aluminum alloy plate having a chemical conversion film formed thereon. At this time, the basis weight for the chromate phosphate treatment was set to 20 mg/m 2 in terms of chromium.
上記アルミニウム合金板を、市販の弱アルカリ性脱脂剤ファインクリーナー4377(日本パーカライジング製、10g/L、65℃)に、1分間浸漬した後、上水で水洗して、脱脂した。次いで、アルサーフ401(日本ペイント社製)30gとアルサーフ41(日本ペイント社製)3gの混合液に、上水を加え、全量を1リットルとした、42℃の溶液に、脱脂したアルミニウム合金板を、20秒間浸漬することにより、リン酸クロメート処理を行い、化成皮膜が形成されたアルミニウム合金板を得た。この時、リン酸クロメート処理の目付け量を、クロム量で20mg/m2とした。 (2) Formation of chemical conversion film The aluminum alloy plate is immersed in a commercially available weakly alkaline degreasing agent Fine Cleaner 4377 (manufactured by Nippon Parkerizing, 10 g / L, 65 ° C.) for 1 minute, then washed with tap water and degreased. did. Next, clean water was added to a mixed solution of 30 g of Alsurf 401 (manufactured by Nippon Paint Co., Ltd.) and 3 g of Alsurf 41 (manufactured by Nippon Paint Co., Ltd.) to make the
(3)被覆樹脂層形成用樹脂組成物塗料の調製
表1に示す主樹脂、架橋剤及び触媒を、表1に示す配合量で有機溶媒に混合し、被覆樹脂層形成用樹脂組成物塗料を調製した。
・ポリエステルアミド樹脂(主樹脂)
二塩基酸として、重合脂肪酸(炭素数18、カルボキシル基数1、不飽和結合数1~3の不飽和肪酸の二量化物)を、ジオール化合物として、ダイマージオール(炭素数18、カルボキシル基数1、不飽和結合数1~3の不飽和肪酸を二量化したダイマー酸を水添し、更に還元して得られるジオール)を、ジアミン化合物として、ヘキサメチレンジアミンを用いて重合させたもの、エステル成分とアミド成分の共重合比(モル比)が40:60、重量平均分子量が20,000、赤外分光分析(IR)におけるX1/X値が1.2、X2/X値が0.9、X2/X1値が0.76
・ポリエステル樹脂(主樹脂)
市販のポリエステル樹脂(バイロン社製、RV600)を用いた。
・ベンゾグアナミン系アミノ樹脂(架橋剤):メチル化ベンゾグアナミン
・メラミン系アミノ樹脂(架橋剤):メチル化メラミン
・触媒:ドデシルベンゼンスルホン酸(DDBSA)
・有機溶媒:トルエン/イソプロピルアルコール=7/3 (3) Preparation of resin composition paint for forming a coating resin layer The main resin, cross-linking agent and catalyst shown in Table 1 are mixed in an organic solvent in the amounts shown in Table 1, and a resin composition paint for forming a coating resin layer is prepared. prepared.
・Polyesteramide resin (main resin)
Polymerized fatty acid (dimerization of unsaturated fatty acid having 18 carbon atoms, 1 carboxyl group, and 1 to 3 unsaturated bonds) as a dibasic acid, and dimerdiol (18 carbon atoms, 1 carboxyl group, 1 to 3 unsaturated bonds) as a diol compound. A diol obtained by hydrogenating a dimer acid obtained by dimerizing an unsaturated fatty acid having 1 to 3 unsaturated bonds and further reducing it) is polymerized using hexamethylenediamine as a diamine compound, and an ester component. and an amide component copolymerization ratio (molar ratio) of 40:60, a weight average molecular weight of 20,000, an infrared spectroscopic (IR) X1/X value of 1.2, an X2/X value of 0.9, X2/X1 value is 0.76
・Polyester resin (main resin)
A commercially available polyester resin (RV600, manufactured by Byron) was used.
・Benzoguanamine-based amino resin (crosslinking agent): methylated benzoguanamine ・Melamine-based amino resin (crosslinking agent): methylated melamine ・Catalyst: dodecylbenzenesulfonic acid (DDBSA)
・Organic solvent: toluene/isopropyl alcohol = 7/3
表1に示す主樹脂、架橋剤及び触媒を、表1に示す配合量で有機溶媒に混合し、被覆樹脂層形成用樹脂組成物塗料を調製した。
・ポリエステルアミド樹脂(主樹脂)
二塩基酸として、重合脂肪酸(炭素数18、カルボキシル基数1、不飽和結合数1~3の不飽和肪酸の二量化物)を、ジオール化合物として、ダイマージオール(炭素数18、カルボキシル基数1、不飽和結合数1~3の不飽和肪酸を二量化したダイマー酸を水添し、更に還元して得られるジオール)を、ジアミン化合物として、ヘキサメチレンジアミンを用いて重合させたもの、エステル成分とアミド成分の共重合比(モル比)が40:60、重量平均分子量が20,000、赤外分光分析(IR)におけるX1/X値が1.2、X2/X値が0.9、X2/X1値が0.76
・ポリエステル樹脂(主樹脂)
市販のポリエステル樹脂(バイロン社製、RV600)を用いた。
・ベンゾグアナミン系アミノ樹脂(架橋剤):メチル化ベンゾグアナミン
・メラミン系アミノ樹脂(架橋剤):メチル化メラミン
・触媒:ドデシルベンゼンスルホン酸(DDBSA)
・有機溶媒:トルエン/イソプロピルアルコール=7/3 (3) Preparation of resin composition paint for forming a coating resin layer The main resin, cross-linking agent and catalyst shown in Table 1 are mixed in an organic solvent in the amounts shown in Table 1, and a resin composition paint for forming a coating resin layer is prepared. prepared.
・Polyesteramide resin (main resin)
Polymerized fatty acid (dimerization of unsaturated fatty acid having 18 carbon atoms, 1 carboxyl group, and 1 to 3 unsaturated bonds) as a dibasic acid, and dimerdiol (18 carbon atoms, 1 carboxyl group, 1 to 3 unsaturated bonds) as a diol compound. A diol obtained by hydrogenating a dimer acid obtained by dimerizing an unsaturated fatty acid having 1 to 3 unsaturated bonds and further reducing it) is polymerized using hexamethylenediamine as a diamine compound, and an ester component. and an amide component copolymerization ratio (molar ratio) of 40:60, a weight average molecular weight of 20,000, an infrared spectroscopic (IR) X1/X value of 1.2, an X2/X value of 0.9, X2/X1 value is 0.76
・Polyester resin (main resin)
A commercially available polyester resin (RV600, manufactured by Byron) was used.
・Benzoguanamine-based amino resin (crosslinking agent): methylated benzoguanamine ・Melamine-based amino resin (crosslinking agent): methylated melamine ・Catalyst: dodecylbenzenesulfonic acid (DDBSA)
・Organic solvent: toluene/isopropyl alcohol = 7/3
<赤外分光分析(IR)>
ポリエステルアミド樹脂(a)を赤外分光分析(IR)し、2925cm-1付近の吸収ピークの高さをX、1735cm-1付近の吸収ピークの高さをX1、1645cm-1付近の吸収ピークの高さをX2として求めた。 <Infrared spectroscopic analysis (IR)>
The polyesteramide resin (a) is analyzed by infrared spectroscopy (IR), the height of the absorption peak near 2925 cm -1 is X, the height of the absorption peak near 1735 cm -1 is X1, and the absorption peak near 1645 cm -1 . The height was obtained as X2.
ポリエステルアミド樹脂(a)を赤外分光分析(IR)し、2925cm-1付近の吸収ピークの高さをX、1735cm-1付近の吸収ピークの高さをX1、1645cm-1付近の吸収ピークの高さをX2として求めた。 <Infrared spectroscopic analysis (IR)>
The polyesteramide resin (a) is analyzed by infrared spectroscopy (IR), the height of the absorption peak near 2925 cm -1 is X, the height of the absorption peak near 1735 cm -1 is X1, and the absorption peak near 1645 cm -1 . The height was obtained as X2.
<樹脂組成物の硬化物のゲル分率>
先ず、樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x1(g/m2)を測定した。なお、樹脂層重量については、樹脂被覆アルミニウム板の重量から樹脂被覆に用いたものと同じ材質、厚さ及び寸法のアルミニウム板の重量を差し引いて算出した。
次いで、樹脂被覆アルミニウム合金板を80℃に加熱したメチルエチルケトンに1時間浸漬した後、樹脂被覆アルミニウム合金板を100℃にて15分以上乾燥した。
次いで、樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x2(g/m2)を測定し、以下の式にて、ゲル分率を算出した。
ゲル分率(%)=((x1-x2)/x1)×100 <Gel fraction of cured product of resin composition>
First, the resin layer weight x1 (g/m 2 ) per unit area of the resin-coated aluminum plate was measured. The weight of the resin layer was calculated by subtracting the weight of an aluminum plate having the same material, thickness and dimensions as those used for the resin coating from the weight of the resin-coated aluminum plate.
Next, the resin-coated aluminum alloy plate was immersed in methyl ethyl ketone heated to 80° C. for 1 hour, and then dried at 100° C. for 15 minutes or more.
Next, the resin layer weight x2 (g/m 2 ) per unit area of the resin-coated aluminum plate was measured, and the gel fraction was calculated by the following formula.
Gel fraction (%) = ((x1-x2)/x1) x 100
先ず、樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x1(g/m2)を測定した。なお、樹脂層重量については、樹脂被覆アルミニウム板の重量から樹脂被覆に用いたものと同じ材質、厚さ及び寸法のアルミニウム板の重量を差し引いて算出した。
次いで、樹脂被覆アルミニウム合金板を80℃に加熱したメチルエチルケトンに1時間浸漬した後、樹脂被覆アルミニウム合金板を100℃にて15分以上乾燥した。
次いで、樹脂被覆アルミニウム板の単位面積当たりの樹脂層重量x2(g/m2)を測定し、以下の式にて、ゲル分率を算出した。
ゲル分率(%)=((x1-x2)/x1)×100 <Gel fraction of cured product of resin composition>
First, the resin layer weight x1 (g/m 2 ) per unit area of the resin-coated aluminum plate was measured. The weight of the resin layer was calculated by subtracting the weight of an aluminum plate having the same material, thickness and dimensions as those used for the resin coating from the weight of the resin-coated aluminum plate.
Next, the resin-coated aluminum alloy plate was immersed in methyl ethyl ketone heated to 80° C. for 1 hour, and then dried at 100° C. for 15 minutes or more.
Next, the resin layer weight x2 (g/m 2 ) per unit area of the resin-coated aluminum plate was measured, and the gel fraction was calculated by the following formula.
Gel fraction (%) = ((x1-x2)/x1) x 100
(4)被覆樹脂層の形成
表1に示す配合量の被覆樹脂層形成用樹脂組成物塗料を、化成皮膜を形成させたアルミニウム合金板に、バーコーターにて塗布し、次いで、焼付け硬化させて塗膜を形成させた。このとき、被覆樹脂層形成用樹脂組成物塗料の塗布量は、硬化後の被覆樹脂層の厚みが表1に示す厚みとなるように調節した。
次いで、被覆樹脂層形成用樹脂組成物の塗膜を形成させたアルミニウム合金板を、空気炉にてアルミニウム合金の温度が240℃になるまで加熱して、被覆樹脂層形成用樹脂組成物を硬化させて、被覆樹脂層を形成させ、樹脂被覆アルミニウム合金板を製造した。
次いで、得られた樹脂被覆アルミニウム合金板の成形性及び耐高温水性を評価した。その結果を表1に示す。 (4) Formation of Coating Resin Layer A resin composition paint for forming a coating resin layer having a blending amount shown in Table 1 is applied to an aluminum alloy plate having a chemical conversion film formed thereon by a bar coater, and then baked and cured. A coating was formed. At this time, the coating amount of the coating resin composition for forming the coating resin layer was adjusted so that the thickness of the coating resin layer after curing would be the thickness shown in Table 1.
Next, the aluminum alloy plate on which the coating film of the resin composition for forming the coating resin layer is formed is heated in an air furnace until the temperature of the aluminum alloy reaches 240° C. to cure the resin composition for forming the coating resin layer. to form a coating resin layer to produce a resin-coated aluminum alloy sheet.
Next, the formability and high-temperature water resistance of the obtained resin-coated aluminum alloy plate were evaluated. Table 1 shows the results.
表1に示す配合量の被覆樹脂層形成用樹脂組成物塗料を、化成皮膜を形成させたアルミニウム合金板に、バーコーターにて塗布し、次いで、焼付け硬化させて塗膜を形成させた。このとき、被覆樹脂層形成用樹脂組成物塗料の塗布量は、硬化後の被覆樹脂層の厚みが表1に示す厚みとなるように調節した。
次いで、被覆樹脂層形成用樹脂組成物の塗膜を形成させたアルミニウム合金板を、空気炉にてアルミニウム合金の温度が240℃になるまで加熱して、被覆樹脂層形成用樹脂組成物を硬化させて、被覆樹脂層を形成させ、樹脂被覆アルミニウム合金板を製造した。
次いで、得られた樹脂被覆アルミニウム合金板の成形性及び耐高温水性を評価した。その結果を表1に示す。 (4) Formation of Coating Resin Layer A resin composition paint for forming a coating resin layer having a blending amount shown in Table 1 is applied to an aluminum alloy plate having a chemical conversion film formed thereon by a bar coater, and then baked and cured. A coating was formed. At this time, the coating amount of the coating resin composition for forming the coating resin layer was adjusted so that the thickness of the coating resin layer after curing would be the thickness shown in Table 1.
Next, the aluminum alloy plate on which the coating film of the resin composition for forming the coating resin layer is formed is heated in an air furnace until the temperature of the aluminum alloy reaches 240° C. to cure the resin composition for forming the coating resin layer. to form a coating resin layer to produce a resin-coated aluminum alloy sheet.
Next, the formability and high-temperature water resistance of the obtained resin-coated aluminum alloy plate were evaluated. Table 1 shows the results.
<成形性>
樹脂被覆アルミニウム合金板を、アルミニウム板用成形油を用いて、φ10mm、高さ20mmに、それぞれ5個の円筒深絞り成形をした。成形後の側面の樹脂層を目視観察して、5個全部に樹脂層の剥離がなかった場合を「〇」、1個~4個の樹脂層に剥離があった場合を「△」、5個全部に樹脂層の剥離があった場合を「×」とした。 <Moldability>
The resin-coated aluminum alloy plate was formed by five deep-draw cylinders each having a diameter of 10 mm and a height of 20 mm using aluminum plate forming oil. Visually observe the resin layer on the side surface after molding, "O" if there is no peeling of the resin layer on all 5 pieces, "△" if there is peeling on 1 to 4 resin layers, 5 A case where the resin layer was peeled off on all the pieces was evaluated as "x".
樹脂被覆アルミニウム合金板を、アルミニウム板用成形油を用いて、φ10mm、高さ20mmに、それぞれ5個の円筒深絞り成形をした。成形後の側面の樹脂層を目視観察して、5個全部に樹脂層の剥離がなかった場合を「〇」、1個~4個の樹脂層に剥離があった場合を「△」、5個全部に樹脂層の剥離があった場合を「×」とした。 <Moldability>
The resin-coated aluminum alloy plate was formed by five deep-draw cylinders each having a diameter of 10 mm and a height of 20 mm using aluminum plate forming oil. Visually observe the resin layer on the side surface after molding, "O" if there is no peeling of the resin layer on all 5 pieces, "△" if there is peeling on 1 to 4 resin layers, 5 A case where the resin layer was peeled off on all the pieces was evaluated as "x".
<耐溶剤性>
半田フラックス洗浄液を40℃に加熱して、秒間超音波洗浄し、浸漬前後の樹脂層外観を比較した。変色がなかった場合を「○」、部分的に変色が発生した場合「△」、全面に変色が発生した場合「×」とした。 <Solvent resistance>
The solder flux cleaning solution was heated to 40° C. and subjected to ultrasonic cleaning for seconds, and the appearance of the resin layer before and after immersion was compared. When there was no discoloration, it was evaluated as "◯"; when discoloration occurred partially, it was evaluated as "Δ";
半田フラックス洗浄液を40℃に加熱して、秒間超音波洗浄し、浸漬前後の樹脂層外観を比較した。変色がなかった場合を「○」、部分的に変色が発生した場合「△」、全面に変色が発生した場合「×」とした。 <Solvent resistance>
The solder flux cleaning solution was heated to 40° C. and subjected to ultrasonic cleaning for seconds, and the appearance of the resin layer before and after immersion was compared. When there was no discoloration, it was evaluated as "◯"; when discoloration occurred partially, it was evaluated as "Δ";
<耐高温水性>
樹脂被覆アルミニウム合金板を、プレッシャークッカーを用いて、120℃にて加圧水蒸気中48時間暴露した。試験後の側面の樹脂層を目視観察して、変化がなかった場合を「〇」、変色が発生した場合を「△」、変色しさらに樹脂層に凹凸が発生した場合を「×」とした。 <High temperature water resistance>
A resin-coated aluminum alloy plate was exposed to pressurized steam at 120° C. for 48 hours using a pressure cooker. The resin layer on the side surface after the test was visually observed, and the case where there was no change was indicated as "○", the case where discoloration occurred was indicated as "△", and the case where the resin layer was discolored and unevenness occurred was indicated as "×". .
樹脂被覆アルミニウム合金板を、プレッシャークッカーを用いて、120℃にて加圧水蒸気中48時間暴露した。試験後の側面の樹脂層を目視観察して、変化がなかった場合を「〇」、変色が発生した場合を「△」、変色しさらに樹脂層に凹凸が発生した場合を「×」とした。 <High temperature water resistance>
A resin-coated aluminum alloy plate was exposed to pressurized steam at 120° C. for 48 hours using a pressure cooker. The resin layer on the side surface after the test was visually observed, and the case where there was no change was indicated as "○", the case where discoloration occurred was indicated as "△", and the case where the resin layer was discolored and unevenness occurred was indicated as "×". .
なお、表1中、触媒量の上段は主樹脂100質量部に対する質量部であり、下段は主樹脂及びアミノ樹脂の合計を100質量部としたときの質量部である。また、硬化物のゲル分率とは、被覆樹脂形成用樹脂組成物の硬化物のゲル分率である。
In addition, in Table 1, the upper part of the amount of the catalyst is the part by mass with respect to 100 parts by mass of the main resin, and the lower part is the part by mass when the total of the main resin and the amino resin is 100 parts by mass. Moreover, the gel fraction of the cured product is the gel fraction of the cured product of the coating resin-forming resin composition.
1 樹脂被覆アルミニウム合金板
2 アルミニウム合金板(アルミニウム板)
3 化成皮膜
4 被覆樹脂層 1 resin-coatedaluminum alloy plate 2 aluminum alloy plate (aluminum plate)
3Chemical conversion film 4 Coating resin layer
2 アルミニウム合金板(アルミニウム板)
3 化成皮膜
4 被覆樹脂層 1 resin-coated
3
Claims (12)
- ポリエステルアミド樹脂(a)、架橋剤(b)及び触媒(c)を含有する被覆樹脂層形成用樹脂組成物の硬化物からなる被覆樹脂層を有し、
該ポリエステルアミド樹脂(a)は、二塩基酸の重合残基と、ジオール化合物の重合残基及びジアミン化合物の重合残基と、を有し、
該架橋剤(b)が、アミノ樹脂であり、
該被覆樹脂層の厚みが、1.0~20.0μmであること、
を特徴とする樹脂被覆アルミニウム合金板。 Having a coating resin layer made of a cured product of a resin composition for forming a coating resin layer containing a polyesteramide resin (a), a cross-linking agent (b) and a catalyst (c),
The polyesteramide resin (a) has a dibasic acid polymerized residue, a diol compound polymerized residue, and a diamine compound polymerized residue,
The cross-linking agent (b) is an amino resin,
The thickness of the coating resin layer is 1.0 to 20.0 μm,
A resin-coated aluminum alloy plate characterized by: - 前記架橋剤(b)が、ベンゾグアナミン骨格を有するアミノ樹脂であることを特徴とする請求項1記載の樹脂被覆アルミニウム合金板。 The resin-coated aluminum alloy plate according to claim 1, wherein the cross-linking agent (b) is an amino resin having a benzoguanamine skeleton.
- 前記架橋剤(b)が、メチル化ベンゾグアナミンであることを特徴とする請求項2記載の樹脂被覆アルミニウム合金板。 The resin-coated aluminum alloy plate according to claim 2, wherein the cross-linking agent (b) is methylated benzoguanamine.
- 前記ポリエステルアミド樹脂(a)を構成する二塩基酸の重合残基が、重合脂肪酸の重合残基であることを特徴とする請求項1~3いずれか1項記載の樹脂被覆アルミニウム合金板。 The resin-coated aluminum alloy plate according to any one of claims 1 to 3, wherein the polymerized residue of dibasic acid constituting the polyesteramide resin (a) is a polymerized residue of polymerized fatty acid.
- 前記ポリエステルアミド樹脂(a)におけるエステル成分とアミド成分の共重合比(モル比)が、10:90~90:10であることを特徴とする請求項1~4いずれか1項記載の樹脂被覆アルミニウム合金板。 The resin coating according to any one of claims 1 to 4, wherein the copolymerization ratio (molar ratio) of the ester component and the amide component in the polyesteramide resin (a) is 10:90 to 90:10. Aluminum alloy plate.
- 前記ポリエステルアミド樹脂(a)の赤外分光分析(IR)において、2925cm-1付近の吸収ピークの高さをX、1735cm-1付近の吸収ピークの高さをX1、1645cm-1付近の吸収ピークの高さをX2としたとき、以下の式(1)及び(2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
を満たすことを特徴とする請求項1~5いずれか1項記載の樹脂被覆アルミニウム合金板。 In the infrared spectroscopic analysis (IR) of the polyesteramide resin (a), the height of the absorption peak near 2925 cm −1 is X, the height of the absorption peak near 1735 cm −1 is X1, and the absorption peak near 1645 cm −1 When the height of is X2, the following equations (1) and (2):
0.5≦(X1/X)≦2.0 (1)
0.5≦(X2/X)≦3.0 (2)
The resin-coated aluminum alloy plate according to any one of claims 1 to 5, wherein - 前記ポリエステルアミド樹脂(a)の赤外分光分析(IR)において、1735cm-1付近の吸収ピークの高さX1に対する1645cm-1付近の吸収ピークの高さX2の比(X2/X1)が、0.25~6.0であることを特徴とする請求項1~5いずれか1項記載の樹脂被覆アルミニウム合金板。 In the infrared spectroscopic analysis (IR) of the polyesteramide resin (a), the ratio (X2/X1) of the absorption peak height X2 near 1645 cm- 1 to the absorption peak height X1 near 1735 cm -1 is 0. 6. The resin-coated aluminum alloy sheet according to any one of claims 1 to 5, characterized in that it has a 0.25 to 6.0.
- 前記架橋剤(b)の含有量が、前記ポリエステルアミド樹脂(a)100質量部に対し、5.0~30.0質量部であることを特徴とする請求項1~7いずれか1項記載の樹脂被覆アルミニウム合金板。 8. The content of the cross-linking agent (b) is 5.0 to 30.0 parts by mass with respect to 100 parts by mass of the polyesteramide resin (a). resin-coated aluminum alloy plate.
- 前記触媒(c)の含有量が、前記ポリエステルアミド樹脂(a)及び前記架橋剤(b)の合計100質量部に対し、0.050~0.90質量部であることを特徴とする請求項1~8いずれか1項記載の樹脂被覆アルミニウム合金板。 The content of the catalyst (c) is 0.050 to 0.90 parts by mass with respect to a total of 100 parts by mass of the polyesteramide resin (a) and the cross-linking agent (b). 9. The resin-coated aluminum alloy plate according to any one of 1 to 8.
- 前記触媒(c)が、ドデシルベンゼンスルホン酸であることを特徴とする請求項1~9いずれか1項記載の樹脂被覆アルミニウム合金板。 The resin-coated aluminum alloy plate according to any one of claims 1 to 9, wherein the catalyst (c) is dodecylbenzenesulfonic acid.
- 前記被覆樹脂層形成用樹脂組成物の硬化物のゲル分率が、4.0~14.0%であることを特徴とする請求項1~10いずれか1項記載の樹脂被覆アルミニウム合金板。 The resin-coated aluminum alloy plate according to any one of claims 1 to 10, wherein the cured product of the resin composition for forming the coating resin layer has a gel fraction of 4.0 to 14.0%.
- 前記樹脂被覆アルミニウム合金板が、アルミニウム合金板と、該アルミニウム合金板の表面に形成されている化成皮膜と、該化成皮膜の表面に形成されている前記被覆樹脂層と、からなることを特徴とする請求項1~11いずれか1項記載の樹脂被覆アルミニウム合金板。 The resin-coated aluminum alloy plate comprises an aluminum alloy plate, a chemical conversion film formed on the surface of the aluminum alloy plate, and the coating resin layer formed on the surface of the chemical conversion film. The resin-coated aluminum alloy plate according to any one of claims 1 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-060253 | 2021-03-31 | ||
JP2021060253A JP2022156517A (en) | 2021-03-31 | 2021-03-31 | Resin-coated aluminum alloy sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210554A1 true WO2022210554A1 (en) | 2022-10-06 |
Family
ID=83456347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015045 WO2022210554A1 (en) | 2021-03-31 | 2022-03-28 | Resin-coated aluminum alloy plate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022156517A (en) |
WO (1) | WO2022210554A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003206428A (en) * | 2002-01-10 | 2003-07-22 | T & K Toka Co Ltd | Printing ink composition using polyester-amide copolymer |
JP2016215630A (en) * | 2015-05-18 | 2016-12-22 | 株式会社神戸製鋼所 | Surface-treated aluminum material and method for producing the same, and composite molding and method for producing the same |
CN106541643A (en) * | 2016-10-09 | 2017-03-29 | 浙江大学 | A kind of overlay film aluminium sheet and preparation method thereof |
-
2021
- 2021-03-31 JP JP2021060253A patent/JP2022156517A/en active Pending
-
2022
- 2022-03-28 WO PCT/JP2022/015045 patent/WO2022210554A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003206428A (en) * | 2002-01-10 | 2003-07-22 | T & K Toka Co Ltd | Printing ink composition using polyester-amide copolymer |
JP2016215630A (en) * | 2015-05-18 | 2016-12-22 | 株式会社神戸製鋼所 | Surface-treated aluminum material and method for producing the same, and composite molding and method for producing the same |
CN106541643A (en) * | 2016-10-09 | 2017-03-29 | 浙江大学 | A kind of overlay film aluminium sheet and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2022156517A (en) | 2022-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5194465B2 (en) | Painted steel sheet, processed product, thin panel for TV, and method for producing painted steel sheet | |
JP5183586B2 (en) | Water-based paint surface treatment agent also used as a primer, surface-treated metal material, and pre-coated metal material | |
TWI616498B (en) | Base treatment composition for coated steel plate, base plated steel plate and manufacturing method thereof, coated plated steel plate and manufacturing method thereof | |
JP4616916B2 (en) | Resin-coated aluminum alloy plate for bottomed cylindrical case for capacitors | |
JP6184266B2 (en) | Aluminum paint for capacitor case | |
JP4803659B2 (en) | Resin-coated aluminum alloy plate for drawing and ironing | |
WO2011118027A1 (en) | Resin-coated aluminum alloy plate for bottomed cylindrical case for capacitor | |
WO2022210554A1 (en) | Resin-coated aluminum alloy plate | |
JP2011235457A (en) | Metal coating material | |
JP5135249B2 (en) | Resin-coated aluminum alloy plate for bottomed cylindrical case for capacitors | |
JP2011230311A (en) | Resin coated aluminum alloy plate | |
JP5416625B2 (en) | Pre-coated aluminum plate | |
JPH0665524A (en) | Material for aluminum fin for heat exchanger | |
JP2006334917A (en) | Resin-coated aluminum alloy sheet for capacitor case and capacitor case using the sheet | |
JP6313639B2 (en) | Pre-coated aluminum plate for capacitor case | |
JP6351373B2 (en) | Aluminum paint for capacitor case | |
JP6356424B2 (en) | Aluminum paint for capacitor case | |
KR20110012789A (en) | Paint composition for steel sheet and steel sheet using the same | |
JP2009111152A (en) | Resin coated aluminum alloy plate for bottomed cylindrical case for capacitor | |
JPS60197773A (en) | Composition for treating metal surface and method for treating metal surface therewith | |
JP5564787B2 (en) | Painted steel sheets, processed products, and thin TV panels | |
KR20090063550A (en) | Fluorine resin color steel sheet with self cleaning | |
JP4743046B2 (en) | Painted steel sheets, processed products, and thin TV panels | |
JP3317372B2 (en) | Coated steel sheet, coating, and method for producing them | |
TWI529761B (en) | Capacitors are coated with a resin with a bottomed cylindrical shell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22780765 Country of ref document: EP Kind code of ref document: A1 |