Nothing Special   »   [go: up one dir, main page]

WO2022207571A1 - Titre : convertisseur de tension isolé - Google Patents

Titre : convertisseur de tension isolé Download PDF

Info

Publication number
WO2022207571A1
WO2022207571A1 PCT/EP2022/058161 EP2022058161W WO2022207571A1 WO 2022207571 A1 WO2022207571 A1 WO 2022207571A1 EP 2022058161 W EP2022058161 W EP 2022058161W WO 2022207571 A1 WO2022207571 A1 WO 2022207571A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage converter
isolated
input
converter
Prior art date
Application number
PCT/EP2022/058161
Other languages
English (en)
Inventor
Maxime MOREAU
Massourang DIALLO
Wendell DA CUNHA ALVES
Original Assignee
Valeo Siemens Eautomotive France Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens Eautomotive France Sas filed Critical Valeo Siemens Eautomotive France Sas
Priority to CN202280038624.5A priority Critical patent/CN117581467A/zh
Priority to EP22718907.3A priority patent/EP4315577A1/fr
Publication of WO2022207571A1 publication Critical patent/WO2022207571A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Definitions

  • the present invention relates to an isolated voltage converter and a motor vehicle comprising such an isolated voltage converter.
  • the French patent application published under number FR 3064832 A1 describes an isolated voltage converter comprising: first and second global input terminals intended to receive a global input voltage; and a first and a second voltage conversion module each comprising an isolated primary circuit and a secondary circuit connected by a magnetic circuit, the primary circuit of the first voltage conversion module and the primary circuit of the second voltage conversion module being designed to be connected in series between the global input terminals to each receive, as local input voltage, only part of the global input voltage.
  • the voltage converter is a DC-DC voltage converter, preceded by an AC-DC voltage converter intended to be connected to a single-phase AC electrical network or else three-phase. It is planned to leave the two modules in series when the electrical network is three-phase and to short-circuit one of the modules when the electrical network is single-phase.
  • This known voltage converter has the disadvantage that an imbalance can occur leading to the major part of the voltage conversion being carried out by only one of the modules, which can damage it if it is not sized to receive such electrical power.
  • An isolated voltage converter comprising: first and second global input terminals intended to receive a global input voltage; and a first and a second voltage conversion module each comprising an isolated primary circuit and a secondary circuit connected by a magnetic circuit, the primary circuit of the first voltage conversion module and the primary circuit of the second voltage conversion module being designed to be connected in series between the global input terminals to each receive, as local input voltage, only part of the global input voltage; the isolated voltage converter being characterized in that it further comprises a device for regulating the local input voltages to maintain them in a predefined ratio, for example to maintain them equal to one another, when the circuits primaries are connected in series.
  • the regulation device prevents one module from taking precedence over the other.
  • the primary circuits of the voltage conversion modules each comprise at least one semiconductor switch and the regulation device is designed to control the semiconductor switches so as to maintain the input voltages local in the predefined ratio.
  • the regulation of local input voltages can easily be implemented.
  • the regulation device is designed to determine, from a difference between the local input voltages, a compensation and to control one of the voltage conversion modules from a setpoint voltage reduced by compensation and the other of the voltage conversion modules from the same setpoint increased by compensation.
  • the regulation device is designed to determine, from a difference between the local input voltages, a compensation and to control one of the voltage conversion modules from a setpoint voltage reduced by compensation and the other of the voltage conversion modules from the same setpoint increased by compensation.
  • the regulation device is designed to determine the electrical setpoint from a difference between an output voltage of the isolated voltage converter and an output voltage setpoint.
  • the output voltage is regulated at the same time as the local input voltages.
  • the electrical setpoint is a current setpoint and the compensation is a current compensation.
  • the modules usually already include current regulation function blocks. For example, it is also possible to monitor this current to detect faults in the voltage converter. Thus, it is possible to reuse these function blocks to regulate local input voltages. Furthermore, the current regulation can make it possible to improve the dynamic performance of the voltage converter.
  • the primary circuit of each of the voltage conversion modules comprises two switches arranged as switching arms between two input terminals of the voltage conversion module considered and the regulation device is designed to control the two switching arm according to the same switching period and according to a duty cycle so as to maintain said local input voltages in the predefined ratio, and by shifting the commands of one of the switching arms by 45% to 55%, preferably 50%, of the switching period relative to the commands of the other switching arm. This shifting of the commands makes it possible to increase the frequency of the noise and to compensate for the disturbance currents.
  • the voltage converter further comprises a reconfiguration device designed to selectively connect the primary circuits in series, and connect the primary circuit of the first voltage conversion module between the two global input terminals so that its input voltage is equal to the input voltage.
  • the reconfiguration device is designed to selectively connect the primary circuits of the voltage conversion modules in parallel with each other between the global input terminals so that each local input voltage is equal to the global input voltage.
  • the two modules are always used to realize the voltage conversion.
  • the reconfiguration device is designed to connect the primary circuit of the first voltage conversion module between the two global input terminals, to deactivate the second voltage conversion module.
  • the modules are generally designed to have their best performance at high power, for example between 50% and 100% of the nominal power.
  • disabling the second module increases the chances that the first module will operate in its best performance range.
  • the modules were operated in parallel, they would each run the risk of operating outside their best performance range.
  • the reconfiguration device is designed to place the primary circuits of the voltage conversion modules in series when the overall input voltage is within a first predefined voltage range and to connect the primary circuit of the first voltage conversion module between the two global input terminals when the global input voltage is in a second predefined range of voltages, lower than the first predefined range of voltages.
  • the local input voltages are limited and do not take on excessively high values.
  • the first and second voltage conversion modules are DC-DC conversion modules.
  • the secondary circuits of the first and second voltage conversion modules are connected in parallel to each other at the output of the isolated voltage converter.
  • a motor vehicle comprising a voltage converter according to the invention.
  • FIG. 1 is an electrical diagram of a electrical system comprising a first example of a voltage converter according to the invention
  • Figure 2 is an electrical diagram of one of two voltage conversion modules of the voltage converter of Figure 1,
  • FIG. 3 is an automatic regulation diagram implemented by a control device for the two voltage conversion modules
  • Figure 4 is an electrical diagram of an electrical system comprising a second example of a voltage converter according to the invention.
  • FIG. 5 is an electrical diagram of an electrical system comprising a third example of a voltage converter according to the invention, and [0026] FIG. 6 groups control timing diagrams for controllable switches of voltage conversion modules . Detailed description of the invention
  • the electrical system 100 firstly comprises an electrical network 102 designed to deliver a network voltage VE.
  • the electrical network 102 is continuous, so that the network voltage VE is continuous.
  • the electrical system 100 further comprises a load 104 (such as a low voltage network) and an isolated voltage converter 106 intended to be connected to the electrical network 102 to convert the network voltage VE into an output voltage Vs supply of the load 104.
  • the voltage converter 106 is a DC-DC converter, so that the output voltage Vs is DC.
  • the network voltage VE is for example a high voltage (i.e. for example a voltage greater than 60 V), while the supply voltage Vs is a low voltage (i.e. say for example a voltage lower than 60 V).
  • the network voltage VE is between 100 V and 900 V, while the supply voltage Vs is between 10 V and 50 V, generally equal to 14 V or else 48 V.
  • the network voltage VE received by the voltage converter 106 can take on very different values. This may come from the fact that the voltage converter 106 is intended to be successively connected to different electrical networks 102 and/or from the fact that the same electrical network 102 may see its network voltage VE vary over time, for example according to the mode operation of the electrical network 102.
  • the electrical network 102 comprises one or more batteries intended to supply a voltage of 400 V
  • the network voltage VE can in fact vary between 170 V and 450 V depending on the load of the battery or batteries. batteries.
  • the electrical network 102 comprises one or more batteries intended to supply a voltage of 800 V
  • the network voltage VE can in fact vary between 470 V and 850 V depending on the charge of the battery or batteries. This is why the voltage converter 106 is preferably a direct voltage converter, designed to supply a substantially constant output voltage Vs over a whole range of possible network voltages VE.
  • the voltage converter 106 has first and second input terminals P, N between which the electrical network 102 is connected to deliver its network voltage VE between the terminals P, N.
  • the voltage converter 106 further comprises first and second modules 108i, 1082 voltage conversion.
  • these modules 1081, 1082 are DC-DC converters.
  • modules 1081 and 1082 are substantially identical.
  • Modules 1081, 1082 preferably include semiconductor switches.
  • the IO81, IO82 modules are for example connected to the load 104 in parallel with each other. Thus, they each supply the output voltage Vs.
  • Each module 1081, 1082 has first and second input terminals Pi, Ni, respectively P2, N2.
  • the input terminal Pi of the module 1081 is connected to the input terminal P of the voltage converter 106 and the input terminal Ni of the module 1081 is connected to the input terminal P2 of the module 1082.
  • the voltage converter 106 further comprises a device 110 for reconfiguring the connection of the modules 1081, 1082 to the electrical network 102. More specifically, the reconfiguration device 110 is designed to selectively: (i) connect the modules I O81 , IO82 in series between the input terminals P, N to each receive, as input voltage VEI , VE2, only part of the network voltage VE, and (ii) connect the 1081 module between the two input terminals P , N so that its input voltage VEI is equal to the network voltage VE. In the example described, in the latter case, the IO82 module is disabled, so that only the 1081 module performs the voltage conversion.
  • the reconfiguration device 110 controls, for example, a switch 112 designed to connect the input terminal N selectively to the input terminal Ni of the module 1081 and to the input terminal N2 of the IO82 module.
  • a switch 112 designed to connect the input terminal N selectively to the input terminal Ni of the module 1081 and to the input terminal N2 of the IO82 module.
  • the switch 112 connects the input terminal N to the input terminal Ni of the module 1081, the latter is connected between the two input terminals P, N so that its input voltage VEI is equal to the voltage EV network.
  • the input terminal N2 of the 1082 module then presents a floating potential, so that the 1082 module is disconnected from the electrical network 102 and therefore inactive.
  • the switch 112 connects the input terminal N to the input terminal N2 of the IO82 module, the modules IO81, 1082 are then connected in series between the input terminals P, N to receive each, as an input voltage VEI ,
  • the network voltage VE is equal to the sum of the input voltages VEI, VE2.
  • the voltage converter 106 further comprises, still in the example described, a device 114 for measuring the network voltage VE and the reconfiguration device 110 is designed to control the switch 112 according to the network voltage VE measured .
  • the reconfigurator 110 is designed to determine in which of two predefined voltage intervals the input voltage VE lies. Preferably, these two predefined intervals do not overlap.
  • the first interval corresponds to the possible network voltages VE for a 400 V electrical network (i.e.
  • the second interval corresponds to the possible network voltages VE for a 800 V electrical network (i.e. for example 470 - 850 V).
  • the measured input voltage VE can be compared with a predefined threshold making it possible to distinguish the two intervals. In the example described, this threshold could be between 450 V and 470 V.
  • the reconfiguration device 110 is then for example designed to control the switch 112 to connect the module 1081 between the two input terminals P, N when the network voltage VE belongs to the interval grouping together the smallest voltages (the 170 - 450 V interval in the example described) and to connect the modules 1081, 1082 in series between the input terminals P, N when the network voltage VE belongs to the interval comprising the highest voltages (l range 470 - 850 V in the example described).
  • the voltage converter 106 further comprises a device 118 controlled by these switches, in order for example to maintain the output voltage Vs equal to a setpoint Vs * .
  • the voltage converter 106 further comprises a device for regulating the input voltages VEI, VE2 of the modules 1081, 1082, when the latter are connected in series, in order to seek to maintain these input voltages VEI , VE2 equal, in particular to within one uncertainty.
  • the converter voltage 106 comprises devices 120 for measuring the input voltages VEI, VE2 and the regulating device is designed to regulate the input voltages VEI, VE2 from their measurements.
  • the regulation device is designed to control at least some of the semiconductor switches of the modules 108i, IO82, from the measured input voltages VEI, VE2.
  • the regulation device is implemented by the control device 118.
  • An example of such a control device 118 will be described in more detail later, with reference to FIG. 3.
  • FIG. 2 an example embodiment of the module 1082 will now be described.
  • the 1081 module is similar and has substantially identical components, which will be designated below with the subscript "1" rather than the subscript "2" used for the components of the 1082 module.
  • the 1082 module firstly comprises an input capacitor CE2 connected between the terminals P2, N2 to smooth the input voltage VE2.
  • the module 1082 further comprises a first voltage converter 2022 designed to convert the input voltage VE2 into a continuous intermediate voltage VIN ⁇ 2.
  • the voltage converter 2022 comprises a switching arm comprising two semiconductor switches QA2, QB2 connected between the input terminals P2, N2 and to each other at a midpoint.
  • Each of the semiconductor switches QA2, QB2 is for example a field effect transistor with a metal-oxide-semiconductor structure (from the English “Metal Oxide Semiconductor Field Effect T ransistor” or MOSFET) or else a bipolar transistor with gate isolated (from the English “Insulated Gate Bipolar Transistor” or IGBT).
  • the voltage converter 2022 further comprises an inductance L2 and a capacitor CIN ⁇ 2 connected one after the other between the midpoint of the switching arm QA2, QB2 and the input terminal N2. Intermediate voltage VINT2 is thus the voltage across capacitor CINT2.
  • the module 1082 further comprises a second voltage converter
  • the voltage converter 2042 comprises in particular a galvanic isolation barrier 2062 comprising a magnetic circuit 2082 which, in the example described couples one or more primary windings 21 02 and one or more secondary windings 21 22 together.
  • the voltage converter 2042 is a so-called "flyward" converter described for example in detail in the French patent application published under the number FR 3056038 A1.
  • a converter of this type there are two semiconductor switches QC2, QD2 connected to each other by a middle capacitor CF2, the assembly being connected to the terminals of the intermediate capacitor CINT2 to receive the intermediate voltage VINT2 .
  • Each of the semiconductor switches QC2, QD2 comprises for example a MOSFET or else an IGBT.
  • the voltage conversion module 1082 thus has a primary circuit 2142 and a secondary circuit 2162 isolated, connected by the magnetic circuit 2082.
  • the primary circuit 2142 comprises in particular the terminals P2, N2 to receive the local input voltage VE2.
  • the primary circuit 2142 includes the voltage converter 2022, the components of the voltage converter 2042 connected between the voltage converter 2022 and the primary winding(s) 2102, and this or these primary windings 2102.
  • the secondary circuit 2162 includes the components of the voltage converter 2042 connected between the secondary winding(s) and output terminals 2182 of the voltage conversion module 1082.
  • control device 118 Referring to Figure 3, an example of control device 118 will now be described in more detail.
  • the control device 118 firstly comprises a comparator 302 designed to determine a difference AVs between the measured output voltage Vs and an output voltage setpoint Vs * .
  • the control device 118 further comprises a regulator 304 designed to determine a so-called initial electrical set point from the AVs deviation.
  • the initial electrical setpoint is a current setpoint I * .
  • the control device 118 further comprises a comparator 306 designed to determine a difference AVE between the input voltages VEI, VE2.
  • the controller 118 further includes a regulator 308 designed to determine a compensation from the deviation AVE.
  • the ICOMP compensation is a current compensation.
  • the control device 118 further comprises, for the control of one of the modules (the module 1081 in the example described), a subtractor 310 designed to reduce the setpoint I * of the ICOMP compensation to provide a setpoint so-called final h * for this 108i module.
  • this final setpoint h * is a current setpoint for the current flowing in the inductance of the module considered (inductance Li in the example described).
  • the control device 118 also comprises, for the control of the other of the modules (the module 1082 in the example described), an adder 312 designed to increase the initial setpoint I * of the ICOMP compensation to provide a so-called final setpoint 1*2 for this module 1082.
  • this final setpoint I2 * is a current setpoint for the current flowing in the inductance of the module considered (inductance L2 in the example described).
  • control device 118 further comprises a comparator 314 designed to determine a difference DH between the measured current h and the final setpoint 1*1 and a device 316 designed to determine commands for the switches QA1 , QB1 of the 1081 module from this deviation DH .
  • control device 118 further comprises a comparator 318 designed to determine a difference DI2 between the measured current I2 and the final setpoint 1*2 and a device 320 designed to determine commands for the QA2, QB2 switches of the 1082 module from this DI2 deviation.
  • the commands are for example in the form of signals in pulse width modulation (from English "Pulse Width Modulation” or PWM) having a duty cycle determined according to the difference DH or DI2, according to the device 316 or 320 considered.
  • the devices 316, 320 can also be designed to determine commands for the switches QC1, QD1, respectively QC2, QD2. These commands are for example also PWM signals, but whose duty cycle is fixed (in particular, independent of the DH or DI2 deviation).
  • Each of the regulators 304, 308 is for example one of: a PID regulator, a PI regulator and a non-linear regulator.
  • the terminal N2 of the module 1082 is connected to the terminal N.
  • the reconfiguration device 110 is then for example designed to control, for example independently of the commands of the control device 118, the switching arms QA2, QB2 to short-circuit the terminals P2, N2 when the network voltage VE belongs to the interval comprising the smallest voltages (the interval 170 - 450 V in the example described) and to leave the device de commanded 118 command switches QA2, QB2 so that the IO82 module performs the desired voltage conversion, in series with the IO81 module, when the network voltage VE belongs to the interval comprising the highest voltages (the interval 470 - 850 V in the example described).
  • each input voltage VEI, VE2 is thus equal to the network voltage VE.
  • terminal Pi of module 1081 is connected to terminal P and terminal N2 of module 1082 is connected to terminal N.
  • the switch 504 is designed to change Ni , P2 terminal connection. More specifically, in the example described, for the parallel configuration, the switch 504 is designed to connect the P2 terminal to the P terminal and the Ni terminal to the N terminal. For the series configuration, the switch 504 is designed to connect together terminals Ni and P2.
  • the reconfiguration device 110 is then for example designed to control the switch 504 to connect the two modules 1081, 1082 in parallel between the two input terminals P, N when the network voltage VE belongs to the interval grouping the voltages the smallest (the 170 - 450 V interval in the example described) and to connect the modules 1081, 1082 in series between the input terminals P, N when the network voltage VE belongs to the interval grouping together the voltages higher (the range 470 - 850 V in the example described).
  • FIG. 6 timing diagrams illustrating examples of commands QAi switches, QA2, QC1, QC2 will now be described. On these timing diagrams, the abscissa represents the time in milliseconds and the ordinate the control voltage in volts.
  • the commands of the switches QB1, QB2, QD1, QD2 are not represented because they are deduced from the commands of the switches QA1, QA2, QC1, QC2: the switches QB1, QB2 are respectively controlled in opposition to the switches QA1, QA2 ( preferably with a dead time) and the switches QD1, QD2 are respectively controlled in opposition to the switches QC1, QC2 (preferably with a dead time).
  • command C_QA2 of switch QA2 alternates between two opening and closing values respectively according to a period TB equal to the inverse of a switching frequency FB.
  • this switching frequency F B is fixed and predefined and the control device 118 is designed to determine a duty cycle of the command C_QA2 from the local input voltages VEI, VE2, to maintain the latter in the predefined ratio.
  • the duty cycle of the command C_QA2 is determined by the device 320 from the deviation DI2.
  • command C_QAi of switch QA1 alternates between two opening and closing values respectively according to period TB.
  • the control device 118 is designed to determine a duty cycle of the command C_QAi from the local input voltages VEI, VE2, to maintain the latter in the predefined ratio.
  • the duty cycle of the command C_QAi is determined by the device 316 from the deviation DI1.
  • the commands of one of the switching arms are shifted by 45% to 55%, preferably 50%, of the switching period TB with respect to the commands of the other switching arm. This is illustrated in FIG. 6 by the double arrow TB/2.
  • the commands C_QCi, C_QC2 of the switches QC1, QC2 alternate between two opening and closing values respectively according to a switching period TF.
  • this switching period TF is fixed and the commands C_QCi , C_QC2 have equal and fixed duty cycles.
  • the commands of one of the pairs of switches is shifted by 20% to 30%, preferably 25%, of the switching period TF with respect to the commands of the other pair of switches (the pair QC1, QD1 in the example described). This is illustrated in FIG. 6 by the double arrow TF/4.
  • the shift of approximately 25% is valid in the case where the second voltage converter 204i, 2042 is of the flyward type.
  • the offset could be different. For example, it could be between 45% and 55%, preferably 50%, for a phase shift converter or for a resonant LLC converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

Ce convertisseur de tension isolé (106) comporte : - des première et deuxième bornes d'entrée globales (P, N) destinées à recevoir entre elles une tension d'entrée globale (VE); et - un premier et un deuxième modules de conversion de tension (1081, 1082) chacun avec un circuit primaire et un circuit secondaire isolés reliés par un circuit magnétique, les circuits primaires étant connectés en série entre les bornes d'entrée globales (P, N) pour recevoir chacun, comme tension d'entrée locale (VE1, VE2), une partie seulement de la tension d'entrée globale (VE). Il comporte en outre un dispositif (118) de régulation des tensions d'entrée locales (VE1, VE2) pour les maintenir dans un ratio prédéfini, par exemple pour les maintenir égales l'une à l'autre.

Description

Description
TITRE : CONVERTISSEUR DE TENSION ISOLÉ Domaine technique de l’invention
[0001 ] La présente invention concerne un convertisseur de tension isolé et un véhicule automobile comportant un tel convertisseur de tension isolé.
Arrière-plan technologique
[0002] La demande de brevet français publiée sous le numéro FR 3064832 A1 décrit un convertisseur de tension isolé comportant : des première et deuxième bornes d’entrée globales destinées à recevoir une tension d’entrée globale ; et un premier et un deuxième modules de conversion de tension comportant chacun un circuit primaire et un circuit secondaire isolés reliés par un circuit magnétique, le circuit primaire du premier module de conversion de tension et le circuit primaire du second module de conversion de tension étant conçus pour être connectés en série entre les bornes d’entrée globales pour recevoir chacun, comme tension d’entrée locale, une partie seulement de la tension d’entrée globale.
[0003] Plus précisément, dans la demande de brevet FR 3064832 A1 , le convertisseur de tension est un convertisseur de tension continu-continu, précédé d’un convertisseur de tension altematif-continu destiné à être connecté à un réseau électrique alternatif monophasé ou bien triphasé. Il est prévu de laisser les deux modules en série lorsque réseau électrique est triphasé et de court -circuiter l’un des modules lorsque le réseau électrique est monophasé.
[0004] Ce convertisseur de tension connu présente comme inconvénient qu’un déséquilibre peut se produire conduisant à ce que la majeure partie de la conversion de tension soit réalisée par un seul des modules, ce qui peut le détériorer s’il n’est pas dimensionné pour recevoir une telle puissance électrique .
[0005] Il peut ainsi être souhaité de prévoir un convertisseur de tension qui permette de s’affranchir d’au moins une partie des problèmes et contraintes précités. Résumé de l’invention
[0006] Il est donc proposé un convertisseur de tension isolé comportant : des première et deuxième bornes d’entrée globales destinées à recevoir une tension d’entrée globale ; et un premier et un deuxième modules de conversion de tension comportant chacun un circuit primaire et un circuit secondaire isolés reliés par un circuit magnétique, le circuit primaire du premier module de conversion de tension et le circuit primaire du second module de conversion de tension étant conçus pour être connectés en série entre les bornes d’entrée globales pour recevoir chacun, comme tension d’entrée locale, une partie seulement de la tension d’entrée globale ; le convertisseurde tension isolé étant caractérisé en ce que qu’il comporte en outre un dispositif de régulation des tensions d’entrée locales pour les maintenir dans un ratio prédéfini, par exemple pour les maintenir égales l’une à l’autre, lorsque les circuits primaires sont connectés en série.
[0007] Ainsi, grâce à l’invention, le dispositif de régulation empêche qu’un module prenne le pas sur l’autre.
[0008] De façon optionnelle, les circuits primaires des modules de conversion de tension comportent chacun au moins un interrupteur à semi-conducteur et le dispositif de régulation est conçu pour commander les interrupteurs à semi- conducteur de manière à maintenir les tensions d’entrée locales dans le ratio prédéfini. Ainsi, la régulation des tensions d’entrée locales peut facilement être mise en oeuvre.
[0009] De façon optionnelle également, le dispositif de régulation est conçu pour déterminer, à partir d’un écart entre les tension d’entrée locales, une compensation et pour commander l’un des modules de conversion de tension à partird’une consigne électrique diminuée de la compensation et l’autre des modules de conversi on de tension à partir de la même consigne augmentée de la compensation. Ainsi, il est possible de réguler les tensions d’entrée locales en même temps à partir d’une seule boucle de compensation.
[0010] De façon optionnelle également, le dispositif de régulation est conçu pour déterminer la consigne électrique à partird’un écartentre unetensionde sortie du convertisseur de tension isolé et une consigne de tension de sortie. Ainsi, la tension de sortie est régulée en même temps que les tensions d’entrée locales .
[0011 ] De façon optionnelle également, la consigne électrique est une consigne de courant et la compensation est une compensation de courant. En effet, les modules comportent généralement déjà des blocs fonctionnels de régulation de courant. Par exemple, il est aussi possible de surveiller ce courant pourdétecter des défauts dans le convertisseurde tension. Ainsi, il est possible de réutiliser ces blocs fonctionnels pour réguler les tensions d’entrée locales. En outre, la régulation de courant peut permettre d’améliorer les performances dynamiques du convertisseur de tension.
[0012] De façon optionnelle également, le circuit primaire de chacun des modules de conversion de tension comporte deux interrupteurs agencés en bras de commutation entre deuxbornes d’entrée du module de conversion de tension considéré et le dispositif de régulation est conçu pour commander les deux bras de commutation selon une même période de commutation et selon un rapport cyclique de manière à maintenir lesdites tensions d’entrée locales dans le ratio prédéfini, et en décalant les commandes d’un des bras de commutation de 45% à 55%, de préférence 50%, de la période de commutation par rapport aux commandes de l’autre bras de commutation. Ce décalage des commandes permet d’augmenter la fréquence du bruit et de compenser les courants de perturbation.
[0013] De façon optionnelle également, le convertisseurde tension comporte en outre un dispositif de reconfiguration conçu pour sélectivement connecter les circuits primaires en série, et connecter le circu it primaire du premier module de conversion de tension entre les deuxbornes d’entrée globales afin que sa tension d’entrée soit égale à la tension d’entrée.
[0014] De façon optionnelle également, le dispositif de reconfiguration est conçu pour sélectivement connecter les circuits primaires des modules de conversion de tension en parallèle l’un de l’autre entre les bornes d’entrée globales afin que chaque tension d’entrée locale soit égale à la tension d’entrée globale. Ainsi, les deux modules sont toujours utilisés pour réaliser la conversion de tension.
[0015] De façon optionnelle également, le dispositif de reconfiguration est conçu , afin de connecter le circuit primaire du premier module de conversion de tension entre les deux bornes d’entrée globales, pour désactiver le deuxième module de conversion de tension. En effet, les modules sont généralement conçus pour avoir leurs meilleures performances à haute puissance, par exemple entre 50% et 100 % de la puissance nominale. Ainsi, la désactivation du deuxième module permet d’augmenter les chances que le premier module fonctionne dans sa plage de meilleures performances. Au contraire, si les modules fonctionnaient en parallèle, ils risqueraient chacun de fonctionner hors de leur plage de meilleures performances. [0016] De façon optionnelle également, le dispositif de reconfigu ration est conçu pour placer les circuits primaires des modules de conversion de tension en série lorsque la tension d’entrée globale est dans un premier intervalle prédéfini de tensions et pour connecter le circuit primaire du premier module de conversion de tension entre les deuxbornes d’entrée globales lorsque la tension d’entrée globale est dans un deuxième intervalle prédéfini de tensions, plus bas que le premier intervalle prédéfini de tensions. Ainsi, les tensions d’entrée locales sont limitées et ne prennent pas des valeurs trop importantes.
[0017] De façon optionnelle également, les premier et deuxième modules de conversion de tension sont des modules de conversion continu -continu.
[0018] De façon optionnelle également, les circuits secondaires des premier et deuxième modules de conversion de tension sont connectés en parallèle l’un de l’autre en sortie du convertisseur de tension isolé.
[0019] Il est également proposé véhicule automobile comportant un convertisseur de tension selon l’invention.
Brève description des figures
[0020] L’invention sera mieux comprise à l’aide de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant auxdessins annexés dans lesquels : [0021 ] la figure 1 est un schéma électrique d’un système électrique comportant un premier exemple de convertisseur de tension selon l’invention ,
[0022] la figure 2 est un schéma électrique d’un de deux modules de conversion de tension du convertisseur de tension de la figure 1 ,
[0023] la figure 3 est un schéma de régulation automatique mis en œuvre par un dispositif de commande des deux modules de conversion de tension,
[0024] la figure 4 est un schéma électrique d’un système électrique comportant un deuxième exemple de convertisseur de tension selon l’invention,
[0025] la figure 5 est un schéma électrique d’un système électrique comportant un troisième exemple de convertisseur de tension selon l’invention, et [0026] la figure 6 regroupe des chronogrammes de commandes d’interrupteurs commandables des modules de conversion de tension . Description détaillée de l’invention
[0027] En référence à la figure 1 , un système électrique 100 mettant en œuvre l’invention va à présent être décrit.
[0028] Le système électrique 100 comporte tout d’abord un réseau électrique 102 conçu pour délivrer une tension réseau VE. Dans l’exemple décrit, le réseau électrique 102 est continu, de sorte que la tension réseau VE est continue.
[0029] Le système électrique 100 comporte en outre une charge 104 (tel qu’un réseau basse tension) et un convertisseurde tension isolé 106 destiné à être connecté au réseau électrique 102 pourconvertir la tension réseau VE en une tension de sortie Vs d’alimentation de la charge 104. Dans l’exemple décrit, le convertisseur de tension 106 est un convertisseurcontinu-continu, de sorteque la tension de sortie Vs est continue. En outre, la tension réseau VE est par exemple une haute tension (c’est-à-dire par exemple une tension supérieure à 60 V), tandis que la tension d’alimentation Vs est une basse tension (c’est-à-dire par exemple une tension inférieure à 60 V). Par exemple, la tension réseau VE est comprise entre 100 V et 900 V, tandis que la tension d’alimentation Vs est comprise entre 10 V et 50 V, généralement égale à 14 V ou bien 48 V.
[0030] La tension réseau VE reçue par le convertisseurde tension 106 peut prendre des valeurs très différentes. Cela peut venirdu fait que le convertisseurde tension 106 est destiné à être successivement connecté à des réseaux électriques 102 différents et/ou du fait qu’un même réseau électrique 102 peut voir sa tension réseau VE varier au cours du temps, par exemple suivant le mode de fonctionnement du réseau électrique 102. Par exemple, quand le réseau électrique 102 comporte une ou des batteries destinées à fournir une tension de 400 V, la tension réseau VE peut en fait varier entre 170 V et 450 V suivant la charge de la ou des batteries. Quand le réseau électrique 102 comporte une ou des batteries destinées à fournir une tension de 800 V, la tension réseau VE peut en fait varier entre 470 V et 850 V suivant la charge de la ou des batteries. C’est pourquoi le convertisseur de tension 106 est de préférence un convertisseurde tension continu, conçu pourfournirune tension de sortie Vs sensiblement constante sur toute une plage de tensions réseau VE possibles.
[0031 ] Le convertisseur de tension 106 présente des première et deuxième bornes d’entrée P, N entre lesquelles le réseau électrique 102 est connecté pour délivrer sa tension réseau VE entre les bornes P, N. [0032] Le convertisseur de tension 106 comporte en outre des premier et deuxième modules 108i, 1082 de conversion de tension. Dans l’exemple décrit, ces modules 1081 , 1082 sont des convertisseurs continu-continu. De préférence, les modules 1081 et 1082 sont sensiblement identiques. Les modules 1081, 1082 comportent de préférence des interrupteurs à semi-conducteur.
[0033] Les modules IO81, IO82 sont par exemple connectés à la charge 104 en parallèle l’un de l’autre. Ainsi, ils fournissent chacun la tension de sortie Vs.
[0034] Chaque module 1081 , 1082 présente des première et deuxième bornes d’entrée Pi, Ni, respectivement P2, N2. Dans l’exemple décrit, la borne d’entrée Pi du module 1081 est connectée à la borne d’entrée P du convertisseur de tension 106 et la borne d’entrée Ni du module 1081 est connectée à la borne d’entrée P2 du module I O82.
[0035] Le convertisseur de tension 106 comporte en outre un dispositif 110 de reconfiguration de la connexion des modules 1081 , 1082 au réseau électrique 102. Plus précisément, le dispositif de reconfiguration 110 est conçu pour sélectivement : (i) connecter les modules I O81, IO82 en série entre les bornes d’entrée P, N pour recevoir chacun, comme tension d’entrée VEI , VE2, une partie seulement de la tension réseau VE, et (ii) connecter le module 1081 entre les deuxbornes d’entrée P, N afin que sa tension d’entrée VEI soit égale à la tension réseau VE. Dans l’exemple décrit, dans ce dernier cas, le module IO82 est désactivé, de sorteque seul le module 1081 réalise la conversion de tension.
[0036] Pour passer d’une configuration de connexion à l’autre, le dispositif de reconfiguration 110 commande par exemple un commutateur 112 conçu pour connecter la borne d’entrée N sélectivement à la borne d’entrée Ni du module 1081 et à la borne d’entrée N2 du module IO82. Ainsi, lorsque le commutateur 112 connecte la borne d’entrée N à la borne d’entrée Ni du module 1081 , ce dernier est connecté entre les deuxbornes d’entrée P, N afin que sa tension d’entrée VEI soit égale à la tension réseau VE. La borne d’entrée N2 du module 1082 présente alors un potentiel flottant, de sorte que le module 1082 est déconnecté du réseau électrique 102 et donc inactif. Lorsque le commutateur 112 connecte la borne d’entrée N à la borne d’entrée N2du module IO82, les modules IO81, 1082 sont alors connectés en série entre les bornes d’entrée P, N pour recevoir chacun, comme tension d’entrée VEI ,
VE2, une partie seulement de la tension réseau VE. Plus précisément, dans l’exemple décrit, la tension réseau VE est égale à la somme des tensions d’entrée VEI , VE2. [0037] Le convertisseur de tension 106 comporte en outre, toujours dans l’exemple décrit, un dispositif 114 de mesure de la tension réseau VE et le dispositif de reconfiguration 110 est conçu pour commander le commutateur 112 en fonction de la tension réseau VE mesurée. Par exemple, le dispositif de reconfiguration 110 est conçu pour déterminer dans lequel parmi deux intervalles préfinis de tension se trouve la tension d’entrée VE. De préférence, ces deux intervalles prédéfinis ne se chevauchent pas. Dans l’exemple décrit, le premier intervalle correspond aux tensions réseau VE possibles pour un réseau électrique de 400 V (c’est-à-dire par exemple 170 - 450 V) et le deuxième intervalle correspond aux tension s réseau VE possibles pour un réseau électrique de 800 V (c’est-à-dire par exemple 470 - 850 V). Par exemple, la tension d’entrée VE mesurée peut être comparée à un seuil prédéfini permettant de distinguer les deux intervalles. Dans l’exemple décrit, ce seuil pourrait être compris entre 450 V et 470 V.
[0038] Le dispositif de reconfiguration 110 est alors par exemple conçu pour commander le commutateur 112 pour connecter le module 1081 entre les deux bornes d’entrée P, N lorsque la tension réseau VE appartient à l’intervalle regroupant les tensions les plus petites (l’intervalle 170 - 450 V dans l’exemple décrit) et pour connecter les modules 1081 , 1082 en série entre les bornes d’entrée P, N lorsque la tension réseau VE appartient à l’intervalle regroupant les tensions les plus élevées (l’intervalle 470 - 850 V dans l’exemple décrit).
[0039] Dans l’exemple décrit où les modules IO81, I O82 comportent des interrupteurs à semi-conducteur, le convertisseur de tension 106 comporte en outre un dispositif 118 dé commandé de ces interrupteurs, afin par exemple de maintenir la tension de sortie Vs égale à une consigne Vs*.
[0040] Même si les modules IO81, IO82 sont destinés à être identiques, il existe toujours des différences entre les composants, résultant par exemple des tolérances de fabrication. Pour cette raison, lorsque les modules 1081 , 1082 sont connectés en série, il existe un risque que l’un des modules 1081 , 1082 prenne le pas sur l’autre et réalise toute la conversion de tension. Pour évitercela, il est proposé de chercher à maintenir les tensions d’entrée VE1 , VE2 égales.
[0041 ] Ainsi, le convertisseur de tension 106 comporte en outre un dispositif de régulation des tensions d’entrée VEI , VE2 des modules 1081 , 1082, lorsque ces derniers sont connectés en série, afin de chercher à maintenir ces tensions d’entrée VEI , VE2 égales, notamment à une incertitude près. Par exemple, le convertisseur de tension 106 comporte des dispositifs 120 de mesure des tensions d’entrée VEI , VE2 et le dispositif de régulation est conçu pour réguler les tensions d’entrée VEI, VE2 à partir de leurs mesures.
[0042] Toujours par exemple, le dispositif de régulation est conçu pour commander au moins certains des interrupteurs à semi-conducteur des modules 108i, IO82, à partir des tensions d’entrée VEI , VE2 mesurées. Dans l’exemple décrit, le dispositif de régulation est mis en œuvre par le dispositif de commande 118. Un exemple de tel dispositif de commande 118 sera décrit plus en détail plus loin, en référence à la figure 3. [0043] En référence à la figure 2, un exemple de réalisation du module 1082 va à présent être décrit. Le module 1081 est similaire et comporte des composants sensiblement identiques, qui seront désignés par la suite avec l’indice « 1 » plutôt que l’indice « 2 » utilisé pour les composants du module 1 082.
[0044] Le module 1082 comporte tout d’abord une capacité d’entrée CE2 connectée entre les bornes P2, N2 pour lisser la tension d’entrée VE2.
[0045] Le module 1082 comporte en outre un premier convertisseur de tension 2022 conçu pour convertir la tension d’entrée VE2 en une tension intermédiaire VINÏ2 continue.
[0046] Le convertisseur de tension 2022 comporte un bras de commutation comprenant deux interrupteurs à semi-conducteur QA2, QB2 connectés entre les borne d’entrée P2, N2 et l’un à l’autre en un point milieu. Chacun des interrupteurs à semi-conducteur QA2, QB2 est par exemple un transistor à effet de champ à structure métal-oxyde-semiconducteur (de l’anglais « Métal Oxide Semiconductor Field Effect T ransistor » ou MOSFET) ou bien un transistor bipolaire à grille isolée (de l’anglais « Insulated Gâte Bipolar Transistor » ou IGBT).
[0047] Le convertisseur de tension 2022 comporte en outre une inductance L2 et une capacité CINÏ2 connectées l’une à la suite de l’autre entre le point milieu du bras de commutation QA2, QB2 et la borne d’entrée N2. La tension intermédiaire VINT2 est ainsi la tension aux bornes de la capacité CINT2. [0048] Le module 1082 comporte en outre un deuxième convertisseurde tension
2042 conçu pour convertir la tension intermédiaire VINT2 en la tension de sortie Vs.
[0049] Le convertisseur de tension 2042 comporte en particulier une barrière d’isolation galvanique 2062 comprenant un circuit magnétique 2082 qui, dans l’exemple décrit, couple un ou plusieurs enroulements primaires 21 02 et un ou plusieurs enroulements secondaires 21 22 entre eux.
[0050] Dans l’exemple décrit, le convertisseurde tension 2042 est un convertisseur dit « flyward » décrit par exemple en détail dans la demande de brevet français publiée sous le numéro FR 3056038 A1 . Dans un convertisseurde ce type, il est prévu deux interrupteurs à semi-conducteur QC2, QD2 connectés l’un à l’autre par une capacité milieu CF2, l’ensemble étant connecté aux bornes de la capacité intermédiaire CINT2 pour recevoir la tension intermédiaire VINT2. Chacun des interrupteurs à semi-conducteur QC2, QD2 comporte par exemple un MOSFET ou bien un IGBT.
[0051 ] Le module de conversion de tension 1082 présente ainsi un circuit primaire 2142 et un circuit secondaire 2162 isolés, reliés par le circuit magnétique 2082. Le circuit primaire 2142 comporte en particulier les bornes P2, N2 pour recevoir la tension d’entrée locale VE2. Dans l’exemple décrit, le circuit primaire 2142 inclut le convertisseur de tension 2022, les composants du convertisseur de tension 2042 connectés entre le convertisseur de tension 2022 et le ou les enroulements primaires 2102, et ce ou ces enroulements primaires 2102. De son côté, le circuit secondaire 2162 inclut les composants du convertisseur de tension 2042 connectés entre le ou les enroulements secondaires et des bornes de sortie 21 82 du module de conversion de tension 1 082.
[0052] En référence à la figure 3, un exemple de dispositif de commande 118 va à présent être décrit plus en détail.
[0053] Le dispositif de commande 118 comporte tout d’abord un comparateur 302 conçu pour déterminer un écart AVs entre la tension de sortie Vs mesurée et une consigne de tension de sortie Vs*.
[0054] Le dispositif de commande 118 comporte en outre un régulateur 304 conçu pour déterminer une consigne électrique dite initiale à partir de l’écart AVs. Dans l’exemple décrit, la consigne électrique initiale est une consigne de courant I*.
[0055] Le dispositif de commande 118 comporte en outre un comparateur 306 conçu pour déterminer un écart AVE entre les tensions d’entrée VEI , VE2.
[0056] Le dispositif de commande 118 comporte en outre un régulateur 308 conçu pour déterminer une compensation à partir de l'écart AVE. Dans l’exemple décrit, la compensation ICOMP est une compensation de courant. [0057] Le dispositif de commande 118 comporte en outre, pour la commande de l’un des modules (le module 1081 dans l’exemple décrit), un soustracteur 310 conçu pour diminuer la consigne I* de la compensation ICOMP pour fournir une consigne dite finale h* pour ce module 108i. Dans l’exemple décrit, cette consigne finale h* est une consigne de courant pourle courant circulant dans l’inductance du module considéré (l’inductance Li dans l’exemple décrit).
[0058] Le dispositif de commande 118 comporte en outre, pour la commande de l’autre des modules (le module 1082 dans l’exemple décrit), un additionneur 312 conçu pour augmenter la consigne initiale I* de la compensation ICOMP pour fournir une consigne dite finale 1*2 pour ce module 1082. Dans l’exemple décrit, cette consigne finale I2* est une consigne de courant pour le courant circulant dans l’inductance du module considéré (l’inductance L2 dans l’exemple décrit).
[0059] Pour la commande du module 1081 , le dispositif de commande 118 comporte en outre un comparateur 314conçu pourdéterminer un écart DH entre le courant h mesuré et la consigne finale 1*1 et un dispositif 316 conçu pour déterminer des commandes pour les interrupteurs QA1 , QB1 du module 1081 à partir de cet écart DH .
[0060] De même, pour la commande du module 1082, le dispositif de commande 118 comporte en outre un comparateur 318 conçu pourdéterminer un écart DI2 entre le courant I2 mesuré et la consigne finale 1*2 et un dispositif 320 conçu pour déterminer des commandes pour les interrupteurs QA2, QB2 du module 1082 à partir de cet écart DI2.
[0061 ] Les commandes sont par exemple sous la forme de signaux en modulation de largeur d’impulsion (de anglais « Puise Width Modulation » ou PWM) présentant un rapport cyclique déterminé en fonction de l’écart DH ou DI2, suivant le dispositif 316 ou 320 considéré.
[0062] Les dispositifs 316, 320 peuvent en outre être conçus pour déterminer des commandes pour les interrupteurs QC1, QD1, respectivement QC2, QD2. Ces commandes sont par exemple également des signaux PWM, mais dont le rapport cyclique est fixe (en particulier, indépendant de l’écart DH ou DI2).
[0063] Chacun des régulateur 304, 308 est par exemple l’un parmi : un régulateur PID, un régulateur PI et un régulateur non linéaire.
[0064] En référence à la figure 4, un autre exemple 402 de convertisseur de tension selon l’invention va à présent être décrit. [0065] Ce convertisseur de tension est similaire à celui de la figure 1 , si ce n’est qu’il ne comporte pas le commutateur 112.
[0066] Dans ce mode de réalisation, la borne N2 du module 1082 est connectée à la borne N. En outre, le dispositif de reconfiguration 110 est alors par exemple conçu pour commander, par exemple indépendamment des commandes du dispositif de commande 118, le bras de commutation QA2, QB2 pour court-circuiter les bornes P2, N2 lorsque la tension réseau VE appartient à l’intervalle regroupant les tensions les plus petites (l’intervalle 170 - 450 V dans l’exemple décrit) et pour laisser le dispositif dé commandé 118 commander l’interrupteursQA2, QB2 pour que le module IO82 réalise la conversion de tension souhaitée, en série avec le module IO81, lorsque la tension réseau VE appartient à l’intervalle regroupant les tensions les plus élevées (l’intervalle 470 - 850 V dans l’exemple décrit).
[0067] En référence à la figure 5, un autre exemple 502 de convertisseur de tension selon l’invention va à présent être décrit.
[0068] Ce mode de réalisation est similaire à celui de la figure 1 , si ce n’est que le commutateur 112 est remplacé par un commutateur 504 conçu pour sélectivement connecter les deux modules 1081 , 1082 en série et en parallèle au réseau électrique 102. Dans la configuration parallèle, chaque tension d’entrée VEI , VE2 est ainsi égale à la tension réseau VE.
[0069] Dans l’exemple décrit, la borne Pi du module 1081 est connectée à la borne P et la borne N2 du module 1082 est connectée à la borne N. Ainsi, pour passer d’une configuration à l’autre, le commutateur 504 est conçu pour modifier la connexion des bornes Ni , P2. Plus précisément, dans l’exemple décrit, pour la configuration en parallèle, le commutateur 504 est conçu pourconnecterla borne P2 à la borne P et la borne Ni à la borne N. Pour la configuration en série, le commutateur 504 est conçu pour connecter ensemble les bornes Ni et P2.
[0070] Le dispositif de reconfiguration 110 est alors par exemple conçu pour commander le commutateur 504 pour connecter les deux modules 1081 , 1082 en parallèle entre les deuxbornes d’entrée P, N lorsque la tension réseau VE appartient à l’intervalle regroupant les tensions les plus petites (l’intervalle 170 - 450 V dans l’exemple décrit) et pour connecter les modules 1081 , 1082 en série entre les bornes d’entrée P, N lorsque la tension réseau VE appartient à l’intervalle regroupant les tensions les plus élevées (l’intervalle 470 - 850 V dans l’exemple décrit). [0071 ] En référence à la figure 6, des chronogrammes illustrant des exemples de commandes des interrupteurs QAi , QA2, QC1 , QC2 vont à présent être décrit. Sur ces chronogrammes, l’abscisse représente le temps en millisecondes et l’ordonnée la tension de commande en volts.
[0072] Les commandes des interrupteurs QB1 , QB2, QD1 , QD2 ne sont pas représentées car elles se déduisent des commandes des interrupteurs QA1, QA2, QC1, QC2 : les interrupteurs QB1, QB2 Sont respectivement commandés en opposition des interrupteurs QA1, QA2 (avec de préférence un temps mort) et les interrupteurs QD1, QD2 sont respectivement commandés en opposition des interrupteurs QC1, QC2 (avec de préférence un temps mort).
[0073] Comme cela est visible sur le premier chronogramme, la commande C_QA2 de l’interrupteur QA2 alterne entre deux valeurs respectivement d’ouverture et de fermeture selon une période TB égale à l’inverse d’une fréquence de commutation FB. Dans l’exemple décrit, cette fréquence de commutation F B est fixe et prédéfinie et le dispositif de commande 118 est conçu pour déterminer un rapport cyclique de la commande C_QA2 à partir des tensions d’entrée locales VEI , VE2, pour maintenir ces dernières dans le ratio prédéfini. Comme cela est illustré sur la figure 3, dans l’exemple décrit, le rapport cyclique de la commande C_QA2 est déterminé par le dispositif 320 à partir de l’écart DI2.
[0074] De même, comme cela est visible sur le deuxième chronogramme, la commande C_QAi de l’interrupteur QA1 alterne entre deux valeurs respectivement d’ouverture et de fermeture selon la période TB. Dans l’exemple décrit, le dispositif de commande 118 est conçu pour déterminer un rapport cyclique de la commande C_QAi à partir des tensions d’entrée locales VEI , VE2, pour maintenir ces dernières dans le ratio prédéfini. Comme cela est illustré sur la figure 3, dans l’exemple décrit, le rapport cyclique de la commande C_QAi est déterminé par le dispositif 316 à partir de l’écart DI1.
[0075] En outre, de préférence, les commandes d’un des bras de commutation sont décalées de 45% à 55%, de préférence 50%, de la période de commutation TB par rapport aux commandes de l’autre bras de commutation. Ceci est illustré sur la figure 6 par la double flèche TB/2.
[0076] Comme cela est visible sur les troisième et quatrième chronogrammes, les commandes C_QCi , C_QC2 des interrupteurs QC1 , QC2 alternent entre deux valeurs respectivement d’ouverture et de fermeture selon une période de commutation TF. Dans l’exemple décrit, cette période de commutation TF est fixe et les commandes C_QCi , C_QC2 présentent des rapports cycliques égaux et fixes.
[0077] En outre, de préférence, les commandes d’une des paires d’interrupteurs (la paire QC2, QD2 dans l’exemple décrit) est décalée de 20% à 30%, de préférence 25%, de la période de commutation TF par rapport aux commandes de l’autre paire d’interrupteurs (la paire QC1, QD1 dans l’exemple décrit). Ceci est illustré sur la figure 6 par la double flèche TF/4.
[0078] Il apparaît clairementqu’un convertisseur de tension tel que ceux décrits précédemment permet de maintenir à l’équilibre le fonctionnement des modules.
[0079] On notera par ailleurs que l’invention n’est pas limitée aux modes de réalisation décrits précédemment. Il apparaîtra en effet à l'homme de l'art que diverses modifications peuvent être apportées aux modes de réalisation décrits ci - dessus, à la lumière de l'enseignement qui vient de lui être divulgué.
[0080] Par exemple, le décalage d’environ 25% est valable dans le cas où le deuxième convertisseur de tension 204i, 2042 est de type flyward. Pour d’autres types de convertisseurs, le décalage pourrait être différent. Par exemple, il pourrait être compris entre 45% et 55%, de préférence 50%, pour un convertisseur à décalage de phase (de l’anglais « phase shift ») ou bien pour un convertisseur LLC résonant.
[0081] Dans la présentation détaillée de l’invention qui est faite précédemment, les termes utilisés ne doivent pas être interprétés comme limitant l’invention aux modes de réalisation exposés dans la présente description, mais doivent être interprétés pour y inclure tous les équivalents dont la prévision est à la portée de l'h omme de l'art en appliquant ses connaissances générales à la mise en œuvre de l'enseignement qui vient de lui être divulgué.

Claims

Revendications
[1 ] Convertisseur de tension isolé (106 ; 402 ; 502) comportant : des première et deuxième bornes d’entrée globales (P, N) destinées à recevoir entre elles une tension d’entrée globale (VE) ; et - un premier et un deuxième modules de conversion de tension (108i, 1082) comportant chacun un circuit primaire (2142) et un circuit secondaire (2162) isolés reliés par un circuit magnétique (2O82), le circuit primaire du premier module de conversion de tension (1081) et le circuit primaire (2142) du second module de conversion de tension (1082) étant conçus pour être connectés en série entre les bornes d’entrée globales (P, N) pour recevoir chacun, comme tension d’entrée locale (VEI , VE2), une partie seulement de la tension d’entrée globale (VE) ; le convertisseurde tension isolé étant caractérisé en ce qu’il comporte en outre un dispositif (118) de régulation des tensions d’entrée locales (VEI , VE2) pour les maintenir dans un ratio prédéfini, par exemple pour les maintenir égales l’une à l’autre, lorsque les circuits primaires (2142) sont connectés en série.
[2] Convertisseur de tension isolé (106 ; 402 ; 502) selon la revendication 1 , dans lequel les circuits primaires (2142) des modules de conversion de tension (1081 , I O82) comportent chacun au moins un interrupteur à semi-conducteur (QA2, QB2) et dans lequel le dispositif de régulation (118) est conçu pour commander les interrupteurs à semi-conducteur (QA2, QB2) de manière à maintenir les tensions d’entrée locales (VEI , VE2) dans le ratio prédéfini.
[3] Convertisseur de tension isolé (106 ; 402 ; 502) selon la revendication 2, dans lequel le dispositif de régulation (118) est conçu pour déterminer, à partir d’un écart (AVE) entre les tension d’entrée locales (VEI , VE2), une compensation ( ICOMP) et pour commander l’un des modules de conversion de tension (1081 , 1082) à partird’une consigne électrique (I*) diminuée de la compensation ( ICOMP) et l’autre des modules de conversion de tension (IO81, 1082) à partir de la même consigne (I*) augmentée de la compensation (ICOMP) .
[4] Convertisseur de tension isolé (106 ; 402 ; 502) selon la revendication 3, dans lequel le dispositif de régulation (118) est conçu pour déterminer la consigne électrique (I*) à partir d’un écart (D /s) entre une tension de sortie (Vs) du convertisseur de tension isolé (106) et une consigne de tension de sortie (Vs*).
[5] Convertisseur de tension isolé (106 ; 402 ; 502) selon la revendication 3 ou 4, dans lequel la consigne électrique ( ) est une consigne de courant et dans lequel la compensation (ICOMP) est une compensation de courant.
[6] Convertisseur de tension isolé (106 ; 402 ; 502) selon l’une quelconque des revendications 2 à 5, dans lequel le circuit primaire (2142) de chacun des modules de conversion de tension ( 1081 , IO82) comporte deux interrupteurs (QA2, QB2) agencés en bras de commutation entre deuxbornes d’entrée (Pi, Ni, P2, N2) du module de conversion de tension (1081, 1082) considéré et dans lequel le dispositif de régulation (118) est conçu pour commander les deux bras de commutation selon une même période de commutation (TB) et selon un rapport cyclique de manière à maintenir lesdites tensions d’entrée locales (VEI , VE2) dans le ratio prédéfini, et en décalant les commandes d’un des bras de commutation de 45% à 55%, de préférence 50%, de la période de commutation (TB) par rapport aux commandes de l’autre bras de commutation.
[7] Convertisseur de tension isolé (106 ; 402 ; 502) selon l’une quelconque des revendications 1 à 6, comportanten outre un dispositif de reconfiguration (110) conçu pour sélectivement connecter les circuits primaires (2142) en série, et connecter le circuit primaire du premier module de conversion de tension ( 1081 ) entre les deux bornes d’entrée globales (P, N) afin que sa tension d’entrée (VEI) soit égale à la tension d’entrée (VE).
[8] Convertisseur de tension isolé (502) selon la revendication 7, dans lequel le dispositif de reconfiguration (110) est conçu pour sélectivement connecter les circuits primaires (2142) des modules de conversion de tension ( 1081 , 1082) en parallèle l’un de l’autre entre les bornes d’entrée globales (P, N) afin que chaque tension d’entrée locale (VEI , VE2) soit égale à la tension d’entrée globale (VE).
[9] Convertisseur de tension isolé (106 ; 402) selon la revendication 7, dans lequel le dispositif de reconfiguration (110) est conçu, afin de connecter le circuit primaire du premier module de conversion de tension (1081) entre les deuxbornes d’entrée globales (P, N), pour désactiver le deuxième module de conversion de tension (1082).
[10] Convertisseur de tension isolé (106 ; 402 ; 502) selon l’une quelconque des revendications 7 à 9, dans lequel le dispositif de reconfiguration (110) est conçu pour placer les circuits primaires (2142) des modules de conversion de tension (108i,
1082) en série lorsque la tension d’entrée globale (VE) est dans un premier intervalle prédéfini de tensions et pour connecter le circuit primaire du premier module de conversion de tension (1081) entre les deuxbornes d’entrée globales (P, N) lorsque la tension d’entrée globale (VE) est dans un deuxième intervalle prédéfini de tensions, plus bas que le premier intervalle prédéfini de tensions.
[11] Convertisseur de tension isolé (106 ; 402 ; 502) selon l’une quelconque des revendications 1 à 10, dans lequel les premier et deuxième modules de conversion de tension (IO81, IO82) sontdes modules de conversion continu-continu.
[12] Convertisseur de tension isolé (106 ; 402 ; 502) selon l’une quelconque des revendications 1 à 11 , dans lequel les circuits secondaires (2162) des premier et deuxième modules de conversion de tension (IO81, I O82) sont connectés en parallèle l’un de l’autre en sortie du convertisseur de tension isolé.
[13] Véhicule automobile comportant un convertisseurde tension (106 ; 402 ; 502) selon l’une quelconque des revendications 1 à 12.
PCT/EP2022/058161 2021-03-29 2022-03-28 Titre : convertisseur de tension isolé WO2022207571A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038624.5A CN117581467A (zh) 2021-03-29 2022-03-28 隔离电压转换器
EP22718907.3A EP4315577A1 (fr) 2021-03-29 2022-03-28 Titre : convertisseur de tension isolé

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103211A FR3121298A1 (fr) 2021-03-29 2021-03-29 Convertisseur de tension isolé
FRFR2103211 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022207571A1 true WO2022207571A1 (fr) 2022-10-06

Family

ID=75746905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/058161 WO2022207571A1 (fr) 2021-03-29 2022-03-28 Titre : convertisseur de tension isolé

Country Status (4)

Country Link
EP (1) EP4315577A1 (fr)
CN (1) CN117581467A (fr)
FR (1) FR3121298A1 (fr)
WO (1) WO2022207571A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4401279A1 (fr) * 2023-01-16 2024-07-17 Huawei Digital Power Technologies Co., Ltd. Circuit de conversion de puissance et son procédé de commande, bloc-batterie et système de stockage d'énergie

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100007221A1 (en) * 2008-07-10 2010-01-14 Delta Electronics, Inc. Controlling method for multi-converter structure having series-connected inputs and parallel-connected outputs
US20100314937A1 (en) * 2009-06-11 2010-12-16 Jacobson Boris S Reconfigurable multi-cell power converter
US20120007431A1 (en) * 2010-07-08 2012-01-12 Delta Electronics Inc. Power supply having converters with serially connected inputs and parallel connected outputs
FR3056038A1 (fr) 2016-09-12 2018-03-16 Valeo Systemes De Controle Moteur Convertisseur de tension avec deux circuits convertisseur de tension chaines
FR3064832A1 (fr) 2017-04-03 2018-10-05 Valeo Siemens Eautomotive France Sas Systeme de chargeur electrique triphase et monophase pour vehicule electrique ou hybride
WO2019110297A1 (fr) * 2017-12-08 2019-06-13 Valeo Siemens Eautomotive France Sas Convertisseur continu-continu avec pre-charge d'un premier reseau electrique a partir d'un deuxieme reseau electrique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100007221A1 (en) * 2008-07-10 2010-01-14 Delta Electronics, Inc. Controlling method for multi-converter structure having series-connected inputs and parallel-connected outputs
US20100314937A1 (en) * 2009-06-11 2010-12-16 Jacobson Boris S Reconfigurable multi-cell power converter
US20120007431A1 (en) * 2010-07-08 2012-01-12 Delta Electronics Inc. Power supply having converters with serially connected inputs and parallel connected outputs
FR3056038A1 (fr) 2016-09-12 2018-03-16 Valeo Systemes De Controle Moteur Convertisseur de tension avec deux circuits convertisseur de tension chaines
FR3064832A1 (fr) 2017-04-03 2018-10-05 Valeo Siemens Eautomotive France Sas Systeme de chargeur electrique triphase et monophase pour vehicule electrique ou hybride
EP3386087A1 (fr) * 2017-04-03 2018-10-10 Valeo Siemens eAutomotive France SAS Système de chargeur électrique triphase et monophase pour véhicule électrique ou hybride
WO2019110297A1 (fr) * 2017-12-08 2019-06-13 Valeo Siemens Eautomotive France Sas Convertisseur continu-continu avec pre-charge d'un premier reseau electrique a partir d'un deuxieme reseau electrique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AYYANAR R ET AL: "Active Input-Voltage and Load-Current Sharing in Input-Series and Output-Parallel Connected Modular DC-DC Converters Using Dynamic Input-Voltage Reference Scheme", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 19, no. 6, 1 November 2004 (2004-11-01), pages 1462 - 1473, XP011121658, ISSN: 0885-8993, DOI: 10.1109/TPEL.2004.836671 *
MOHAMMADPOUR ALI ET AL: "Series-Input Parallel-Output Modular-Phase DC-DC Converter With Soft-Switching and High-Frequency Isolation", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 31, no. 1, 1 January 2016 (2016-01-01), pages 111 - 119, XP011669828, ISSN: 0885-8993, [retrieved on 20150921], DOI: 10.1109/TPEL.2015.2398813 *
YUNGTAEK JANG ET AL: "Input-voltage balancing of series-connected converters", APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 2011 TWENTY-SIXTH ANNUAL IEEE, IEEE, 6 March 2011 (2011-03-06), pages 1153 - 1160, XP032014023, ISBN: 978-1-4244-8084-5, DOI: 10.1109/APEC.2011.5744739 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4401279A1 (fr) * 2023-01-16 2024-07-17 Huawei Digital Power Technologies Co., Ltd. Circuit de conversion de puissance et son procédé de commande, bloc-batterie et système de stockage d'énergie

Also Published As

Publication number Publication date
EP4315577A1 (fr) 2024-02-07
FR3121298A1 (fr) 2022-09-30
CN117581467A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
EP3554887B1 (fr) Procédé de commande d'un dispositif de charge embarqué sur un véhicule électrique ou hybride
Gleissner et al. Design and control of fault-tolerant nonisolated multiphase multilevel DC–DC converters for automotive power systems
EP3607644B1 (fr) Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride
WO2009101300A2 (fr) Convertisseur alternatif/continu a isolement galvanique
EP3682525B1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
WO2022207571A1 (fr) Titre : convertisseur de tension isolé
EP3389175A1 (fr) Dispositif de conversion, procédé de commande et véhicule associés
WO2016027013A1 (fr) Chargeur de batterie pour un véhicule automobile électrique ou hybride à haute intégration
EP3685485B1 (fr) Procédé de commande d'un système de charge d'une batterie de traction
EP4068601A1 (fr) Convertisseur de tension isolé
EP3539203B1 (fr) Procédé de commande d'un redresseur triphasé pour un dispositif de charge embarqué sur un véhicule électrique ou hybride
EP3707800B1 (fr) Procédé de commande d'un chargeur de batterie d'accumulateurs électriques
WO2019238405A1 (fr) Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu
EP3966922B1 (fr) Convertisseur de tension multi niveaux à stockage d'énergie additionnel optimisé
FR3132994A1 (fr) Amortisseur actif de tension et convertisseur de tension
FR3143912A1 (fr) Système de commande d’un convertisseur de tension
EP4364283A1 (fr) Système de conversion de tension et véhicule automobile comportant un tel système
EP4014309A1 (fr) Circuit de maintien inductif
FR3131478A1 (fr) Dispositif de commutation avec circuit d’amorçage, engin de mobilite comportant un tel dispositif de commutation et procede correspondant
FR2841059A1 (fr) Conditionneur de reseau electrique
FR3140983A1 (fr) Transformateur d'un système électrique pour la conversion de la tension continue et pour la charge des batteries d'un véhicule.
FR3078212A1 (fr) Convertisseur dc-dc pour chargeur bidirectionnel.
FR2997579A1 (fr) Systeme de charge d'une batterie de vehicule automobile
FR2733862A1 (fr) Dispositif d'alimentation a decoupage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22718907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022718907

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022718907

Country of ref document: EP

Effective date: 20231030

WWE Wipo information: entry into national phase

Ref document number: 202280038624.5

Country of ref document: CN