Nothing Special   »   [go: up one dir, main page]

WO2022259972A1 - Injection apparatus and molding machine - Google Patents

Injection apparatus and molding machine Download PDF

Info

Publication number
WO2022259972A1
WO2022259972A1 PCT/JP2022/022600 JP2022022600W WO2022259972A1 WO 2022259972 A1 WO2022259972 A1 WO 2022259972A1 JP 2022022600 W JP2022022600 W JP 2022022600W WO 2022259972 A1 WO2022259972 A1 WO 2022259972A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
pressure
electric motor
injection
force
Prior art date
Application number
PCT/JP2022/022600
Other languages
French (fr)
Japanese (ja)
Inventor
眞 辻
俊昭 豊島
敏彰 中野
俊治 藤岡
三郎 野田
Original Assignee
芝浦機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦機械株式会社 filed Critical 芝浦機械株式会社
Publication of WO2022259972A1 publication Critical patent/WO2022259972A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits

Definitions

  • the present disclosure relates to an injection device and a molding machine including the injection device.
  • the molding machine is, for example, a die casting machine for molding metal or an injection molding machine for molding resin.
  • an injection device that uses a plunger to push out a molding material into a mold
  • a so-called hybrid type in which the plunger is driven by a hydraulic (e.g., hydraulic) drive unit and an electric drive unit
  • a hydraulic (e.g., hydraulic) drive unit and an electric drive unit e.g., Patent Documents 1 to 3 below.
  • Such an injection device has an injection cylinder connected to a plunger and an electric motor connected to a member (for example, a piston) of the injection cylinder.
  • the driving force generated by supplying the hydraulic fluid to the injection cylinder and the driving force by the electric motor simultaneously act on the plunger in the same direction (for example, the direction in which the plunger faces the mold) during an appropriate period during injection. or either one is selectively used.
  • the injection device may perform pressure increase to increase the pressure applied to the molding material by the plunger and hold pressure to maintain the increased pressure due to the pressure increase.
  • Increased pressure and hold pressure reduce porosity (voids on or inside the product) that occur, for example, with shrinkage of the molding material as it cools in the mold.
  • An injection device includes an injection cylinder, a hydraulic device, an electric motor, and a control device.
  • the injection cylinder is connected to a plunger that pushes molding material into the mold.
  • the injection cylinder also has a piston movable in a first direction and a second opposite direction.
  • the hydraulic device supplies hydraulic fluid to the injection cylinder.
  • the electric motor is connected to the piston.
  • the control device simultaneously applies a first force in the first direction by hydraulic fluid and a second force in the second direction by the electric motor that is smaller than the first force to the piston. , thereby controlling the hydraulic system and the electric motor to move the piston in the first direction.
  • a molding machine includes the above injection device and a mold clamping device that holds the mold.
  • a new mode of injection device and molding machine in which the piston is moved in the direction of the force of the hydraulic fluid while the force of the electric motor is applied in the opposite direction to the force of the hydraulic fluid.
  • FIG. 2 is a schematic diagram for explaining the continuation of FIG. 1;
  • FIG. 3 is a schematic diagram for explaining the continuation of FIG. 2;
  • FIG. 4 is a schematic diagram for explaining the continuation of FIG. 3 ;
  • FIG. 5 is a schematic diagram for explaining the continuation of FIG. 4 ;
  • FIG. 2 is a side view showing the configuration of the main parts of the die casting machine according to the embodiment;
  • FIG. 7 is a top view showing the configuration of the main parts of the die casting machine of FIG. 6;
  • FIG. 7 is a cross-sectional view schematically showing the configuration of the main part of the injection device of the die casting machine of FIG. 6;
  • FIG. 7 is a circuit diagram showing an example of a hydraulic device of the die casting machine of FIG. 6;
  • FIG. 7 is a diagram for explaining the operation of the injection device of the die casting machine of FIG. 6;
  • FIG. 7 is a view for explaining a modification of the operation of the injection device of the die casting machine of FIG. 6;
  • FIGS. 12(a), 12(b), 12(c) and 12(d) are diagrams for explaining an injection device according to a modification;
  • ⁇ Outline of operation of die casting machine> 1 to 5 are schematic diagrams for explaining an overview of an example of the operation related to injection of the die casting machine 1 according to the embodiment.
  • the operation related to injection progresses in order from FIG. 1 to FIG.
  • the left side of these figures may be referred to as the front, and the right side of these figures may be referred to as the rear.
  • the die casting machine 1 injects (fills) the molten molding material M into the mold 101 (cavity 107) to manufacture a product (molded product, die cast product) made of the solidified molding material M. configured as a device.
  • the procedure for injecting the molding material M into the cavity 107 is as follows. Molding material M is fed into sleeve 19 leading to cavity 107, as shown in FIG. Then, as shown in FIGS. 1 to 3, the molding material M inside the sleeve 19 is pushed out into the cavity 107 by the plunger 21. As shown in FIGS. That is, injection in the narrow sense is performed. Next, the molding material M is pressed by the plunger 21 to increase the pressure (FIG. 4). That is, the pressure is increased. After that, the molding material M is maintained under increased pressure (FIG. 5). That is, holding pressure is performed. While the holding pressure is being performed, the molding material M is solidified by being deprived of heat by the mold 101 .
  • the die casting machine 1 performs the following operations.
  • hydraulic fluid for example, oil
  • the accumulator 47 is supplied from the accumulator 47 to the back of the injection piston 37 (head side chamber 35h). This causes the injection piston 37 to move forward. As a result, the plunger 21 connected to the injection piston 37 advances. As a result, injection (narrowly defined) is performed.
  • the hydraulic fluid in the accumulator 47 is also supplied behind the pressure boosting piston 41 (rear side chamber 35a) before injection (narrowly defined) is completed. That is, the booster piston 41 receives forward force from the hydraulic fluid.
  • the booster piston 41 receives a rearward force from the electric motor 31 as indicated by an arrow a3. The rearward force due to the electric motor 31 is greater than the forward force due to the hydraulic fluid. Therefore, the booster piston 41 does not advance (stops).
  • the boosting piston 41 starts moving forward. That is, the pressure-increasing piston 41 does not start moving forward by starting supply of hydraulic fluid to the back of the pressure-increasing piston 41 (opening operation of a valve (not shown) from another point of view). Start moving forward by being made small.
  • the pressure-increasing piston 41 transmits the force received from the hydraulic fluid in the rear (rear side chamber 35a) to the hydraulic fluid in the head side chamber 35h.
  • the pressure-increasing piston 41 has an area (pressure-receiving area) that receives pressure from the hydraulic fluid in the rear chamber 35a larger than an area that receives pressure from the hydraulic fluid in the head-side chamber 35h. Therefore, the pressure increasing piston 41 can increase the pressure applied from the accumulator 47 to the rear side chamber 35a and apply it to the head side chamber 35h. As a result, the pressure applied to the molding material M by the plunger 21 is increased, and the pressure is increased.
  • the driving force of the electric motor 31 is controlled to gradually decrease.
  • the pressure applied to the head-side chamber 35h by the pressure-increasing piston 41 is gradually increased. That is, the control of the pressure applied from the plunger 21 to the molding material M by the action of the pressure-increasing piston 41 is not performed by controlling the supply and/or discharge of the hydraulic fluid (for example, flow rate control), but by controlling the electric motor 31. It is realized by controlling the driving force.
  • the electric motor 31 is brought into a state in which it does not generate driving force (for example, a torque-free state of the rotary electric motor), as indicated by the absence of the arrow a4 (FIG. 4) in FIG. .
  • driving force for example, a torque-free state of the rotary electric motor
  • substantially only the hydraulic fluid force is applied to the intensifier piston 41 . Holding pressure is performed by maintaining this state.
  • the force for moving the pressure-increasing piston 41 forward is different from the force applied to the pressure-increasing piston 41 forward by the hydraulic fluid, and the force applied to the pressure-increasing piston 41 rearward by the electric motor 31. obtained by the difference. Therefore, for example, while the force for driving the pressure intensifying piston 41 forward can be obtained by the hydraulic drive unit, the force can be controlled by the electric drive unit.
  • the control of an electric drive is generally more responsive and has smaller deviations than the control of a hydraulic drive (eg control of hydraulic fluid flow by a valve). Therefore, for example, the start timing of pressure increase can be controlled with high accuracy, and the pressure of the molding material M during pressure increase can be controlled with high accuracy.
  • the electric motor 31 does not have to be driven during pressure holding. For example, it is sufficient to apply the pressure accumulated in the accumulator 47 to the rear side chamber 35a. Thereby, for example, power consumption can be reduced.
  • FIG. 6 is a side view (partially including a cross-sectional view) showing the configuration of the main parts of the die casting machine 1.
  • FIG. 7 is a top view showing the configuration of the essential parts of the die casting machine 1.
  • illustration of various members is omitted for the sake of convenience.
  • the illustration of components that are illustrated in FIG. 6 and should also be visible in FIG. 7 may be omitted from FIG. And vice versa.
  • the already-described molding material M (not shown here) is, for example, a metal such as aluminum. Metal in a molten state is sometimes called molten metal. A molding material in a solid-liquid coexistence state (semi-solidified or semi-molten state) may be injected into the cavity 107 instead of the molten molding material.
  • the mold 101 has, for example, a fixed mold 103 and a movable mold 105 facing the fixed mold 103 .
  • a cavity 107 into which the molding material is injected is constructed between the fixed mold 103 and the movable mold 105 .
  • the fixed mold 103 is a mold that does not move.
  • the movable mold 105 is a mold that moves in a direction opposite to the fixed mold 103 (mold opening/closing direction).
  • the mold opening/closing direction is, for example, the horizontal direction.
  • the die casting machine 1 has a machine body 3 that performs mechanical operations and a control device 5 that controls the machine body 3 .
  • the machine body 3 includes, for example, a mold clamping device 7 for opening/closing and clamping the mold 101, an injection device 9 for injecting molten metal into a cavity 107, and a fixed mold 103 for producing a product formed by solidifying the molten metal.
  • a mold clamping device 7 for opening/closing and clamping the mold 101
  • an injection device 9 for injecting molten metal into a cavity 107
  • a fixed mold 103 for producing a product formed by solidifying the molten metal.
  • it has an extrusion device (not shown) that extrudes from the moving mold 105 .
  • the control device 5 may be regarded as a component of the injection device 9 .
  • the configuration and operation of other components may be various configurations and operations. may be constructed and operated. Therefore, descriptions of the configurations and operations of the other components will be omitted as appropriate.
  • the operation of the injection device 9 is control of the injection device 9 by the control device 5 from another point of view.
  • the configuration and operation of the mold clamping device 7 and the configuration of the control device 5 will be briefly described below. After that, the configuration and operation of the injection device 9 will be described.
  • the mold clamping device 7 includes, for example, a base 11, a fixed die plate 13 fixed on the base 11, a movable die plate 15 movable on the base 11 in the mold opening/closing direction, and a die plate inserted through these die plates. and a plurality of (for example, four) tie bars 17 .
  • the fixed die plate 13 and the movable die plate 15 face each other in the mold opening/closing direction.
  • the stationary die plate 13 holds the stationary die 103 on the surface facing the movable die plate 15 .
  • the movable die plate 15 holds the movable die 105 on the surface facing the fixed die plate 13 .
  • the mold 101 is opened and closed by moving the movable die plate 15 in the mold opening/closing direction. In addition, when the tie bars 17 are extended while the mold is closed, a mold clamping force corresponding to the amount of extension is applied to the mold 101 .
  • control device 5 may be configured including a computer, although not shown.
  • the computer may include, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and an external storage device (not shown).
  • Various functional units that perform various calculations (including control) are constructed by the CPU executing programs stored in the ROM and/or the external storage device.
  • the control device 5 may include a logic circuit that executes a certain operation, may include a power supply circuit, or may be conceptualized including a driver.
  • the control device 5 may be integrated in one place in terms of hardware, or may be distributed in a plurality of places.
  • the injection device 9 is positioned behind the fixed die plate 13 (opposite to the movable die plate 15).
  • the injection device 9 has the previously described sleeve 19 and plunger 21 , and a drive section 23 for driving the plunger 21 .
  • the driving part 23 may be regarded as the injection device.
  • the configurations of the sleeve 19 and the plunger 21 may be various configurations, such as known configurations. In the illustrated example:
  • the sleeve 19 is provided so as to be inserted through the fixed die plate 13 .
  • the sleeve 19 may not be inserted through the fixed mold 103 (example in FIG. 6), or may be inserted through (see FIG. 1).
  • the sleeve 19 is a generally cylindrical member and is arranged to extend in the horizontal direction (front-rear direction).
  • a supply port 19a through which molten metal is supplied is opened in the upper surface of the sleeve 19 .
  • the plunger 21 has a plunger tip 21a that slides on the sleeve 19 and a plunger rod 21b fixed to the plunger tip 21a.
  • the plunger rod 21 b extends in the front-rear direction, and its rear end is connected to the driving portion 23 by a coupling 25 .
  • FIGS. 6 and 7 show the state before the start of injection (see also FIG. 1).
  • the plunger tip 21a is positioned (at least partially) inside the sleeve 19 behind the supply port 19a.
  • molten metal is poured into the supply port 19a by a hot water supply device or the like (not shown).
  • the plunger tip 21 a slides (advances) toward the cavity 107 by the driving force of the driving portion 23 .
  • the molten metal is thereby injected into the cavity 107 .
  • FIG. 8 is a cross-sectional view schematically showing the configuration of the main parts of the injection device 9. As shown in FIG. This figure is a view of the injection device 9 viewed from above. However, for the sake of convenience, components that are not visible from the top surface (second electric motor 31B, etc., which will be described later) are also shown.
  • the injection device 9 (drive unit 23) has an injection cylinder 27 that is connected to the rear end of the plunger 21 by a coupling 25. Hydraulic fluid (oil, for example) is supplied to the injection cylinder 27 from a hydraulic device 43 (see FIG. 9, which will be described later). As a result, the injection device 9 can apply a hydraulic driving force to the plunger 21 .
  • the injection device 9 has two first driving devices 29A each including a first electric motor 31A.
  • the first driving device 29A has a detachable portion 33 that can connect and disconnect the injection cylinder 27 to a piston rod 39, which will be described later. Thereby, the injection device 9 can apply an electric driving force to the plunger 21 .
  • the injection device 9 has a second driving device 29B including a second electric motor 31B.
  • the second drive device 29B is connected to the booster piston 41 of the injection cylinder 27 .
  • the second electric motor 31B is an electric motor corresponding to the electric motor 31 described with reference to FIGS.
  • the electric motor 31 is referred to as a second electric motor 31B to distinguish it from the first electric motor 31A.
  • the outline of the operation of the injection device 9 when injecting the molding material M into the mold 101 is as described with reference to FIGS. 1 to 5.
  • the operation from the start of injection to the completion of holding pressure is realized by supplying hydraulic fluid to the injection cylinder 27 and driving the second electric motor 31B.
  • the first electric motor 31A for example, contributes to retracting the plunger 21 after the pressure holding is completed.
  • the injection cylinder 27 is arranged coaxially with the plunger 21 behind the plunger 21, for example.
  • the injection cylinder 27 includes, for example, a cylinder member 35 , an injection piston 37 slidable inside the cylinder member 35 , a piston rod 39 extending forward (toward the plunger 21 side) from the injection piston 37 , and a and a pressurizing piston 41 capable of pressurizing the hydraulic fluid.
  • the cylinder member 35 is, for example, a generally cylindrical member.
  • the internal cross-sectional shape of the cylinder member 35 is, for example, circular.
  • the outer shape (outer shape) of the cylinder member 35 may be an appropriate shape such as a rectangular parallelepiped shape.
  • the cylinder member 35 is made immovable with respect to the stationary die plate 13 .
  • the cylinder member 35 has a small-diameter cylinder 35x and a large-diameter cylinder 35y connected in series to the rear end of the small-diameter cylinder 35x.
  • the inner diameter of the large-diameter cylinder 35y is larger than the inner diameter of the small-diameter cylinder 35x.
  • the injection piston 37 is, for example, a substantially cylindrical member.
  • the diameter of the injection piston 37 is roughly the same as the inner diameter of the small-diameter cylinder 35x.
  • a packing (not shown) may be interposed between the injection piston 37 and the small-diameter cylinder 35x. Even when a packing is interposed, the injection piston 37 is expressed as sliding inside the small-diameter cylinder 35x (cylinder member 35). The same applies to other members (for example, the booster piston 41).
  • the space inside the small-diameter cylinder 35x is divided by the injection piston 37 into a rod-side chamber 35r on the side of the piston rod 39 and a head-side chamber 35h on the opposite side.
  • the piston rod 39 is, for example, a substantially cylindrical member.
  • the diameter of the piston rod 39 is smaller than the diameter of the injection piston 37 . The difference may be set appropriately.
  • the piston rod 39 extends outside the cylinder member 35 and has its front end connected to the rear end of the plunger 21 by a coupling 25 .
  • the piston rod 39 moves integrally with the plunger 21. Therefore, the injection cylinder 27 is configured to be able to move the piston rod 39 (injection piston 37 ) with a stroke equal to or greater than the stroke assumed for the plunger 21 .
  • the pressure-increasing piston 41 is composed of, for example, a piston that can slide on the cylinder member 35 . More specifically, the boosting piston 41 has a small-diameter piston 41a that slides on the small-diameter cylinder 35x and a large-diameter piston 41b that slides on the large-diameter cylinder 35y. The large-diameter piston 41b is connected in series with the rear end of the small-diameter piston 41a. Note that, unlike the illustrated example, a connecting portion having a diameter smaller than that of the small-diameter piston 41a may be formed between the small-diameter piston 41a and the large-diameter piston 41b.
  • a portion of the interior of the cylinder member 35 (35x and 35y) behind the injection piston 37 is partitioned by the pressure-increasing piston 41 into a head-side chamber 35h on the side of the injection piston 37 and a rear-side chamber 35a on the opposite side.
  • the interior of the large-diameter cylinder 35y is partitioned by the large-diameter piston 41b into a front chamber 35f on the side of the small-diameter cylinder 35x and a rear chamber 35a on the opposite side.
  • the pressure-increasing piston 41 has a first surface 41c (tip surface of the small-diameter piston 41a) that receives pressure from the hydraulic fluid in the head-side chamber 35h, and a second surface 41d that receives pressure from the hydraulic fluid in the rear-side chamber 35a (rear surface of the small-diameter piston 41a). end face).
  • the area of the second surface 41d is larger than the area of the first surface 41c.
  • the head-side chamber 35h and the rear-side chamber 35a are filled with hydraulic fluid.
  • the rod side chamber 35r and the front side chamber 35f may or may not be filled with hydraulic fluid.
  • the rod side chamber 35r and the front side chamber 35f may be open to the atmosphere.
  • the rod side chamber 35r and the front side chamber 35f may be provided with a small amount of hydraulic fluid (oil) for lubrication.
  • the hydraulic fluid in the rod-side chamber 35r contributes, for example, to reducing the probability of the injection piston 37 moving forward at a rapid speed (jumping) at the start of injection, and/or to absorbing surge pressure at the completion of molten metal filling. .
  • this hydraulic fluid may or may not be used for some purpose.
  • hydraulic fluid is supplied from the hydraulic device 43 to the front side chamber 35f to generate at least part of the driving force for retracting the pressure intensifying piston 41. can be done.
  • the hydraulic device 43 may be used to prohibit discharge of the hydraulic fluid from the front side chamber 35f, thereby prohibiting unintended forward movement of the pressure boosting piston 41.
  • the hydraulic fluid in the front side chamber 35f is not used, there is a mode in which the front side chamber 35f and the tank are only connected.
  • any suitable method may be used to install the cylinder member 35 so as not to move with respect to the fixed die plate 13 .
  • the cylinder member 35 is connected to the fixed die plate 13 by a frame 45.
  • the frame 45 also contributes to supporting the first driving device 29A and the like, as will be described later.
  • the shape of the frame 45 is arbitrary.
  • the frame 45 is connected to a first portion 45a positioned between the fixed die plate 13 and the cylinder member 35 to fix them together, and the first portion 45a. and a second portion 45b that supports the cylinder member 35 from below.
  • first portion 45 a is adjacent to a portion positioned below the plunger 21 ( FIG. 6 , reference numerals omitted), a portion positioned laterally and/or above the plunger 21 ( FIG. 7 ), and the front end of the cylinder member 35 .
  • FIG. 9 is a circuit diagram showing an example of the hydraulic device 43 that supplies hydraulic fluid to the injection cylinder 27 to drive the injection cylinder 27. As shown in FIG.
  • the hydraulic device 43 has an accumulator 47 and a pump 49 as hydraulic pressure sources.
  • the hydraulic device 43 also has a tank 51 that stores hydraulic fluid. Note that the tanks 51 are shown at a plurality of positions for convenience. In practice, the number of tanks 51 may be less than shown, for example only one.
  • the division of roles between the accumulator 47 and the pump 49 (and the tank 51) may be set appropriately.
  • the hydraulic fluid is supplied from the accumulator 47 to the head-side chamber 35h, whereby the injection piston 37 advances and injection is performed. Further, hydraulic fluid is supplied from the accumulator 47 to the rear side chamber 35a, whereby the pressure increasing piston 41 moves forward to increase the pressure.
  • the filling of the accumulator 47 is realized by retracting the injection piston 37 by the first driving device 29A and pushing out the hydraulic fluid in the head side chamber 35h into the accumulator 47, as will be described in detail later.
  • a portion of the filling of the accumulator 47 may be performed by retracting the booster piston 41 .
  • the booster piston 41 may be retracted by the second electric motor 31B to push the hydraulic fluid in the rear side chamber 35a to the accumulator 47.
  • discharge of the hydraulic fluid from the head side chamber 35h is prohibited to retract the pressure intensifying piston 41.
  • the hydraulic fluid in the rear chamber 35 a may be forced into the accumulator 47 .
  • the filling of the accumulator 47 by the first driving device 29A may be performed only with the hydraulic fluid discharged from the head-side chamber 35h, unlike the description of this embodiment.
  • the hydraulic fluid in the rear side chamber 35a may be discharged to the tank 51 while the pressure intensifying piston 41 is retracted as described above.
  • the pressure-increasing piston 41 may be retracted by supplying hydraulic fluid to the head-side chamber 35h and/or the front-side chamber 35f by the pump 49.
  • the pump 49 replenishes the working fluid to the rod side chamber 35r, for example, when the injection piston 37 is retracted by the first driving device 29A. Furthermore, the pump 49 may replenish the hydraulic fluid to the front side chamber 35f when retracting the booster piston 41 . Further, for example, the pump 49 contributes to replenishing the hydraulic fluid in an amount corresponding to the hydraulic fluid leaked in the injection cylinder 27 or the like and/or supplying the hydraulic fluid during maintenance of the injection device 9 .
  • the injection piston 37 is given a rearward driving force by the first driving device 29A. Therefore, in the mode in which the hydraulic fluid is replenished from the pump 49 to the rod side chamber 35r, the force of the hydraulic fluid in the rod side chamber 35r pushing the injection piston 37 backward is greater than the force pushing the injection piston 37 forward of the hydraulic fluid in the head side chamber 35h. can be small. That is, the product of the pressure in the rod side chamber 35r and the area where the pressure acts on the injection piston 37 is the pressure in the head side chamber 35h (accumulator 47 from another point of view) and the area where the pressure acts on the injection piston 37. may be smaller than the product of
  • the force of the hydraulic fluid in the rod-side chamber 35r pushing the injection piston 37 backward is the force of the hydraulic fluid in the head-side chamber 35h pushing the injection piston 37 forward (the pressure of the accumulator 47 is The pressure when returning to the position before the start of injection may be used as a reference.The same applies in the next paragraph.) may be 2/3 or less, 1/2 or less, 1/5 or less, or 1/10 or less. . Furthermore, the pressure in the rod-side chamber 35r may be equal to the tank pressure (the pressure in the tank 51) and/or the atmospheric pressure, or may be slightly lower than these pressures.
  • the pressure in the rod-side chamber 35r may be higher than the tank pressure and the atmospheric pressure.
  • the pump 49 assists the retraction of the plunger 21 by the first driving device 29A.
  • the force with which the hydraulic fluid in the rod side chamber 35r pushes the injection piston 37 rearward may be appropriately set.
  • the force of the hydraulic fluid in the rod-side chamber 35r pushing the injection piston 37 backward is 1/10 or more, 1/5 or more, or 1/1/10 or more, 1/5 or more, or 1/5 of the force of the hydraulic fluid in the head-side chamber 35h pushing the injection piston 37 forward. It may be 2 or more, or 2/3 or more.
  • the lower bounds in the preceding paragraph may be combined with the lower bounds in this paragraph unless there is a conflict.
  • the pressure in the front chamber 35f does not need to be increased in the mode in which the hydraulic fluid is replenished from the pump 49 to the front chamber 35f.
  • the pressure or force generated by the hydraulic fluid in the rod-side chamber 35r is explained by replacing the rod-side chamber 35r with the front-side chamber 35f, replacing the head-side chamber 35h with the rear-side chamber 35a, and replacing the injection piston 37 with the boosting piston 41. As such, the pressure or force generated by the hydraulic fluid in the front chamber 35f may be assisted.
  • the filling of the accumulator 47 by the pump 49 is basically not performed.
  • the pressure in the rod side chamber 35r (and the front side chamber 35f) to which hydraulic fluid is supplied from the pump 49 when the injection piston 37 (and the boosting piston 41) is retracted may be low. Therefore, for example, the capacity of the pump 49 (the amount of hydraulic fluid delivered in one cycle) may be reduced compared to a typical hydraulic or known hybrid injection device.
  • the hydraulic fluid is directly supplied between the head side chamber 35h (and the rear side chamber 35a) and the accumulator 47, and the tank 51 is not interposed therebetween, the volume of the tank 51 can be reduced.
  • the accumulator 47 may be composed of an appropriate type of accumulator such as weight type, spring type, pneumatic type (including pneumatic type), cylinder type, Prada type, and the like.
  • the accumulator 47 is a pneumatic, cylinder-type, or Prada-type accumulator, and pressure is accumulated by compressing the gas (for example, air or nitrogen) held in the accumulator 47 .
  • the pump 49 may be a rotary pump that discharges working fluid by rotating a rotor, or a plunger pump that discharges working fluid by reciprocating a piston.
  • the pump 49 may be configured by a constant displacement pump in which the discharge amount in one cycle of motion of the rotor or piston is fixed, or may be configured by a variable displacement pump in which the discharge amount is variable.
  • the structure may be the same as that of a bidirectional (two-way) pump.
  • the pump 49 is driven by, for example, a rotary electric motor.
  • the electric motor may be a DC motor or an AC motor, an induction motor or a synchronous motor.
  • the electric motor may function as a constant speed electric motor provided in an open loop, or may function as a servomotor provided in a closed loop.
  • the electric motor (pump 49) may be driven only when necessary, or may be driven all the time.
  • the tank 51 is, for example, an open tank. That is, the tank 51 holds hydraulic fluid under atmospheric pressure. Therefore, for example, when the rod-side chamber 35r is connected to the tank 51, the pressure in the rod-side chamber 35r drops to atmospheric pressure or a pressure close to it.
  • Hydraulic system 43 includes a hydraulic circuit 53 that controls the flow of hydraulic fluid between injection cylinder 27 , accumulator 47 , pump 49 and tank 51 .
  • Various specific configurations of the hydraulic circuit 53 are possible for realizing the division of roles between the accumulator 47 and the pump 49 as described above.
  • the configuration of the hydraulic circuit 53 shown in FIG. 9 is merely an example.
  • the hydraulic circuit 53 illustrated in FIG. 9 will be described in the following order. First, the flow path between the accumulator 47 and the head-side chamber 35h will be described. Next, a flow path between the accumulator 47 and the rear side chamber 35a will be described. Next, the flow path between the rod side chamber 35r and the tank 51 will be described. Next, a flow path between the pump 49 and the rod side chamber 35r will be described. After that, other configurations of the hydraulic circuit 53 will be described.
  • the hydraulic circuit 53 has a flow path 54a that communicates the accumulator 47 and the head-side chamber 35h.
  • the flow path 54a contributes to, for example, causing the hydraulic fluid to flow from the accumulator 47 to the head-side chamber 35h to advance the injection piston 37.
  • the flow path 54a contributes to filling the accumulator 47 by causing the hydraulic fluid to flow from the head-side chamber 35h to the accumulator 47 when the injection piston 37 retreats, for example.
  • the hydraulic circuit 53 has, for example, a flow control valve 55 and a check valve 59A as valves located in the flow path 54a and capable of permitting and prohibiting the flow of the hydraulic fluid in the flow path 54a.
  • the flow control valve 55 can control the flow rate of the hydraulic fluid in the channel 54a. By controlling the flow rate of the hydraulic fluid supplied from the accumulator 47 to the head-side chamber 35h, for example, the advancing speed of the injection piston 37 is controlled. That is, the flow control valve 55 constitutes a so-called meter-in circuit.
  • the flow control valve 55 is, for example, a pressure-compensated flow control valve that can keep the flow constant even if the pressure fluctuates.
  • the flow control valve 55 is, for example, a servo valve that is used in a servomechanism and that can steplessly (continuously, to any value) modulate the flow rate according to an input signal.
  • the configuration of the flow control valve 55 may be various configurations, for example, it may be a known configuration.
  • the flow control valve 55 has a main valve 56 that controls the flow of hydraulic fluid in the flow path 54 a and a pilot valve 57 that controls the operation of the main valve 56 .
  • the main valve 56 is located in the flow path 54a and directly controls the flow rate of the hydraulic fluid in the flow path 54a.
  • the main valve 56 is, for example, a 2-port 2-position switching valve that continuously switches the flow depending on the position of the valve body.
  • the position of the disc is controlled by pilot pressures introduced on either side of the disc's direction of travel.
  • the position of the valve body is detected by a sensor (for example, a differential transformer).
  • the pilot valve 57 controls the pilot pressure introduced to both sides of the valve body of the main valve 56 .
  • the pilot valve 57 has two ports communicating with both sides (two flow paths 54b) of the valve body of the main valve 56, and two ports communicating with the accumulator 47 (flow path 54c) and the tank 51 (flow path 54d). port.
  • the pilot valve 57 is a 4-port 3-position switching valve that continuously switches the connection between the former two ports and the latter two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
  • valve disc may be spring-biased into position (as are other valve discs).
  • the check valve 59A is configured by a check valve that is opened and closed by introducing pilot pressure.
  • the check valve 59A allows the flow from the accumulator 47 to the head side chamber 35h and prohibits the flow in the opposite direction when the pilot pressure is not applied. Therefore, for example, when the hydraulic fluid in the head-side chamber 35h is pressurized by the pressure-increasing piston 41 and the pressure in the head-side chamber 35h becomes higher than the pressure in the accumulator 47, the check valve 59A self-closes.
  • the switching valve 60A located between the check valve 59A and the accumulator 47, for example.
  • the switching valve 60A has two ports, for example, a port that supplies an open pilot pressure to the check valve 59A, a port that supplies a closed pilot pressure to the check valve 59A, and two ports that communicate with the accumulator 47 and the tank 51. have.
  • the switching valve 60A is a 4-port 2-position switching valve that switches connection between the former two ports and the latter two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
  • the hydraulic circuit 53 has a flow path 54m that communicates the accumulator 47 and the rear chamber 35a.
  • the flow path 54m contributes to, for example, causing the hydraulic fluid to flow from the accumulator 47 to the rear side chamber 35a to advance the pressure boosting piston 41. As shown in FIG. Further, the flow path 54m contributes to filling the accumulator 47 with hydraulic fluid flowing from the rear chamber 35a to the accumulator 47 when the boosting piston 41 moves backward, for example.
  • the flow path 54m shares a part on the accumulator 47 side with the flow path 54a.
  • the flow path 54m may be a flow path separate from the flow path 54a over its entirety.
  • the flow control valve 55 described above may be positioned in the shared portion of the flow path 54m and the flow path 54a. That is, the flow control valve 55 may be capable of controlling the flow rate of hydraulic fluid flowing from the accumulator 47 to the rear chamber 35a. However, the flow control valve 55 may be arranged at a position of the flow path 54a that is not shared with the flow path 54m.
  • the hydraulic circuit 53 has, for example, a flow control valve 55 and a check valve 59E as valves located in the flow path 54m and capable of permitting and prohibiting the flow of the working fluid in the flow path 54m.
  • the check valve 59E is configured by, for example, a check valve that is opened and closed by introduction of pilot pressure in the same manner as the check valve 59A.
  • the check valve 59E allows the flow from the accumulator 47 to the rear side chamber 35a and prohibits the flow in the opposite direction, for example, when the pilot pressure is not applied.
  • the configuration for introducing the pilot pressure to the check valve 59E may be the same as the configuration of the check valve 59A, and is not shown in FIG.
  • the hydraulic circuit 53 has a flow path 54e that communicates the rod side chamber 35r and the tank 51 with each other.
  • the flow path 54e contributes to allowing the injection piston 37 to move forward by allowing the hydraulic fluid in the rod side chamber 35r to flow to the tank 51 when the injection piston 37 advances.
  • the hydraulic circuit 53 has, for example, a check valve 59B as a valve positioned in the flow path 54e and capable of permitting or prohibiting the flow of hydraulic fluid in the flow path 54e.
  • the configuration of the check valve 59B is similar to that of the check valve 59A, for example.
  • the above description regarding the configuration of the check valve 59A may be applied to the configuration of the check valve 59B as long as there is no contradiction.
  • the check valve 59B allows the flow from the rod side chamber 35r to the tank 51 and prohibits the flow in the opposite direction.
  • the configuration of the switching valve 60B is, for example, similar to the configuration of the switching valve 60A.
  • the above description regarding the configuration of the switching valve 60A may be applied to the configuration of the switching valve 60B as long as there is no contradiction.
  • An accumulator 61 may be connected between the rod side chamber 35r and the tank 51 (more specifically, between the check valve 59B and the tank 51, for example). This accumulator 61 contributes to, for example, absorbing the surge pressure generated in the rod side chamber 35r when filling of the molten metal is completed.
  • the above description regarding the configuration of the accumulator 47 may be applied to the configuration of the accumulator 61 as long as there is no contradiction. However, since the accumulator 61 is not used as a drive source, it may be smaller than the accumulator 47, and the pressure that can be accumulated may be lower.
  • the hydraulic circuit 53 has a flow path 54f that communicates the pump 49 and the rod side chamber 35r.
  • the flow path 54f contributes to replenishing the rod side chamber 35r with hydraulic fluid by causing the hydraulic fluid to flow from the pump 49 to the rod side chamber 35r.
  • the hydraulic circuit 53 has, for example, a switching valve 62 and a check valve 63A as valves positioned in the flow path 54f and capable of permitting and prohibiting the flow of hydraulic fluid in the flow path 54f.
  • a switching valve 62 and a check valve 63A as valves positioned in the flow path 54f and capable of permitting and prohibiting the flow of hydraulic fluid in the flow path 54f.
  • the combination of these two valves may be regarded as one valve.
  • the switching valve 62 is located in the flow path 54h that supplies the hydraulic fluid from the pump 49 to the head-side chamber 35h, and also functions as a valve that permits and prohibits the flow of the hydraulic fluid in the flow path 54h.
  • the supply of hydraulic fluid from the pump 49 to the head-side chamber 35h is, for example, compensation for leaked hydraulic fluid and/or maintenance, as described above.
  • the switching valve 62 has two ports, a port communicating with the rod-side chamber 35 r and a port communicating with the head-side chamber 35 h, and two ports communicating with the pump 49 and the tank 51 .
  • the switching valve 62 is a 4-port 3-position switching valve that switches connection between the former two ports and the latter two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
  • the three positions of the switching valve 62 are as follows. At the position on the left side of the drawing, the rod side chamber 35r and the pump 49 are connected, and the head side chamber 35h and the tank 51 are connected. At the position on the right side of the drawing, the rod side chamber 35r and the tank 51 are connected, and the head side chamber 35h and the pump 49 are connected. In the middle position of the figure, neither port is connected. Therefore, for example, by setting the switching valve 62 to the left side of the drawing, it is possible to replenish the hydraulic fluid from the pump 49 to the rod side chamber 35r.
  • the check valve 63A is located between the rod side chamber 35r and the switching valve 62.
  • the check valve 63A permits flow from the switching valve 62 to the rod side chamber 35r and prohibits flow in the opposite direction.
  • the switching valve 62 is positioned on the right side of the drawing in order to supply the working fluid from the pump 49 to the head side chamber 35h, the working fluid in the rod side chamber 35r flows through the switching valve 62 into the tank 51. prohibited from flowing to
  • each flow path may be provided with a 3-port, 3-position switching valve that permits and prohibits the flow of hydraulic fluid, or a pilot-type check valve may be provided.
  • the hydraulic circuit 53 has a flow path 54h for supplying hydraulic fluid from the pump 49 to the head-side chamber 35h, as described above.
  • the hydraulic circuit 53 has, for example, the switching valve 62 and the check valve 64 as valves positioned in the flow path 54h and capable of permitting and prohibiting the flow of the hydraulic fluid in the flow path 54h.
  • the check valve 64 is positioned between the head-side chamber 35h and the switching valve 62.
  • the check valve 64 permits flow from the switching valve 62 to the head-side chamber 35h and prohibits flow in the opposite direction.
  • the check valve 64 is a pilot type check valve that is closed (prohibits bidirectional flow) by introducing pilot pressure.
  • Shuttle valve 65 has two inlets and one outlet. One of the two inlets is connected to the head side chamber 35h side of the check valve 64 of the flow path 54h. The remainder of the two inlets are connected to the accumulator 47 via a switching valve 66 which will be described later.
  • the outlet leads to check valve 64 .
  • the outlet is connected to the high pressure side of the two inlets, and applies the pressure from the connected inlet to the check valve 64 as pilot pressure. This, for example, reduces the likelihood that the check valve 64 will be opened when it is not intended to be opened.
  • the flow of hydraulic fluid from the accumulator 47 to the shuttle valve 65 may be controlled, for example, by a switching valve 66 located between them.
  • the switching valve 66 has three ports, for example, a port connected to the shuttle valve 65 , a port connected to the accumulator 47 , and a port connected to the tank 51 .
  • the switching valve 66 connects the port leading to the shuttle valve 65 and one of the other two ports depending on the position of the valve body.
  • the position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
  • the hydraulic circuit 53 has a channel 54k for supplying hydraulic fluid from the pump 49 to the accumulator 47, for example.
  • the accumulator 47 is basically filled by retracting the injection piston 37 by the first driving device 29A and pushing out the hydraulic fluid in the head-side chamber 35h to the accumulator 47.
  • the supply of hydraulic fluid from the pump 49 to the accumulator 47 is, for example, in compensating for leaked hydraulic fluid and/or in maintenance.
  • the hydraulic circuit 53 has, for example, a switching valve 46 as a valve located in the flow path 54k and capable of permitting and prohibiting the flow of the hydraulic fluid in the flow path 54k.
  • the switching valve 46 connects or disconnects the accumulator 47 and the pump 49 or the tank 51 depending on the position of the valve body, for example.
  • the position of the valve body is controlled, for example, by sequentially operating an electromagnetic drive unit and a pilot drive unit (see operation method of flow control valve 55). Pilot pressure may be the pressure from accumulator 47, for example.
  • the hydraulic circuit 53 may have a flow path that connects the front side chamber 35f and the tank 51 (pump 49 if necessary), although not shown.
  • the flow path may be provided with a valve that allows and prohibits the flow of hydraulic fluid.
  • Hydraulic circuit 53 may have check valves 63B, 63C and 63D at appropriate positions to allow the flow of hydraulic fluid from pump 49 and prohibit the flow in the opposite direction. Further, the hydraulic circuit 53 may have a check valve (reference numeral omitted) that allows the hydraulic fluid to flow from the switching valve 66 to the tank 51 and prohibits the flow in the opposite direction. Also, the hydraulic circuit may have a cock 58 at an appropriate location. The cock 58 is for maintenance purposes, for example, and is closed when injection is being performed. Various instruments (reference numerals omitted) such as a pressure gauge may be connected to the end of the flow path extending from the cock 58 . The hydraulic circuit 53 may also have a filter 48 and a relief valve 52 at appropriate locations.
  • the first driving device 29A shown in FIG. 8 has the first electric motor 31A and the detachable portion 33 that can be connected to and disconnected from the piston rod 39, as described above.
  • 29 A of 1st drive devices are a component for transmitting the driving force of 31 A of 1st electric motors to the piston rod 39, For example, 67 A of 1st transmission mechanisms and 68 A of 1st conversion mechanisms are carried out in order from the 1st electric motor 31A to the attachment or detachment part 33. and a movable member 69 .
  • the first electric motor 31A is a rotary electric motor. Although not shown, the first electric motor 31A has, as is well known, a stator that constitutes one of the armature and the field system, and a rotor that constitutes the other of the armature and the field system. The rotor rotates about its axis with respect to the stator. A specific configuration of the first electric motor 31A may be appropriately selected.
  • the first electric motor 31A may be a DC motor or an AC motor, an induction motor or a synchronous motor, and may or may not have a brake.
  • the first electric motor 31A is configured as a servo motor, for example, and constitutes a servo mechanism together with a sensor (not shown) that detects the rotation of the first electric motor 31A and a servo driver (not shown) that supplies power to the first electric motor 31A. is doing.
  • the main body (stator) of the first electric motor 31A is fixed to a stationary portion (for example, the cylinder member 35) of the injection device 9, and various parallel movements and rotational movements are restricted.
  • the arrangement position, orientation, etc. of the first electric motor 31A may be appropriately set.
  • the first electric motor 31A is arranged on the side of the injection cylinder 27 and fixed to the rear surface of the plate 45c of the frame 45. As shown in FIG.
  • the first electric motor 31A is arranged such that its output shaft is parallel to the injection cylinder 27 and directed forward.
  • the first transmission mechanism 67A transmits the rotation of the first electric motor 31A, and contributes, for example, to improving the degree of freedom in the arrangement of the first electric motor 31A and/or speeding up the speed of rotation.
  • the first transmission mechanism 67A is composed of, for example, a pulley and belt mechanism, and includes a first pulley 70A fixed to the output shaft of the first electric motor 31A and a first nut 71A (which is also used by the first conversion mechanism 68A). pulley) and a first belt 72A that is stretched over the first pulley 70A and the first nut 71A. Therefore, when the first electric motor 31A rotates, the rotation is transmitted to the first conversion mechanism 68A via the first transmission mechanism 67A.
  • Either the diameter of the first pulley 70A or the diameter of the first nut 71A may be larger or may be equal.
  • the diameter of the first nut 71A is larger than the diameter of the first pulley 70A, and the rotation of the first electric motor 31A is decelerated.
  • a specific arrangement position of the first transmission mechanism 67A may be set as appropriate.
  • the first transmission mechanism 67A is located on the side of the injection cylinder 27 and is arranged inside the plate 45c of the frame 45. As shown in FIG. The first pulley 70A and the first nut 71A are arranged in the lateral direction of the injection cylinder 27 .
  • the first conversion mechanism 68A contributes to converting the rotary motion of the first electric motor 31A into linear motion (translational motion).
  • 68 A of 1st conversion mechanisms are comprised by the screw mechanism (for example, ball screw mechanism or slide screw mechanism), for example.
  • the first conversion mechanism 68A has a first screw shaft 73A and a first nut 71A screwed onto the first screw shaft 73A via a ball (not shown) or directly.
  • One member of the first screw shaft 73A and the first nut 71A (the first nut 71A in the illustrated example) is, for example, allowed to rotate about its axis and restricted from moving in the axial direction.
  • the other member (the first screw shaft 73A in the illustrated example) is, for example, restricted from rotating about its axis and allowed to move in the axial direction. Therefore, when one member (the first nut 71A) is rotated, the other member (the first screw shaft 73A) is axially driven.
  • a specific configuration of the first conversion mechanism 68A may be set as appropriate. For example, one thread groove may be provided, or two or more thread grooves may be provided. Further, for example, the diameter and lead of the first screw shaft 73A are arbitrary.
  • the first conversion mechanism 68A is arranged in parallel with the injection cylinder 27. That is, the first screw shaft 73A is parallel to the piston rod 39, and the direction of linear motion of the first conversion mechanism 68A is parallel to the driving direction of the injection cylinder 27 (front-rear direction).
  • the specific arrangement position of the first conversion mechanism 68A, the method of restricting the parallel movement of the first nut 71A, the method of restricting the rotation of the first screw shaft 73A, and the like may be appropriately set.
  • the first conversion mechanism 68A is positioned on the side of the injection cylinder 27 and positioned closer to the injection cylinder 27 than the first electric motor 31A.
  • the first nut 71A is arranged inside the plate 45c of the frame 45, and is supported by the plate 45c by a bearing (not shown) so as to allow only rotation. Rotation of the first screw shaft 73A is restricted by being connected to a movable member 69 that is only allowed to move in parallel in the front-rear direction.
  • the movable member 69 is a member that is driven in the front-rear direction by the driving force of the first electric motor 31A, and contributes to transmitting the driving force of the first electric motor 31A to the plunger 21 and to supporting the detachable portion 33.
  • the movable member 69 may be regarded as part of the detachable portion 33 .
  • the shape, size and material of the movable member 69 are arbitrary.
  • the movable member 69 is a member shared by the two first driving devices 29A (see also FIG. 7), extends in the horizontal direction of the injection cylinder 27 (vertical direction in FIG. 8), It is shaped to have a hole through which the piston rod 39 is inserted.
  • the movable member 69 is generally shaped like a plate facing in the front-rear direction.
  • the first driving device 29A may have a guide mechanism for guiding the movable member 69 in the front-rear direction (from another point of view, restricting movements other than parallel movement in the front-rear direction).
  • a pair of guide shafts 74 are illustrated as the guide mechanism.
  • the pair of guide shafts 74 extend in the front-rear direction and are fixed to the frame 45 .
  • a pair of guide shafts 74 are inserted through the movable member 69 so that only forward and backward movement is permitted.
  • 6 also illustrates a linear guide 75 that supports and guides the movable member 69 from below.
  • the detachable portion 33 shown in FIG. 8 is supported by the movable member 69 and moves in the front-rear direction together with the movable member 69 .
  • the detachable portion 33 connects and disconnects the movable member 69 and a predetermined portion (removable portion 39z) of the piston rod 39 .
  • the detachable portion 39z is positioned outside the cylinder member 35 regardless of the position of the injection piston 37, for example. That is, even when the injection piston 37 is positioned at the retraction limit due to rear contact with a stopper (not shown) inside the cylinder member 35, the detachable portion 39z is positioned outside the cylinder member 35. As shown in FIG.
  • the plunger 21 can be retracted by the driving force of the first electric motor 31A, for example. Further, by releasing the connection between the movable member 69 and the piston rod 39, for example, when the hydraulic fluid is supplied to the head-side chamber 35h to advance the plunger 21 at high speed, the inertial force of the first driving device 29A causes The speed reduction of the plunger 21 is avoided.
  • the detachable portion 33 has, for example, an engaging member 76 that can be engaged with the detachable portion 39z of the piston rod 39 and an actuator 77 that drives the engaging member 76 .
  • the engaging member 76 is supported by the movable member 69 so as to be movable between an engaging position where it engages with the detachable portion 39z in the front-rear direction and a release position (position in FIG. 8) where the engagement is released. It is The actuator 77 moves the engaging member 76 between the engaging position and the releasing position.
  • the detachable portion 39z has a small diameter portion 39a, a first large diameter portion 39b and a second large diameter portion 39c.
  • the first large diameter portion 39b is located behind the small diameter portion 39a and has a larger diameter than the small diameter portion 39a.
  • the second large diameter portion 39c is positioned in front of the small diameter portion 39a and has a larger diameter than the small diameter portion 39a.
  • the engaging member 76 is inserted between the first large-diameter portion 39b and the second large-diameter portion 39c to engage them rearwardly or forwardly. Further, the engaging member 76 is disengaged by retreating from between the first large diameter portion 39b and the second large diameter portion 39c.
  • the diameters of the first large diameter portion 39b and the second large diameter portion 39c are the same as the diameter of most of the piston rod 39. That is, a small-diameter portion 39a is formed by reducing the diameter of a part of the piston rod 39. As shown in FIG. However, for example, the diameter of the small-diameter portion 39 a may be the same as the diameter of most of the piston rod 39 .
  • the first large diameter portion 39b and the second large diameter portion 39c may be formed by flanges. Unlike the illustrated example, the first large diameter portion 39b and the second large diameter portion 39c may have different diameters.
  • the engagement member 76 may have a recess on the side of the small diameter portion 39a when viewed in the axial direction of the piston rod 39.
  • the recess accommodates, for example, at least part of the small diameter portion 39a when the engaging member 76 is moved to the engaging position.
  • the amount of mutual engagement between the engaging member 76 and the first large diameter portion 39b (second large diameter portion 39c) can be adjusted with respect to the angular range of the small diameter portion 39a around the axis. You can make it bigger.
  • the specific shape and dimensions of the recess may be set as appropriate.
  • a concave portion formed in one engaging member 76 has a semicircular shape in which the small diameter portion 39a is generally fitted. The two engaging members 76 engage the first large diameter portion 39b over the entire circumference of the small diameter portion 39a.
  • the actuator 77 is a combination of a spring and a pneumatic cylinder, although no particular reference numeral is attached.
  • the actuator 77 includes a cylinder chamber formed within the movable member 69, a piston slidable in the cylinder chamber, and a piston rod extending from the piston and connected to the engaging member 76. have.
  • the spring biases the piston in a direction in which the engagement member 76 is disengaged.
  • the engagement member 76 is moved from the disengaged position to the engaged position by supplying gas (eg, air) to the side of the piston opposite the piston rod.
  • Other examples of actuators 77 include, for example, linear motors or hydraulic cylinders.
  • the arrangement position of the first driving device 29A may be set as appropriate.
  • the two first driving devices 29A are arranged line-symmetrically with respect to the injection cylinder 27 when viewed from above.
  • the two first driving devices 29A are positioned at the same height as the injection cylinder 27 in the vertical direction, for example. More specifically, for example, the axial centers of the two first screw shafts 73A and the piston rod 39 may be positioned at the same height in the vertical direction.
  • the first driving device 29A retracts the plunger 21 after injection is completed. Therefore, the first driving device 29A is configured to be able to move the attaching/detaching portion 33 with a stroke equal to or greater than the intended stroke of the plunger 21 .
  • the stroke of the first driving device 29A and the stroke of the injection cylinder 27 may be equal, or one may be greater than the other.
  • the second drive device 29B includes the second electric motor 31B and drives the pressure boosting piston 41 as described above.
  • the second driving device 29B includes, for example, a second transmission mechanism 67B and a second transmission mechanism 67B and a second conversion mechanism 67B in order from the second electric motor 31B to the pressure-increasing piston 41. It has a mechanism 68B.
  • the second electric motor 31B is a rotary electric motor like the first electric motor 31A.
  • the above description regarding the configuration of the first electric motor 31A may be incorporated into the configuration of the second electric motor 31B as long as there is no contradiction.
  • the second electric motor 31B may be the same or different in type (eg, AC or DC, and/or induction or synchronous) from the first electric motor 31A. Further, the second electric motor 31B may differ from the first electric motor 31A in performance (rated torque, etc.) according to the difference in roles between the first driving device 29A and the second driving device 29B.
  • the main body (stator) of the second electric motor 31B is fixed to a stationary portion (for example, the cylinder member 35) of the injection device 9, and various parallel movements and rotational movements are restricted.
  • the arrangement position, orientation, etc. of the second electric motor 31B may be appropriately set.
  • the second electric motor 31B is arranged behind and below the injection cylinder 27 .
  • the second electric motor 31B is arranged so that the output shaft is parallel to the injection cylinder 27 and directed rearward.
  • the second transmission mechanism 67B transmits the rotation of the second electric motor 31B in the same manner as the first transmission mechanism 67A that transmits the rotation of the first electric motor 31A.
  • the above description regarding the configuration of the first transmission mechanism 67A may be incorporated into the configuration of the second transmission mechanism 67B as long as there is no contradiction.
  • the term first pulley 70A is replaced with the term second pulley 70B
  • the term first nut 71A is replaced with the term second nut 71B
  • the term first belt 72A is replaced with the term second belt 72B. word.
  • the second transmission mechanism 67B may differ from the first transmission mechanism 67A in gear ratio and the like according to the difference in role between the first drive device 29A and the second drive device 29B.
  • a specific arrangement position of the second transmission mechanism 67B may be set as appropriate.
  • the second transmission mechanism 67B is positioned behind the injection cylinder 27 .
  • the second nut 71B is arranged coaxially with the injection cylinder 27 .
  • the second pulley 70B is positioned below the second nut 71B (see the position of the second electric motor 31B in FIG. 6).
  • the second conversion mechanism 68B converts the rotary motion of the second electric motor 31B into linear motion, similar to the first conversion mechanism 68A that converts the rotary motion of the first electric motor 31A into linear motion.
  • the above description of the configuration of the first conversion mechanism 68A may be incorporated into the configuration of the second conversion mechanism 68B as long as there is no contradiction.
  • the term of the first nut 71A is replaced with the term of the second nut 71B
  • the term of the first screw shaft 73A is replaced with the term of the second screw shaft 73B.
  • the specific configurations of the first conversion mechanism 68A and the second conversion mechanism 68B may differ according to the difference in role between the first drive device 29A and the second drive device 29B. For example, both may differ in type (for example, whether it is a ball screw mechanism or slide screw mechanism), diameter and/or lead.
  • the length of the second screw shaft 73B is shorter than the length of the first screw shaft 73A.
  • the second conversion mechanism 68B is arranged coaxially with the injection cylinder 27, for example.
  • the second screw shaft 73B is connected to the booster piston 41 and restricted from rotating.
  • the second nut 71B is allowed to rotate around its axis, and other movements are restricted. Therefore, when the second electric motor 31B rotates the second nut 71B, the second screw shaft 73B moves in the axial direction, and thus the pressure boosting piston 41 moves in the front-rear direction.
  • a method for restricting parallel movement of the second nut 71B and a method for restricting rotation of the second screw shaft 73B may be appropriate.
  • the second nut 71B may be supported via a bearing by an appropriate member connected to the cylinder member 35, thereby allowing rotation while restricting other movements.
  • the second screw shaft 73B may be allowed to move in the axial direction and restricted from rotating around the axis by the spline groove.
  • the die casting machine 1 may have various sensors that detect various physical quantities related to the operation of the machine body 3 . Then, the control device 5 may control the hydraulic device 43, the first electric motor 31A, the second electric motor 31B, and the attaching/detaching portion 33 (actuator 77) based on the detection values of various sensors.
  • a position sensor 99 that detects the position of the piston rod 39 (plunger 21)
  • a pressure sensor (not shown) that detects the pressure of the accumulator 47
  • a pressure sensor 97H (FIG. 9) that detects the pressure of the head side chamber 35h.
  • a pressure sensor 97R (FIG. 9) for detecting the pressure in the rod-side chamber 35r
  • a sensor (not shown) for detecting the position of the movable member 69
  • a sensor (not shown) for detecting the number of revolutions (rotational speed) of the first electric motor 31A.
  • a sensor (not shown) for detecting the position of the boosting piston 41 a sensor (not shown) for detecting the rotation speed of the second electric motor 31B, a sensor (not shown) for detecting the torque of the first electric motor 31A, and/or Alternatively, a sensor (not shown) that detects the torque of the second electric motor 31B may be provided.
  • the position sensor can be regarded as a speed sensor because the speed (or number of rotations) can be obtained by differentiating the position (or rotational position).
  • a sensor that detects the number of rotations may be regarded as a sensor that detects rotational position.
  • the various sensors may have various configurations, for example, may have known configurations.
  • sensors that detect the positions of the piston rod 39, the movable member 69, and the booster piston 41 may be linear encoders or laser length meters.
  • a sensor that detects rotation may be an encoder or a resolver.
  • a sensor that detects torque may utilize a strain gauge.
  • a current detector that detects the current flowing through the motor may also be regarded as a torque sensor.
  • FIG. 10A and 10B are diagrams for explaining the operation of the injection device 9.
  • FIG. 10A and 10B are diagrams for explaining the operation of the injection device 9.
  • the horizontal axis indicates time t.
  • a solid line Lv indicates changes in the injection speed (the speed of the plunger 21), and a broken line Lp indicates changes in the injection pressure (for example, the pressure applied to the molten metal by the plunger 21).
  • the vertical axis indicates the magnitude of the injection speed V and the injection pressure P.
  • ACC In “ACC", “release 1” indicates a state in which the working fluid is released (mainly) from the accumulator 47 to the head-side chamber 35h. “Discharge 2” indicates a state in which hydraulic fluid is discharged from the accumulator 47 (mainly) to the rear chamber 35a. “Filling” indicates a state in which the accumulator 47 is filled with the hydraulic fluid in the head side chamber 35h or the rear side chamber 35a. “Stop” indicates a condition in which any of the above hydraulic fluid flows are inhibited.
  • forward rotation indicates a state in which the detachable portion 33 or the boosting piston 41 rotates in the forward direction.
  • Reverse indicates a state in which rotation is performed in the direction opposite to the above.
  • Stand indicates a state in which rotation is not performed. It should be noted that, unless otherwise specified, the electric motor may be stopped in any one of a torque-free state, a position-controlled state, and a brake-operated state, for example.
  • the injection device 9 performs low-speed injection (time points t0 to t1), high-speed injection (time points t1 to t3), pressure increase (time points t4 to t6), and pressure holding (time points t6 to t7) in sequence. That is, in the initial stage of injection, the injection device 9 performs low-speed injection in which the plunger 21 advances at a relatively low speed (velocity V L ) from the viewpoint of preventing entrainment of air in the molten metal. Next, the injection device 9 performs high-speed injection by moving the plunger 21 forward at a relatively high speed (velocity V H ) in order to fill the molten metal without delaying the solidification of the molten metal.
  • V L relatively low speed
  • V H relatively high speed
  • the injection device 9 increases the pressure of the molten metal in the cavity 107 to the casting pressure P E (final pressure) by the forward force of the plunger 21 from the viewpoint of eliminating sink marks in the molded product. After that, the injection device 9 performs holding pressure to maintain the casting pressure PE .
  • Low-speed ejection and high-speed ejection are performed by supplying hydraulic fluid from the accumulator 47 to the head-side chamber 35h (see “Ejection 1" of ACC in the figure).
  • the pressure increase is initially performed by supplying hydraulic fluid from the accumulator 47 to the head-side chamber 35h. These operations correspond, for example, to FIGS.
  • the rest of the process of increasing pressure and holding pressure are performed by supplying hydraulic fluid (applying pressure) from the accumulator 47 to the rear chamber 35a (see “Release 2" of ACC in the figure). These operations correspond to FIGS. 4 and 5.
  • FIG. Specifically, it is as follows.
  • the injection device 9 is in the state shown in FIGS. 1 and 6-9. That is, the injection piston 37 and the boosting piston 41 are positioned at initial positions such as the retraction limit. The connection (engagement) of the detachable portion 33 is released.
  • the various valves in the hydraulic circuit 53 are, for example, controlled to basically prohibit the flow of hydraulic fluid.
  • the first electric motor 31A, the second electric motor 31B and the pump 49 are stopped. As described above, the motor may be stopped in an appropriate state. For example, at least one of these electric motors (for example, the second electric motor 31B) may be in a torque-free state from the viewpoint of reducing power consumption.
  • the control device 5 determines whether or not a predetermined injection start condition has been met.
  • the injection start condition may be, for example, that the mold clamping of the fixed mold 103 and the movable mold 105 is completed and information indicating that the molten metal has been supplied to the sleeve 19 is obtained. Then, when the control device 5 determines that the injection start condition is satisfied, it starts injection (low-speed injection).
  • control device 5 opens the flow control valve 55 and the check valve 59A.
  • the hydraulic fluid is supplied from the accumulator 47 to the head-side chamber 35h.
  • control device 5 opens the check valve 59B. This allows the hydraulic fluid to be discharged from the rod-side chamber 35r.
  • the injection piston 37 moves forward while discharging the hydraulic fluid in the rod side chamber 35r by the pressure received from the head side chamber 35h. Consequently, the piston rod 39 and plunger 21 move forward.
  • the speed of the plunger 21 is controlled by adjusting the flow rate of the hydraulic fluid supplied to the head-side chamber 35h by the flow rate control valve 55. Specifically, the control device 5 feedback-controls the opening of the flow control valve 55 so that the speed of the plunger 21 detected by the position sensor 99 converges to the target speed.
  • This feedback control may be, for example, a feedback control of the speed itself, or a substantial speed feedback control that is performed so that the detected position of the plunger 21 becomes the target position every moment. may be feedback control.
  • the speed of the plunger 21 is, for example, low (less than 1 m/s) and constant. However, multistage control of the speed of the plunger 21 may be performed.
  • the controller 5 disconnects the detachable part 33 from the piston rod 39 when the low-speed injection is being performed. Therefore, the speed of the piston rod 39 is not affected by the driving state of the first electric motor 31A. In the illustrated example, the first electric motor 31A is stopped at the start of injection. Therefore, the piston rod 39 (detachable portion 39z) moves forward while leaving the detachable portion 33 (movable member 69) behind.
  • the control device 5 starts the forward rotation of the first electric motor 31A at an appropriate time to move the detachable portion 33 forward.
  • the start timing of forward rotation and the speed of forward rotation may be set as appropriate.
  • the forward rotation start timing and forward rotation speed are such that the attachment/detachment portion 33 reaches the plunger 21 by the time point when it becomes necessary to engage the attachment/detachment portion 33 with the plunger 21 (time point t11 in the illustrated example). is set to reach a position (small diameter portion 39a) that can be connected to .
  • the start timing of forward rotation may be before the start of injection (before time t0), at the start of injection (time t0), during low speed injection (example shown), during high speed injection, or after high speed injection.
  • the speed of the attaching/detaching portion 33 driven by the forward rotation of the first electric motor 31A is lower than the high speed injection speed VH .
  • the speed may be lower than, equal to, or higher than the low speed injection speed VL .
  • the detachable portion 33 may temporarily or always precede the detachable portion 39z of the piston rod 39. I do not care.
  • the controller 5 increases the opening of the flow control valve 55 to increase the flow rate of the hydraulic fluid from the accumulator 47 to the head-side chamber 35h, thereby increasing the speed of the plunger 21.
  • the control at this time may be the same as the control at the time of low-speed injection, except that the target speed is different.
  • a high speed start condition may be, for example, that the position of the plunger 21 has reached a predetermined high speed switching position.
  • the control device 5 may determine whether or not the detected position of the plunger 21 has reached the high speed switching position to switch the target speed, or may switch the target speed from time to time set based on the high speed switching position and the target speed. It may be just to achieve the target position.
  • Deceleration injection t3-t4
  • the plunger 21 receives reaction force from the filled molten metal and is decelerated, while the injection pressure rises rapidly. Note that the operation of each part is the same as during high-speed injection. However, deceleration control may be performed to reduce the degree of opening of the flow control valve 55 . Such deceleration control reduces, for example, the impact during filling.
  • the control device 5 controls the hydraulic circuit 53 to start pressure increase when a predetermined pressure increase start condition is satisfied.
  • the pressure increase start condition is, for example, when the injection pressure reaches a predetermined pressure based on the detection value of the pressure sensor 97H that detects the pressure in the head-side chamber 35h (and the pressure sensor 97R that detects the pressure in the rod-side chamber 35r if necessary). or that the detected position of the plunger 21 detected by the position sensor 99 has reached a predetermined position.
  • the control device 5 performs speed control based on the detection value of the position sensor 99 (the detection value of the injection speed) from low-speed injection to deceleration injection. On the other hand, when the pressure increase starts, the control device 5 performs pressure control based on the detection value (the injection pressure detection value) of the pressure sensor 97H (and the pressure sensor 97R if necessary). In the pressure control, the control device 5 feedback-controls the flow control valve 55 so that the detected value of the injection pressure rises along a predetermined pressure increase curve, for example.
  • the control device 5 controls the hydraulic circuit 53 and the second electric motor 31B so as to perform the operations described with reference to FIG. 3 at appropriate times. That is, the control device 5 prepares for pressure increase by the pressure increase piston 41 (FIG. 4).
  • the control device 5 opens the check valve 59E to allow the hydraulic fluid to flow from the accumulator 47 to the rear side chamber 35a.
  • the pressure-increasing piston 41 receives rearward pressure from the hydraulic fluid in the head-side chamber 35h and forward pressure from the hydraulic fluid in the rear-side chamber 35a. Both pressures are pressures from the accumulator 47 and are theoretically the same.
  • the pressure-increasing piston 41 has a larger pressure-receiving area in the rear-side chamber 35a than in the head-side chamber 35h. Therefore, the force that the pressure intensifying piston 41 receives from the hydraulic fluid is a forward force as a whole.
  • control device 5 controls the second electric motor 31B so as to apply a rearward driving force to the pressure-increasing piston 41 .
  • the magnitude of the backward force applied to the pressure intensifying piston 41 by the second electric motor 31B is, relative to the magnitude of the forward force applied to the pressure intensifying piston 41 by the hydraulic fluid in the head-side chamber 35h and the rear-side chamber 35a, equal or higher. As a result, the pressure-increasing piston 41 is kept stopped at the retraction limit.
  • Electric power is supplied to the second electric motor 31B so as to generate a rotational driving force that moves the pressure boosting piston 41 backward.
  • the second electric motor 31B does not rotate (reverse rotation) in the above rotation direction, and either stops (FIG. 3) or rotates forward (FIG. 4). Therefore, in FIG. 10, "reverse rotation” indicating the operation of the second electric motor 31B near time t5 is written in parentheses.
  • the rearward force of the second electric motor 31B may be made larger than the forward force of the hydraulic fluid in the head-side chamber 35h and the rear-side chamber 35a.
  • the difference may be set appropriately. The larger the difference between the two forces, the more reliably the intensifying piston 41 can be stopped, while the smaller the difference between the two forces, the easier it is to reduce the power consumption of the second electric motor 31B.
  • the backward force by the second electric motor 31B may be 1.5 times or less, 1.2 times or less, or 1.1 times or less than the forward force by the hydraulic fluid.
  • the timing to start supplying the hydraulic fluid to the rear side chamber 35a and the timing to start driving the second electric motor 31B may be, for example, substantially the same. From the viewpoint of reliably preventing the advance of the pressure intensifying piston 41, the latter may be faster than the former.
  • the difference between the two timings in this case may be set as appropriate. The larger the difference between the two timings, the more reliably the pressure-increasing piston 41 can stop advancing, while the smaller the difference between the two timings, the easier it is to reduce the power consumption of the second electric motor 31B.
  • the difference between the two may be 50 msec or less, 20 msec or less, or 10 msec or less.
  • the timing of starting the supply of hydraulic fluid to the rear side chamber 35a is determined by outputting a control command to the hydraulic circuit 53 (a valve (not shown) that controls the pilot pressure to the check valve 59E). It may be the timing, or the timing when the hydraulic fluid is actually supplied to the rear side chamber 35a (which has a control delay with respect to the timing of outputting the control command).
  • the timing to start driving the second electric motor 31B is either the timing to output a control command to the second electric motor 31B or the timing to actually start driving the second electric motor 31B. good too. However, in general, the difference between the two can be ignored.
  • the timing of starting preparation for pressure increase by the pressure-increasing piston 41 may be an appropriate timing. .
  • the preparation start timing may be after time t2, after time t3, or after time t4.
  • the preparation start timing is set within a period from time t3 to time t5. The period is, in other words, the period from the start of deceleration to the completion of pressure increase by supplying the hydraulic fluid to the head-side chamber 35h.
  • the preparation start timing may be set to be before time t5 and set so that the time difference from time t5 is a predetermined length of time (for example, 100 msec). It should be noted that if power consumption is ignored, the timing of starting the preparation may be earlier than the various points of time exemplified above.
  • the control of the second electric motor 31B when the pressure intensifying piston 41 is stopped as described above may be, for example, torque control.
  • the control device 5 may perform torque control of the second electric motor 31B so that a constant torque is maintained.
  • the control may be feedback control based on a sensor that detects the torque of the second electric motor 31B, or may be open control without feedback.
  • the control of the second electric motor 31B while the pressure intensifying piston 41 is stopped may be position control or speed control.
  • the controller 5 closes the flow control valve 55 and the check valve 59A when a predetermined pressure increase switching condition is satisfied. As a result, backflow of the hydraulic fluid from the head-side chamber 35h to the accumulator 47 is prohibited.
  • the control device 5 causes the hydraulic fluid to apply the force that the second electric motor 31B applies to the pressure-increasing piston 41 rearward to the pressure-increasing piston 41. less than the forward force As a result, the pressure in the head-side chamber 35h is increased, and the pressure is increased.
  • the check valve 59A may be self-closed by the pressure of the hydraulic fluid in the head-side chamber 35h. Specifically, when the injection piston 37 is moving forward, the volume of the head-side chamber 35h is increased, the pressure of the head-side chamber 35h is lower than the pressure of the accumulator 47, and the check valve 59A does not self-close. After that, when the cavity 107 is mostly filled with the molding material and the expansion of the volume of the head side chamber 35h is almost stopped, the pressure of the head side chamber 35h becomes higher than the pressure of the accumulator 47 due to the pressure increasing action of the pressure increasing piston 41. As a result, the check valve 59A self-closes.
  • the pressure increase switching condition is, for example, when the injection pressure reaches a predetermined pressure based on the detection value of the pressure sensor 97H that detects the pressure in the head side chamber 35h (and the pressure sensor 97R that detects the pressure in the rod side chamber 35r if necessary). or that the detected position of the plunger 21 detected by the position sensor 99 has reached a predetermined position.
  • the condition may be the same as the pressure increase start condition, but the specific pressure or position used as the determination criterion may be different from the pressure increase start condition.
  • the control when the pressure is increased by the second electric motor 31B is, for example, pressure control based on the detection value (the injection pressure detection value) of the pressure sensor 97H (and the pressure sensor 97R if necessary).
  • the control device 5 for example, feedback-controls the second electric motor 31B so that the detected value of the injection pressure increases along a predetermined pressure increase curve. This causes the injection pressure to reach the casting pressure P E (final pressure).
  • the shape of the boost curve is arbitrary.
  • the line indicating the injection pressure before time t5 and the line indicating the injection pressure after time t5 are linear with the same slope (rate of change). This is just one example.
  • the booster curve may be curved with a gradually decreasing slope before and after time t5. can be different.
  • the pressure applied from the accumulator 47 to the rear side chamber 35a is, for example, constant.
  • the pressure drop due to the discharge of the hydraulic fluid from the accumulator 47 to the rear side chamber 35a is ignored.
  • the control device 5 applies constant pressure to the rear chamber 35a by maintaining the opening degree of the flow control valve 55 constant.
  • the pressure control is not a combination of hydraulic control and electric control, but only electric control, thereby improving control accuracy.
  • electric control may be combined with hydraulic control.
  • the force that the second electric motor 31B applies to the pressure boosting piston 41 to the rear is finally made zero.
  • the control device 5 finally places the second electric motor 31B in a torque-free state (a state in which no electric power is supplied and no driving force is generated). Therefore, the casting pressure P E is determined by two factors, for example, the pressure of the accumulator 47 and the pressure increase ratio of the booster piston 41 (the ratio of the pressure receiving area in the head side chamber 35h and the pressure receiving area in the rear side chamber 35a). Therefore, the desired casting pressure PE can be achieved by setting the pressure of the accumulator 47 to an arbitrary pressure before starting injection.
  • the second electric motor 31B may apply a rearward force to the booster piston 41 when the casting pressure PE is reached.
  • the absolute value of the force that the second electric motor 31B applies to the booster piston 41 to obtain the casting pressure P E in the comparative example is the same as the second electric motor 31B may be smaller than the absolute value of the force applied forward to the pressure boosting piston 41 .
  • the force that the second electric motor 31B applies backward to the pressure boosting piston 41 is less than half the force that the accumulator 47 applies forward to the pressure boosting piston 41. may be assumed.
  • the force applied to the pressure-increasing piston 41 by the second electric motor 31B may be changed from the rearward force to the forward force during the pressure control process.
  • both the forward force of the hydraulic fluid and the forward force of the second electric motor 31B may be applied to the boosting piston 41 to obtain the casting pressure PE .
  • the force applied forward by the second electric motor 31B to the booster piston 41 in order to obtain the casting pressure P E is, of course, the second electric motor 31B in order to obtain the casting pressure P E in the comparative example. 31B is smaller than the forward force applied to the pressure boosting piston 41 .
  • discharge of the hydraulic fluid from the rod side chamber 35r may be prohibited at an appropriate time before the pressure increase is completed.
  • the final pressure in the rod-side chamber 35r may not be the tank pressure.
  • the pressure of the hydraulic fluid in the rod side chamber 35r (from another point of view, the timing of prohibiting discharge of the hydraulic fluid from the rod side chamber 35r ) is added to the factor that determines the casting pressure PE.
  • the pressure increase start condition and the pressure increase switching condition are set so that the initial part of the pressure increase process is performed by supplying the hydraulic fluid from the accumulator 47 to the head side chamber 35h.
  • the entire pressure increasing process is performed only by the action of the pressure increasing piston 41 (pressure control based on the pressure sensor is not performed while hydraulic fluid is being supplied from the accumulator 47 to the head side chamber 35h).
  • the start condition and the pressure increase switching condition may be integrated.
  • the timing at which the flow control valve 55 and the check valve 59A are closed and the timing at which the control device 5 starts pressure control by the second electric motor 31B may be earlier or later.
  • the conditions for closing the flow control valve 55 and the check valve 59A may differ from the conditions for starting the pressure control by the second electric motor 31B.
  • the control device 5 controls the hydraulic pressure device 43 and the second electric motor 31B so as to maintain the casting pressure PE. That is, holding pressure is performed. Specifically, for example, the second electric motor 31B is maintained in a torque-free state. Also, the application of pressure from the accumulator 47 to the rear side chamber 35a is continued. In addition, in the description of the pressure increase by the pressure increasing piston 41, the modification examples for obtaining the casting pressure P E without making the second electric motor 31B torque-free were also described . The state when was obtained may be maintained.
  • the molten metal in the cavity 107 is cooled and solidified while the holding pressure is being performed.
  • the control device 5 determines that the molten metal has solidified (time t7)
  • the control device 5 controls the hydraulic device 43 (and the second electric motor 31B) to end pressure holding.
  • the control device 5 closes the flow control valve 55 and the check valve 59E to prohibit the hydraulic fluid from flowing from the accumulator 47 to the rear chamber 35a.
  • the controller 5 may suitably determine whether the molten metal has solidified.
  • the control device 5 determines whether or not the molten metal has solidified based on whether or not a predetermined time has elapsed from a predetermined time such as time t6 when the final pressure was obtained.
  • the speed of the plunger 21 decreases due to the decelerated injection and the increased pressure, and the pressure holding starts to stop the plunger 21 . Therefore, the detachable portion 33 driven by the first electric motor 31A catches up with the detachable portion 39z of the piston rod 39. As shown in FIG. In other words, the detachable portion 33 can be connected to the detachable portion 39z.
  • the control device 5 detects that the detachable portion 33 (movable member 69) has reached a predetermined stop position based on the detection value of the sensor that detects the position of the detachable portion 33 (movable member 69) or the sensor that detects the rotation of the first electric motor 31A. When detected, the first electric motor 31A is stopped.
  • the stop position is, for example, the position of the attachment/detachment section 33 (the position where the attachment/detachment section 33 can be connected) when the attachment/detachment section 33 is connected to the attachment/detachment section 39z (time t11 in the illustrated example), or a position in the vicinity thereof. is.
  • the detachable portion 33 reaches the stop position in the illustrated example before the point in time when connection becomes necessary (time t11 in the illustrated example).
  • the specific time may be an appropriate time.
  • the timing may be during deceleration injection, during pressure increase, during pressure retention (example shown), or after completion of pressure retention (but before connection).
  • the control device 5 controls the mold clamping device 7 to move the movable mold 105 away from the fixed mold 103 to open the mold.
  • a molded article formed by solidifying the molten metal leaves one of the fixed mold 103 and the movable mold 105 and remains in the other mold.
  • the control device 5 controls an extrusion device (not shown) so as to extrude the molded product from the other mold.
  • control device 5 may control the injection device 9 so that the plunger 21 performs an operation of pushing out the molded product from the fixed mold 103 (hereinafter sometimes referred to as "projection operation").
  • control device 5 rotates the second electric motor 31B forward, and pressurizes the working fluid in the head-side chamber 35h by the pressure-increasing piston 41.
  • the control at this time may be speed control or torque control.
  • the control device 5 controls the speed based on the detected speed of the plunger 21 so that the speed of the plunger 21 is the same as the speed of the moving mold 105 or the speed of the extrusion pin of the extrusion device (not shown). you can go
  • the attachment/detachment portion 33 stops at (or near) a position where it can be connected to the attachment/detachment portion 39z of the piston rod 39 .
  • the control device 5 connects the detachable portion 33 to the detachable portion 39z.
  • the position of either one of the detachable portion 33 and the detachable portion 39z may be finely adjusted so that the detachable portion 33z and the detachable portion 39z are detachable relative to each other.
  • the control device 5 reverses the first electric motor 31A to retract the injection piston 37 .
  • the control device 5 opens the flow control valve 55 and the check valve 59A.
  • the accumulator 47 is filled with hydraulic fluid discharged from the head-side chamber 35h as the injection piston 37 moves backward.
  • the control device 5 closes the check valve 59B to prohibit the flow of hydraulic fluid from the rod-side chamber 35r to the tank 51, and moves the switching valve 62 to the position allowing the flow of hydraulic fluid from the pump 49 to the rod-side chamber 35r. and drive the pump 49 .
  • the hydraulic fluid is replenished from the pump 49 to the rod side chamber 35r.
  • the boosting piston 41 is also retracted. This retraction may be realized by any of the first electric motor 31A, the second electric motor 31B, and the supply of hydraulic fluid. Also, the hydraulic fluid discharged from the rear chamber 35a may or may not fill the accumulator 47 . Specific examples are given below.
  • the control device 5 reverses the second electric motor 31B to retract the pressure boosting piston 41 during at least part of the period in which the first electric motor 31A is reversed to retract the injection piston 37.
  • the controller 5 opens the flow control valve 55 and the check valve 59E.
  • the accumulator 47 is filled with the hydraulic fluid discharged from the rear chamber 35a.
  • the torque or speed of the second electric motor 31B may be set appropriately.
  • the velocity of the intensifier piston 41 is slower than the velocity of the injection piston 37 .
  • the hydraulic fluid is discharged from the head-side chamber 35h over the period in which the injection piston 37 retreats.
  • the pressure-increasing piston 41 is retracted only during a part of the period in which the injection piston 37 is retracted, and the speed of the pressure-increasing piston 41 is equal to or higher than the speed of the injection piston 37, so that the hydraulic fluid is not discharged from the head-side chamber 35h.
  • a period may exist.
  • the control device 5 opens the flow control valve 55 and the check valve 59E, and also closes the check valve 59A. is closed (discharge of the hydraulic fluid from the head-side chamber 35h is prohibited).
  • the pressure-increasing piston 41 retreats as the injection piston 37 retreats, and the accumulator 47 is filled with hydraulic fluid discharged from the rear side chamber 35a.
  • the check valve 59A may self-close. While the pressure-increasing piston 41 is being retracted, the second electric motor 31B may be in a torque-free state, or may be reversed.
  • the second electric motor 31B may simply be controlled so that the second drive device 29B does not impede the retraction of the intensifying piston 41, or exert a rearward force on the intensifying piston 41. may be given.
  • the division of roles between the first electric motor 31A and the second electric motor 31B may be appropriately set (either of which may generate a large torque).
  • the retraction of the pressure-increasing piston 41 is realized mainly by the reverse rotation of the second electric motor 31B, and the reverse rotation of the first electric motor 31A retracts the injection piston 37 so as not to increase the volume of the head-side chamber 35h. It may be a single one.
  • the detachable portion 33 may be connected to the detachable portion 39z after the detachable portion 33 catches up with the detachable portion 39z and before the need for connection arises.
  • the detachable portion 33 may be connected to the detachable portion 39z during pressure holding or after pressure holding is completed (but before the need for connection occurs).
  • injection piston 37 and the boosting piston 41 are retracted as described above, and then the injection device 9 returns to its initial state by closing various valves. That is, the preparation for the next molding cycle (injection cycle) is completed.
  • the injection device 9 has the injection cylinder 27, the hydraulic device 43, the electric motor 31 (second electric motor 31B), and the control device 5.
  • the injection cylinder 27 is connected to the plunger 21 for pushing out the molding material M into the mold (the mold 101).
  • the injection cylinder 27 also has a piston (pressure boosting piston 41) that can move in a first direction (forward) and in a second direction (backward) opposite thereto.
  • the hydraulic device 43 supplies hydraulic fluid to the injection cylinder 27 .
  • the second electric motor 31B is (indirectly) connected to the pressure boosting piston 41 .
  • the control device 5 simultaneously applies a first force to the front by the hydraulic fluid and a second force to the rear by the second electric motor 31B, which is smaller than the first force, to the intensifying piston 41, and this , the hydraulic device 43 and the second electric motor 31B are controlled so as to move the pressure increasing piston 41 forward.
  • the injection cylinder 27 is arranged such that the plunger 21 advances toward the mold 101 (moves in the direction of pushing out the molding material into the mold 101) by the movement of the pressure-increasing piston 41 in the first direction. ), may be connected to the plunger 21 .
  • the first direction mentioned above may be forward.
  • the above-described hybrid drive mode (the force in the first direction by the hydraulic fluid and the force in the second direction by the second electric motor 31B are increased). Aspects applied to the pressure piston 41) are realized. Normally, the operation of pushing out the molding material toward the mold 101 requires a large force. Therefore, by realizing the driving mode described above in such an operation, for example, the effect of reducing power consumption is improved.
  • the direction in which the piston moves so as to retract the plunger 21 is defined as the first direction, and the opposite direction is defined as the second direction.
  • An action of applying a force in a second direction by the electric motor to the piston that is less than one force may be performed.
  • the effect of improving control accuracy while reducing power consumption is expected.
  • Such a retraction operation may or may not be combined with the operations related to pressure increase and pressure retention in the embodiment.
  • the injection cylinder 27 may be of a pressure increasing type. That is, the injection cylinder 27 may have an injection piston 37 connected to the rear portion of the plunger 21 and a booster piston 41 behind the injection piston 37 capable of pressurizing the hydraulic fluid. Then, the pressure-increasing piston 41 is applied with the above-described first force by the hydraulic fluid in the first direction and the force in the second direction by the second electric motor 31B, which is smaller than the first force. Actions may be taken. From another point of view, the control device 5 controls the first force in the first direction (forward) by the hydraulic fluid and the second direction (backward) by the second electric motor 31B, which is smaller than the first force.
  • the hydraulic device 43 and the second electric motor 31B may be controlled so that the second force is simultaneously applied to the piston (for example, the pressure boosting piston 41), thereby increasing the pressure. Further, the control device 5 may control the second electric motor 31B such that the second force changes with time while the pressure is being increased.
  • the control device 5 applies a first force in a first direction (forward) by the hydraulic fluid to the piston (for example, the pressure boosting piston 41), while setting the second electric motor 31B to a state in which it does not generate driving force.
  • the hydraulic device 43 and the second electric motor 31B may be controlled so that the pressure is maintained by
  • the effect of reducing power consumption is improved. and/or miniaturization of the second electric motor 31B is facilitated.
  • By downsizing the second electric motor 31B it becomes easier to use a commercially available electric motor as the second electric motor 31B. Under these circumstances, for example, it is easy to set the holding pressure time to be long (for example, 10 seconds or longer).
  • the hydraulic device 43 may have an accumulator 47 .
  • the control device 5 may control the hydraulic device 43 so as to apply the hydraulic pressure of the accumulator 47 to the rear of the pressure increasing piston 41 to maintain the pressure.
  • the force necessary for maintaining the pressure can be obtained. Therefore, for example, power consumption is reduced compared to a mode in which the pump 49 applies hydraulic pressure to the rear side chamber 35a to hold the pressure (such a mode is also included in the technology according to the present disclosure). Improves effectiveness. Also in the mode in which the hydraulic pressure from the accumulator 47 is applied to the rear chamber 35a, the hydraulic fluid may be replenished from the pump 49 to the rear chamber 35a in response to leakage of the hydraulic fluid, for example.
  • the control device 5 applies a first force in a first direction (forward) by the hydraulic fluid and a third force in a second direction (rearward) by the second electric motor 31B, which is larger than the first force, to the piston.
  • the pressure intensifying piston 41 may be simultaneously applied to the hydraulic pressure device 43 and the second electric motor 31B so that the pressure intensifying piston 41 is stopped at the rear drive limit.
  • the control device 5 reduces the third force to make the rearward force by the second electric motor 31B a second force smaller than the first force, thereby increasing the
  • the hydraulic device 43 and the second electric motor 31B may be controlled to initiate forward movement of the pressure piston 41 .
  • the start of movement of the pressure-increasing piston 41 is realized by controlling the second electric motor 31B.
  • the control response of the second electric motor 31B is higher than the control response of the hydraulic device 43 . Therefore, the accuracy of control of the pressure increase start timing by the pressure increase piston 41 can be improved.
  • a mode in which the pressure intensifying piston 41 starts advancing by opening the check valve 59E and starting to supply hydraulic fluid from the accumulator 47 to the rear side chamber 35a (this mode is also the technique according to the present disclosure). ).
  • the time from when the control device 5 outputs the control command to the hydraulic device 43 to when the pressure increasing piston 41 starts moving forward is, for example, 20 msec or more.
  • the time from when the control device 5 outputs the control command to the second electric motor 31B to when the pressure boosting piston 41 starts moving forward can be set to 10 msec or less.
  • the projection operation (time points t9 to t10) in which the plunger 21 pushes the molded product away from the fixed mold 103 is performed by the second driving device 29B.
  • the projecting operation may be performed by the first driving device 29A in addition to or instead of the second driving device 29B.
  • first electric motor first electric motor
  • second electric motor second electric motor
  • attachment/detachment the control device 5
  • first electric motor first electric motor
  • second electric motor rotates the first electric motor 31A forward to move the piston rod 39 forward.
  • the molded product is pushed by the plunger 21 and released from the mold.
  • the second electric motor 31B is stopped, for example.
  • the rod side chamber 35r and the head side chamber 35h may be connected to the tank 51, for example.
  • the hydraulic fluid may be supplied from the pump 49 to the head-side chamber 35h.
  • the second electric motor 31B may be rotated forward while the head-side chamber 35h is closed.
  • the force of the hydraulic fluid may be used.
  • hydraulic fluid may be supplied from the accumulator 47 or the pump 49 to the head-side chamber 35h, and the pressure in the head-side chamber 35h may contribute to the discharge operation.
  • detachable portion 33 is used only for retracting the plunger 21 as in the embodiment, only rearward relative movement with respect to the detachable portion 39z is prohibited (and allowed) (forward movement is permitted). A configuration in which relative movement is not prohibited) may also be used.
  • FIG. 11 is a diagram showing a modification relating to the start timing of pressure increase by the pressure increase piston 41, and corresponds to part of FIG.
  • the point of time (time t5) when the pressure increase due to the supply of the hydraulic fluid to the head-side chamber 35h is completed and the point of time (time t5) when the pressure increase by the pressure increase piston 41 is started are the same.
  • the pressure increase start time ts by the pressure increase piston 41 is after the pressure increase completion time t5 by supplying the hydraulic fluid to the head side chamber 35h. The time difference between the two may be set appropriately.
  • the injection device 9 may be configured so that the user can set the time difference between the time t5 and the time ts. In this case, the time difference may be allowed to be zero.
  • the operating modes of FIGS. 10 and 11 may be selectively realized in the same injection device 9 as each other. For example, the time difference may be settable in the range of 0-100 msec.
  • the operation mode of FIG. 10 and the operation mode of FIG. 11 may be different operation modes of the injection device 9 .
  • the timing of starting the preparation for pressure increase by the pressure boosting piston 41 is time t5 (The point before the completion of pressure increase by the injection piston 37) is exemplified.
  • the start timing of preparation for pressure increase by the pressure increasing piston 41 can be after the time point t5.
  • FIG. 12(a) is a schematic diagram showing a modification of the injection cylinder.
  • the illustrated injection cylinder 27A is a so-called single-barrel type that does not have a booster piston 41.
  • injection in a narrow sense for example, low-speed injection and high-speed injection
  • pressure increase, and pressure holding are all performed by supplying hydraulic fluid to the rear of the injection piston 37.
  • the electric motor 31 is connected to the injection piston 37 .
  • a rearward force (second force) is applied to the injection piston 37 by the electric motor 31 as indicated by the arrow a4 in the pressure increase. This force is less than the forward force (first force) applied to the injection piston 37 .
  • the force of the hydraulic fluid and the force of the electric motor act on the piston in opposite directions to move the piston in the direction of the force of the hydraulic fluid (first direction).
  • the moving distance of the injection piston 37 is longer than the moving distance of the boosting piston 41 . Therefore, the embodiment can shorten the length of the second screw shaft 73B as compared with the modified example of FIG. 12(a).
  • a rearward force that is less than the forward force due to the hydraulic fluid may be applied in addition to or instead of boosting pressure in the narrow definition of injection (eg, low speed injection and high speed injection).
  • speed control may be performed by an electric drive.
  • the injection cylinder 27D has a first cylinder member 35p that houses the injection piston 37 and a second cylinder member 35q that houses the pressure boosting piston 41, which are separated from each other.
  • the head-side chamber 35h behind the injection piston 37 and the pressurizing chamber 35b in front of the boosting piston 41 may be communicated with each other through 35c.
  • the position and orientation of the second cylinder member 35q with respect to the first cylinder member 35p are arbitrary.
  • the position and orientation of the electric drive unit that drives the pressure intensifying piston 41 are also arbitrary.
  • the second cylinder member 35q may be arranged in parallel with the first cylinder member 35p (example shown), or may be arranged so as to intersect.
  • the direction in which the pressure-increasing piston 41 moves during pressure increase is the rearward direction for the plunger 21 and the injection piston 37, contrary to the first embodiment. may be
  • the mechanism that converts the rotation of the electric motor 31 (the first electric motor 31A and/or the second electric motor 31B) into linear motion is not limited to the screw mechanism.
  • the conversion mechanism 68C may be a rack and pinion mechanism.
  • the conversion mechanism may be a link mechanism.
  • the electric driving device first driving device 29A or second driving device 29B
  • the electric driving device does not have a transmission mechanism (first transmission mechanism 67A and/or second transmission mechanism 67B) that transmits rotation, or may have other types of transmission mechanisms.
  • Other types of transmission mechanisms may include, for example, gear mechanisms.
  • the electric motors may be linear motors.
  • the electric motor 31C that drives the pressure boosting piston 41 is a linear motor.
  • the electric motor 31C is fixed, for example, to the boosting piston 41, is fixed to the mover 31a made up of one of a magnet and a coil, and to a stationary portion (for example, a frame 45) of the injection device 9, and is fixed to the other of the magnet and the coil. It has a stator 31b consisting of.
  • the molding machine is not limited to a die casting machine.
  • the molding machine may be another metal molding machine, an injection molding machine, or a molding machine that molds a material obtained by mixing wood flour with a thermoplastic resin or the like.
  • the molding machine is not limited to horizontal clamping and horizontal injection, and may be, for example, vertical clamping and vertical injection, vertical clamping and horizontal injection, or horizontal clamping and vertical injection.
  • the plunger may be in the form of a screw.
  • Die casting machines are not limited to cold chamber machines, and may be hot chamber machines, for example.
  • the hydraulic fluid is not limited to oil, and may be water, for example.
  • an injection device in which the injection piston (plunger) is retracted and the accumulator is charged by an electric motor.
  • retraction of the injection piston (plunger) and/or filling of the accumulator may be effected by a supply of hydraulic fluid from a pump instead of the electric motor.
  • the advance of the injection piston (injection in a narrow sense from another point of view) was performed only by supplying hydraulic fluid to the rear of the injection piston.
  • at least part or all of injection in a narrow sense may be performed by an electric motor.
  • the hydraulic device (hydraulic circuit) shown in FIG. 9 is merely an example, and may be modified as appropriate.
  • a meter-out circuit may be provided instead of or in addition to the meter-in circuit. That is, a flow rate control valve may be provided to control the flow rate of the hydraulic fluid discharged from the rod side chamber 35r, and the injection speed and/or the injection pressure may be controlled by the flow rate control valve.
  • a run-around circuit may be provided to supply the hydraulic fluid discharged from the rod-side chamber 35r to the head-side chamber 35h.
  • a run-around circuit may be combined with a meter-in circuit and/or a meter-out circuit.
  • the position on the rod-side chamber 35r side of the flow control valve of the meter-out circuit may be connected to the head-side chamber 35h.
  • a position on the side of the tank may be connected to the head-side chamber 35h.
  • the accumulator that supplies the working fluid to the head-side chamber 35h and the accumulator that supplies the working fluid to the rear-side chamber 35a are the same accumulator. Unlike the embodiment, the accumulator that supplies the working fluid to the head-side chamber 35h and the accumulator that supplies the working fluid to the rear-side chamber 35a may be separate accumulators.
  • each valve is named by the name of the type of valve (check valve, switching valve) illustrated in the figure.
  • each valve may be a valve other than the type used in the designation.
  • pilot pressure for various valves was supplied from an accumulator.
  • the pilot pressure may be supplied from a pump or from an accumulator separate from the accumulator for driving the plunger.
  • the rod-side chamber may be replenished with hydraulic fluid when the piston moves back from an accumulator separate from the accumulator for driving the plunger.
  • This replenishment accumulator may be at a lower pressure than the accumulator for driving the plunger.
  • the pressure-increasing piston 41 is provided, the pressure is also increased by supplying hydraulic fluid to the head-side chamber. However, it is not necessary to increase the pressure by supplying hydraulic fluid to the head-side chamber. That is, only speed control may be performed while the hydraulic fluid is being supplied to the head-side chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

An injection apparatus 9 comprises an injection cylinder 27, a liquid-pressure device 43, a second electric motor 31B, and a control device 5. The injection cylinder 27 is coupled to a plunger 21 that extrudes a molding material M into a mold 101. The injection cylinder 27 also has a booster piston 41 that can be moved forward and backward. The liquid pressure device 43 supplies a hydraulic liquid to the injection cylinder 27. The second electric motor 31B is coupled to the booster piston 41. The control device 5 performs control on the liquid-pressure device 43 and the second electric motor 31B so as to simultaneously impart, to the booster piston 41, a first force, which is generated by the hydraulic liquid and which acts forward, and a second force, which is generated by the second electric motor 31B and which acts backward, and thereby cause the booster piston 41 to move forward.

Description

射出装置及び成形機Injection device and molding machine
 本開示は、射出装置、及び当該射出装置を含む成形機に関する。成形機は、例えば、金属を成形するダイカストマシン、又は樹脂を成形する射出成形機である。 The present disclosure relates to an injection device and a molding machine including the injection device. The molding machine is, for example, a die casting machine for molding metal or an injection molding machine for molding resin.
 プランジャによって成形材料を金型内に押し出す射出装置として、液圧式(例えば油圧式)の駆動部と、電動式の駆動部とによってプランジャを駆動する、いわゆるハイブリッド式のものが知られている(例えば下記特許文献1~3)。このような射出装置は、プランジャと連結されている射出シリンダと、射出シリンダが有している部材(例えばピストン)に連結されている電動機とを有している。射出シリンダに作動液が供給されることによって生じる駆動力と、電動機による駆動力とは、射出中の適宜な期間において、プランジャに対して同一方向(例えばプランジャが金型に向かう方向)へ同時に作用するか、又はいずれか一方が選択的に利用される。 As an injection device that uses a plunger to push out a molding material into a mold, there is known a so-called hybrid type in which the plunger is driven by a hydraulic (e.g., hydraulic) drive unit and an electric drive unit (e.g., Patent Documents 1 to 3 below). Such an injection device has an injection cylinder connected to a plunger and an electric motor connected to a member (for example, a piston) of the injection cylinder. The driving force generated by supplying the hydraulic fluid to the injection cylinder and the driving force by the electric motor simultaneously act on the plunger in the same direction (for example, the direction in which the plunger faces the mold) during an appropriate period during injection. or either one is selectively used.
特開2008-155280号公報JP-A-2008-155280 特開2006-315071号公報JP-A-2006-315071 特開2014-18840号公報JP 2014-18840 A
 従来の種々のハイブリッド式の射出装置は、各々、長所及び短所を有している。一方で、ユーザの要求は多様である。従って、ユーザの要求を満足することができる射出装置がユーザに提供されるとは限らない。以上のことから、新たな態様のハイブリッド式の射出装置が提供されることによって技術の豊富化が図られ、ひいては、ユーザの要求が満たされる蓋然性が高くなることが望ましい。 Various conventional hybrid injection devices each have their own advantages and disadvantages. On the other hand, user demands are diverse. Therefore, it is not always possible to provide the user with an injection apparatus that can satisfy the user's request. In view of the above, it is desirable that the provision of a hybrid type injection apparatus of a new mode will enrich the technology and, in turn, increase the probability that user's demands will be satisfied.
 ユーザの要求(課題)の一例を以下に挙げる。ただし、本開示に係る技術は、以下に例示する課題を解決できることを必須の要件とするものではない。 An example of user requests (problems) is given below. However, the technique according to the present disclosure does not necessarily require that the problems exemplified below can be solved.
 一般に、電動式の駆動部を用いると、液圧式の駆動部を用いた場合よりも消費エネルギーを節約できる。ひいては、二酸化炭素削減も期待される。また、電動式の駆動部は、液圧式の駆動部に比較して、高精度な制御が可能である。このような事情から、射出装置においても、電動化のニーズは高い。 In general, using an electric drive can save energy consumption compared to using a hydraulic drive. As a result, carbon dioxide reduction is also expected. Further, the electric drive section can be controlled with higher precision than the hydraulic drive section. Under these circumstances, there is a high need for electrification of injection apparatuses as well.
 射出装置は、成形材料が金型内に充填された後、プランジャによって成形材料に付与する圧力を上昇させる増圧と、増圧によって上昇した圧力を維持する保圧とを行うことがある。増圧及び保圧によって、例えば、金型内で冷却される成形材料の収縮に伴って生じる巣(製品の表面又は内部における空所)が減じられる。 After the molding material is filled in the mold, the injection device may perform pressure increase to increase the pressure applied to the molding material by the plunger and hold pressure to maintain the increased pressure due to the pressure increase. Increased pressure and hold pressure reduce porosity (voids on or inside the product) that occur, for example, with shrinkage of the molding material as it cools in the mold.
 増圧及び保圧は、比較的大きな駆動力及びその維持が必要になる。従って、増圧及び保圧を電動機によって行う場合、電動機の大型化及び消費電力の増大を招く。その結果、例えば、電動機を用いることによって消費エネルギーを低減しようとするユーザの要求に対するミスマッチが生じる。ひいては、保圧の時間を長く設定可能にしたいというユーザの要求に応えることができない。 Increasing and holding pressure require a relatively large driving force and its maintenance. Therefore, when the pressure is increased and the pressure is maintained by the electric motor, the size of the electric motor is increased and the power consumption is increased. The result is a mismatch with the user's desire to reduce energy consumption, for example by using electric motors. As a result, it is not possible to meet the user's demand for setting a long pressure holding time.
 本開示の一態様に係る射出装置は、射出シリンダと、液圧装置と、電動機と、制御装置とを有している。前記射出シリンダは、型内に成形材料を押し出すプランジャに連結されるものである。また、前記射出シリンダは、第1方向及びその反対方向の第2方向に移動可能なピストンを有している。前記液圧装置は、前記射出シリンダに作動液を供給する。前記電動機は、前記ピストンに連結されている。前記制御装置は、作動液による前記第1方向への第1の力と、前記第1の力よりも小さい、前記電動機による前記第2方向への第2の力とを前記ピストンに同時に付与し、これにより前記ピストンを前記第1方向へ移動させるように前記液圧装置及び前記電動機を制御する。 An injection device according to one aspect of the present disclosure includes an injection cylinder, a hydraulic device, an electric motor, and a control device. The injection cylinder is connected to a plunger that pushes molding material into the mold. The injection cylinder also has a piston movable in a first direction and a second opposite direction. The hydraulic device supplies hydraulic fluid to the injection cylinder. The electric motor is connected to the piston. The control device simultaneously applies a first force in the first direction by hydraulic fluid and a second force in the second direction by the electric motor that is smaller than the first force to the piston. , thereby controlling the hydraulic system and the electric motor to move the piston in the first direction.
 本開示の一態様に係る成形機は、上記射出装置と、前記型を保持する型締装置と、を有している。 A molding machine according to one aspect of the present disclosure includes the above injection device and a mold clamping device that holds the mold.
 上記の構成によれば、作動液による力とは反対側へ電動機による力を作用させつつ、作動液による力の方向へピストンを移動させる新たな態様の射出装置及び成形機が提供される。 According to the above configuration, a new mode of injection device and molding machine is provided in which the piston is moved in the direction of the force of the hydraulic fluid while the force of the electric motor is applied in the opposite direction to the force of the hydraulic fluid.
実施形態に係る射出装置の動作の概要を説明するための模式図。Schematic diagrams for explaining an overview of the operation of the injection device according to the embodiment. 図1の続きを説明するための模式図。FIG. 2 is a schematic diagram for explaining the continuation of FIG. 1; 図2の続きを説明するための模式図。FIG. 3 is a schematic diagram for explaining the continuation of FIG. 2; 図3の続きを説明するための模式図。FIG. 4 is a schematic diagram for explaining the continuation of FIG. 3 ; 図4の続きを説明するための模式図。FIG. 5 is a schematic diagram for explaining the continuation of FIG. 4 ; 実施形態に係るダイカストマシンの要部の構成を示す側面図。FIG. 2 is a side view showing the configuration of the main parts of the die casting machine according to the embodiment; 図6のダイカストマシンの要部の構成を示す上面図。FIG. 7 is a top view showing the configuration of the main parts of the die casting machine of FIG. 6; 図6のダイカストマシンの射出装置の要部の構成を模式的に示す断面図。FIG. 7 is a cross-sectional view schematically showing the configuration of the main part of the injection device of the die casting machine of FIG. 6; 図6のダイカストマシンの液圧装置の一例を示す回路図。FIG. 7 is a circuit diagram showing an example of a hydraulic device of the die casting machine of FIG. 6; 図6のダイカストマシンの射出装置の動作を説明する図。FIG. 7 is a diagram for explaining the operation of the injection device of the die casting machine of FIG. 6; 図6のダイカストマシンの射出装置の動作の変形例を説明する図。FIG. 7 is a view for explaining a modification of the operation of the injection device of the die casting machine of FIG. 6; 図12(a)、図12(b)、図12(c)及び図12(d)は変形例に係る射出装置を説明する図。FIGS. 12(a), 12(b), 12(c) and 12(d) are diagrams for explaining an injection device according to a modification; FIG.
<ダイカストマシンの動作の概要>
 図1~図5は、実施形態に係るダイカストマシン1の射出に係る動作の一例について概要を説明するための模式図である。射出に係る動作は、図1から図5へと順に進行する。以下の説明では、便宜上、これらの図の左側を前方といい、これらの図の右側を後方ということがある。
<Outline of operation of die casting machine>
1 to 5 are schematic diagrams for explaining an overview of an example of the operation related to injection of the die casting machine 1 according to the embodiment. The operation related to injection progresses in order from FIG. 1 to FIG. In the following description, for convenience, the left side of these figures may be referred to as the front, and the right side of these figures may be referred to as the rear.
 ダイカストマシン1は、例えば、金型101の内部(キャビティ107)に溶融状態の成形材料Mを射出(充填)することによって、凝固した成形材料Mからなる製品(成形品、ダイカスト品)を製造する装置として構成されている。 The die casting machine 1, for example, injects (fills) the molten molding material M into the mold 101 (cavity 107) to manufacture a product (molded product, die cast product) made of the solidified molding material M. configured as a device.
 成形材料Mをキャビティ107に射出する手順は、以下のとおりである。成形材料Mは、図1に示すように、キャビティ107に通じるスリーブ19内に供給される。そして、図1~図3に示すように、スリーブ19内の成形材料Mは、プランジャ21によってキャビティ107に押し出される。すなわち、狭義の射出が行われる。次に、成形材料Mは、プランジャ21によって押圧されることによって圧力が上昇する(図4)。すなわち、増圧が行われる。その後、成形材料Mは、圧力が上昇した状態が維持される(図5)。すなわち、保圧が行われる。保圧が行われている間に成形材料Mは金型101に熱を奪われて凝固する。 The procedure for injecting the molding material M into the cavity 107 is as follows. Molding material M is fed into sleeve 19 leading to cavity 107, as shown in FIG. Then, as shown in FIGS. 1 to 3, the molding material M inside the sleeve 19 is pushed out into the cavity 107 by the plunger 21. As shown in FIGS. That is, injection in the narrow sense is performed. Next, the molding material M is pressed by the plunger 21 to increase the pressure (FIG. 4). That is, the pressure is increased. After that, the molding material M is maintained under increased pressure (FIG. 5). That is, holding pressure is performed. While the holding pressure is being performed, the molding material M is solidified by being deprived of heat by the mold 101 .
 上記のようなプランジャ21の駆動を実現するために、ダイカストマシン1においては、以下のような動作が行われる。 In order to drive the plunger 21 as described above, the die casting machine 1 performs the following operations.
 まず、図2において矢印a1で示すように、アキュムレータ47から射出ピストン37の背後(ヘッド側室35h)へ作動液(例えば油)が供給される。これにより、射出ピストン37が前進する。ひいては、射出ピストン37に連結されているプランジャ21が前進する。その結果、射出(狭義)が行われる。 First, as indicated by arrow a1 in FIG. 2, hydraulic fluid (for example, oil) is supplied from the accumulator 47 to the back of the injection piston 37 (head side chamber 35h). This causes the injection piston 37 to move forward. As a result, the plunger 21 connected to the injection piston 37 advances. As a result, injection (narrowly defined) is performed.
 次に、図3において矢印a2で示すように、射出(狭義)が完了する前に、アキュムレータ47の作動液が増圧ピストン41の背後(後側室35a)にも供給される。すなわち、増圧ピストン41は、作動液によって前方への力を受ける。一方、矢印a3で示すように、増圧ピストン41は、電動機31から後方への力を受ける。電動機31による後方への力は、作動液による前方への力よりも大きい。従って、増圧ピストン41は前進しない(停止している。)。 Next, as indicated by an arrow a2 in FIG. 3, the hydraulic fluid in the accumulator 47 is also supplied behind the pressure boosting piston 41 (rear side chamber 35a) before injection (narrowly defined) is completed. That is, the booster piston 41 receives forward force from the hydraulic fluid. On the other hand, the booster piston 41 receives a rearward force from the electric motor 31 as indicated by an arrow a3. The rearward force due to the electric motor 31 is greater than the forward force due to the hydraulic fluid. Therefore, the booster piston 41 does not advance (stops).
 次に、図4において、矢印a4を図3の矢印a3よりも小さく描くことによって表現されているように、電動機31が増圧ピストン41に付与する後方への力は、作動液が増圧ピストン41に付与する前方への力よりも小さくされる。これにより、増圧ピストン41が前進を開始する。すなわち、増圧ピストン41は、増圧ピストン41の背後への作動液の供給の開始(別の観点では不図示のバルブの開動作)によって前進を開始するのではなく、電動機31の駆動力が小さくされることによって前進を開始する。 Next, as represented in FIG. 4 by drawing arrow a4 smaller than arrow a3 in FIG. less than the forward force exerted on 41 . As a result, the boosting piston 41 starts moving forward. That is, the pressure-increasing piston 41 does not start moving forward by starting supply of hydraulic fluid to the back of the pressure-increasing piston 41 (opening operation of a valve (not shown) from another point of view). Start moving forward by being made small.
 増圧ピストン41が前進を開始する時点、又はその前の時点若しくは後の時点において、ヘッド側室35hからの作動液の排出は禁止される。そして、増圧ピストン41は、後方(後側室35a)の作動液から受けた力をヘッド側室35hの作動液に伝える。ここで、増圧ピストン41は、後側室35aの作動液から圧力を受ける面積(受圧面積)がヘッド側室35hの作動液から圧力を受ける面積よりも大きい。従って、増圧ピストン41は、アキュムレータ47から後側室35aに付与される圧力を大きくしてヘッド側室35hへ付与することができる。ひいては、プランジャ21が成形材料Mに付与する圧力が上昇し、増圧が行われる。 At the time when the pressure-increasing piston 41 starts moving forward, or at a time before or after that, discharge of hydraulic fluid from the head-side chamber 35h is prohibited. The pressure-increasing piston 41 transmits the force received from the hydraulic fluid in the rear (rear side chamber 35a) to the hydraulic fluid in the head side chamber 35h. Here, the pressure-increasing piston 41 has an area (pressure-receiving area) that receives pressure from the hydraulic fluid in the rear chamber 35a larger than an area that receives pressure from the hydraulic fluid in the head-side chamber 35h. Therefore, the pressure increasing piston 41 can increase the pressure applied from the accumulator 47 to the rear side chamber 35a and apply it to the head side chamber 35h. As a result, the pressure applied to the molding material M by the plunger 21 is increased, and the pressure is increased.
 増圧中において、電動機31の駆動力は徐々に小さくなるように制御される。これにより、増圧ピストン41がヘッド側室35hに付与する圧力が徐々に大きくされる。すなわち、増圧ピストン41の作用によってプランジャ21から成形材料Mに付与される圧力の制御は、作動液の供給及び/又は排出に係る制御(例えば流量制御)によってなされるのではなく、電動機31の駆動力の制御によって実現される。 During pressure increase, the driving force of the electric motor 31 is controlled to gradually decrease. As a result, the pressure applied to the head-side chamber 35h by the pressure-increasing piston 41 is gradually increased. That is, the control of the pressure applied from the plunger 21 to the molding material M by the action of the pressure-increasing piston 41 is not performed by controlling the supply and/or discharge of the hydraulic fluid (for example, flow rate control), but by controlling the electric motor 31. It is realized by controlling the driving force.
 その後、図5において矢印a4(図4)が描かれていないことによって表現されているように、電動機31は、駆動力を生じない状態(例えば回転式の電動機のトルクフリーの状態)とされる。換言すれば、実質的に作動液による力のみが増圧ピストン41に付与される。この状態が維持されることによって保圧が行われる。 After that, the electric motor 31 is brought into a state in which it does not generate driving force (for example, a torque-free state of the rotary electric motor), as indicated by the absence of the arrow a4 (FIG. 4) in FIG. . In other words, substantially only the hydraulic fluid force is applied to the intensifier piston 41 . Holding pressure is performed by maintaining this state.
 以上のとおり、本実施形態では、増圧ピストン41を前方へ移動させる力は、作動液が増圧ピストン41に前方へ付与する力から、電動機31が増圧ピストン41に後方へ付与する力の差によって得られる。従って、例えば、増圧ピストン41を前方へ駆動する力を液圧式の駆動部によって得つつ、その力の制御を電動式の駆動部によって行うことができる。電動式の駆動部の制御は、液圧式の駆動部の制御(例えばバルブによる作動液の流れの制御)に比較して、一般に、応答性が高く、また、偏差が小さい。従って、例えば、増圧の開始タイミングを高精度に制御したり、増圧中の成形材料Mの圧力を高精度に制御したりできる。また、保圧中においては、電動機31を駆動しなくてよい。例えば、アキュムレータ47に蓄圧されている圧力を後側室35aに付与しておくだけでよい。これにより、例えば、消費電力を低減することができる。 As described above, in this embodiment, the force for moving the pressure-increasing piston 41 forward is different from the force applied to the pressure-increasing piston 41 forward by the hydraulic fluid, and the force applied to the pressure-increasing piston 41 rearward by the electric motor 31. obtained by the difference. Therefore, for example, while the force for driving the pressure intensifying piston 41 forward can be obtained by the hydraulic drive unit, the force can be controlled by the electric drive unit. The control of an electric drive is generally more responsive and has smaller deviations than the control of a hydraulic drive (eg control of hydraulic fluid flow by a valve). Therefore, for example, the start timing of pressure increase can be controlled with high accuracy, and the pressure of the molding material M during pressure increase can be controlled with high accuracy. Also, the electric motor 31 does not have to be driven during pressure holding. For example, it is sufficient to apply the pressure accumulated in the accumulator 47 to the rear side chamber 35a. Thereby, for example, power consumption can be reduced.
<ダイカストマシンの具体例>
 上記のダイカストマシン1の構成及び動作は、種々のダイカストマシンに適用可能である。換言すれば、実施形態に係るダイカストマシン1は適宜に具体化されてよい。以下では、具体化したダイカストマシン1の一例を示す。
<Specific example of die casting machine>
The configuration and operation of the die casting machine 1 described above are applicable to various die casting machines. In other words, the die casting machine 1 according to the embodiment may be embodied as appropriate. Below, an example of the die-casting machine 1 embodied is shown.
(ダイカストマシンの全体構成)
 図6は、ダイカストマシン1の要部の構成を示す側面図(一部に断面図を含む)である。図7は、ダイカストマシン1の要部の構成を示す上面図である。各図においては、便宜上、種々の部材の図示が省略されている。従って、例えば、図6に図示されており、図7においても見えるはずの構成要素の図示が図7では省略されていることがある。その逆も同様である。
(Overall configuration of die casting machine)
FIG. 6 is a side view (partially including a cross-sectional view) showing the configuration of the main parts of the die casting machine 1. As shown in FIG. FIG. 7 is a top view showing the configuration of the essential parts of the die casting machine 1. As shown in FIG. In each figure, illustration of various members is omitted for the sake of convenience. Thus, for example, the illustration of components that are illustrated in FIG. 6 and should also be visible in FIG. 7 may be omitted from FIG. And vice versa.
 既述の成形材料M(ここでは不図示)は、例えば、アルミニウム等の金属である。溶融状態の金属は、溶湯と呼ばれることがある。なお、溶融状態の成形材料に代えて、固液共存状態(半凝固状態又は半溶融状態)の成形材料がキャビティ107に射出されてもよい。 The already-described molding material M (not shown here) is, for example, a metal such as aluminum. Metal in a molten state is sometimes called molten metal. A molding material in a solid-liquid coexistence state (semi-solidified or semi-molten state) may be injected into the cavity 107 instead of the molten molding material.
 金型101は、例えば、固定金型103と、固定金型103と対向する移動金型105とを有している。成形材料が射出されるキャビティ107は、固定金型103と移動金型105との間に構成される。固定金型103は、移動しない金型である。移動金型105は、固定金型103との対向方向(型開閉方向)に移動する金型である。型開閉方向は、例えば、水平方向である。 The mold 101 has, for example, a fixed mold 103 and a movable mold 105 facing the fixed mold 103 . A cavity 107 into which the molding material is injected is constructed between the fixed mold 103 and the movable mold 105 . The fixed mold 103 is a mold that does not move. The movable mold 105 is a mold that moves in a direction opposite to the fixed mold 103 (mold opening/closing direction). The mold opening/closing direction is, for example, the horizontal direction.
 ダイカストマシン1は、機械的動作を行うマシン本体3と、マシン本体3の制御を行う制御装置5とを有している。マシン本体3は、例えば、金型101の型開閉及び型締めを行う型締装置7と、キャビティ107に溶湯を射出する射出装置9と、溶湯が凝固して構成された製品を固定金型103又は移動金型105から押し出す不図示の押出装置とを有している。なお、制御装置5は、射出装置9の構成要素として捉えられてもよい。 The die casting machine 1 has a machine body 3 that performs mechanical operations and a control device 5 that controls the machine body 3 . The machine body 3 includes, for example, a mold clamping device 7 for opening/closing and clamping the mold 101, an injection device 9 for injecting molten metal into a cavity 107, and a fixed mold 103 for producing a product formed by solidifying the molten metal. Alternatively, it has an extrusion device (not shown) that extrudes from the moving mold 105 . Note that the control device 5 may be regarded as a component of the injection device 9 .
 ダイカストマシン1において、射出装置9の構成及び動作を除いて、他の構成要素(例えば型締装置7及び押出装置)の構成及び動作は、種々の構成及び動作とされてよく、例えば、公知の構成及び動作とされて構わない。従って、上記他の構成要素の構成及び動作の説明は適宜に省略する。なお、射出装置9の動作は、別の観点では制御装置5による射出装置9の制御である。以下では、型締装置7の構成及び動作、並びに制御装置5の構成について簡単に説明する。その後、射出装置9の構成及び動作について説明する。 In the die casting machine 1, except for the configuration and operation of the injection device 9, the configuration and operation of other components (for example, the mold clamping device 7 and the extrusion device) may be various configurations and operations. may be constructed and operated. Therefore, descriptions of the configurations and operations of the other components will be omitted as appropriate. Note that the operation of the injection device 9 is control of the injection device 9 by the control device 5 from another point of view. The configuration and operation of the mold clamping device 7 and the configuration of the control device 5 will be briefly described below. After that, the configuration and operation of the injection device 9 will be described.
 型締装置7は、例えば、ベース11と、ベース11上に固定されている固定ダイプレート13と、ベース11上において型開閉方向に移動可能な移動ダイプレート15と、これらのダイプレートに挿通されている複数(例えば4本)のタイバー17と、を有している。固定ダイプレート13と移動ダイプレート15とは型開閉方向において互いに対向している。固定ダイプレート13は、移動ダイプレート15に対向する面に固定金型103を保持する。移動ダイプレート15は、固定ダイプレート13に対向する面に移動金型105を保持する。移動ダイプレート15の型開閉方向における移動によって、金型101の開閉がなされる。また、型閉じがなされた状態でタイバー17が伸長されることによって、その伸長量に応じた型締力が金型101に付与される。 The mold clamping device 7 includes, for example, a base 11, a fixed die plate 13 fixed on the base 11, a movable die plate 15 movable on the base 11 in the mold opening/closing direction, and a die plate inserted through these die plates. and a plurality of (for example, four) tie bars 17 . The fixed die plate 13 and the movable die plate 15 face each other in the mold opening/closing direction. The stationary die plate 13 holds the stationary die 103 on the surface facing the movable die plate 15 . The movable die plate 15 holds the movable die 105 on the surface facing the fixed die plate 13 . The mold 101 is opened and closed by moving the movable die plate 15 in the mold opening/closing direction. In addition, when the tie bars 17 are extended while the mold is closed, a mold clamping force corresponding to the amount of extension is applied to the mold 101 .
 制御装置5は、例えば、特に図示しないが、コンピュータを含んで構成されてよい。コンピュータは、例えば、特に図示しないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及び外部記憶装置を含んで構成されてよい。CPUがROM及び/又は外部記憶装置に記憶されているプログラムを実行することによって、種々の演算(制御を含む)を行う種々の機能部が構築される。また、制御装置5は、一定の動作を実行する論理回路を含んでいてもよいし、電源回路を含んでいてもよいし、ドライバを含んで概念されてもよい。制御装置5は、ハードウェア的に1カ所に纏められていてもよいし、複数個所に分散されていてもよい。 For example, the control device 5 may be configured including a computer, although not shown. The computer may include, for example, a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and an external storage device (not shown). Various functional units that perform various calculations (including control) are constructed by the CPU executing programs stored in the ROM and/or the external storage device. Also, the control device 5 may include a logic circuit that executes a certain operation, may include a power supply circuit, or may be conceptualized including a driver. The control device 5 may be integrated in one place in terms of hardware, or may be distributed in a plurality of places.
(射出装置)
 射出装置9は、固定ダイプレート13の背後(移動ダイプレート15とは反対側)に位置している。射出装置9は、既述のスリーブ19及びプランジャ21、並びにプランジャ21を駆動する駆動部23を有している。なお、スリーブ19及びプランジャ21は、消耗品として捉えられることができるから、駆動部23のみを射出装置として捉えてもよい。
(Injection device)
The injection device 9 is positioned behind the fixed die plate 13 (opposite to the movable die plate 15). The injection device 9 has the previously described sleeve 19 and plunger 21 , and a drive section 23 for driving the plunger 21 . In addition, since the sleeve 19 and the plunger 21 can be regarded as consumables, only the driving part 23 may be regarded as the injection device.
 スリーブ19及びプランジャ21の構成は、種々の構成とされてよく、例えば、公知の構成とされて構わない。図示の例では、以下のとおりである。 The configurations of the sleeve 19 and the plunger 21 may be various configurations, such as known configurations. In the illustrated example:
 スリーブ19は、固定ダイプレート13に挿通されるように設けられている。なお、スリーブ19は、固定金型103に挿通されていなくてもよいし(図6の例)、挿通されていてもよい(図1参照)。スリーブ19は、概略、円筒状の部材であり、水平方向(前後方向)に延びるように配置されている。スリーブ19の上面には、溶湯が供給される供給口19aが開口している。 The sleeve 19 is provided so as to be inserted through the fixed die plate 13 . The sleeve 19 may not be inserted through the fixed mold 103 (example in FIG. 6), or may be inserted through (see FIG. 1). The sleeve 19 is a generally cylindrical member and is arranged to extend in the horizontal direction (front-rear direction). A supply port 19a through which molten metal is supplied is opened in the upper surface of the sleeve 19 .
 プランジャ21は、スリーブ19を摺動するプランジャチップ21aと、プランジャチップ21aに固定されたプランジャロッド21bとを有している。プランジャロッド21bは、前後方向に延びており、その後端は、カップリング25によって駆動部23と連結されている。 The plunger 21 has a plunger tip 21a that slides on the sleeve 19 and a plunger rod 21b fixed to the plunger tip 21a. The plunger rod 21 b extends in the front-rear direction, and its rear end is connected to the driving portion 23 by a coupling 25 .
 図6及び図7では、射出開始前の状態(図1も参照)が示されている。このとき、プランジャチップ21aは、供給口19aよりも後方にてスリーブ19内に(少なくとも一部が)位置している。この状態で、不図示の給湯装置等によって溶湯が供給口19aに注がれる。次に、駆動部23の駆動力によってプランジャチップ21aがキャビティ107に向かって摺動する(前進する)。これにより、溶湯はキャビティ107内に射出される。 FIGS. 6 and 7 show the state before the start of injection (see also FIG. 1). At this time, the plunger tip 21a is positioned (at least partially) inside the sleeve 19 behind the supply port 19a. In this state, molten metal is poured into the supply port 19a by a hot water supply device or the like (not shown). Next, the plunger tip 21 a slides (advances) toward the cavity 107 by the driving force of the driving portion 23 . The molten metal is thereby injected into the cavity 107 .
(駆動部)
 図8は、射出装置9の要部の構成を模式的に示す断面図である。この図は、射出装置9を上方から見た図となっている。ただし、便宜上、上面からは見えない構成要素(後述する第2電動機31B等)も示されている。
(Drive part)
FIG. 8 is a cross-sectional view schematically showing the configuration of the main parts of the injection device 9. As shown in FIG. This figure is a view of the injection device 9 viewed from above. However, for the sake of convenience, components that are not visible from the top surface (second electric motor 31B, etc., which will be described later) are also shown.
 射出装置9(駆動部23)は、プランジャ21の後端とカップリング25によって連結されている射出シリンダ27を有している。射出シリンダ27には、液圧装置43(後述する図9参照)から作動液(例えば油)が供給される。これにより、射出装置9は、液圧式の駆動力をプランジャ21に付与可能となっている。 The injection device 9 (drive unit 23) has an injection cylinder 27 that is connected to the rear end of the plunger 21 by a coupling 25. Hydraulic fluid (oil, for example) is supplied to the injection cylinder 27 from a hydraulic device 43 (see FIG. 9, which will be described later). As a result, the injection device 9 can apply a hydraulic driving force to the plunger 21 .
 また、射出装置9は、第1電動機31Aをそれぞれ含む2つの第1駆動装置29Aを有している。第1駆動装置29Aは、射出シリンダ27の後述するピストンロッド39に対する連結及びその解除が可能な着脱部33を有している。これにより、射出装置9は、電動式の駆動力をプランジャ21に付与可能となっている。 In addition, the injection device 9 has two first driving devices 29A each including a first electric motor 31A. The first driving device 29A has a detachable portion 33 that can connect and disconnect the injection cylinder 27 to a piston rod 39, which will be described later. Thereby, the injection device 9 can apply an electric driving force to the plunger 21 .
 さらに、射出装置9は、第2電動機31Bを含む第2駆動装置29B有している。第2駆動装置29Bは、射出シリンダ27の増圧ピストン41に連結されている。第2電動機31Bは、図1~図5を参照して説明した電動機31に相当する電動機である。ここでは、第1電動機31Aとの区別のために、電動機31は、第2電動機31Bと呼称されている。 Further, the injection device 9 has a second driving device 29B including a second electric motor 31B. The second drive device 29B is connected to the booster piston 41 of the injection cylinder 27 . The second electric motor 31B is an electric motor corresponding to the electric motor 31 described with reference to FIGS. Here, the electric motor 31 is referred to as a second electric motor 31B to distinguish it from the first electric motor 31A.
 成形材料Mを金型101に射出するときの射出装置9の動作の概要は、図1~図5を参照して説明したとおりである。図1~図5の説明から理解されるように、射出開始から保圧完了までの動作は、射出シリンダ27への作動液の供給と、第2電動機31Bの駆動とによって実現される。第1電動機31Aは、例えば、保圧完了後に、プランジャ21を後退させることに寄与する。 The outline of the operation of the injection device 9 when injecting the molding material M into the mold 101 is as described with reference to FIGS. 1 to 5. As can be understood from the description of FIGS. 1 to 5, the operation from the start of injection to the completion of holding pressure is realized by supplying hydraulic fluid to the injection cylinder 27 and driving the second electric motor 31B. The first electric motor 31A, for example, contributes to retracting the plunger 21 after the pressure holding is completed.
(射出シリンダ)
 射出シリンダ27は、例えば、プランジャ21の後方にプランジャ21と同軸的に配置されている。射出シリンダ27は、例えば、シリンダ部材35と、シリンダ部材35の内部を摺動可能な射出ピストン37と、射出ピストン37から前方(プランジャ21側)へ延びるピストンロッド39と、射出ピストン37の後方の作動液を加圧可能な増圧ピストン41と、を有している。
(Injection cylinder)
The injection cylinder 27 is arranged coaxially with the plunger 21 behind the plunger 21, for example. The injection cylinder 27 includes, for example, a cylinder member 35 , an injection piston 37 slidable inside the cylinder member 35 , a piston rod 39 extending forward (toward the plunger 21 side) from the injection piston 37 , and a and a pressurizing piston 41 capable of pressurizing the hydraulic fluid.
 シリンダ部材35は、例えば、概略、筒状の部材である。シリンダ部材35の内部の横断面の形状は、例えば、円形である。シリンダ部材35の外形(外側の形状)は、直方体状等の適宜な形状とされてよい。シリンダ部材35は、固定ダイプレート13に対して移動不可能とされている。シリンダ部材35は、小径シリンダ35xと、小径シリンダ35xの後端に直列に連結されている大径シリンダ35yとを有している。大径シリンダ35yの内径は、小径シリンダ35xの内径よりも大きい。 The cylinder member 35 is, for example, a generally cylindrical member. The internal cross-sectional shape of the cylinder member 35 is, for example, circular. The outer shape (outer shape) of the cylinder member 35 may be an appropriate shape such as a rectangular parallelepiped shape. The cylinder member 35 is made immovable with respect to the stationary die plate 13 . The cylinder member 35 has a small-diameter cylinder 35x and a large-diameter cylinder 35y connected in series to the rear end of the small-diameter cylinder 35x. The inner diameter of the large-diameter cylinder 35y is larger than the inner diameter of the small-diameter cylinder 35x.
 射出ピストン37は、例えば、概略、円柱状の部材である。射出ピストン37の径は、概略、小径シリンダ35xの内径と同じである。射出ピストン37と小径シリンダ35xとの間には、不図示のパッキンが介在してよい。パッキンが介在する場合も、射出ピストン37が小径シリンダ35x(シリンダ部材35)内を摺動すると表現する。他の部材(例えば増圧ピストン41)についても同様とする。小径シリンダ35xの内部の空間は、射出ピストン37によって、ピストンロッド39側のロッド側室35rと、その反対側のヘッド側室35hに区画されている。 The injection piston 37 is, for example, a substantially cylindrical member. The diameter of the injection piston 37 is roughly the same as the inner diameter of the small-diameter cylinder 35x. A packing (not shown) may be interposed between the injection piston 37 and the small-diameter cylinder 35x. Even when a packing is interposed, the injection piston 37 is expressed as sliding inside the small-diameter cylinder 35x (cylinder member 35). The same applies to other members (for example, the booster piston 41). The space inside the small-diameter cylinder 35x is divided by the injection piston 37 into a rod-side chamber 35r on the side of the piston rod 39 and a head-side chamber 35h on the opposite side.
 ピストンロッド39は、例えば、概略、円柱状の部材である。ピストンロッド39の径は、射出ピストン37の径よりも小さい。その差は、適宜に設定されてよい。ピストンロッド39は、シリンダ部材35の外部へ延び出ており、その前端がカップリング25によってプランジャ21の後端と連結されている。 The piston rod 39 is, for example, a substantially cylindrical member. The diameter of the piston rod 39 is smaller than the diameter of the injection piston 37 . The difference may be set appropriately. The piston rod 39 extends outside the cylinder member 35 and has its front end connected to the rear end of the plunger 21 by a coupling 25 .
 ピストンロッド39は、プランジャ21と一体的に移動する。従って、射出シリンダ27は、プランジャ21に関して想定されているストロークと同等以上のストロークでピストンロッド39(射出ピストン37)を移動可能に構成されている。 The piston rod 39 moves integrally with the plunger 21. Therefore, the injection cylinder 27 is configured to be able to move the piston rod 39 (injection piston 37 ) with a stroke equal to or greater than the stroke assumed for the plunger 21 .
 増圧ピストン41は、例えば、シリンダ部材35を摺動可能なピストンによって構成されている。より詳細には、増圧ピストン41は、小径シリンダ35xを摺動する小径ピストン41aと、大径シリンダ35yを摺動する大径ピストン41bとを有している。大径ピストン41bは、小径ピストン41aの後端に直列に連結されている。なお、図示の例とは異なり、小径ピストン41aと大径ピストン41bとの間に、小径ピストン41aの径よりも小さい径を有する連結部が形成されていてもよい。 The pressure-increasing piston 41 is composed of, for example, a piston that can slide on the cylinder member 35 . More specifically, the boosting piston 41 has a small-diameter piston 41a that slides on the small-diameter cylinder 35x and a large-diameter piston 41b that slides on the large-diameter cylinder 35y. The large-diameter piston 41b is connected in series with the rear end of the small-diameter piston 41a. Note that, unlike the illustrated example, a connecting portion having a diameter smaller than that of the small-diameter piston 41a may be formed between the small-diameter piston 41a and the large-diameter piston 41b.
 シリンダ部材35(35x及び35y)の内部のうち射出ピストン37よりも後方の部分は、増圧ピストン41によって、射出ピストン37側のヘッド側室35hと、その反対側の後側室35aとに区画されている。また、大径シリンダ35yの内部は、大径ピストン41bによって、小径シリンダ35x側の前側室35fと、その反対側の後側室35aとに区画されている。増圧ピストン41は、ヘッド側室35hの作動液から圧力を受ける第1面41c(小径ピストン41aの先端面)と、後側室35aの作動液から圧力を受ける第2面41d(小径ピストン41aの後端面)とを有している。第2面41dの面積は、第1面41cの面積よりも大きい。 A portion of the interior of the cylinder member 35 (35x and 35y) behind the injection piston 37 is partitioned by the pressure-increasing piston 41 into a head-side chamber 35h on the side of the injection piston 37 and a rear-side chamber 35a on the opposite side. there is The interior of the large-diameter cylinder 35y is partitioned by the large-diameter piston 41b into a front chamber 35f on the side of the small-diameter cylinder 35x and a rear chamber 35a on the opposite side. The pressure-increasing piston 41 has a first surface 41c (tip surface of the small-diameter piston 41a) that receives pressure from the hydraulic fluid in the head-side chamber 35h, and a second surface 41d that receives pressure from the hydraulic fluid in the rear-side chamber 35a (rear surface of the small-diameter piston 41a). end face). The area of the second surface 41d is larger than the area of the first surface 41c.
 図1~図5を参照して説明した動作から理解されるように、ヘッド側室35h及び後側室35aは作動液で満たされている。一方、ロッド側室35r及び前側室35fは、作動液が満たされていてもよいし、作動液が満たされていなくてもよい。例えば、ロッド側室35r及び前側室35fは、大気開放されていてもよい。作動液が満たされていない場合において、ロッド側室35r及び前側室35fは、潤滑用に作動液(油)が少量配置されていてもよい。 As can be understood from the operations described with reference to FIGS. 1 to 5, the head-side chamber 35h and the rear-side chamber 35a are filled with hydraulic fluid. On the other hand, the rod side chamber 35r and the front side chamber 35f may or may not be filled with hydraulic fluid. For example, the rod side chamber 35r and the front side chamber 35f may be open to the atmosphere. When the hydraulic fluid is not filled, the rod side chamber 35r and the front side chamber 35f may be provided with a small amount of hydraulic fluid (oil) for lubrication.
 以下の説明では、ロッド側室35rに作動液が満たされている態様を例に取る。ロッド側室35rの作動液は、例えば、射出開始時における射出ピストン37の急激な速度での前進(ジャンピング)が発生する蓋然性の低減、及び/又は溶湯の充填完了時におけるサージ圧の吸収に寄与する。 In the following description, an embodiment in which the rod-side chamber 35r is filled with hydraulic fluid will be taken as an example. The hydraulic fluid in the rod-side chamber 35r contributes, for example, to reducing the probability of the injection piston 37 moving forward at a rapid speed (jumping) at the start of injection, and/or to absorbing surge pressure at the completion of molten metal filling. .
 前側室35fに作動液が満たされる場合、この作動液は、何らかの用途に利用されてもよいし、利用されなくてもよい。前者の例としては、例えば、保圧完了後において、液圧装置43から前側室35fに作動液を供給して、増圧ピストン41を後退させる駆動力の少なくとも一部を発生させる態様を挙げることができる。また、例えば、適宜な時期において、液圧装置43によって前側室35fからの作動液の排出を禁止して、増圧ピストン41の意図されていない前進を禁止する態様を挙げることができる。また、前側室35fの作動液が利用されない例としては、前側室35fとタンクとが接続されているだけの態様を挙げることができる。 When the front side chamber 35f is filled with hydraulic fluid, this hydraulic fluid may or may not be used for some purpose. As an example of the former, for example, after the pressure holding is completed, hydraulic fluid is supplied from the hydraulic device 43 to the front side chamber 35f to generate at least part of the driving force for retracting the pressure intensifying piston 41. can be done. Further, for example, at an appropriate time, the hydraulic device 43 may be used to prohibit discharge of the hydraulic fluid from the front side chamber 35f, thereby prohibiting unintended forward movement of the pressure boosting piston 41. Moreover, as an example in which the hydraulic fluid in the front side chamber 35f is not used, there is a mode in which the front side chamber 35f and the tank are only connected.
(フレーム)
 シリンダ部材35を固定ダイプレート13に対して移動不可能に設置する方法は、適宜なものとされてよい。図6及び図7に示す例では、シリンダ部材35は、フレーム45によって固定ダイプレート13に連結されている。フレーム45は、後述するように、第1駆動装置29A等の支持にも寄与している。
(flame)
Any suitable method may be used to install the cylinder member 35 so as not to move with respect to the fixed die plate 13 . In the example shown in FIGS. 6 and 7, the cylinder member 35 is connected to the fixed die plate 13 by a frame 45. As shown in FIG. The frame 45 also contributes to supporting the first driving device 29A and the like, as will be described later.
 フレーム45の形状は任意である。例えば、フレーム45は、図6に示すように、固定ダイプレート13とシリンダ部材35との間に位置して両者を固定している第1部位45aと、第1部位45aに連結されているとともにシリンダ部材35を下方から支持している第2部位45bとを有してよい。 The shape of the frame 45 is arbitrary. For example, as shown in FIG. 6, the frame 45 is connected to a first portion 45a positioned between the fixed die plate 13 and the cylinder member 35 to fix them together, and the first portion 45a. and a second portion 45b that supports the cylinder member 35 from below.
 第1部位45a及び第2部位45bの形状も任意である。例えば、第1部位45aは、プランジャ21の下方に位置する部分(図6。符号省略)、プランジャ21の側方及び/又は上方に位置する部分(図7)、及びシリンダ部材35の前端に隣接するプレート45c(図6及び図7)を有してよい。 The shapes of the first part 45a and the second part 45b are also arbitrary. For example, the first portion 45 a is adjacent to a portion positioned below the plunger 21 ( FIG. 6 , reference numerals omitted), a portion positioned laterally and/or above the plunger 21 ( FIG. 7 ), and the front end of the cylinder member 35 . may have a plate 45c (FIGS. 6 and 7) for
(液圧装置)
 図9は、射出シリンダ27に作動液を供給して射出シリンダ27を駆動する液圧装置43の一例を示す回路図である。
(hydraulic device)
FIG. 9 is a circuit diagram showing an example of the hydraulic device 43 that supplies hydraulic fluid to the injection cylinder 27 to drive the injection cylinder 27. As shown in FIG.
(アキュムレータ、ポンプ及びタンク)
 液圧装置43は、液圧源として、アキュムレータ47と、ポンプ49とを有している。また、液圧装置43は、作動液を貯留するタンク51を有している。なお、タンク51は、便宜上、複数位置に図示されている。実際には、タンク51の数は、図示された数よりも少なくてよく、例えば、1つのみでよい。
(accumulators, pumps and tanks)
The hydraulic device 43 has an accumulator 47 and a pump 49 as hydraulic pressure sources. The hydraulic device 43 also has a tank 51 that stores hydraulic fluid. Note that the tanks 51 are shown at a plurality of positions for convenience. In practice, the number of tanks 51 may be less than shown, for example only one.
 アキュムレータ47及びポンプ49(並びにタンク51)の役割分担は適宜に設定されてよい。 The division of roles between the accumulator 47 and the pump 49 (and the tank 51) may be set appropriately.
 本実施形態では、図1~図5を参照して説明したように、アキュムレータ47からヘッド側室35hへ作動液が供給され、これにより、射出ピストン37が前進して射出が行われる。また、アキュムレータ47から後側室35aへ作動液が供給され、これにより、増圧ピストン41が前進して増圧が行われる。アキュムレータ47の充填は、後に詳述するように、第1駆動装置29Aによって射出ピストン37を後退させてヘッド側室35hの作動液をアキュムレータ47に押し出すことによって実現される。 In this embodiment, as described with reference to FIGS. 1 to 5, the hydraulic fluid is supplied from the accumulator 47 to the head-side chamber 35h, whereby the injection piston 37 advances and injection is performed. Further, hydraulic fluid is supplied from the accumulator 47 to the rear side chamber 35a, whereby the pressure increasing piston 41 moves forward to increase the pressure. The filling of the accumulator 47 is realized by retracting the injection piston 37 by the first driving device 29A and pushing out the hydraulic fluid in the head side chamber 35h into the accumulator 47, as will be described in detail later.
 アキュムレータ47の充填の一部は、増圧ピストン41の後退によって行われてもよい。例えば、第2電動機31Bによって増圧ピストン41を後退させ、後側室35aの作動液をアキュムレータ47に押し出してよい。及び/又は、第1駆動装置29Aによって射出ピストン37を後退させる区間の一部(例えば後退の初期の区間)において、ヘッド側室35hからの作動液の排出を禁止して増圧ピストン41を後退させ、後側室35aの作動液をアキュムレータ47に押し出してよい。 A portion of the filling of the accumulator 47 may be performed by retracting the booster piston 41 . For example, the booster piston 41 may be retracted by the second electric motor 31B to push the hydraulic fluid in the rear side chamber 35a to the accumulator 47. And/or, in a part of the interval in which the injection piston 37 is retracted by the first driving device 29A (for example, the initial interval of the retraction), discharge of the hydraulic fluid from the head side chamber 35h is prohibited to retract the pressure intensifying piston 41. , the hydraulic fluid in the rear chamber 35 a may be forced into the accumulator 47 .
 ただし、第1駆動装置29Aによるアキュムレータ47の充填は、本実施形態の説明とは異なり、ヘッド側室35hから排出される作動液のみによって行われてもよい。例えば、増圧ピストン41の後退は上記のように行いつつも、後側室35aの作動液をタンク51に排出してもよい。また、増圧ピストン41の後退は、本実施形態の説明とは異なり、ポンプ49によってヘッド側室35h及び/又は前側室35fに作動液を供給することによって行われてもよい。 However, the filling of the accumulator 47 by the first driving device 29A may be performed only with the hydraulic fluid discharged from the head-side chamber 35h, unlike the description of this embodiment. For example, the hydraulic fluid in the rear side chamber 35a may be discharged to the tank 51 while the pressure intensifying piston 41 is retracted as described above. Further, unlike the description of the present embodiment, the pressure-increasing piston 41 may be retracted by supplying hydraulic fluid to the head-side chamber 35h and/or the front-side chamber 35f by the pump 49.
 ポンプ49は、例えば、第1駆動装置29Aによって射出ピストン37を後退させるとき、ロッド側室35rに作動液を補給する。さらに、ポンプ49は、増圧ピストン41を後退させるとき、前側室35fに作動液を補給してもよい。また、例えば、ポンプ49は、射出シリンダ27等においてリークした作動液に相当する量の作動液を補給したり、及び/又は射出装置9のメンテナンスにおいて作動液を供給したりすることに寄与する。 The pump 49 replenishes the working fluid to the rod side chamber 35r, for example, when the injection piston 37 is retracted by the first driving device 29A. Furthermore, the pump 49 may replenish the hydraulic fluid to the front side chamber 35f when retracting the booster piston 41 . Further, for example, the pump 49 contributes to replenishing the hydraulic fluid in an amount corresponding to the hydraulic fluid leaked in the injection cylinder 27 or the like and/or supplying the hydraulic fluid during maintenance of the injection device 9 .
 射出ピストン37は、第1駆動装置29Aによって後方への駆動力が付与される。従って、ポンプ49からロッド側室35rへ作動液を補給する態様において、ロッド側室35rの作動液が射出ピストン37を後方へ押す力は、ヘッド側室35hの作動液が射出ピストン37を前方へ押す力よりも小さくてよい。すなわち、ロッド側室35rの圧力と、当該圧力が射出ピストン37に作用する面積との積は、ヘッド側室35h(別の観点ではアキュムレータ47)の圧力と、当該圧力が射出ピストン37に作用する面積との積よりも小さくてよい。 The injection piston 37 is given a rearward driving force by the first driving device 29A. Therefore, in the mode in which the hydraulic fluid is replenished from the pump 49 to the rod side chamber 35r, the force of the hydraulic fluid in the rod side chamber 35r pushing the injection piston 37 backward is greater than the force pushing the injection piston 37 forward of the hydraulic fluid in the head side chamber 35h. can be small. That is, the product of the pressure in the rod side chamber 35r and the area where the pressure acts on the injection piston 37 is the pressure in the head side chamber 35h (accumulator 47 from another point of view) and the area where the pressure acts on the injection piston 37. may be smaller than the product of
 具体的には、例えば、ロッド側室35rの作動液が射出ピストン37を後方へ押す力は、ヘッド側室35hの作動液が射出ピストン37を前方へ押す力(アキュムレータ47の圧力は、射出ピストン37が射出開始前の位置に戻ったときの圧力を基準としてよい。次段落においても同様。)に対して、2/3以下、1/2以下、1/5以下又は1/10以下とされてよい。さらに、ロッド側室35rの圧力は、タンク圧(タンク51の圧力)及び/又は大気圧と同等とされてもよく、また、これらの圧力よりも若干低くなっても構わない。 Specifically, for example, the force of the hydraulic fluid in the rod-side chamber 35r pushing the injection piston 37 backward is the force of the hydraulic fluid in the head-side chamber 35h pushing the injection piston 37 forward (the pressure of the accumulator 47 is The pressure when returning to the position before the start of injection may be used as a reference.The same applies in the next paragraph.) may be 2/3 or less, 1/2 or less, 1/5 or less, or 1/10 or less. . Furthermore, the pressure in the rod-side chamber 35r may be equal to the tank pressure (the pressure in the tank 51) and/or the atmospheric pressure, or may be slightly lower than these pressures.
 ロッド側室35rの圧力は、タンク圧及び大気圧よりも高くされてよい。この場合、ポンプ49は、第1駆動装置29Aによるプランジャ21の後退をアシストする。このとき、ロッド側室35rの作動液が射出ピストン37を後方へ押す力は、適宜に設定されてよい。例えば、ロッド側室35rの作動液が射出ピストン37を後方へ押す力は、ヘッド側室35hの作動液が射出ピストン37を前方へ押す力に対して、1/10以上、1/5以上、1/2以上又は2/3以上とされてよい。前段落における下限は、矛盾が生じない限り、本段落における下限と組み合わされてよい。 The pressure in the rod-side chamber 35r may be higher than the tank pressure and the atmospheric pressure. In this case, the pump 49 assists the retraction of the plunger 21 by the first driving device 29A. At this time, the force with which the hydraulic fluid in the rod side chamber 35r pushes the injection piston 37 rearward may be appropriately set. For example, the force of the hydraulic fluid in the rod-side chamber 35r pushing the injection piston 37 backward is 1/10 or more, 1/5 or more, or 1/1/10 or more, 1/5 or more, or 1/5 of the force of the hydraulic fluid in the head-side chamber 35h pushing the injection piston 37 forward. It may be 2 or more, or 2/3 or more. The lower bounds in the preceding paragraph may be combined with the lower bounds in this paragraph unless there is a conflict.
 また、上記と同様に、ポンプ49から前側室35fへ作動液を補給する態様において、前側室35fの圧力は高くされる必要はない。上記のロッド側室35rの作動液が生じる圧力又は力についての説明は、ロッド側室35rを前側室35fに置換し、ヘッド側室35hを後側室35aに置換し、射出ピストン37を増圧ピストン41に置換して、前側室35fの作動液が生じる圧力又は力に援用されてよい。 Also, in the same manner as described above, the pressure in the front chamber 35f does not need to be increased in the mode in which the hydraulic fluid is replenished from the pump 49 to the front chamber 35f. The pressure or force generated by the hydraulic fluid in the rod-side chamber 35r is explained by replacing the rod-side chamber 35r with the front-side chamber 35f, replacing the head-side chamber 35h with the rear-side chamber 35a, and replacing the injection piston 37 with the boosting piston 41. As such, the pressure or force generated by the hydraulic fluid in the front chamber 35f may be assisted.
 上記のように、本実施形態では、ポンプ49によるアキュムレータ47の充填は基本的に行われない。また、射出ピストン37(及び増圧ピストン41)の後退に際して、ポンプ49から作動液が供給されるロッド側室35r(及び前側室35f)の圧力は低くてよい。従って、例えば、一般的な液圧式又は公知のハイブリッド式の射出装置に比較して、ポンプ49の容量(1サイクルにおける作動液の送出量)は小さくされてよい。また、ヘッド側室35h(及び後側室35a)とアキュムレータ47との間で作動液が相互に直接に供給され、その間にタンク51が介在しないから、タンク51の容積も縮小できる。 As described above, in this embodiment, the filling of the accumulator 47 by the pump 49 is basically not performed. Also, the pressure in the rod side chamber 35r (and the front side chamber 35f) to which hydraulic fluid is supplied from the pump 49 when the injection piston 37 (and the boosting piston 41) is retracted may be low. Therefore, for example, the capacity of the pump 49 (the amount of hydraulic fluid delivered in one cycle) may be reduced compared to a typical hydraulic or known hybrid injection device. Moreover, since the hydraulic fluid is directly supplied between the head side chamber 35h (and the rear side chamber 35a) and the accumulator 47, and the tank 51 is not interposed therebetween, the volume of the tank 51 can be reduced.
 アキュムレータ47は、重量式、ばね式、気体圧式(空気圧式含む)、シリンダ式、プラダ式などの適宜な形式のアキュムレータにより構成されてよい。例えば、アキュムレータ47は、気体圧式、シリンダ式又はプラダ式のアキュムレータであり、アキュムレータ47内に保持されている気体(例えば空気若しくは窒素)が圧縮されることにより蓄圧される。 The accumulator 47 may be composed of an appropriate type of accumulator such as weight type, spring type, pneumatic type (including pneumatic type), cylinder type, Prada type, and the like. For example, the accumulator 47 is a pneumatic, cylinder-type, or Prada-type accumulator, and pressure is accumulated by compressing the gas (for example, air or nitrogen) held in the accumulator 47 .
 ポンプ49は、ロータの回転により作動液を吐出するロータリポンプであってもよいし、ピストンの往復により作動液を吐出するプランジャポンプであってもよい。ポンプ49は、ロータやピストンの1周期の運動における吐出量が固定された定容量ポンプによって構成されていてもよいし、当該吐出量が可変とされた可変容量ポンプによって構成されていてもよい。また、ポンプ49は、1方向に作動液を吐出できれば十分であるが、双方向(2方向)ポンプと構造が同一であってもよい。 The pump 49 may be a rotary pump that discharges working fluid by rotating a rotor, or a plunger pump that discharges working fluid by reciprocating a piston. The pump 49 may be configured by a constant displacement pump in which the discharge amount in one cycle of motion of the rotor or piston is fixed, or may be configured by a variable displacement pump in which the discharge amount is variable. Moreover, although it is sufficient for the pump 49 to be able to discharge the hydraulic fluid in one direction, the structure may be the same as that of a bidirectional (two-way) pump.
 特に図示しないが、ポンプ49は、例えば、回転式の電動機によって駆動される。この電動機は、直流モータでも交流モータでもよいし、誘導モータでも同期モータでもよい。電動機は、オープンループにおいて設けられた定速電動機として機能するものであってもよいし、クローズドループにおいて設けられたサーボモータとして機能するものであってもよい。電動機(ポンプ49)は、必要なときのみ駆動されてもよいし、常時駆動されてもよい。 Although not shown, the pump 49 is driven by, for example, a rotary electric motor. The electric motor may be a DC motor or an AC motor, an induction motor or a synchronous motor. The electric motor may function as a constant speed electric motor provided in an open loop, or may function as a servomotor provided in a closed loop. The electric motor (pump 49) may be driven only when necessary, or may be driven all the time.
 タンク51は、例えば、開放タンクである。すなわち、タンク51は、大気圧下で作動液を保持している。従って、例えば、ロッド側室35rがタンク51に接続されると、ロッド側室35rの圧力は、大気圧又はこれに近い圧力まで低下する。 The tank 51 is, for example, an open tank. That is, the tank 51 holds hydraulic fluid under atmospheric pressure. Therefore, for example, when the rod-side chamber 35r is connected to the tank 51, the pressure in the rod-side chamber 35r drops to atmospheric pressure or a pressure close to it.
(液圧回路)
 液圧装置43は、射出シリンダ27、アキュムレータ47、ポンプ49及びタンク51の間における作動液の流れを制御する液圧回路53を有している。上記のようなアキュムレータ47及びポンプ49の役割分担を実現する液圧回路53の具体的な構成は種々可能である。図9に示す液圧回路53の構成は一例に過ぎない。
(Hydraulic circuit)
Hydraulic system 43 includes a hydraulic circuit 53 that controls the flow of hydraulic fluid between injection cylinder 27 , accumulator 47 , pump 49 and tank 51 . Various specific configurations of the hydraulic circuit 53 are possible for realizing the division of roles between the accumulator 47 and the pump 49 as described above. The configuration of the hydraulic circuit 53 shown in FIG. 9 is merely an example.
 以下では、図9に例示されている液圧回路53について、以下の順に説明する。まず、アキュムレータ47とヘッド側室35hとの間の流路について説明する。次に、アキュムレータ47と後側室35aとの間の流路について説明する。次に、ロッド側室35rとタンク51との間の流路について説明する。次に、ポンプ49とロッド側室35rとの間の流路について説明する。その後、液圧回路53のその他の構成について説明する。 Below, the hydraulic circuit 53 illustrated in FIG. 9 will be described in the following order. First, the flow path between the accumulator 47 and the head-side chamber 35h will be described. Next, a flow path between the accumulator 47 and the rear side chamber 35a will be described. Next, the flow path between the rod side chamber 35r and the tank 51 will be described. Next, a flow path between the pump 49 and the rod side chamber 35r will be described. After that, other configurations of the hydraulic circuit 53 will be described.
(アキュムレータとヘッド側室との間の流路)
 液圧回路53は、アキュムレータ47とヘッド側室35hとを連通する流路54aを有している。流路54aは、例えば、アキュムレータ47からヘッド側室35hへ作動液を流れさせて射出ピストン37を前進させることに寄与する。また、流路54aは、例えば、射出ピストン37が後退するときに、ヘッド側室35hからアキュムレータ47へ作動液を流れさせてアキュムレータ47を充填することに寄与する。
(Flow path between accumulator and head-side chamber)
The hydraulic circuit 53 has a flow path 54a that communicates the accumulator 47 and the head-side chamber 35h. The flow path 54a contributes to, for example, causing the hydraulic fluid to flow from the accumulator 47 to the head-side chamber 35h to advance the injection piston 37. As shown in FIG. Further, the flow path 54a contributes to filling the accumulator 47 by causing the hydraulic fluid to flow from the head-side chamber 35h to the accumulator 47 when the injection piston 37 retreats, for example.
 液圧回路53は、流路54aに位置して流路54aにおける作動液の流れを許容及び禁止可能な弁として、例えば、流量制御弁55及びチェック弁59Aを有している。 The hydraulic circuit 53 has, for example, a flow control valve 55 and a check valve 59A as valves located in the flow path 54a and capable of permitting and prohibiting the flow of the hydraulic fluid in the flow path 54a.
 流量制御弁55は、流路54aにおける作動液の流量を制御可能である。アキュムレータ47からヘッド側室35hへ供給される作動液の流量が制御されることによって、例えば、射出ピストン37の前進速度が制御される。すなわち、流量制御弁55は、いわゆるメータイン回路を構成している。 The flow control valve 55 can control the flow rate of the hydraulic fluid in the channel 54a. By controlling the flow rate of the hydraulic fluid supplied from the accumulator 47 to the head-side chamber 35h, for example, the advancing speed of the injection piston 37 is controlled. That is, the flow control valve 55 constitutes a so-called meter-in circuit.
 流量制御弁55は、例えば、圧力変動があっても流量を一定に保つことができる圧力補償付流量調整弁により構成されている。また、流量制御弁55は、例えば、サーボ機構の中で使用され、入力信号に応じて流量を無段階に(連続的に、任意の値に)変調できるサーボバルブによって構成されている。 The flow control valve 55 is, for example, a pressure-compensated flow control valve that can keep the flow constant even if the pressure fluctuates. The flow control valve 55 is, for example, a servo valve that is used in a servomechanism and that can steplessly (continuously, to any value) modulate the flow rate according to an input signal.
 流量制御弁55の構成は、種々の構成とされてよく、例えば、公知の構成とされて構わない。図示の例では、流量制御弁55は、流路54aにおける作動液の流れを制御するメインバルブ56と、メインバルブ56の動作を制御するパイロットバルブ57とを有している。 The configuration of the flow control valve 55 may be various configurations, for example, it may be a known configuration. In the illustrated example, the flow control valve 55 has a main valve 56 that controls the flow of hydraulic fluid in the flow path 54 a and a pilot valve 57 that controls the operation of the main valve 56 .
 メインバルブ56は、流路54aに位置しており、流路54aにおける作動液の流量を直接に制御する。メインバルブ56は、例えば、弁体の位置によって流れの切換えが連続的に行われる2ポート2位置の切換弁により構成されている。弁体の位置は、弁体の移動方向の両側に導入されるパイロット圧力によって制御される。また、弁体の位置は、センサ(例えば差動トランス)によって検出される。 The main valve 56 is located in the flow path 54a and directly controls the flow rate of the hydraulic fluid in the flow path 54a. The main valve 56 is, for example, a 2-port 2-position switching valve that continuously switches the flow depending on the position of the valve body. The position of the disc is controlled by pilot pressures introduced on either side of the disc's direction of travel. Also, the position of the valve body is detected by a sensor (for example, a differential transformer).
 パイロットバルブ57は、メインバルブ56の弁体の両側に導入されるパイロット圧力を制御する。具体的には、パイロットバルブ57は、メインバルブ56の弁体の両側(2つの流路54b)に通じる2つのポートと、アキュムレータ47(流路54c)及びタンク51(流路54d)に通じる2ポートとを有している。パイロットバルブ57は、弁体の位置によって、前者の2つのポートと、後者の2つのポートとの接続の切換えを連続的に行う4ポート3位置の切換弁により構成されている。弁体の位置は、例えば、電磁式の駆動部(例えばソレノイド)によって制御される。 The pilot valve 57 controls the pilot pressure introduced to both sides of the valve body of the main valve 56 . Specifically, the pilot valve 57 has two ports communicating with both sides (two flow paths 54b) of the valve body of the main valve 56, and two ports communicating with the accumulator 47 (flow path 54c) and the tank 51 (flow path 54d). port. The pilot valve 57 is a 4-port 3-position switching valve that continuously switches the connection between the former two ports and the latter two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
 なお、メインバルブ56及びパイロットバルブ57それぞれにおいて、作動液の漏れは、タンク51に回収される。弁体は、ばねによって所定位置に付勢されてよい(他の弁の弁体も同様。)。 It should be noted that leakage of hydraulic fluid from each of the main valve 56 and the pilot valve 57 is collected in the tank 51 . The valve disc may be spring-biased into position (as are other valve discs).
 チェック弁59Aは、パイロット圧力の導入によって開閉されるチェック弁によって構成されている。チェック弁59Aは、パイロット圧力が付与されていないときは、アキュムレータ47からヘッド側室35hへの流れを許容するとともに、その逆方向の流れを禁止する。従って、例えば、増圧ピストン41によってヘッド側室35hの作動液が加圧され、ヘッド側室35hの圧力がアキュムレータ47の圧力よりも高くなると、チェック弁59Aは自閉する。 The check valve 59A is configured by a check valve that is opened and closed by introducing pilot pressure. The check valve 59A allows the flow from the accumulator 47 to the head side chamber 35h and prohibits the flow in the opposite direction when the pilot pressure is not applied. Therefore, for example, when the hydraulic fluid in the head-side chamber 35h is pressurized by the pressure-increasing piston 41 and the pressure in the head-side chamber 35h becomes higher than the pressure in the accumulator 47, the check valve 59A self-closes.
 チェック弁59Aに対するパイロット圧力の導入は、例えば、チェック弁59Aとアキュムレータ47との間に位置する切換弁60Aによってなされてよい。切換弁60Aは、例えば、開くパイロット圧力をチェック弁59Aに供給するポートと、閉じるパイロット圧力をチェック弁59Aに供給するポートとの2つのポートと、アキュムレータ47及びタンク51に通じる2つのポートとを有している。切換弁60Aは、弁体の位置によって、前者の2つのポートと、後者の2つのポートとの接続を切り換える4ポート2位置の切換弁により構成されている。弁体の位置は、例えば、電磁式の駆動部(例えばソレノイド)によって制御される。 Introduction of the pilot pressure to the check valve 59A may be done by a switching valve 60A located between the check valve 59A and the accumulator 47, for example. The switching valve 60A has two ports, for example, a port that supplies an open pilot pressure to the check valve 59A, a port that supplies a closed pilot pressure to the check valve 59A, and two ports that communicate with the accumulator 47 and the tank 51. have. The switching valve 60A is a 4-port 2-position switching valve that switches connection between the former two ports and the latter two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
(アキュムレータと後側室との間の流路)
 液圧回路53は、アキュムレータ47と後側室35aとを連通する流路54mを有している。流路54mは、例えば、アキュムレータ47から後側室35aへ作動液を流れさせて増圧ピストン41を前進させることに寄与する。また、流路54mは、例えば、増圧ピストン41が後退するときに、後側室35aからアキュムレータ47へ作動液を流れさせてアキュムレータ47を充填することに寄与する。
(Flow path between accumulator and rear side chamber)
The hydraulic circuit 53 has a flow path 54m that communicates the accumulator 47 and the rear chamber 35a. The flow path 54m contributes to, for example, causing the hydraulic fluid to flow from the accumulator 47 to the rear side chamber 35a to advance the pressure boosting piston 41. As shown in FIG. Further, the flow path 54m contributes to filling the accumulator 47 with hydraulic fluid flowing from the rear chamber 35a to the accumulator 47 when the boosting piston 41 moves backward, for example.
 流路54mは、アキュムレータ47側の一部を流路54aと共用している。ただし、流路54mは、その全体に亘って流路54aとは別個の流路とされてもよい。 The flow path 54m shares a part on the accumulator 47 side with the flow path 54a. However, the flow path 54m may be a flow path separate from the flow path 54a over its entirety.
 流路54mと流路54aとの共用部分には、既述の流量制御弁55が位置してよい。すなわち、流量制御弁55は、アキュムレータ47から後側室35aへ流れる作動液の流量を制御可能であってよい。ただし、流量制御弁55は、流路54aのうちの流路54mと共用されていない位置に配置されてもよい。 The flow control valve 55 described above may be positioned in the shared portion of the flow path 54m and the flow path 54a. That is, the flow control valve 55 may be capable of controlling the flow rate of hydraulic fluid flowing from the accumulator 47 to the rear chamber 35a. However, the flow control valve 55 may be arranged at a position of the flow path 54a that is not shared with the flow path 54m.
 液圧回路53は、流路54mに位置して流路54mにおける作動液の流れを許容及び禁止可能な弁として、例えば、流量制御弁55の他、チェック弁59Eを有している。チェック弁59Eは、例えば、チェック弁59Aと同様に、パイロット圧力の導入によって開閉されるチェック弁によって構成されている。チェック弁59Eは、例えば、パイロット圧力が付与されていないときは、アキュムレータ47から後側室35aへの流れを許容するとともに、その逆方向の流れを禁止する。チェック弁59Eにパイロット圧力を導入するための構成も、チェック弁59Aの構成と同様とされてよく、図9では図示を省略する。 The hydraulic circuit 53 has, for example, a flow control valve 55 and a check valve 59E as valves located in the flow path 54m and capable of permitting and prohibiting the flow of the working fluid in the flow path 54m. The check valve 59E is configured by, for example, a check valve that is opened and closed by introduction of pilot pressure in the same manner as the check valve 59A. The check valve 59E allows the flow from the accumulator 47 to the rear side chamber 35a and prohibits the flow in the opposite direction, for example, when the pilot pressure is not applied. The configuration for introducing the pilot pressure to the check valve 59E may be the same as the configuration of the check valve 59A, and is not shown in FIG.
(ロッド側室とタンクとの間の流路)
 液圧回路53は、ロッド側室35rとタンク51とを連通する流路54eを有している。流路54eは、例えば、射出ピストン37が前進するときにロッド側室35rの作動液をタンク51へ流れさせて射出ピストン37の前進を許容することに寄与する。
(Flow path between rod-side chamber and tank)
The hydraulic circuit 53 has a flow path 54e that communicates the rod side chamber 35r and the tank 51 with each other. For example, the flow path 54e contributes to allowing the injection piston 37 to move forward by allowing the hydraulic fluid in the rod side chamber 35r to flow to the tank 51 when the injection piston 37 advances.
 液圧回路53は、流路54eに位置して流路54eにおける作動液の流れを許容及び禁止可能な弁として、例えば、チェック弁59Bを有している。チェック弁59Bの構成は、例えば、チェック弁59Aの構成と同様である。チェック弁59Aの構成に関する既述の説明は、矛盾等が生じない限り、チェック弁59Bの構成に援用されてよい。チェック弁59Bは、パイロット圧力が付与されていないときは、ロッド側室35rからタンク51への流れを許容するとともに、その逆方向の流れを禁止する。 The hydraulic circuit 53 has, for example, a check valve 59B as a valve positioned in the flow path 54e and capable of permitting or prohibiting the flow of hydraulic fluid in the flow path 54e. The configuration of the check valve 59B is similar to that of the check valve 59A, for example. The above description regarding the configuration of the check valve 59A may be applied to the configuration of the check valve 59B as long as there is no contradiction. When the pilot pressure is not applied, the check valve 59B allows the flow from the rod side chamber 35r to the tank 51 and prohibits the flow in the opposite direction.
 チェック弁59Bに対するパイロット圧力の導入は、例えば、チェック弁59Bとアキュムレータ47との間に位置する切換弁60Bによってなされてよい。切換弁60Bの構成は、例えば、切換弁60Aの構成と同様である。切換弁60Aの構成に関する既述の説明は、矛盾等が生じない限り、切換弁60Bの構成に援用されてよい。 Introduction of the pilot pressure to the check valve 59B may be done by a switching valve 60B located between the check valve 59B and the accumulator 47, for example. The configuration of the switching valve 60B is, for example, similar to the configuration of the switching valve 60A. The above description regarding the configuration of the switching valve 60A may be applied to the configuration of the switching valve 60B as long as there is no contradiction.
 ロッド側室35rとタンク51との間(より詳細には、例えば、チェック弁59Bとタンク51との間)には、アキュムレータ61が接続されてよい。このアキュムレータ61は、例えば、溶湯の充填完了時にロッド側室35rに生じるサージ圧を吸収することに寄与する。アキュムレータ47の構成に関する既述の説明は、矛盾等が生じない限り、アキュムレータ61の構成に援用されてよい。ただし、アキュムレータ61は、駆動源として用いられるものではないから、アキュムレータ47に比較して、小型のものであってよいし、蓄圧できる圧力が低くてよい。 An accumulator 61 may be connected between the rod side chamber 35r and the tank 51 (more specifically, between the check valve 59B and the tank 51, for example). This accumulator 61 contributes to, for example, absorbing the surge pressure generated in the rod side chamber 35r when filling of the molten metal is completed. The above description regarding the configuration of the accumulator 47 may be applied to the configuration of the accumulator 61 as long as there is no contradiction. However, since the accumulator 61 is not used as a drive source, it may be smaller than the accumulator 47, and the pressure that can be accumulated may be lower.
(ポンプとロッド側室との間の流路)
 液圧回路53は、ポンプ49とロッド側室35rとを連通する流路54fを有している。流路54fは、例えば、第1駆動装置29Aによって射出ピストン37を後退させるとき、ポンプ49からロッド側室35rへ作動液を流れさせてロッド側室35rに作動液を補給することに寄与する。
(Flow path between pump and rod-side chamber)
The hydraulic circuit 53 has a flow path 54f that communicates the pump 49 and the rod side chamber 35r. For example, when the injection piston 37 is retracted by the first driving device 29A, the flow path 54f contributes to replenishing the rod side chamber 35r with hydraulic fluid by causing the hydraulic fluid to flow from the pump 49 to the rod side chamber 35r.
 液圧回路53は、流路54fに位置して流路54fにおける作動液の流れを許容及び禁止可能な弁として、例えば、切換弁62と、チェック弁63Aとを有している。なお、以下の説明から理解されるように、この2つの弁の組み合わせが1つの弁として捉えられてもよい。 The hydraulic circuit 53 has, for example, a switching valve 62 and a check valve 63A as valves positioned in the flow path 54f and capable of permitting and prohibiting the flow of hydraulic fluid in the flow path 54f. In addition, as understood from the following description, the combination of these two valves may be regarded as one valve.
 切換弁62は、ポンプ49からヘッド側室35hへ作動液を供給する流路54hに位置して流路54hの作動液の流れを許容及び禁止する弁としても機能する。なお、ポンプ49からヘッド側室35hへの作動液の供給は、既述のように、例えば、リークした作動液の補償、及び/又はメンテナンスにおけるものである。 The switching valve 62 is located in the flow path 54h that supplies the hydraulic fluid from the pump 49 to the head-side chamber 35h, and also functions as a valve that permits and prohibits the flow of the hydraulic fluid in the flow path 54h. The supply of hydraulic fluid from the pump 49 to the head-side chamber 35h is, for example, compensation for leaked hydraulic fluid and/or maintenance, as described above.
 切換弁62は、ロッド側室35rに通じるポートと、ヘッド側室35hに通じるポートとの2つのポートと、ポンプ49及びタンク51に通じる2つのポートとを有している。切換弁62は、弁体の位置によって、前者の2つのポートと、後者の2つのポートとの接続を切り換える4ポート3位置の切換弁により構成されている。弁体の位置は、例えば、電磁式の駆動部(例えばソレノイド)によって制御される。 The switching valve 62 has two ports, a port communicating with the rod-side chamber 35 r and a port communicating with the head-side chamber 35 h, and two ports communicating with the pump 49 and the tank 51 . The switching valve 62 is a 4-port 3-position switching valve that switches connection between the former two ports and the latter two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
 切換弁62の3つの位置は、より詳細には、以下のとおりである。図の左側の位置では、ロッド側室35rとポンプ49とが接続され、ヘッド側室35hとタンク51とが接続される。図の右側の位置では、ロッド側室35rとタンク51とが接続され、ヘッド側室35hとポンプ49とが接続される。図の中央の位置では、いずれのポートも接続されない。従って、例えば、切換弁62を紙面左側の位置にすることによって、ポンプ49からロッド側室35rへ作動液を補給することができる。 More specifically, the three positions of the switching valve 62 are as follows. At the position on the left side of the drawing, the rod side chamber 35r and the pump 49 are connected, and the head side chamber 35h and the tank 51 are connected. At the position on the right side of the drawing, the rod side chamber 35r and the tank 51 are connected, and the head side chamber 35h and the pump 49 are connected. In the middle position of the figure, neither port is connected. Therefore, for example, by setting the switching valve 62 to the left side of the drawing, it is possible to replenish the hydraulic fluid from the pump 49 to the rod side chamber 35r.
 チェック弁63Aは、ロッド側室35rと切換弁62との間に位置している。チェック弁63Aは、切換弁62からロッド側室35rへの流れを許容するとともに、その反対方向の流れを禁止する。これにより、例えば、ポンプ49からヘッド側室35hへ作動液を供給するために、切換弁62が図の右側の位置とされたときに、ロッド側室35rの作動液が切換弁62を介してタンク51へ流れることが禁止される。 The check valve 63A is located between the rod side chamber 35r and the switching valve 62. The check valve 63A permits flow from the switching valve 62 to the rod side chamber 35r and prohibits flow in the opposite direction. As a result, for example, when the switching valve 62 is positioned on the right side of the drawing in order to supply the working fluid from the pump 49 to the head side chamber 35h, the working fluid in the rod side chamber 35r flows through the switching valve 62 into the tank 51. prohibited from flowing to
 なお、特に図示しないが、流路54fと流路54hとで切換弁が共用されないようにしてもよい。例えば、各流路に作動液の流れを許容及び禁止する3ポート3位置の切換弁を設けたり、又はパイロット式のチェック弁を設けたりしてよい。 Although not particularly illustrated, the switching valve may not be shared between the flow path 54f and the flow path 54h. For example, each flow path may be provided with a 3-port, 3-position switching valve that permits and prohibits the flow of hydraulic fluid, or a pilot-type check valve may be provided.
(液圧回路のその他の構成)
 液圧回路53は、既述のように、ポンプ49からヘッド側室35hに作動液を供給するための流路54hを有している。液圧回路53は、流路54hに位置して流路54hにおける作動液の流れを許容及び禁止可能な弁として、例えば、既述の切換弁62と、チェック弁64とを有している。
(Other configurations of the hydraulic circuit)
The hydraulic circuit 53 has a flow path 54h for supplying hydraulic fluid from the pump 49 to the head-side chamber 35h, as described above. The hydraulic circuit 53 has, for example, the switching valve 62 and the check valve 64 as valves positioned in the flow path 54h and capable of permitting and prohibiting the flow of the hydraulic fluid in the flow path 54h.
 チェック弁64は、ヘッド側室35hと切換弁62との間に位置している。チェック弁64は、切換弁62からヘッド側室35hへの流れを許容するとともに、その反対方向の流れを禁止する。これにより、例えば、ポンプ49からロッド側室35rへ作動液を供給するために、切換弁62が図の左側の位置とされたときに、ヘッド側室35hの作動液が切換弁62を介してタンク51へ流れることが禁止される。図示の例では、チェック弁64は、パイロット圧力の導入によって閉じられる(双方向の流れを禁止する)パイロット式のチェック弁とされている。 The check valve 64 is positioned between the head-side chamber 35h and the switching valve 62. The check valve 64 permits flow from the switching valve 62 to the head-side chamber 35h and prohibits flow in the opposite direction. As a result, for example, when the switching valve 62 is set to the left side position in the figure to supply the working fluid from the pump 49 to the rod side chamber 35r, the working fluid in the head side chamber 35h flows into the tank 51 via the switching valve 62. prohibited from flowing to In the illustrated example, the check valve 64 is a pilot type check valve that is closed (prohibits bidirectional flow) by introducing pilot pressure.
 チェック弁64のパイロット圧力の導入は、例えば、シャトル弁65によってなされてよい。シャトル弁65は、2つの入口と、1つの出口とを有している。2つの入口の1つは、流路54hのチェック弁64よりもヘッド側室35h側に接続されている。2つの入口の残りは、後述する切換弁66を介してアキュムレータ47に接続されている。出口は、チェック弁64に通じている。そして、出口は、2つの入口のうち高圧側と接続されて、その接続された入口からの圧力をパイロット圧力としてチェック弁64に付与する。これにより、例えば、開かれることが意図されていない時期にチェック弁64が開かれる蓋然性が低減される。 Introduction of the pilot pressure of the check valve 64 may be done by the shuttle valve 65, for example. Shuttle valve 65 has two inlets and one outlet. One of the two inlets is connected to the head side chamber 35h side of the check valve 64 of the flow path 54h. The remainder of the two inlets are connected to the accumulator 47 via a switching valve 66 which will be described later. The outlet leads to check valve 64 . The outlet is connected to the high pressure side of the two inlets, and applies the pressure from the connected inlet to the check valve 64 as pilot pressure. This, for example, reduces the likelihood that the check valve 64 will be opened when it is not intended to be opened.
 アキュムレータ47からシャトル弁65への作動液の流れは、例えば、両者の間に位置している切換弁66によって制御されてよい。切換弁66は、例えば、シャトル弁65に接続されるポートと、アキュムレータ47に接続されるポートと、タンク51に接続されるポートとの3つのポートを有している。切換弁66は、弁体の位置によって、シャトル弁65に通じるポートと、他の2つのポートのいずれか1つとを接続する。弁体の位置は、例えば、電磁式の駆動部(例えばソレノイド)によって制御される。 The flow of hydraulic fluid from the accumulator 47 to the shuttle valve 65 may be controlled, for example, by a switching valve 66 located between them. The switching valve 66 has three ports, for example, a port connected to the shuttle valve 65 , a port connected to the accumulator 47 , and a port connected to the tank 51 . The switching valve 66 connects the port leading to the shuttle valve 65 and one of the other two ports depending on the position of the valve body. The position of the valve body is controlled, for example, by an electromagnetic drive (eg, solenoid).
 液圧回路53は、例えば、ポンプ49からアキュムレータ47に作動液を供給するための流路54kを有している。なお、既述のように、アキュムレータ47の充填は、基本的に、第1駆動装置29Aによって射出ピストン37を後退させ、ヘッド側室35hの作動液をアキュムレータ47へ押し出すことによってなされる。ポンプ49からアキュムレータ47への作動液の供給は、例えば、リークした作動液の補償、及び/又はメンテナンスにおけるものである。 The hydraulic circuit 53 has a channel 54k for supplying hydraulic fluid from the pump 49 to the accumulator 47, for example. As described above, the accumulator 47 is basically filled by retracting the injection piston 37 by the first driving device 29A and pushing out the hydraulic fluid in the head-side chamber 35h to the accumulator 47. The supply of hydraulic fluid from the pump 49 to the accumulator 47 is, for example, in compensating for leaked hydraulic fluid and/or in maintenance.
 液圧回路53は、流路54kに位置して流路54kにおける作動液の流れを許容及び禁止可能な弁として、例えば、切換弁46を有している。切換弁46は、例えば、弁体の位置によって、アキュムレータ47とポンプ49又はタンク51とを接続したり、いずれの接続も遮断したりする。弁体の位置は、例えば、電磁式の駆動部と、パイロット式の駆動部とを順次作動させることによって制御される(流量制御弁55の作動方式を参照。)。パイロット圧力は、例えば、アキュムレータ47からの圧力とされてよい。 The hydraulic circuit 53 has, for example, a switching valve 46 as a valve located in the flow path 54k and capable of permitting and prohibiting the flow of the hydraulic fluid in the flow path 54k. The switching valve 46 connects or disconnects the accumulator 47 and the pump 49 or the tank 51 depending on the position of the valve body, for example. The position of the valve body is controlled, for example, by sequentially operating an electromagnetic drive unit and a pilot drive unit (see operation method of flow control valve 55). Pilot pressure may be the pressure from accumulator 47, for example.
 前側室35fに作動液が満たされる態様において、液圧回路53は、特に図示しないが、前側室35fとタンク51(必要に応じてポンプ49)とを接続する流路を有してよい。当該流路には、作動液の流れを許容及び禁止する弁が設けられてよい。 In the mode in which the front side chamber 35f is filled with hydraulic fluid, the hydraulic circuit 53 may have a flow path that connects the front side chamber 35f and the tank 51 (pump 49 if necessary), although not shown. The flow path may be provided with a valve that allows and prohibits the flow of hydraulic fluid.
 液圧回路53は、適宜な位置に、ポンプ49からの作動液の流れを許容し、その反対方向の流れを禁止するチェック弁63B、63C及び63Dを有してよい。また、液圧回路53は、切換弁66からタンク51への作動液の流れを許容し、その反対方向の流れを禁止するチェック弁(符号省略)を有してよい。また、液圧回路は、適宜な位置にコック58を有してよい。コック58は、例えば、メンテナンス用のものであり、射出が行われているときは閉じられている。コック58から延びる流路端には、例えば、圧力計等の各種の計器(符号省略)が接続されてよい。また、液圧回路53は、適宜な位置にフィルタ48及びリリーフ弁52を有してよい。  Hydraulic circuit 53 may have check valves 63B, 63C and 63D at appropriate positions to allow the flow of hydraulic fluid from pump 49 and prohibit the flow in the opposite direction. Further, the hydraulic circuit 53 may have a check valve (reference numeral omitted) that allows the hydraulic fluid to flow from the switching valve 66 to the tank 51 and prohibits the flow in the opposite direction. Also, the hydraulic circuit may have a cock 58 at an appropriate location. The cock 58 is for maintenance purposes, for example, and is closed when injection is being performed. Various instruments (reference numerals omitted) such as a pressure gauge may be connected to the end of the flow path extending from the cock 58 . The hydraulic circuit 53 may also have a filter 48 and a relief valve 52 at appropriate locations.
(第1駆動装置)
 図8に示す第1駆動装置29Aは、既述のように、第1電動機31Aと、ピストンロッド39に対する連結及びその解除が可能な着脱部33とを有している。第1駆動装置29Aは、第1電動機31Aの駆動力をピストンロッド39へ伝えるための構成要素として、例えば、第1電動機31Aから着脱部33へ順に、第1伝達機構67A、第1変換機構68A及び可動部材69を有している。
(first driving device)
The first driving device 29A shown in FIG. 8 has the first electric motor 31A and the detachable portion 33 that can be connected to and disconnected from the piston rod 39, as described above. 29 A of 1st drive devices are a component for transmitting the driving force of 31 A of 1st electric motors to the piston rod 39, For example, 67 A of 1st transmission mechanisms and 68 A of 1st conversion mechanisms are carried out in order from the 1st electric motor 31A to the attachment or detachment part 33. and a movable member 69 .
 第1電動機31Aは、回転式の電動機である。第1電動機31Aは、特に図示しないが、公知のように、電機子又は界磁の一方を構成するステータと、電機子又は界磁の他方を構成するロータとを有している。ロータはステータに対して軸回りに回転する。第1電動機31Aの具体的な構成は適宜なものとされてよい。例えば、第1電動機31Aは、直流モータでも交流モータでもよいし、誘導モータでも同期モータでもよいし、ブレーキを有していてもよいし、有していなくてもよい。第1電動機31Aは、例えば、サーボモータとして構成されており、第1電動機31Aの回転を検出する不図示のセンサと、第1電動機31Aに電力を供給する不図示のサーボドライバと共にサーボ機構を構成している。 The first electric motor 31A is a rotary electric motor. Although not shown, the first electric motor 31A has, as is well known, a stator that constitutes one of the armature and the field system, and a rotor that constitutes the other of the armature and the field system. The rotor rotates about its axis with respect to the stator. A specific configuration of the first electric motor 31A may be appropriately selected. For example, the first electric motor 31A may be a DC motor or an AC motor, an induction motor or a synchronous motor, and may or may not have a brake. The first electric motor 31A is configured as a servo motor, for example, and constitutes a servo mechanism together with a sensor (not shown) that detects the rotation of the first electric motor 31A and a servo driver (not shown) that supplies power to the first electric motor 31A. is doing.
 第1電動機31Aの本体部(ステータ)は、射出装置9の不動部分(例えばシリンダ部材35)に固定され、各種の平行移動及び回転移動が規制されている。第1電動機31Aの配置位置及び向き等は適宜に設定されてよい。図示の例では、第1電動機31Aは、射出シリンダ27の側方に配置され、フレーム45のプレート45cの後方の面に固定されている。また、第1電動機31Aは、出力軸が射出シリンダ27に平行に且つ前方に向くように配置されている。 The main body (stator) of the first electric motor 31A is fixed to a stationary portion (for example, the cylinder member 35) of the injection device 9, and various parallel movements and rotational movements are restricted. The arrangement position, orientation, etc. of the first electric motor 31A may be appropriately set. In the illustrated example, the first electric motor 31A is arranged on the side of the injection cylinder 27 and fixed to the rear surface of the plate 45c of the frame 45. As shown in FIG. The first electric motor 31A is arranged such that its output shaft is parallel to the injection cylinder 27 and directed forward.
 第1伝達機構67Aは、第1電動機31Aの回転を伝達するものであり、例えば、第1電動機31Aの配置の自由度の向上、及び/又は回転の変速に寄与する。第1伝達機構67Aは、例えば、プーリ・ベルト機構により構成されており、第1電動機31Aの出力軸に固定された第1プーリ70Aと、第1変換機構68Aに兼用される第1ナット71A(プーリ)と、第1プーリ70A及び第1ナット71Aに掛架された第1ベルト72Aとを有している。従って、第1電動機31Aが回転されると、その回転は第1伝達機構67Aを介して第1変換機構68Aに伝達される。第1プーリ70Aの径及び第1ナット71Aの径は、いずれが大きくてもよく、また、同等でもよい。図示の例では、第1ナット71Aの径が第1プーリ70Aの径よりも大きく、第1電動機31Aの回転は減速される。 The first transmission mechanism 67A transmits the rotation of the first electric motor 31A, and contributes, for example, to improving the degree of freedom in the arrangement of the first electric motor 31A and/or speeding up the speed of rotation. The first transmission mechanism 67A is composed of, for example, a pulley and belt mechanism, and includes a first pulley 70A fixed to the output shaft of the first electric motor 31A and a first nut 71A (which is also used by the first conversion mechanism 68A). pulley) and a first belt 72A that is stretched over the first pulley 70A and the first nut 71A. Therefore, when the first electric motor 31A rotates, the rotation is transmitted to the first conversion mechanism 68A via the first transmission mechanism 67A. Either the diameter of the first pulley 70A or the diameter of the first nut 71A may be larger or may be equal. In the illustrated example, the diameter of the first nut 71A is larger than the diameter of the first pulley 70A, and the rotation of the first electric motor 31A is decelerated.
 第1伝達機構67Aの具体的な配置位置は適宜に設定されてよい。図示の例では、第1伝達機構67Aは、射出シリンダ27の側方に位置しており、また、フレーム45のプレート45c内に配置されている。第1プーリ70A及び第1ナット71Aは、射出シリンダ27の横方向に並んでいる。 A specific arrangement position of the first transmission mechanism 67A may be set as appropriate. In the illustrated example, the first transmission mechanism 67A is located on the side of the injection cylinder 27 and is arranged inside the plate 45c of the frame 45. As shown in FIG. The first pulley 70A and the first nut 71A are arranged in the lateral direction of the injection cylinder 27 .
 第1変換機構68Aは、第1電動機31Aの回転運動を直線運動(並進運動)に変換することに寄与する。第1変換機構68Aは、例えば、ねじ機構(例えばボールねじ機構又はすべりねじ機構)によって構成されている。第1変換機構68Aは、第1ねじ軸73Aと、第1ねじ軸73Aに不図示のボールを介して又は直接に螺合する第1ナット71Aとを有している。第1ねじ軸73A及び第1ナット71Aの一方の部材(図示の例では第1ナット71A)は、例えば、軸回りの回転が許容されているとともに軸方向の移動が規制されている。他方の部材(図示の例では第1ねじ軸73A)は、例えば、軸回りの回転が規制されているとともに軸方向の移動が許容されている。従って、一方の部材(第1ナット71A)が回転されることによって、他方の部材(第1ねじ軸73A)が軸方向に駆動される。第1変換機構68Aの具体的な構成は適宜に設定されてよい。例えば、ねじ溝は、1条で設けられていてもよいし、2条以上で設けられていてもよい。また、例えば、第1ねじ軸73Aの径及びリード等は任意である。 The first conversion mechanism 68A contributes to converting the rotary motion of the first electric motor 31A into linear motion (translational motion). 68 A of 1st conversion mechanisms are comprised by the screw mechanism (for example, ball screw mechanism or slide screw mechanism), for example. The first conversion mechanism 68A has a first screw shaft 73A and a first nut 71A screwed onto the first screw shaft 73A via a ball (not shown) or directly. One member of the first screw shaft 73A and the first nut 71A (the first nut 71A in the illustrated example) is, for example, allowed to rotate about its axis and restricted from moving in the axial direction. The other member (the first screw shaft 73A in the illustrated example) is, for example, restricted from rotating about its axis and allowed to move in the axial direction. Therefore, when one member (the first nut 71A) is rotated, the other member (the first screw shaft 73A) is axially driven. A specific configuration of the first conversion mechanism 68A may be set as appropriate. For example, one thread groove may be provided, or two or more thread grooves may be provided. Further, for example, the diameter and lead of the first screw shaft 73A are arbitrary.
 第1変換機構68Aは、射出シリンダ27に並列に配置されている。すなわち、第1ねじ軸73Aは、ピストンロッド39と平行であり、ひいては、第1変換機構68Aの直線運動の方向は、射出シリンダ27の駆動方向(前後方向)と平行である。第1変換機構68Aの具体的な配置位置、第1ナット71Aの平行移動の規制方法、及び第1ねじ軸73Aの回転の規制方法等は適宜に設定されてよい。図示の例では、第1変換機構68Aは、射出シリンダ27の側方に位置するとともに、第1電動機31Aよりも射出シリンダ27側に位置している。また、第1ナット71Aは、フレーム45のプレート45cの内部に配置され、不図示の軸受によって、回転のみが許容された状態でプレート45cに支持されている。第1ねじ軸73Aは、前後方向への平行移動のみが許容されている可動部材69に連結されていることによって、回転が規制されている。 The first conversion mechanism 68A is arranged in parallel with the injection cylinder 27. That is, the first screw shaft 73A is parallel to the piston rod 39, and the direction of linear motion of the first conversion mechanism 68A is parallel to the driving direction of the injection cylinder 27 (front-rear direction). The specific arrangement position of the first conversion mechanism 68A, the method of restricting the parallel movement of the first nut 71A, the method of restricting the rotation of the first screw shaft 73A, and the like may be appropriately set. In the illustrated example, the first conversion mechanism 68A is positioned on the side of the injection cylinder 27 and positioned closer to the injection cylinder 27 than the first electric motor 31A. The first nut 71A is arranged inside the plate 45c of the frame 45, and is supported by the plate 45c by a bearing (not shown) so as to allow only rotation. Rotation of the first screw shaft 73A is restricted by being connected to a movable member 69 that is only allowed to move in parallel in the front-rear direction.
 可動部材69は、第1電動機31Aの駆動力によって前後方向に駆動される部材であり、第1電動機31Aの駆動力をプランジャ21に伝えることに寄与するとともに、着脱部33の支持に寄与している。なお、可動部材69は、着脱部33の一部と捉えられても構わない。可動部材69の形状、寸法及び材料は任意である。図示の例では、可動部材69は、2つの第1駆動装置29Aに共用される部材とされており(図7も参照)、射出シリンダ27の横方向(図8の上下方向)に延びるとともに、ピストンロッド39が挿通される穴を有する形状とされている。また、可動部材69は、概略、前後方向に面するプレート状とされている。 The movable member 69 is a member that is driven in the front-rear direction by the driving force of the first electric motor 31A, and contributes to transmitting the driving force of the first electric motor 31A to the plunger 21 and to supporting the detachable portion 33. there is Note that the movable member 69 may be regarded as part of the detachable portion 33 . The shape, size and material of the movable member 69 are arbitrary. In the illustrated example, the movable member 69 is a member shared by the two first driving devices 29A (see also FIG. 7), extends in the horizontal direction of the injection cylinder 27 (vertical direction in FIG. 8), It is shaped to have a hole through which the piston rod 39 is inserted. In addition, the movable member 69 is generally shaped like a plate facing in the front-rear direction.
 第1駆動装置29Aは、可動部材69を前後方向に案内する(別の観点では前後方向の平行移動以外の運動を規制する)ための案内機構を有していてもよい。図7及び図8の例では、案内機構として、1対のガイド軸74が例示されている。1対のガイド軸74は、前後方向に延びているとともにフレーム45に固定されている。可動部材69は、1対のガイド軸74が挿通されることによって、前後方向の移動のみが許容されている。また、図6では、可動部材69を下方から支持して案内するリニアガイド75が例示されている。 The first driving device 29A may have a guide mechanism for guiding the movable member 69 in the front-rear direction (from another point of view, restricting movements other than parallel movement in the front-rear direction). In the examples of FIGS. 7 and 8, a pair of guide shafts 74 are illustrated as the guide mechanism. The pair of guide shafts 74 extend in the front-rear direction and are fixed to the frame 45 . A pair of guide shafts 74 are inserted through the movable member 69 so that only forward and backward movement is permitted. 6 also illustrates a linear guide 75 that supports and guides the movable member 69 from below.
 図8に示す着脱部33は、可動部材69に支持されており、可動部材69と共に前後方向に移動する。着脱部33は、可動部材69と、ピストンロッド39の所定部位(被着脱部39z)との連結及びその解除を行う。被着脱部39zは、例えば、射出ピストン37の位置に関わらずにシリンダ部材35の外部に位置する。すなわち、射出ピストン37がシリンダ部材35内の不図示のストッパに対して後方に当接することなどによって後退限に位置する場合においても、被着脱部39zはシリンダ部材35の外部に位置している。 The detachable portion 33 shown in FIG. 8 is supported by the movable member 69 and moves in the front-rear direction together with the movable member 69 . The detachable portion 33 connects and disconnects the movable member 69 and a predetermined portion (removable portion 39z) of the piston rod 39 . The detachable portion 39z is positioned outside the cylinder member 35 regardless of the position of the injection piston 37, for example. That is, even when the injection piston 37 is positioned at the retraction limit due to rear contact with a stopper (not shown) inside the cylinder member 35, the detachable portion 39z is positioned outside the cylinder member 35. As shown in FIG.
 可動部材69と被着脱部39zとを連結することによって、例えば、第1電動機31Aの駆動力によってプランジャ21を後退させることができる。また、可動部材69とピストンロッド39との連結を解除することによって、例えば、ヘッド側室35hに作動液を供給してプランジャ21を高速で前進させるときに、第1駆動装置29Aの慣性力に起因するプランジャ21の速度低下が避けられる。 By connecting the movable member 69 and the detachable part 39z, the plunger 21 can be retracted by the driving force of the first electric motor 31A, for example. Further, by releasing the connection between the movable member 69 and the piston rod 39, for example, when the hydraulic fluid is supplied to the head-side chamber 35h to advance the plunger 21 at high speed, the inertial force of the first driving device 29A causes The speed reduction of the plunger 21 is avoided.
 着脱部33は、例えば、ピストンロッド39の被着脱部39zに対して係合可能な係合部材76と、係合部材76を駆動するアクチュエータ77とを有している。係合部材76は、被着脱部39zに対して前後方向に係合する係合位置と、係合が解除される解除位置(図8における位置)との間で移動可能に可動部材69に支持されている。アクチュエータ77は、上記係合位置と解除位置との間で係合部材76を移動させる。 The detachable portion 33 has, for example, an engaging member 76 that can be engaged with the detachable portion 39z of the piston rod 39 and an actuator 77 that drives the engaging member 76 . The engaging member 76 is supported by the movable member 69 so as to be movable between an engaging position where it engages with the detachable portion 39z in the front-rear direction and a release position (position in FIG. 8) where the engagement is released. It is The actuator 77 moves the engaging member 76 between the engaging position and the releasing position.
 係合部材76及び被着脱部39zの具体的な形状は適宜に設定されてよい。図示の例では、被着脱部39zは、小径部39a、第1大径部39b及び第2大径部39cを有している。第1大径部39bは、小径部39aの後方に位置し、小径部39aよりも径が大きい。第2大径部39cは、小径部39aの前方に位置し、小径部39aよりも径が大きい。係合部材76は、第1大径部39bと第2大径部39cとの間に挿入されることによって、これらに対して後方又は前方に係合する。また、係合部材76は、第1大径部39bと第2大径部39cとの間から退避することによって係合が解除される。 The specific shapes of the engaging member 76 and the detachable portion 39z may be set as appropriate. In the illustrated example, the detachable portion 39z has a small diameter portion 39a, a first large diameter portion 39b and a second large diameter portion 39c. The first large diameter portion 39b is located behind the small diameter portion 39a and has a larger diameter than the small diameter portion 39a. The second large diameter portion 39c is positioned in front of the small diameter portion 39a and has a larger diameter than the small diameter portion 39a. The engaging member 76 is inserted between the first large-diameter portion 39b and the second large-diameter portion 39c to engage them rearwardly or forwardly. Further, the engaging member 76 is disengaged by retreating from between the first large diameter portion 39b and the second large diameter portion 39c.
 図示の例では、第1大径部39b及び第2大径部39cの径は、ピストンロッド39の大部分の径と同じである。すなわち、ピストンロッド39の一部の径が小さくされることによって、小径部39aが形成されている。ただし、例えば、小径部39aの径がピストンロッド39の大部分の径と同じとされてもよい。そして、第1大径部39b及び第2大径部39cは、フランジによって構成されてもよい。第1大径部39b及び第2大径部39cは、図示の例とは異なり、互いに径が異なっていてもよい。 In the illustrated example, the diameters of the first large diameter portion 39b and the second large diameter portion 39c are the same as the diameter of most of the piston rod 39. That is, a small-diameter portion 39a is formed by reducing the diameter of a part of the piston rod 39. As shown in FIG. However, for example, the diameter of the small-diameter portion 39 a may be the same as the diameter of most of the piston rod 39 . The first large diameter portion 39b and the second large diameter portion 39c may be formed by flanges. Unlike the illustrated example, the first large diameter portion 39b and the second large diameter portion 39c may have different diameters.
 係合部材76は、特に図示しないが、ピストンロッド39の軸方向に見たときに、小径部39a側に凹部を有していてもよい。当該凹部は、例えば、係合部材76が係合位置へ移動したときに小径部39aの少なくとも一部を収容する。このような凹部が設けられることによって、例えば、小径部39aの軸回りの角度範囲に関して、係合部材76と第1大径部39b(第2大径部39c)とが互いに係合する量を大きくすることができる。凹部の具体的な形状及び寸法は適宜に設定されてよい。例えば、1つの係合部材76に形成される凹部は小径部39aが概ね嵌合する半円状である。そして、2つの係合部材76は、小径部39aの回りの全周に亘って第1大径部39bに係合する。 Although not shown, the engagement member 76 may have a recess on the side of the small diameter portion 39a when viewed in the axial direction of the piston rod 39. The recess accommodates, for example, at least part of the small diameter portion 39a when the engaging member 76 is moved to the engaging position. By providing such a concave portion, for example, the amount of mutual engagement between the engaging member 76 and the first large diameter portion 39b (second large diameter portion 39c) can be adjusted with respect to the angular range of the small diameter portion 39a around the axis. You can make it bigger. The specific shape and dimensions of the recess may be set as appropriate. For example, a concave portion formed in one engaging member 76 has a semicircular shape in which the small diameter portion 39a is generally fitted. The two engaging members 76 engage the first large diameter portion 39b over the entire circumference of the small diameter portion 39a.
 アクチュエータ77の構成は適宜なものとされてよい。図示の例では、アクチュエータ77は、特に符号を付さないが、ばねと空圧シリンダとを組み合わせたものとされている。具体的には、アクチュエータ77は、可動部材69内に形成されたシリンダ室と、当該シリンダ室を摺動可能なピストンと、当該ピストンから延びて係合部材76に連結されているピストンロッドとを有している。ばねは、例えば、係合部材76の係合が解除される方向へピストンを付勢している。ピストンのピストンロッドとは反対側に気体(例えば空気)が供給されることによって、係合部材76は解除位置から係合位置へ移動する。アクチュエータ77のその他の例としては、例えば、リニアモータ又は液圧シリンダを挙げることができる。 The configuration of the actuator 77 may be made appropriate. In the illustrated example, the actuator 77 is a combination of a spring and a pneumatic cylinder, although no particular reference numeral is attached. Specifically, the actuator 77 includes a cylinder chamber formed within the movable member 69, a piston slidable in the cylinder chamber, and a piston rod extending from the piston and connected to the engaging member 76. have. The spring, for example, biases the piston in a direction in which the engagement member 76 is disengaged. The engagement member 76 is moved from the disengaged position to the engaged position by supplying gas (eg, air) to the side of the piston opposite the piston rod. Other examples of actuators 77 include, for example, linear motors or hydraulic cylinders.
 第1駆動装置29Aの配置位置は、適宜に設定されてよい。図示の例では、2つの第1駆動装置29Aは、上面視において、射出シリンダ27に対して線対称に配置されている。また、2つの第1駆動装置29Aは、例えば、上下方向において射出シリンダ27と同等の高さに位置している。より詳細には、例えば、2つの第1ねじ軸73A及びピストンロッド39の軸心は、上下方向の同一高さに位置してよい。 The arrangement position of the first driving device 29A may be set as appropriate. In the illustrated example, the two first driving devices 29A are arranged line-symmetrically with respect to the injection cylinder 27 when viewed from above. Also, the two first driving devices 29A are positioned at the same height as the injection cylinder 27 in the vertical direction, for example. More specifically, for example, the axial centers of the two first screw shafts 73A and the piston rod 39 may be positioned at the same height in the vertical direction.
 既述のように、第1駆動装置29Aは、射出完了後にプランジャ21を後退させる。従って、第1駆動装置29Aは、プランジャ21について意図されているストロークと同等以上のストロークで着脱部33を移動させることが可能に構成されている。なお、第1駆動装置29Aのストロークと、射出シリンダ27のストロークとは、同等であってもよいし、一方が他方よりも大きくてもよい。 As described above, the first driving device 29A retracts the plunger 21 after injection is completed. Therefore, the first driving device 29A is configured to be able to move the attaching/detaching portion 33 with a stroke equal to or greater than the intended stroke of the plunger 21 . The stroke of the first driving device 29A and the stroke of the injection cylinder 27 may be equal, or one may be greater than the other.
(第2駆動装置)
 第2駆動装置29Bは、既述のように、第2電動機31Bを含み、増圧ピストン41を駆動する。第2駆動装置29Bは、第2電動機31Bの駆動力を増圧ピストン41へ伝えるための構成要素として、例えば、第2電動機31Bから増圧ピストン41へ順に、第2伝達機構67B及び第2変換機構68Bを有している。
(Second driving device)
The second drive device 29B includes the second electric motor 31B and drives the pressure boosting piston 41 as described above. As components for transmitting the driving force of the second electric motor 31B to the pressure-increasing piston 41, the second driving device 29B includes, for example, a second transmission mechanism 67B and a second transmission mechanism 67B and a second conversion mechanism 67B in order from the second electric motor 31B to the pressure-increasing piston 41. It has a mechanism 68B.
 第2電動機31Bは、第1電動機31Aと同様に、回転式の電動機である。第1電動機31Aの構成に関する既述の説明は、矛盾等が生じない限り、第2電動機31Bの構成に援用されてよい。第2電動機31Bは、第1電動機31Aと、形式(例えば、交流若しくは直流、及び/又は誘導若しくは同期)が同じであってもよいし、異なっていてもよい。また、第2電動機31Bは、第1駆動装置29Aと第2駆動装置29Bとの役割の相違に応じて、第1電動機31Aと性能(定格トルク等)が異なっていてよい。 The second electric motor 31B is a rotary electric motor like the first electric motor 31A. The above description regarding the configuration of the first electric motor 31A may be incorporated into the configuration of the second electric motor 31B as long as there is no contradiction. The second electric motor 31B may be the same or different in type (eg, AC or DC, and/or induction or synchronous) from the first electric motor 31A. Further, the second electric motor 31B may differ from the first electric motor 31A in performance (rated torque, etc.) according to the difference in roles between the first driving device 29A and the second driving device 29B.
 第2電動機31Bの本体部(ステータ)は、射出装置9の不動部分(例えばシリンダ部材35)に固定され、各種の平行移動及び回転移動が規制されている。第2電動機31Bの配置位置及び向き等は適宜に設定されてよい。図6の例では、第2電動機31Bは、射出シリンダ27の後方かつ下方に配置されている。また、図8の例では、第2電動機31Bは、出力軸が射出シリンダ27に平行にかつ後方に向くように配置されている。 The main body (stator) of the second electric motor 31B is fixed to a stationary portion (for example, the cylinder member 35) of the injection device 9, and various parallel movements and rotational movements are restricted. The arrangement position, orientation, etc. of the second electric motor 31B may be appropriately set. In the example of FIG. 6 , the second electric motor 31B is arranged behind and below the injection cylinder 27 . In addition, in the example of FIG. 8, the second electric motor 31B is arranged so that the output shaft is parallel to the injection cylinder 27 and directed rearward.
 第2伝達機構67Bは、第1電動機31Aの回転を伝達する第1伝達機構67Aと同様に、第2電動機31Bの回転を伝達する。第1伝達機構67Aの構成に関する既述の説明は、矛盾等が生じない限り、第2伝達機構67Bの構成に援用されてよい。援用に際しては、第1プーリ70Aの語を第2プーリ70Bの語に置換し、第1ナット71Aの語を第2ナット71Bの語に置換し、第1ベルト72Aの語を第2ベルト72Bの語に置換する。第2伝達機構67Bは、第1駆動装置29Aと第2駆動装置29Bとの役割の相違に応じて、第1伝達機構67Aと変速比等が異なっていてよい。 The second transmission mechanism 67B transmits the rotation of the second electric motor 31B in the same manner as the first transmission mechanism 67A that transmits the rotation of the first electric motor 31A. The above description regarding the configuration of the first transmission mechanism 67A may be incorporated into the configuration of the second transmission mechanism 67B as long as there is no contradiction. When incorporated, the term first pulley 70A is replaced with the term second pulley 70B, the term first nut 71A is replaced with the term second nut 71B, and the term first belt 72A is replaced with the term second belt 72B. word. The second transmission mechanism 67B may differ from the first transmission mechanism 67A in gear ratio and the like according to the difference in role between the first drive device 29A and the second drive device 29B.
 第2伝達機構67Bの具体的な配置位置は適宜に設定されてよい。図示の例では、第2伝達機構67Bは、射出シリンダ27の後方に位置している。第2ナット71Bは、射出シリンダ27に同軸的に配置されている。第2プーリ70Bは、第2ナット71Bに対して下方(図6の第2電動機31Bの位置を参照)に位置している。 A specific arrangement position of the second transmission mechanism 67B may be set as appropriate. In the illustrated example, the second transmission mechanism 67B is positioned behind the injection cylinder 27 . The second nut 71B is arranged coaxially with the injection cylinder 27 . The second pulley 70B is positioned below the second nut 71B (see the position of the second electric motor 31B in FIG. 6).
 第2変換機構68Bは、第1電動機31Aの回転運動を直線運動に変換する第1変換機構68Aと同様に、第2電動機31Bの回転運動を直線運動に変換する。第1変換機構68Aの構成についての既述の説明は、矛盾等が生じない限り、第2変換機構68Bの構成に援用されてよい。援用に際しては、第1ナット71Aの語を第2ナット71Bの語に置換し、第1ねじ軸73Aの語を第2ねじ軸73Bの語に置換する。第1駆動装置29Aと第2駆動装置29Bとの役割の相違に応じて、第1変換機構68Aと第2変換機構68Bとは、具体的な構成が異なっていてよい。例えば、両者は、形式(例えば、ボールねじ機構及びすべりねじ機構のいずれかであるか)、径及び/又はリード等が異なっていてよい。図示の例では、第2ねじ軸73Bの長さは、第1ねじ軸73Aの長さよりも短い。 The second conversion mechanism 68B converts the rotary motion of the second electric motor 31B into linear motion, similar to the first conversion mechanism 68A that converts the rotary motion of the first electric motor 31A into linear motion. The above description of the configuration of the first conversion mechanism 68A may be incorporated into the configuration of the second conversion mechanism 68B as long as there is no contradiction. When using, the term of the first nut 71A is replaced with the term of the second nut 71B, and the term of the first screw shaft 73A is replaced with the term of the second screw shaft 73B. The specific configurations of the first conversion mechanism 68A and the second conversion mechanism 68B may differ according to the difference in role between the first drive device 29A and the second drive device 29B. For example, both may differ in type (for example, whether it is a ball screw mechanism or slide screw mechanism), diameter and/or lead. In the illustrated example, the length of the second screw shaft 73B is shorter than the length of the first screw shaft 73A.
 第2変換機構68Bは、例えば、射出シリンダ27と同軸的に配置されている。第2ねじ軸73Bは、増圧ピストン41に連結されているとともに回転が規制されている。第2ナット71Bは、軸回りの回転が許容され、それ以外の運動は規制されている。従って、第2電動機31Bによって第2ナット71Bが回転されることによって、第2ねじ軸73Bが軸方向に移動し、ひいては、増圧ピストン41が前後方向に移動する。 The second conversion mechanism 68B is arranged coaxially with the injection cylinder 27, for example. The second screw shaft 73B is connected to the booster piston 41 and restricted from rotating. The second nut 71B is allowed to rotate around its axis, and other movements are restricted. Therefore, when the second electric motor 31B rotates the second nut 71B, the second screw shaft 73B moves in the axial direction, and thus the pressure boosting piston 41 moves in the front-rear direction.
 第2ナット71Bの平行移動の規制方法及び第2ねじ軸73Bの回転の規制方法は適宜なものとされてよい。例えば、第2ナット71Bは、シリンダ部材35に連結された適宜な部材に軸受を介して支持されることによって、回転が許容されつつ他の運動が規制されてよい。また、例えば、第2ねじ軸73Bは、スプライン溝によって、軸方向の移動が許容されつつ軸回りの回転が規制されてよい。 A method for restricting parallel movement of the second nut 71B and a method for restricting rotation of the second screw shaft 73B may be appropriate. For example, the second nut 71B may be supported via a bearing by an appropriate member connected to the cylinder member 35, thereby allowing rotation while restricting other movements. Further, for example, the second screw shaft 73B may be allowed to move in the axial direction and restricted from rotating around the axis by the spline groove.
(ダイカストマシンのその他の構成)
 ダイカストマシン1は、マシン本体3の動作に係る種々の物理量を検出する種々のセンサを有してよい。そして、制御装置5は、種々のセンサの検出値に基づいて、液圧装置43、第1電動機31A、第2電動機31B及び着脱部33(アクチュエータ77)を制御してよい。
(other configuration of die casting machine)
The die casting machine 1 may have various sensors that detect various physical quantities related to the operation of the machine body 3 . Then, the control device 5 may control the hydraulic device 43, the first electric motor 31A, the second electric motor 31B, and the attaching/detaching portion 33 (actuator 77) based on the detection values of various sensors.
 上記のようなセンサの例を挙げる。例えば、ピストンロッド39(プランジャ21)の位置を検出する位置センサ99(図8)、アキュムレータ47の圧力を検出する圧力センサ(不図示)、ヘッド側室35hの圧力を検出する圧力センサ97H(図9)、ロッド側室35rの圧力を検出する圧力センサ97R(図9)、可動部材69の位置を検出するセンサ(不図示)、第1電動機31Aの回転数(回転速度)を検出するセンサ(不図示)、増圧ピストン41の位置を検出するセンサ(不図示)、第2電動機31Bの回転数を検出するセンサ(不図示)、第1電動機31Aのトルクを検出するセンサ(不図示)、及び/又は第2電動機31Bのトルクを検出するセンサ(不図示)が設けられてよい。 An example of the above sensor is given. For example, a position sensor 99 (FIG. 8) that detects the position of the piston rod 39 (plunger 21), a pressure sensor (not shown) that detects the pressure of the accumulator 47, and a pressure sensor 97H (FIG. 9) that detects the pressure of the head side chamber 35h. ), a pressure sensor 97R (FIG. 9) for detecting the pressure in the rod-side chamber 35r, a sensor (not shown) for detecting the position of the movable member 69, and a sensor (not shown) for detecting the number of revolutions (rotational speed) of the first electric motor 31A. ), a sensor (not shown) for detecting the position of the boosting piston 41, a sensor (not shown) for detecting the rotation speed of the second electric motor 31B, a sensor (not shown) for detecting the torque of the first electric motor 31A, and/or Alternatively, a sensor (not shown) that detects the torque of the second electric motor 31B may be provided.
 位置(又は回転位置)の微分によって速度(又は回転数)が得られるから、位置センサは速度センサと捉えられてもよい。同様に、回転数を検出するセンサは、回転位置を検出するセンサと捉えられてもよい。各種のセンサの構成は、種々の構成とされてよく、例えば、公知の構成とされて構わない。例えば、ピストンロッド39、可動部材69、及び増圧ピストン41の位置を検出するセンサは、リニアエンコーダ又はレーザー測長器とされてよい。回転を検出するセンサは、エンコーダ又はレゾルバとされてよい。トルクを検出するセンサは、歪ゲージを利用するものとされてよい。また、電動機に流れる電流を検出する電流検出器も、トルクセンサと捉えられてよい。 The position sensor can be regarded as a speed sensor because the speed (or number of rotations) can be obtained by differentiating the position (or rotational position). Similarly, a sensor that detects the number of rotations may be regarded as a sensor that detects rotational position. The various sensors may have various configurations, for example, may have known configurations. For example, sensors that detect the positions of the piston rod 39, the movable member 69, and the booster piston 41 may be linear encoders or laser length meters. A sensor that detects rotation may be an encoder or a resolver. A sensor that detects torque may utilize a strain gauge. A current detector that detects the current flowing through the motor may also be regarded as a torque sensor.
(射出装置の動作)
 図10は、射出装置9の動作を説明する図である。
(Operation of injection device)
10A and 10B are diagrams for explaining the operation of the injection device 9. FIG.
 図10において、横軸は時間tを示している。また、実線Lvは射出速度(プランジャ21の速度)の変化を示し、破線Lpは射出圧力(例えばプランジャ21が溶湯に付与する圧力)の変化を示している。実線Lv及び破線Lpが描かれたグラフにおいて、縦軸は射出速度V及び射出圧力Pの大きさを示している。 In FIG. 10, the horizontal axis indicates time t. A solid line Lv indicates changes in the injection speed (the speed of the plunger 21), and a broken line Lp indicates changes in the injection pressure (for example, the pressure applied to the molten metal by the plunger 21). In the graph on which the solid line Lv and the dashed line Lp are drawn, the vertical axis indicates the magnitude of the injection speed V and the injection pressure P.
 図10の下方においては、アキュムレータ47(「ACC」と略記)、第1電動機31A、第2電動機31B及び着脱部33の動作が示されている。 In the lower part of FIG. 10, operations of the accumulator 47 (abbreviated as "ACC"), the first electric motor 31A, the second electric motor 31B, and the attachment/detachment section 33 are shown.
 「ACC」において、「放出1」は、アキュムレータ47から(主として)ヘッド側室35hへ作動液が放出される状態を示す。「放出2」は、アキュムレータ47から(主として)後側室35aへ作動液が放出される状態を示す。「充填」は、ヘッド側室35h又は後側室35aの作動液がアキュムレータ47に充填される状態を示す。「停止」は、上記のいずれの作動液の流れも禁止されている状態を示す。 In "ACC", "release 1" indicates a state in which the working fluid is released (mainly) from the accumulator 47 to the head-side chamber 35h. “Discharge 2” indicates a state in which hydraulic fluid is discharged from the accumulator 47 (mainly) to the rear chamber 35a. "Filling" indicates a state in which the accumulator 47 is filled with the hydraulic fluid in the head side chamber 35h or the rear side chamber 35a. "Stop" indicates a condition in which any of the above hydraulic fluid flows are inhibited.
 「第1電動機」及び「第2電動機」において、「正転」は、着脱部33又は増圧ピストン41が前進する方向の回転がなされている状態を示す。「逆転」は、上記とは反対方向の回転がなされる状態を示す。「停止」は、回転がなされていない状態を示す。なお、電動機の停止は、例えば、特に断りが無い限り、トルクフリーの状態、位置制御がなされている状態又はブレーキが作動している状態のうち、いずれかの状態とされてよい。 In the "first electric motor" and the "second electric motor", "forward rotation" indicates a state in which the detachable portion 33 or the boosting piston 41 rotates in the forward direction. "Reverse" indicates a state in which rotation is performed in the direction opposite to the above. "Stop" indicates a state in which rotation is not performed. It should be noted that, unless otherwise specified, the electric motor may be stopped in any one of a torque-free state, a position-controlled state, and a brake-operated state, for example.
 「着脱」において、「ON」は、着脱部33がピストンロッド39に連結している状態を示す。「OFF」は、連結が解除された状態を示す。 In "detachment", "ON" indicates that the detachable portion 33 is connected to the piston rod 39. "OFF" indicates a state in which the connection is released.
 「ACC」、「第1電動機」、「第2電動機」及び「着脱」において、破線は、後述する変形例の動作を示すものである。ここでは、実線を参照されたい。 In "ACC", "first electric motor", "second electric motor" and "detachment", dashed lines indicate operations of modified examples described later. See the solid line here.
 射出装置9は、例えば、概観すると、低速射出(時点t0~t1)、高速射出(時点t1~t3)、増圧(時点t4~t6)及び保圧(時点t6~t7)を順に行う。すなわち、射出装置9は、射出の初期段階においては、溶湯の空気の巻き込みを防止する等の観点から比較的低速(速度V)でプランジャ21を前進させる低速射出を行う。次に、射出装置9は、溶湯の凝固に遅れずに溶湯を充填するため等の観点から比較的高速(速度V)でプランジャ21を前進させる高速射出を行う。次に、射出装置9は、成形品のヒケをなくす等の観点から、プランジャ21の前進する方向の力によりキャビティ107内の溶湯を鋳造圧力P(終圧)まで上昇させる増圧を行う。その後、射出装置9は、鋳造圧力Pを維持する保圧を行う。 For example, the injection device 9 performs low-speed injection (time points t0 to t1), high-speed injection (time points t1 to t3), pressure increase (time points t4 to t6), and pressure holding (time points t6 to t7) in sequence. That is, in the initial stage of injection, the injection device 9 performs low-speed injection in which the plunger 21 advances at a relatively low speed (velocity V L ) from the viewpoint of preventing entrainment of air in the molten metal. Next, the injection device 9 performs high-speed injection by moving the plunger 21 forward at a relatively high speed (velocity V H ) in order to fill the molten metal without delaying the solidification of the molten metal. Next, the injection device 9 increases the pressure of the molten metal in the cavity 107 to the casting pressure P E (final pressure) by the forward force of the plunger 21 from the viewpoint of eliminating sink marks in the molded product. After that, the injection device 9 performs holding pressure to maintain the casting pressure PE .
 低速射出及び高速射出は、アキュムレータ47からヘッド側室35hへ作動液が供給されることによって行われる(図中のACCの「放出1」を参照)。増圧は、その初期においては、アキュムレータ47からヘッド側室35hへ作動液が供給されることによって行われる。これらの動作は、例えば、図1~図3に対応している。増圧の残りの工程及び保圧は、アキュムレータ47から後側室35aへ作動液が供給される(圧力が付与される)ことによって行われる(図中のACCの「放出2」を参照)。これらの動作は、図4及び図5に対応している。具体的には、以下のとおりである。 Low-speed ejection and high-speed ejection are performed by supplying hydraulic fluid from the accumulator 47 to the head-side chamber 35h (see "Ejection 1" of ACC in the figure). The pressure increase is initially performed by supplying hydraulic fluid from the accumulator 47 to the head-side chamber 35h. These operations correspond, for example, to FIGS. The rest of the process of increasing pressure and holding pressure are performed by supplying hydraulic fluid (applying pressure) from the accumulator 47 to the rear chamber 35a (see "Release 2" of ACC in the figure). These operations correspond to FIGS. 4 and 5. FIG. Specifically, it is as follows.
(低速射出:t0~t1)
 低速射出の開始直前において、射出装置9は、図1及び図6~図9に示す状態となっている。すなわち、射出ピストン37及び増圧ピストン41は、後退限等の初期位置に位置している。着脱部33は、連結(係合)が解除されている。液圧回路53の各種の弁は、例えば、基本的に作動液の流れを禁止するように制御されている。第1電動機31A、第2電動機31B及びポンプ49(ポンプ49を駆動する電動機)は停止している。電動機の停止が適宜な状態とされてよいことは既述のとおりである。例えば、これらの電動機の少なくとも1つ(例えば第2電動機31B)は、消費電力の低減の観点からトルクフリーの状態とされていてよい。
(Low speed injection: t0 to t1)
Immediately before the start of low-speed injection, the injection device 9 is in the state shown in FIGS. 1 and 6-9. That is, the injection piston 37 and the boosting piston 41 are positioned at initial positions such as the retraction limit. The connection (engagement) of the detachable portion 33 is released. The various valves in the hydraulic circuit 53 are, for example, controlled to basically prohibit the flow of hydraulic fluid. The first electric motor 31A, the second electric motor 31B and the pump 49 (the electric motor for driving the pump 49) are stopped. As described above, the motor may be stopped in an appropriate state. For example, at least one of these electric motors (for example, the second electric motor 31B) may be in a torque-free state from the viewpoint of reducing power consumption.
 制御装置5は、所定の射出開始条件が満たされたか否か判定する。射出開始条件は、例えば、固定金型103及び移動金型105の型締が終了し、溶湯がスリーブ19に供給されたことを示す情報が得られたことなどとされてよい。そして、制御装置5は、射出開始条件が満たされたと判定すると、射出(低速射出)を開始する。 The control device 5 determines whether or not a predetermined injection start condition has been met. The injection start condition may be, for example, that the mold clamping of the fixed mold 103 and the movable mold 105 is completed and information indicating that the molten metal has been supplied to the sleeve 19 is obtained. Then, when the control device 5 determines that the injection start condition is satisfied, it starts injection (low-speed injection).
 具体的には、制御装置5は、流量制御弁55を開くとともに、チェック弁59Aを開く。これにより、アキュムレータ47からヘッド側室35hへ作動液が供給される。また、制御装置5は、チェック弁59Bを開く。これにより、ロッド側室35rからの作動液の排出が許容される。そして、射出ピストン37は、ヘッド側室35hから受ける圧力によってロッド側室35rの作動液を排出しながら前進する。ひいては、ピストンロッド39及びプランジャ21が前進する。 Specifically, the control device 5 opens the flow control valve 55 and the check valve 59A. As a result, the hydraulic fluid is supplied from the accumulator 47 to the head-side chamber 35h. Also, the control device 5 opens the check valve 59B. This allows the hydraulic fluid to be discharged from the rod-side chamber 35r. Then, the injection piston 37 moves forward while discharging the hydraulic fluid in the rod side chamber 35r by the pressure received from the head side chamber 35h. Consequently, the piston rod 39 and plunger 21 move forward.
 プランジャ21の速度は、ヘッド側室35hへ供給される作動液の流量が流量制御弁55によって調整されることによって制御される。具体的には、制御装置5は、位置センサ99によって検出されるプランジャ21の速度が目標速度に収束するように流量制御弁55の開度をフィードバック制御する。このフィードバック制御は、例えば、速度自体のフィードバック制御であってもよいし、検出されるプランジャ21の位置が時々刻々の目標位置となるように行われる位置のフィードバック制御によって実現される実質的な速度のフィードバック制御であってもよい。プランジャ21の速度は、例えば、低速(例えば1m/s未満)かつ一定とされる。ただし、プランジャ21の速度の多段制御が行われてもよい。 The speed of the plunger 21 is controlled by adjusting the flow rate of the hydraulic fluid supplied to the head-side chamber 35h by the flow rate control valve 55. Specifically, the control device 5 feedback-controls the opening of the flow control valve 55 so that the speed of the plunger 21 detected by the position sensor 99 converges to the target speed. This feedback control may be, for example, a feedback control of the speed itself, or a substantial speed feedback control that is performed so that the detected position of the plunger 21 becomes the target position every moment. may be feedback control. The speed of the plunger 21 is, for example, low (less than 1 m/s) and constant. However, multistage control of the speed of the plunger 21 may be performed.
 低速射出が行われているとき、制御装置5は、着脱部33のピストンロッド39に対する連結を解除している。従って、ピストンロッド39の速度は、第1電動機31Aの駆動状態の影響を受けない。図示の例では、射出開始時において、第1電動機31Aは停止されている。従って、ピストンロッド39(被着脱部39z)は、着脱部33(可動部材69)を置き去りにして前進する。 The controller 5 disconnects the detachable part 33 from the piston rod 39 when the low-speed injection is being performed. Therefore, the speed of the piston rod 39 is not affected by the driving state of the first electric motor 31A. In the illustrated example, the first electric motor 31A is stopped at the start of injection. Therefore, the piston rod 39 (detachable portion 39z) moves forward while leaving the detachable portion 33 (movable member 69) behind.
(着脱部の前進)
 制御装置5は、適宜な時期に第1電動機31Aの正転を開始し、着脱部33を前進させる。この正転の開始時期及び正転の速度は適宜に設定されてよい。ただし、図示の例では、正転の開始時期及び正転の速度は、着脱部33をプランジャ21に係合させる必要性が生じる時点(図示の例では時点t11)までに着脱部33がプランジャ21に連結可能な位置(小径部39a)へ到達するように設定されている。
(Advancement of detachable part)
The control device 5 starts the forward rotation of the first electric motor 31A at an appropriate time to move the detachable portion 33 forward. The start timing of forward rotation and the speed of forward rotation may be set as appropriate. However, in the illustrated example, the forward rotation start timing and forward rotation speed are such that the attachment/detachment portion 33 reaches the plunger 21 by the time point when it becomes necessary to engage the attachment/detachment portion 33 with the plunger 21 (time point t11 in the illustrated example). is set to reach a position (small diameter portion 39a) that can be connected to .
 第1電動機31Aの正転の開始時期及び正転の速度の例を挙げる。正転の開始時期は、射出開始前(時点t0の前)、射出開始時(時点t0)、低速射出中(図示の例)、高速射出中、又は高速射出の後とされてよい。また、第1電動機31Aの正転によって駆動される着脱部33の速度は、高速射出速度Vよりも低い。また、当該速度は、低速射出速度Vよりも低くてもよいし、同等でもよいし、高くてもよい。 An example of the forward rotation start timing and the forward rotation speed of the first electric motor 31A will be given. The start timing of forward rotation may be before the start of injection (before time t0), at the start of injection (time t0), during low speed injection (example shown), during high speed injection, or after high speed injection. Further, the speed of the attaching/detaching portion 33 driven by the forward rotation of the first electric motor 31A is lower than the high speed injection speed VH . Also, the speed may be lower than, equal to, or higher than the low speed injection speed VL .
 なお、上記の開始時期及び速度の種々の例から理解されるように、既述の説明とは異なり、着脱部33は、一時的に又は常にピストンロッド39の被着脱部39zに先行しても構わない。 As can be understood from the various examples of the start timing and speed described above, unlike the above description, the detachable portion 33 may temporarily or always precede the detachable portion 39z of the piston rod 39. I do not care.
(高速射出:t1~t3)
 制御装置5は、所定の高速開始条件が満たされると、流量制御弁55の開度を大きくし、アキュムレータ47からヘッド側室35hへの作動液の流量を多くし、プランジャ21の速度を高くする。このときの制御は、例えば、目標速度が異なること以外は、低速射出のときの制御と同様でよい。高速開始条件は、例えば、プランジャ21の位置が所定の高速切換位置に到達したこととされてよい。制御装置5は、例えば、プランジャ21の検出位置が高速切換位置に到達したか否かを判定して目標速度を切り換えてもよいし、高速切換位置及び目標速度に基づいて設定された時々刻々の目標位置を実現するだけであってもよい。
(High-speed injection: t1-t3)
When the predetermined high-speed start condition is satisfied, the controller 5 increases the opening of the flow control valve 55 to increase the flow rate of the hydraulic fluid from the accumulator 47 to the head-side chamber 35h, thereby increasing the speed of the plunger 21. The control at this time, for example, may be the same as the control at the time of low-speed injection, except that the target speed is different. A high speed start condition may be, for example, that the position of the plunger 21 has reached a predetermined high speed switching position. For example, the control device 5 may determine whether or not the detected position of the plunger 21 has reached the high speed switching position to switch the target speed, or may switch the target speed from time to time set based on the high speed switching position and the target speed. It may be just to achieve the target position.
(減速射出:t3~t4)
 溶湯がキャビティ107にある程度充填されると、プランジャ21は、その充填された溶湯から反力を受けて減速され、その一方で、射出圧力は、急激に上昇していく。なお、各部の動作は、高速射出時と同様である。ただし、流量制御弁55の開口度を小さくする減速制御がなされてもよい。このような減速制御によって、例えば、充填時の衝撃が緩和される。
(Deceleration injection: t3-t4)
When the molten metal fills the cavity 107 to some extent, the plunger 21 receives reaction force from the filled molten metal and is decelerated, while the injection pressure rises rapidly. Note that the operation of each part is the same as during high-speed injection. However, deceleration control may be performed to reduce the degree of opening of the flow control valve 55 . Such deceleration control reduces, for example, the impact during filling.
(ヘッド側室への作動液の供給による増圧:t4~t5)
 制御装置5は、所定の増圧開始条件が満たされると、増圧を開始するように液圧回路53を制御する。増圧開始条件は、例えば、ヘッド側室35hの圧力を検出する圧力センサ97H(及び必要に応じてロッド側室35rの圧力を検出する圧力センサ97R)の検出値に基づく射出圧力が所定の圧力に到達したこと、又は、位置センサ99により検出されるプランジャ21の検出位置が所定の位置に到達したことである。
(Pressure increase due to supply of hydraulic fluid to head-side chamber: t4 to t5)
The control device 5 controls the hydraulic circuit 53 to start pressure increase when a predetermined pressure increase start condition is satisfied. The pressure increase start condition is, for example, when the injection pressure reaches a predetermined pressure based on the detection value of the pressure sensor 97H that detects the pressure in the head-side chamber 35h (and the pressure sensor 97R that detects the pressure in the rod-side chamber 35r if necessary). or that the detected position of the plunger 21 detected by the position sensor 99 has reached a predetermined position.
 制御装置5は、低速射出から減速射出までは、位置センサ99の検出値(射出速度の検出値)に基づく速度制御を行う。一方、増圧が開始されると、制御装置5は、圧力センサ97H(及び必要に応じて圧力センサ97R)の検出値(射出圧力の検出値)に基づく圧力制御を行う。圧力制御では、制御装置5は、例えば、射出圧力の検出値が所定の昇圧曲線に沿って上昇するように流量制御弁55をフィードバック制御する。 The control device 5 performs speed control based on the detection value of the position sensor 99 (the detection value of the injection speed) from low-speed injection to deceleration injection. On the other hand, when the pressure increase starts, the control device 5 performs pressure control based on the detection value (the injection pressure detection value) of the pressure sensor 97H (and the pressure sensor 97R if necessary). In the pressure control, the control device 5 feedback-controls the flow control valve 55 so that the detected value of the injection pressure rises along a predetermined pressure increase curve, for example.
(増圧ピストンによる増圧の準備:t5以前)
 制御装置5は、適宜な時期に図3を参照して説明した動作を行うように液圧回路53及び第2電動機31Bを制御する。すなわち、制御装置5は、増圧ピストン41による増圧(図4)の準備を行う。
(Preparation for pressure increase by pressure increase piston: before t5)
The control device 5 controls the hydraulic circuit 53 and the second electric motor 31B so as to perform the operations described with reference to FIG. 3 at appropriate times. That is, the control device 5 prepares for pressure increase by the pressure increase piston 41 (FIG. 4).
 具体的には、制御装置5は、チェック弁59Eを開いてアキュムレータ47から後側室35aへの作動液の流れを許容する。これにより、増圧ピストン41は、ヘッド側室35hの作動液による後方への圧力と、後側室35aの作動液による前方への圧力とを受ける。両圧力は、いずれもアキュムレータ47からの圧力であり、理論上は同じである。一方、増圧ピストン41は、後側室35aにおける受圧面積がヘッド側室35hにおける受圧面積よりも大きい。従って、増圧ピストン41が作動液から受ける力は、全体としては、前方への力となる。 Specifically, the control device 5 opens the check valve 59E to allow the hydraulic fluid to flow from the accumulator 47 to the rear side chamber 35a. As a result, the pressure-increasing piston 41 receives rearward pressure from the hydraulic fluid in the head-side chamber 35h and forward pressure from the hydraulic fluid in the rear-side chamber 35a. Both pressures are pressures from the accumulator 47 and are theoretically the same. On the other hand, the pressure-increasing piston 41 has a larger pressure-receiving area in the rear-side chamber 35a than in the head-side chamber 35h. Therefore, the force that the pressure intensifying piston 41 receives from the hydraulic fluid is a forward force as a whole.
 その一方で、制御装置5は、増圧ピストン41に後方への駆動力を付与するように第2電動機31Bを制御する。第2電動機31Bが増圧ピストン41に付与する後方への力の大きさは、ヘッド側室35h及び後側室35aの作動液が増圧ピストン41に付与する前方への力の大きさに対して、同等以上とされる。これにより、増圧ピストン41は、後退限において停止した状態が維持される。 On the other hand, the control device 5 controls the second electric motor 31B so as to apply a rearward driving force to the pressure-increasing piston 41 . The magnitude of the backward force applied to the pressure intensifying piston 41 by the second electric motor 31B is, relative to the magnitude of the forward force applied to the pressure intensifying piston 41 by the hydraulic fluid in the head-side chamber 35h and the rear-side chamber 35a, equal or higher. As a result, the pressure-increasing piston 41 is kept stopped at the retraction limit.
 第2電動機31Bは、増圧ピストン41を後方へ移動させる回転方向の駆動力を生じるように電力が供給される。ただし、第2電動機31Bは、上記回転方向への回転(逆転)を生じず、停止しているか(図3)、正転する(図4)。従って、図10では、時点t5付近において第2電動機31Bの動作を示す「逆転」は、括弧書きで記されている。 Electric power is supplied to the second electric motor 31B so as to generate a rotational driving force that moves the pressure boosting piston 41 backward. However, the second electric motor 31B does not rotate (reverse rotation) in the above rotation direction, and either stops (FIG. 3) or rotates forward (FIG. 4). Therefore, in FIG. 10, "reverse rotation" indicating the operation of the second electric motor 31B near time t5 is written in parentheses.
 増圧ピストン41を確実に停止させる観点から、第2電動機31Bによる後方への力は、ヘッド側室35h及び後側室35aの作動液による前方への力よりも大きくされてよい。その差は、適宜に設定されてよい。上記の2つの力の差が大きいほど増圧ピストン41を確実に停止させることができる一方で、2つの力の差が小さいほど第2電動機31Bの消費電力を小さくすることが容易化される。例えば、第2電動機31Bによる後方への力は、作動液による前方への力の1.5倍以下、1.2倍以下又は1.1倍以下とされてよい。 From the viewpoint of reliably stopping the pressure-increasing piston 41, the rearward force of the second electric motor 31B may be made larger than the forward force of the hydraulic fluid in the head-side chamber 35h and the rear-side chamber 35a. The difference may be set appropriately. The larger the difference between the two forces, the more reliably the intensifying piston 41 can be stopped, while the smaller the difference between the two forces, the easier it is to reduce the power consumption of the second electric motor 31B. For example, the backward force by the second electric motor 31B may be 1.5 times or less, 1.2 times or less, or 1.1 times or less than the forward force by the hydraulic fluid.
 後側室35aへの作動液の供給を開始するタイミングと、第2電動機31Bの駆動を開始するタイミングとは、例えば、概ね同じとされてよい。増圧ピストン41の前進を確実に防止する観点からは、後者は、前者よりも早くされてよい。この場合の2つのタイミングの差は、適宜に設定されてよい。2つのタイミングの差が大きいほど増圧ピストン41の前進を確実に停止させることができる一方で、2つのタイミングの差が小さいほど第2電動機31Bの消費電力を小さくすることが容易化される。例えば、第2電動機31Bの駆動を開始するタイミングが後側室35aへの作動液の供給を開始するタイミングに対して早い場合の両者の差は、50msec以下、20msec以下又は10msec以下とされてよい。 The timing to start supplying the hydraulic fluid to the rear side chamber 35a and the timing to start driving the second electric motor 31B may be, for example, substantially the same. From the viewpoint of reliably preventing the advance of the pressure intensifying piston 41, the latter may be faster than the former. The difference between the two timings in this case may be set as appropriate. The larger the difference between the two timings, the more reliably the pressure-increasing piston 41 can stop advancing, while the smaller the difference between the two timings, the easier it is to reduce the power consumption of the second electric motor 31B. For example, when the timing to start driving the second electric motor 31B is earlier than the timing to start supplying hydraulic fluid to the rear chamber 35a, the difference between the two may be 50 msec or less, 20 msec or less, or 10 msec or less.
 なお、本実施形態の説明における、後側室35aへの作動液の供給を開始するタイミングは、液圧回路53(チェック弁59Eへのパイロット圧を制御する不図示のバルブ)へ制御指令を出力するタイミングであってもよいし、実際に後側室35aへ作動液が供給されるタイミング(制御指令を出力するタイミングに対して制御遅れを有している)であってもよい。本実施形態の説明における、第2電動機31Bの駆動を開始するタイミングも、第2電動機31Bへ制御指令を出力するタイミングと、実際に第2電動機31Bが駆動を開始するタイミングとのいずれであってもよい。ただし、一般に、両者の差は無視できる。 In the description of the present embodiment, the timing of starting the supply of hydraulic fluid to the rear side chamber 35a is determined by outputting a control command to the hydraulic circuit 53 (a valve (not shown) that controls the pilot pressure to the check valve 59E). It may be the timing, or the timing when the hydraulic fluid is actually supplied to the rear side chamber 35a (which has a control delay with respect to the timing of outputting the control command). In the description of the present embodiment, the timing to start driving the second electric motor 31B is either the timing to output a control command to the second electric motor 31B or the timing to actually start driving the second electric motor 31B. good too. However, in general, the difference between the two can be ignored.
 増圧ピストン41による増圧の準備を開始するタイミング(後側室35aへの作動液の供給を開始するタイミング及び/又は第2電動機31Bの駆動を開始するタイミング)は、適宜な時期とされてよい。当該準備の開始タイミングが、増圧ピストン41による増圧の開始タイミングに近いほど、第2電動機31Bの消費電力の低減が容易化される。例えば、準備の開始タイミングは、時点t2以後、時点t3以後又は時点t4以後とされてよい。図示の例では、準備の開始タイミングが、時点t3から時点t5までの期間内に設定されている。当該期間は、換言すれば、減速開始からヘッド側室35hへの作動液の供給による増圧完了までの期間である。また、準備の開始タイミングは、時点t5の前であって、時点t5からの時間差が所定の時間長さ(例えば100msec)になるように設定されてもよい。なお、消費電力を無視するのであれば、準備を開始するタイミングは、上記に例示した種々の時点よりも早くされて構わない。 The timing of starting preparation for pressure increase by the pressure-increasing piston 41 (the timing of starting the supply of hydraulic fluid to the rear chamber 35a and/or the timing of starting the driving of the second electric motor 31B) may be an appropriate timing. . The closer the preparation start timing is to the pressure increase start timing by the pressure increase piston 41, the easier it is to reduce the power consumption of the second electric motor 31B. For example, the preparation start timing may be after time t2, after time t3, or after time t4. In the illustrated example, the preparation start timing is set within a period from time t3 to time t5. The period is, in other words, the period from the start of deceleration to the completion of pressure increase by supplying the hydraulic fluid to the head-side chamber 35h. Also, the preparation start timing may be set to be before time t5 and set so that the time difference from time t5 is a predetermined length of time (for example, 100 msec). It should be noted that if power consumption is ignored, the timing of starting the preparation may be earlier than the various points of time exemplified above.
 上記のように増圧ピストン41を停止させているときの第2電動機31Bの制御は、例えば、トルク制御とされてよい。具体的には、制御装置5は、一定のトルクが維持されるように第2電動機31Bのトルク制御を行ってよい。当該制御は、第2電動機31Bのトルクを検出するセンサに基づくフィードバック制御であってもよいし、フィードバックを行わないオープン制御であってもよい。なお、増圧ピストン41を停止させているときの第2電動機31Bの制御は、位置制御又は速度制御とすることも可能である。 The control of the second electric motor 31B when the pressure intensifying piston 41 is stopped as described above may be, for example, torque control. Specifically, the control device 5 may perform torque control of the second electric motor 31B so that a constant torque is maintained. The control may be feedback control based on a sensor that detects the torque of the second electric motor 31B, or may be open control without feedback. The control of the second electric motor 31B while the pressure intensifying piston 41 is stopped may be position control or speed control.
(増圧ピストンによる増圧:t5~t6)
 制御装置5は、所定の増圧切換条件が満たされると、流量制御弁55及びチェック弁59Aを閉じる。これにより、ヘッド側室35hからアキュムレータ47への作動液の逆流が禁止される。また、制御装置5は、図4を参照して説明したように、第2電動機31Bが増圧ピストン41に対して後方に付与している力を、作動液が増圧ピストン41に付与している前方への力よりも小さくする。これにより、ヘッド側室35hの圧力が上昇し、増圧が行われる。
(Pressure increase by booster piston: t5-t6)
The controller 5 closes the flow control valve 55 and the check valve 59A when a predetermined pressure increase switching condition is satisfied. As a result, backflow of the hydraulic fluid from the head-side chamber 35h to the accumulator 47 is prohibited. In addition, as described with reference to FIG. 4, the control device 5 causes the hydraulic fluid to apply the force that the second electric motor 31B applies to the pressure-increasing piston 41 rearward to the pressure-increasing piston 41. less than the forward force As a result, the pressure in the head-side chamber 35h is increased, and the pressure is increased.
 なお、チェック弁59Aは、ヘッド側室35hの作動液の圧力によって自閉してもよい。具体的には、射出ピストン37が前進しているときは、ヘッド側室35hの容積が拡大し、ヘッド側室35hの圧力は、アキュムレータ47の圧力よりも低く、チェック弁59Aは自閉しない。その後、成形材料がキャビティ107内に概ね充填され、ヘッド側室35hの容積の拡大が概ね停止すると、増圧ピストン41の増圧作用によって、ヘッド側室35hの圧力はアキュムレータ47の圧力よりも高くなる。これにより、チェック弁59Aは自閉する。 The check valve 59A may be self-closed by the pressure of the hydraulic fluid in the head-side chamber 35h. Specifically, when the injection piston 37 is moving forward, the volume of the head-side chamber 35h is increased, the pressure of the head-side chamber 35h is lower than the pressure of the accumulator 47, and the check valve 59A does not self-close. After that, when the cavity 107 is mostly filled with the molding material and the expansion of the volume of the head side chamber 35h is almost stopped, the pressure of the head side chamber 35h becomes higher than the pressure of the accumulator 47 due to the pressure increasing action of the pressure increasing piston 41. As a result, the check valve 59A self-closes.
 増圧切換条件は、例えば、ヘッド側室35hの圧力を検出する圧力センサ97H(及び必要に応じてロッド側室35rの圧力を検出する圧力センサ97R)の検出値に基づく射出圧力が所定の圧力に到達したこと、又は、位置センサ99により検出されるプランジャ21の検出位置が所定の位置に到達したこととされてよい。すなわち、増圧開始条件と同様の条件であって、判定基準となる具体的な圧力又は位置が増圧開始条件とは異なる条件とされてよい。 The pressure increase switching condition is, for example, when the injection pressure reaches a predetermined pressure based on the detection value of the pressure sensor 97H that detects the pressure in the head side chamber 35h (and the pressure sensor 97R that detects the pressure in the rod side chamber 35r if necessary). or that the detected position of the plunger 21 detected by the position sensor 99 has reached a predetermined position. In other words, the condition may be the same as the pressure increase start condition, but the specific pressure or position used as the determination criterion may be different from the pressure increase start condition.
 第2電動機31Bによって増圧を行うときの制御は、例えば、圧力センサ97H(及び必要に応じて圧力センサ97R)の検出値(射出圧力の検出値)に基づく圧力制御である。制御装置5は、例えば、射出圧力の検出値が所定の昇圧曲線に沿って上昇するように第2電動機31Bをフィードバック制御する。これにより、射出圧力は、鋳造圧力P(終圧)に至る。 The control when the pressure is increased by the second electric motor 31B is, for example, pressure control based on the detection value (the injection pressure detection value) of the pressure sensor 97H (and the pressure sensor 97R if necessary). The control device 5, for example, feedback-controls the second electric motor 31B so that the detected value of the injection pressure increases along a predetermined pressure increase curve. This causes the injection pressure to reach the casting pressure P E (final pressure).
 昇圧曲線の形状は任意である。図示の例では、時点t5の前の射出圧力を示す線と、時点t5の後の射出圧力を示す線とは、傾き(変化率)が互いに同一の直線状となっている。これは一例に過ぎない。図示の例とは異なり、昇圧曲線は、時点t5の前後に亘って傾きが徐々に小さくなる曲線状とされてよいし、時点t5の前と、時点t5の後とで、傾き及び/又は形状が異なっていてよい。 The shape of the boost curve is arbitrary. In the illustrated example, the line indicating the injection pressure before time t5 and the line indicating the injection pressure after time t5 are linear with the same slope (rate of change). This is just one example. Unlike the illustrated example, the booster curve may be curved with a gradually decreasing slope before and after time t5. can be different.
 第2電動機31Bによる圧力制御が行われているとき、アキュムレータ47から後側室35aに付与される圧力は、例えば、一定とされる。なお、ここでの説明では、アキュムレータ47から後側室35aへの作動液の放出等に起因する圧力低下は無視する。具体的には、例えば、制御装置5は、流量制御弁55の開度を一定に維持することによって、一定の圧力を後側室35aに付与する。これにより、圧力制御は、液圧式の制御と電動式の制御との組み合わせではなく、電動式の制御のみとなり、制御の精度が向上する。ただし、電動式の制御に液圧式の制御が組み合わされても構わない。 When the pressure is controlled by the second electric motor 31B, the pressure applied from the accumulator 47 to the rear side chamber 35a is, for example, constant. In the description here, the pressure drop due to the discharge of the hydraulic fluid from the accumulator 47 to the rear side chamber 35a is ignored. Specifically, for example, the control device 5 applies constant pressure to the rear chamber 35a by maintaining the opening degree of the flow control valve 55 constant. As a result, the pressure control is not a combination of hydraulic control and electric control, but only electric control, thereby improving control accuracy. However, electric control may be combined with hydraulic control.
 圧力制御において、第2電動機31Bが増圧ピストン41に対して後方に付与する力は、最終的に0にされる。例えば、制御装置5は、最終的に第2電動機31Bをトルクフリーの状態(電力が供給されず、駆動力が生じない状態)とする。従って、鋳造圧力Pは、例えば、アキュムレータ47の圧力と、増圧ピストン41の増圧比(ヘッド側室35hにおける受圧面積及び後側室35aにおける受圧面積の比)との2つの因子によって決定される。従って、射出開始前のアキュムレータ47の圧力を任意の圧力に設定しておくことによって、所望の鋳造圧力Pが実現される。 In pressure control, the force that the second electric motor 31B applies to the pressure boosting piston 41 to the rear is finally made zero. For example, the control device 5 finally places the second electric motor 31B in a torque-free state (a state in which no electric power is supplied and no driving force is generated). Therefore, the casting pressure P E is determined by two factors, for example, the pressure of the accumulator 47 and the pressure increase ratio of the booster piston 41 (the ratio of the pressure receiving area in the head side chamber 35h and the pressure receiving area in the rear side chamber 35a). Therefore, the desired casting pressure PE can be achieved by setting the pressure of the accumulator 47 to an arbitrary pressure before starting injection.
 本実施形態とは異なり、第2電動機31Bは、鋳造圧力Pに至ったときに、増圧ピストン41に後方への力を付与していてもよい。ここで、本実施形態とは異なり、後側室35aに作動液が供給されずに、第2電動機31Bによって増圧ピストン41に前方への力を付与して鋳造圧力Pを得る比較例を考える。本実施形態において鋳造圧力Pを得るために第2電動機31Bが増圧ピストン41に対して後方へ付与する力の絶対値は、上記比較例において鋳造圧力Pを得るために第2電動機31Bが増圧ピストン41に前方へ付与する力の絶対値よりも小さくされてよい。また、別の観点では、鋳造圧力Pに至るとき、第2電動機31Bが増圧ピストン41に後方へ付与する力は、アキュムレータ47が増圧ピストン41に前方へ付与する力の1/2未満とされてよい。 Unlike the present embodiment, the second electric motor 31B may apply a rearward force to the booster piston 41 when the casting pressure PE is reached. Here, unlike the present embodiment, consider a comparative example in which the casting pressure P E is obtained by applying a forward force to the booster piston 41 by the second electric motor 31B without supplying hydraulic fluid to the rear side chamber 35a. . In this embodiment, the absolute value of the force that the second electric motor 31B applies to the booster piston 41 to obtain the casting pressure P E in the comparative example is the same as the second electric motor 31B may be smaller than the absolute value of the force applied forward to the pressure boosting piston 41 . From another point of view, when the casting pressure PE is reached, the force that the second electric motor 31B applies backward to the pressure boosting piston 41 is less than half the force that the accumulator 47 applies forward to the pressure boosting piston 41. may be assumed.
 また、本実施形態とは異なり、圧力制御の過程で、第2電動機31Bが増圧ピストン41に付与する力を後方からの力から前方への力に変化させてもよい。そして、最終的に、作動液による前方への力と、第2電動機31Bによる前方への力との双方を増圧ピストン41に付与して鋳造圧力Pを得てもよい。なお、この場合は、鋳造圧力Pを得るために第2電動機31Bが増圧ピストン41に前方へ付与する力は、当然に、上記の比較例において鋳造圧力Pを得るために第2電動機31Bが増圧ピストン41に対して前方へ付与する力よりも小さい。 Further, unlike the present embodiment, the force applied to the pressure-increasing piston 41 by the second electric motor 31B may be changed from the rearward force to the forward force during the pressure control process. Finally, both the forward force of the hydraulic fluid and the forward force of the second electric motor 31B may be applied to the boosting piston 41 to obtain the casting pressure PE . In this case, the force applied forward by the second electric motor 31B to the booster piston 41 in order to obtain the casting pressure P E is, of course, the second electric motor 31B in order to obtain the casting pressure P E in the comparative example. 31B is smaller than the forward force applied to the pressure boosting piston 41 .
 また、本実施形態とは異なり、増圧が完了する前の適宜な時期にロッド側室35rからの作動液の排出を禁止してよい。換言すれば、最終的にロッド側室35rの圧力をタンク圧としないようにしてよい。この場合は、ロッド側室35rの作動液の圧力(別の観点ではロッド側室35rからの作動液の排出を禁止するタイミング)が鋳造圧力Pを決定する因子に加えられることになる。 Further, unlike the present embodiment, discharge of the hydraulic fluid from the rod side chamber 35r may be prohibited at an appropriate time before the pressure increase is completed. In other words, the final pressure in the rod-side chamber 35r may not be the tank pressure. In this case, the pressure of the hydraulic fluid in the rod side chamber 35r (from another point of view, the timing of prohibiting discharge of the hydraulic fluid from the rod side chamber 35r ) is added to the factor that determines the casting pressure PE.
 本実施形態では、アキュムレータ47からヘッド側室35hへの作動液の供給によって増圧工程の初期の一部を行うこととして、増圧開始条件と増圧切換条件とを設定した。ただし、増圧ピストン41の作用のみによって増圧工程の全部を行う(アキュムレータ47からヘッド側室35hへ作動液を供給しているときに圧力センサに基づく圧力制御を行わない。)こととし、増圧開始条件と増圧切換条件とを統合しても構わない。 In this embodiment, the pressure increase start condition and the pressure increase switching condition are set so that the initial part of the pressure increase process is performed by supplying the hydraulic fluid from the accumulator 47 to the head side chamber 35h. However, the entire pressure increasing process is performed only by the action of the pressure increasing piston 41 (pressure control based on the pressure sensor is not performed while hydraulic fluid is being supplied from the accumulator 47 to the head side chamber 35h). The start condition and the pressure increase switching condition may be integrated.
 本実施形態とは異なり、流量制御弁55及びチェック弁59Aを閉じる時期と、制御装置5が第2電動機31Bによる圧力制御を開始する時期とは、前後しても構わない。換言すれば、流量制御弁55及びチェック弁59Aを閉じる条件と、第2電動機31Bによる圧力制御を開始する条件とは、異なっていても構わない。 Unlike the present embodiment, the timing at which the flow control valve 55 and the check valve 59A are closed and the timing at which the control device 5 starts pressure control by the second electric motor 31B may be earlier or later. In other words, the conditions for closing the flow control valve 55 and the check valve 59A may differ from the conditions for starting the pressure control by the second electric motor 31B.
(保圧:t6~t7)
 制御装置5は、上記のように鋳造圧力Pが得られると、鋳造圧力Pが維持されるように液圧装置43及び第2電動機31Bを制御する。すなわち、保圧が行われる。具体的には、例えば、第2電動機31Bはトルクフリーの状態が維持される。また、アキュムレータ47から後側室35aへの圧力の付与が継続される。なお、増圧ピストン41による増圧の説明では、第2電動機31Bをトルクフリーとせずに鋳造圧力Pを得る変形例についても説明したが、これらの変形例においても、適宜に鋳造圧力Pが得られたときの状態が維持されてよい。
(Holding pressure: t6-t7)
When the casting pressure PE is obtained as described above, the control device 5 controls the hydraulic pressure device 43 and the second electric motor 31B so as to maintain the casting pressure PE. That is, holding pressure is performed. Specifically, for example, the second electric motor 31B is maintained in a torque-free state. Also, the application of pressure from the accumulator 47 to the rear side chamber 35a is continued. In addition, in the description of the pressure increase by the pressure increasing piston 41, the modification examples for obtaining the casting pressure P E without making the second electric motor 31B torque-free were also described . The state when was obtained may be maintained.
 保圧が行われている間において、キャビティ107内の溶湯は冷却されて凝固する。制御装置5は、溶湯が凝固したと判定すると(時点t7)、保圧を終了するように液圧装置43(及び第2電動機31B)を制御する。例えば、制御装置5は、流量制御弁55及びチェック弁59Eを閉じ、アキュムレータ47から後側室35aへの作動液の流れを禁止する。制御装置5は、適宜に溶湯が凝固したか否かを判定してよい。例えば、制御装置5は、終圧が得られた時点t6等の所定の時点から所定の時間が経過したか否かにより、溶湯が凝固したか否か判定する。 The molten metal in the cavity 107 is cooled and solidified while the holding pressure is being performed. When the control device 5 determines that the molten metal has solidified (time t7), the control device 5 controls the hydraulic device 43 (and the second electric motor 31B) to end pressure holding. For example, the control device 5 closes the flow control valve 55 and the check valve 59E to prohibit the hydraulic fluid from flowing from the accumulator 47 to the rear chamber 35a. The controller 5 may suitably determine whether the molten metal has solidified. For example, the control device 5 determines whether or not the molten metal has solidified based on whether or not a predetermined time has elapsed from a predetermined time such as time t6 when the final pressure was obtained.
(着脱部の到着)
 減速射出及び増圧によりプランジャ21の速度は低下し、さらには、保圧が開始されてプランジャ21は停止する。従って、第1電動機31Aによって駆動されていた着脱部33は、ピストンロッド39の被着脱部39zに追いつく。換言すれば、着脱部33は、被着脱部39zに対して連結可能な状態となり得る。
(Arrival of detachable part)
The speed of the plunger 21 decreases due to the decelerated injection and the increased pressure, and the pressure holding starts to stop the plunger 21 . Therefore, the detachable portion 33 driven by the first electric motor 31A catches up with the detachable portion 39z of the piston rod 39. As shown in FIG. In other words, the detachable portion 33 can be connected to the detachable portion 39z.
 制御装置5は、着脱部33(可動部材69)の位置を検出するセンサ又は第1電動機31Aの回転を検出するセンサの検出値に基づいて、着脱部33が所定の停止位置に到達したことを検出すると、第1電動機31Aを停止させる。上記の停止位置は、例えば、着脱部33を被着脱部39zに連結させるとき(図示の例では時点t11)の着脱部33の位置(着脱部33と連結可能な位置)、又はその付近の位置である。 The control device 5 detects that the detachable portion 33 (movable member 69) has reached a predetermined stop position based on the detection value of the sensor that detects the position of the detachable portion 33 (movable member 69) or the sensor that detects the rotation of the first electric motor 31A. When detected, the first electric motor 31A is stopped. The stop position is, for example, the position of the attachment/detachment section 33 (the position where the attachment/detachment section 33 can be connected) when the attachment/detachment section 33 is connected to the attachment/detachment section 39z (time t11 in the illustrated example), or a position in the vicinity thereof. is.
 着脱部33が停止位置に到達する時期は、既述のように、図示の例では、連結が必要になる時点(図示の例では時点t11)の前とされている。その具体的な時期は、適宜な時期とされてよい。例えば、当該時期は、減速射出中、増圧中、保圧中(図示の例)又は保圧完了後(ただし連結時の前)とされてよい。 As described above, the detachable portion 33 reaches the stop position in the illustrated example before the point in time when connection becomes necessary (time t11 in the illustrated example). The specific time may be an appropriate time. For example, the timing may be during deceleration injection, during pressure increase, during pressure retention (example shown), or after completion of pressure retention (but before connection).
(突出動作:t9~t10)
 保圧終了後、制御装置5は、移動金型105を固定金型103から離れる方向へ移動させて型開きを行うように型締装置7を制御する。溶湯が凝固して形成された成形品は、固定金型103及び移動金型105のいずれか一方の金型から離れ、他方の金型に残る。その後(又は型開きと同時に)、制御装置5は、上記他方の金型から成形品を押し出すように不図示の押出装置を制御する。
(Protruding operation: t9-t10)
After the holding pressure is completed, the control device 5 controls the mold clamping device 7 to move the movable mold 105 away from the fixed mold 103 to open the mold. A molded article formed by solidifying the molten metal leaves one of the fixed mold 103 and the movable mold 105 and remains in the other mold. After that (or at the same time as the mold is opened), the control device 5 controls an extrusion device (not shown) so as to extrude the molded product from the other mold.
 型締装置7による型開きによって成形品を前記一方の金型としての固定金型103から離すとき、又は押出装置によって成形品を前記他方の金型としての固定金型103から押し出すとき、制御装置5は、プランジャ21によって成形品を固定金型103から押し出す動作(以下、「突出動作」ということがある。)を行うように射出装置9を制御してよい。 When the molded product is separated from the fixed mold 103 as the one mold by mold opening by the mold clamping device 7, or when the molded product is pushed out from the fixed mold 103 as the other mold by the extrusion device, the control device 5 may control the injection device 9 so that the plunger 21 performs an operation of pushing out the molded product from the fixed mold 103 (hereinafter sometimes referred to as "projection operation").
 具体的には、例えば、制御装置5は、第2電動機31Bを正転させ、増圧ピストン41によってヘッド側室35hの作動液を加圧する。このときの制御は、速度制御であってもよいし、トルク制御であってもよい。例えば、制御装置5は、プランジャ21の速度が、移動金型105の速度又は不図示の押出装置の押出ピンの速度と同じになるように、検出されたプランジャ21の速度に基づいて速度制御を行ってよい。 Specifically, for example, the control device 5 rotates the second electric motor 31B forward, and pressurizes the working fluid in the head-side chamber 35h by the pressure-increasing piston 41. The control at this time may be speed control or torque control. For example, the control device 5 controls the speed based on the detected speed of the plunger 21 so that the speed of the plunger 21 is the same as the speed of the moving mold 105 or the speed of the extrusion pin of the extrusion device (not shown). you can go
(プランジャ後退:t11~)
 既述のように、着脱部33は、ピストンロッド39の被着脱部39zに連結可能な位置(又はその付近)で停止している。制御装置5は、突出動作が完了すると、着脱部33を被着脱部39zに連結する。この際、着脱部33及び被着脱部39zが着脱可能な相対位置になるように、いずれか一方の位置を微調整してもよい。その後、制御装置5は、第1電動機31Aを逆転させて、射出ピストン37を後退させる。
(Plunger retreat: t11~)
As described above, the attachment/detachment portion 33 stops at (or near) a position where it can be connected to the attachment/detachment portion 39z of the piston rod 39 . When the projecting operation is completed, the control device 5 connects the detachable portion 33 to the detachable portion 39z. At this time, the position of either one of the detachable portion 33 and the detachable portion 39z may be finely adjusted so that the detachable portion 33z and the detachable portion 39z are detachable relative to each other. After that, the control device 5 reverses the first electric motor 31A to retract the injection piston 37 .
 第1電動機31Aを逆転させるとき、制御装置5は、流量制御弁55及びチェック弁59Aを開く。これにより、射出ピストン37の後退に伴ってヘッド側室35hから排出される作動液がアキュムレータ47に充填される。また、制御装置5は、チェック弁59Bを閉じてロッド側室35rからタンク51への作動液の流れを禁止するとともに、ポンプ49からロッド側室35rへの作動液の流れを許容する位置に切換弁62を切り換え、かつポンプ49を駆動する。これにより、ポンプ49からロッド側室35rへ作動液が補給される。 When the first electric motor 31A is reversed, the control device 5 opens the flow control valve 55 and the check valve 59A. As a result, the accumulator 47 is filled with hydraulic fluid discharged from the head-side chamber 35h as the injection piston 37 moves backward. Further, the control device 5 closes the check valve 59B to prohibit the flow of hydraulic fluid from the rod-side chamber 35r to the tank 51, and moves the switching valve 62 to the position allowing the flow of hydraulic fluid from the pump 49 to the rod-side chamber 35r. and drive the pump 49 . As a result, the hydraulic fluid is replenished from the pump 49 to the rod side chamber 35r.
 上記のように第1電動機31Aによって射出ピストン37を後退させる期間の前、当該期間の少なくとも一部、及び/又は当該期間の後において、増圧ピストン41も後退する。この後退は、第1電動機31A、第2電動機31B及び作動液の供給のいずれによって実現されてもよい。また、後側室35aから排出される作動液は、アキュムレータ47に充填されてもよいし、充填されなくてもよい。以下に具体例を挙げる。 Before, at least part of, and/or after the period during which the injection piston 37 is retracted by the first electric motor 31A as described above, the boosting piston 41 is also retracted. This retraction may be realized by any of the first electric motor 31A, the second electric motor 31B, and the supply of hydraulic fluid. Also, the hydraulic fluid discharged from the rear chamber 35a may or may not fill the accumulator 47 . Specific examples are given below.
 一例(図示の例)において、制御装置5は、第1電動機31Aを逆転させて射出ピストン37を後退させる期間の少なくとも一部において、第2電動機31Bを逆転させ、増圧ピストン41を後退させる。増圧ピストン41を後退させるとき、制御装置5は、流量制御弁55及びチェック弁59Eを開く。これにより、後側室35aから排出される作動液がアキュムレータ47に充填される。第2電動機31Bのトルク又は速度は適宜に設定されてよい。例えば、増圧ピストン41の速度は、射出ピストン37の速度よりも遅い。ひいては、射出ピストン37が後退する期間に亘って、ヘッド側室35hから作動液が排出される。ただし、射出ピストン37が後退する期間の一部のみにおいて増圧ピストン41の後退が行われ、かつ増圧ピストン41の速度が射出ピストン37の速度以上とされ、ヘッド側室35hから作動液が排出されない期間が存在してもよい。 In one example (illustrated example), the control device 5 reverses the second electric motor 31B to retract the pressure boosting piston 41 during at least part of the period in which the first electric motor 31A is reversed to retract the injection piston 37. When retracting the booster piston 41, the controller 5 opens the flow control valve 55 and the check valve 59E. As a result, the accumulator 47 is filled with the hydraulic fluid discharged from the rear chamber 35a. The torque or speed of the second electric motor 31B may be set appropriately. For example, the velocity of the intensifier piston 41 is slower than the velocity of the injection piston 37 . As a result, the hydraulic fluid is discharged from the head-side chamber 35h over the period in which the injection piston 37 retreats. However, the pressure-increasing piston 41 is retracted only during a part of the period in which the injection piston 37 is retracted, and the speed of the pressure-increasing piston 41 is equal to or higher than the speed of the injection piston 37, so that the hydraulic fluid is not discharged from the head-side chamber 35h. A period may exist.
 他の例において、第1電動機31Aを逆転させて射出ピストン37を後退させる期間の一部(例えば初期)において、制御装置5は、流量制御弁55及びチェック弁59Eを開き、また、チェック弁59Aを閉じる(ヘッド側室35hからの作動液の排出を禁止する。)。これにより、射出ピストン37の後退に伴って増圧ピストン41が後退し、後側室35aから排出される作動液がアキュムレータ47に充填される。なお、チェック弁59Aは自閉してもよい。増圧ピストン41の後退が行われる間、第2電動機31Bは、トルクフリーの状態とされていてもよいし、逆転されていてもよい。逆転される場合、第2電動機31Bは、単に第2駆動装置29Bが増圧ピストン41の後退を妨げないように制御されるだけであってもよいし、増圧ピストン41に後方への力を付与してもよい。後者の場合において、第1電動機31A及び第2電動機31Bの役割分担は適宜に設定されてよい(いずれが生じるトルクが大きくてもよい。)。また、上記とは逆に、増圧ピストン41の後退は主として第2電動機31Bの逆転によって実現され、第1電動機31Aの逆転は、ヘッド側室35hの体積が拡大しないように射出ピストン37を後退させるだけのものであってもよい。 In another example, during a part (for example, the initial stage) of the period in which the first electric motor 31A is reversed to retract the injection piston 37, the control device 5 opens the flow control valve 55 and the check valve 59E, and also closes the check valve 59A. is closed (discharge of the hydraulic fluid from the head-side chamber 35h is prohibited). As a result, the pressure-increasing piston 41 retreats as the injection piston 37 retreats, and the accumulator 47 is filled with hydraulic fluid discharged from the rear side chamber 35a. Note that the check valve 59A may self-close. While the pressure-increasing piston 41 is being retracted, the second electric motor 31B may be in a torque-free state, or may be reversed. When reversed, the second electric motor 31B may simply be controlled so that the second drive device 29B does not impede the retraction of the intensifying piston 41, or exert a rearward force on the intensifying piston 41. may be given. In the latter case, the division of roles between the first electric motor 31A and the second electric motor 31B may be appropriately set (either of which may generate a large torque). Contrary to the above, the retraction of the pressure-increasing piston 41 is realized mainly by the reverse rotation of the second electric motor 31B, and the reverse rotation of the first electric motor 31A retracts the injection piston 37 so as not to increase the volume of the head-side chamber 35h. It may be a single one.
 図示の例とは異なり、着脱部33は、着脱部33が被着脱部39zに追いついた以後、かつ連結の必要性が生じる時点の前に、被着脱部39zに対して連結されても構わない。例えば、着脱部33は、保圧中又は保圧完了後(ただし連結の必要性が生じる時点の前)に被着脱部39zに連結されても構わない。 Unlike the illustrated example, the detachable portion 33 may be connected to the detachable portion 39z after the detachable portion 33 catches up with the detachable portion 39z and before the need for connection arises. . For example, the detachable portion 33 may be connected to the detachable portion 39z during pressure holding or after pressure holding is completed (but before the need for connection occurs).
 上記のように射出ピストン37及び増圧ピストン41の後退が行われ、その後、各種の弁を閉じることによって、射出装置9は、初期状態に復帰する。すなわち、次の成形サイクル(射出サイクル)の準備が整う。 The injection piston 37 and the boosting piston 41 are retracted as described above, and then the injection device 9 returns to its initial state by closing various valves. That is, the preparation for the next molding cycle (injection cycle) is completed.
 以上のとおり、実施形態に係る射出装置9は、射出シリンダ27と、液圧装置43と、電動機31(第2電動機31B)と、制御装置5とを有している。射出シリンダ27は、型(金型101)に成形材料Mを押し出すプランジャ21に連結されている。また、射出シリンダ27は、第1方向(前方)及びその反対方向の第2方向(後方)に移動可能なピストン(増圧ピストン41)を有している。液圧装置43は、射出シリンダ27に作動液を供給する。第2電動機31Bは、増圧ピストン41に(間接的に)連結されている。制御装置5は、作動液による前方への第1の力と、前記第1の力よりも小さい、第2電動機31Bによる後方への第2の力とを増圧ピストン41に同時に付与し、これにより増圧ピストン41を前方へ移動させるように液圧装置43及び第2電動機31Bを制御する。 As described above, the injection device 9 according to the embodiment has the injection cylinder 27, the hydraulic device 43, the electric motor 31 (second electric motor 31B), and the control device 5. The injection cylinder 27 is connected to the plunger 21 for pushing out the molding material M into the mold (the mold 101). The injection cylinder 27 also has a piston (pressure boosting piston 41) that can move in a first direction (forward) and in a second direction (backward) opposite thereto. The hydraulic device 43 supplies hydraulic fluid to the injection cylinder 27 . The second electric motor 31B is (indirectly) connected to the pressure boosting piston 41 . The control device 5 simultaneously applies a first force to the front by the hydraulic fluid and a second force to the rear by the second electric motor 31B, which is smaller than the first force, to the intensifying piston 41, and this , the hydraulic device 43 and the second electric motor 31B are controlled so as to move the pressure increasing piston 41 forward.
 従って、例えば、図4等を参照して説明したように、増圧ピストン41の駆動方向への力を液圧装置43によって得つつ、その力の制御を、駆動方向とは反対方向への力を生じる第2電動機31Bによって行うことができる。その結果、例えば、制御の精度を高くしつつ、消費電力を低減できる。 Therefore, for example, as described with reference to FIG. can be performed by the second electric motor 31B that produces As a result, for example, power consumption can be reduced while increasing control accuracy.
 射出シリンダ27は、増圧ピストン41の上記第1方向への移動によって、プランジャ21が金型101に向かって前進するように(金型101内に成形材料を押し出す方向へプランジャ21が移動するように)、プランジャ21に連結されてよい。別の観点では、上述した第1方向は、前方とされてよい。 The injection cylinder 27 is arranged such that the plunger 21 advances toward the mold 101 (moves in the direction of pushing out the molding material into the mold 101) by the movement of the pressure-increasing piston 41 in the first direction. ), may be connected to the plunger 21 . In another aspect, the first direction mentioned above may be forward.
 この場合、例えば、成形材料を金型101に向かって押し出す動作において、上述したハイブリッド式の駆動態様(作動液による第1方向への力と第2電動機31Bによる第2方向への力とが増圧ピストン41に加えられる態様)が実現される。通常、成形材料を金型101に向かって押し出す動作は大きな力を要する。従って、このような動作において上述した駆動態様が実現されることによって、例えば、消費電力の低減の効果が向上する。 In this case, for example, in the operation of pushing out the molding material toward the mold 101, the above-described hybrid drive mode (the force in the first direction by the hydraulic fluid and the force in the second direction by the second electric motor 31B are increased). Aspects applied to the pressure piston 41) are realized. Normally, the operation of pushing out the molding material toward the mold 101 requires a large force. Therefore, by realizing the driving mode described above in such an operation, for example, the effect of reducing power consumption is improved.
 なお、上記とは逆に、プランジャ21が後退するようにピストンが動く方向を第1方向とし、その反対方向を第2方向とし、作動液による第1方向への第1の力と、当該第1の力よりも小さい、電動機による第2方向への力とをピストンに加える動作が行われてもよい。この場合も、例えば、プランジャ21の後退に関して、消費電力を低減しつつ、制御の精度を向上させる効果が期待される。このような後退動作は、実施形態の増圧及び保圧に係る動作と組み合わされてもよいし、組み合わされなくてもよい。 Contrary to the above, the direction in which the piston moves so as to retract the plunger 21 is defined as the first direction, and the opposite direction is defined as the second direction. An action of applying a force in a second direction by the electric motor to the piston that is less than one force may be performed. Also in this case, for example, regarding the retraction of the plunger 21, the effect of improving control accuracy while reducing power consumption is expected. Such a retraction operation may or may not be combined with the operations related to pressure increase and pressure retention in the embodiment.
 射出シリンダ27は、増圧式のものとされてよい。すなわち、射出シリンダ27は、プランジャ21の後方部分に連結されている射出ピストン37と、射出ピストン37の後方の作動液を加圧可能な増圧ピストン41と、を有してよい。そして、増圧ピストン41に対して、上述した、作動液による第1方向への第1の力と、当該第1の力よりも小さい、第2電動機31Bによる第2方向への力とを加える動作が行われてよい。また、別の観点では、制御装置5は、作動液による第1方向(前方)への第1の力と、第1の力よりも小さい、第2電動機31Bによる第2方向(後方)への第2の力とをピストン(例えば増圧ピストン41)に同時に付与し、これにより増圧を行うように液圧装置43及び第2電動機31Bを制御してよい。また、制御装置5は、増圧が行われているときに第2の力が時間経過に伴って変化するように第2電動機31Bを制御してよい。 The injection cylinder 27 may be of a pressure increasing type. That is, the injection cylinder 27 may have an injection piston 37 connected to the rear portion of the plunger 21 and a booster piston 41 behind the injection piston 37 capable of pressurizing the hydraulic fluid. Then, the pressure-increasing piston 41 is applied with the above-described first force by the hydraulic fluid in the first direction and the force in the second direction by the second electric motor 31B, which is smaller than the first force. Actions may be taken. From another point of view, the control device 5 controls the first force in the first direction (forward) by the hydraulic fluid and the second direction (backward) by the second electric motor 31B, which is smaller than the first force. The hydraulic device 43 and the second electric motor 31B may be controlled so that the second force is simultaneously applied to the piston (for example, the pressure boosting piston 41), thereby increasing the pressure. Further, the control device 5 may control the second electric motor 31B such that the second force changes with time while the pressure is being increased.
 この場合、比較的大きな力を必要とする増圧において、作動液による第1の力と、電動機による第2の力とをピストンに付与する動作が行われる。従って、例えば、消費電力を低減する効果が向上する。また、後述する変形例(図12(a))の説明で詳述するように、増圧ピストン41を有さない単胴式の射出シリンダに第2駆動装置29Bを設けた態様に比較して、第2駆動装置29Bの構成を小型化することが容易である。 In this case, in the pressure increase that requires a relatively large force, an operation is performed in which the first force by the hydraulic fluid and the second force by the electric motor are applied to the piston. Therefore, for example, the effect of reducing power consumption is improved. Also, as will be described in detail in the description of a modified example (FIG. 12(a)) to be described later, in comparison with a mode in which a second driving device 29B is provided in a single-barrel injection cylinder that does not have a booster piston 41, , it is easy to miniaturize the configuration of the second driving device 29B.
 制御装置5は、作動液による第1方向(前方)への第1の力をピストン(例えば増圧ピストン41)に付与する一方で、第2電動機31Bを、駆動力を生じない状態とし、これにより保圧を行うように、液圧装置43及び第2電動機31Bを制御してよい。 The control device 5 applies a first force in a first direction (forward) by the hydraulic fluid to the piston (for example, the pressure boosting piston 41), while setting the second electric motor 31B to a state in which it does not generate driving force. The hydraulic device 43 and the second electric motor 31B may be controlled so that the pressure is maintained by
 この場合、消費電力を低減する効果が向上する。及び/又は第2電動機31Bを小型にすることが容易化される。第2電動機31Bを小型化することによって、第2電動機31Bとして市販の電動機を利用することが容易化される。これらの事情から、例えば、保圧時間を長く(例えば10sec以上に)設定可能にすることが容易化される。 In this case, the effect of reducing power consumption is improved. and/or miniaturization of the second electric motor 31B is facilitated. By downsizing the second electric motor 31B, it becomes easier to use a commercially available electric motor as the second electric motor 31B. Under these circumstances, for example, it is easy to set the holding pressure time to be long (for example, 10 seconds or longer).
 液圧装置43は、アキュムレータ47を有してよい。制御装置5は、アキュムレータ47の液圧を増圧ピストン41の後方に付与し、これにより保圧を行うように液圧装置43を制御してよい。 The hydraulic device 43 may have an accumulator 47 . The control device 5 may control the hydraulic device 43 so as to apply the hydraulic pressure of the accumulator 47 to the rear of the pressure increasing piston 41 to maintain the pressure.
 この場合、例えば、アキュムレータ47が後側室35aに接続されているだけで、保圧に必要な力が得られる。従って、例えば、ポンプ49によって後側室35aに液圧を付与して保圧を行うような態様(そのような態様も本開示に係る技術に含まれる。)に比較して、消費電力が低減する効果が向上する。なお、アキュムレータ47からの液圧を後側室35aに付与する態様においても、例えば、作動液のリークに応じて、ポンプ49から後側室35aに作動液が補給されて構わない。 In this case, for example, just by connecting the accumulator 47 to the rear side chamber 35a, the force necessary for maintaining the pressure can be obtained. Therefore, for example, power consumption is reduced compared to a mode in which the pump 49 applies hydraulic pressure to the rear side chamber 35a to hold the pressure (such a mode is also included in the technology according to the present disclosure). Improves effectiveness. Also in the mode in which the hydraulic pressure from the accumulator 47 is applied to the rear chamber 35a, the hydraulic fluid may be replenished from the pump 49 to the rear chamber 35a in response to leakage of the hydraulic fluid, for example.
 制御装置5は、作動液による第1方向(前方)への第1の力と、第1の力よりも大きい、第2電動機31Bによる第2方向(後方)への第3の力とをピストン(例えば増圧ピストン41)に同時に付与し、これにより、増圧ピストン41を後方の駆動限に停止させた停止状態とするように、液圧装置43及び第2電動機31Bを制御してよい。また、制御装置5は、上記の第3の力を小さくしていくことによって、第2電動機31Bによる後方への力を上記の第1の力よりも小さい第2の力とし、これにより、増圧ピストン41の前方への移動を開始するように液圧装置43及び第2電動機31Bを制御してよい。 The control device 5 applies a first force in a first direction (forward) by the hydraulic fluid and a third force in a second direction (rearward) by the second electric motor 31B, which is larger than the first force, to the piston. (For example, the pressure intensifying piston 41) may be simultaneously applied to the hydraulic pressure device 43 and the second electric motor 31B so that the pressure intensifying piston 41 is stopped at the rear drive limit. Further, the control device 5 reduces the third force to make the rearward force by the second electric motor 31B a second force smaller than the first force, thereby increasing the The hydraulic device 43 and the second electric motor 31B may be controlled to initiate forward movement of the pressure piston 41 .
 この場合、例えば、増圧ピストン41の移動開始は、第2電動機31Bの制御によって実現される。一方、第2電動機31Bの制御の応答性は、液圧装置43の制御の応答性よりも高い。従って、増圧ピストン41による増圧開始タイミングの制御の精度を向上させることができる。例えば、実施形態とは異なり、チェック弁59Eを開いてアキュムレータ47から後側室35aへの作動液の供給を開始することによって増圧ピストン41の前進を開始する態様(当該態様も本開示に係る技術に含まれる。)を考える。この態様では、制御装置5が液圧装置43へ制御指令を出力してから増圧ピストン41が前進を開始するまでの時間は、例えば、20msec以上である。一方、本実施形態では、制御装置5が第2電動機31Bへ制御指令を出力してから増圧ピストン41が前進を開始するまでの時間を10msec以下とすることができる。 In this case, for example, the start of movement of the pressure-increasing piston 41 is realized by controlling the second electric motor 31B. On the other hand, the control response of the second electric motor 31B is higher than the control response of the hydraulic device 43 . Therefore, the accuracy of control of the pressure increase start timing by the pressure increase piston 41 can be improved. For example, unlike the embodiment, a mode in which the pressure intensifying piston 41 starts advancing by opening the check valve 59E and starting to supply hydraulic fluid from the accumulator 47 to the rear side chamber 35a (this mode is also the technique according to the present disclosure). ). In this aspect, the time from when the control device 5 outputs the control command to the hydraulic device 43 to when the pressure increasing piston 41 starts moving forward is, for example, 20 msec or more. On the other hand, in this embodiment, the time from when the control device 5 outputs the control command to the second electric motor 31B to when the pressure boosting piston 41 starts moving forward can be set to 10 msec or less.
<変形例>
 以下、種々の変形例について説明する。
<Modification>
Various modifications will be described below.
(突出動作の変形例)
 実施形態では、プランジャ21によって成形品を押して固定金型103から離す突出動作(時点t9~t10)は、第2駆動装置29Bによってなされた。当該突出動作は、第2駆動装置29Bに加えて、又は代えて、第1駆動装置29Aによってなされてもよい。
(Modified example of protruding motion)
In the embodiment, the projection operation (time points t9 to t10) in which the plunger 21 pushes the molded product away from the fixed mold 103 is performed by the second driving device 29B. The projecting operation may be performed by the first driving device 29A in addition to or instead of the second driving device 29B.
 図10の「第1電動機」、「第2電動機」及び「着脱」における破線は、そのような変形例の動作を示している。制御装置5は、例えば、まず、着脱部33をピストンロッド39の被着脱部39zに連結する。次に、制御装置5は、第1電動機31Aを正転させ、ピストンロッド39を前進させる。これにより、プランジャ21によって成形品が押され、離型がなされる。このとき、第2電動機31Bは、例えば、停止されている。ロッド側室35r及びヘッド側室35hは、例えば、タンク51と接続されてよい。又は、ポンプ49からヘッド側室35hに作動液が補給されてもよい。ヘッド側室35hを密閉状態として、第2電動機31Bを正転させてもよい。 The dashed lines in "first electric motor", "second electric motor", and "attachment/detachment" in FIG. 10 indicate the operation of such a modification. For example, the control device 5 first connects the detachable portion 33 to the detachable portion 39z of the piston rod 39 . Next, the control device 5 rotates the first electric motor 31A forward to move the piston rod 39 forward. As a result, the molded product is pushed by the plunger 21 and released from the mold. At this time, the second electric motor 31B is stopped, for example. The rod side chamber 35r and the head side chamber 35h may be connected to the tank 51, for example. Alternatively, the hydraulic fluid may be supplied from the pump 49 to the head-side chamber 35h. The second electric motor 31B may be rotated forward while the head-side chamber 35h is closed.
 特に図示しないが、突出動作においては、電動機による力に代えて、又は加えて、作動液による力が利用されてもよい。例えば、アキュムレータ47又はポンプ49からヘッド側室35hへ作動液が供給され、ヘッド側室35hの圧力が吐出動作に寄与してよい。 Although not particularly shown, in the projecting operation, instead of or in addition to the force of the electric motor, the force of the hydraulic fluid may be used. For example, hydraulic fluid may be supplied from the accumulator 47 or the pump 49 to the head-side chamber 35h, and the pressure in the head-side chamber 35h may contribute to the discharge operation.
 なお、着脱部33は、実施形態のように、プランジャ21の後退にのみ利用されるのであれば、被着脱部39zに対する後方への相対移動のみが禁止(及び許容)される構成(前方への相対移動が禁止されない構成)であってもよい。 If the detachable portion 33 is used only for retracting the plunger 21 as in the embodiment, only rearward relative movement with respect to the detachable portion 39z is prohibited (and allowed) (forward movement is permitted). A configuration in which relative movement is not prohibited) may also be used.
(増圧ピストンによる増圧の開始時点に係る変形例)
 図11は、増圧ピストン41による増圧の開始タイミングに係る変形例を示す図であり、図10の一部に対応している。
(Modified example related to the start point of pressure increase by the pressure increase piston)
FIG. 11 is a diagram showing a modification relating to the start timing of pressure increase by the pressure increase piston 41, and corresponds to part of FIG.
 図10では、ヘッド側室35hへの作動液の供給による増圧の完了時点(時点t5)と、増圧ピストン41による増圧の開始時点(時点t5)とは同一時点とされた。一方、図11では、増圧ピストン41による増圧の開始時点tsは、ヘッド側室35hへの作動液の供給による増圧の完了時点t5よりも後とされている。両者の時間差は適宜に設定されてよい。 In FIG. 10, the point of time (time t5) when the pressure increase due to the supply of the hydraulic fluid to the head-side chamber 35h is completed and the point of time (time t5) when the pressure increase by the pressure increase piston 41 is started are the same. On the other hand, in FIG. 11, the pressure increase start time ts by the pressure increase piston 41 is after the pressure increase completion time t5 by supplying the hydraulic fluid to the head side chamber 35h. The time difference between the two may be set appropriately.
 射出装置9は、ユーザが時点t5と時点tsとの時間差を設定できるように構成されてよい。この場合において、時間差は、0とすることが可能であってもよい。換言すれば、図10及び図11の動作態様は、互いに同一の射出装置9において選択的に実現されてよい。例えば、時間差は、0~100msecの範囲で設定可能であってよい。もちろん、図10の動作態様及び図11の動作態様は、互いに異なる射出装置9の動作態様であってもよい。 The injection device 9 may be configured so that the user can set the time difference between the time t5 and the time ts. In this case, the time difference may be allowed to be zero. In other words, the operating modes of FIGS. 10 and 11 may be selectively realized in the same injection device 9 as each other. For example, the time difference may be settable in the range of 0-100 msec. Of course, the operation mode of FIG. 10 and the operation mode of FIG. 11 may be different operation modes of the injection device 9 .
 なお、実施形態の説明では、増圧ピストン41による増圧の準備(図3に示す第2電動機31Bによって増圧ピストン41が後退限に停止されている状態)を開始するタイミングについて、時点t5(射出ピストン37による増圧の完了時点)の前の時点を例示した。時点tsが時点t5の後であることが必須の要件である態様においては、増圧ピストン41による増圧の準備の開始タイミングは、時点t5の後とすることも可能である。 In the description of the embodiment, the timing of starting the preparation for pressure increase by the pressure boosting piston 41 (the state in which the pressure boosting piston 41 is stopped at the retraction limit by the second electric motor 31B shown in FIG. 3) is time t5 ( The point before the completion of pressure increase by the injection piston 37) is exemplified. In a mode in which it is essential that the time point ts is after the time point t5, the start timing of preparation for pressure increase by the pressure increasing piston 41 can be after the time point t5.
(射出シリンダの変形例)
 図12(a)は、射出シリンダの変形例を示す模式図である。
(Modification of injection cylinder)
FIG. 12(a) is a schematic diagram showing a modification of the injection cylinder.
 図示の射出シリンダ27Aは、増圧ピストン41を有さない、いわゆる単胴式のものである。この射出シリンダ27Aを有する態様では、例えば、狭義の射出(例えば低速射出及び高速射出)、増圧及び保圧の全てが射出ピストン37の後方へ作動液が供給されることによって行われる。また、電動機31は、射出ピストン37に対して連結されている。この変形例では、増圧においては、矢印a4によって示すように、電動機31によって後方への力(第2の力)が射出ピストン37に付与される。この力は、射出ピストン37に付与される前方への力(第1の力)よりも小さくされる。 The illustrated injection cylinder 27A is a so-called single-barrel type that does not have a booster piston 41. In a mode having this injection cylinder 27A, for example, injection in a narrow sense (for example, low-speed injection and high-speed injection), pressure increase, and pressure holding are all performed by supplying hydraulic fluid to the rear of the injection piston 37. Also, the electric motor 31 is connected to the injection piston 37 . In this modified example, a rearward force (second force) is applied to the injection piston 37 by the electric motor 31 as indicated by the arrow a4 in the pressure increase. This force is less than the forward force (first force) applied to the injection piston 37 .
 このように、作動液による力と電動機による力とを互いに逆向きにピストンに作用させ、作動液の力の方向(第1方向)へピストンを移動させる動作は、単胴式の射出シリンダ27Aに適用されてもよい。なお、射出ピストン37の移動距離は、増圧ピストン41の移動距離よりも長い。従って、実施形態は、図12(a)の変形例に比較して、第2ねじ軸73Bの長さを短くすることができる。 In this manner, the force of the hydraulic fluid and the force of the electric motor act on the piston in opposite directions to move the piston in the direction of the force of the hydraulic fluid (first direction). may be applied. Note that the moving distance of the injection piston 37 is longer than the moving distance of the boosting piston 41 . Therefore, the embodiment can shorten the length of the second screw shaft 73B as compared with the modified example of FIG. 12(a).
 なお、図12(a)の変形例に示す電動機31に代えて、又は加えて、実施形態の第1駆動装置29Aによって、作動液による前方への力よりも小さい後方への力が射出ピストン37に付与されてもよい。また、作動液による前方への力よりも小さい後方への力は、増圧に加えて、又は代えて、狭義の射出(例えば低速射出及び高速射出)において付与されてよい。この場合は、電動式の駆動部によって、速度制御がなされてよい。これらの事項は、増圧ピストン41が設けられている態様においても同様である。 In place of or in addition to the electric motor 31 shown in the modification of FIG. may be granted to Also, a rearward force that is less than the forward force due to the hydraulic fluid may be applied in addition to or instead of boosting pressure in the narrow definition of injection (eg, low speed injection and high speed injection). In this case, speed control may be performed by an electric drive. These matters also apply to the mode in which the pressure boosting piston 41 is provided.
 図12(d)に示すように、射出シリンダ27Dは、射出ピストン37を収容する第1シリンダ部材35pと、増圧ピストン41を収容する第2シリンダ部材35qとが分離されているとともに、連通路35cによって射出ピストン37の背後のヘッド側室35hと、増圧ピストン41の前方の加圧室35bとが連通されているものであってもよい。この場合、第2シリンダ部材35qの第1シリンダ部材35pに対する位置及び向きは任意である。ひいては、増圧ピストン41を駆動する電動式の駆動部の位置及び向きも任意である。例えば、第2シリンダ部材35qは、第1シリンダ部材35pに対して、並列に配置されてもよいし(図示の例)、交差するように配置されてもよい。図示の例から理解されるように、増圧のときに増圧ピストン41が移動する方向(第1方向の一例)は、第1実施形態とは逆に、プランジャ21及び射出ピストン37にとっての後方であってもよい。 As shown in FIG. 12(d), the injection cylinder 27D has a first cylinder member 35p that houses the injection piston 37 and a second cylinder member 35q that houses the pressure boosting piston 41, which are separated from each other. The head-side chamber 35h behind the injection piston 37 and the pressurizing chamber 35b in front of the boosting piston 41 may be communicated with each other through 35c. In this case, the position and orientation of the second cylinder member 35q with respect to the first cylinder member 35p are arbitrary. Furthermore, the position and orientation of the electric drive unit that drives the pressure intensifying piston 41 are also arbitrary. For example, the second cylinder member 35q may be arranged in parallel with the first cylinder member 35p (example shown), or may be arranged so as to intersect. As can be understood from the illustrated example, the direction in which the pressure-increasing piston 41 moves during pressure increase (an example of the first direction) is the rearward direction for the plunger 21 and the injection piston 37, contrary to the first embodiment. may be
(電動式の駆動装置に係る変形例)
 電動機31(第1電動機31A及び/又は第2電動機31B)の回転を直線運動に変換する機構は、ねじ機構に限定されない。例えば、図12(b)に示すように、変換機構68Cは、ラックアンドピニオン機構であってもよい。また、特に図示しないが、変換機構は、リンク機構であってもよい。また、電動式の駆動装置(第1駆動装置29A又は第2駆動装置29B)は、回転を伝達する伝達機構(第1伝達機構67A及び/又は第2伝達機構67B)を有していなくてもよいし、他の形式の伝達機構を有していてもよい。他の形式の伝達機構としては、例えば、歯車機構を挙げることができる。
(Modification of electric driving device)
The mechanism that converts the rotation of the electric motor 31 (the first electric motor 31A and/or the second electric motor 31B) into linear motion is not limited to the screw mechanism. For example, as shown in FIG. 12(b), the conversion mechanism 68C may be a rack and pinion mechanism. Also, although not shown, the conversion mechanism may be a link mechanism. Further, even if the electric driving device (first driving device 29A or second driving device 29B) does not have a transmission mechanism (first transmission mechanism 67A and/or second transmission mechanism 67B) that transmits rotation, or may have other types of transmission mechanisms. Other types of transmission mechanisms may include, for example, gear mechanisms.
 電動機(第1電動機31A及び/又は第2電動機31B)は、リニアモータであってもよい。図12(c)では、増圧ピストン41を駆動する電動機31Cがリニアモータとされている。電動機31Cは、例えば、増圧ピストン41に固定されており、磁石及びコイルの一方からなる可動子31aと、射出装置9の不動部分(例えばフレーム45)に固定されており、磁石及びコイルの他方からなる固定子31bとを有している。 The electric motors (first electric motor 31A and/or second electric motor 31B) may be linear motors. In FIG. 12(c), the electric motor 31C that drives the pressure boosting piston 41 is a linear motor. The electric motor 31C is fixed, for example, to the boosting piston 41, is fixed to the mover 31a made up of one of a magnet and a coil, and to a stationary portion (for example, a frame 45) of the injection device 9, and is fixed to the other of the magnet and the coil. It has a stator 31b consisting of.
 本発明は、以上の実施形態及び変形例に限定されず、種々の態様で実施されてよい。 The present invention is not limited to the above embodiments and modifications, and may be implemented in various aspects.
 成形機は、ダイカストマシンに限定されない。例えば、成形機は、他の金属成形機であってもよいし、射出成形機であってもよいし、木粉に熱可塑性樹脂等を混合させた材料を成形する成形機であってもよい。また、成形機は、横型締横射出に限定されず、例えば、縦型締縦射出、縦型締横射出、横型締縦射出であってもよい。プランジャはスクリューの形状であってもよい。ダイカストマシンは、コールドチャンバマシンに限定されず、例えば、ホットチャンバマシンであってもよい。作動液は、油に限定されず、例えば水でもよい。 The molding machine is not limited to a die casting machine. For example, the molding machine may be another metal molding machine, an injection molding machine, or a molding machine that molds a material obtained by mixing wood flour with a thermoplastic resin or the like. . Further, the molding machine is not limited to horizontal clamping and horizontal injection, and may be, for example, vertical clamping and vertical injection, vertical clamping and horizontal injection, or horizontal clamping and vertical injection. The plunger may be in the form of a screw. Die casting machines are not limited to cold chamber machines, and may be hot chamber machines, for example. The hydraulic fluid is not limited to oil, and may be water, for example.
 実施形態では、射出ピストン(プランジャ)の後退及びアキュムレータの充填を電動機によって行う射出装置を例示した。ただし、射出ピストン(プランジャ)の後退及び/又はアキュムレータの充填は、電動機ではなく、ポンプからの作動液の供給によって行われてもよい。また、実施形態では、射出ピストンの前進(別の観点では狭義の射出)は、射出ピストンの後方への作動液の供給のみによって行われた。ただし、狭義の射出の少なくとも一部又は全部が電動機によって行われてもよい。 In the embodiment, an injection device is illustrated in which the injection piston (plunger) is retracted and the accumulator is charged by an electric motor. However, retraction of the injection piston (plunger) and/or filling of the accumulator may be effected by a supply of hydraulic fluid from a pump instead of the electric motor. Also, in the embodiment, the advance of the injection piston (injection in a narrow sense from another point of view) was performed only by supplying hydraulic fluid to the rear of the injection piston. However, at least part or all of injection in a narrow sense may be performed by an electric motor.
 実施形態で述べたように、図9に示した液圧装置(液圧回路)は一例に過ぎず、適宜に変形されてよい。 As described in the embodiment, the hydraulic device (hydraulic circuit) shown in FIG. 9 is merely an example, and may be modified as appropriate.
 例えば、メータイン回路に代えて、又は加えて、メータアウト回路が設けられてよい。すなわち、ロッド側室35rから排出される作動液の流量を制御する流量制御弁が設けられ、当該流量制御弁によって射出速度及び/又は射出圧力が制御されてもよい。 For example, a meter-out circuit may be provided instead of or in addition to the meter-in circuit. That is, a flow rate control valve may be provided to control the flow rate of the hydraulic fluid discharged from the rod side chamber 35r, and the injection speed and/or the injection pressure may be controlled by the flow rate control valve.
 また、例えば、ロッド側室35rから排出される作動液をヘッド側室35hへ供給するランアラウンド回路が設けられてもよい。ランアラウンド回路は、メータイン回路及び/又はメータアウト回路と組み合わされてよい。ランアラウンド回路は、メータアウト回路と組み合わされるとき、メータアウト回路の流量制御弁よりもロッド側室35rの側の位置とヘッド側室35hとを接続していてもよいし、メータアウト回路の流量制御弁よりもタンクの側の位置とヘッド側室35hとを接続していてもよい。 Further, for example, a run-around circuit may be provided to supply the hydraulic fluid discharged from the rod-side chamber 35r to the head-side chamber 35h. A run-around circuit may be combined with a meter-in circuit and/or a meter-out circuit. When the run-around circuit is combined with the meter-out circuit, the position on the rod-side chamber 35r side of the flow control valve of the meter-out circuit may be connected to the head-side chamber 35h. A position on the side of the tank may be connected to the head-side chamber 35h.
 実施形態では、ヘッド側室35hへ作動液を供給するアキュムレータと、後側室35aに作動液を供給するアキュムレータとは同一のアキュムレータとされた。実施形態とは異なり、ヘッド側室35hへ作動液を供給するアキュムレータと、後側室35aに作動液を供給するアキュムレータとは、別個のアキュムレータとされてもよい。 In the embodiment, the accumulator that supplies the working fluid to the head-side chamber 35h and the accumulator that supplies the working fluid to the rear-side chamber 35a are the same accumulator. Unlike the embodiment, the accumulator that supplies the working fluid to the head-side chamber 35h and the accumulator that supplies the working fluid to the rear-side chamber 35a may be separate accumulators.
 実施形態の説明では、便宜上、図に例示された弁の種類の名称(チェック弁、切換弁)によって各弁に命名した。ただし、各弁は、呼称に用いられた種類以外の弁とされてもよい。 In the description of the embodiment, for convenience, each valve is named by the name of the type of valve (check valve, switching valve) illustrated in the figure. However, each valve may be a valve other than the type used in the designation.
 実施形態では、各種の弁のパイロット圧力は、アキュムレータから供給された。ただし、パイロット圧力は、ポンプから供給されてもよいし、プランジャを駆動するためのアキュムレータとは別個のアキュムレータから供給されてもよい。 In the embodiment, pilot pressure for various valves was supplied from an accumulator. However, the pilot pressure may be supplied from a pump or from an accumulator separate from the accumulator for driving the plunger.
 ロッド側室に作動液が満たされる態様において、ピストンが後退するときのロッド側室への作動液の補給は、プランジャを駆動するためのアキュムレータとは別のアキュムレータからなされてもよい。この補給用のアキュムレータは、プランジャを駆動するためのアキュムレータよりも低圧とされてよい。 In the mode in which the rod-side chamber is filled with hydraulic fluid, the rod-side chamber may be replenished with hydraulic fluid when the piston moves back from an accumulator separate from the accumulator for driving the plunger. This replenishment accumulator may be at a lower pressure than the accumulator for driving the plunger.
 実施形態では、増圧ピストン41が設けられている一方で、ヘッド側室へ作動液を供給することによる増圧も行われた。ただし、このヘッド側室へ作動液を供給することによる増圧は行われなくてもよい。すなわち、ヘッド側室へ作動液を供給しているときは、速度制御のみが行われてもよい。 In the embodiment, while the pressure-increasing piston 41 is provided, the pressure is also increased by supplying hydraulic fluid to the head-side chamber. However, it is not necessary to increase the pressure by supplying hydraulic fluid to the head-side chamber. That is, only speed control may be performed while the hydraulic fluid is being supplied to the head-side chamber.
 1…ダイカストマシン(成形機)、5…制御装置、9…射出装置、19…スリーブ、21…プランジャ、27…射出シリンダ、31B…第2電動機(電動機)、41…増圧ピストン(ピストン)、43…液圧装置、101…金型(型)、107…(型の)キャビティ。 DESCRIPTION OF SYMBOLS 1... Die casting machine (molding machine), 5... Control device, 9... Injection device, 19... Sleeve, 21... Plunger, 27... Injection cylinder, 31B... Second electric motor (electric motor), 41... Booster piston (piston), 43...Hydraulic device, 101...Mold (mold), 107...Cavity (of the mold).

Claims (9)

  1.  型内に成形材料を押し出すプランジャに連結される射出シリンダであって、第1方向及びその反対方向の第2方向に移動可能なピストンを有している射出シリンダと、
     前記射出シリンダに作動液を供給する液圧装置と、
     前記ピストンに連結される電動機と、
     作動液による前記第1方向への第1の力と、前記第1の力よりも小さい、前記電動機による前記第2方向への第2の力とを前記ピストンに同時に付与し、これにより前記ピストンを前記第1方向へ移動させるように前記液圧装置及び前記電動機を制御する制御装置と、
     を有している射出装置。
    an injection cylinder connected to a plunger for pushing molding material into the mold, the injection cylinder having a piston movable in a first direction and in an opposite second direction;
    a hydraulic device that supplies hydraulic fluid to the injection cylinder;
    an electric motor coupled to the piston;
    Simultaneously applying a first force in said first direction by hydraulic fluid and a second force in said second direction by said electric motor, which is less than said first force, to said piston, whereby said piston a control device for controlling the hydraulic device and the electric motor to move in the first direction;
    an injection device having a
  2.  前記射出シリンダは、前記ピストンの前記第1方向への移動によって前記型内に前記成形材料を押し出す方向へ前記プランジャが前進するように前記プランジャに連結されている
     請求項1に記載の射出装置。
    2. The injection device according to claim 1, wherein the injection cylinder is connected to the plunger such that movement of the piston in the first direction advances the plunger in a direction to push the molding material into the mold.
  3.  前記射出シリンダは、
      前記プランジャの後方部分に連結されている射出ピストンと、
      前記射出ピストンの後方の作動液を加圧可能な、前記ピストンとしての増圧ピストンと、を有している
     請求項2に記載の射出装置。
    The injection cylinder is
    an injection piston coupled to the rearward portion of the plunger;
    3. The injection device according to claim 2, further comprising a booster piston as said piston capable of pressurizing hydraulic fluid behind said injection piston.
  4.  前記制御装置は、作動液による前記第1方向への前記第1の力と、前記第1の力よりも小さい、前記電動機による前記第2方向への前記第2の力とを前記ピストンに同時に付与し、これにより増圧を行うように前記液圧装置及び前記電動機を制御する
     請求項2又は3に記載の射出装置。
    The controller simultaneously applies the first force in the first direction by hydraulic fluid and the second force in the second direction by the electric motor, which is less than the first force, to the piston. 4. The injection device according to claim 2 or 3, wherein the hydraulic device and the electric motor are controlled to apply pressure and thereby increase the pressure.
  5.  前記制御装置は、前記増圧が行われているときに前記第2の力が時間経過に伴って変化するように前記電動機を制御する
     請求項4に記載の射出装置。
    5. The injection apparatus according to claim 4, wherein the control device controls the electric motor such that the second force changes with time while the pressure is being increased.
  6.  前記制御装置は、作動液による前記第1方向への前記第1の力を前記ピストンに付与する一方で、前記電動機を、駆動力を生じない状態とし、これにより保圧を行うように、前記液圧装置及び前記電動機を制御する
     請求項4又は5に記載の射出装置。
    The control device applies the first force in the first direction by the hydraulic fluid to the piston, while setting the electric motor to a state in which no driving force is generated, thereby performing holding pressure. 6. The injection device according to claim 4 or 5, which controls a hydraulic device and the electric motor.
  7.  前記液圧装置は、アキュムレータを有しており、
     前記制御装置は、前記アキュムレータの液圧を前記ピストンの後方に付与し、これにより前記保圧を行うように前記液圧装置を制御する
     請求項6に記載の射出装置。
    The hydraulic device has an accumulator,
    7. The injection device according to claim 6, wherein the control device controls the hydraulic device to apply the hydraulic pressure of the accumulator to the rear of the piston, thereby performing the holding pressure.
  8.  前記制御装置は、
      作動液による前記第1方向への前記第1の力と、前記第1の力よりも大きい、前記電動機による前記第2方向への第3の力とを前記ピストンに同時に付与し、これにより、前記ピストンを前記第2方向の駆動限に停止させた停止状態とし、
      前記第3の力を小さくしていくことによって、前記電動機による前記第2方向への力を前記第1の力よりも小さい前記第2の力とし、これにより、前記ピストンの前記第1方向への移動を開始する、ように前記液圧装置及び前記電動機を制御する
     請求項1~7のいずれか1項に記載の射出装置。
    The control device is
    simultaneously applying to the piston the first force in the first direction by hydraulic fluid and a third force in the second direction by the electric motor that is greater than the first force, thereby a stop state in which the piston is stopped at the drive limit in the second direction;
    By decreasing the third force, the force in the second direction by the electric motor is the second force smaller than the first force, thereby causing the piston to move in the first direction. 8. The injection device according to any one of claims 1 to 7, wherein the hydraulic device and the electric motor are controlled so as to initiate movement of the .
  9.  請求項1~8のいずれか1項に記載の射出装置と、
     前記型を保持する型締装置と、
     を有している成形機。
    an injection device according to any one of claims 1 to 8;
    a mold clamping device that holds the mold;
    A molding machine having a
PCT/JP2022/022600 2021-06-08 2022-06-03 Injection apparatus and molding machine WO2022259972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021095686A JP2022187608A (en) 2021-06-08 2021-06-08 Injector and molding machine
JP2021-095686 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022259972A1 true WO2022259972A1 (en) 2022-12-15

Family

ID=84425976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022600 WO2022259972A1 (en) 2021-06-08 2022-06-03 Injection apparatus and molding machine

Country Status (2)

Country Link
JP (1) JP2022187608A (en)
WO (1) WO2022259972A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315050A (en) * 2005-05-13 2006-11-24 Toyo Mach & Metal Co Ltd Die casting machine
JP2018069287A (en) * 2016-10-28 2018-05-10 東芝機械株式会社 Injection device and molding machine
JP2018149550A (en) * 2017-03-10 2018-09-27 東芝機械株式会社 Injection device and molding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315050A (en) * 2005-05-13 2006-11-24 Toyo Mach & Metal Co Ltd Die casting machine
JP2018069287A (en) * 2016-10-28 2018-05-10 東芝機械株式会社 Injection device and molding machine
JP2018149550A (en) * 2017-03-10 2018-09-27 東芝機械株式会社 Injection device and molding machine

Also Published As

Publication number Publication date
JP2022187608A (en) 2022-12-20

Similar Documents

Publication Publication Date Title
US20090242161A1 (en) Injection device for die casting machine
JP6457750B2 (en) Molding equipment
US20060255095A1 (en) Diecasting machine
WO2020179209A1 (en) Injection device and molding apparatus
JP6764276B2 (en) Injection device and molding machine
JP2015163411A (en) Injection device, and molding apparatus
JP2022076973A (en) Injector and cast machine
WO2022259972A1 (en) Injection apparatus and molding machine
JP7057707B2 (en) Injection device and molding machine
JP2013018011A (en) Injection apparatus of molding machine
JP6784569B2 (en) Injection device and molding machine
JP6860382B2 (en) Injection device and molding machine
JP6764272B2 (en) Injection device and molding machine
CN114555261B (en) Hybrid core driving device and forming machine
WO2022102597A1 (en) Injection device and molding apparatus
JP4782250B1 (en) Injection machine for molding machine
JP7301192B2 (en) Injection device and molding machine
JP7194157B2 (en) Extruder and molding machine
JP7194156B2 (en) Extruder and molding machine
WO2022097713A1 (en) Molding machine
JP2018024010A (en) Injection device and molding machine
JP5491270B2 (en) Injection machine for molding machine
JP2018030135A (en) Injection device and molding device
JP5623781B2 (en) Injection machine for molding machine and molding machine
JP2023073534A (en) Injection device of die cast machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820153

Country of ref document: EP

Kind code of ref document: A1