Nothing Special   »   [go: up one dir, main page]

WO2022209852A1 - 光学表示媒体、物品、及び光学表示媒体の使用方法 - Google Patents

光学表示媒体、物品、及び光学表示媒体の使用方法 Download PDF

Info

Publication number
WO2022209852A1
WO2022209852A1 PCT/JP2022/011606 JP2022011606W WO2022209852A1 WO 2022209852 A1 WO2022209852 A1 WO 2022209852A1 JP 2022011606 W JP2022011606 W JP 2022011606W WO 2022209852 A1 WO2022209852 A1 WO 2022209852A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
display medium
optical display
region
Prior art date
Application number
PCT/JP2022/011606
Other languages
English (en)
French (fr)
Inventor
泰秀 藤野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP22780073.7A priority Critical patent/EP4318058A1/en
Priority to CN202280022732.3A priority patent/CN117015730A/zh
Priority to JP2023510883A priority patent/JPWO2022209852A1/ja
Publication of WO2022209852A1 publication Critical patent/WO2022209852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to optical display media and articles that can be used for identification media, decoration media, or both, as well as methods for using optical display media.
  • the identification medium is required to have anti-counterfeiting performance and identification function.
  • the anti-counterfeiting performance of the identification medium referred to here is the performance that the identification medium cannot be easily duplicated by general techniques such as printing.
  • the identification function of the identification medium is a function by which a genuine identification medium can be distinguished from a counterfeit identification medium forged by a general technique with high reliability by some means.
  • Identification media often have a special structure that produces optical effects that cannot be seen in ordinary members.
  • it can have an optical characteristic that a change in a special display state that cannot be obtained with a display medium manufactured by a general manufacturing technique can be observed due to a difference in observation mode.
  • Such optical properties can also be used as properties that are excellent in appearance and exhibit design effects, apart from the function as an identification medium. Therefore, an optical display medium having the same configuration as the identification medium may be used as the identification medium and also used as the decoration medium, or an optical display medium having the same configuration as the identification medium may be used as the identification medium. In some cases, it is simply used as a decoration medium without being used.
  • identification media In the case of many identification media, the authenticity of identification media is determined by observation through a special viewer that includes an optical member such as a circular polarizer or linear polarizer (for example, Patent Documents 1 to 3). On the other hand, there are identification media that can be determined by observation with the naked eye without requiring a special viewer. There is a medium (for example, Patent Document 4).
  • JP 2010-221650 A Japanese Patent Application Laid-Open No. 2010-113249 (corresponding publication: US Patent Application Publication No. 2010/119738) WO2005/059597 Japanese Patent No. 5915838
  • holographic identification media which can be judged without a special viewer, the number of persons making judgments is less limited, while relatively similar effects can be obtained. Therefore, the anti-counterfeiting performance may be insufficient. If the hologram is observed through a special viewer, it is possible to adopt a configuration with enhanced anti-counterfeiting performance, but in that case, the person who makes the determination is limited, as in the case described above.
  • an object of the present invention is to provide an optical image display medium in which a change in a special display state, which cannot be obtained with a display medium manufactured by a general manufacturing technique, can be observed due to a difference in observation mode without using a special viewer.
  • An object of the present invention is to provide an optical display medium which is effective and has a high degree of freedom in color change, an article provided with such an optical display medium, and a method of using such an optical display medium.
  • the inventors of the present invention have found some common usage modes of general equipment such as polarized sunglasses and devices that emit polarized light such as liquid crystal display devices.
  • the inventors conceived of constructing an optical display medium that exhibits an optical effect that a special display state change can be observed according to the difference in the observation mode by using it in the observation mode.
  • the identification function can be used by using such general equipment, and the freedom of color change is high.
  • the present invention has been completed by finding that the degree can also be obtained. That is, the present invention includes the following.
  • An optical display medium comprising a light reflecting layer and a patterned retardation layer
  • the light reflecting layer is a layer that reflects incident light as circularly polarized light or linearly polarized light
  • the patterned retardation layer is a layer containing a region having a retardation, In-plane retardation ReH(400) at a wavelength of 400 nm, in-plane retardation ReH(550) at a wavelength of 550 nm, and in-plane retardation ReH( 700) (all units are nm) satisfies the following formula (1) and either of the following formulas (2) and (3), ReH(550)>275 Formula (1) ReH(400)/400>ReH(550)/550>ReH(700)/700 Formula (2) ReH(400)/400 ⁇ ReH(550)/550 ⁇ ReH(700)/700 Expression (3) and,
  • the region H is an optical display medium that converts light passing through the region H into light having a different polarization state for each wavelength.
  • the patterned retardation layer is a laminate comprising a plurality of sub-layers, and each of the sub-layers has a retardation in at least a partial region in its plane, [1] to [ 5]
  • the optical display medium according to any one of the above items.
  • the optical display medium of [6] wherein at least one of the plurality of sub-layers is a stretched film, and at least one other layer is a film having a patterned liquid crystal material layer.
  • the reflectance of unpolarized light incident on the region is 35 to 50% at all wavelengths in the wavelength region of 420 nm to 650 nm. 1] The optical display medium according to any one of [10].
  • optical display medium [13] The device according to any one of [1] to [12], further comprising a transparent resin portion, wherein all or part of members other than the transparent resin portion are embedded in the transparent resin portion.
  • optical display medium [14] The optical display medium according to any one of [1] to [13], further comprising a mounting member for mounting on an article.
  • An article comprising the optical display medium according to any one of [1] to [14].
  • an optical display medium with high flexibility in color change an article comprising such an optical display medium, and a method of using such an optical display medium.
  • FIG. 1 is an exploded perspective view schematically showing an example of the optical display medium of the present invention and its usage.
  • FIG. 2 is an exploded side view schematically showing an example of the optical display medium of the present invention and its method of use.
  • FIG. 3 is a top view showing a state in which the coordinate axes shown in FIG. 1 are observed from the Z-axis direction.
  • FIG. 4 schematically shows an example of how to use the optical display medium of the present invention when the relative angular relationship between the optical display medium and the observation linear polarizer is changed from that in the examples of FIGS. 1 and 2.
  • Fig. 3 is a schematic exploded side view;
  • FIG. 5 is an exploded side view schematically showing another example of how to use the optical display medium 100 shown in FIGS. 1, 2 and 4.
  • FIG. 6 is an exploded side view schematically showing another example of how to use the optical display medium 100 shown in FIGS. 1, 2 and 4.
  • FIG. FIG. 7 is an exploded side view schematically showing another example of the optical display medium of the present invention and its method of use.
  • FIG. 8 schematically shows an example of how to use the optical display medium of the present invention when the relative angular relationship between the optical display medium and the viewing linear polarizer is changed from that in the example of FIG. It is an exploded side view.
  • FIG. 9 is an exploded side view schematically showing another example of how to use the optical display medium 200 shown in FIGS. 7 and 8.
  • FIG. FIG. 10 is an exploded side view schematically showing another example of how to use the optical display medium 200 shown in FIGS. 7 and 8.
  • FIG. 11 is a top view schematically showing a specific example
  • (meth)acrylic group is a term that includes “acrylic group”, “methacrylic group” and combinations thereof.
  • nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the layer, which gives the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and in the direction orthogonal to the nx direction.
  • d represents the thickness of the layer.
  • the measurement wavelength for retardation is 550 nm unless otherwise specified.
  • Re measured at a certain wavelength (unit: nm) is represented by a notation such as Re(450) accompanied by a number.
  • Re(400) indicates Re for light with a wavelength of 400 nm.
  • the in-plane retardation Re can be measured using a phase difference meter (“AxoScan” manufactured by Axometrics).
  • the direction of the slow axis of a certain layer refers to the direction of the slow axis in the in-plane direction.
  • the terms “parallel” and “perpendicular” to the directions of the members are within a range that does not impair the effects of the present invention, such as ⁇ 4°, preferably ⁇ 3°, more preferably ⁇ 1°, unless otherwise specified. It may contain an error within the range of °.
  • right-handed circularly polarized light and “left-handed circularly polarized light” are defined based on the rotation direction of circularly polarized light when the light output destination is observed from the light output source. That is, when observing the light output destination from the light output source, polarized light whose polarization direction rotates clockwise as the light travels is right-handed circularly polarized light, and polarized light that rotates in the opposite direction is left-handed circularly polarized light. .
  • the vibration direction of polarized light means the vibration direction of an electric field.
  • Non-polarized light or isotropic layer that transmits light (X): Linearly polarized light having a vibration direction in the X-axis direction, or a polarizer having a transmission axis in the X-axis direction (Y): Y-axis or a polarizer (L) having a transmission axis in the Y-axis direction: a left-handed circularly polarized light or a left-handed reflective circular polarizer (that is, the left-handed circularly polarized light component is selected from the incident light reflective circular polarizer) (R): right circularly polarized light or right reflective circular polarizer (that is, a reflective circular polarizer that selectively reflects a right circularly polarized component of incident light) (P): Polarized light whose polarization state is none of the above or is not limited to any of the above (Ch): Light observed as a chromatic color (n): Light does not exist (XY): Retardation layer having slow
  • the optical display medium is placed horizontally with the display surface facing upward. Therefore, the side from which the optical display medium is viewed is sometimes simply called the "upper” side, and the opposite side is sometimes called the “lower” side.
  • the surface closer to the display surface of the optical display medium may be referred to as the "upper” surface.
  • the direction perpendicular to the "up” and “down” directions may be referred to as the "horizontal" direction.
  • the optical display medium of the present invention is ⁇ Inject unpolarized light into an optical display medium, and observe the reflected light from the optical display medium in a normal mode (a mode without special selection of polarized components). Selectively observe the polarized light component of the reflected light from the medium. Observe the reflected light from the optical display medium in a normal mode by making the polarized light incident on the optical display medium.
  • a normal mode a mode without special selection of polarized components
  • the optical display medium of the present invention comprises a light reflecting layer and a patterned retardation layer.
  • 1 and 2 are an exploded perspective view and an exploded side view schematically showing an example of the optical display medium of the present invention and its method of use. 1-2 and 4-10, the components of the optical display medium are shown separated for the sake of explanation of their optical functions, but in the actual optical display medium they are directly or They can be in contact with each other through another layer.
  • the optical display medium 100 includes a light reflecting layer 101 (R) and a patterned retardation layer 110.
  • R light reflecting layer 101
  • 110 a patterned retardation layer
  • the patterned retardation layer 110 is a laminate comprising multiple layers of sub-layers 102 and 103 (Xy).
  • the sub-layer 102 is only partly a layer 102 (Xy) that functions as a ⁇ /4 waveplate and the other part is an isotropic layer 102 (N).
  • the sub-layer 103 (Xy) is a layer having a uniform retardation over its entire surface.
  • the slow axis direction of the layer 102 (Xy) and the sub-layer (Xy) is the direction indicated by the arrows A102 (Xy) and A103 (Xy) in FIG. 1, that is, the Xy direction.
  • the entire area of the upper surface 101(R)U of the light reflecting layer 101(R) is the display surface area, that is, the area corresponding to the display surface of the optical display medium.
  • Sublayer 102 is provided overlying the light reflecting layer 101(R) in a manner that occupies the entire display surface area, while sublayer 103(Xy) occupies only a portion of the display surface area. , and is provided so as to overlap the sub-layer 102 .
  • the patterned retardation layer 110 has four regions R1 to R4, which are regions having different retardations.
  • the patterned retardation layer is usually provided at a position closer to the viewer than the light reflecting layer. Therefore, the display surface of the optical display medium is usually the surface of the optical display medium on the patterned retardation layer side.
  • the upper surface on the patterned retardation layer 110 side that is, the upper surface 102U of the sublayer 102 in the regions R1 and R4 and the sublayers 102U in the regions R2 and R3
  • the upper surface (103U) of layer 103 (Xy) functions as a display surface. That is, part of the light incident on the upper surface on the patterned retardation layer 110 side is reflected in the optical display medium 100 and emitted from the surface. It functions as a medium.
  • FIGS. 1 to 10 directions in space are indicated by common three-dimensional coordinate axes.
  • the direction parallel to arrow X, the direction parallel to arrow Y, and the direction parallel to arrow Z are simply referred to as the X-axis direction, Y-axis direction, and Z-axis direction, respectively.
  • the optical display medium 100 or 200 is positioned such that its display surface is parallel to the XY plane.
  • FIG. 3 is a top view showing the state in which the coordinate axes shown in FIG. 1 are observed from the Z-axis direction.
  • the direction forming an angle of 45° with the arrows X and Y (that is, the direction parallel to the arrows XY in FIG. 3) is called the XY direction.
  • a direction forming an angle of 45° with the arrow X and forming an angle of 135° with the arrow Y (that is, a direction parallel to the arrow Xy in FIG. 3) is referred to as an Xy direction.
  • a light reflecting layer is a layer that reflects incident light as circularly polarized light or linearly polarized light.
  • the light reflecting layer is a layer that, when unpolarized light containing various polarized light components is incident, reflects a certain polarized light component therein as circularly polarized light or linearly polarized light.
  • the light reflecting layer is typically a reflective polarizer. That is, the light-reflecting layer transmits some or all of the polarized components of the incident light at certain wavelengths and reflects some or all of the other polarized components.
  • a reflective circular polarizer or a reflective linear polarizer may be used as the light reflecting layer.
  • a reflective circular polarizer is an optical element that transmits one of a right-handed circularly polarized component and a left-handed circularly polarized component of incident light of a certain wavelength and reflects the other one.
  • a reflective linear polarizer is an optical element that transmits one of a certain linearly polarized light component and a linearly polarized light component perpendicular to that component of incident light of a certain wavelength, and reflects the other one.
  • a right reflective circular polarizer that is, a reflective circular polarizer that selectively reflects a right circularly polarized component of incident light
  • the light reflecting layer 101 (R) is employed as the light reflecting layer 101 (R).
  • a patterned retardation layer is a layer containing regions having a retardation.
  • the region having such retardation is a layer provided on the optical display medium so as to occupy all or part of the region of the display surface of the optical display medium. From the viewpoint of improving the function as an identification medium, it is preferable that the area having the retardation occupies only a part of the area of the display surface of the optical display medium, so that comparison observation with the other area can be performed.
  • the portion of the patterned retardation layer that overlaps with the region having the retardation may be simply referred to as the "retardation layer".
  • the retardation of the retardation layer can be defined by the in-plane retardation Re.
  • the area other than the area occupied by the retardation layer may be an area occupied by an isotropic layer having no retardation, or may be an area in which none of them are present.
  • a region having a retardation may be present in only one place in the entire region of the patterned retardation layer, or may be present in two or more places.
  • regions having a retardation are present in two or more locations among all regions of the patterned retardation layer, the plurality of regions may all have the same retardation, or may have different retardations. good.
  • one or more regions H of the regions having retardation have specific optical properties.
  • Region H is one or more regions in the patterned retardation layer.
  • the in-plane retardation ReH(400) at a wavelength of 400 nm, the in-plane retardation ReH(550) at a wavelength of 550 nm, and the in-plane retardation ReH(700) at a wavelength of 700 nm satisfy the following formula (1), And either of the following formulas (2) and (3) is satisfied.
  • the units of ReH(400), ReH(550) and ReH(700) are all nm.
  • region H has the property of converting light passing through region H into light having a different polarization state for each wavelength.
  • the region corresponding to the region H of the display surface of the optical display medium can be given the function of exhibiting a chromatic color when used.
  • the optical display medium can be provided with the ability to observe a specific chromatic color in non-polarized-polarized and/or polarized-unpolarized observation, while no chromatic color is observed in normal observation.
  • the region H satisfies the formulas (2) and (3) and has the property of converting light passing through the region H into light having a different polarization state for each wavelength.
  • Light incident on region H of the surface is reflected with a different polarization state for each wavelength.
  • such a difference in polarization state for each wavelength becomes particularly large due to ReH(550) being larger than a certain amount. Therefore, when the optical display medium is observed in non-polarized light and/or in polarized light-non-polarized light, some wavelengths of the reflected light are observed in an emphasized state.
  • Converting light passing through region H into light having a different polarization state for each wavelength means converting light passing through region H in the entire visible light wavelength range (400 to 700 nm) into a uniform polarization state for each wavelength. This is intended to exclude the case of conversion into light having For example, considering the in-plane retardation ReH( ⁇ ) for light with a certain wavelength ⁇ nm that is transmitted through the region H, if the value of ReH( ⁇ )/ ⁇ is constant over the entire wavelength range of visible light, the Excluded by regulation.
  • the in-plane retardation ReH (400) at a wavelength of 400 nm in the region H and the in-plane retardation at a wavelength of 550 nm in the region H are excluded.
  • ReH(400), ReH(550), and ReH(700) preferably satisfy formulas (4) to (6) below.
  • the patterned retardation layer may have regions I with retardation.
  • region I include a region functioning as a ⁇ /4 waveplate and a region functioning as a ⁇ /2 waveplate.
  • the region functioning as a ⁇ /4 wavelength plate is a region in which the in-plane retardation ReI(550) at a wavelength of 550 nm is 137.5 nm or a value close to it.
  • ReI is in the region of (137.5 ⁇ 0.6) nm to (137.5 ⁇ 1.4) nm, preferably (137.5 ⁇ 0.8) nm to (137.5 ⁇ 1.2) nm region can be used as the region that functions as a ⁇ /4 waveplate.
  • the region functioning as a ⁇ /2 wavelength plate means that the in-plane retardation ReI(550) at a wavelength of 550 nm is 275 nm or a value close to it and other than the region H, for example (275 ⁇ 0.6 ) nm to (275 ⁇ 1.4) nm, preferably (275 ⁇ 0.8) nm to (275 ⁇ 1.2) nm, other than region H.
  • the patterned retardation layer 110 has regions R1 to R4. Due to the phase difference between the layer 102 (Xy) and the sub-layer 103 (Xy), the region R1 is a region where the phase difference of the layer 102 (Xy) is exhibited, and the region R3 is the sub-layer A region R4 is a region where a phase difference of 103(Xy) is exhibited, and a region R4 is a region where no phase difference is exhibited.
  • region R2 layer 102 (Xy) and sub-layer 103 (Xy) overlap.
  • the patterned retardation layer includes a plurality of sub-layers, and each of the sub-layers has a retardation in at least a partial region in its plane, the portions having such a retardation are overlapped. state, so that the retardation of both of the superimposed multiple retardation layers is developed.
  • the degree of freedom in expressing the retardation is increased, and the degree of freedom in the color imparted to the region H can be increased in non-polarized light-polarized light observation and polarized light-non-polarized light observation.
  • the retardation, particularly the in-plane retardation Re, of the patterned retardation layer 110 in the region R2 is the sum of Re of the layer 102(Xy) and Re of the sub-layer 103(Xy).
  • the retardation can be the sum of them.
  • Such a mode is particularly preferable because the pattern of regions having a high phase difference can be configured with a high degree of freedom.
  • one layered structure includes a region having a phase difference and an isotropic region having no phase difference, and is composed of them.
  • a normal retardation layer manufacturing method such as stretching a film
  • a special method such as curing a curable liquid crystalline compound. becomes.
  • a layer having a uniform phase difference that can easily have a large phase difference such as the sub-layer 103 (Xy)
  • Xy sub-layer 103
  • the angles formed by the slow axes are not limited to 0°, ie, completely parallel, but may have some error.
  • the angle formed by the multiple slow axes may be in the range of 0° to 30°.
  • the value of the in-plane retardation Re of each of the layer 102 (Xy) and the sub-layer 103 (Xy) can be adjusted to meet the requirements for region H mentioned above.
  • regions R1 to R3 regions other than those satisfying the requirements for the region H can be designated as the region I.
  • FIG. Region I may be the region functioning as a ⁇ /4 waveplate or the region functioning as a ⁇ /2 waveplate as described above.
  • layer 102 (Xy) typically has Re(550) of 137.5 nm, acting as a ⁇ /4 waveplate, and sublayer 103 (Xy) has region H
  • Re(550) greater than 275 nm, which functions as Therefore, in the example described below, among the regions R1 to R3, the region R1 functions as a ⁇ /4 wavelength plate, and the regions R2 and R3 function as regions H.
  • R2 has a larger in-plane retardation Re than R3. becomes a region H having
  • Examples of light incident on the optical display medium include non-polarized light, linearly polarized light, circularly polarized light, and elliptically polarized light.
  • the optical display medium has an identification function by selectively observing the linearly polarized component or the circularly polarized component of the reflected light (non-polarized light-polarized light observation). Identification can be done if there is. Moreover, it is possible to obtain a design effect as a decorative medium for an optical display medium.
  • one of the usage methods is non-polarization-polarization observation (injecting non-polarized light into the optical display medium and selectively observing the polarized light component of the reflected light from the optical display medium).
  • non-polarized light to be incident general environmental light such as sunlight and indoor illumination light can be used.
  • the linear viewing polarizer and the circular viewing polarizer can usually be used in a state separated from the optical display medium.
  • the lower limit of the separation distance can be appropriately adjusted according to the dimensions of the optical display medium and the linear polarizer for observation, and is usually 100 mm or more.
  • the upper limit of the separation distance can be appropriately adjusted within the range in which the reflected light of the optical display medium can be observed, but it is usually 30 m or less.
  • the linear polarizer for observation used at a position distant from the optical display medium may be a dedicated product for the method of use of the present invention, but may be a general linear polarizer used for other purposes. There may be.
  • many commercially available polarized sunglasses can function as linear polarizers, such commercially available polarized sunglasses may be used as linear viewing polarizers.
  • Examples of viewing circular polarizers include circular polarizers constructed by combining a linear polarizer and a retardation film, and circular polarizers comprising a layer of cholesteric material (e.g., described in WO 2020/121791 that are used).
  • the light incident on the optical display medium 100 is non-polarized light
  • the light reflecting layer 101(R) included in the optical display medium 100 is a reflective circular polarizer.
  • Observation of reflected light in such non-polarized-polarized observation of an optical display medium can be performed by selective observation of linearly polarized light components.
  • 1 and 2 show an example in which the reflected light from the optical display medium 100 is observed through the observation linear polarizer 191 (X).
  • viewing linear polarizer 191(X) is a polarizer positioned angularly relative to optical display medium 100 to have its transmission axis in the X-axis direction, ie, in the direction indicated by arrow A191(X). is.
  • the slow axes of layer 102(Xy) and sublayer 103(Xy) are tilted 45° counter-clockwise with respect to the transmission axis of linear viewing polarizer 191(X).
  • the numerical values in parentheses in FIGS. 2 and 4 to 10 are for schematically explaining the action of each member, and the brightness of light at each stage when the brightness of incident light is 100 is the theoretical value of
  • the theoretical value means that the polarized light is completely separated by the polarizer (in the example of FIG. 2, the right circularly polarized light component of the light incident on the light reflecting layer 101 (R) is all reflected, and the left circular All of the polarized light components are transmitted, and of the light incident on the observation linear polarizer 191 (X), all of the linearly polarized light components in the X-axis direction are transmitted, and all other linearly polarized light components are absorbed or reflected and blocked. ) and no light absorption in the patterned retardation layer.
  • various losses occur, and the brightness of light at each step can be smaller than the theoretical value.
  • incident light A111(N), A121(N), A131(N) and A141(N), respectively, out of the patterned retardation layer 110 are incident on the regions R1 to R4.
  • the incident lights A111(N) to A141(N) are unpolarized light that can be visually recognized as achromatic light with no bias in wavelength distribution.
  • the incident light A111(N) is transmitted through the layer 102(Xy), emitted downward as unpolarized light A112(N), and reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized light component of the light A112(N) is reflected on or inside the light reflecting layer 101(R) and reflected light A113 ( R), whose theoretical brightness is half that of the incident light. On the other hand, the left circularly polarized component of the light A112(N) is transmitted through the light reflection layer 101(R) and becomes transmitted light A119(L).
  • the light A113(R) is transmitted through the layer 102(Xy) again and emitted from the display surface of the optical display medium 100 as light A114(Y).
  • Light A113 (R) is right-handed circularly polarized light, and since layer 102 (Xy) is a ⁇ /4 wave plate with the slow axis in the Xy direction, light A114 (Y) has a polarization direction in the Y direction. It becomes linearly polarized light, and the theoretical value of its brightness is the same as that of the light A113(R).
  • the light A114 (Y) is observed without passing through the observation linear polarizer 191 (X).
  • the light A114(Y) is incident on the observation linear polarizer 191(X) and is observed as the emitted light A115(n).
  • layer 102 (Xy) is an ideal ⁇ /4 waveplate whose value of Re( ⁇ )/ ⁇ is constant over the entire visible wavelength range, then light A 114 (Y) is It becomes linearly polarized light having a polarization direction in the Y-axis direction, and the brightness of the emitted light A115(n) can be zero in the entire visible light wavelength range.
  • layer 102 (Xy) is a non-ideal ⁇ /4 wave plate in which the value of Re( ⁇ )/ ⁇ is not constant over the entire visible wavelength range
  • light A 114 (Y) is , the in-plane retardation Re becomes an erroneous value deviating from ⁇ /4, the emitted light can be elliptically polarized, and the brightness of the emitted light A115(n) does not become zero in the wavelength range.
  • chromatic colors can be observed.
  • the small value of Re(550) of layer 102 (Xy) of 137.5 nm, which acts as a ⁇ /4 waveplate the amount of such error is usually small, and therefore the visible chromatic color coloring is usually not observed.
  • Incident light A121(N) passes through sub-layer 103(Xy) and exits downward as unpolarized light A122(N), which further passes through layer 102(Xy) as unpolarized light A123(N). , and reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized component of the light A123(N) is reflected on or inside the light reflecting layer 101(R) and reflected light A124 ( R), whose theoretical brightness is half that of the incident light. On the other hand, the left circularly polarized light component of the light A123(N) is transmitted through the light reflecting layer 101(R) and becomes transmitted light A129(L).
  • the light A124 (R) is transmitted through the layer 102 (Xy) and emitted upward as light A125 (Y).
  • Light A124(R) is right-handed circularly polarized light, and light A125(Y) has a polarization direction in the Y-axis direction because layer 102(Xy) is a ⁇ /4 waveplate with the slow axis in the Xy-direction. It becomes linearly polarized light, and the theoretical value of its brightness is the same as that of the light A124(R).
  • the light A125(Y) is transmitted through the sub-layer 103(Xy) and exits from the display surface of the optical display medium 100 as light A126(P). Since sub-layer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 126 (P) transmitted through it will have different polarization states for different wavelengths. Become.
  • the light of each wavelength is, for example, linearly polarized light having a vibration direction in the X-axis direction, linearly polarized light having a vibration direction in the Y-axis direction, right-handed circularly polarized light, left-handed circularly polarized light, and elliptical polarized light that is a composite of these components. can have a state.
  • the brightness of light does not differ for each wavelength. Therefore, when the region R2 is normally observed, the light A126(P) is not observed as light having a particular chromatic color.
  • the theoretical value of the brightness of light A126(P) is the same as that of light A125(Y).
  • the light A126(P) is incident on the linear polarizer 191(X) for observation, and the state of the emitted light A127(X)(Ch) is observed. become.
  • the observation linear polarizer 191(X) only the linearly polarized component of the light A126(P) having a vibration direction in the X-axis direction is emitted as light A127(X)(Ch). , is emitted from the observation linear polarizer 191 (X).
  • the linearly polarized light component having the vibration direction in the X-axis direction is predominant.
  • a relatively larger amount of light having a wavelength containing observed as accompanying light The theoretical value of the brightness of the light A127(X)(Ch) varies depending on the polarization state of the light A126(P), but it is smaller than the light A126(P) and approximately half that of the light A126(P).
  • Incident light A131(N) passes through sub-layer 103(Xy) and exits downward as unpolarized light A132(N), which further passes through layer 102(N) as unpolarized light A133(N). , and reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized light component of the light A133(N) is reflected on or inside the light reflecting layer 101(R) and reflected light A134 ( R), whose theoretical brightness is half that of the incident light. On the other hand, the left-handed circularly polarized light component of the light A133(N) is transmitted through the light reflecting layer 101(R) and becomes transmitted light A139(L).
  • the light A134(R) is transmitted through the layer 102(N) and emitted upward as light A135(R).
  • Light A135(R) is transmitted through sublayer 103(Xy) and emerges from the viewing surface of optical display medium 100 as light A136(P). Since sub-layer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 136 (P) transmitted through it will have different polarization states for different wavelengths. Become. However, compared with the light A126(P) emitted from the region R2, the light A126(P) is circularly polarized light that has also passed through the layer 102(Xy), which is another layer having a phase difference.
  • the polarization state of the light A136(P) is different from that of the light A126(P). be.
  • the brightness of the light A136(P) does not differ for each wavelength, similarly to the light A126(P). Therefore, when the region R3 is normally observed, the light A136(P) is not observed as light having a particular chromatic color.
  • the theoretical value of the brightness of the light A136(P) is the same as that of the light A135(R).
  • the light A136(P) is incident on the linear polarizer 191(X) for observation, and the state of the emitted light A137(X)(Ch) is observed. become.
  • the observation linear polarizer 191(X) only the linearly polarized component of the light A136(P) having a vibration direction in the X-axis direction is emitted as light A137(X)(Ch). , is emitted from the observation linear polarizer 191 (X).
  • the linearly polarized light component having the vibration direction in the X-axis direction is predominant. A relatively larger amount of light having a wavelength containing observed as accompanying light.
  • the color of the light A137(X)(Ch) is different from that of the light A127(X)(Ch). .
  • the theoretical value of the brightness of the light A137(X)(Ch) varies depending on the polarization state of the light A136(P), but it is smaller than the light A136(P) and approximately half that of the light A136(P).
  • the incident light A141(N) is transmitted through the layer 102(N), emitted downward as unpolarized light A142(N), and reaches the upper surface 101(R)U of the light reflecting layer 101(R).
  • the right-handed circularly polarized light component of the light A142(N) is reflected to become the reflected light A143(R), whose theoretical brightness is half that of the incident light.
  • the left circularly polarized component of the light A142(N) is transmitted through the light reflection layer 101(R) and becomes transmitted light A149(L).
  • the light A143(R) passes through the layer 102(N) again and exits from the display surface of the optical display medium 100 as light A144(R).
  • the theoretical value of the brightness of the light A144(R) is the same as that of the light A143(R).
  • the light A144 (R) When normally observing the region R4, the light A144 (R) is observed without passing through the observation linear polarizer 191 (X).
  • the light A144(R) is incident on the observation linear polarizer 191(X) and is observed as the emitted light A145(X). That is, when the light A144(R) emitted from the region R4 of the patterned retardation layer 110 is incident on the observation linear polarizer 191(X), the light A144(R) has a vibration direction in the X-axis direction. Only the linearly polarized light component is emitted from the observation linear polarizer 191(X) as emitted light A145(X). The theoretical value of the brightness of the emitted light A145(X) is half that of the light A144(R).
  • FIG. 4 schematically shows an example of how to use the optical display medium of the present invention when the relative angular relationship between the optical display medium and the observation linear polarizer is changed from that in the examples of FIGS. 1 and 2.
  • Fig. 3 is a schematic exploded side view;
  • FIG. 4 illustrates that the angle of the optical display medium 100 with respect to the coordinate axes is fixed, and the angle of the observation linear polarizer with respect to the X-axis and the Y-axis is changed.
  • these relative angular relationships can be changed by moving the optical display medium, moving the linear polarizer for observation, exchanging the linear polarizer for observation, or any combination of two or more of these. you can go
  • observation linear polarizer 191 (Y) is used as the observation polarizer as a result of changing the angular relationship.
  • Observation linear polarizer 191 (Y) is a polarizer positioned at an angle relative to optical display medium 100 so as to have a transmission axis in the Y-axis direction.
  • the slow axes of layer 102(Xy) and sublayer 103(Xy) are tilted 45° clockwise with respect to the transmission axis of linear viewing polarizer 191(Y).
  • the path of light up to this point is the same as in the examples of FIGS.
  • the polarization vibration direction of the light A114(Y) and the transmission axis of the observation linear polarizer 191(Y) are parallel.
  • the light A114(Y) are all transmitted and emitted from the observation linear polarizer 191(Y) as emitted light A115(Y).
  • the theoretical value of the brightness of the emitted light A115(Y) is the same as that of the light A114(Y).
  • the component that could be emitted from the observation linear polarizer 191(X) (FIGS. 1 and 2) is blocked by the observation linear polarizer 191(Y).
  • those components that could not be emitted from the observation linear polarizer 191(X) are emitted from the observation linear polarizer 191(Y). Therefore, the observed color of the emitted light A127(Y)(Ch) can be significantly different from that of A127(X)(Ch) (FIGS. 1-2).
  • the theoretical value of the brightness of the light A127(Y)(Ch) varies depending on the polarization state of the light A126(P), but it is smaller than the light A126(P) and is approximately half that of the light A126(P).
  • the linearly polarized component of the light A136(P) having a vibration direction in the Y-axis direction is emitted light A137(Y) ( Ch) is emitted from the observation linear polarizer 191 (Y). Since the light A136(P) has various different polarization states for each wavelength, among the light of various wavelengths contained in A136(P), the linearly polarized light component having the vibration direction in the Y-axis direction is predominant. A relatively larger amount of light having a wavelength containing observed as accompanying light.
  • the observed color of emitted light A137(Y)(Ch) is significantly different from that of A137(X)(Ch). can be.
  • the color of the light A137(Y)(Ch) is the same as that of the light A127(Y)(Ch). be a different color.
  • the theoretical value of the brightness of the light A137(Y)(Ch) varies depending on the polarization state of the light A126(P), but it is smaller than the light A126(P) and approximately half that of the light A126(P).
  • the observer when normally observing the optical display medium 100 in which non-polarized light is incident, the observer observes the emitted light beams A114(Y), A126(P), A136(P) and A144(R). . These emitted lights have different polarization states but the same brightness. Since human vision cannot perceive this difference in polarization state, an observer cannot perceive these differences. Also, even if the relative angular relationship between the optical display medium 100 and the observer changes, the observer cannot perceive the change based on the change in the polarization state. Therefore, the regions R1 to R4 are all observed as achromatic regions with the same brightness, and the difference between them is not recognized.
  • the region R4 is observed as a relatively bright achromatic region having a reflected light that is 1/4 as bright as the incident light.
  • the regions R2 and R3 have approximately the same brightness as the region R4 and are observed as chromatic regions having different colors, and their appearances are different from each other.
  • the region R4 is observed as an achromatic region having reflected light with one-fourth the brightness of the incident light.
  • the brightness of the region R4 does not change from the cases shown in FIGS. 1 and 2, it is observed as a region relatively darker than the region R1 in this example.
  • Regions R2 and R3 have approximately the same brightness as region R4, are different colors from each other, and are observed as chromatic regions different from the colors observed in the examples of FIGS. The appearances are different from each other and also from those observed in the examples of FIGS.
  • the relative angular relationship between the optical display medium and the viewing linear polarizer changes. More specifically, the orientation of the observation linear polarizer is changed from the state of the observation linear polarizer 191 (X) in FIGS. 1 and 2 by rotating it about an axis parallel to the Z-axis direction. 4, the relative brightness of the region R1 becomes brighter as the angle of rotation increases. brightness is maximized. In addition, the colors observed in regions R2 and R3 change.
  • the optical display medium of the present invention showed no difference between regions under normal observation, and differences in color and relative brightness between regions were observed only through a linear polarizer for observation.
  • changing the angle of the viewing linear polarizer can produce special effects, such as changing the color and brightness of each region.
  • Such a special effect cannot be obtained with duplicates that can be easily obtained by common techniques such as printing. Therefore, the optical display medium of the present invention exhibits high anti-counterfeiting performance and functions as an identification medium by comparing the observation results obtained by using such normal observation and using multiple types of non-polarized light-polarized light observation. do.
  • the optical display medium of the present invention can exhibit a design effect as a decorative medium due to the expression of chromatic colors and changes in color and brightness.
  • non-polarized-polarized observation ambient light is used as incident light, and the optical display medium and the observation linear polarizer, which is a viewer, are separated from each other, and the reflected light is visually observed through the observation linear polarizer.
  • a linear polarizer for observation a general polarizer such as commercially available polarized sunglasses can be used. Therefore, such observation can be performed without any special operation such as bringing the viewer close to the optical display medium, and a relatively easily available viewer can be used.
  • non-polarized light-polarized light observation can be achieved by a simple action such as viewing an optical display medium placed at a distance from the viewer while wearing polarized sunglasses. Therefore, in such use, the optical display medium of the present invention can easily exhibit an identification function as an identification medium and a design effect as a decoration medium.
  • the observation in which the optical display medium and the observation linear polarizer are separated is exemplified.
  • the positional relationship is not limited to this.
  • such a latent image can be observed by placing the linear polarizer for observation on the optical display medium and placing them close to each other.
  • linear polarizer 191 (X) and observation linear polarizer 191 (Y)) as observation polarizers was shown, but the present invention
  • a polarizer other than a linear polarizer can also be used as a polarizer for observation.
  • a right-handed circular polarizer, a left-handed circular polarizer, or a combination thereof can be used instead of a linear polarizer as a polarizer for observation.
  • these brightnesses are 25, about 25, about 25 and 50, and the region R4 is observed as a relatively bright region.
  • the regions R1 and R4 are achromatic regions, the regions R2 and R3 are observed as chromatic regions having different colors.
  • the regions R1 to R4 when the light from the regions R1 to R4 is observed through a left-handed circular polarizer that selectively transmits left-handed circularly polarized light, their brightness (relative theoretical value when the brightness of the incident light is 100) is 25, about 25, about 25 and 0, respectively, and the region R4 is observed as a relatively dark region.
  • the regions R1 and R4 are achromatic regions
  • the regions R2 and R3 are observed as chromatic regions having different colors, and are also different colors when observed through a right-handed circular polarizer. .
  • the incident light is polarized light (linearly polarized light, circularly polarized light, or elliptically polarized light)
  • the reflected light can be observed directly without going through a linear polarizer for observation when observing the reflected light.
  • linearly polarized light obtained by transmitting non-polarized light through a linear polarizer can be used as such linearly polarized light.
  • a device for supplying linearly polarized light may be a dedicated product for the method of use of the present invention, but may be used in combination with a general light source and a general linear polarizer used for other applications. Alternatively, a device in which a light source and a linear polarizer are combined, which is commonly used for other purposes, may be used.
  • non-polarized light obtained by transmitting non-polarized light through a circular polarizer can be used as such circularly polarized light.
  • the apparatus for supplying circularly polarized light may be a dedicated item for the method of use of the present invention, or may be used in combination with a general light source and a general circular polarizer used for other applications. Alternatively, a device in which a light source and a circular polarizer are combined, which is commonly used for other purposes, may be used.
  • elliptically polarized light obtained by transmitting unpolarized light through an appropriate optical element can be used as such elliptically polarized light.
  • the apparatus for supplying elliptically polarized light may be a dedicated item for the method of use of the present invention, but may be combined with a general light source for other applications and a general linear or circular polarizer. good too.
  • a device in which a light source and a linear polarizer or a circular polarizer are combined, which is commonly used for other purposes, may be used.
  • many electronic devices with display screens such as personal computers and smartphones with general liquid crystal display screens, emit linearly polarized light as emitted light from the display screen. It can be used as a device for providing polarized light. More specifically, by operating the electronic device close to the optical display medium, the environment where the incidence of unpolarized ambient light is small and the light emitted from the electronic device is relatively large.
  • An optical display medium can be positioned to achieve linear polarization delivery.
  • some electronic devices with display screens such as personal computers and smartphones with general liquid crystal display screens, emit circularly polarized light as emitted light from the display screen.
  • the device can be used as a device for providing circularly polarized light. More specifically, by operating the electronic device close to the optical display medium, the environment where the incidence of unpolarized ambient light is small and the light emitted from the electronic device is relatively large.
  • An optical display medium can be positioned to achieve the provision of circularly polarized light.
  • a post-attached film may be attached for various purposes to the display screen of the electronic device that emits the above-mentioned linearly polarized light or circularly polarized light.
  • post-attached films include those that are laminated for various purposes such as protection of the display screen, adjustment of the viewing angle of the display screen, and improvement of visibility when the display screen is observed through polarized sunglasses. is mentioned.
  • Many of these films have some kind of retardation, and therefore can exhibit the function of converting linearly polarized light into circularly polarized light or elliptically polarized light, or converting circularly polarized light into linearly polarized light or elliptically polarized light.
  • the provision of linear, circular, or other elliptically polarized light can also be achieved.
  • FIGS. 1, 2 and 4 are exploded side views schematically showing another example of how to use the optical display medium 100 shown in FIGS. 1, 2 and 4.
  • FIG. In the example of use of optical display medium 100 shown in FIG. ⁇ R4.
  • the incident lights A211(X) to A141(X) are linearly polarized lights having a vibration direction in the X-axis direction.
  • Incident light A211(X) is transmitted through layer 102(Xy) and emitted downward as left-handed circularly polarized light A212(L), reaching upper surface 101(R)U of light reflecting layer 101(R). . Since the light reflecting layer 101(R) is a right reflective circular polarizer, all of the light A212(L) is transmitted through the light reflecting layer 101(R) and becomes transmitted light A219(L). Therefore, the theoretical value of the brightness of the reflected light A213(n) in the light reflecting layer 101(R) becomes zero, and the light A214(n) that is transmitted through the layer 102(Xy) again and emitted from the display surface of the optical display medium 100 is The theoretical value of the brightness of is also zero.
  • the incident light A221(X) is transmitted through the sub-layer 103(Xy) and emitted downward as light A222(P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 222 (P) transmitted through it will have different polarization states for different wavelengths. Become. However, since there is no difference in the brightness of light for each wavelength, the light A222(P) is not observed as light having a particular chromatic color. The theoretical brightness value of the light A222(P) is the same as that of the light A221(X).
  • the light A222(P) is further transmitted through the layer 102(Xy) and emitted downward as light A223(P) with a further changed polarization state.
  • the theoretical value of the brightness of the light A223(P) is the same as that of the light A222(P).
  • the light A223(P) emitted downward reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized light component of the light A223(P) is reflected on or inside the light reflecting layer 101(R) and reflected light A224 ( R) (Ch).
  • the light A223(P) has different polarization states depending on the wavelength. are reflected more by the light reflecting layer 101(R), and as a result, the light A224(R)(Ch) is observed as light with some chromatic color.
  • the theoretical value of the brightness of the light A224(R) varies depending on the polarization state of the light A223(P), but it is smaller than the light A223(P) and approximately half that of the light A223(P).
  • the left circularly polarized component of the light A223(P) is transmitted through the light reflection layer 101(R) and becomes transmitted light A229(L)(Ch).
  • the light A224(R)(Ch) is transmitted through the layer 102(Xy) and emitted upward as light A225(Y)(Ch).
  • Light A 224 (R) is right-handed circularly polarized light, and since layer 102 (Xy) is a ⁇ /4 wave plate with the slow axis in the Xy direction, light A 225 (Y) (Ch) is polarized in the Y direction. It becomes linearly polarized light with a direction, and its theoretical values of color and brightness are the same as light A224(R).
  • the light A225(Y)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 100 as light A226(P)(Ch). Since sublayer 103 (Xy) is the layer with Re(550) above 275 nm acting as region H, light A 226 (P) (Ch) transmitted through it has different polarization states for different wavelengths. state. However, since the brightness of each wavelength of the light A226(P)(Ch) is the same as that of the light A225(Y)(Ch), the theoretical values of the color and brightness of the light A226(P)(Ch) are , light A 225 (Y) (Ch).
  • the incident light A231(X) is transmitted through the sub-layer 103(Xy) and emitted downward as light A232(P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 232 (P) transmitted through it will have different polarization states for different wavelengths. Become. However, since there is no difference in the brightness of light for each wavelength, the light A232(P) is not observed as light having a particular chromatic color. The theoretical value of the brightness of the light A232(P) is the same as that of the light A231(X).
  • the light A232(P) is further transmitted through the layer 102(N) and emitted downward as light A233(P).
  • the light A222(P) in the region R2 becomes light A223(P) whose polarization state is further changed by transmitting through the layer 102(Xy), whereas the light A233(P) does not pass through the layer 102(Xy). Since the light is transmitted through the isotropic layer 102(N), the polarization state of the light A233(P) is different from that of the light A223(P). However, since there is no difference in the brightness of light for each wavelength, the light A233(P) is not observed as light having a particular chromatic color. The theoretical value of the brightness of the light A233(P) is the same as that of the light A232(P).
  • the light A233(P) emitted downward reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized component of the light A233(P) is reflected on or inside the light reflecting layer 101(R), and the reflected light A234( R) (Ch). Since the light A233(P) has various different polarization states depending on the wavelength, light with wavelengths containing many right-handed circularly polarized are reflected more by the light reflecting layer 101(R), and as a result, the light A234(R)(Ch) is observed as light with some chromatic color.
  • the color of the light A234(R)(Ch) is different from that of the light A224(R)(Ch).
  • the theoretical value of the brightness of the light A234(R) varies depending on the polarization state of the light A233(P), but it is smaller than the light A233(P) and approximately half that of the light A233(P).
  • the left circularly polarized component of the light A233(P) is transmitted through the light reflecting layer 101(R) and becomes transmitted light A239(L)(Ch).
  • Light A234(R)(Ch) is transmitted through layer 102(N) and emitted upward as light A235(R)(Ch). Since light A234(R) is right-hand circularly polarized and layer 102(N) is an isotropic layer, the theoretical values for the color and brightness of light A235(R)(Ch) are are the same.
  • the light A235(R)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 100 as light A236(P)(Ch). Since sublayer 103 (Xy) is the layer with Re(550) above 275 nm acting as region H, light A 236 (P) (Ch) transmitted through it has different polarization states for different wavelengths. state. However, since the brightness of each wavelength of the light A236(P)(Ch) is the same as that of the light A235(R)(Ch), the theoretical values of the color and brightness of the light A236(P)(Ch) are , light A235(R)(Ch). Also, the color of the light A236(P)(Ch) is different from the color of the light A226(P)(Ch).
  • the incident light A241(X) is transmitted through the layer 102(N), emitted downward as linearly polarized light A242(X), and reaches the upper surface 101(R)U of the light reflecting layer 101(R).
  • the right-handed circularly polarized light component of the light A242(X) is reflected to become the reflected light A243(R), whose theoretical brightness is half that of the incident light.
  • the left-handed circularly polarized component of the light A242(X) is transmitted through the light reflecting layer 101(R) and becomes transmitted light A249(L).
  • the light A243(R) is transmitted through the layer 102(N) again and exits from the display surface of the optical display medium 100 as light A244(R).
  • the theoretical value of the brightness of the light A244(R) is the same as that of the light A243(R).
  • FIG. 6 schematically shows an example of how to use the optical display medium of the present invention when the relative angular relationship between the optical display medium and the vibration direction of incident linearly polarized light is changed from that in the example of FIG. It is an exploded side view showing.
  • FIG. 6 illustrates that the angle of the optical display medium 100 with respect to the coordinate axes is fixed, and the angle of the vibration direction of the linearly polarized light with respect to the X-axis and the Y-axis is changed.
  • these relative angular relationships may be changed by moving the optical display medium, moving the light source, replacing the light source, or any combination of two or more of these.
  • the example of FIG. 6 is changed to an example in which the light incident on the optical display medium 100 is linearly polarized light having a vibration direction in the Y-axis direction as a result of changing the angular relationship. That is, the incident lights A211(Y), A221(Y), A231(Y), and A241(Y) enter the regions R1 to R4 of the patterned retardation layer 110, respectively.
  • the incident lights A211(Y) to A241(Y) are linearly polarized lights having a vibration direction in the Y-axis direction.
  • Incident light A211(Y) is transmitted through layer 102(Xy) and emitted downward as right circularly polarized light A212(R) to reach upper surface 101(R)U of light reflecting layer 101(R). . Since the light reflecting layer 101(R) is a right reflective circular polarizer, all of the light A212(R) is reflected by the light reflecting layer 101(R) to become reflected light A213(R). The theoretical value of the brightness of the light A213(R) is the same as that of the light A212(R). On the other hand, the theoretical value of the brightness of the transmitted light A219(n) passing through the light reflecting layer 101(R) is zero.
  • the light A213(R) passes through the layer 102(Xy) again and exits from the display surface of the optical display medium 100 as light A214(Y).
  • the theoretical value of the brightness of the light A214(Y) is the same as that of the light A213(R).
  • the incident light A221 (Y) is transmitted through the sub-layer 103 (Xy) and emitted downward as light A222' (P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 222′ (P) transmitted through it has different polarization states for different wavelengths. becomes. Furthermore, the polarization state of the incident light A221(Y) is significantly different from that of A221(X) in FIG. differ. However, since the brightness of light does not differ for each wavelength, the light A222'(P) is not observed as light having a particular chromatic color. The theoretical brightness value of the light A222'(P) is the same as that of the light A221(Y).
  • the light A222'(P) is further transmitted through the layer 102(Xy) and emitted downward as light A223'(P) with a further changed polarization state. Since the polarization state of incident light A222′(P) is significantly different from A222(P) in FIG. 5, the polarization state of light A223′(P) is significantly different from the polarization state of light A223(P) in FIG. differ. The theoretical value of the brightness of light A223'(P) is the same as that of light A222'(P).
  • the light A223'(P) emitted downward reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light-reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized component of the light A223′(P) is reflected on or inside the light-reflecting layer 101(R) and reflected light A224 '(R)(Ch).
  • the light A223′(P) has various different polarization states depending on the wavelength, among the various wavelengths of light contained in A223′(P), the light with a wavelength containing a large amount of right-handed circularly polarized components is , is reflected by the light-reflecting layer 101(R) relatively more, so that the light A224'(R)(Ch) is observed as light with some chromatic color. Since the polarization state of incident light A223′(P) is significantly different from that of A223(P) in FIG. are very different.
  • the theoretical value of the brightness of the light A224'(R) varies depending on the polarization state of the light A223'(P), but it is smaller than the light A223'(P) and approximately half that of the light A223'(P). .
  • the left circularly polarized component of the light A223'(P) is transmitted through the light reflection layer 101(R) and becomes transmitted light A229'(L)(Ch).
  • Light A224'(R)(Ch) is transmitted through layer 102(Xy) and emitted upward as light A225'(Y)(Ch).
  • Light A224′(R) is right-handed circularly polarized light, and since layer 102(Xy) is a ⁇ /4 wave plate with the slow axis in the Xy direction, light A225′(Y)(Ch) is polarized in the Y-axis direction
  • the theoretical values of the color and brightness are the same as those of the light A 224′ (R), and are greatly different from those of the light A 225 (Y) (Ch) in FIG.
  • the light A225'(Y)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 100 as light A226'(P)(Ch). Since sub-layer 103 (Xy) is a layer with Re(550) above 275 nm acting as region H, light A 226′ (P) (Ch) transmitted through it has different polarization states for different wavelengths. It will be in a state of having.
  • Incident light A231 (Y) is transmitted through sub-layer 103 (Xy) and emerges downward as light A232' (P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 232′ (P) transmitted through it has different polarization states for different wavelengths. becomes. Furthermore, the polarization state of the incident light A231(Y) is significantly different from that of A231(X) in FIG. differ. However, since the brightness of light does not differ for each wavelength, the light A232'(P) is not observed as light having a particular chromatic color. The theoretical brightness value of the light A232'(P) is the same as that of the light A231(Y).
  • Light A232'(P) is further transmitted through layer 102(N) and emitted downward as light A233'(P).
  • the light A222′(P) in the region R2 is transmitted through the layer 102(Xy) to become the light A223′(P) whose polarization state is further changed, while the light A233′(P) passes through the layer 102(Xy ) but transmitted through the isotropic layer 102(N), the polarization state of the light A233′(P) is different from that of the light A223′(P).
  • the polarization state of incident A232′(P) is significantly different from that of A232(P) in FIG. differ.
  • the light A233'(P) is not observed as light having a particular chromatic color.
  • the theoretical value of the brightness of light A233'(P) is the same as that of light A232'(P).
  • the light A233'(P) emitted downward reaches the upper surface 101(R)U of the light reflecting layer 101(R). Since the light-reflecting layer 101(R) is a right-reflecting circular polarizer, the right-handed circularly polarized component of the light A233′(P) is reflected on or inside the light-reflecting layer 101(R) and reflected light A234 '(R)(Ch).
  • the light A233′(P) has various different polarization states for each wavelength, among the various wavelengths of light included in A233′(P), the light with a wavelength that contains a large amount of right-handed circularly polarized components is , is reflected by the light-reflecting layer 101(R) relatively more, so that the light A234'(R)(Ch) is observed as light with some chromatic color. Since the polarization state of incident light A233′(P) is significantly different from that of A233(P) in FIG. are very different.
  • the color of the light A234′(R)(Ch) is different from that of the light A224′(R)(Ch). be a different color.
  • the theoretical value of the brightness of the light A234'(R) varies depending on the polarization state of the light A233'(P), but it is smaller than the light A233'(P) and approximately half that of the light A233'(P). .
  • the left circularly polarized light component of the light A233'(P) is transmitted through the light reflection layer 101(R) and becomes transmitted light A239'(L)(Ch).
  • Light A234'(R)(Ch) is transmitted through layer 102(N) and emitted upward as light A235'(R)(Ch). Since light A234′(R) is right-hand circularly polarized and layer 102(N) is an isotropic layer, the theoretical values for the color and brightness of light A235′(R)(Ch) are given by light A234′( R).
  • the light A235'(R)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 100 as light A236'(P)(Ch). Since sub-layer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 236′ (P) (Ch) transmitted through it has different polarization states for different wavelengths. It will be in a state of having.
  • the color and brightness of the light A236'(P)(Ch) are The theoretical values are the same as those of the light A235'(R)(Ch), and are greatly different from those of the light A236(P)(Ch) in FIG. Also, the color of the light A236'(P)(Ch) is different from the color of the light A226'(P)(Ch).
  • the incident light A241(Y) passes through the layer 102(N), is emitted downward as linearly polarized light A242(Y), and reaches the upper surface 101(R)U of the light reflecting layer 101(R).
  • the right-handed circularly polarized light component of the light A242(Y) is reflected to become the reflected light A243(R), whose theoretical brightness is half that of the incident light.
  • the left-handed circularly polarized component of the light A242(Y) is transmitted through the light reflecting layer 101(R) and becomes transmitted light A249(L).
  • the light A243(R) is transmitted through the layer 102(N) again and exits from the display surface of the optical display medium 100 as light A244(R).
  • the theoretical value of the brightness of the light A244(R) is the same as that of the light A243(R).
  • the region R1 has no reflected light and is relatively
  • the region R4 is observed as a relatively bright achromatic region having reflected light that is half as bright as the incident light.
  • the regions R2 and R3 have approximately the same brightness as the region R4 and are observed as chromatic regions having different colors, and their appearances are different from each other.
  • the region R1 reflects light with brightness equivalent to that of the incident light. It is observed as a relatively bright achromatic area with light.
  • the region R4 is observed as an achromatic region having reflected light with half the brightness of the incident light. The brightness of the region R4 does not change from the case shown in FIG. 5, but in this example it is observed as a relatively darker region than the region R1.
  • Regions R2 and R3 are observed as chromatic regions that have approximately the same brightness as region R4, are different colors from each other, and are also different from the colors observed in the example of FIG. It is different and also different from the appearance observed in the example of FIG.
  • results of normal observation of the optical display medium 100 with incident non-polarized light are the same as the cases described with reference to FIGS. are also observed as achromatic regions of the same brightness, and their differences are not discernible.
  • the optical display medium of the present invention in this example, no difference between regions was observed under normal observation, and differences in color and relative brightness between regions were observed only when linearly polarized light was used as a light source. Changing the angle of polarization can lead to special effects where the color and brightness of each region changes. Such a special effect cannot be obtained with duplicates that can be easily obtained by common techniques such as printing. Therefore, the optical display medium of the present invention exhibits high anti-counterfeiting performance and functions as an identification medium by comparing the observation results obtained by using such normal observation and using a plurality of types of polarized light/non-polarized light observation. do. In addition, the optical display medium of the present invention can exhibit a design effect as a decorative medium due to the expression of chromatic colors and changes in color and brightness.
  • Polarized-non-polarized light observation is obtained when linearly polarized light is observed as incident light. Such observation can be achieved by a simple operation of visually observing an optical display medium while an electronic device that emits linearly polarized light, such as a smart phone, is brought close to the display medium. Therefore, in such use, the optical display medium of the present invention can easily exhibit an identification function as an identification medium and a design effect as a decoration medium.
  • the incident light is linearly polarized light (incident light A211(X) to A241(X) and incident light A211(Y) to A241(Y)). It is not limited, and polarized light other than linearly polarized light can be used as the incident light.
  • the light from the regions R1 to R4 is observed using right-handed circularly polarized light as the incident light, the brightness (relative theoretical value when the brightness of the incident light is 100) is 50, about 50, It becomes about 50 and 100, and the region R4 is observed as a relatively bright region. Also, while the regions R1 and R4 are achromatic regions, the regions R2 and R3 are observed as chromatic regions having different colors.
  • the regions R1 to R4 are observed using left-handed circularly polarized light as incident light, the brightnesses of these are 50, about 50, about 50 and 0, respectively, and the region R4 is observed as a relatively dark region. Also, while the regions R1 and R4 are achromatic regions, the regions R2 and R3 are observed as chromatic regions having different colors. Furthermore, the color is different from the color observed using right-handed circularly polarized light.
  • a change in thickness can also provide an identification function and a design effect.
  • Some electronic devices such as smartphones equipped with some kind of protective film emit circularly polarized light. This can be achieved by an action of viewing the optical display medium in close proximity.
  • the light reflecting layer is provided with a reflective circular polarizer
  • the patterned retardation layer is a layer in which region I functions as a ⁇ /4 wavelength plate.
  • the provided optical display medium 100 is exemplified.
  • the optical display medium of the present invention is not limited to this, and may have other configurations.
  • the optical display medium of the present invention may comprise a reflective linear polarizer as the light reflecting layer and a patterned retardation layer in which region I is a layer functioning as a ⁇ /2 wavelength plate. Such examples are described below with reference to FIGS. 7-10.
  • FIG. 7 is an exploded side view schematically showing another example of the optical display medium of the present invention and its usage.
  • the optical display medium 200 comprises a light reflecting layer 201 (Y) and a patterned retardation layer 210 .
  • the patterned retardation layer 210 is a laminate comprising multiple layers of sub-layers 202 and 103 (Xy).
  • Sub-layer 202 is layer 202 (Xy) that only partly functions as a ⁇ /2 waveplate.
  • the other portion of sublayer 202 is isotropic layer 202(N), which is no different from layer 102(N) in FIGS. 1-2 and 4-6.
  • the sublayer 103(Xy) is also a layer having a uniform retardation over its entire surface, which is the same as the sublayer 103(Xy) in FIGS. 1 to 2 and 4 to 6 . That is, the patterned retardation layer 210 includes the layer 202 (Xy) functioning as a ⁇ /2 wavelength plate instead of the layer 102 (Xy) functioning as a ⁇ /4 wavelength plate, except that the patterned retardation layer 110 has the same configuration as
  • the entire area of the upper surface 201(Y)U of the light reflecting layer 201(Y) is the display surface area, that is, the area corresponding to the display surface of the optical display medium.
  • Sublayer 202 is provided overlying the light reflecting layer 101(R) in a manner that occupies the entire display surface area, while sublayer 103(Xy) occupies only a portion of the display surface area. and is provided so as to overlap the sub-layer 202 .
  • the patterned retardation layer 210 has regions S1 to S4, which are four types of regions with different retardations.
  • the upper surface on the patterned retardation layer 210 side (that is, the upper surface 202U of the sublayer 202 in the regions S1 and S4 and the sublayer 103 in the regions S2 and S3 ( The upper surface 103U) of Xy) functions as a display surface. That is, part of the light incident on the upper surface on the patterned retardation layer 210 side is reflected in the optical display medium 200 and emitted from the surface. It functions as a medium.
  • a reflective linear polarizer whose transmission axis is positioned in the Y-axis direction is employed as the light reflecting layer 201 (Y). That is, the light reflecting layer 201(Y) transmits the linearly polarized light component having the vibration direction of the Y-axis among the light incident on the upper surface 201(Y)U, and transmits the linearly polarized light component having the vibration direction of the X-axis direction. Reflect component.
  • the region S1 is a region where the layer 202 (Xy) exhibits the phase difference.
  • a region S3 is a region where a retardation of the sub-layer 103 (Xy) is exhibited, and a region S4 is a region where no retardation is exhibited.
  • the layer 202 (Xy) and the sub-layer 103 (Xy) overlap.
  • the patterned retardation layer includes a plurality of sub-layers, and each of the sub-layers has a retardation in at least a partial region in its plane, the portions having such a retardation are overlapped. state, so that the retardation of both of the superimposed multiple retardation layers is developed.
  • the degree of freedom in expressing the retardation is increased, and the degree of freedom in the color imparted to the region H can be increased in non-polarized light-polarized light observation and polarized light-non-polarized light observation.
  • the value of the in-plane retardation Re of each of the layer 202 (Xy) and the sub-layer 103 (Xy) is It can be adjusted to meet the requirements for region H mentioned.
  • regions S1 to S3 regions other than those that satisfy the requirements for the region H can be designated as the region I.
  • FIG. Region I may be the region functioning as a ⁇ /4 waveplate or the region functioning as a ⁇ /2 waveplate as described above.
  • layer 202 (Xy) typically has Re(550) of 275 nm acting as a ⁇ /2 waveplate and sublayer 103 (Xy) acting as region H , with Re(550) greater than 275 nm. Therefore, in the example described below, among the regions S1 to S3, the region S1 functions as a ⁇ /2 wavelength plate, and the regions S2 and S3 function as regions H. In particular, S2 has a larger in-plane retardation Re than S3.
  • region S3 can serve as region H as well as a ⁇ /2 wavelength plate. can also function as
  • FIG. 7 shows an example in which reflected light from the optical display medium 200 is observed through an observation linear polarizer 191 (X).
  • the observation linear polarizer 191 (X) is the same as that shown in FIGS. Positioned polarizer.
  • the slow axes of layer 202(Xy) and sublayer 103(Xy) are tilted 45° counter-clockwise with respect to the transmission axis of linear viewing polarizer 191(X).
  • the transmission axis of the light reflecting layer 201 (Y) is orthogonal to the transmission axis of the observation linear polarizer 191 (X).
  • optical display medium 200 shown in FIG. It is incident on one of the regions S1 to S4.
  • the incident lights A311(N) to A341(N) are unpolarized light that can be visually recognized as achromatic light with no deviation in wavelength distribution.
  • the incident light A311(N) is transmitted through the layer 202(Xy), emitted downward as unpolarized light A312(N), and reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A312(N) with the vibration direction in the X-axis direction is reflected. It becomes the reflected light A313(X), and its theoretical brightness is half that of the incident light. On the other hand, of the light A312(N), the linearly polarized component having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A319(Y).
  • the light A313(X) passes through the layer 202(Xy) again and exits from the display surface of the optical display medium 200 as light A314(Y).
  • Light A313(X) is linearly polarized light with an oscillation direction in the X-axis direction, and since layer 202(Xy) is a ⁇ /2 wavelength plate with a slow axis in the Xy direction, light A314(Y) It becomes linearly polarized light with an axial polarization direction, and its theoretical brightness value is the same as that of the light A313(X).
  • the light A314 (Y) is observed without passing through the observation linear polarizer 191 (X).
  • the light A314(Y) is incident on the observation linear polarizer 191(X) and is observed as the emitted light A315(n).
  • layer 202 (Xy) is an ideal ⁇ /2 waveplate whose value of Re( ⁇ )/ ⁇ is constant over the entire visible wavelength range, then light A 314 (Y) is It becomes linearly polarized light having the polarization direction in the Y-axis direction, and the brightness of the emitted light A315(n) can be zero in the entire visible light wavelength range.
  • layer 202 (Xy) is a non-ideal ⁇ /2 waveplate in which the value of Re( ⁇ )/ ⁇ is not constant over the entire visible wavelength range
  • light A 314 (Y) is , the in-plane retardation Re becomes a value with an error that deviates from ⁇ /2, the emitted light can be elliptically polarized, and the brightness of the emitted light A315(n) does not become zero in the wavelength range.
  • the region S1 may function as the region H in addition to the regions S2 and S3.
  • Incident light A321(N) passes through sub-layer 103(Xy) and exits downward as unpolarized light A322(N), which further passes through layer 202(Xy) as unpolarized light A323(N). , and reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light-reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A323(N) that has the vibration direction in the X-axis direction is reflected by the light reflection layer 201(Y).
  • the reflected light A324(X) is reflected on or inside the layer 201(Y), and its theoretical brightness is half that of the incident light.
  • the linearly polarized component of the light A323(N) having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A329(Y).
  • Light A324(X) is transmitted through layer 202(Xy) and emitted upward as light A325(Y).
  • Light A324(X) is linearly polarized light with a vibration direction in the X-axis direction, and since layer 202(Xy) is a ⁇ /2 waveplate with a slow axis in the Xy direction, light A325(Y) is polarized in the Y It becomes linearly polarized light with an axial polarization direction, and its theoretical brightness value is the same as that of light A324(X).
  • the light A325(Y) is transmitted through the sub-layer 103(Xy) and exits from the display surface of the optical display medium 200 as light A326(P). Since sub-layer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 326 (P) transmitted through it will have different polarization states for different wavelengths. Become. However, the brightness of light does not differ for each wavelength. Therefore, when the region S2 is normally observed, the light A326(P) is not observed as light having a particular chromatic color. The theoretical value of the brightness of light A326(P) is the same as that of light A325(Y).
  • the light A326(P) is incident on the linear polarizer for observation 191(X), and the state of the emitted light A327(X)(Ch) is observed. become.
  • the observation linear polarizer 191(X) only the linearly polarized component of the light A326(P) having a vibration direction in the X-axis direction is emitted as light A327(X)(Ch). , is emitted from the observation linear polarizer 191 (X).
  • the linearly polarized light component having the vibration direction in the X-axis direction is predominant.
  • a relatively larger amount of light having a wavelength containing observed as accompanying light The theoretical value of the brightness of the light A327(X)(Ch) varies depending on the polarization state of the light A326(P), but it is smaller than the light A326(P) and approximately half that of the light A326(P).
  • Incident light A331(N) passes through sub-layer 103(Xy) and exits downward as unpolarized light A332(N), which further passes through layer 202(N) as unpolarized light A333(N). , and reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light-reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A333(N) having the vibration direction in the X-axis direction is reflected The reflected light A334(X) is reflected on or inside the layer 201(Y), and its theoretical brightness is half that of the incident light. On the other hand, the linearly polarized component of the light A333(N) having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A339(Y).
  • Light A334(X) is transmitted through layer 202(N) and emitted upward as light A335(X).
  • Light A335(X) is transmitted through sublayer 103(Xy) and exits the viewing surface of optical display medium 200 as light A336(P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A336(P) transmitted through it will have different polarization states for different wavelengths. Become. However, compared with the light A326(P) emitted from the region S2, the light A326(P) is circularly polarized light that has also passed through the layer 202(Xy), which is another layer having a phase difference.
  • the polarization state of the light A336(P) is different from that of the light A326(P). be.
  • the brightness of the light A336(P) does not differ for each wavelength, like the light A326(P). Therefore, when the region S3 is normally observed, the light A336(P) is not observed as light having a particular chromatic color.
  • the theoretical value of the brightness of light A336(P) is the same as that of light A335(X).
  • the light A336(P) is incident on the linear polarizer for observation 191(X), and the state of the emitted light A337(X)(Ch) is observed. become.
  • the observation linear polarizer 191(X) only the linearly polarized component of the light A336(P) having a vibration direction in the X-axis direction is emitted as light A337(X)(Ch). , is emitted from the observation linear polarizer 191 (X).
  • the linearly polarized light component having the vibration direction in the X-axis direction is predominant. A relatively larger amount of light having a wavelength containing observed as accompanying light.
  • the color of the light A337(X)(Ch) is different from that of the light A327(X)(Ch).
  • the theoretical value of the brightness of the light A337(X)(Ch) varies depending on the polarization state of the light A336(P), but it is smaller than the light A336(P) and is approximately half that of the light A336(P).
  • the incident light A341(N) is transmitted through the layer 202(N), emitted downward as unpolarized light A342(N), and reaches the upper surface 201(Y)U of the light reflecting layer 201(Y).
  • the linearly polarized component having the vibration direction in the X-axis direction is reflected to become the reflected light A343(X), whose theoretical brightness is half that of the incident light.
  • the linearly polarized component having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A349(Y).
  • Light A343(X) is transmitted through layer 202(N) again and exits from the display surface of optical display medium 200 as light A344(X).
  • the theoretical value of the brightness of light A344(X) is the same as that of light A343(X).
  • the light A344(X) is observed without passing through the observation linear polarizer 191(X).
  • the light A344(X) is incident on the observation linear polarizer 191(X) and is observed as the emitted light A345(X).
  • FIG. 8 schematically shows an example of how to use the optical display medium of the present invention when the relative angular relationship between the optical display medium and the viewing linear polarizer is changed from that in the example of FIG. It is an exploded side view.
  • FIG. 8 illustrates that the angle of the optical display medium 200 with respect to the coordinate axes is fixed, and the angle of the viewing linear polarizer with respect to the X-axis and the Y-axis is changed.
  • these relative angular relationships can be changed by moving the optical display medium, moving the linear polarizer for observation, exchanging the linear polarizer for observation, or any combination of two or more of these. you can go
  • observation linear polarizer 191 (Y) is used as the observation polarizer as a result of changing the angular relationship.
  • Observation linear polarizer 191 (Y) is a polarizer positioned at an angle relative to optical display medium 200 so as to have a transmission axis in the Y-axis direction.
  • the slow axis of layer 202 (Xy) is tilted 45° clockwise with respect to the transmission axis of linear viewing polarizer 191 (Y).
  • the path of light up to this point is the same as in the example of FIG.
  • the polarization oscillation direction of the light A314(Y) and the transmission axis of the observation linear polarizer 191(Y) are parallel.
  • the light A314(Y) are all transmitted and emitted from the observation linear polarizer 191(Y) as emitted light A315(Y).
  • the theoretical value of the brightness of the emitted light A315(Y) is the same as that of the light A314(Y).
  • the linearly polarized component of the light A326(P) having a vibration direction in the Y-axis direction is emitted light A327(Y) ( Ch) is emitted from the observation linear polarizer 191 (Y). Since the light A326(P) has various different polarization states for each wavelength, among the light of various wavelengths contained in A326(P), the linearly polarized light component having the vibration direction in the Y-axis direction is predominant. A relatively larger amount of light having a wavelength containing observed as accompanying light.
  • the component that could be emitted from the observation linear polarizer 191(X) (FIG. 7) is blocked by the observation linear polarizer 191(Y).
  • the component that could not be emitted from the observation linear polarizer 191(X) is emitted from the observation linear polarizer 191(Y). Therefore, the observed color of the emitted light A327(Y)(Ch) can be significantly different from that of A327(X)(Ch) (FIG. 7).
  • the theoretical value of the brightness of the light A327(Y)(Ch) differs depending on the polarization state of the light A326(P), but it is smaller than the light A326(P) and is approximately half that of the light A326(P).
  • the linearly polarized component of the light A336(P) having a vibration direction in the Y-axis direction is emitted light A337(Y) ( Ch) is emitted from the observation linear polarizer 191 (Y). Since the light A336(P) has various different polarization states for each wavelength, among the light of various wavelengths contained in A336(P), the linearly polarized light component having the vibration direction in the Y-axis direction is predominant. A relatively larger amount of light having a wavelength containing observed as accompanying light.
  • the observed color of emitted light A337(Y)(Ch) is significantly different from that of A337(X)(Ch). can be.
  • the color of light A337(Y)(Ch) is also different from light A327(Y)(Ch). be a different color.
  • the theoretical value of the brightness of the light A337(Y)(Ch) varies depending on the polarization state of the light A336(P), but it is smaller than the light A336(P) and is approximately half that of the light A336(P).
  • the polarization vibration direction of the light A344(X) and the transmission axis of the observation linear polarizer 191(Y) are orthogonal to each other. All of the light A344(Y) is blocked, and the theoretical value of the brightness of the light A345(n) emitted from the observation linear polarizer 191(Y) becomes zero.
  • the observer when normally observing the optical display medium 200 on which non-polarized light is incident, the observer observes the emitted light beams A314(Y), A326(P), A336(P) and A344(X). . These emitted lights have different polarization states but the same brightness. Since human vision cannot perceive this difference in polarization state, an observer cannot perceive these differences. Also, even if the relative angular relationship between the optical display medium 200 and the observer changes, the observer cannot perceive the change based on the change in the polarization state. Therefore, the areas S1 to S4 are all observed as achromatic areas with the same brightness, and the difference between them is not recognized.
  • the area S1 is relatively dark with no reflected light. It is observed as a substantially black achromatic region, and the region S4 is observed as a relatively bright achromatic region having reflected light half as bright as the incident light.
  • the regions S2 and S3 are observed as chromatic regions having approximately the same brightness as the region S4 and having different colors, and their appearances are different from each other.
  • region S4 is observed as a relatively dark substantially black achromatic region without reflected light.
  • Regions S2 and S3 are observed as chromatic regions that are slightly darker than region S1, are different colors from each other, and are also different from the colors observed in the example of FIG. It also differs from the appearance observed in the example of .
  • the optical display medium of the present invention showed no difference between regions under normal observation, and differences in color and relative brightness between regions were observed only through a linear polarizer for observation.
  • changing the angle of the viewing linear polarizer can produce special effects, such as changing the color and brightness of each region.
  • Such a special effect cannot be obtained with duplicates that can be easily obtained by common techniques such as printing. Therefore, the optical display medium of the present invention exhibits high anti-counterfeiting performance and functions as an identification medium by comparing the observation results obtained by using such normal observation and using multiple types of non-polarized light-polarized light observation. do.
  • the optical display medium of the present invention can exhibit a design effect as a decorative medium due to the expression of chromatic colors and changes in color and brightness.
  • the incident light is polarized light
  • the reflected light can be observed directly without going through the linear polarizer for observation.
  • the mode of supplying polarized light such as linearly polarized light can be the same as in Embodiment 1 described with reference to FIGS.
  • FIGS. 9 and 10 are exploded side views schematically showing another example of how to use the optical display medium 200 shown in FIGS. 7 and 8.
  • FIG. 9 the incident light A411(X), A421(X), A431(X) and A441(X) are respectively in the region S1 of the patterned retardation layer 210. ⁇ S4.
  • the incident lights A411(X) to A441(X) are linearly polarized light having a vibration direction in the X-axis direction.
  • Incident light A411(X) is transmitted through the layer 202(Xy) and emitted downward as light A412(Y), which is linearly polarized light having a vibration direction in the Y-axis direction.
  • (Y) Reach U. Since the light reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, all of the light A412(Y) is transmitted through the light reflecting layer 201(Y) and the transmitted light A419(Y) ).
  • the theoretical value of the brightness of the reflected light A413(n) in the light reflecting layer 201(Y) becomes zero, and the light A414(n) transmitted through the layer 202(Xy) again and emitted from the display surface of the optical display medium 200
  • the theoretical value of the brightness of is also zero.
  • the incident light A421(X) is transmitted through the sub-layer 103(Xy) and emitted downward as light A422(P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, the light A422(P) transmitted through it will have different polarization states for different wavelengths. Become. However, since there is no difference in the brightness of light for each wavelength, the light A422(P) is not observed as light having a particular chromatic color. The theoretical value of the brightness of light A422(P) is the same as that of light A421(X).
  • the light A422(P) is further transmitted through the layer 202(Xy) and emitted downward as light A423(P) whose polarization state is further changed.
  • the theoretical brightness value of the light A423(P) is the same as that of the light A422(P).
  • the light A423(P) emitted downward reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light-reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A423(P) having the vibration direction in the X-axis direction is reflected by the light reflection. The reflected light A424(X)(Ch) is reflected on or inside the layer 201(Y). Since the light A423(P) has various different polarization states for each wavelength, among the light of various wavelengths contained in A423(P), the linearly polarized light component having the vibration direction in the X-axis direction is predominant.
  • the light-reflecting layer 201(Y) are reflected by the light-reflecting layer 201(Y) relatively more, so that the light A424(X)(Ch) is observed as light with some chromatic color.
  • the theoretical value of the brightness of the light A424(X) varies depending on the polarization state of the light A423(P), but it is smaller than the light A423(P) and approximately half that of the light A423(P).
  • the linearly polarized component of the light A423(P) having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A429(Y)(Ch).
  • Light A424(X)(Ch) is transmitted through layer 202(Xy) and emitted upward as light A425(Y)(Ch).
  • Light A 424 (X) is linearly polarized light with an oscillation direction in the X-axis direction, and since layer 202 (Xy) is a ⁇ /2 waveplate with a slow axis in the Xy direction, light A 425 (Y) (Ch) becomes linearly polarized light with the polarization direction in the Y-axis direction, and the theoretical values of its color and brightness are the same as those of the light A424 (X).
  • the light A425(Y)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 200 as light A426(P)(Ch). Since sub-layer 103 (Xy) is the layer with Re(550) above 275 nm acting as region H, the light A 426 (P) (Ch) transmitted through it will have different polarization states for different wavelengths. state. However, since the brightness of each wavelength of the light A426(P)(Ch) is the same as that of the light A425(Y)(Ch), the theoretical values of the color and brightness of the light A426(P)(Ch) are , light A 425 (Y) (Ch).
  • the incident light A431(X) is transmitted through the sub-layer 103(Xy) and emitted downward as light A432(P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A432(P) transmitted through it will have different polarization states for different wavelengths. Become. However, since the brightness of light does not differ for each wavelength, the light A432(P) is not observed as light having a particular chromatic color. The theoretical value of the brightness of light A432(P) is the same as that of light A431(X).
  • the light A432(P) is further transmitted through the layer 202(N) and emitted downward as light A433(P).
  • the light A422(P) in the region S2 becomes light A423(P) whose polarization state is further changed by transmitting through the layer 202(Xy), whereas the light A433(P) does not pass through the layer 202(Xy). Since the light is transmitted through the isotropic layer 202(N), the polarization state of the light A433(P) is different from that of the light A423(P). However, since there is no difference in the brightness of light for each wavelength, the light A433(P) is not observed as light having a particular chromatic color. The theoretical value of the brightness of light A433(P) is the same as that of light A432(P).
  • the light A433(P) emitted downward reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light-reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A433(P) having the vibration direction in the X-axis direction is reflected The reflected light A434(X)(Ch) is reflected on or inside the layer 201(Y). Since the light A433(P) has various different polarization states for each wavelength, among the light of various wavelengths contained in A433(P), the linearly polarized light component having the vibration direction in the X-axis direction is predominant.
  • the light-reflecting layer 201(Y) relatively more, so that the light A434(X)(Ch) is observed as light with some chromatic color. Since the polarization state of the light A433(P) is different from that of the light A423(P), the color of the light A434(X)(Ch) is different from that of the light A424(X)(Ch).
  • the theoretical value of the brightness of the light A434(X) varies depending on the polarization state of the light A433(P), but it is smaller than the light A433(P) and approximately half that of the light A433(P).
  • the linearly polarized component of the light A433(P) having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A439(Y)(Ch).
  • Light A434(X)(Ch) is transmitted through layer 202(N) and emitted upward as light A435(X)(Ch). Since light A434(X) is linearly polarized light with a vibration direction along the X-axis and layer 202(N) is an isotropic layer, the theoretical values for the color and brightness of light A435(X)(Ch) are , light A434(X).
  • the light A435(R)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 200 as light A436(P)(Ch). Since sub-layer 103 (Xy) is the layer with Re(550) above 275 nm acting as region H, the light A436(P)(Ch) transmitted through it has different polarization states for different wavelengths. state. However, since the brightness of each wavelength of the light A436(P)(Ch) is the same as that of the light A435(R)(Ch), the theoretical values of the color and brightness of the light A436(P)(Ch) are , light A435(R)(Ch). Also, the color of the light A436(P)(Ch) is different from the color of the light A426(P)(Ch).
  • the incident light A441(X) is transmitted through the layer 202(N), emitted downward as linearly polarized light A442(X), and reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, all of the light A442(X) is reflected at the light reflecting layer 201(Y) and the reflected light A443(X) ). The theoretical value of the brightness of light A443(X) is the same as that of light A442(X). On the other hand, the theoretical value of the brightness of the transmitted light A449(n) passing through the light reflecting layer 201(Y) is zero.
  • Light A443(X) is transmitted through layer 202(N) again and exits from the display surface of optical display medium 200 as light A444(X).
  • the theoretical value of the brightness of light A444(X) is the same as that of light A443(X).
  • FIG. 10 schematically shows an example of how to use the optical display medium of the present invention when the relative angular relationship between the optical display medium and the vibration direction of incident linearly polarized light is changed from that in the example of FIG. It is an exploded side view showing.
  • FIG. 10 illustrates that the angle of the optical display medium 200 with respect to the coordinate axes is fixed, and the angle of the vibration direction of the linearly polarized light with respect to the X-axis and the Y-axis is changed.
  • these relative angular relationships may be changed by moving the optical display medium, moving the light source, replacing the light source, or any combination of two or more of these.
  • the example of FIG. 10 is changed to an example in which the light incident on the optical display medium 200 is linearly polarized light having a vibration direction in the Y-axis direction as a result of changing the angular relationship. That is, the incident lights A411(Y), A421(Y), A431(Y), and A441(Y) enter the regions S1 to S4 of the patterned retardation layer 110, respectively.
  • the incident lights A411(Y) to A441(Y) are linearly polarized lights having a vibration direction in the Y-axis direction.
  • Incident light A411(Y) is transmitted through the layer 202(Xy) and emitted downward as light A412(X), which is linearly polarized light having a vibration direction in the X-axis direction.
  • (Y) Reach U. Since the light reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, all of the light A412(X) is reflected at the light reflecting layer 201(Y) and the reflected light A413(X) ). The theoretical value of the brightness of light A413(X) is the same as that of light A412(X). On the other hand, the theoretical value of the brightness of the transmitted light A419(n) passing through the light reflecting layer 201(Y) is zero.
  • the light A413(X) passes through the layer 202(Xy) again and exits from the display surface of the optical display medium 200 as light A414(Y).
  • the theoretical value of the brightness of light A414(Y) is the same as that of light A413(X).
  • the incident light A421 (Y) is transmitted through the sub-layer 103 (Xy) and emitted downward as light A422' (P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 422′(P) transmitted through it has different polarization states for different wavelengths. becomes. Furthermore, since the polarization state of incident light A421(Y) is significantly different from that of A421(X) in FIG. 9, the polarization state of light A422′(P) is significantly different from that of light A422(P) in FIG. differ.
  • the light A422'(P) is not observed as light having a particular chromatic color.
  • the theoretical brightness value of the light A422'(P) is the same as that of the light A421(Y).
  • the light A422'(P) is further transmitted through the layer 202(Xy) and emitted downward as light A423'(P) whose polarization state is further changed. Since the polarization state of incident light A422′(P) is significantly different from A422(P) in FIG. 9, the polarization state of light A423′(P) is significantly different from the polarization state of light A423(P) in FIG. differ. The theoretical value of the brightness of light A423'(P) is the same as that of light A422'(P).
  • the light A423'(P) emitted downward reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light reflecting layer 201 (Y) is a reflective linear polarizer with the transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A 423′ (P) having the vibration direction in the X-axis direction is the light The reflected light A424'(X)(Ch) is reflected on the surface or inside the reflective layer 201(Y).
  • the linearly polarized component having the vibration direction in the X-axis direction Light with wavelengths containing a lot of is reflected by the light reflecting layer 201 (Y) relatively more, so that the light A 424′ (X) (Ch) is observed as light with some chromatic color. Since the polarization state of incident light A423′(P) is significantly different from that of A423(P) in FIG. 9, the color of light A424′(X)(Ch) differs from that of light A424(X)(Ch) in FIG. are very different.
  • the theoretical value of the brightness of the light A424′(X)(Ch) varies depending on the polarization state of the light A423′(P), but it is smaller than the light A423′(P), and is generally the value of the light A423′(P).
  • the linearly polarized component having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A429'(Y)(Ch).
  • Light A424'(X)(Ch) is transmitted through layer 202(Xy) and emitted upward as light A425'(Y)(Ch).
  • the light A424′(X)(Ch) is linearly polarized light with the oscillation direction in the X-axis direction
  • the layer 202(Xy) is a ⁇ /2 wave plate with the slow axis in the Xy direction
  • Y)(Ch) becomes linearly polarized light with the polarization direction in the Y-axis direction
  • the theoretical values of its color and brightness are the same as those of the light A424'(X)(Ch), and the light A425(Y ) and (Ch).
  • the light A425'(Y)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 200 as light A426'(P)(Ch). Since sublayer 103 (Xy) is a layer with Re(550) above 275 nm acting as region H, light A 426′(P)(Ch) transmitted through it has different polarization states for different wavelengths. It will be in a state of having.
  • Incident light A431 (Y) is transmitted through sub-layer 103 (Xy) and emerges downward as light A432' (P). Since sublayer 103 (Xy) is a layer with Re(550) greater than 275 nm acting as region H, light A 432′ (P) transmitted through it has different polarization states for different wavelengths. becomes. Furthermore, since the polarization state of incident light A431(Y) is significantly different from that of A431(X) in FIG. 9, the polarization state of light A432′(P) is significantly different from that of light A432(P) in FIG. differ. However, since the brightness of light does not differ for each wavelength, the light A432'(P) is not observed as light having a particular chromatic color. The theoretical brightness value of the light A432'(P) is the same as that of the light A431(Y).
  • Light A432'(P) is further transmitted through layer 202(N) and emitted downward as light A433'(P).
  • the light A422′(P) in the region S2 becomes light A423′(P) whose polarization state is further changed by transmitting through the layer 202(Xy). ), but transmitted through the isotropic layer 202(N), the polarization state of the light A433′(P) is different from that of the light A423′(P).
  • the polarization state of incident A432′(P) is significantly different from that of A432(P) in FIG. differ.
  • the light A433'(P) is not observed as light having a particular chromatic color.
  • the theoretical brightness value of light A433'(P) is the same as that of light A432'(P).
  • the light A433'(P) emitted downward reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light reflecting layer 201 (Y) is a reflective linear polarizer with the transmission axis positioned in the Y-axis direction, the linearly polarized component of the light A 433′ (P) having the vibration direction in the X-axis direction is the light The light is reflected on the surface or inside the reflective layer 201(Y) and becomes reflected light A434'(X)(Ch).
  • the linearly polarized component having the vibration direction in the X-axis direction Light with wavelengths containing a lot of is reflected by the light reflecting layer 201 (Y) relatively more, and as a result, the light A 434′ (X) (Ch) is observed as light with some chromatic color. Since the polarization state of incident light A433′(P) is significantly different from that of A433(P) in FIG. are very different.
  • the color of light A434′(X)(Ch) is different from that of light A424′(X)(Ch). be a different color.
  • the theoretical value of the brightness of the light A434'(X) varies depending on the polarization state of the light A433'(P), but it is smaller than the light A433'(P) and approximately half that of the light A433'(P). .
  • the linearly polarized component having the vibration direction in the Y-axis direction is transmitted through the light reflecting layer 201(Y) and becomes transmitted light A439'(Y)(Ch).
  • Light A434'(X)(Ch) is transmitted through layer 202(N) and emitted upward as light A435'(X)(Ch).
  • Light A 434′(X) is linearly polarized light with a vibration direction along the X axis, and since layer 202(N) is an isotropic layer, the theory of color and brightness of light A 435′(X)(Ch) The values are the same as for light A434'(X).
  • the light A435'(X)(Ch) is transmitted through the sub-layer 103(Xy) and emerges from the display surface of the optical display medium 200 as light A436'(P)(Ch). Since sub-layer 103 (Xy) is a layer with Re(550) above 275 nm acting as region H, light A 436′(P)(Ch) transmitted through it has different polarization states for different wavelengths. It will be in a state of having.
  • the color and brightness of the light A436'(P)(Ch) are the same as that of the light A435'(X)(Ch), and are greatly different from the light A436(P)(Ch) in FIG. Also, the color of the light A436'(P)(Ch) is different from the color of the light A426'(P)(Ch).
  • the incident light A441(Y) is transmitted through the layer 202(N), emitted downward as linearly polarized light A442(Y), and reaches the upper surface 201(Y)U of the light reflecting layer 201(Y). Since the light reflecting layer 201(Y) is a reflective linear polarizer with its transmission axis positioned in the Y-axis direction, all of the light A442(Y) is transmitted through the light reflecting layer 201(Y) and the transmitted light A449(Y) ).
  • the theoretical value of the brightness of the reflected light A443(n) in the light reflecting layer 201(Y) becomes zero, and the light A444(n) transmitted through the layer 202(Xy) again and emitted from the display surface of the optical display medium 200
  • the theoretical value of the brightness of is also zero.
  • the region S1 has no reflected light.
  • the region S4 is observed as a relatively dark, substantially black achromatic region, and the region S4 is observed as a relatively bright achromatic region having reflected light with the same brightness as the incident light.
  • Regions S2 and S3 are slightly darker than region S4 and are observed as chromatic regions of different colors, and their appearances are different from each other.
  • the region S1 reflects light with brightness equivalent to that of the incident light. It is observed as a relatively bright achromatic area with light.
  • the region S4 is observed as a relatively dark substantially black achromatic region without reflected light.
  • Regions S2 and S3 are observed as chromatic regions that are slightly darker than region S1, are different colors from each other, and are also different from the colors observed in the example of FIG. It also differs from the appearance observed in the example of .
  • region S4 becomes darker as the angle of rotation increases, and reaches a minimum when the orientation of the viewing linear polarizer reaches the state of viewing linear polarizer 191 (Y) in FIG.
  • rotation changes the colors observed in regions S2 and R3.
  • the optical display medium of the present invention in this example, no difference between regions was observed under normal observation, and differences in color and relative brightness between regions were observed only when linearly polarized light was used as a light source. Changing the angle of polarization can lead to special effects where the color and brightness of each region changes. Such a special effect cannot be obtained with duplicates that can be easily obtained by common techniques such as printing. Therefore, the optical display medium of the present invention exhibits high anti-counterfeiting performance and functions as an identification medium by comparing the observation results obtained by using such normal observation and using a plurality of types of polarized light/non-polarized light observation. do. In addition, the optical display medium of the present invention can exhibit a design effect as a decorative medium due to the expression of chromatic colors and changes in color and brightness.
  • a light reflecting layer is a layer that reflects incident light as circularly polarized light or linearly polarized light.
  • the light reflective layer include a reflective circular polarizer exemplified by the light reflective layer 101 (R) described above, and a reflective linear polarizer exemplified by the light reflective layer 201 (Y) described above.
  • a polarizer is mentioned.
  • the light reflecting layer may exhibit such a function by a single layer, or may exhibit such a function by combining a plurality of layers.
  • a reflective circular polarizer is a layer of material with cholesteric regularity.
  • Cholesteric regularity means that the molecular axes are lined up in a certain direction on one plane inside the material, but the direction of the molecular axes on the next plane that overlaps with it is slightly deviated, and the next plane has a further angle. It is a structure in which the angles of the molecular axes in the planes are shifted (twisted) as they pass through the planes that are arranged to overlap one another, such that the planes are shifted.
  • the molecules when molecules inside a layer of a certain material have cholesteric regularity, the molecules are aligned such that their molecular axes are oriented in a certain direction on a certain first plane inside the layer.
  • the direction of the molecular axis In the next second plane within the layer, which overlaps the first plane, the direction of the molecular axis deviates at a small angle from the direction of the molecular axis in the first plane.
  • the direction of the molecular axis In the next third plane, which further overlaps the second plane, the direction of the molecular axis is angularly offset from the direction of the molecular axis in the second plane. In this way, the angles of the molecular axes in the planes that are arranged to overlap each other gradually shift (twist).
  • Such a structure in which the direction of the molecular axis is twisted is usually a helical structure and an optically chiral structure.
  • a more specific example of a material having cholesteric regularity is a cholesteric resin layer.
  • the cholesteric resin layer is a layer obtained by curing a curable liquid crystal compound exhibiting a cholesteric liquid crystal phase.
  • the cholesteric resin layer can be obtained, for example, by polymerizing a polymerizable liquid crystal compound while exhibiting a cholesteric liquid crystal phase.
  • a liquid crystal composition containing a polymerizable liquid crystal compound is formed into a layer state by, for example, coating it on an appropriate substrate, aligned in a cholesteric liquid crystal phase, and cured to obtain a cholesteric resin layer. sell.
  • a photopolymerizable liquid crystal compound As the polymerizable liquid crystal compound, a photopolymerizable liquid crystal compound is preferable.
  • a photopolymerizable liquid crystal compound a photopolymerizable liquid crystal compound that can be polymerized by irradiation with an active energy ray can be used.
  • an energy ray that can promote the polymerization reaction of the photopolymerizable liquid crystal compound can be used from among a wide range of energy rays such as visible light, ultraviolet rays, and infrared rays, and ionizing radiation such as ultraviolet rays is particularly preferred. is preferred.
  • the photopolymerizable liquid crystal compound preferably used in the cholesteric liquid crystal composition is preferably a rod-like liquid crystal compound having two or more reactive groups in one molecule, and particularly preferably a compound represented by formula (1). .
  • R 3 and R 4 are reactive groups, each independently a (meth)acryl group, (thio)epoxy group, oxetane group, thietanyl group, aziridinyl group, pyrrole group, vinyl group , allyl group, fumarate group, cinnamoyl group, oxazoline group, mercapto group, iso(thio)cyanate group, amino group, hydroxyl group, carboxyl group and alkoxysilyl group.
  • D 3 and D 4 are each independently a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and represents a group selected from the group consisting of linear or branched alkylene oxide groups.
  • M represents a mesogenic group.
  • R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 5 and R 7 are alkyl groups
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • substituents in the "alkyl group having 1 to 10 carbon atoms which may have a substituent" include a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, and 1 to 10 carbon atoms. 6 alkoxy groups, alkoxyalkoxy groups having 2 to 8 carbon atoms, alkoxyalkoxyalkoxy groups having 3 to 15 carbon atoms, alkoxycarbonyl groups having 2 to 7 carbon atoms, 2 carbon atoms 1 to 7 alkylcarbonyloxy groups, alkoxycarbonyloxy groups having 2 to 7 carbon atoms, and the like.
  • the rod-like liquid crystal compound preferably has an asymmetric structure.
  • the asymmetric structure refers to R 3 -C 3 -D 3 -C 5 -M- and -M-C 6 -D 4 -C 4 -R 4 with the mesogenic group M in the formula (1) as the center. , they refer to different structures. Alignment uniformity can be further enhanced by using a rod-like liquid crystal compound having an asymmetric structure.
  • rod-like liquid crystalline compound examples include the following compounds (B1) to (B10).
  • the rod-like liquid crystalline compound is not limited to the following compounds.
  • the liquid crystal composition preferably contains a compound represented by Formula (2) as an alignment aid in combination with the rod-shaped liquid crystal compound.
  • Formula (2) a compound represented by Formula (2) as an alignment aid in combination with the rod-shaped liquid crystal compound.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or a branched alkylene oxide group, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth)acrylic group optionally interposed with a bonding group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
  • the alkyl group and alkylene oxide group may be unsubstituted or substituted with one or more halogen atoms.
  • the halogen atom, hydroxyl group, carboxyl group, (meth)acrylic group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group are alkyl groups having 1 to 2 carbon atoms, and alkylene oxides. It may be bonded to a group.
  • R 1 and R 2 include halogen atoms, hydroxyl groups, carboxyl groups, (meth)acryl groups, epoxy groups, mercapto groups, isocyanate groups, amino groups and cyano groups.
  • At least one of R 1 and R 2 is preferably a reactive group.
  • the compound represented by the formula (2) is fixed in the liquid crystal composition cured layer during curing, and a stronger layer can be formed.
  • the reactive group includes, for example, a carboxyl group, (meth)acryl group, epoxy group, mercapto group, isocyanate group, and amino group.
  • a 1 and A 2 are each independently a 1,4-phenylene group, a 1,4-cyclohexylene group, a cyclohexene-1,4-ylene group, a 4,4′-biphenylene group, a 4 ,4'-bicyclohexylene group and 2,6-naphthylene group.
  • the 1,4-phenylene group, 1,4-cyclohexylene group, cyclohexen-1,4-ylene group, 4,4'-biphenylene group, 4,4'-bicyclohexylene group and 2,6-naphthylene group is unsubstituted or substituted with one or more substituents such as halogen atoms, hydroxyl groups, carboxyl groups, cyano groups, amino groups, alkyl groups having 1 to 10 carbon atoms, halogenated alkyl groups, etc. may be When two or more substituents are present in each of A 1 and A 2 , they may be the same or different.
  • a 1 and A 2 include groups selected from the group consisting of 1,4-phenylene groups, 4,4'-biphenylene groups and 2,6-naphthylene groups. These aromatic ring skeletons are relatively rigid compared to alicyclic skeletons, and have high affinity with mesogens of rod-like liquid crystal compounds, resulting in higher alignment uniformity.
  • Specific preferred examples of the compound represented by formula (2) include the following compounds (A1) to (A10). One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the weight ratio represented by (total weight of compounds represented by formula (2))/(total weight of rod-like liquid crystal compounds) is preferably 0.001 or more, more preferably 0.01 or more, and still more preferably 0.01 or more. 05 or more, preferably 1 or less, more preferably 0.65 or less.
  • the refractive index anisotropy ⁇ n of the liquid crystal composition can be increased, it is possible to stably obtain a liquid crystal composition cured layer having desired optical performance such as selective reflection performance for circularly polarized light.
  • the total weight of the compound represented by the formula (2) is the weight when only one type of the compound represented by the formula (2) is used, and when two or more types are used Indicates total weight.
  • the total weight of the rod-like liquid crystal compounds indicates the weight when only one type of rod-like liquid crystal compound is used, and indicates the total weight when two or more types of rod-like liquid crystal compounds are used.
  • the compound represented by the formula (2) preferably has a molecular weight of less than 600, and the rod-like liquid crystal compound has a molecular weight of 600 or more. is preferably As a result, the compound represented by Formula (2) can enter the gaps of the rod-like liquid crystal compound having a higher molecular weight than that, so that the alignment uniformity can be improved.
  • the liquid crystal composition for forming the cholesteric resin layer may further contain optional components constituting the cholesteric resin layer and a solvent for facilitating handling of the liquid crystal composition.
  • optional ingredients include chiral agents, polymerization initiators, and surfactants.
  • Specific examples of optional components and solvents include those described in JP-A-2019-188740.
  • Examples of reflective linear polarizers include films in which multilayer thin films are laminated (for example, the product name "DBEF", manufactured by 3M) and wire grid polarizers.
  • the maximum reflectance of the non-polarized light incident on the light reflecting layer by the light reflecting layer is 50%.
  • the light-reflecting layer visually presents different colors.
  • the reflectance of unpolarized light incident on the light reflecting layer by the light reflecting layer is 35 to 50% at all wavelengths in the wavelength region of 420 nm to 650 nm, the light reflecting layer is observed as a silver layer. If the band of 35-50% reflection is narrower than this, the light reflecting layer may exhibit different colors depending on the band. For example, when the reflection band is near 450 nm, 550 nm, and 650 nm, the colors may be blue, green, and red, respectively.
  • the optical display medium of the present invention may have only one layer as the light reflecting layer, or may have multiple layers.
  • the optical display medium may have only one type of layer as a light reflecting layer, or may have a plurality of types of layers with different polarization states of reflected light.
  • the optical display medium has a plurality of pieces of reflective polarizers showing a plurality of colors such as red, green, blue, and silver as a light reflecting layer, which are laid out in the horizontal direction. can have
  • the light reflecting layer has a large number of segments in this way, the light reflecting layer is preferably a reflective circular polarizer.
  • the optical display medium can easily exhibit the effects of the present invention. be able to.
  • the light reflecting layer is preferably silver or a combination of silver and other colors.
  • the patterned retardation layer is a layer containing regions having retardation.
  • the region having a retardation occupies part of the display surface area of the optical display medium.
  • Examples of the retardation layer include a region that functions as a ⁇ /4 wavelength plate, exemplified by the layer 102 (Xy) described above. , and regions acting as ⁇ /2 waveplates, exemplified by layer 202 (Xy) discussed above.
  • Various solid materials having optical anisotropy can be used as materials for forming the retardation layer.
  • One example is a stretched film obtained by stretching a transparent material. More specifically, a film obtained by stretching an optically isotropic film and imparting an in-plane retardation Re capable of functioning as a ⁇ /4 wavelength plate or a ⁇ /2 wavelength plate can be used.
  • a stretched film is preferable from the viewpoint that it can be obtained at a relatively low cost, and that it is easy to impart a desired value of Re and to mold it into any desired shape.
  • the material constituting the retardation layer is a cured product of a liquid crystalline compound. Specifically, it is a layer obtained by curing a curable liquid crystalline compound oriented in a liquid crystal state exhibiting a retardation that can function as a ⁇ /4 wavelength plate or a ⁇ /2 wavelength plate. . Examples of such layers and methods of making them include, for example, those described in WO2019/116995.
  • a cured product of a liquid crystalline compound can be easily formed into a sheet of film having a different retardation between a certain portion and another portion of the film. It is particularly preferred when it is desired to form a film.
  • the optical display medium may comprise one or more individual patterned retardation layers as the patterned retardation layer.
  • the single patterned retardation layer is a member composed of one region having a dimension smaller than the display surface of the optical display medium and having a certain retardation.
  • the patterned retardation layer may have only one region having a retardation, or may have a plurality of regions. When a plurality of regions are provided, their slow axis directions may be the same direction or different directions.
  • the optical display medium has a plurality of regions with different slow axis orientations as regions having phase differences
  • a design effect can be obtained.
  • the plurality of regions becomes one.
  • a design effect is obtained in which the light becomes brighter one by one.
  • the optical display medium can be configured so that any one of the plurality of regions is the brightest in many directions, the latent image can be viewed from any angle without restrictions on the orientation of the optical display medium or the orientation of the linear polarizer for observation.
  • the directions of the slow axes of the plurality of regions may be in a state of being regularly different, or may be in a state of being irregularly different.
  • a plurality of single patterned retardation layers are prepared and placed in the display plane of one optical display medium.
  • the directions of the slow axes of a plurality of regions can be easily and irregularly changed. More specifically, by preparing a large number of single patterned retardation layers and randomly placing or seeding them on the light reflecting layer, such an irregularly different slow axis arrangement can be achieved. achievable.
  • the relative angle relationship between the optical display medium and the linear polarizer for observation or the relative angle relationship between the optical display medium and the vibration direction of incident linearly polarized light can be obtained.
  • the angular relationship it is possible to obtain a design effect in which a plurality of regions are successively brightened one by one in a random order.
  • the anti-counterfeiting performance and identification function of the optical display medium as well as the design value can be further enhanced.
  • the combination of the light reflecting layer and the patterned retardation layer functions as a reflective circular polarizer and a ⁇ / 4 wavelength plate. It is preferably a combination with a retardation layer containing a region that In this case, since it is not necessary to adjust the direction of the slow axis of the patterned retardation layer relative to the light reflecting layer, the direction of the slow axis of the plurality of regions can be easily set in any direction. can do.
  • the optical display medium of the present invention can contain optional components in addition to the light reflecting layer and the patterned retardation layer.
  • optional components include a light absorbing layer, a diffusion layer, a high retardation layer, a transparent resin for embedding, a decorative member, and a mounting member.
  • a light absorption layer is a layer that absorbs incident light.
  • the light absorbing layer can be a black layer.
  • the material of the light absorbing layer may be any material, and may be, for example, a black-colored film.
  • the light absorbing layer can be provided on the back side of the light reflecting layer, that is, on the side opposite to the viewing side of the light reflecting layer.
  • the light reflecting layer is either a reflective circular polarizer or a reflective linear polarizer, most of the incident light that is not reflected is transmitted.
  • a light absorbing layer is provided on the back side of the light reflecting layer, the transmitted light is absorbed, and as a result, the effect of the reflected light can be visually recognized more clearly.
  • the optical display medium can be used as a see-through object. It is possible to obtain a design effect.
  • a diffusion layer is a layer that transmits incident light in a diffused state.
  • the diffusion layer can be provided at a position closer to the viewing side than the patterned retardation layer. By providing the diffusion layer, the viewing angle at which the latent image is visually recognized can be widened.
  • various layered structures capable of functioning as known diffusion layers can be used. Specifically, a layer of a cured resin containing light-diffusing fine particles can be used. Such a layer may be formed on the surface of a transparent film and provided in the optical display medium of the present invention in the form of a composite film with the transparent film.
  • the high retardation layer is a region having a higher retardation than the region having the retardation in the patterned retardation layer.
  • Such a high retardation layer usually has a large difference in retardation depending on the wavelength of incident light. Therefore, while it can be visually recognized as a transparent layer in normal observation, it can be visually recognized as a colored layer due to interference color in observation of a latent image. Therefore, by providing a high retardation layer in the display surface of the optical display medium, it is possible to obtain a design effect of expressing colors only when observing a latent image.
  • Examples of materials that constitute the high retardation layer include common stretched transparent films. For example, an adhesive cellophane tape or a stretched tape thereof can be used.
  • the position in the optical display medium where the high retardation layer is provided is not particularly limited, and can be provided at any position where the above-described colors can be exhibited.
  • a decorative member is a member that does not contribute to the functional development of the optical display medium, but can contribute to the design effect of the optical display medium.
  • An example of the decorative member is a piece having a metallic luster called lame. Such strips may, for example, be provided alongside strips of the light-reflecting layer or may be provided over the upper surface of the light-reflecting layer.
  • Another example of the decorative member is a transparent member such as a cover glass that covers the display surface of the optical display medium, and a member such as a tray or the like for decorating or protecting the periphery of the optical display medium. mentioned.
  • Various members constituting the optical display medium can be made into an integrated member by embedding a part or all of them in a transparent resin for embedding.
  • embedding can reduce the visibility of, for example, the edge portion of the retardation layer when observed with the naked eye, and as a result, the optical display medium allows the latent image to be observed only in special observations. effect can be further enhanced.
  • transparent resins for embedding examples include acrylic, epoxy, polyester, and silicone resins.
  • Various resins commercially available as curable resin liquids can be used as the embedding resin.
  • a resin liquid that can become a solid transparent resin by irradiation with energy rays such as ultraviolet rays can be used.
  • energy rays such as ultraviolet rays
  • the obtained optical display medium is soft and flexible.
  • the optical display medium can be used as a flexible patch, a so-called silicon patch.
  • Another example of the embedding resin is a film-like resin material.
  • the light reflecting layer, the patterned retardation layer, and, if necessary, optional components are combined into a pair of film-shaped resin materials, or a combination of a film-shaped resin material and other sheet-shaped materials.
  • An optical display medium can be constructed by sandwiching, laminating these, and sealing the internal constituent elements. More specifically, constituent elements such as a light reflecting layer and a patterned retardation layer are placed between a mount made of paper, a resin material, or a combination thereof and a resin film such as an acrylic film having a small retardation. By providing and sealing, a film-like optical display medium can be constructed. Furthermore, by using a mount having an adhesive layer on the back surface, an optical display medium that can be used as a sticker can be easily constructed.
  • the optical display medium By embedding in transparent resin, the optical display medium can be made into a plate-shaped product. However, it may be formed into an arbitrary shape other than the plate shape by further processing such as drilling and chamfering.
  • a mounting member is a member that functions when an optical display medium is mounted on an article.
  • a part or the whole of the mounting member may also serve as a decorative member.
  • attachment members include members such as rings, clasps, hooks, wires, chains, and strings extending from the periphery of the optical display medium, and cases such as trays that also serve as decorative members.
  • the mounting member may be attached directly to the light reflecting layer and/or the patterned retardation layer, which are essential components of the optical display medium, or may be bonded via any other member.
  • the connection with the mounting member may be any of adhesion by adhesive, adhesion by welding, mechanical connection such as screwing or ligature, and the like.
  • FIG. 11 is a top view schematically showing a specific example of the optical display medium of the present invention
  • FIG. 12 is a vertical sectional view of the optical display medium shown in FIG.
  • the optical display medium 50 includes a mounting member 590 and various components provided therein for exhibiting functions as a decoration medium or an identification medium.
  • the optical display medium 50 is shown in a state of being placed horizontally with its display surface up.
  • Mounting member 590 includes a tray 591 and a ring 592 provided on the edge of tray 591 .
  • the ring 592 functions as a member for connecting the optical display medium to the article or a string-like member that connects the optical display medium and the article when the optical display medium is attached to the article.
  • a base material 511 and a light absorbing layer 521 are laid in order from the bottom of the tray 591 .
  • a silver light reflecting layer 501 (S) and a slice light reflecting layer 501 (P) are arranged side by side as light reflecting layers above the light absorbing layer 521 in a partially overlapping state. be. In this example, they are both reflective circular polarizers.
  • the light reflecting layer 501(P) may be a silver layer or a layer exhibiting colors such as red, green, and blue.
  • the retardation layer 502 is a star-shaped retardation layer that occupies part of the region of the display surface of the optical display medium 50 and can function as the region H. It is provided as a member that is positioned and adhered to.
  • the slow axes of the four retardation layers 502 are positioned in different directions.
  • the four retardation layers 502 are formed such that their ReH(500) values are different from each other.
  • a diffusion film 531 having a diffusion layer is arranged above the retardation layer 502 .
  • the diffusion film 531 is provided so as to cover the entire display surface of the optical display medium 50 .
  • the light reflecting layer 501 (S), the light reflecting layer 501 (P), the transparent base material 512, the retardation layer 502 and the diffusion film 531 are embedded in a transparent resin, whereby the transparent resin portion 541, 542 and 543 are formed.
  • the optical display medium 50 functions on the same principle as the optical display medium 100 shown in FIGS. 1-6. Specifically, in addition to observation of the display surface with the naked eye under an environment where normal non-polarized light is incident, observation of the display surface through a linear polarizer for observation with non-polarized light incident and linearly polarized light incident. display surface observation, or both. Observation through a linear polarizer for observation with incident non-polarized light and observation with incident linearly polarized light are performed by rotating the azimuth angle of the optical display medium by 360° around the vertical direction and observing from the vertical direction. can do
  • the retardation layer 502 When observed with the naked eye, colors reflected by the light reflecting layers 501(S) and 501(P) are visually recognized within the display surface. Since the retardation layer 502 is visible as a transparent member and is embedded in the transparent resin, its outline is hardly visible. The difference in brightness between the area occupied by the retardation layer 502 and the other areas is not visible and does not change with rotation. On the other hand, for example, when non-polarized light is incident and observed through a linear polarizer for observation, or when linearly polarized light is incident, the star-like shape of the retardation layer 502 is visually recognized. All the colors of the retardation layer 502 are observed as chromatic colors, and the colors change according to the rotation.
  • the change in the color of the retardation layer 502 is irregularly different in each of the plurality of retardation layers 502, so that a design effect is obtained in which the colors of the plurality of stars are variously changed by rotation. Such a design effect can also achieve a function as an identification medium.
  • optical display medium modified example
  • the area corresponding to the area H and the other area each have a rectangular area
  • the retardation layer has a star shape, but the shape of the retardation layer constituting the region H or other regions and one
  • the number of regions H provided in the optical display medium is not limited to this, and various numbers of regions having arbitrary shapes such as various graphics and characters can be provided.
  • non-light-transmitting members such as the bottom of the tray 591 and the light-absorbing layer 521 are provided on the back side of the light-reflecting layer. It is also possible to construct a see-through optical display medium in which the back side of the light reflecting layer is visible through the medium. Furthermore, in that case, another patterned retardation layer may be provided on the back side of the light reflecting layer. In this case, it is possible to configure an optical display medium in which different latent images are observed when viewed from the front side and when viewed from the back side.
  • An article of the present invention comprises the optical display medium of the present invention.
  • articles include various articles such as clothing, shoes, hats, accessories, jewelry, and daily necessities.
  • the article of the present invention can have an identification function by being provided with an optical display medium. By having such an identification function, it is possible to identify whether the optical display medium and the article are genuine and not counterfeit products. Additionally, the optical display medium can impart a design effect to the article.
  • the optical display medium can be provided on an article as a tag, charm, emblem, sticker, or the like, as an accessory, part, or attachment of the article.
  • the article of the present invention may further comprise a polarizer viewer in addition to the optical display medium of the present invention.
  • the polarizer viewer is equipped with an observation polarizer such as the above-described observation linear polarizer or observation circular polarizer, and is provided in the article so that the optical display medium can be observed through the observation polarizer.
  • the polarizer viewer may be in the form of a tag, for example, and attached to the article body via a string or the like. In this way, by further providing a polarizer viewer in addition to the optical display medium, general article users can easily identify the optical display medium.
  • Example 2 the in-plane retardation Re was actually measured using a phase difference meter ("AxoScan" manufactured by Axometrics).
  • Example 1 Simulation of chromatic color expression
  • An optical display medium having a layer structure of (retardation layer)/(light reflecting layer) was irradiated with natural light, and colors observed through a linear polarizer for observation were investigated by simulation.
  • the simulation conditions were as follows. - Light from a D65 light source is made incident on the surface of the optical display medium on the side of the retardation layer from the normal direction. - The light reflecting layer is a reflective circular polarizer that completely transmits left-handed circularly polarized light and completely reflects right-handed circularly polarized light. The transmitted light does not return to the retardation layer side. ⁇ The light emitted from the optical display medium is observed with a linear polarizer that completely transmits one of the linearly polarized components and completely absorbs the other.
  • the angle formed by the slow axis of the retardation layer and the absorption axis of the linear polarizer is 45°, and the direction of the angle is counterclockwise (that is, when the linear polarizer for observation and the optical display medium are observed from the viewing side,
  • the slow axis of the retardation layer is inclined counterclockwise by 45° with respect to the reference).
  • Material (0) is a hypothetical material with ideal properties in terms of color suppression.
  • materials (1) to (4) are assumed to have the same Re(400)/Re(550) and Re(550)/Re(700) values as existing materials.
  • the retardation layers made of materials (1) to (4) are examples of retardation layers that can be actually manufactured by appropriately adjusting the thickness of each existing material, the draw ratio, etc. is.
  • the material (0) cannot constitute the retardation layer that constitutes the region H alone, while the materials (1) to (4) constitute the retardation layer that constitutes the region H alone. I know it can be done.
  • the range in which clear coloring is obtained is the relationship between the deviation of Re(400)/Re(550) and Re(550)/Re(700) from the material (0) and the retardation of the retardation layer. is within a certain range.
  • Example 2 Example using material (2)] (2-1: light reflecting layer) Liquid crystalline compound (compound represented by formula (B3)) 14.63 parts by weight, alignment aid (compound represented by formula (A2)) 3.66 parts by weight, chiral agent (trade name "Paliocolor LC756", BASF Corporation) 1.09 parts by weight, leveling agent (trade name "Surflon S420", AGC Seimi Chemical Co., Ltd.) 0.02 weight parts, photopolymerization initiator (trade name "Irgacure OXE02", BASF Corporation) 0. 60 parts by weight and 80.00 parts by weight of a solvent (methyl ethyl ketone) were mixed to obtain a liquid crystal composition (S).
  • a solvent methyl ethyl ketone
  • the surface of the original fabric base material (PET film, manufactured by Toyobo Co., Ltd., trade name "A4100" was subjected to rubbing treatment.
  • the liquid crystal composition (S) was applied to the surface using a bar coater to form a layer of the liquid crystal composition.
  • the thickness of the liquid crystal composition layer was adjusted so that the finally obtained cholesteric material layer had a thickness of about 5 ⁇ m. This was heated in an oven at 140° C. for 2 minutes to dry and align the layer of liquid crystal composition.
  • band widening processing was performed.
  • the band-broadening treatment was carried out by irradiating the dried liquid crystal composition layer with a weak ultraviolet ray in an air atmosphere, followed by heating.
  • a high-pressure mercury lamp was used for irradiation with ultraviolet rays, and irradiation was performed for 0.3 seconds at an illuminance of 25 mW/cm 2 at 365 nm (i-line). Subsequent heating was performed at 90° C. for 1 minute.
  • the dried liquid crystal composition layer was irradiated with ultraviolet rays for curing.
  • a high-pressure mercury lamp was used for irradiation, and the irradiation conditions were adjusted so that the illuminance at 365 nm (i-line) was 280 mW/cm 2 and the exposure amount was 2000 mJ/cm 2 .
  • the liquid crystal composition layer was cured to form a cholesteric material layer (S).
  • a raw sheet including the raw base material and the cholesteric material layer (S) was obtained.
  • the cholesteric material layer was peeled off to obtain a peeled piece.
  • the exfoliated pieces were pulverized with a cutter mill, passed through a 51 ⁇ m sieve, and the particles passed through the sieve were collected to obtain a pigment (S) of a cholesteric material.
  • the particle size distribution of the pigment was measured by a laser diffraction/scattering method with a particle size distribution measuring device (product name “LA-960”, manufactured by Horiba, Ltd.), and the D50 average particle size in the volume-based distribution of the pigment particles was obtained. , 30 ⁇ m.
  • a paint was prepared using the pigment (S).
  • a paint was applied to the upper surface of the horizontally placed light absorbing layer (black PET film) and dried to form a light reflecting layer, which was a pigment (S) layer.
  • a multilayer product (2-1) having a layer structure of (light reflecting layer)/(light absorbing layer) was obtained.
  • the extruded film was stretched in the longitudinal direction in a region where the distance between chucks was 50 mm.
  • the stretching temperature was 125° C.
  • the stretching speed was 100 mm/min
  • various values shown in Table 5 were used for the stretching ratio and post-stretching chuck spacing.
  • Various retardation layers shown in Table 5 were obtained by such stretching.
  • the two obtained retardation layers were combined in the combination shown in Table 6, and superimposed so that the slow axes were in the same direction to obtain a retardation layer having a higher Re(550). All of these retardation layers had a Re(400)/Re(500) value of 1.03 and a Re(550)/Re(700) value of 1.00.
  • (2-3: Optical display medium) The multilayer material (2-1) obtained in (2-1) is placed horizontally with the surface on the light reflecting layer side facing upward, and the retardation layer obtained in (2-2) is placed thereon. were placed. As a result, an optical display medium having a layer structure of (retardation layer)/(light reflecting layer)/(light absorbing layer) in order from the upper surface was obtained.
  • the optical display medium was observed through a linear polarizer for observation under sunlight irradiation.
  • the observation direction was the normal direction of the display surface of the optical display medium.
  • the angle formed by the slow axis of the retardation layer and the absorption axis of the linear polarizer was 45°, and the direction of the angle was counterclockwise. The visually observed color was recorded. Tables 5 and 6 show the results.
  • Example 3 Example using material (3)
  • a variety of commercially available polyethylene terephthalate films of the manufacturer and part number shown in Table 7 were prepared. Furthermore, two of these layers were stacked in the combination shown in Table 8 so that the slow axes were in the same direction, to obtain a retardation layer with a higher Re(550). All of these retardation layers had a Re(400)/Re(500) value of 1.18 and a Re(550)/Re(700) value of 1.07.
  • Example 4 Example using material (4)
  • the surface of the original fabric base material (PET film, manufactured by Toyobo Co., Ltd., trade name "A4100" was subjected to rubbing treatment.
  • the liquid crystal composition (N) was applied to the surface with a bar coater in various thicknesses to form layers of the liquid crystal composition. This was heated in an oven at 140° C. for 2 minutes to dry and align the layer of liquid crystal composition.
  • the dried liquid crystal composition layer was irradiated with ultraviolet rays for curing.
  • a 365 nm (i-line) high-pressure mercury lamp was used for irradiation, and the irradiation conditions were adjusted so that the exposure amount was 2000 mJ/cm 2 .
  • the liquid crystal composition layer was cured to form a nematic material layer (N).
  • N a raw sheet including the raw base material and the cholesteric material layer (N) was obtained.
  • the cholesteric material layer (N) of the original sheet was transferred to glass (thickness: 1 mm, retardation: 1 nm or less) to obtain a retardation layer comprising glass and the cholesteric material layer (N).
  • Table 9 shows the thickness of the cholesteric material layer (N) in the retardation layer and the Re (550) of the retardation layer. All of these retardation layers had a Re(400)/Re(500) value of 1.44 and a Re(550)/Re(700) value of 1.21.
  • thermoplastic resin layer Kurashiki Spinning Co., Ltd., trade name: Kuran Seal GL
  • a glass plate silica glass with a thickness of 2 mm
  • the multilayer product (2-1) obtained in (2-1) is placed horizontally with the surface on the light reflecting layer side facing upward, and a thermoplastic resin layer, a glass plate, and (2- Place each of the retardation layers obtained in 2), from the viewing side, (glass plate) / (thermoplastic resin layer) / (retardation layer) / (thermoplastic resin layer) / (multilayer material ( 2-1)).
  • Optical display medium 100 Optical display medium 101 (R): Light reflecting layer 101 (R) U: Upper surface 102 of light reflecting layer 101 (R): Sub layer 102 (N): Isotropic layer 102 (Xy) : Layer 102U functioning as a ⁇ /4 wavelength plate: Upper surface 103 (Xy) of sublayer 102: Sublayer 103U: Upper surface 110 of sublayer 103 (Xy): Patterned retardation layer 191 (X): Observation linear polarizer 191 (Y): Observation linear polarizer 200: Optical display medium 201 (Y): Light reflection layer 201 (Y) U: Upper surface 202 of light reflection layer 201 (Y): Sub layer 202 (N ): isotropic layer 202 (Xy): layer 202U that functions as a ⁇ /2 wave plate: upper surface 210 of sub-layer 202: patterned retardation layer 501 (P): slice light reflecting layer 501 (S) : Silver light reflecting layer 502: Ret

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

光反射層と、パターン状位相差層とを備える光学表示媒体であって、前記光反射層は、入射光を、円偏光または直線偏光として反射する層であり、前記パターン状位相差層は、位相差を有する領域を含む層であり、前記位相差を有する領域のうちの一つ以上の領域Hの、波長400nmにおける面内レターデーションReH(400)、波長550nmにおける面内レターデーションReH(550)及び波長700nmにおける面内レターデーションReH(700)(単位はいずれもnm)が特定の関係を満たし、且つ、前記領域Hは、前記領域Hを通過する光を、その波長ごとに異なる偏光状態を有する光に変換する、光学表示媒体。

Description

光学表示媒体、物品、及び光学表示媒体の使用方法
 本発明は、識別媒体、加飾媒体、またはそれらの両方の用途に使用しうる光学表示媒体及び物品、並びに光学表示媒体の使用方法に関する。
 物品が真正品であるか否かの判定を容易にするために、物品に識別媒体を設けることが一般的に行われている。識別媒体は、偽造防止性能を有し、且つ識別機能を有することが求められる。ここでいう識別媒体の偽造防止性能とは、識別媒体が一般的な印刷等の技術では容易に複製できないものである性能である。識別媒体の識別機能とは、真正な識別媒体が、一般的な技術で偽造した偽造識別媒体と、何らかの手段で、高い信頼度をもって識別しうる機能である。
 識別媒体は、多くの場合、通常の部材には見られない光学的効果を奏する特殊な構成を有する。特に、観察の態様の違いにより、一般的な製造技術で製造された表示媒体では得られない特殊な表示状態の変化が観察されるという光学的特性を有しうる。かかる光学的特性は、識別媒体としての機能とは別に、美観に優れ意匠的効果を発現する特性としても利用しうる。そのため、識別媒体と同様の構成を有する光学表示媒体を、識別媒体として用い且つ加飾媒体としても利用する場合があり、又は識別媒体と同様の構成を有する光学表示媒体を、識別媒体の用途に用いず単に加飾媒体として用いる場合もある。
 識別媒体の真正性の判定は、多くの識別媒体の場合、円偏光子又は直線偏光子等の光学部材を含む、特殊なビュワーを通した観察により行われる(例えば、特許文献1~3)。一方、特殊なビュワーを必要としない肉眼での観察による判定が行える識別媒体もあり、例えば、所謂ホログラム等の、識別媒体上の模様の立体視が可能であるか否か等による判定が行える識別媒体がある(例えば、特許文献4)。
特開2010-221650号公報 特開2010-113249号公報(対応公報:米国特許出願公開第2010/119738号明細書) 国際公開第2005/059597号 特許第5915838号公報
 真正性の判定のために特殊なビュワーが必要である識別媒体については、判定を行う者が限定されてしまう。即ち、税関係員等といった、特殊なビュワーを所有している特殊な識別者のみしか判定を行うことができず、一方、物品を売買したり所持したり使用したりする一般の物品ユーザーは、かかる特殊なビュワーを所有しないため判定を行うことができない。また、特許文献1及び2の識別媒体についての真正性の判定は、ビュワーを識別媒体に近接させるという特殊な操作を必要とする。
 所謂ホログラムにより特殊なビュワー無しに判定が行える識別媒体の場合、判定を行う者の限定がより少なくなる一方、比較的類似の効果が得られるものを、既に一般的になったホログラムの技術により製造しうるため、偽造防止性能が不十分となる場合がある。ホログラムを特殊なビュワーを通して観察する形態とする場合には、より偽造防止性能を高めた構成をとり得るが、その場合上記同様、判定を行う者が限定されてしまう。
 また、光学表示媒体に、加飾媒体としての意匠的な効果を付与する場合、その色彩の自由度が高いことが求められる。しかしながら、観察の態様の違いにより、一般的な製造技術で製造された表示媒体では得られない特殊な表示状態の変化が観察されるという光学的効果を奏し、且つ、そのような観察下において有彩色の表示/非表示を切り替えるといった色彩の自由度が高い表示媒体を得ることはこれまで困難であった。
 従って、本発明の目的は、特殊なビュワーを用いること無く、観察の態様の違いにより一般的な製造技術で製造された表示媒体では得られない特殊な表示状態の変化が観察されるという光学的効果を奏し、且つ色彩の変化の自由度が高い光学表示媒体、かかる光学表示媒体を備える物品、及びかかる光学表示媒体の使用方法を提供することにある。
 本発明者らは、前記の課題を解決するための検討において、偏光サングラス、並びに液晶表示装置等の偏光を出射する装置等の一般的な器具を、その一般的な使用の態様であるいくつかの観察の態様にて使用することにより、観察の態様の違いにより特殊な表示状態の変化が観察されるという光学的効果を奏する光学表示媒体を構成することを着想した。当該着想に基づいてさらに検討を進めた結果、特定の位相差層を有する光学表示媒体を構成した場合、かかる一般的な器具の使用により識別機能を利用可能であり、且つ高い色彩の変化の自由度をも得られることを見出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
 〔1〕 光反射層と、パターン状位相差層とを備える光学表示媒体であって、
 前記光反射層は、入射光を、円偏光または直線偏光として反射する層であり、
 前記パターン状位相差層は、位相差を有する領域を含む層であり、
 前記位相差を有する領域のうちの一つ以上の領域Hの、波長400nmにおける面内レターデーションReH(400)、波長550nmにおける面内レターデーションReH(550)及び波長700nmにおける面内レターデーションReH(700)(単位はいずれもnm)が、下記式(1)を満たし、且つ下記式(2)及び(3)のいずれかを満たし、
 ReH(550)>275  ・・・式(1)
 ReH(400)/400>ReH(550)/550>ReH(700)/700  ・・・式(2)
 ReH(400)/400<ReH(550)/550<ReH(700)/700  ・・・式(3)
 且つ、
 前記領域Hは、前記領域Hを通過する光を、その波長ごとに異なる偏光状態を有する光に変換する、光学表示媒体。
 〔2〕 前記パターン状位相差層が、前記光反射層より視認側の位置に設けられる、〔1〕に記載の光学表示媒体。
 〔3〕 前記光反射層が、反射型円偏光子または反射型直線偏光子である、〔1〕又は〔2〕に記載の光学表示媒体。
 〔4〕 前記光反射層が、前記反射型円偏光子である、〔3〕に記載の光学表示媒体。
 〔5〕 前記ReH(400)、前記ReH(550)、及び前記ReH(700)が、下記の式(4)~(6)を満たす、〔1〕~〔4〕のいずれか1項に記載の光学表示媒体:
 ReH(550)≧300  ・・・式(4)
 ReH(550)≦382.81/ΔC+250  ・・・式(5)
 ReH(550)≧53.873/ΔC+199.3  ・・・式(6)
 式中、ΔCは、下記式(7)で表される値である:
 ΔC=(|(ReH(400)/ReH(550))-0.73|+|(ReH(550)/ReH(700))-0.79|)/2
  ・・・式(7)
 〔6〕 前記パターン状位相差層が、複数層のサブ層を備える積層体であり、前記サブ層のそれぞれが、その面内の少なくとも一部の領域において位相差を有する、〔1〕~〔5〕のいずれか1項に記載の光学表示媒体。
 〔7〕 複数層の前記サブ層のうち、1層以上が延伸フィルムであり、他の1層以上がパターン状液晶材料の層を有するフィルムである、〔6〕に記載の光学表示媒体。
 〔8〕 複数層の前記サブ層の遅層軸が互いに平行である、〔6〕又は〔7〕に記載の光学表示媒体。
 〔9〕 前記光反射層が、コレステリック規則性を有する材料のシートを含む、〔1〕~〔8〕のいずれか1項に記載の光学表示媒体。
 〔10〕 前記光反射層が、コレステリック規則性を有する材料の切片を含む、〔1〕~〔9〕のいずれか1項に記載の光学表示媒体。
 〔11〕 前記光反射層の一以上の領域において、前記領域に入射した非偏光の、前記光反射層による反射率が、波長領域420nm~650nmにおけるすべての波長において35~50%である、〔1〕~〔10〕のいずれか1項に記載の光学表示媒体。
 〔12〕 前記光反射層の、視認側と反対側の位置に、光吸収層をさらに備える、〔1〕~〔11〕のいずれか1項に記載の光学表示媒体。
 〔13〕 透明樹脂部をさらに備え、前記透明樹脂部以外の部材の全部又は一部が、前記透明樹脂部中に包埋されている、〔1〕~〔12〕のいずれか1項に記載の光学表示媒体。
 〔14〕 物品に装着するための装着部材をさらに備える、〔1〕~〔13〕のいずれか1項に記載の光学表示媒体。
 〔15〕 〔1〕~〔14〕のいずれか1項に記載の光学表示媒体を備える物品。
 〔16〕 偏光子ビュワーをさらに備える、〔15〕に記載の物品。
 〔17〕 〔1〕~〔14〕のいずれか1項に記載の光学表示媒体の使用方法であって、入射光を、前記光学表示媒体の表示面に入射させ、前記光反射層において反射させ反射光とし、前記反射光を観察することを含み、前記入射光として非偏光を入射させ、且つ前記反射光の観察において、前記反射光の直線偏光成分、又は円偏光成分を選択的に観察する、使用方法。
 〔18〕 前記選択的な観察を、前記光学表示媒体から離隔した直線偏光子を介して、前記反射光を目視することにより行う、〔17〕に記載の使用方法。
 〔19〕 前記直線偏光子が偏光サングラスである、〔18〕に記載の使用方法。
 〔20〕 〔1〕~〔14〕のいずれか1項に記載の光学表示媒体の使用方法であって、入射光を、前記光学表示媒体の表示面に入射させ、前記光反射層において反射させ反射光とし、前記反射光を観察することを含み、前記入射光として直線偏光、円偏光又は楕円偏光を入射させる、使用方法。
 本発明によれば、特殊なビュワーを用いること無く、観察の態様の違いにより一般的な製造技術で製造された表示媒体では得られない特殊な表示状態の変化が観察されるという光学的効果を奏し、且つ色彩の変化の自由度が高い光学表示媒体、かかる光学表示媒体を備える物品、及びかかる光学表示媒体の使用方法が提供される。
図1は、本発明の光学表示媒体及びその使用方法の一例を概略的に示す分解斜視図である。 図2は、本発明の光学表示媒体及びその使用方法の一例を概略的に示す分解側面図である。 図3は、図1に示した座標軸を、Z軸方向から観察した状態を示す上面図である。 図4は、光学表示媒体と観察用直線偏光子との相対的な角度関係を、図1及び図2の例におけるものから変更した場合における、本発明の光学表示媒体の使用方法の一例を概略的に示す分解側面図である。 図5は、図1、図2及び図4に示した光学表示媒体100の使用方法の別の一例を概略的に示す分解側面図である。 図6は、図1、図2及び図4に示した光学表示媒体100の使用方法の別の一例を概略的に示す分解側面図である。 図7は、本発明の光学表示媒体及びその使用方法の別の一例を概略的に示す分解側面図である。 図8は、光学表示媒体と観察用直線偏光子との相対的な角度関係を、図7の例におけるものから変更した場合における、本発明の光学表示媒体の使用方法の一例を概略的に示す分解側面図である。 図9は、図7及び図8に示した光学表示媒体200の使用方法の別の一例を概略的に示す分解側面図である。 図10は、図7及び図8に示した光学表示媒体200の使用方法の別の一例を概略的に示す分解側面図である。 図11は、本発明の光学表示媒体の具体的な一例を概略的に示す上面図である。 図12は、図11に示す光学表示媒体の縦断面図である。
 以下、例示物及び実施形態を示して本発明について詳細に説明する。ただし、本発明は以下に示す例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、別に断らない限り、「(メタ)アクリル基」とは、「アクリル基」、「メタクリル基」及びこれらの組み合わせを包含する用語である。
 以下の説明において、ある層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、層の厚みを表す。レターデーションの測定波長は、別に断らない限り、550nmである。また、ある波長(単位nm)において測定したReを、Re(450)といった数字を伴う表記にて示す。例えばRe(400)は、波長400nmの光についてのReを示す。面内レターデーションReは、位相差計(Axometrics社製「AxoScan」)を用いて測定できる。
 以下の説明において、ある層の遅相軸の方向とは、別に断らない限り、面内方向の遅相軸の方向をいう。
 以下の説明において、部材の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±4°、好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。
 以下の説明において、説明の便宜上、「右円偏光」及び「左円偏光」は、光の出射元から光の出射先を観察した場合における円偏光の回転方向に基づき定義する。即ち、光の出射元から光の出射先を観察した場合において、光の進行に従って偏光方向が時計回りに回転する偏光を右円偏光とし、その反対の方向に回転する偏光を左円偏光とする。
 以下の図面における図示及びそれに関する説明において、理解を容易にする便宜上、以下の符号を用いている。以下の符号の説明において、方向は、図1~図10に示す方向及びそれらについての説明において述べられる方向を基準としている。特に、「XY方向」及び「Xy方向」の意味については、図3を参照して後述する。また、偏光の振動方向とは、電場の振動方向をいう。
 (N):非偏光、又は、光を透過する等方な層
 (X):X軸方向の振動方向を有する直線偏光、又は、X軸方向に透過軸を有する偏光子
 (Y):Y軸方向の振動方向を有する直線偏光、又は、Y軸方向に透過軸を有する偏光子
 (L):左円偏光、又は、左反射型円偏光子(即ち、入射光のうち左円偏光成分を選択的に反射する反射型円偏光子)
 (R):右円偏光、又は、右反射型円偏光子(即ち、入射光のうち右円偏光成分を選択的に反射する反射型円偏光子)
 (P):偏光であって、偏光状態が上記のいずれでもないか、上記のいずれかに限定されないもの
 (Ch):有彩色として観察される光
 (n):光が存在しない
 (XY):XY方向、又は、XY方向に遅相軸を有する位相差層
 (Xy):Xy方向、又は、Xy方向に遅相軸を有する位相差層
 以下の説明においては、別に断らない限り、光学表示媒体は、表示面を上向きにして水平に載置した状態で説明する。したがって、光学表示媒体を視認する側を単に「上」側、その反対側を「下」側という場合がある。例えば、ある層の一方の表面及び他方の表面のうち光学表示媒体の表示面に近い側の面を「上側」の表面と表現する場合がある。また、かかる「上」「下」方向に垂直な方向を「水平」方向という場合がある。
 本発明の光学表示媒体は、
 ・光学表示媒体に非偏光を入射させ、光学表示媒体からの反射光を通常の態様(特段の偏光成分の選択を伴わない態様)で観察する
 ・光学表示媒体に非偏光を入射させ、光学表示媒体からの反射光のうちの偏光成分を選択的に観察する
 ・光学表示媒体に偏光を入射させ、光学表示媒体からの反射光を通常の態様で観察する
 といった観察態様で観察しうる。説明の便宜のため、以下の説明においては、前記3つの態様のうちの第1のものを「通常観察」、第2のものを「非偏光-偏光観察」、第3のものを「偏光-非偏光観察」という場合がある。
 〔光学表示媒体:実施形態1〕
 本発明の光学表示媒体は、光反射層と、パターン状位相差層とを備える。
 図1及び図2は、本発明の光学表示媒体及びその使用方法の一例を概略的に示す分解斜視図及び分解側面図である。光学的な機能の説明のため、図1~図2及び図4~図10において、光学表示媒体の構成要素は離隔した状態で示されているが、実際の光学表示媒体において、これらは直接又は他の層を介して接触した状態としうる。図1及び図2において、光学表示媒体100は、光反射層101(R)と、パターン状位相差層110とを備える。
 パターン状位相差層110は、複数層のサブ層102及び103(Xy)を備える積層体である。サブ層102は、その一部のみが、λ/4波長板として機能する層102(Xy)であり、他の部分は、等方な層102(N)である。一方サブ層103(Xy)は、その全面が一様な位相差を有する層である。層102(Xy)及びサブ層(Xy)の遅相軸方向は、図1中矢印A102(Xy)及びA103(Xy)で示す方向であり、即ちXy方向である。
 この例では、光反射層101(R)の上面101(R)Uの全領域が、表示面領域、即ち光学表示媒体の表示面に対応する領域である。サブ層102は、表示面領域の全領域を占める態様で、光反射層101(R)に重なって設けられており、一方サブ層103(Xy)は、表示面領域の一部のみを占める態様で、サブ層102に重なって設けられている。このようなサブ層102及び103(Xy)の構成により、パターン状位相差層110は、位相差の異なる4種類の領域である領域R1~R4を有する。
 パターン状位相差層は、通常、光反射層より視認側の位置に設けられる。したがって、光学表示媒体の表示面は、通常、光学表示媒体の、パターン状位相差層側の面である。図1及び図2の例の光学表示媒体100では、その、パターン状位相差層110側の上側の面(即ち、領域R1及びR4におけるサブ層102の上側の面102U及び領域R2及びR3におけるサブ層103(Xy)の上側の面103U)が表示面として機能する。即ち、パターン状位相差層110側の上側の面に入射した光の一部が、光学表示媒体100内において反射して、当該面から出射し、それを観察者が観察することにより、光学表示媒体としての機能が発現される。
 説明の便宜のため、図1~図10においては、空間における方向を、共通の三次元の座標軸により示す。矢印X、Y及びZにより示される座標軸において、矢印Xと並行な方向、矢印Yと並行な方向、及び矢印Zと並行な方向をそれぞれ単にX軸方向、Y軸方向及びZ軸方向という。図1~図2及び図4~図10において、光学表示媒体100又は200は、その表示面が、XY平面と平行な方向となるよう位置決めされる。
 図3は、図1に示した座標軸を、Z軸方向から観察した状態を示す上面図である。XY平面の面内の方向のうち、矢印X及び矢印Yと45°の角度をなす方向(即ち図3における矢印XYと並行な方向)をXY方向という。また、矢印Xと45°の角度をなし矢印Yと135°の角度をなす方向(即ち図3における矢印Xyと並行な方向)を、Xy方向という。
 〔光反射層の光学的性質の概要〕
 光反射層は、入射光を、円偏光または直線偏光として反射する層である。具体的には、光反射層は、様々な偏光成分を含む非偏光が入射した場合に、その中のある偏光成分を円偏光または直線偏光として反射する層である。光反射層は、通常、反射型偏光子である。即ち、光反射層は、入射光のうちのある波長における偏光成分の一部または全部を透過させ、他の偏光成分の一部または全部を反射させる。光反射層としては、反射型円偏光子または反射型直線偏光子を用いうる。
 反射型円偏光子とは、ある波長の入射光の、右円偏光成分及び左円偏光成分のうちの一方を透過させ、他の一方を反射する光学素子である。反射型直線偏光子とは、ある波長の入射光の、ある直線偏光成分及び当該成分と垂直な直線偏光成分のうちの一方を透過させ、他の一方を反射する光学素子である。
 図1及び図2の例においては、光反射層101(R)として、右反射型円偏光子(即ち、入射光のうち右円偏光成分を選択的に反射する反射型円偏光子)を採用している。光偏光層の例及びそれらを構成する材料の、より具体的な説明については後に別途述べる。
 〔パターン状位相差層の光学的性質の概要〕
 パターン状位相差層とは、位相差を有する領域を含む層である。かかる位相差を有する領域は、光学表示媒体の表示面の領域の全部又は一部を占めるよう、光学表示媒体に設けられる層である。識別媒体としての機能を向上する観点からは、位相差を有する領域が光学表示媒体の表示面の領域の一部のみを占め、それによりそれ以外の領域との対比観察を行いうることが好ましい。以下の説明において、パターン状位相差層のうちの、位相差を有する領域にかかる部分を、単に「位相差層」という場合がある。位相差層の位相差は、面内レターデーションReにより規定しうる。
 表示面において、位相差層に占められる領域以外の領域は、位相差を有しない等方な層に占められる領域であってもよく、それらのいずれも存在しない領域であってもよい。
 位相差を有する領域は、パターン状位相差層の全領域のうち1箇所のみに存在していてもよく、2箇所以上に存在していてもよい。位相差を有する領域がパターン状位相差層の全領域のうち2箇所以上に存在する場合、複数の領域は全て同じ位相差を有していてもよく、互いに異なる位相差を有していてもよい。但し、本発明では、これらのうちいずれの場合であっても、位相差を有する領域のうちの一つ以上の領域Hは、特定の光学的特性を有する。
 〔領域H〕
 領域Hは、パターン状位相差層における一つ以上の領域である。
 領域Hは、その波長400nmにおける面内レターデーションReH(400)、波長550nmにおける面内レターデーションReH(550)及び波長700nmにおける面内レターデーションReH(700)が、下記式(1)を満たし、且つ下記式(2)及び(3)のいずれかを満たす。ReH(400)、ReH(550)及びReH(700)の単位はいずれもnmである。加えて、領域Hは、領域Hを通過する光を、その波長ごとに異なる偏光状態を有する光に変換する性質を有する。
 ReH(550)>275  ・・・式(1)
 ReH(400)/400>ReH(550)/550>ReH(700)/700  ・・・式(2)
 ReH(400)/400<ReH(550)/550<ReH(700)/700  ・・・式(3)
 これらの要件を満たすことにより、光学表示媒体の表示面の領域Hに対応する領域に、その使用に際して有彩色を呈する機能を付与することができる。例えば、通常観察では有彩色が観察されない一方、非偏光-偏光観察及び/又は偏光-非偏光観察では特定の有彩色が観察される、という機能を、光学表示媒体に付与しうる。
 具体的には、領域Hが、式(2)及び(3)を満たし領域Hを通過する光をその波長ごとに異なる偏光状態を有する光に変換する性質を有することにより、光学表示媒体の表示面の領域Hに入射した光が、その波長ごとに異なる偏光状態を有した状態で反射される。さらに、ある程度以上ReH(550)が大きいことにより、かかる波長ごとの偏光状態の相違は、特に大きなものとなる。そのため、光学表示媒体を非偏光-偏光観察及び/又は偏光-非偏光観察した場合に、反射光のうちの一部の波長の光が強調された状態で観察されることになる。一方、通常観察の場合、偏光状態の違いによる光の強調の差は発生しないので、特定の偏光状態の光だけが強調された状態で観察されることは無い。その結果、通常観察では有彩色が観察されない一方、非偏光-偏光観察及び/又は偏光-非偏光観察では特定の有彩色が観察される、という機能を、光学表示媒体に付与することができる。
 領域Hを通過する光をその波長ごとに異なる偏光状態を有する光に変換するとは、可視光全波長範囲(400~700nm)における領域Hを通過する光を、その波長ごとに均一な偏光状態を有する光に変換する場合を除外する趣旨である。例えば、領域Hを透過するある波長λnmの光についての面内レターデーションReH(λ)を基準に考えると、ReH(λ)/λの値が可視光全波長範囲において一定となる場合は、当該規定により除外される。より具体的には、可視光全波長範囲のうちの代表的な波長として400nm、550nm及び700nmについて、領域Hの波長400nmにおける面内レターデーションReH(400)、領域Hの波長550nmにおける面内レターデーションReH(550)、及び領域Hの波長700nmにおける面内レターデーションReH(700)を基準に考えると、ReH(400)/400=ReH(550)/550=ReH(700)/700である場合は除外される。
 ReH(400)、ReH(550)、及びReH(700)は、好ましくは下記の式(4)~(6)を満たす。
 ReH(550)≧300 ・・・式(4)
 ReH(550)≦382.81/ΔC+250  ・・・式(5)
 ReH(550)≧53.873/ΔC+199.3  ・・・式(6)
 式中、ΔCは、下記式(7)で表される値である:
 ΔC=(|(ReH(400)/ReH(550))-0.73|+|(ReH(550)/ReH(700))-0.79|)/2
  ・・・式(7)
 実施例に示す本願発明者の検討によれば、式(4)~(6)を満たす場合、非偏光-偏光観察及び/又は偏光-非偏光観察での有彩色を、特に明確に表現することができる。
 〔領域I〕
 パターン状位相差層は、領域Hに加えて、位相差を有する領域Iを有しうる。そのような領域Iの例としては、λ/4波長板として機能する領域、及びλ/2波長板として機能する領域が挙げられる。λ/4波長板として機能する領域とは、その波長550nmにおける面内レターデーションReI(550)が137.5nm又はそれに近い値となる領域である。例えば、ReIが(137.5×0.6)nm~(137.5×1.4)nmの領域、好ましくは(137.5×0.8)nm~(137.5×1.2)nmの領域を、λ/4波長板として機能する領域として使用しうる。同様に、λ/2波長板として機能する領域とは、その波長550nmにおける面内レターデーションReI(550)が275nm又はそれに近い値であって、領域H以外のもの、例えば(275×0.6)nm~(275×1.4)nmである領域、好ましくは(275×0.8)nm~(275×1.2)nmである領域であって、領域H以外のものである。
 図1及び図2の例においては、パターン状位相差層110は、領域R1~R4を有する。層102(Xy)及びサブ層103(Xy)が位相差を有していることに起因し、領域R1は、層102(Xy)の位相差が発現する領域であり、領域R3は、サブ層103(Xy)の位相差が発現する領域であり、領域R4は、位相差が発現しない領域である。
 領域R2においては、層102(Xy)及びサブ層103(Xy)が重なっている。このように、パターン状位相差層が、複数層のサブ層を備え、サブ層のそれぞれが、その面内の少なくとも一部の領域において位相差を有する場合、かかる位相差を有する部分が重なった状態とすることができ、その結果重なった複数の位相差を有する層の両方の位相差が発現する。その結果、位相差の発現の自由度が高まり、非偏光-偏光観察及び偏光-非偏光観察において領域Hに付与する色彩の自由度を高めることができる。
 層102(Xy)及びサブ層103(Xy)の例では、これらはいずれも遅相軸がXy方向であるため、遅相軸が互いに平行である。したがって、領域R2におけるパターン状位相差層110の位相差、特に面内レターデーションReは、層102(Xy)のRe及びサブ層103(Xy)のReの和となる。このように、複数層のサブ層の遅層軸が互いに平行である場合、位相差を、これらの和としうる。このような態様は、高い位相差を有する領域のパターンを、高い自由度で構成しうるため特に好ましい。かかる利点について具体的に説明すると、例えば、サブ層102のように、1枚の層状構造物において位相差を有する領域と位相差を有せず等方な領域とを備え、それらにより構成される複雑なパターンを有する層を形成する場合、フィルムを延伸するといった通常の位相差層の製造方法での形成は困難であり、硬化性の液晶性化合物を硬化するといった特殊な方法での形成が必要となる。そのような特殊な方法では、異方性が高く位相差の大きい層を形成することは比較的困難である。そこで例えば、サブ層103(Xy)のように、一様な位相差を有し容易に大きい位相差を有するものとしうる層を、複雑なパターンを有する層と重ねて用いることにより、複雑なパターンを有し位相差のバリエーションを有しながら、且つ大きな位相差を有する層を容易に構成することができる。
 複数層のサブ層の遅層軸が互いに平行である場合、複数の遅相軸のなす角は、0°即ち完全に平行な場合のみならず、多少の誤差を有していてもよい。例えば、複数の遅相軸のなす角は0°~30°の範囲であってもよい。
 図1及び図2の例におけるパターン状位相差層110に関して、層102(Xy)及びサブ層103(Xy)のそれぞれの面内レターデーションReの値は、領域R1~R3のどれか1以上が、上に述べた領域Hとしての要件を満たすよう調整しうる。領域R1~R3のうち、領域Hとしての要件を満たすもの以外の領域は、領域Iとしうる。領域Iは、上に述べたλ/4波長板として機能する領域又はλ/2波長板として機能する領域としうる。
 以下に述べる例では、典型的な例として、層102(Xy)が、λ/4波長板として機能する、137.5nmのRe(550)を有し、サブ層103(Xy)が、領域Hとして機能する、275nm超のRe(550)を有する場合について説明する。したがって、以下に述べる例では、領域R1~R3のうち、領域R1がλ/4波長板として機能し、領域R2及びR3が領域Hとして機能し、特にR2はR3よりも大きい面内レターデーションReを有する領域Hとなる。
 〔光学表示媒体の作用、光学表示媒体の使用方法〕
 本発明の光学表示媒体の使用方法においては、入射光を、光学表示媒体の表示面に入射させ、光反射層において反射させ反射光とし、反射光を観察する。
 光学表示媒体に入射させる光の例としては、非偏光、直線偏光、円偏光、及び楕円偏光が挙げられる。入射させる光が非偏光である場合、反射光の観察においては、反射光の直線偏光成分または円偏光成分を選択的に観察する(非偏光-偏光観察)ことにより、光学表示媒体が識別機能を有する場合識別を行いうる。また、光学表示媒体の加飾媒体としての意匠的効果を得ることができる。
 まず、使用方法のうちの一つである、非偏光-偏光観察(光学表示媒体に非偏光を入射させ、光学表示媒体からの反射光のうちの偏光成分を選択的に観察する)による使用方法について説明する。
 入射させる非偏光としては、太陽光及び室内照明光等の、一般的な環境光を使用しうる。
 反射光の直線偏光成分の選択的な観察は、観察用直線偏光子を介して、反射光を目視することにより行いうる。反射光の円偏光成分の選択的な観察は、観察用円偏光子を介して、反射光を目視することにより行いうる。環境光の入射の妨げとなることを避けるため、観察用直線偏光子及び観察用円偏光子は、通常、光学表示媒体から離隔した状態で使用しうる。離隔の距離の下限は、光学表示媒体及び観察用直線偏光子の寸法等に応じて適宜調整しうるが、通常、100mm以上としうる。一方離隔の距離の上限は、光学表示媒体の反射光が観察できる範囲内で適宜調整しうるが、通常30m以下としうる。
 このように、光学表示媒体から離隔した位置において使用する観察用直線偏光子は、本発明の使用方法のための専用品であってもよいが、他の用途に用いる一般的な直線偏光子であってもよい。例えば、市販の偏光サングラスの多くは直線偏光子として機能しうるので、そのような市販の偏光サングラスを観察用直線偏光子として用いてもよい。観察用円偏光子の例としては、直線偏光子と位相差フィルムとの組み合わせにより構成された円偏光子、及びコレステリック材料の層を含む円偏光子(例えば、国際公開第2020/121791号に記載されるもの)が挙げられる。
 〔実施形態1の光学表示媒体の使用方法:その1:非偏光-偏光観察〕
 図1及び図2の例においては、光学表示媒体100に入射する光が非偏光であり、光学表示媒体100が備える光反射層101(R)が反射型円偏光子である。このような光学表示媒体の非偏光-偏光観察における反射光の観察は、直線偏光成分の選択的な観察により行いうる。図1及び図2においては、光学表示媒体100からの反射光を、観察用直線偏光子191(X)を介して観察する例を示している。この例において、観察用直線偏光子191(X)はX軸方向、即ち矢印A191(X)で示す方向に透過軸を有するよう、光学表示媒体100との相対的な角度を位置決めされた偏光子である。したがって、この例において、層102(Xy)及びサブ層103(Xy)の遅相軸は、観察用直線偏光子191(X)の透過軸に対して、左回りに45°傾いている。即ち、視認側から、観察用直線偏光子191(X)及び光学表示媒体100を観察した場合において、観察用直線偏光子191(X)の透過軸方向を基準とすると、層102(Xy)及びサブ層103(Xy)の遅相軸は、当該基準に対して、左回りに45°傾いている。以下の図1~図10に関する説明において、「右回り」「左回り」の意味は、これと同じである。
 図2及び図4~図10における括弧内の数値は、それぞれの部材の作用を模式的に説明するためのものであり、入射光の明るさを100とした場合における各段階の光の明るさの理論値である。ここで理論値とは、偏光子による偏光の分離が完全に行われ(図2の例では、光反射層101(R)に入射した光のうちの右円偏光成分が全て反射され、左円偏光成分が全て透過し、且つ、観察用直線偏光子191(X)に入射した光のうちのX軸方向の直線偏光成分が全て透過し、それ以外の直線偏光成分が全て吸収又は反射され遮られた状態)、且つパターン状位相差層における光の吸収が無い場合における値である。実際の光学表示媒体の使用においては、様々なロスが発生し、各段階の光の明るさは理論値より小さくなり得る。
 図1及び図2に示す光学表示媒体100の使用の例では、入射光A111(N)、A121(N)、A131(N)及びA141(N)が、それぞれ、パターン状位相差層110のうちの領域R1~R4に入射する。この例において、入射光A111(N)~A141(N)は、波長の分布に偏りが無く無彩色の光として視認されうる非偏光である。
 入射光A111(N)は、層102(Xy)を透過し、非偏光である光A112(N)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A112(N)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A113(R)となり、その明るさの理論値は入射光の半分である。一方光A112(N)のうちの左円偏光成分は光反射層101(R)を透過し透過光A119(L)となる。
 光A113(R)は、再び層102(Xy)を透過し、光A114(Y)として、光学表示媒体100の表示面から出射する。光A113(R)は右円偏光であり、層102(Xy)がXy方向に遅相軸を有するλ/4波長板であるため、光A114(Y)は、Y軸方向の偏光方向を有する直線偏光となり、その明るさの理論値は、光A113(R)と同じである。
 領域R1を通常観察する場合は、光A114(Y)を観察用直線偏光子191(X)を介さずに観察することになる。一方、領域R1を非偏光-偏光観察する場合は、光A114(Y)が観察用直線偏光子191(X)に入射し、出射光A115(n)となった状態を観察することになる。パターン状位相差層110の領域R1から出射した光A114(Y)が、観察用直線偏光子191(X)に入射すると、光A114(Y)の偏光振動方向と観察用直線偏光子191(X)の透過軸とが直交するため、光A114(Y)はその全てが遮られ、観察用直線偏光子191(X)からの出射光A115(n)の明るさの理論値はゼロとなる。
 層102(Xy)が、そのRe(λ)/λの値が可視光全波長範囲において一定である理想的なλ/4波長板である場合、光A114(Y)は可視光全波長範囲においてY軸方向の偏光方向を有する直線偏光となり、可視光全波長範囲において出射光A115(n)の明るさはゼロとなりうる。一方、層102(Xy)のRe(λ)/λの値が可視光全波長範囲において一定でない非理想的なλ/4波長板である場合、光A114(Y)は可視光のある波長範囲において面内レターデーションReがλ/4から外れた誤差のある値となり、出射光が楕円偏光となり得、当該波長範囲において出射光A115(n)の明るさはゼロとならず、したがって領域R1を非偏光-偏光観察する場合は、有彩色が観察されうる。しかしながら、層102(Xy)のRe(550)は、λ/4波長板として機能する137.5nmといった小さい値であることに起因し、かかる誤差の量は通常小さく、したがって、目視可能な有彩色の色付きは通常観察されない。
 入射光A121(N)は、サブ層103(Xy)を透過し非偏光である光A122(N)として下向きに出射し、さらに層102(Xy)を透過し非偏光である光A123(N)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A123(N)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A124(R)となり、その明るさの理論値は入射光の半分である。一方光A123(N)のうちの左円偏光成分は光反射層101(R)を透過し透過光A129(L)となる。
 光A124(R)は、層102(Xy)を透過し、光A125(Y)として上向きに出射する。光A124(R)は右円偏光であり、層102(Xy)がXy方向に遅相軸を有するλ/4波長板であるため、光A125(Y)は、Y軸方向の偏光方向を有する直線偏光となり、その明るさの理論値は、光A124(R)と同じである。
 光A125(Y)は、サブ層103(Xy)を透過し、光A126(P)として、光学表示媒体100の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A126(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。各波長の光は例えば、X軸方向の振動方向を有する直線偏光、Y軸方向の振動方向を有する直線偏光、右円偏光、左円偏光、及びこれらの成分が複合した楕円偏光といった様々な偏光状態を有しうる。但し、光の明るさは、波長ごとの相違は無い。したがって、領域R2を通常観察した場合、光A126(P)は、特段の有彩色を有する光としては観察されない。光A126(P)の明るさの理論値は、光A125(Y)と同じである。
 一方、領域R2を非偏光-偏光観察する場合は、光A126(P)が観察用直線偏光子191(X)に入射し、出射光A127(X)(Ch)となった状態を観察することになる。光A126(P)が、観察用直線偏光子191(X)に入射すると、光A126(P)のうち、X軸方向の振動方向を有する直線偏光成分のみが出射光A127(X)(Ch)として観察用直線偏光子191(X)から出射する。光A126(P)は、波長ごとに様々に異なる偏光状態を有しているため、A126(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(X)から出射し、その結果、領域R2を非偏光-偏光観察した場合、光A127(X)(Ch)は何らかの有彩色を伴う光として観察される。光A127(X)(Ch)の明るさの理論値は、光A126(P)の偏光状態によって異なるが、光A126(P)より小さい値であり、概ね光A126(P)の半分である。
 入射光A131(N)は、サブ層103(Xy)を透過し非偏光である光A132(N)として下向きに出射し、さらに層102(N)を透過し非偏光である光A133(N)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A133(N)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A134(R)となり、その明るさの理論値は入射光の半分である。一方光A133(N)のうちの左円偏光成分は光反射層101(R)を透過し透過光A139(L)となる。
 光A134(R)は、層102(N)を透過し、光A135(R)として上向きに出射する。光A135(R)は、サブ層103(Xy)を透過し、光A136(P)として、光学表示媒体100の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A136(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、領域R2を出射した光A126(P)と比べると、光A126(P)は円偏光となった後にもう一つの位相差を有する層である層102(Xy)をも透過した光である一方、光A136(P)は層102(Xy)ではなく等方な層102(N)を透過した光であるため、光A136(P)の偏光状態は光A126(P)と比べると差異がある。但し、光A136(P)の明るさは、光A126(P)と同様に、波長ごとの相違は無い。したがって、領域R3を通常観察した場合、光A136(P)は、特段の有彩色を有する光としては観察されない。光A136(P)の明るさの理論値は、光A135(R)と同じである。
 一方、領域R3を非偏光-偏光観察する場合は、光A136(P)が観察用直線偏光子191(X)に入射し、出射光A137(X)(Ch)となった状態を観察することになる。光A136(P)が、観察用直線偏光子191(X)に入射すると、光A136(P)のうち、X軸方向の振動方向を有する直線偏光成分のみが出射光A137(X)(Ch)として観察用直線偏光子191(X)から出射する。光A136(P)は、波長ごとに様々に異なる偏光状態を有しているため、A136(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(X)から出射し、その結果、領域R3を非偏光-偏光観察した場合、光A137(X)(Ch)は何らかの有彩色を伴う光として観察される。但し、光A136(P)の偏光状態は光A126(P)と比べると差異があるので、光A137(X)(Ch)の色は、光A127(X)(Ch)とは異なる色となる。光A137(X)(Ch)の明るさの理論値は、光A136(P)の偏光状態によって異なるが、光A136(P)より小さい値であり、概ね光A136(P)の半分である。
 入射光A141(N)は、層102(N)を透過し、非偏光である光A142(N)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光A142(N)のうちの右円偏光成分は反射され反射光A143(R)となり、その明るさの理論値は入射光の半分である。一方光A142(N)のうちの左円偏光成分は光反射層101(R)を透過し透過光A149(L)となる。
 光A143(R)は、再び層102(N)を透過し、光A144(R)として、光学表示媒体100の表示面から出射する。光A144(R)の明るさの理論値は、光A143(R)と同じである。
 領域R4を通常観察する場合は、光A144(R)を観察用直線偏光子191(X)を介さずに観察することになる。一方、領域R4を非偏光-偏光観察する場合は、光A144(R)が観察用直線偏光子191(X)に入射し、出射光A145(X)となった状態を観察することになる。即ち、パターン状位相差層110の領域R4から出射した光A144(R)が、観察用直線偏光子191(X)に入射すると、光A144(R)のうち、X軸方向の振動方向を有する直線偏光成分のみが出射光A145(X)として観察用直線偏光子191(X)から出射する。出射光A145(X)の明るさの理論値は、光A144(R)の半分となる。
 図4は、光学表示媒体と観察用直線偏光子との相対的な角度関係を、図1及び図2の例におけるものから変更した場合における、本発明の光学表示媒体の使用方法の一例を概略的に示す分解側面図である。図4は、光学表示媒体100の、座標軸に対する角度を固定し、観察用直線偏光子の、X軸及びY軸に対する角度を変更したものとして図示している。但し実際の使用においては、これらの相対的な角度関係の変更は、光学表示媒体の移動、観察用直線偏光子の移動、観察用直線偏光子の入れ替え、及びこれらの2以上の組み合わせのいずれによって行ってもよい。
 図4の例は、角度関係の変更の結果、観察用偏光子として、観察用直線偏光子191(Y)を使用する例に変更されている。観察用直線偏光子191(Y)は、Y軸方向に透過軸を有するよう光学表示媒体100との相対的な角度を位置決めされた偏光子である。したがって、この例において、層102(Xy)及びサブ層103(Xy)の遅相軸は、観察用直線偏光子191(Y)の透過軸に対して、右回りに45°傾いている。
 図4に示す光学表示媒体100の使用の例では、非偏光である入射光A111(N)~A141(N)が、それぞれ、パターン状位相差層110の領域R1~R4に入射し、それらのそれぞれの一部が、光A114(Y)、A126(P)、A136(P)及びA144(R)として、光学表示媒体100の表示面から出射する。ここまでの光の経路は、図1及び図2の例と同じである。
 出射した光A114(Y)が、観察用直線偏光子191(Y)に入射すると、光A114(Y)の偏光振動方向と観察用直線偏光子191(Y)の透過軸とが平行であるため、光A114(Y)はその全てが透過し出射光A115(Y)として観察用直線偏光子191(Y)から出射する。出射光A115(Y)の明るさの理論値は、光A114(Y)と同じ値である。
 出射した光A126(P)が、観察用直線偏光子191(Y)に入射すると、光A126(P)のうち、Y軸方向の振動方向を有する直線偏光成分のみが出射光A127(Y)(Ch)として観察用直線偏光子191(Y)から出射する。光A126(P)は、波長ごとに様々に異なる偏光状態を有しているため、A126(P)に含まれる様々な波長の光のうち、Y軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(Y)から出射し、その結果、領域R2を非偏光-偏光観察した場合、光A127(Y)(Ch)は何らかの有彩色を伴う光として観察される。この際、光A126(P)に含まれる偏光成分のうち観察用直線偏光子191(X)(図1~図2)から出射し得た成分は観察用直線偏光子191(Y)によって遮られ、逆に、光A126(P)に含まれる偏光成分のうち観察用直線偏光子191(X)から出射し得なかった成分は観察用直線偏光子191(Y)から出射することになる。したがって、観察される出射光A127(Y)(Ch)の色は、A127(X)(Ch)(図1~図2)のそれとは大きく異なるものとなり得る。光A127(Y)(Ch)の明るさの理論値は、光A126(P)の偏光状態によって異なるが、光A126(P)より小さい値であり、概ね光A126(P)の半分である。
 出射した光A136(P)が、観察用直線偏光子191(Y)に入射すると、光A136(P)のうち、Y軸方向の振動方向を有する直線偏光成分のみが出射光A137(Y)(Ch)として観察用直線偏光子191(Y)から出射する。光A136(P)は、波長ごとに様々に異なる偏光状態を有しているため、A136(P)に含まれる様々な波長の光のうち、Y軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(Y)から出射し、その結果、領域R3を非偏光-偏光観察した場合、光A137(Y)(Ch)は何らかの有彩色を伴う光として観察される。この際、A127(Y)(Ch)について上に述べた理由と同じ理由で、観察される出射光A137(Y)(Ch)の色は、A137(X)(Ch)のそれとは大きく異なるものとなり得る。加えて、光A136(P)の偏光状態は光A126(P)と比べると差異があるので、光A137(Y)(Ch)の色は、光A127(Y)(Ch)と比べても、異なる色となる。光A137(Y)(Ch)の明るさの理論値は、光A126(P)の偏光状態によって異なるが、光A126(P)より小さい値であり、概ね光A126(P)の半分である。
 出射した光A144(R)が、観察用直線偏光子191(Y)に入射すると、光A144(R)のうち、Y軸方向の振動方向を有する直線偏光成分のみが出射光A145(Y)として観察用直線偏光子191(Y)から出射する。出射光A145(Y)の明るさの理論値は、光A144(R)の半分となる。
 以上の結果として、非偏光が入射した状態の光学表示媒体100を通常観察した場合、観察者は、出射光A114(Y)、A126(P)、A136(P)及びA144(R)を観察する。これらの出射光は、その偏光状態は異なるものの、明るさは同じである。人間の視覚では、この偏光状態の相違を認識することはできないので、観察者は、これらの相違を認識できない。また、光学表示媒体100と観察者との相対的な角度関係が変わっても、観察者は偏光状態の変化に基づく変化を認識できない。したがって、領域R1~R4はいずれも、同じ明るさの無彩色の領域として観察され、これらの差異は認識されない。
 一方、光学表示媒体と観察用直線偏光子との相対的な角度関係を図1及び図2の例における関係として、非偏光-偏光観察を行った場合、領域R1は、反射光の無い、相対的に暗い略黒色の無彩色の領域として観察され、領域R4は、入射光の1/4の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。領域R2及びR3は、領域R4と概ね同程度の明るさであり、互いに異なる色である有彩色の領域として観察され、これらの外観は互いに相違するものとなる。
 さらに、光学表示媒体と観察用直線偏光子との相対的な角度関係を図4の例における関係として、非偏光-偏光観察を行った場合、領域R1は、入射光の1/2の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。一方、領域R4は、入射光の1/4の明るさの反射光を有する無彩色の領域として観察される。領域R4の明るさは、図1及び図2に示す場合から変化は無いが、この例においては、領域R1より相対的に暗い領域として観察される。領域R2及びR3は、領域R4と概ね同程度の明るさであり、互いに異なる色であり、且つ図1及び図2の例において観察されていた色とも異なる有彩色の領域として観察され、これらの外観は互いに相違し、且つ図1及び図2の例において観察される外観とも相違する。
 したがって、光学表示媒体と観察用直線偏光子との相対的な角度関係を、図1及び図2の例における関係から図4の例における関係に変更することにより、複数の領域間の相対的な明るさが変化する。より具体的には、観察用直線偏光子の向きを、図1及び図2における観察用直線偏光子191(X)の状態から、Z軸方向に平行なある軸を中心に回転させることにより変化させると、回転の角度の増大に従って領域R1の相対的な明るさが明るくなり、観察用直線偏光子の向きが図4における観察用直線偏光子191(Y)の状態に達した時点で相対的な明るさが最大となる。さらに、領域R2及びR3において観察される色が変化する。
 この例において、本発明の光学表示媒体は、通常観察では領域間の差異が観察されず、観察用直線偏光子を介した場合にだけ領域間の色及び相対的な明るさの差異が観察され、さらに観察用直線偏光子の角度を変化させることによりそれぞれの領域の色及び明るさが変化するという、特殊な効果をもたらしうる。このような特殊な効果は、一般的な印刷等の技術で容易に得られる複製物では得られないものである。したがって、本発明の光学表示媒体は、このような通常観察による使用及び複数種類の非偏光-偏光観察による使用による観察結果の対比により、高い偽造防止性能を発揮し、識別媒体としての機能を発揮する。また、かかる有彩色の発現並びに色及び明るさの変化により、本発明の光学表示媒体は、加飾媒体としての意匠的効果を発現することができる。
 このような相対的な色及び明るさの差異及び変化により、表示面に、文字、図形等の像を表示しうる。このように、通常観察では観察されず、光学表示媒体の特定の観察(即ち非偏光-偏光観察及び偏光-非偏光観察)においてだけ観察される像を、光学表示媒体の「潜像」という。
 非偏光-偏光観察は、環境光を入射光とし、光学表示媒体と、ビュワーである観察用直線偏光子とを離隔させた状態で、反射光を観察用直線偏光子を介して目視することにより達成しうる。さらに観察用直線偏光子としては、市販の偏光サングラス等の一般的な偏光子を用いうる。したがって、このような観察は、ビュワーを光学表示媒体に近接させるといった特殊な操作を伴わずに行うことができ、且つ、ビュワーとして比較的容易に入手しうるものを使用することができる。例えば、観察者から離隔した位置に置かれた光学表示媒体を偏光サングラスをかけた状態で目視するといった容易な動作で非偏光-偏光観察を達成することができる。したがって、本発明の光学表示媒体は、このような使用において、容易に識別媒体としての識別機能及び加飾媒体としての意匠的効果を発揮することができる。
 図1~図2及び図4に示した例では、光学表示媒体と観察用直線偏光子とを離隔させた状態での観察を例示したが、観察における光学表示媒体と観察用直線偏光子との位置関係はこれに限定されない。例えば、観察用直線偏光子を光学表示媒体の上に載置する等してこれらを近接させた状態での観察を行っても、このような潜像を観察することができる。
 上に述べた例では、観察用の偏光子として直線偏光子(観察用直線偏光子191(X)及び観察用直線偏光子191(Y))を使用する例を示したが、本発明はこれに限られず、観察用の偏光子として直線偏光子以外の偏光子をも用いうる。
 ある例として、観察用の偏光子として、直線偏光子に代えて右円偏光子、左円偏光子又はこれらの組み合わせを用いうる。右円偏光を選択的に透過する右円偏光子を通して領域R1~R4からの光を観察した場合、これらの明るさ(入射光の明るさを100とした場合における相対的な理論値)はそれぞれ25、約25、約25及び50となり、領域R4が相対的に明るい領域として観察される。また、領域R1及びR4は無彩色の領域となる一方、領域R2及びR3は、互いに異なる色である有彩色の領域として観察される。
 一方左円偏光を選択的に透過する左円偏光子を通して領域R1~R4からの光を観察した場合、これらの明るさ(入射光の明るさを100とした場合における相対的な理論値)はそれぞれ25、約25、約25及び0となり、領域R4が相対的に暗い領域として観察される。また、領域R1及びR4は無彩色の領域となる一方、領域R2及びR3は、互いに異なる色である有彩色の領域として観察され、さらに右円偏光子を通した観察における色とも異なる色となる。
 したがって、円偏光子を通さない通常観察、右円偏光子を介した観察及び左円偏光子を介した観察のうちの2以上を対比することによる相対的な明るさの変化によっても、識別機能及び意匠的効果を発現することができる。
 〔実施形態1の光学表示媒体の使用方法:その2:偏光-非偏光観察〕
 以下において、偏光-非偏光観察、即ち光学表示媒体100に入射させる光として、上に述べた例とは異なり、偏光を用いる観察による使用方法の例について説明する。
 入射させる光が偏光(直線偏光、円偏光、又は楕円偏光)である場合、反射光の観察においては、反射光をそのまま、観察用直線偏光子を介さず直接目視して観察しうる。
 入射させる偏光が直線偏光である場合、かかる直線偏光としては、直線偏光子に非偏光を透過させることにより得られる直線偏光を使用しうる。直線偏光を供給する装置は、本発明の使用方法のための専用品であってもよいが、他の用途に用いる一般的な光源及び一般的な直線偏光子を組み合わせて用いてもよい。または、他の用途に用いる一般的な、光源及び直線偏光子が組み合わされた状態の装置を用いてもよい。
 入射させる偏光が円偏光である場合、かかる円偏光としては、非偏光を、円偏光子に非偏光を透過させることにより得られる円偏光を使用しうる。円偏光を供給する装置は、本発明の使用方法のための専用品であってもよいが、他の用途に用いる一般的な光源及び一般的な円偏光子を組み合わせて用いてもよい。または、他の用途に用いる一般的な、光源及び円偏光子が組み合わされた状態の装置を用いてもよい。
 入射させる偏光が楕円偏光である場合、かかる楕円偏光としては、非偏光を、適切な光学素子に非偏光を透過させることにより得られる楕円偏光を使用しうる。楕円偏光を供給する装置は、本発明の使用方法のための専用品であってもよいが、他の用途に用いる一般的な光源及び一般的な直線偏光子又は円偏光子を組み合わせて用いてもよい。または、他の用途に用いる一般的な、光源及び直線偏光子又は円偏光子が組み合わされた状態の装置を用いてもよい。
 例えば、一般的な液晶表示画面付きのパーソナルコンピューター及びスマートフォン等の、表示画面を備えた電子機器の多くは、表示画面からの出射光として直線偏光を出射するので、そのような電子機器を、直線偏光を供給する装置として使用しうる。より具体的には、そのような電子機器を光学表示媒体に近接させる等の操作により、非偏光の環境光の入射が少なく、相対的に当該電子機器からの出射光の入射が多い環境下に光学表示媒体を位置させ、直線偏光の供給を達成しうる。
 他の例として、一般的な液晶表示画面付きのパーソナルコンピューター及びスマートフォン等の、表示画面を備えた電子機器の一部は、表示画面からの出射光として円偏光を出射するので、そのような電子機器を、円偏光を供給する装置として使用しうる。より具体的には、そのような電子機器を光学表示媒体に近接させる等の操作により、非偏光の環境光の入射が少なく、相対的に当該電子機器からの出射光の入射が多い環境下に光学表示媒体を位置させ、円偏光の供給を達成しうる。
 さらに他の例として、上に述べた直線偏光又は円偏光を出射する電子機器の表示画面に、様々な目的で後付のフィルムが貼合されることがある。このような後付のフィルムの例としては、表示画面の保護、表示画面の視野角の調整、表示画面を偏光サングラスを介して観察した場合の視認性向上等様々な目的で貼合されるものが挙げられる。これらのフィルムの多くは、何らかの位相差を有するものが多く、そのため直線偏光を円偏光又は楕円偏光に変換したり、円偏光を直線偏光又は楕円偏光に変換したりする機能を発現しうる。このような態様の、後付フィルムを伴う電子機器を用いて、直線偏光、円偏光又はそれ以外の楕円偏光の供給を達成することも出来る。
 図5及び図6は、図1、図2及び図4に示した光学表示媒体100の使用方法の別の一例を概略的に示す分解側面図である。
 図5に示す光学表示媒体100の使用の例では、入射光A211(X)、A221(X)、A231(X)及びA241(X)が、それぞれ、パターン状位相差層110のうちの領域R1~R4に入射する。この例において、入射光A211(X)~A141(X)は、X軸方向の振動方向を有する直線偏光である。
 入射光A211(X)は、層102(Xy)を透過し、左円偏光である光A212(L)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A212(L)の全てが光反射層101(R)を透過し透過光A219(L)となる。したがって、光反射層101(R)における反射光A213(n)の明るさの理論値はゼロとなり、再び層102(Xy)を透過し光学表示媒体100の表示面から出射する光A214(n)の明るさの理論値もゼロとなる。
 入射光A221(X)は、サブ層103(Xy)を透過し、光A222(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A222(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、光の明るさは、波長ごとの相違は無いので、光A222(P)は、特段の有彩色を有する光としては観察されない。光A222(P)の明るさの理論値は、光A221(X)と同じである。
 光A222(P)は、さらに層102(Xy)を透過し、偏光状態がさらに変化した光A223(P)として下向きに出射する。光A223(P)の明るさの理論値は、光A222(P)と同じである。
 下向きに出射した光A223(P)は、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A223(P)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A224(R)(Ch)となる。光A223(P)は、波長ごとに様々に異なる偏光状態を有しているため、A223(P)に含まれる様々な波長の光のうち、右円偏光成分を多く含む波長の光が、相対的により多く光反射層101(R)により反射され、その結果、光A224(R)(Ch)は何らかの有彩色を伴う光として観察される。光A224(R)の明るさの理論値は、光A223(P)の偏光状態によって異なるが、光A223(P)より小さい値であり、概ね光A223(P)の半分である。一方光A223(P)のうちの左円偏光成分は光反射層101(R)を透過し透過光A229(L)(Ch)となる。
 光A224(R)(Ch)は、層102(Xy)を透過し、光A225(Y)(Ch)として上向きに出射する。光A224(R)は右円偏光であり、層102(Xy)がXy方向に遅相軸を有するλ/4波長板であるため、光A225(Y)(Ch)は、Y軸方向の偏光方向を有する直線偏光となり、その色及び明るさの理論値は、光A224(R)と同じである。
 光A225(Y)(Ch)は、サブ層103(Xy)を透過し、光A226(P)(Ch)として、光学表示媒体100の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A226(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A226(P)(Ch)の各波長ごとの明るさは、光A225(Y)(Ch)と同じであるため、光A226(P)(Ch)の色及び明るさの理論値は、光A225(Y)(Ch)と同じである。
 入射光A231(X)は、サブ層103(Xy)を透過し、光A232(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A232(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、光の明るさは、波長ごとの相違は無いので、光A232(P)は、特段の有彩色を有する光としては観察されない。光A232(P)の明るさの理論値は、光A231(X)と同じである。
 光A232(P)は、さらに層102(N)を透過し、光A233(P)として下向きに出射する。領域R2の光A222(P)は層102(Xy)を透過することにより偏光状態がさらに変化した光A223(P)になったのに対し、光A233(P)は層102(Xy)ではなく等方な層102(N)を透過した光であるため、光A233(P)の偏光状態は光A223(P)と比べると差異がある。但し、光の明るさは、波長ごとの相違は無いので、光A233(P)は、特段の有彩色を有する光としては観察されない。光A233(P)の明るさの理論値は、光A232(P)と同じである。
 下向きに出射した光A233(P)は、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A233(P)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A234(R)(Ch)となる。光A233(P)は、波長ごとに様々に異なる偏光状態を有しているため、A233(P)に含まれる様々な波長の光のうち、右円偏光成分を多く含む波長の光が、相対的により多く光反射層101(R)により反射され、その結果、光A234(R)(Ch)は何らかの有彩色を伴う光として観察される。光A233(P)の偏光状態は光A223(P)と比べると差異があるので、光A234(R)(Ch)の色は、光A224(R)(Ch)とは異なる色となる。光A234(R)の明るさの理論値は、光A233(P)の偏光状態によって異なるが、光A233(P)より小さい値であり、概ね光A233(P)の半分である。一方光A233(P)のうちの左円偏光成分は光反射層101(R)を透過し透過光A239(L)(Ch)となる。
 光A234(R)(Ch)は、層102(N)を透過し、光A235(R)(Ch)として上向きに出射する。光A234(R)は右円偏光であり、層102(N)が等方な層であるため、光A235(R)(Ch)の色及び明るさの理論値は、光A234(R)と同じである。
 光A235(R)(Ch)は、サブ層103(Xy)を透過し、光A236(P)(Ch)として、光学表示媒体100の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A236(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A236(P)(Ch)の各波長ごとの明るさは、光A235(R)(Ch)と同じであるため、光A236(P)(Ch)の色及び明るさの理論値は、光A235(R)(Ch)と同じである。また、光A236(P)(Ch)の色は、光A226(P)(Ch)とは異なる色となる。
 入射光A241(X)は、層102(N)を透過し、直線偏光である光A242(X)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光A242(X)のうちの右円偏光成分は反射され反射光A243(R)となり、その明るさの理論値は入射光の半分である。一方光A242(X)のうちの左円偏光成分は光反射層101(R)を透過し透過光A249(L)となる。
 光A243(R)は、再び層102(N)を透過し、光A244(R)として、光学表示媒体100の表示面から出射する。光A244(R)の明るさの理論値は、光A243(R)と同じである。
 図6は、光学表示媒体と入射直線偏光の振動方向との相対的な角度関係を、図5の例におけるものから変更した場合における、本発明の光学表示媒体の使用方法の一例を概略的に示す分解側面図である。図6は、光学表示媒体100の、座標軸に対する角度を固定し、直線偏光の振動方向の、X軸及びY軸に対する角度を変更したものとして図示している。但し実際の使用においては、これらの相対的な角度関係の変更は、光学表示媒体の移動、光源の移動、光源の入れ替え、及びこれらの2以上の組み合わせのいずれによって行ってもよい。
 図6の例は、角度関係の変更の結果、光学表示媒体100に入射する光が、Y軸方向の振動方向を有する直線偏光である例に変更されている。即ち、入射光A211(Y)、A221(Y)、A231(Y)及びA241(Y)が、それぞれ、パターン状位相差層110のうちの領域R1~R4に入射する。この例において、入射光A211(Y)~A241(Y)は、Y軸方向の振動方向を有する直線偏光である。
 入射光A211(Y)は、層102(Xy)を透過し、右円偏光である光A212(R)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A212(R)の全てが光反射層101(R)において反射され反射光A213(R)となる。光A213(R)の明るさの理論値は、光A212(R)と同じである。一方光反射層101(R)を透過する透過光A219(n)の明るさの理論値はゼロとなる。
 光A213(R)は、再び層102(Xy)を透過し、光A214(Y)として、光学表示媒体100の表示面から出射する。光A214(Y)の明るさの理論値は、光A213(R)と同じである。
 入射光A221(Y)は、サブ層103(Xy)を透過し、光A222’(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A222’(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。さらに入射する光A221(Y)の偏光状態が図5におけるA221(X)と大きく相違するので、光A222’(P)の偏光状態は、図5における光A222(P)の偏光状態とは大きく相違する。但し、光の明るさは、波長ごとの相違は無いので、光A222’(P)は、特段の有彩色を有する光としては観察されない。光A222’(P)の明るさの理論値は、光A221(Y)と同じである。
 光A222’(P)は、さらに層102(Xy)を透過し、偏光状態がさらに変化した光A223’(P)として下向きに出射する。入射する光A222’(P)の偏光状態が図5におけるA222(P)と大きく相違するので、光A223’(P)の偏光状態は、図5における光A223(P)の偏光状態とは大きく相違する。光A223’(P)の明るさの理論値は、光A222’(P)と同じである。
 下向きに出射した光A223’(P)は、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A223’(P)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A224’(R)(Ch)となる。光A223’(P)は、波長ごとに様々に異なる偏光状態を有しているため、A223’(P)に含まれる様々な波長の光のうち、右円偏光成分を多く含む波長の光が、相対的により多く光反射層101(R)により反射され、その結果、光A224’(R)(Ch)は何らかの有彩色を伴う光として観察される。入射する光A223’(P)の偏光状態が図5におけるA223(P)と大きく相違するので、光A224’(R)(Ch)の色は、図5における光A224(R)(Ch)とは大きく相違する。光A224’(R)の明るさの理論値は、光A223’(P)の偏光状態によって異なるが、光A223’(P)より小さい値であり、概ね光A223’(P)の半分である。一方光A223’(P)のうちの左円偏光成分は光反射層101(R)を透過し透過光A229’(L)(Ch)となる。
 光A224’(R)(Ch)は、層102(Xy)を透過し、光A225’(Y)(Ch)として上向きに出射する。光A224’(R)は右円偏光であり、層102(Xy)がXy方向に遅相軸を有するλ/4波長板であるため、光A225’(Y)(Ch)は、Y軸方向の偏光方向を有する直線偏光となり、その色及び明るさの理論値は、光A224’(R)と同じであり、図5における光A225(Y)(Ch)とは大きく相違する。
 光A225’(Y)(Ch)は、サブ層103(Xy)を透過し、光A226’(P)(Ch)として、光学表示媒体100の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A226’(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A226’(P)(Ch)の各波長ごとの明るさは、光A225’(Y)(Ch)と同じであるため、光A226’(P)(Ch)の色及び明るさの理論値は、光A225’(Y)(Ch)と同じであり、図5における光A226(P)(Ch)とは大きく相違する。
 入射光A231(Y)は、サブ層103(Xy)を透過し、光A232’(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A232’(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。さらに入射する光A231(Y)の偏光状態が図5におけるA231(X)と大きく相違するので、光A232’(P)の偏光状態は、図5における光A232(P)の偏光状態とは大きく相違する。但し、光の明るさは、波長ごとの相違は無いので、光A232’(P)は、特段の有彩色を有する光としては観察されない。光A232’(P)の明るさの理論値は、光A231(Y)と同じである。
 光A232’(P)は、さらに層102(N)を透過し、光A233’(P)として下向きに出射する。領域R2の光A222’(P)は層102(Xy)を透過することにより偏光状態がさらに変化した光A223’(P)になったのに対し、光A233’(P)は層102(Xy)ではなく等方な層102(N)を透過した光であるため、光A233’(P)の偏光状態は光A223’(P)と比べると差異がある。さらに入射するA232’(P)の偏光状態が図5におけるA232(P)と大きく相違するので、光A233’(P)の偏光状態は、図5における光A233(P)の偏光状態とは大きく相違する。但し、光の明るさは、波長ごとの相違は無いので、光A233’(P)は、特段の有彩色を有する光としては観察されない。光A233’(P)の明るさの理論値は、光A232’(P)と同じである。
 下向きに出射した光A233’(P)は、光反射層101(R)の上面101(R)Uに到達する。光反射層101(R)は右反射型円偏光子であるので、光A233’(P)のうちの右円偏光成分は、光反射層101(R)の表面又は内部において反射され反射光A234’(R)(Ch)となる。光A233’(P)は、波長ごとに様々に異なる偏光状態を有しているため、A233’(P)に含まれる様々な波長の光のうち、右円偏光成分を多く含む波長の光が、相対的により多く光反射層101(R)により反射され、その結果、光A234’(R)(Ch)は何らかの有彩色を伴う光として観察される。入射する光A233’(P)の偏光状態が図5におけるA233(P)と大きく相違するので、光A234’(R)(Ch)の色は、図5における光A234(R)(Ch)とは大きく相違する。さらに、光A233’(P)の偏光状態は光A223’(P)と比べると差異があるので、光A234’(R)(Ch)の色は、光A224’(R)(Ch)とは異なる色となる。光A234’(R)の明るさの理論値は、光A233’(P)の偏光状態によって異なるが、光A233’(P)より小さい値であり、概ね光A233’(P)の半分である。一方光A233’(P)のうちの左円偏光成分は光反射層101(R)を透過し透過光A239’(L)(Ch)となる。
 光A234’(R)(Ch)は、層102(N)を透過し、光A235’(R)(Ch)として上向きに出射する。光A234’(R)は右円偏光であり、層102(N)が等方な層であるため、光A235’(R)(Ch)の色及び明るさの理論値は、光A234’(R)と同じである。
 光A235’(R)(Ch)は、サブ層103(Xy)を透過し、光A236’(P)(Ch)として、光学表示媒体100の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A236’(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A236’(P)(Ch)の各波長ごとの明るさは、光A235’(R)(Ch)と同じであるため、光A236’(P)(Ch)の色及び明るさの理論値は、光A235’(R)(Ch)と同じであり、図5における光A236(P)(Ch)とは大きく相違する。また、光A236’(P)(Ch)の色は、光A226’(P)(Ch)とは異なる色となる。
 入射光A241(Y)は、層102(N)を透過し、直線偏光である光A242(Y)として下向きに出射し、光反射層101(R)の上面101(R)Uに到達する。光A242(Y)のうちの右円偏光成分は反射され反射光A243(R)となり、その明るさの理論値は入射光の半分である。一方光A242(Y)のうちの左円偏光成分は光反射層101(R)を透過し透過光A249(L)となる。
 光A243(R)は、再び層102(N)を透過し、光A244(R)として、光学表示媒体100の表示面から出射する。光A244(R)の明るさの理論値は、光A243(R)と同じである。
 以上の結果として、図5に示す通り、X軸方向の振動方向を有する直線偏光が入射した状態の光学表示媒体100を、偏光-非偏光観察した場合、領域R1は、反射光の無い、相対的に暗い略黒色の無彩色の領域として観察され、領域R4は、入射光の1/2の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。領域R2及びR3は、領域R4と概ね同程度の明るさであり、互いに異なる色である有彩色の領域として観察され、これらの外観は互いに相違するものとなる。
 一方、図6に示す通り、Y軸方向の振動方向を有する直線偏光が入射した状態の光学表示媒体100を、偏光-非偏光観察した場合、領域R1は、入射光と同等の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。一方、領域R4は、入射光の1/2の明るさの反射光を有する無彩色の領域として観察される。領域R4の明るさは、図5に示す場合から変化は無いが、この例においては、領域R1より相対的に暗い領域として観察される。領域R2及びR3は、領域R4と概ね同程度の明るさであり、互いに異なる色であり、且つ図5の例において観察されていた色とも異なる有彩色の領域として観察され、これらの外観は互いに相違し、且つ図5の例において観察される外観とも相違する。
 したがって、光学表示媒体と直線偏光の振動方向との相対的な角度関係を、図5の例における関係から図6の例における関係に変更することにより、複数の領域間の相対的な明るさが変化する。より具体的には、直線偏光の振動方向の向きを、図5におけるX軸方向の状態から、Z軸方向に平行なある軸を中心に回転させることにより変化させると、回転の角度の増大に従って領域R1の相対的な明るさが明るくなり、直線偏光の振動方向の向きが図6におけるY軸方向の状態に達した時点で相対的な明るさが最大となる。さらに、領域R2及びR3において観察される色が変化する。
 また、非偏光が入射した状態の光学表示媒体100を通常観察した場合の結果は、図1、図2及び図4を参照して説明した場合と同じであり、即ち、領域R1~R4はいずれも、同じ明るさの無彩色の領域として観察され、これらの差異は認識されない。
 この例において、本発明の光学表示媒体は、通常観察では領域間の差異が観察されず、直線偏光を光源とした場合にだけ領域間の色及び相対的な明るさの差異が観察され、さらに偏光の角度を変化させることによりそれぞれの領域の色及び明るさが変化するという、特殊な効果をもたらしうる。このような特殊な効果は、一般的な印刷等の技術で容易に得られる複製物では得られないものである。したがって、本発明の光学表示媒体は、このような通常観察による使用及び複数種類の偏光-非偏光観察による使用による観察結果の対比により、高い偽造防止性能を発揮し、識別媒体としての機能を発揮する。また、かかる有彩色の発現並びに色及び明るさの変化により、本発明の光学表示媒体は、加飾媒体としての意匠的効果を発現することができる。
 偏光-非偏光観察は、直線偏光を入射光として観察した場合に得られる。このような観察は、スマートフォン等の直線偏光を出射する電子機器を表示媒体に近接させた状態で光学表示媒体を目視するといった容易な動作で達成することができる。したがって、本発明の光学表示媒体は、このような使用において、容易に識別媒体としての識別機能及び加飾媒体としての意匠的効果を発揮することができる。
 上に述べた例では、入射光が直線偏光(入射光A211(X)~A241(X)並びに入射光A211(Y)~A241(Y))である例を示したが、本発明はこれに限られず、入射光として直線偏光以外の偏光をも用いうる。
 ある例として、入射光として、直線偏光に代えて右円偏光、左円偏光又はこれらの組み合わせを用いうる。入射光として右円偏光を用いて領域R1~R4からの光を観察した場合、これらの明るさ(入射光の明るさを100とした場合における相対的な理論値)はそれぞれ50、約50、約50及び100となり、領域R4が相対的に明るい領域として観察される。また、領域R1及びR4は無彩色の領域となる一方、領域R2及びR3は、互いに異なる色である有彩色の領域として観察される。
 一方、入射光として左円偏光を用いて領域R1~R4を観察した場合、これらの明るさはそれぞれ50、約50、約50及び0となり、領域R4が相対的に暗い領域として観察される。また、領域R1及びR4は無彩色の領域となる一方、領域R2及びR3は、互いに異なる色である有彩色の領域として観察される。さらに右円偏光を用いた観察における色とも異なる色となる。
 したがって、非偏光を入射させた通常観察、右円偏光を入射させた偏光-非偏光観察及び左円偏光を入射させた偏光-非偏光観察のうちの2以上を対比することによる相対的な明るさの変化によっても、識別機能及び意匠的効果を発現することができる。ある種の保護フィルムが設けられたスマートフォン等の一部の電子機器には、円偏光を出射するものがあるので、このような観察は、そのような円偏光を出射する電子機器を表示媒体に近接させた状態で光学表示媒体を目視するといった動作で、達成することができる。
 〔光学表示媒体:実施形態2〕
 図1~図2及び図4~図6においては、光反射層として、反射型円偏光子を備え、パターン状位相差層として、領域Iがλ/4波長板として機能する層であるものを備える光学表示媒体100を例示した。しかしながら本発明の光学表示媒体はこれに限られず、これ以外の構成を備えうる。例えば、本発明の光学表示媒体は、光反射層として、反射型直線偏光子を備え、パターン状位相差層として、領域Iがλ/2波長板として機能する層であるものを備えうる。そのような例を以下において、図7~図10を参照して説明する。
 図7は、本発明の光学表示媒体及びその使用方法の別の一例を概略的に示す分解側面図である。図7において、光学表示媒体200は、光反射層201(Y)と、パターン状位相差層210とを備える。
 パターン状位相差層210は、複数層のサブ層202及び103(Xy)を備える積層体である。サブ層202は、その一部のみが、λ/2波長板として機能する層202(Xy)である。サブ層202の他の部分は、等方な層202(N)であり、これは図1~図2及び図4~図6における層102(N)と相違ない。サブ層103(Xy)も、図1~図2及び図4~図6におけるサブ層103(Xy)と相違なく、その全面が一様な位相差を有する層である。つまり、パターン状位相差層210は、λ/4波長板として機能する層102(Xy)に代えてλ/2波長板として機能する層202(Xy)を備える他は、パターン状位相差層110と同じ構成を有する。
 この例では、光反射層201(Y)の上面201(Y)Uの全領域が、表示面領域、即ち光学表示媒体の表示面に対応する領域である。サブ層202は、表示面領域の全領域を占める態様で、光反射層101(R)に重なって設けられており、一方サブ層103(Xy)は、表示面領域の一部のみを占める態様で、サブ層202に重なって設けられている。このようなサブ層202及び103(Xy)の構成により、パターン状位相差層210は、位相差の異なる4種類の領域である領域S1~S4を有する。
 図7の例の光学表示媒体200では、その、パターン状位相差層210側の上側の面(即ち、領域S1及びS4におけるサブ層202の上側の面202U及び領域S2及びS3におけるサブ層103(Xy)の上側の面103U)が表示面として機能する。即ち、パターン状位相差層210側の上側の面に入射した光の一部が、光学表示媒体200内において反射して、当該面から出射し、それを観察者が観察することにより、光学表示媒体としての機能が発現される。
 図7の例においては、光反射層201(Y)として、Y軸方向に透過軸を位置決めされた反射型直線偏光子を採用している。即ち、光反射層201(Y)は、その上面201(Y)Uに入射した光のうち、Y軸方向の振動方向を有する直線偏光成分を透過させ、X軸方向の振動方向を有する直線偏光成分を反射する。
 図7の例においては、層202(Xy)及びサブ層103(Xy)が位相差を有していることに起因し、領域S1は、層202(Xy)の位相差が発現する領域であり、領域S3は、サブ層103(Xy)の位相差が発現する領域であり、領域S4は、位相差が発現しない領域である。
 領域S2においては、層202(Xy)及びサブ層103(Xy)が重なっている。このように、パターン状位相差層が、複数層のサブ層を備え、サブ層のそれぞれが、その面内の少なくとも一部の領域において位相差を有する場合、かかる位相差を有する部分が重なった状態とすることができ、その結果重なった複数の位相差を有する層の両方の位相差が発現する。その結果、位相差の発現の自由度が高まり、非偏光-偏光観察及び偏光-非偏光観察において領域Hに付与する色彩の自由度を高めることができる。
 図7の例におけるパターン状位相差層210に関して、層202(Xy)及びサブ層103(Xy)のそれぞれの面内レターデーションReの値は、領域S1~S3のどれか1以上が、上に述べた領域Hとしての要件を満たすよう調整しうる。領域S1~S3のうち、領域Hとしての要件を満たすもの以外の領域は、領域Iとしうる。領域Iは、上に述べたλ/4波長板として機能する領域又はλ/2波長板として機能する領域としうる。
 以下に述べる例では、典型的な例として、層202(Xy)が、λ/2波長板として機能する、275nmのRe(550)を有し、サブ層103(Xy)が、領域Hとして機能する、275nm超のRe(550)を有する場合について説明する。したがって、以下に述べる例では、領域S1~S3のうち、領域S1がλ/2波長板として機能し、領域S2及びS3が領域Hとして機能し、特にS2はS3よりも大きい面内レターデーションReを有する領域Hとなる。但し、サブ層103(Xy)のRe(550)が275nmに近く、且つサブ層103が領域Hとして機能するためのその他の要件を満たす場合は、領域S3は領域Hとしてもλ/2波長板としても機能しうる。
 〔実施形態2の光学表示媒体の使用方法:その1:非偏光-偏光観察〕
 図7の例においては、光学表示媒体200に入射する光が非偏光であり、光学表示媒体200が備える光反射層201(Y)が反射型直線偏光子である。このような光学表示媒体の非偏光-偏光観察における反射光の観察は、直線偏光成分の選択的な観察により行いうる。図7においては、光学表示媒体200からの反射光を、観察用直線偏光子191(X)を介して観察する例を示している。この例において、観察用直線偏光子191(X)は、図1~図2において示したものと同じであり、X軸方向に透過軸を有するよう、光学表示媒体200との相対的な角度を位置決めされた偏光子である。したがって、この例において、層202(Xy)及びサブ層103(Xy)の遅相軸は、観察用直線偏光子191(X)の透過軸に対して、左回りに45°傾いている。また、光反射層201(Y)の透過軸は、観察用直線偏光子191(X)の透過軸に対して、直交している。
 図7に示す光学表示媒体200の使用の例では、非偏光である入射光A311(N)、A321(N)、A331(N)及びA341(N)が、それぞれ、パターン状位相差層202のうちの領域S1~S4に入射する。入射光A311(N)~A341(N)は、波長の分布に偏りが無く無彩色の光として視認されうる非偏光である。
 入射光A311(N)は、層202(Xy)を透過し、非偏光である光A312(N)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A312(N)のうちの、X軸方向の振動方向を有する直線偏光成分は反射され反射光A313(X)となり、その明るさの理論値は入射光の半分である。一方光A312(N)のうちの、Y軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A319(Y)となる。
 光A313(X)は、再び層202(Xy)を透過し、光A314(Y)として、光学表示媒体200の表示面から出射する。光A313(X)はX軸方向の振動方向を有する直線偏光であり、層202(Xy)がXy方向に遅相軸を有するλ/2波長板であるため、光A314(Y)は、Y軸方向の偏光方向を有する直線偏光となり、その明るさの理論値は、光A313(X)と同じである。
 領域S1を通常観察する場合は、光A314(Y)を観察用直線偏光子191(X)を介さずに観察することになる。一方、領域S1を非偏光-偏光観察する場合は、光A314(Y)が観察用直線偏光子191(X)に入射し、出射光A315(n)となった状態を観察することになる。パターン状位相差層210の領域S1から出射した光A314(Y)が、観察用直線偏光子191(X)に入射すると、光A314(Y)の偏光振動方向と観察用直線偏光子191(X)の透過軸とが直交するため、光A314(Y)はその全てが遮られ、観察用直線偏光子191(X)からの出射光A315(n)の明るさの理論値はゼロとなる。
 層202(Xy)が、そのRe(λ)/λの値が可視光全波長範囲において一定である理想的なλ/2波長板である場合、光A314(Y)は可視光全波長範囲においてY軸方向の偏光方向を有する直線偏光となり、可視光全波長範囲において出射光A315(n)の明るさはゼロとなりうる。一方、層202(Xy)のRe(λ)/λの値が可視光全波長範囲において一定でない非理想的なλ/2波長板である場合、光A314(Y)は可視光のある波長範囲において面内レターデーションReがλ/2から外れた誤差のある値となり、出射光が楕円偏光となり得、当該波長範囲において出射光A315(n)の明るさはゼロとならず、したがって領域S1を非偏光-偏光観察する場合は、有彩色が観察されうる。この場合は領域S2及びS3に加えて領域S1も、領域Hとして機能しうる場合がある。
 入射光A321(N)は、サブ層103(Xy)を透過し非偏光である光A322(N)として下向きに出射し、さらに層202(Xy)を透過し非偏光である光A323(N)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A323(N)のうちのX軸方向の振動方向を有する直線偏光成分は、光反射層201(Y)の表面又は内部において反射され反射光A324(X)となり、その明るさの理論値は入射光の半分である。一方光A323(N)のうちのY軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A329(Y)となる。
 光A324(X)は、層202(Xy)を透過し、光A325(Y)として上向きに出射する。光A324(X)はX軸方向の振動方向を有する直線偏光であり、層202(Xy)がXy方向に遅相軸を有するλ/2波長板であるため、光A325(Y)は、Y軸方向の偏光方向を有する直線偏光となり、その明るさの理論値は、光A324(X)と同じである。
 光A325(Y)は、サブ層103(Xy)を透過し、光A326(P)として、光学表示媒体200の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A326(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、光の明るさは、波長ごとの相違は無い。したがって、領域S2を通常観察した場合、光A326(P)は、特段の有彩色を有する光としては観察されない。光A326(P)の明るさの理論値は、光A325(Y)と同じである。
 一方、領域S2を非偏光-偏光観察する場合は、光A326(P)が観察用直線偏光子191(X)に入射し、出射光A327(X)(Ch)となった状態を観察することになる。光A326(P)が、観察用直線偏光子191(X)に入射すると、光A326(P)のうち、X軸方向の振動方向を有する直線偏光成分のみが出射光A327(X)(Ch)として観察用直線偏光子191(X)から出射する。光A326(P)は、波長ごとに様々に異なる偏光状態を有しているため、A326(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(X)から出射し、その結果、領域S2を非偏光-偏光観察した場合、光A327(X)(Ch)は何らかの有彩色を伴う光として観察される。光A327(X)(Ch)の明るさの理論値は、光A326(P)の偏光状態によって異なるが、光A326(P)より小さい値であり、概ね光A326(P)の半分である。
 入射光A331(N)は、サブ層103(Xy)を透過し非偏光である光A332(N)として下向きに出射し、さらに層202(N)を透過し非偏光である光A333(N)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A333(N)のうちのX軸方向の振動方向を有する直線偏光成分は、光反射層201(Y)の表面又は内部において反射され反射光A334(X)となり、その明るさの理論値は入射光の半分である。一方光A333(N)のうちのY軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A339(Y)となる。
 光A334(X)は、層202(N)を透過し、光A335(X)として上向きに出射する。光A335(X)は、サブ層103(Xy)を透過し、光A336(P)として、光学表示媒体200の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A336(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、領域S2を出射した光A326(P)と比べると、光A326(P)は円偏光となった後にもう一つの位相差を有する層である層202(Xy)をも透過した光である一方、光A336(P)は層202(Xy)ではなく等方な層202(N)を透過した光であるため、光A336(P)の偏光状態は光A326(P)と比べると差異がある。但し、光A336(P)の明るさは、光A326(P)と同様に、波長ごとの相違は無い。したがって、領域S3を通常観察した場合、光A336(P)は、特段の有彩色を有する光としては観察されない。光A336(P)の明るさの理論値は、光A335(X)と同じである。
 一方、領域S3を非偏光-偏光観察する場合は、光A336(P)が観察用直線偏光子191(X)に入射し、出射光A337(X)(Ch)となった状態を観察することになる。光A336(P)が、観察用直線偏光子191(X)に入射すると、光A336(P)のうち、X軸方向の振動方向を有する直線偏光成分のみが出射光A337(X)(Ch)として観察用直線偏光子191(X)から出射する。光A336(P)は、波長ごとに様々に異なる偏光状態を有しているため、A336(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(X)から出射し、その結果、領域S3を非偏光-偏光観察した場合、光A337(X)(Ch)は何らかの有彩色を伴う光として観察される。但し、光A336(P)の偏光状態は光A326(P)と比べると差異があるので、光A337(X)(Ch)の色は、光A327(X)(Ch)とは異なる色となる。光A337(X)(Ch)の明るさの理論値は、光A336(P)の偏光状態によって異なるが、光A336(P)より小さい値であり、概ね光A336(P)の半分である。
 入射光A341(N)は、層202(N)を透過し、非偏光である光A342(N)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光A342(N)のうちの、X軸方向の振動方向を有する直線偏光成分は反射され反射光A343(X)となり、その明るさの理論値は入射光の半分である。一方光A342(N)のうちの、Y軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A349(Y)となる。
 光A343(X)は、再び層202(N)を透過し、光A344(X)として、光学表示媒体200の表示面から出射する。光A344(X)の明るさの理論値は、光A343(X)と同じである。
 領域S4を通常観察する場合は、光A344(X)を観察用直線偏光子191(X)を介さずに観察することになる。一方、領域S4を非偏光-偏光観察する場合は、光A344(X)が観察用直線偏光子191(X)に入射し、出射光A345(X)となった状態を観察することになる。即ち、パターン状位相差層210の領域S4から出射した光A344(X)が、観察用直線偏光子191(X)に入射すると、光A344(X)の偏光振動方向と観察用直線偏光子191(X)の透過軸とが平行であるため、光A344はその全てが出射光A345(X)として観察用直線偏光子191(X)から出射する。出射光A345(X)の明るさの理論値は、光A344(X)と同じである。
 図8は、光学表示媒体と観察用直線偏光子との相対的な角度関係を、図7の例におけるものから変更した場合における、本発明の光学表示媒体の使用方法の一例を概略的に示す分解側面図である。図8は、光学表示媒体200の、座標軸に対する角度を固定し、観察用直線偏光子の、X軸及びY軸に対する角度を変更したものとして図示している。但し実際の使用においては、これらの相対的な角度関係の変更は、光学表示媒体の移動、観察用直線偏光子の移動、観察用直線偏光子の入れ替え、及びこれらの2以上の組み合わせのいずれによって行ってもよい。
 図8の例は、角度関係の変更の結果、観察用偏光子として、観察用直線偏光子191(Y)を使用する例に変更されている。観察用直線偏光子191(Y)は、Y軸方向に透過軸を有するよう光学表示媒体200との相対的な角度を位置決めされた偏光子である。したがって、この例において、層202(Xy)の遅相軸は、観察用直線偏光子191(Y)の透過軸に対して、右回りに45°傾いている。
 図8に示す光学表示媒体200の使用の例では、非偏光である入射光A311(N)~A341(N)が、それぞれ、パターン状位相差層210の領域S1~S4に入射し、それらのそれぞれの一部が、光A314(Y)、A326(P)、A336(P)及びA344(X)として、光学表示媒体200の表示面から出射する。ここまでの光の経路は、図7の例と同じである。
 出射した光A314(Y)が、観察用直線偏光子191(Y)に入射すると、光A314(Y)の偏光振動方向と観察用直線偏光子191(Y)の透過軸とが平行であるため、光A314(Y)はその全てが透過し出射光A315(Y)として観察用直線偏光子191(Y)から出射する。出射光A315(Y)の明るさの理論値は、光A314(Y)と同じ値である。
 出射した光A326(P)が、観察用直線偏光子191(Y)に入射すると、光A326(P)のうち、Y軸方向の振動方向を有する直線偏光成分のみが出射光A327(Y)(Ch)として観察用直線偏光子191(Y)から出射する。光A326(P)は、波長ごとに様々に異なる偏光状態を有しているため、A326(P)に含まれる様々な波長の光のうち、Y軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(Y)から出射し、その結果、領域S2を非偏光-偏光観察した場合、光A327(Y)(Ch)は何らかの有彩色を伴う光として観察される。この際、光A326(P)に含まれる偏光成分のうち観察用直線偏光子191(X)(図7)から出射し得た成分は観察用直線偏光子191(Y)によって遮られ、逆に、光A326(P)に含まれる偏光成分のうち観察用直線偏光子191(X)から出射し得なかった成分は観察用直線偏光子191(Y)から出射することになる。したがって、観察される出射光A327(Y)(Ch)の色は、A327(X)(Ch)(図7)のそれとは大きく異なるものとなり得る。光A327(Y)(Ch)の明るさの理論値は、光A326(P)の偏光状態によって異なるが、光A326(P)より小さい値であり、概ね光A326(P)の半分である。
 出射した光A336(P)が、観察用直線偏光子191(Y)に入射すると、光A336(P)のうち、Y軸方向の振動方向を有する直線偏光成分のみが出射光A337(Y)(Ch)として観察用直線偏光子191(Y)から出射する。光A336(P)は、波長ごとに様々に異なる偏光状態を有しているため、A336(P)に含まれる様々な波長の光のうち、Y軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く観察用直線偏光子191(Y)から出射し、その結果、領域S3を非偏光-偏光観察した場合、光A337(Y)(Ch)は何らかの有彩色を伴う光として観察される。この際、A327(Y)(Ch)について上に述べた理由と同じ理由で、観察される出射光A337(Y)(Ch)の色は、A337(X)(Ch)のそれとは大きく異なるものとなり得る。加えて、光A336(P)の偏光状態は光A326(P)と比べると差異があるので、光A337(Y)(Ch)の色は、光A327(Y)(Ch)と比べても、異なる色となる。光A337(Y)(Ch)の明るさの理論値は、光A336(P)の偏光状態によって異なるが、光A336(P)より小さい値であり、概ね光A336(P)の半分である。
 出射した光A344(X)が、観察用直線偏光子191(Y)に入射すると、光A344(X)の偏光振動方向と観察用直線偏光子191(Y)の透過軸とが直交するため、光A344(Y)はその全てが遮られ、観察用直線偏光子191(Y)からの出射光A345(n)の明るさの理論値はゼロとなる。
 以上の結果として、非偏光が入射した状態の光学表示媒体200を通常観察した場合、観察者は、出射光A314(Y)、A326(P)、A336(P)及びA344(X)を観察する。これらの出射光は、その偏光状態は異なるものの、明るさは同じである。人間の視覚では、この偏光状態の相違を認識することはできないので、観察者は、これらの相違を認識できない。また、光学表示媒体200と観察者との相対的な角度関係が変わっても、観察者は偏光状態の変化に基づく変化を認識できない。したがって、領域S1~S4はいずれも、同じ明るさの無彩色の領域として観察され、これらの差異は認識されない。
 一方、光学表示媒体と観察用直線偏光子との相対的な角度関係を図7の例における関係として、非偏光-偏光観察を行った場合、領域S1は、反射光の無い、相対的に暗い略黒色の無彩色の領域として観察され、領域S4は、入射光の1/2の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。領域S2及びS3は、領域S4と概ね同程度の明るさであり、互いに異なる色である有彩色の領域として観察され、これらの外観は互いに相違するものとなる。
 さらに、光学表示媒体と観察用直線偏光子との相対的な角度関係を図8の例における関係として、非偏光-偏光観察を行った場合、領域S1は、入射光の1/2の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。一方、領域S4は、反射光の無い、相対的に暗い略黒色の無彩色の領域として観察される。領域S2及びS3は、領域S1より若干暗く、互いに異なる色であり、且つ図7の例において観察されていた色とも異なる有彩色の領域として観察され、これらの外観は互いに相違し、且つ図7の例において観察される外観とも相違する。
 したがって、光学表示媒体と観察用直線偏光子との相対的な角度関係を、図7の例における関係から図8の例における関係に変更することにより、複数の領域間の相対的な明るさが変化する。より具体的には、観察用直線偏光子の向きを、図7における観察用直線偏光子191(X)の状態から、Z軸方向に平行なある軸を中心に回転させることにより変化させると、領域S1の相対的な明るさは回転の角度の増大に従って明るくなり、観察用直線偏光子の向きが図8における観察用直線偏光子191(Y)の状態に達した時点で最大となる。領域S4の相対的な明るさは回転の角度の増大に従って暗くなり、観察用直線偏光子の向きが図8における観察用直線偏光子191(Y)の状態に達した時点で最小となる。さらに、かかる回転により、領域S2及びR3において観察される色が変化する。
 この例において、本発明の光学表示媒体は、通常観察では領域間の差異が観察されず、観察用直線偏光子を介した場合にだけ領域間の色及び相対的な明るさの差異が観察され、さらに観察用直線偏光子の角度を変化させることによりそれぞれの領域の色及び明るさが変化するという、特殊な効果をもたらしうる。このような特殊な効果は、一般的な印刷等の技術で容易に得られる複製物では得られないものである。したがって、本発明の光学表示媒体は、このような通常観察による使用及び複数種類の非偏光-偏光観察による使用による観察結果の対比により、高い偽造防止性能を発揮し、識別媒体としての機能を発揮する。また、かかる有彩色の発現並びに色及び明るさの変化により、本発明の光学表示媒体は、加飾媒体としての意匠的効果を発現することができる。
 〔実施形態2の光学表示媒体の使用方法:その2:偏光-非偏光観察〕
 以下において、偏光-非偏光観察、即ち光学表示媒体200に入射させる光として、上に述べた例とは異なり、偏光を用いる観察による使用方法の例について説明する。
 入射させる光が偏光である場合、反射光の観察においては、反射光をそのまま、観察用直線偏光子を介さず直接目視して観察しうる。直線偏光等の偏光の供給の態様は、図5及び図6を参照して説明した実施形態1におけるものと同じ態様としうる。
 図9及び図10は、図7及び図8に示した光学表示媒体200の使用方法の別の一例を概略的に示す分解側面図である。
 図9に示す光学表示媒体200の使用の例では、入射光A411(X)、A421(X)、A431(X)及びA441(X)が、それぞれ、パターン状位相差層210のうちの領域S1~S4に入射する。この例において、入射光A411(X)~A441(X)は、X軸方向の振動方向を有する直線偏光である。
 入射光A411(X)は、層202(Xy)を透過し、Y軸方向の振動方向を有する直線偏光である光A412(Y)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A412(Y)の全てが光反射層201(Y)を透過し透過光A419(Y)となる。したがって、光反射層201(Y)における反射光A413(n)の明るさの理論値はゼロとなり、再び層202(Xy)を透過し光学表示媒体200の表示面から出射する光A414(n)の明るさの理論値もゼロとなる。
 入射光A421(X)は、サブ層103(Xy)を透過し、光A422(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A422(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、光の明るさは、波長ごとの相違は無いので、光A422(P)は、特段の有彩色を有する光としては観察されない。光A422(P)の明るさの理論値は、光A421(X)と同じである。
 光A422(P)は、さらに層202(Xy)を透過し、偏光状態がさらに変化した光A423(P)として下向きに出射する。光A423(P)の明るさの理論値は、光A422(P)と同じである。
 下向きに出射した光A423(P)は、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A423(P)のうちのX軸方向の振動方向を有する直線偏光成分は、光反射層201(Y)の表面又は内部において反射され反射光A424(X)(Ch)となる。光A423(P)は、波長ごとに様々に異なる偏光状態を有しているため、A423(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く光反射層201(Y)により反射され、その結果、光A424(X)(Ch)は何らかの有彩色を伴う光として観察される。光A424(X)の明るさの理論値は、光A423(P)の偏光状態によって異なるが、光A423(P)より小さい値であり、概ね光A423(P)の半分である。一方光A423(P)のうちのY軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A429(Y)(Ch)となる。
 光A424(X)(Ch)は、層202(Xy)を透過し、光A425(Y)(Ch)として上向きに出射する。光A424(X)はX軸方向の振動方向を有する直線偏光であり、層202(Xy)がXy方向に遅相軸を有するλ/2波長板であるため、光A425(Y)(Ch)は、Y軸方向の偏光方向を有する直線偏光となり、その色及び明るさの理論値は、光A424(X)と同じである。
 光A425(Y)(Ch)は、サブ層103(Xy)を透過し、光A426(P)(Ch)として、光学表示媒体200の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A426(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A426(P)(Ch)の各波長ごとの明るさは、光A425(Y)(Ch)と同じであるため、光A426(P)(Ch)の色及び明るさの理論値は、光A425(Y)(Ch)と同じである。
 入射光A431(X)は、サブ層103(Xy)を透過し、光A432(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A432(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。但し、光の明るさは、波長ごとの相違は無いので、光A432(P)は、特段の有彩色を有する光としては観察されない。光A432(P)の明るさの理論値は、光A431(X)と同じである。
 光A432(P)は、さらに層202(N)を透過し、光A433(P)として下向きに出射する。領域S2の光A422(P)は層202(Xy)を透過することにより偏光状態がさらに変化した光A423(P)になったのに対し、光A433(P)は層202(Xy)ではなく等方な層202(N)を透過した光であるため、光A433(P)の偏光状態は光A423(P)と比べると差異がある。但し、光の明るさは、波長ごとの相違は無いので、光A433(P)は、特段の有彩色を有する光としては観察されない。光A433(P)の明るさの理論値は、光A432(P)と同じである。
 下向きに出射した光A433(P)は、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A433(P)のうちのX軸方向の振動方向を有する直線偏光成分は、光反射層201(Y)の表面又は内部において反射され反射光A434(X)(Ch)となる。光A433(P)は、波長ごとに様々に異なる偏光状態を有しているため、A433(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く光反射層201(Y)により反射され、その結果、光A434(X)(Ch)は何らかの有彩色を伴う光として観察される。光A433(P)の偏光状態は光A423(P)と比べると差異があるので、光A434(X)(Ch)の色は、光A424(X)(Ch)とは異なる色となる。光A434(X)の明るさの理論値は、光A433(P)の偏光状態によって異なるが、光A433(P)より小さい値であり、概ね光A433(P)の半分である。一方光A433(P)のうちのY軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A439(Y)(Ch)となる。
 光A434(X)(Ch)は、層202(N)を透過し、光A435(X)(Ch)として上向きに出射する。光A434(X)はX軸方向の振動方向を有する直線偏光であり、層202(N)が等方な層であるため、光A435(X)(Ch)の色及び明るさの理論値は、光A434(X)と同じである。
 光A435(R)(Ch)は、サブ層103(Xy)を透過し、光A436(P)(Ch)として、光学表示媒体200の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A436(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A436(P)(Ch)の各波長ごとの明るさは、光A435(R)(Ch)と同じであるため、光A436(P)(Ch)の色及び明るさの理論値は、光A435(R)(Ch)と同じである。また、光A436(P)(Ch)の色は、光A426(P)(Ch)とは異なる色となる。
 入射光A441(X)は、層202(N)を透過し、直線偏光である光A442(X)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A442(X)の全てが光反射層201(Y)において反射され反射光A443(X)となる。光A443(X)の明るさの理論値は、光A442(X)と同じである。一方光反射層201(Y)を透過する透過光A449(n)の明るさの理論値はゼロとなる。
 光A443(X)は、再び層202(N)を透過し、光A444(X)として、光学表示媒体200の表示面から出射する。光A444(X)の明るさの理論値は、光A443(X)と同じである。
 図10は、光学表示媒体と入射直線偏光の振動方向との相対的な角度関係を、図9の例におけるものから変更した場合における、本発明の光学表示媒体の使用方法の一例を概略的に示す分解側面図である。図10は、光学表示媒体200の、座標軸に対する角度を固定し、直線偏光の振動方向の、X軸及びY軸に対する角度を変更したものとして図示している。但し実際の使用においては、これらの相対的な角度関係の変更は、光学表示媒体の移動、光源の移動、光源の入れ替え、及びこれらの2以上の組み合わせのいずれによって行ってもよい。
 図10の例は、角度関係の変更の結果、光学表示媒体200に入射する光が、Y軸方向の振動方向を有する直線偏光である例に変更されている。即ち、入射光A411(Y)、A421(Y)、A431(Y)及びA441(Y)が、それぞれ、パターン状位相差層110のうちの領域S1~S4に入射する。この例において、入射光A411(Y)~A441(Y)は、Y軸方向の振動方向を有する直線偏光である。
 入射光A411(Y)は、層202(Xy)を透過し、X軸方向の振動方向を有する直線偏光である光A412(X)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A412(X)の全てが光反射層201(Y)において反射され反射光A413(X)となる。光A413(X)の明るさの理論値は、光A412(X)と同じである。一方光反射層201(Y)を透過する透過光A419(n)の明るさの理論値はゼロとなる。
 光A413(X)は、再び層202(Xy)を透過し、光A414(Y)として、光学表示媒体200の表示面から出射する。光A414(Y)の明るさの理論値は、光A413(X)と同じである。
 入射光A421(Y)は、サブ層103(Xy)を透過し、光A422’(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A422’(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。さらに入射する光A421(Y)の偏光状態が図9におけるA421(X)と大きく相違するので、光A422’(P)の偏光状態は、図9における光A422(P)の偏光状態とは大きく相違する。但し、光の明るさは、波長ごとの相違は無いので、光A422’(P)は、特段の有彩色を有する光としては観察されない。光A422’(P)の明るさの理論値は、光A421(Y)と同じである。
 光A422’(P)は、さらに層202(Xy)を透過し、偏光状態がさらに変化した光A423’(P)として下向きに出射する。入射する光A422’(P)の偏光状態が図9におけるA422(P)と大きく相違するので、光A423’(P)の偏光状態は、図9における光A423(P)の偏光状態とは大きく相違する。光A423’(P)の明るさの理論値は、光A422’(P)と同じである。
 下向きに出射した光A423’(P)は、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A423’(P)のうちのX軸方向の振動方向を有する直線偏光成分は、光反射層201(Y)の表面又は内部において反射され反射光A424’(X)(Ch)となる。光A423’(P)は、波長ごとに様々に異なる偏光状態を有しているため、A423’(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く光反射層201(Y)により反射され、その結果、光A424’(X)(Ch)は何らかの有彩色を伴う光として観察される。入射する光A423’(P)の偏光状態が図9におけるA423(P)と大きく相違するので、光A424’(X)(Ch)の色は、図9における光A424(X)(Ch)とは大きく相違する。光A424’(X)(Ch)の明るさの理論値は、光A423’(P)の偏光状態によって異なるが、光A423’(P)より小さい値であり、概ね光A423’(P)の半分である。一方光A423’(P)のうちのY軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A429’(Y)(Ch)となる。
 光A424’(X)(Ch)は、層202(Xy)を透過し、光A425’(Y)(Ch)として上向きに出射する。光A424’(X)(Ch)はX軸方向の振動方向を有する直線偏光であり、層202(Xy)がXy方向に遅相軸を有するλ/2波長板であるため、光A425’(Y)(Ch)は、Y軸方向の偏光方向を有する直線偏光となり、その色及び明るさの理論値は、光A424’(X)(Ch)と同じであり、図9における光A425(Y)(Ch)とは大きく相違する。
 光A425’(Y)(Ch)は、サブ層103(Xy)を透過し、光A426’(P)(Ch)として、光学表示媒体200の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A426’(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A426’(P)(Ch)の各波長ごとの明るさは、光A425’(Y)(Ch)と同じであるため、光A426’(P)(Ch)の色及び明るさの理論値は、光A425’(Y)(Ch)と同じであり、図9における光A426(P)(Ch)とは大きく相違する。
 入射光A431(Y)は、サブ層103(Xy)を透過し、光A432’(P)として下向きに出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A432’(P)は、波長ごとに様々に異なる偏光状態を有した状態となる。さらに入射する光A431(Y)の偏光状態が図9におけるA431(X)と大きく相違するので、光A432’(P)の偏光状態は、図9における光A432(P)の偏光状態とは大きく相違する。但し、光の明るさは、波長ごとの相違は無いので、光A432’(P)は、特段の有彩色を有する光としては観察されない。光A432’(P)の明るさの理論値は、光A431(Y)と同じである。
 光A432’(P)は、さらに層202(N)を透過し、光A433’(P)として下向きに出射する。領域S2の光A422’(P)は層202(Xy)を透過することにより偏光状態がさらに変化した光A423’(P)になったのに対し、光A433’(P)は層202(Xy)ではなく等方な層202(N)を透過した光であるため、光A433’(P)の偏光状態は光A423’(P)と比べると差異がある。さらに入射するA432’(P)の偏光状態が図9におけるA432(P)と大きく相違するので、光A433’(P)の偏光状態は、図9における光A433(P)の偏光状態とは大きく相違する。但し、光の明るさは、波長ごとの相違は無いので、光A433’(P)は、特段の有彩色を有する光としては観察されない。光A433’(P)の明るさの理論値は、光A432’(P)と同じである。
 下向きに出射した光A433’(P)は、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A433’(P)のうちのX軸方向の振動方向を有する直線偏光成分は、光反射層201(Y)の表面又は内部において反射され反射光A434’(X)(Ch)となる。光A433’(P)は、波長ごとに様々に異なる偏光状態を有しているため、A433’(P)に含まれる様々な波長の光のうち、X軸方向の振動方向を有する直線偏光成分を多く含む波長の光が、相対的により多く光反射層201(Y)により反射され、その結果、光A434’(X)(Ch)は何らかの有彩色を伴う光として観察される。入射する光A433’(P)の偏光状態が図9におけるA433(P)と大きく相違するので、光A434’(X)(Ch)の色は、図5における光A434(X)(Ch)とは大きく相違する。さらに、光A433’(P)の偏光状態は光A423’(P)と比べると差異があるので、光A434’(X)(Ch)の色は、光A424’(X)(Ch)とは異なる色となる。光A434’(X)の明るさの理論値は、光A433’(P)の偏光状態によって異なるが、光A433’(P)より小さい値であり、概ね光A433’(P)の半分である。一方光A433’(P)のうちのY軸方向の振動方向を有する直線偏光成分は光反射層201(Y)を透過し透過光A439’(Y)(Ch)となる。
 光A434’(X)(Ch)は、層202(N)を透過し、光A435’(X)(Ch)として上向きに出射する。光A434’(X)はX軸方向の振動方向を有する直線偏光であり、層202(N)が等方な層であるため、光A435’(X)(Ch)の色及び明るさの理論値は、光A434’(X)と同じである。
 光A435’(X)(Ch)は、サブ層103(Xy)を透過し、光A436’(P)(Ch)として、光学表示媒体200の表示面から出射する。サブ層103(Xy)は領域Hとして機能する275nm超のRe(550)を有する層であるため、それを透過した光A436’(P)(Ch)は、波長ごとに様々に異なる偏光状態を有した状態となる。しかしながら、光A436’(P)(Ch)の各波長ごとの明るさは、光A435’(X)(Ch)と同じであるため、光A436’(P)(Ch)の色及び明るさの理論値は、光A435’(X)(Ch)と同じであり、図9における光A436(P)(Ch)とは大きく相違する。また、光A436’(P)(Ch)の色は、光A426’(P)(Ch)とは異なる色となる。
 入射光A441(Y)は、層202(N)を透過し、直線偏光である光A442(Y)として下向きに出射し、光反射層201(Y)の上面201(Y)Uに到達する。光反射層201(Y)はY軸方向に透過軸を位置決めされた反射型直線偏光子であるので、光A442(Y)の全てが光反射層201(Y)を透過し透過光A449(Y)となる。したがって、光反射層201(Y)における反射光A443(n)の明るさの理論値はゼロとなり、再び層202(Xy)を透過し光学表示媒体200の表示面から出射する光A444(n)の明るさの理論値もゼロとなる。
 以上の結果として、図9に示す通り、X軸方向の振動方向を有する直線偏光が入射した状態の光学表示媒体200を、偏光-非偏光観察した場合、領域S1は、反射光の無い、相対的に暗い略黒色の無彩色の領域として観察され、領域S4は、入射光と同等の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。領域S2及びS3は、領域S4より若干暗く、互いに異なる色である有彩色の領域として観察され、これらの外観は互いに相違するものとなる。
 一方、図10に示す通り、Y軸方向の振動方向を有する直線偏光が入射した状態の光学表示媒体200を、偏光-非偏光観察した場合、領域S1は、入射光と同等の明るさの反射光を有する、相対的に明るい無彩色の領域として観察される。一方、領域S4は、反射光の無い、相対的に暗い略黒色の無彩色の領域として観察される。領域S2及びS3は、領域S1より若干暗く、互いに異なる色であり、且つ図9の例において観察されていた色とも異なる有彩色の領域として観察され、これらの外観は互いに相違し、且つ図9の例において観察される外観とも相違する。
 したがって、光学表示媒体と直線偏光の振動方向との相対的な角度関係を、図9の例における関係から図10の例における関係に変更することにより、複数の領域間の相対的な明るさが変化する。より具体的には、直線偏光の振動方向の向きを、図9におけるX軸方向の状態から、Z軸方向に平行なある軸を中心に回転させることにより変化させると、領域S1の相対的な明るさは回転の角度の増大に従って明るくなり、観察用直線偏光子の向きが図10における観察用直線偏光子191(Y)の状態に達した時点で最大となる。領域S4の相対的な明るさは回転の角度の増大に従って暗くなり、観察用直線偏光子の向きが図10における観察用直線偏光子191(Y)の状態に達した時点で最小となる。さらに、かかる回転により、領域S2及びR3において観察される色が変化する。
 また、非偏光が入射した状態の光学表示媒体200を通常観察した場合の結果は、図7及び図8を参照して説明した場合と同じであり、即ち、領域S1~S4はいずれも、同じ明るさの無彩色の領域として観察され、これらの差異は認識されない。
 この例において、本発明の光学表示媒体は、通常観察では領域間の差異が観察されず、直線偏光を光源とした場合にだけ領域間の色及び相対的な明るさの差異が観察され、さらに偏光の角度を変化させることによりそれぞれの領域の色及び明るさが変化するという、特殊な効果をもたらしうる。このような特殊な効果は、一般的な印刷等の技術で容易に得られる複製物では得られないものである。したがって、本発明の光学表示媒体は、このような通常観察による使用及び複数種類の偏光-非偏光観察による使用による観察結果の対比により、高い偽造防止性能を発揮し、識別媒体としての機能を発揮する。また、かかる有彩色の発現並びに色及び明るさの変化により、本発明の光学表示媒体は、加飾媒体としての意匠的効果を発現することができる。
 〔光反射層の具体例〕
 光反射層は、入射光を、円偏光または直線偏光として反射する層である。光反射層の例としては、上に述べた光反射層101(R)で例示される、反射型円偏光子、及び上に述べた光反射層201(Y)で例示される、反射型直線偏光子が挙げられる。また、光反射層は、1層のみの層によりかかる機能を発現するものであってもよく、複数の層の組み合わせによりかかる機能を発現するものであってもよい。
 反射型円偏光子の例としては、コレステリック規則性を有する材料の層が挙げられる。コレステリック規則性とは、材料内部のある平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、ある材料の層の内部の分子がコレステリック規則性を有する場合、分子は、層の内部のある第一の平面上では分子軸が一定の方向になるように並ぶ。層の内部の、当該第一の平面に重なる次の第二の平面では、分子軸の方向が、第一の平面における分子軸の方向と、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面では、分子軸の方向が、第二の平面における分子軸の方向から、さらに角度をなしてずれる。このように、重なって配列している平面において、当該平面中の分子軸の角度が順次ずれて(ねじれて)いく。このように分子軸の方向がねじれてゆく構造は、通常はらせん構造であり、光学的にカイラルな構造である。
 コレステリック規則性を有する材料のより具体的な例としては、コレステリック樹脂層が挙げられる。コレステリック樹脂層とは、硬化性の液晶性化合物であってコレステリック液晶相を呈したものを硬化させることにより得られる層である。コレステリック樹脂層は、例えば、重合性の液晶化合物を、コレステリック液晶相を呈した状態で重合させることにより得うる。より具体的には、重合性の液晶化合物を含む液晶組成物を、適切な基材に塗布する等して層の状態とし、コレステリック液晶相に配向させ、硬化させることにより、コレステリック樹脂層を得うる。
 重合性の液晶化合物としては、光重合性液晶化合物が好ましい。光重合性液晶化合物としては、活性エネルギー線を照射することによって重合しうる光重合性の液晶化合物を用いうる。活性エネルギー線としては、可視光線、紫外線、及び赤外線等の広範なエネルギー線の中から、光重合性液晶化合物の重合反応を進行させうるエネルギー線を採用しうるが、特に、紫外線等の電離放射線が好ましい。中でも、コレステリック液晶組成物に好適に用いられる光重合性液晶化合物としては、1分子中に2つ以上の反応性基を有する棒状液晶化合物が好ましく、式(1)で表される化合物が特に好ましい。
 R3-C3-D3-C5-M-C6-D4-C4-R4 式(1)
 式(1)において、R3及びR4は、反応性基であり、それぞれ独立して、(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。これらの反応性基を有することにより、液晶組成物を硬化させた際に、機械的強度の高い液晶組成物硬化層を得ることができる。
 式(1)において、D3及びD4は、それぞれ独立して、単結合、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。
 式(1)において、C3~C6は、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH-(C=O)-O-、及び-CHO-(C=O)-からなる群より選択される基を表す。
 式(1)において、Mは、メソゲン基を表す。具体的には、Mは、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類からなる群から選択された互いに同一又は異なる2個~4個の骨格が、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-等の結合基によって結合された基を表す。
 前記メソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素数1個~10個のアルキル基、シアノ基、ニトロ基、-O-R5、-O-C(=O)-R5、-C(=O)-O-R5、-O-C(=O)-O-R5、-NR5-C(=O)-R5、-C(=O)-NR5、または-O-C(=O)-NR5が挙げられる。ここで、R5及びRは、水素原子又は炭素数1個~10個のアルキル基を表す。R及びRがアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6-C(=O)-、-C(=O)-NR6-、-NR6-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6は、水素原子または炭素数1個~6個のアルキル基を表す。
 前記「置換基を有してもよい炭素数1個~10個のアルキル基」における置換基としては、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~6個のアルコキシ基、炭素原子数2個~8個のアルコキシアルコキシ基、炭素原子数3個~15個のアルコキシアルコキシアルコキシ基、炭素原子数2個~7個のアルコキシカルボニル基、炭素原子数2個~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。
 また、前記の棒状液晶化合物は、非対称構造であることが好ましい。ここで非対称構造とは、式(1)において、メソゲン基Mを中心として、R3-C3-D3-C5-M-と-M-C6-D4-C4-R4とを対比すると、これらが異なる構造のことをいう。棒状液晶化合物として非対称構造のものを用いることにより、配向均一性をより高めることができる。
 棒状液晶性化合物の好ましい具体例としては、以下の化合物(B1)~(B10)が挙げられる。ただし、棒状液晶性化合物は、下記の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 液晶組成物が上述した棒状液晶化合物を含む場合、当該液晶組成物は、棒状液晶化合物に組み合わせて、配向助剤として、式(2)で表される化合物を含むことが好ましい。
 R1-A1-B-A2-R2 (2)
 式(2)において、R1及びR2は、それぞれ独立して、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、任意の結合基が介在していてもよい(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基である。
 前記アルキル基及びアルキレンオキサイド基は、置換されていないか、若しくはハロゲン原子で1つ以上置換されていてもよい。さらに、前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1個~2個のアルキル基、及びアルキレンオキサイド基と結合していてもよい。
 R1及びR2として好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。
 また、R1及びR2の少なくとも一方は、反応性基であることが好ましい。R1及びR2の少なくとも一方として反応性基を有することにより、前記式(2)で表される化合物が硬化時に液晶組成物硬化層中に固定され、より強固な層を形成することができる。ここで反応性基とは、例えば、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基を挙げることができる。
 式(2)において、A1及びA2はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-イレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-イレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていないか、若しくはハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。A1及びA2のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。
 A1及びA2として特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基からなる群より選択される基が挙げられる。これらの芳香環骨格は脂環式骨格と比較して比較的剛直であり、棒状液晶化合物のメソゲンとの親和性が高く、配向均一性がより高くなる。
 式(2)において、Bは、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CHO-(C=O)-からなる群より選択される。
 Bとして特に好ましいものとしては、単結合、-O-(C=O)-及び-CH=N-N=CH-が挙げられる。
 式(2)で表される化合物として特に好ましい具体例としては、下記の化合物(A1)~(A10)が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000003
 上記化合物(A3)において、「*」はキラル中心を表す。
 (式(2)で表される化合物の合計重量)/(棒状液晶化合物の合計重量)で示される重量比は、好ましくは0.001以上、より好ましくは0.01以上、更に好ましくは0.05以上であり、好ましくは1以下、より好ましくは0.65以下である。前記の重量比を前記下限値以上にすることにより、液晶組成物の層において配向均一性を高めることができる。また、上限値以下にすることにより、配向均一性を高くできる。また、液晶組成物の液晶相の安定性を高くできる。さらに、液晶組成物の屈折率異方性Δnを高くできるので、例えば、円偏光の選択反射性能等の所望の光学的性能を有する液晶組成物硬化層を安定して得ることができる。ここで、式(2)で表される化合物の合計重量とは、式(2)で表される化合物を1種類のみ用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。同様に、棒状液晶化合物の合計重量とは、棒状液晶化合物を1種類のみ用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。
 また、式(2)で表される化合物と棒状液晶化合物とを組み合わせて用いる場合、式(2)で表される化合物の分子量が600未満であることが好ましく、棒状液晶化合物の分子量が600以上であることが好ましい。これにより、式(2)で表される化合物が、それよりも分子量の大きい棒状液晶化合物の隙間に入り込むことができるので、配向均一性を向上させることができる。
 コレステリック樹脂層を形成するための液晶組成物は、さらに、コレステリック樹脂層を構成する任意成分、及び液晶組成物の取り扱いを容易とするための溶媒を含みうる。任意成分の例としては、カイラル剤、重合開始剤、及び界面活性剤が挙げられる。任意成分及び溶媒の具体例としては、特開2019-188740号公報に記載されるものが挙げられる。
 反射型直線偏光子の例としては、多層の薄膜を積層したフィルム(例えば商品名「DBEF」、3M社製)、及びワイヤーグリッド偏光子が挙げられる。
 光反射層が反射型円偏光子及び反射型直線偏光子のいずれである場合においても、光反射層に入射した非偏光の、光反射層による反射率は最大で50%となる。反射の帯域及び反射率に応じて、光反射層は視覚的に様々な色を呈する。光反射層に入射した非偏光の、光反射層による反射率が、波長領域420nm~650nmにおけるすべての波長において35~50%である場合、光反射層は銀色の層として観察される。35~50%の反射がなされる帯域がこれより狭い場合、光反射層は、帯域に応じて様々な色を呈しうる。例えば、反射帯域が450nm付近にある場合、550nm付近にある場合、及び650nm付近にある場合で、それぞれ、青、緑、赤といった色を呈しうる。
 本発明の光学表示媒体は、光反射層として1枚の層のみを有していてもよく、多数枚の層を有していてもよい。光学表示媒体はまた、光反射層として1種類の層のみを有していてもよく、反射光の偏光状態が異なる複数種類の層を有していてもよい。例えば、光学表示媒体は、光反射層として、赤、緑、青、及び銀色といった複数種類の色を呈する複数種類の反射型偏光子の切片を、水平方向に多数敷き詰められて配置された状態で有しうる。このように光反射層として多数の切片を有する場合、光反射層は反射型円偏光子であることが好ましい。図1~図6に示した原理で反射型円偏光子を使用する場合、反射型円偏光子は、その向きをある一の向きに揃える必要が無く、位相差層の遅相軸のみによって、明るくなる向きが規定されるので、反射型円偏光子を微細な切片とし、光学表示媒体内で向きを統一せずに配置しても、容易に本発明の効果を奏する光学表示媒体を構成することができる。
 潜像の視認を明確にするという観点からは、光反射層は、銀色のもの、又は銀色のものとその他の色のものとの組み合わせであることが好ましい。
 〔パターン状位相差層の具体例〕
 パターン状位相差層は、位相差を有する領域を含む層である。位相差を有する領域は、光学表示媒体において、その表示面の領域の一部を占める。
 位相差層(パターン状位相差層のうちの、位相差を有する領域にかかる部分)の例としては、上に述べた層102(Xy)で例示される、λ/4波長板として機能する領域、及び上に述べた層202(Xy)で例示される、λ/2波長板として機能する領域が挙げられる。
 位相差層を構成する材料としては、各種の、光学異方性を有する固体の材料が挙げられる。その一例としては、透明な材料を延伸して得られる延伸フィルムが挙げられる。より具体的には、光学的に等方なフィルムを延伸し、λ/4波長板又はλ/2波長板として機能しうる面内レターデーションReを付与したフィルムが挙げられる。延伸フィルムは、比較的安価に得られ、所望の値のReの付与及び所望の任意の形状への成形が容易である観点から好ましい。
 位相差層を構成する材料の別の一例としては、液晶性化合物の硬化物が挙げられる。具体的には、硬化性の液晶性化合物であって、λ/4波長板又はλ/2波長板として機能しうる位相差を呈する液晶状態に配向したものを硬化させることにより得られる層である。そのような層及びその製造方法の例としては、例えば国際公開第2019/116995号に記載されるものが挙げられる。液晶性化合物の硬化物は、一枚のフィルムであってそのある部分と他のある部分とで異なる位相差を有するものを容易に形成することができるので、パターン状位相差層として一枚のフィルムを形成することが求められる場合には特に好ましい。
 好ましい例として、光学表示媒体は、パターン状位相差層として、単独パターン状位相差層を一以上備えうる。ここで、単独パターン状位相差層とは、光学表示媒体の表示面より小さい寸法を有し、ある位相差を有する一の領域からなる部材である。単独パターン状位相差層を、光学表示媒体の表示面内に配置することにより、当該層が存在する領域を、位相差を有する領域として機能させ、その他の領域を、等方な領域として機能させうる。
 一の光学表示媒体の表示面内において、パターン状位相差層の位相差を有する領域は、一のみであってもよく、複数であってもよい。複数の領域を備える場合、それらの遅相軸方向は、同じ方向であってもよく、異なる方向であってもよい。
 光学表示媒体が、位相差を有する領域として、遅相軸の向きが異なる複数の領域を備える場合、それによる意匠的効果が得られる。具体的には、光学表示媒体と観察用直線偏光子との相対的な角度関係又は光学表示媒体と入射直線偏光の振動方向との相対的な角度関係を変更させると、複数の領域が一つずつ順次明るくなるという意匠的効果が得られる。また、多数の向きにおいて、複数の領域のいずれかが最も明るくなるよう光学表示媒体を構成しうるので、光学表示媒体の向きや観察用直線偏光子の向きに制限なく、どの角度からも潜像を観察する光学表示媒体を構成することができる。このような効果は、一般的な印刷等の技術では容易に複製できるものでは得られないものであり、且つ真正な光学表示媒体の性質として特徴的に視認しうるので、このような場合、光学表示媒体の偽造防止性能及び識別機能を特に高めうる。複数の領域の遅相軸の向きは、規則的に異なる状態としてもよいが、不規則に異なる状態としてもよい。
 位相差を有する領域として、遅相軸の向きが異なる複数の領域を構成する方法の例として、複数枚の単独パターン状位相差層を用意し、これを、一の光学表示媒体の表示面内において、遅相軸方向が互いに異なる状態となるよう配置する方法が挙げられる。このような方法により、遅相軸の向きが異なる複数の領域を容易に構成することができる。また、このような方法により、複数の領域の遅相軸の向きを、容易に、不規則に異なる状態としうる。より具体的には、単独パターン状位相差層を多数用意し、これを、光反射層上にランダムに載置したり播いたりすることにより、そのような不規則に異なる遅相軸の配置を達成しうる。このような不規則に異なる遅相軸の配置を構成することにより、光学表示媒体と観察用直線偏光子との相対的な角度関係又は光学表示媒体と入射直線偏光の振動方向との相対的な角度関係を変更させると、複数の領域が一つずつランダムな順序で順次明るくなるという意匠的効果が得られる。これにより、光学表示媒体の偽造防止性能及び識別機能、並びに意匠的な価値を、さらに高めることができる。
 位相差を有する領域として、遅相軸の向きが異なる複数の領域を構成する場合、光反射層とパターン状位相差層との組み合わせは、反射型円偏光子と、λ/4波長板として機能する領域を含む位相差層との組み合わせであることが好ましい。この場合、パターン状位相差層の遅相軸方向の、光反射層との相対的な向きを調整する必要が無いため、複数の領域の遅相軸の向きを、容易に自由な方向に設定することができる。
 〔任意の構成要素〕
 本発明の光学表示媒体は、光反射層及びパターン状位相差層に加えて、任意の構成要素を含みうる。任意の構成要素の例としては、光吸収層、拡散層、高位相差層、包埋用の透明樹脂、装飾部材、及び装着部材が挙げられる。
 光吸収層は、入射した光を吸収する層である。光吸収層は、黒色の層としうる。光吸収層の材料は、どのような材料であってもよいが、例えば、黒色の着色がなされたフィルムとしうる。光吸収層は、光反射層の裏側、即ち、光反射層の視認側と反対側の位置に設けうる。光反射層が反射型円偏光子及び反射型直線偏光子のいずれかである場合、入射した光のうち、反射されなかった光の多くは透過する。光反射層の裏側に光吸収層を設けると、透過光が吸収され、その結果、反射光による効果をより鮮明に視認することができる。一方、光反射層の裏側に光吸収層を設けない場合、光反射層の裏側が視認されることになり、反射光による効果が不鮮明となるが、光学表示媒体をシースルーの物体とすることができるという意匠的効果が得られる。
 拡散層は、入射した光を拡散させた状態で透過する層である。拡散層は、パターン状位相差層より視認側の位置に設けうる。拡散層を設けることにより、潜像が視認される視野角を広げることができる。拡散層としては、既知の拡散層として機能しうる各種の層状の構造物を用いうる。具体的には、光拡散性の微粒子を含む樹脂の硬化物の層を用いうる。このような層は、透明なフィルムの表面上に形成し、透明なフィルムとの複合フィルムとした状態で、本発明の光学表示媒体に設けうる。
 高位相差層は、パターン状位相差層における位相差を有する領域よりさらに高い位相差を有する領域である。かかる高位相差層は、通常、入射光の波長によって、位相差が大きく異なる。したがって、通常の観察では透明な層として視認されうる一方、潜像の観察においては、干渉色が生じて色彩を帯びた層として視認されうる。したがって、光学表示媒体の表示面内に高位相差層を設けることにより、潜像の観察においてのみ色彩を発現させるという意匠的効果を得ることができる。高位相差層を構成する材料の例としては、一般的な、延伸された透明なフィルムが挙げられる。例えば、接着用のセロハンテープ、又はこれを延伸したもの等を用いうる。光学表示媒体内の、高位相差層を設ける位置は、特に限定されず、上に述べた色彩を呈しうる任意の位置に設けうる。
 装飾部材は、光学表示媒体の機能発現には寄与しないが、光学表示媒体の意匠的効果に寄与しうる部材である。装飾部材の一例としては、ラメと呼ばれる、金属的な光沢を有する切片が挙げられる。かかる切片を、例えば光反射層の切片と並べて設けたり、光反射層の上面に重ねて設けたりしうる。装飾部材の別の例としては、光学表示媒体の表示面を覆うカバーガラス等の透明な部材、光学表示媒体の周囲を装飾したり保護したりするためのトレー等の筐体、等の部材が挙げられる。
 上に述べたもの等の、光学表示媒体を構成する各種の部材は、その一部又は全部を包埋用の透明樹脂の中に包埋することにより、一体的な部材としうる。また、かかる包埋により、例えば位相差層の縁の部分の、裸眼での観察での視認性を低下させることができ、その結果、特殊な観察においてのみ潜像が観察されるという光学表示媒体の効果をより高めることができる。
 包埋用の透明樹脂の例としては、アクリル系、エポキシ系、ポリエステル系、シリコーン系等の樹脂が挙げられる。包埋用の樹脂としては、硬化性の樹脂液として市販されている各種の樹脂を用いうる。具体的には、紫外線等のエネルギー線を照射することにより固体の透明樹脂となり得る樹脂液を使用しうる。これらの中でも、例えばアクリル系の透明樹脂を用いた場合、固く可撓性の無い光学表示媒体が得られる一方、シリコーン系の透明樹脂を用いた場合、得られる光学表示媒体は柔らかく可撓性のあるものとなり、光学表示媒体を、所謂シリコンワッペンと呼ばれる、可撓性のあるワッペンとして使用しうる。
 包埋用の樹脂の他の例としては、フィルム状の樹脂材料が挙げられる。具体的には、光反射層、パターン状位相差層、及び必要であれば任意の構成要素を、一対のフィルム状の樹脂材料、又はフィルム状の樹脂材料と他の枚葉状の材料との組み合わせにより挟み、これらを貼合し、内部の構成要素を封止することにより、光学表示媒体を構成しうる。より具体的には、紙、樹脂材料又はこれらの組み合わせにより構成される台紙と、位相差の小さいアクリルフィルム等の樹脂フィルムとの間に、光反射層及びパターン状位相差層等の構成要素を設けて封止することにより、フィルム状の光学表示媒体を構成しうる。さらに、台紙として、裏面に粘着剤層を備えるものを用いることにより、ステッカーとして用いうる光学表示媒体を容易に構成しうる。
 透明樹脂での包埋により、光学表示媒体を、板状の形状の製品としうる。但し穴あけ、面取り等の加工をさらに施し、板状以外の任意の形状としてもよい。
 装着部材とは、光学表示媒体を、物品に装着する際に機能する部材である。装着部材は、その一部又は全部が装飾部材を兼ねるものであってもよい。装着部材の例としては、光学表示媒体の周囲から延長した、リング、クラスプ、フック、ワイヤー、チェーン、紐等の部材、並びに装飾部材を兼ねたトレーなどの筐体が挙げられる。装着部材は、光学表示媒体の必須の構成要素である光反射層及び/又はパターン状位相差層に直接付着していてもよく、それ以外の任意の部材を介して結合していてもよい。装着部材との結合は、接着剤による付着、ウェルダー加工による付着、ねじ止め又は結紮等の機械的結合等のいずれであってもよい。
 〔光学表示媒体の具体例〕
 本発明の光学表示媒体の、より具体的な例を、図11及び図12を参照して説明する。
 図11は、本発明の光学表示媒体の具体的な一例を概略的に示す上面図であり、図12は、図11に示す光学表示媒体の縦断面図である。
 図11及び図12において、光学表示媒体50は、装着部材590と、その内部に設けられた、加飾媒体又は識別媒体としての機能を発現するための各種の構成要素を含む。図11及び図12において、光学表示媒体50は、その表示面を上にして水平に載置した状態で図示される。装着部材590は、トレー591と、トレー591の縁部に設けられた、リング592とを含む。リング592は、光学表示媒体を物品に装着する際に、光学表示媒体を、物品、または光学表示媒体と物品とをつなぐ紐状の部材との接続のための部材として機能する。
 トレー591内には、その底部から順に、基材511及び光吸収層521が敷設される。この例では、光吸収層521の上部には、光反射層として、銀色の光反射層501(S)、及び切片の光反射層501(P)が、一部が重なった状態で並べて配置される。この例では、これらはいずれも反射型円偏光子である。光反射層501(P)は、銀色の層であってもよく、赤、緑、青等の色を呈する層であってもよい。
 光反射層501(S)及び502(P)の上部には、さらに、4つの位相差層502が設けられる。この例では、位相差層502は、光学表示媒体50の表示面の領域の一部を占める、星形の形状を有した、領域Hとして機能しうる位相差層であり、透明基材512上に位置決めされて接着された状態の部材として設けられる。4つの位相差層502の遅相軸は、互いに異なる方向となるよう位置決めされている。また、4つの位相差層502は、それらのReH(500)が互いに異なる値となるよう形成されている。
 位相差層502の上部には、拡散層を備える拡散フィルム531が配置される。この例では、拡散フィルム531は、光学表示媒体50の表示面の全ての領域を覆う状態で設けられる。
 この例では、光反射層501(S)、光反射層501(P)、透明基材512、位相差層502及び拡散フィルム531が、透明樹脂により包埋されており、それにより、透明樹脂部541、542及び543が形成されている。
 光学表示媒体50は、図1~図6に示した光学表示媒体100と同様の原理で機能する。具体的には、通常の非偏光が入射する環境下での裸眼での表示面観察に加えて、非偏光を入射させ観察用直線偏光子を介しての表示面観察、直線偏光を入射させての表示面観察、又はこれらの両方を行いうる。非偏光を入射させ観察用直線偏光子を介しての観察、及び直線偏光を入射させての観察では、垂直方向を軸として、光学表示媒体の方位角を360°回転させ、垂直方向から観察を行いうる。
 裸眼での観察では、表示面内において、光反射層501(S)及び501(P)の反射による色が視認される。位相差層502は、透明の部材として視認され、しかも透明樹脂に包埋されているため、その輪郭はほとんど視認されない状態となる。位相差層502で占められる領域と、それ以外の領域との明るさの差は視認されず、それは回転に応じても変化しない。
 一方、例えば非偏光を入射させ観察用直線偏光子を介しての観察、及び直線偏光を入射させての観察では、位相差層502の星形の形状が視認される。位相差層502の色は、いずれも有彩色として観察され、その色は、回転に応じて変化する。位相差層502の色の変化は、複数枚の位相差層502のそれぞれにおいて不規則に異なり、そのため、回転により複数の星形の色が様々に変化するという意匠的効果が得られ、且つそのような意匠的効果により、識別媒体としての機能をも達成することができる。
 〔光学表示媒体の具体例:変形例〕
 図1~図2及び図3~図10に示した光学表示媒体では、模式的な例示として、領域Hに相当する領域及びその他の領域として、1種類ずつ矩形の領域を有するものを例示し、また、図11~図12に示した光学表示媒体50では、位相差層として、星形の形状を有するものを例示したが、領域H又はその他の領域を構成する位相差層の形状及び一つの光学表示媒体が備える領域Hの数は、これに限定されず、様々な図形、文字等の任意の形状の領域を様々な数で備えうる。
 図11~図12に示した光学表示媒体50では、光反射層の裏側に、トレー591の底部、光吸収層521等の非透光性の部材を設けたが、これらを設けず、光学表示媒体を介して光反射層の裏側が視認されるシースルーの光学表示媒体を構成することもできる。さらにその場合において、光反射層よりも裏側に、別のパターン状位相差層を設けてもよい。この場合、おもて側からの観察と裏側からの観察とで、異なる潜像が観察される光学表示媒体を構成しうる。
 〔物品〕
 本発明の物品は、前記本発明の光学表示媒体を備える。
 物品の例としては、衣類、靴、帽子、装身具、宝飾品、日用品等の様々な物品が挙げられる。本発明の物品は、光学表示媒体を備えることにより、識別機能を有するものとしうる。かかる識別機能を有することにより、光学表示媒体及び物品が、偽造品でない真正なものであることの識別を行いうる。加えて、光学表示媒体が、物品に意匠的効果を付与することができる。光学表示媒体は、タグ、チャーム、ワッペン、ステッカー等の、物品の装飾品、部品又は付属物として、物品に設けうる。
 本発明の物品は、前記本発明の光学表示媒体に加えて、偏光子ビュワーをさらに備えうる。偏光子ビュワーとしては、上に述べた観察用直線偏光子又は観察用円偏光子等の観察用偏光子を備え、かかる観察用偏光子を介して光学表示媒体を観察しうるよう物品に備えられたものが挙げられる。偏光子ビュワーは、例えばタグの形状とし、紐等を介して物品本体に備え付けられた態様としうる。このように、光学表示媒体に加えて偏光子ビュワーをさらに備えることにより、一般の物品使用者が、簡単に光学表示媒体の識別を行うことができる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 実施例2以降において、面内レターデーションReの実測は、位相差計(Axometrics社製「AxoScan」)を用いて行った。
 〔実施例1:有彩色発現のシミュレーション〕
 (位相差層)/(光反射層)の層構成を有する光学表示媒体に、自然光を照射し、観察用直線偏光子を介して観察した場合に観察される色を、シミュレーションにより調べた。
 シミュレーションの条件は、以下の通りとした。
 ・光学表示媒体の位相差層側の面に、法線方向から、D65光源の光を入射させる。
 ・光反射層は、左円偏光を完全に透過させ、右円偏光を完全に反射させる反射型円偏光子である。透過した光は、位相差層側に戻らない。
 ・光学表示媒体から出射した光を、直線偏光成分の一方を完全に透過させ、他方を完全に吸収する直線偏光子で観察。
 ・位相差層遅相軸と直線偏光子吸収軸とがなす角度は45°、角度をなす方向は左回り(即ち、視認側から、観察用直線偏光子及び光学表示媒体を観察した場合において、観察用直線偏光子の透過軸方向を基準とすると、位相差層の遅相軸は、当該基準に対して、左回りに45°傾いている)。
 ・観察される色を、法線方向と2°の角度をなす方向から観察し、CIE1931 XYZ三刺激値を求め、a*b*色度を計算し、色を決定した。
 ・位相差層としては、下記表1に示すRe(400)/Re(550)値及びRe(550)/Re(700)値を有する材料(0)~材料(4)からなり、表2~表3に示すRe(550)を有するものを想定した。
 材料(0)は、Re(400)/Re(550)=0.73で且つRe(550)/Re(700)=0.79、即ちそのRe(λ)/λの値が400nm、550nm及び700nmにおいて一定な材料である。材料(0)は、色付き抑制という観点からは理想的な特性を有する、仮想的な材料である。一方材料(1)~材料(4)は、実在の材料と同じRe(400)/Re(550)値及びRe(550)/Re(700)値を有する材料を想定したものである。表2~表3における、材料(1)~材料(4)からなる位相差層は、それぞれ実在の材料の厚み、延伸倍率等を適宜調整することにより、実際に製造可能な位相差層の例である。
 シミュレーションの結果を表2~表3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 *1:色付きなし。
 *2:鮮明ではないが、色付きあり。
 *3:鮮明に色付きあり。
 色付きの有無は、a*b*色度に基づき判定した。√(a*+b*)≦2の場合『色付きなし』、2<√(a*+b*)≦7の場合『鮮明ではないが、色付きあり』、7≦√(a*+b*)の場合『鮮明に色付きあり』とした。
 以上の結果から、材料(0)は、単独で領域Hを構成する位相差層を構成し得ない一方、材料(1)~(4)は、単独で領域Hを構成する位相差層を構成し得ることが分かる。また、鮮明な色付きが得られる範囲は、そのRe(400)/Re(550)及びRe(550)/Re(700)の材料(0)からの乖離と、位相差層の位相差との関係がある範囲内である範囲であることが分かる。
 式7(ΔC=(|(ReH(400)/ReH(550))-0.73|+|(ReH(550)/ReH(700))-0.79|)/2)に基づきΔCを定義し、ΔCとReH(550)の関係が、鮮明な色付きをもたらす範囲を求めた。
 材料(1)~材料(4)の結果において、鮮明に色付きありとされた群の位相差層のRe(550)のうち最大のもの及び最小のものと、1/ΔCとの関係は、下記表4の通りである。
Figure JPOXMLDOC01-appb-T000007
 1/ΔCと最小Re(550)との関係、及び1/ΔCと最大Re(550)との関係のそれぞれについて、最小二乗法により一次回帰直線を求めると、それぞれ
 Re(550)=382.81/ΔC+250
 Re(550)=53.873/ΔC+199.3
 となる。このことから、下記式(5)及び式(6)を満たす場合に、特に鮮明な色付きを得ることができることが分かる。
 ReH(550)≦382.81/ΔC+250  ・・・式(5)
 ReH(550)≧53.873/ΔC+199.3  ・・・式(6)
 〔実施例2:材料(2)を用いた例〕
 (2-1:光反射層)
 液晶性化合物(前記式(B3)で示される化合物)14.63重量部、配向助剤(前記式(A2)で示される化合物)3.66重量部、カイラル剤(商品名「Paliocolor LC756」、BASF社製)1.09重量部、レベリング剤(商品名「サーフロンS420」、AGCセイミケミカル社製)0.02重量部、光重合開始剤(商品名「Irgacure OXE02」、BASF社製)0.60重量部、及び溶媒(メチルエチルケトン)80.00重量部を混合し、液晶組成物(S)を得た。
 原反基材(PETフィルム、東洋紡社製、商品名「A4100」)の表面にラビング処理を施した。当該表面に、液晶組成物(S)を、バーコーターにて塗布し、液晶組成物の層を形成した。液晶組成物の層の厚さは最終的に得られるコレステリック材料層の厚みが約5μmとなるよう調整した。これを、オーブンにおいて140℃で2分間加熱させ、液晶組成物の層を乾燥及び配向させた。
 続いて、広帯域化処理を行った。広帯域化処理は、大気雰囲気下で、乾燥させた液晶組成物の層に弱い紫外線を照射し、その後加熱することにより行った。紫外線の照射には、高圧水銀ランプを用い、365nm(i線)における照度25mW/cmで0.3秒の照射を行った。その後の加熱は90℃1分間とした。
 続いて、窒素ガス雰囲気下(酸素濃度400ppm以下)にて、乾燥させた液晶組成物の層に、硬化のための紫外線を照射した。照射には、高圧水銀ランプを用い、365nm(i線)における照度280mW/cm、露光量2000mJ/cmとなるよう照射条件を調整した。この結果、液晶組成物の層が硬化し、コレステリック材料層(S)が形成された。これにより、原反基材及びコレステリック材料層(S)を含む原反シートを得た。
 原反シートを折り曲げ、空気を吹き付けることにより、コレステリック材料層を剥離させ、剥離片を得た。剥離片を、カッターミルで粉砕し、51μmの篩に通し、篩を通過した粒子を回収し、コレステリック材料の顔料(S)を得た。レーザー回折・散乱法により顔料の粒度分布を、粒子径分布測定装置(製品名「LA-960」、堀場製作所製)で測定し、顔料の粒子の体積基準分布におけるD50平均粒径を求めたところ、30μmであった。
 顔料(S)を用いて、塗料を調製した。水平に載置した光吸収層(黒色のPETフィルム)の上面に、塗料を塗布し、乾燥させることにより、顔料(S)の層である光反射層を形成した。これにより、(光反射層)/(光吸収層)の層構成を有する複層物(2-1)を得た。
 (2-2:材料(2)からなる位相差層)
 シクロオレフィン樹脂(日本ゼオン社製「ZEONOR 1215」)のペレットを用意した。ペレットを、単軸押出機(OCS社製)に供給して押出成形し、裁断し、長さ150mm、幅50mm、厚み200μmの押出フィルムを得た。押出フィルムの長さ方向両端部から50mmの位置を、恒温槽付き引張試験機(インストロン社製)の延伸用チャックで把持した。押出フィルムの、チャック間距離50mmの領域を、長さ方向に延伸した。延伸に際しての延伸温度は125℃とし、延伸速度は100mm/minとし、延伸倍率及び延伸後チャック間隔は表5に示す様々な値とした。かかる延伸により、表5に示す各種の位相差層を得た。さらに得られた位相差層2枚を、表6に示す組み合わせで、遅相軸が同じ方向となるよう重ね合わせて、Re(550)がより大きい位相差層を得た。これらの位相差層はいずれも、Re(400)/Re(500)の値は1.03であり、Re(550)/Re(700)の値は1.00であった。
 (2-3:光学表示媒体)
 (2-1)で得られた複層物(2-1)を、光反射層側の面を上向きに水平に載置し、この上に、(2-2)で得られた位相差層のそれぞれを載置した。これにより、上面から順に(位相差層)/(光反射層)/(光吸収層)の層構成を有する光学表示媒体を得た。
 光学表示媒体を、太陽光照射下において、観察用直線偏光子を介して観察した。観察方向は、光学表示媒体表示面の法線方向とした。位相差層遅相軸と直線偏光子吸収軸とがなす角度は45°、角度をなす方向は左回りとした。目視により観察された色を記録した。結果を表5及び表6に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 〔実施例3:材料(3)を用いた例〕
 (3-1:材料(3)からなる位相差層)
 表7に示す製造元及び品番の、様々な市販品のポリエチレンテレフタレートフィルムを容易した。さらに、これらのうちの2枚を、表8に示す組み合わせで、遅相軸が同じ方向となるよう重ね合わせて、Re(550)がより大きい位相差層を得た。これらの位相差層はいずれも、Re(400)/Re(500)の値は1.18であり、Re(550)/Re(700)の値は1.07であった。
 (3-2:光学表示媒体)
 (2-2)で得られた位相差層に代えて、(3-1)で得られた位相差層のそれぞれを用いた他は、実施例2の(2-3)と同じ操作により、光学表示媒体を得て評価した。結果を表7及び表8に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 〔実施例4:材料(4)を用いた例〕
 (4-1:材料(4)からなる位相差層)
 液晶性化合物(前記式(B3)で示される化合物)15.7重量部、配向助剤(前記式(A2)で示される化合物)3.7重量部、レベリング剤(商品名「サーフロンS420」、AGCセイミケミカル社製)0.02重量部、光重合開始剤(商品名「Irgacure OXE02」、BASF社製)0.60重量部、及び溶媒(メチルエチルケトン)を混合し、液晶組成物(N)を得た。溶媒の割合は、乾燥膜厚を表9に示す膜厚に調整するのに適した濃度となるよう、80.00重量部前後で適宜調整した。
 原反基材(PETフィルム、東洋紡社製、商品名「A4100」)の表面にラビング処理を施した。当該表面に、液晶組成物(N)を、バーコーターにて、様々な厚みで塗布し、液晶組成物の層を形成した。これを、オーブンにおいて140℃で2分間加熱させ、液晶組成物の層を乾燥及び配向させた。
 続いて、窒素ガス雰囲気下(酸素濃度400ppm以下)にて、乾燥させた液晶組成物の層に、硬化のための紫外線を照射した。照射には、365nm(i線)高圧水銀ランプを用い、露光量2000mJ/cmとなるよう照射条件を調整した。この結果、液晶組成物の層が硬化し、ネマチック材料層(N)が形成された。これにより、原反基材及びコレステリック材料層(N)を含む原反シートを得た。
 原反シートのコレステリック材料層(N)をガラス(膜厚1mm、位相差1nm以下)に転写し、ガラス及びコレステリック材料層(N)を備える位相差層を得た。位相差層におけるコレステリック材料層(N)の膜厚及び位相差層のRe(550)は、表9に示す通りであった。これらの位相差層はいずれも、Re(400)/Re(500)の値は1.44であり、Re(550)/Re(700)の値は1.21であった。
 (4-2:光学表示媒体)
 (2-2)で得られた位相差層に代えて、(4-1)で得られた位相差層のそれぞれを用いた他は、実施例2の(2-3)と同じ操作により、光学表示媒体を得て評価した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000012
 実施例2~4の結果から、実際の光学表示媒体において、実施例1でのシミュレーション結果と同等な有彩色の表示が可能であることが分かる。
 (参考例:識別媒体)
 市販の熱可塑性樹脂層(倉敷紡績株式会社、商品名:Kuran Seal GL)及びガラス板(厚さ2mmのソーダガラス)を用意した。(2-1)で得られた複層物(2-1)を、光反射層側の面を上向きに水平に載置し、この上に、熱可塑性樹脂層、ガラス板、及び(2-2)で得られた位相差層のそれぞれを載置し、視認側から、(ガラス板)/(熱可塑性樹脂層)/(位相差層)/(熱可塑性樹脂層)/(複層物(2-1))の堆積物とした。堆積物を真空包装した後に、圧力0.8MPa、温度100℃でオートクレーブ処理を実施した。これにより、上面から順に(最表面ガラス層)/(位相差層)/(光反射層)/(光吸収層)の層構成を有する識別媒体を得た。
50:光学表示媒体
100:光学表示媒体
101(R):光反射層
101(R)U:光反射層101(R)の上面
102:サブ層
102(N):等方な層
102(Xy):λ/4波長板として機能する層
102U:サブ層102の上側の面
103(Xy):サブ層
103U:サブ層103(Xy)の上側の面
110:パターン状位相差層
191(X):観察用直線偏光子
191(Y):観察用直線偏光子
200:光学表示媒体
201(Y):光反射層
201(Y)U:光反射層201(Y)の上面
202:サブ層
202(N):等方な層
202(Xy):λ/2波長板として機能する層
202U:サブ層202の上側の面
210:パターン状位相差層
501(P):切片の光反射層
501(S):銀色の光反射層
502:位相差層
511:基材
512:透明基材
521:光吸収層
531:拡散フィルム
541:透明樹脂部
542:透明樹脂部
543:透明樹脂部
590:装着部材
591:トレー
592:リング
A102(Xy):遅相軸を示す矢印
A103(Xy):遅相軸を示す矢印
A111(N):光
A112(N):光
A113(R):光
A114(Y):光
A115(n):光
A115(Y):光
A119(L):光
A121(N):光
A122(N):光
A123(N):光
A124(R):光
A125(Y):光
A126(P):光
A127(X)(Ch):光
A127(Y)(Ch):光
A129(L):光
A131(N):光
A132(N):光
A133(N):光
A134(R):光
A135(R):光
A136(P):光
A137(X)(Ch):光
A137(Y)(Ch):光
A139(L):光
A141(N):光
A142(N):光
A143(R):光
A144(R):光
A145(X):光
A145(Y):光
A149(L):光
A191(X):透過軸を示す矢印
A211(X):光
A211(Y):光
A212(L):光
A212(R):光
A213(n):光
A213(R):光
A214(n):光
A214(Y):光
A219(L):光
A219(n):光
A221(X):光
A221(Y):光
A222(P):光
A222’(P):光
A223(P):光
A223’(P):光
A224(R)(Ch):光
A224’(R)(Ch):光
A225(Y)(Ch):光
A225’(Y)(Ch):光
A226(P)(Ch):光
A226’(P)(Ch):光
A229(L)(Ch):光
A229’(L)(Ch):光
A231(X):光
A231(Y):光
A232(P):光
A232’(P):光
A233(P):光
A233’(P):光
A234(R)(Ch):光
A234’(R)(Ch):光
A235(R)(Ch):光
A235’(R)(Ch):光
A236(P)(Ch):光
A236’(P)(Ch):光
A239(L)(Ch):光
A239’(L)(Ch):光
A241(X):光
A241(Y):光
A242(X):光
A242(Y):光
A243(R):光
A244(R):光
A249(L):光
A311(N):光
A312(N):光
A313(X):光
A314(Y):光
A315(n):光
A315(Y):光
A319(Y):光
A321(N):光
A322(N):光
A323(N):光
A324(X):光
A325(Y):光
A326(P):光
A327(X)(Ch):光
A327(Y)(Ch):光
A329(Y):光
A331(N):光
A332(N):光
A333(N):光
A334(X):光
A335(X):光
A336(P):光
A337(X)(Ch):光
A337(Y)(Ch):光
A339(Y):光
A341(N):光
A342(N):光
A343(X):光
A344(X):光
A345(n):光
A345(X):光
A349(Y):光
A411(X):光
A411(Y):光
A412(X):光
A412(Y):光
A413(n):光
A413(X):光
A414(n):光
A414(Y):光
A419(n):光
A419(Y):光
A421(X):光
A421(Y):光
A422(P):光
A422’(P):光
A423(P):光
A423’(P):光
A424(X)(Ch):光
A424’(X)(Ch):光
A425(Y)(Ch):光
A425’(Y)(Ch):光
A426(P)(Ch):光
A426’(P)(Ch):光
A429(Y)(Ch):光
A429’(Y)(Ch):光
A431(X):光
A431(Y):光
A432(P):光
A432’(P):光
A433(P):光
A433’(P):光
A434(X)(Ch):光
A434’(X)(Ch):光
A435(X)(Ch):光
A435’(X)(Ch):光
A436(P)(Ch):光
A436’(P)(Ch):光
A439(Y)(Ch):光
A439’(Y)(Ch):光
A441(X):光
A441(Y):光
A442(X):光
A442(Y):光
A443(n):光
A443(X):光
A444(n):光
A444(X):光
A449(n):光
A449(Y):光
R1:領域
R2:領域
R3:領域
R4:領域
S1:領域
S2:領域
S3:領域
S4:領域

Claims (20)

  1.  光反射層と、パターン状位相差層とを備える光学表示媒体であって、
     前記光反射層は、入射光を、円偏光または直線偏光として反射する層であり、
     前記パターン状位相差層は、位相差を有する領域を含む層であり、
     前記位相差を有する領域のうちの一つ以上の領域Hの、波長400nmにおける面内レターデーションReH(400)、波長550nmにおける面内レターデーションReH(550)及び波長700nmにおける面内レターデーションReH(700)(単位はいずれもnm)が、下記式(1)を満たし、且つ下記式(2)及び(3)のいずれかを満たし、
     ReH(550)>275  ・・・式(1)
     ReH(400)/400>ReH(550)/550>ReH(700)/700  ・・・式(2)
     ReH(400)/400<ReH(550)/550<ReH(700)/700  ・・・式(3)
     且つ、
     前記領域Hは、前記領域Hを通過する光を、その波長ごとに異なる偏光状態を有する光に変換する、光学表示媒体。
  2.  前記パターン状位相差層が、前記光反射層より視認側の位置に設けられる、請求項1に記載の光学表示媒体。
  3.  前記光反射層が、反射型円偏光子または反射型直線偏光子である、請求項1又は2に記載の光学表示媒体。
  4.  前記光反射層が、前記反射型円偏光子である、請求項3に記載の光学表示媒体。
  5.  前記ReH(400)、前記ReH(550)、及び前記ReH(700)が、下記の式(4)~(6)を満たす、請求項1~4のいずれか1項に記載の光学表示媒体:
     ReH(550)≧300 ・・・式(4)
     ReH(550)≦382.81/ΔC+250  ・・・式(5)
     ReH(550)≧53.873/ΔC+199.3  ・・・式(6)
     式中、ΔCは、下記式(7)で表される値である:
     ΔC=(|(ReH(400)/ReH(550))-0.73|+|(ReH(550)/ReH(700))-0.79|)/2
      ・・・式(7)
  6.  前記パターン状位相差層が、複数層のサブ層を備える積層体であり、前記サブ層のそれぞれが、その面内の少なくとも一部の領域において位相差を有する、請求項1~5のいずれか1項に記載の光学表示媒体。
  7.  複数層の前記サブ層のうち、1層以上が延伸フィルムであり、他の1層以上がパターン状液晶材料の層を有するフィルムである、請求項6に記載の光学表示媒体。
  8.  複数層の前記サブ層の遅層軸が互いに平行である、請求項6又は7に記載の光学表示媒体。
  9.  前記光反射層が、コレステリック規則性を有する材料のシートを含む、請求項1~8のいずれか1項に記載の光学表示媒体。
  10.  前記光反射層が、コレステリック規則性を有する材料の切片を含む、請求項1~9のいずれか1項に記載の光学表示媒体。
  11.  前記光反射層の一以上の領域において、前記領域に入射した非偏光の、前記光反射層による反射率が、波長領域420nm~650nmにおけるすべての波長において35~50%である、請求項1~10のいずれか1項に記載の光学表示媒体。
  12.  前記光反射層の、視認側と反対側の位置に、光吸収層をさらに備える、請求項1~11のいずれか1項に記載の光学表示媒体。
  13.  透明樹脂部をさらに備え、前記透明樹脂部以外の部材の全部又は一部が、前記透明樹脂部中に包埋されている、請求項1~12のいずれか1項に記載の光学表示媒体。
  14.  物品に装着するための装着部材をさらに備える、請求項1~13のいずれか1項に記載の光学表示媒体。
  15.  請求項1~14のいずれか1項に記載の光学表示媒体を備える物品。
  16.  偏光子ビュワーをさらに備える、請求項15に記載の物品。
  17.  請求項1~14のいずれか1項に記載の光学表示媒体の使用方法であって、入射光を、前記光学表示媒体の表示面に入射させ、前記光反射層において反射させ反射光とし、前記反射光を観察することを含み、前記入射光として非偏光を入射させ、且つ前記反射光の観察において、前記反射光の直線偏光成分、又は円偏光成分を選択的に観察する、使用方法。
  18.  前記選択的な観察を、前記光学表示媒体から離隔した直線偏光子を介して、前記反射光を目視することにより行う、請求項17に記載の使用方法。
  19.  前記直線偏光子が偏光サングラスである、請求項18に記載の使用方法。
  20.  請求項1~14のいずれか1項に記載の光学表示媒体の使用方法であって、入射光を、前記光学表示媒体の表示面に入射させ、前記光反射層において反射させ反射光とし、前記反射光を観察することを含み、前記入射光として直線偏光、円偏光又は楕円偏光を入射させる、使用方法。
PCT/JP2022/011606 2021-03-30 2022-03-15 光学表示媒体、物品、及び光学表示媒体の使用方法 WO2022209852A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22780073.7A EP4318058A1 (en) 2021-03-30 2022-03-15 Optical display medium, article, and method for using optical display medium
CN202280022732.3A CN117015730A (zh) 2021-03-30 2022-03-15 光学显示介质、物品以及光学显示介质的使用方法
JP2023510883A JPWO2022209852A1 (ja) 2021-03-30 2022-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058413 2021-03-30
JP2021-058413 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209852A1 true WO2022209852A1 (ja) 2022-10-06

Family

ID=83458921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011606 WO2022209852A1 (ja) 2021-03-30 2022-03-15 光学表示媒体、物品、及び光学表示媒体の使用方法

Country Status (4)

Country Link
EP (1) EP4318058A1 (ja)
JP (1) JPWO2022209852A1 (ja)
CN (1) CN117015730A (ja)
WO (1) WO2022209852A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059597A2 (en) 2003-12-16 2005-06-30 Sun Chemical Corporation Cholesteric liquid crystal security arrangement
JP2007279129A (ja) * 2006-04-03 2007-10-25 Nhk Spring Co Ltd 識別媒体、識別方法および識別装置
JP2009175208A (ja) * 2008-01-22 2009-08-06 Fujifilm Corp 複屈折パターンを有する物品の製造方法
US20100119738A1 (en) 2008-11-07 2010-05-13 Fujifilm Corporation Foil for preventing forgery
JP2010221650A (ja) 2009-03-25 2010-10-07 Fujifilm Corp 偽造防止媒体
WO2011065242A1 (ja) * 2009-11-27 2011-06-03 日本発條株式会社 識別媒体およびその識別方法
JP2013003212A (ja) * 2011-06-13 2013-01-07 Nippon Zeon Co Ltd パターン位相差フィルム、ディスプレイ装置及び立体画像表示システム
JP2014002298A (ja) * 2012-06-20 2014-01-09 Toppan Printing Co Ltd 偽造防止媒体、偽造防止ラベル、印刷物、転写箔及び真贋判定方法
JP2014052527A (ja) * 2012-09-07 2014-03-20 Toppan Printing Co Ltd 表示体及び表示体付き物品とその真偽判定方法
JP5915838B2 (ja) 2011-11-01 2016-05-11 大日本印刷株式会社 立体視画像形成体
WO2019116995A1 (ja) 2017-12-12 2019-06-20 日本ゼオン株式会社 液晶硬化フィルムおよびその製造方法、偏光板、並びに有機エレクトロルミネッセンス表示装置
JP2019188740A (ja) 2018-04-27 2019-10-31 日本ゼオン株式会社 積層体及び積層体の製造方法
WO2020121791A1 (ja) 2018-12-11 2020-06-18 日本ゼオン株式会社 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
WO2020261923A1 (ja) * 2019-06-26 2020-12-30 日本ゼオン株式会社 表示媒体、真正性判定方法、及び表示媒体を含む物品
WO2021153761A1 (ja) * 2020-01-31 2021-08-05 日本ゼオン株式会社 識別媒体、物品、及び識別媒体の使用方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059597A2 (en) 2003-12-16 2005-06-30 Sun Chemical Corporation Cholesteric liquid crystal security arrangement
JP2007279129A (ja) * 2006-04-03 2007-10-25 Nhk Spring Co Ltd 識別媒体、識別方法および識別装置
JP2009175208A (ja) * 2008-01-22 2009-08-06 Fujifilm Corp 複屈折パターンを有する物品の製造方法
US20100119738A1 (en) 2008-11-07 2010-05-13 Fujifilm Corporation Foil for preventing forgery
JP2010113249A (ja) 2008-11-07 2010-05-20 Fujifilm Corp 偽造防止箔
JP2010221650A (ja) 2009-03-25 2010-10-07 Fujifilm Corp 偽造防止媒体
WO2011065242A1 (ja) * 2009-11-27 2011-06-03 日本発條株式会社 識別媒体およびその識別方法
JP2013003212A (ja) * 2011-06-13 2013-01-07 Nippon Zeon Co Ltd パターン位相差フィルム、ディスプレイ装置及び立体画像表示システム
JP5915838B2 (ja) 2011-11-01 2016-05-11 大日本印刷株式会社 立体視画像形成体
JP2014002298A (ja) * 2012-06-20 2014-01-09 Toppan Printing Co Ltd 偽造防止媒体、偽造防止ラベル、印刷物、転写箔及び真贋判定方法
JP2014052527A (ja) * 2012-09-07 2014-03-20 Toppan Printing Co Ltd 表示体及び表示体付き物品とその真偽判定方法
WO2019116995A1 (ja) 2017-12-12 2019-06-20 日本ゼオン株式会社 液晶硬化フィルムおよびその製造方法、偏光板、並びに有機エレクトロルミネッセンス表示装置
JP2019188740A (ja) 2018-04-27 2019-10-31 日本ゼオン株式会社 積層体及び積層体の製造方法
WO2020121791A1 (ja) 2018-12-11 2020-06-18 日本ゼオン株式会社 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
WO2020261923A1 (ja) * 2019-06-26 2020-12-30 日本ゼオン株式会社 表示媒体、真正性判定方法、及び表示媒体を含む物品
WO2021153761A1 (ja) * 2020-01-31 2021-08-05 日本ゼオン株式会社 識別媒体、物品、及び識別媒体の使用方法

Also Published As

Publication number Publication date
CN117015730A (zh) 2023-11-07
EP4318058A1 (en) 2024-02-07
JPWO2022209852A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021153761A1 (ja) 識別媒体、物品、及び識別媒体の使用方法
CN105452945B (zh) 液晶显示装置
EP3067721B1 (en) Optical polarizing films with designed color shifts
US7094461B2 (en) P-polarizer with large z-axis refractive index difference
US20150009563A1 (en) Light control film and p-polarization multi-layer film optical film stack
CN111133347B (zh) 光学系统及显示装置
JP7464059B2 (ja) 表示媒体、及び表示セット
CN107003455A (zh) 带图像显示功能的反射镜
WO2020121791A1 (ja) 真正性判定用のビュワー及びその製造方法、識別媒体の真正性の判定方法、並びに、真正性判定用セット
JP6705908B2 (ja) 透過加飾フィルム
CN107003454B (zh) 带图像显示功能的反射镜
WO2023282063A1 (ja) 光学表示媒体
JPWO2019230840A1 (ja) 識別媒体及び識別媒体の真正性を識別する方法
WO2022209852A1 (ja) 光学表示媒体、物品、及び光学表示媒体の使用方法
JP7552479B2 (ja) 識別媒体、製造方法、物品、及び識別媒体の使用方法
JP7380554B2 (ja) 識別媒体及び識別媒体の真正性を識別する方法
WO2024210034A1 (ja) 識別媒体、それを備える物品、及び識別媒体の使用方法
WO2024181214A1 (ja) 光学表示媒体及びその使用方法
WO2023190483A1 (ja) 識別媒体及び物品
WO2023190481A1 (ja) 識別媒体及び物品
WO2023189787A1 (ja) 識別媒体及び物品
CN110121668A (zh) 半反射镜、半反射镜的制造方法及带图像显示功能的反射镜
WO2023189788A1 (ja) 識別媒体及び物品
WO2024181192A1 (ja) フレーク、印刷物及びそれを備える物品、並びに識別媒体
EP4290282A1 (en) Optical layered product, method for determining authenticity thereof, and article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510883

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280022732.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780073

Country of ref document: EP

Effective date: 20231030