WO2022259394A1 - Motor, fan, ventilator, and air conditioner - Google Patents
Motor, fan, ventilator, and air conditioner Download PDFInfo
- Publication number
- WO2022259394A1 WO2022259394A1 PCT/JP2021/021838 JP2021021838W WO2022259394A1 WO 2022259394 A1 WO2022259394 A1 WO 2022259394A1 JP 2021021838 W JP2021021838 W JP 2021021838W WO 2022259394 A1 WO2022259394 A1 WO 2022259394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- housing
- motor
- bearing
- conductive member
- Prior art date
Links
- 238000003780 insertion Methods 0.000 claims description 6
- 230000037431 insertion Effects 0.000 claims description 6
- 210000003746 feather Anatomy 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000012212 insulator Substances 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 239000004412 Bulk moulding compound Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000009499 grossing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000036316 preload Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- -1 polybutylene terephthalate Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/08—Insulating casings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/16—Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
Definitions
- the present disclosure relates to motors, fans, ventilation fans, and air conditioners.
- a motor has been proposed that has a housing in which a pair of bearings that rotatably support the shaft of the rotor are arranged (see, for example, Patent Document 1).
- the first bearing is electrically connected to the housing and the second of the pair of bearings is fixed.
- a second bearing is electrically connected to the shaft if the shaft on which it is mounted is electrically conductive.
- the voltage between the inner ring and the outer ring of each bearing increases, and the current flowing through the bearing increases.
- electrolytic corrosion occurs in the bearings, increasing vibration and noise in the motor.
- the purpose of the present disclosure is to reduce the current flowing through the bearing.
- the motor of the present disclosure is a stator; a rotor disposed inside the stator and having an electrically conductive shaft and first and second bearings rotatably supporting the electrically conductive shaft; a first non-conductive member; a second non-conductive member disposed between the second bearing and the conductive shaft; a conductive housing having a first housing in which the first non-conductive member is arranged, a second housing in which the second bearing is arranged, and a conductive housing in which the stator and the rotor are arranged; prepared,
- the first bearing has a first conductive inner ring and a first conductive outer ring,
- the second bearing has a second conductive inner ring and a second conductive outer ring, the first electrically conductive outer ring is insulated from the first housing by the first non-conductive member; the first conductive inner ring is in contact with the conductive shaft; the second conductive inner ring is insulated from the conductive shaft by the second non-conductive member;
- the second conductive outer ring contacts
- a fan according to another aspect of the present disclosure includes: feathers and and the motor that rotates the blade.
- a ventilation fan according to another aspect of the present disclosure includes: feathers and and the motor that rotates the blade.
- An air conditioner according to another aspect of the present disclosure includes indoor unit and and an outdoor unit connected to the indoor unit, Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the motor.
- the current flowing through the bearing can be reduced.
- FIG. 1 is a cross-sectional view schematically showing a motor according to Embodiment 1; FIG. It is a perspective view which shows a stator roughly. It is a circuit diagram which shows an example of an electric circuit.
- 2 is a cross-sectional view showing the conductive housing shown in FIG. 1; FIG. It is a graph which shows the relationship between the maximum thickness [mm] in the radial direction of each of the first non-conductive member and the second non-conductive member and the capacitance [pF].
- It is a graph which shows the relationship with each of electrostatic capacitance.
- FIG. 6 is a diagram schematically showing a fan according to Embodiment 2;
- FIG. FIG. 11 is a diagram schematically showing a ventilation fan according to Embodiment 3;
- FIG. 10 is a diagram schematically showing the configuration of an air conditioner according to Embodiment 4;
- Embodiment 1 A motor 1 according to Embodiment 1 will be described below.
- the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of the motor 1
- the x-axis direction (x-axis) indicates a direction orthogonal to the z-axis direction.
- the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
- the axis A ⁇ b>1 is the center of rotation of the rotor 2 , that is, the rotation axis of the rotor 2 .
- the direction parallel to the axis A1 is also referred to as "the axial direction of the rotor 2" or simply “the axial direction”.
- the radial direction is the radial direction of the rotor 2, the stator 3, or the stator core 31, and is the direction perpendicular to the axis A1.
- the xy plane is a plane perpendicular to the axial direction.
- the circumferential direction of the rotor 2, stator 3, or stator core 31 is also simply referred to as "circumferential direction”.
- FIG. 1 is a sectional view schematically showing a motor 1 according to Embodiment 1.
- the motor 1 has a rotor 2 , a stator 3 , a first non-conductive member 4A, a second non-conductive member 4B, and a conductive housing 5 .
- Motor 1 is, for example, a permanent magnet synchronous motor.
- the motor 1 may further have an electric circuit 6 and a connector 7.
- the stator 3 has a stator core 31, at least one insulator 32, at least one coil 33, and at least one conducting pin 34. Each coil 33 is wound around the insulator 32 .
- the stator 3 is press-fitted into the frame 5A of the conductive housing 5. As shown in FIG.
- FIG. 2 is a perspective view schematically showing the stator 3.
- FIG. 2 coils 33 are removed from stator 3 to show the structure of stator core 31 and insulator 32 .
- the stator core 31 has a yoke 31A extending in the circumferential direction and a plurality of teeth 31B.
- stator core 31 has twelve teeth 31B.
- Each tooth 31B extends radially from the yoke 31A.
- Stator core 31 is a cylindrical core.
- the stator core 31 is formed of a plurality of magnetic steel sheets laminated in the axial direction. In this case, each of the plurality of electromagnetic steel sheets is formed into a predetermined shape by punching. These electromagnetic steel sheets are fixed to each other by caulking, welding, adhesion, or the like.
- the coil 33 is a three-phase coil having U-phase, V-phase, and W-phase.
- Each insulator 32 is provided on the tooth 31B.
- Each insulator 32 is, for example, a thermoplastic resin such as polybutylene terephthalate (PBT).
- PBT polybutylene terephthalate
- Each insulator 32 electrically insulates the stator core 31 (specifically, each tooth 31B of the stator core 31).
- insulator 32 is molded integrally with stator core 31 .
- the insulator 32 may be molded in advance and the molded insulator 32 may be combined with the stator core 31 .
- Each conduction pin 34 is fixed to the insulator 32, for example.
- Each conducting pin 34 electrically connects the coil 33 and the electric circuit 6 .
- each conductive pin 34 electrically connects the coil 33 and the switching circuit 64 b of the inverter circuit 64 of the electric circuit 6 .
- FIG. 3 is a circuit diagram showing an example of the electric circuit 6. As shown in FIG. In the example shown in FIG. 3 , the electric circuit 6 has a fuse 61 , a filter circuit 62 , a power supply circuit 63 and an inverter circuit 64 . The electric circuit 6 is configured to be electrically connected to an AC power supply 60 .
- an alternating current for example, AC 100 V to AC 240 V
- the alternating current is supplied to the power supply circuit 63 through the fuse 61 and the filter circuit 62 .
- the alternating current is converted to direct current by the power supply circuit 63 .
- the filter circuit 62 has an X capacitor 62a, a common mode choke coil 62b, and Y capacitors 62c and 62d. With this configuration, the filter circuit 62 constitutes a noise filter.
- the power supply circuit 63 has a rectifier circuit 63a, a smoothing capacitor 63b, and a switching power supply 63c.
- the alternating current input through the filter circuit 62 is full-wave rectified by the rectifier circuit 63a having a diode bridge, and is thereby converted to direct current.
- the direct current is accumulated in the smoothing capacitor 63b.
- a direct current for example, DC140V or DC280V
- the switching power supply 63c uses the direct current generated in the smoothing capacitor 63b to generate the control power (for example, DC 15V) required by the drive circuit 64a.
- the inverter circuit 64 has a drive circuit 64a and a switching circuit 64b.
- the switching circuit 64b constitutes a three-phase bridge of U-phase, V-phase, and W-phase formed between the positive bus and the negative bus.
- the positive bus line is connected to the positive terminal of the smoothing capacitor 63b, and the negative bus line is connected to the negative terminal of the smoothing capacitor 63b.
- the three transistors on the positive bus line side are upper arm transistors.
- the three transistors on the negative bus line side are lower arm transistors.
- Each switching element is connected in antiparallel to a freewheeling diode.
- a connection terminal of each of the upper arm transistor and the lower arm transistor constitutes an output terminal and is connected to the U phase, V phase, or W phase of the coil 33 .
- the driving circuit 64a generates a PWM signal for turning on and off six switching elements of the switching circuit 64b.
- the motor 1 is driven by magnetic pole position sensorless driving without using a magnetic pole position sensor such as a Hall IC.
- the motor 1 has magnetic pole position estimation means for estimating the magnetic pole position of the rotor 2 .
- the magnetic pole position estimation means estimates the position of the rotor 2 from the current flowing through the coil 33 and the motor constant, and generates PWM signals for controlling the current supplied to each phase of the coil 33 . As a result, the rotor 2 rotates.
- the rotor 2 is rotatably arranged inside the stator 3 .
- An air gap exists between the rotor 2 and the stator 3 .
- the rotor 2 has a conductive shaft 21 , permanent magnets 22 , and first and second bearings 23 and 24 that rotatably support the conductive shaft 21 .
- the rotor 2 is rotatable around a rotation axis (that is, axis A1).
- the permanent magnet 22 is a plastic magnet.
- a plastic magnet is produced, for example, by molding a mixture of resin with raw materials for a permanent magnet.
- the permanent magnet 22 has N poles and S poles alternately arranged in the circumferential direction.
- the entire permanent magnet 22 may be a plastic magnet, or part of the permanent magnet 22 may be a plastic magnet.
- a part of the permanent magnet 22 is a plastic magnet, it is preferable that the outer peripheral surface of the permanent magnet 22 is formed of the plastic magnet.
- the outer peripheral surface of the permanent magnet 22 may be formed of a plastic magnet, and the inside of the plastic magnet may be filled with resin.
- the permanent magnet 22 is fixed to the conductive shaft 21.
- a permanent magnet 22 is positioned between a first bearing 23 and a second bearing 24 .
- Conductive shaft 21 is rotatably supported by first bearing 23 and second bearing 24 .
- the conductive shaft 21 is made of metal such as iron, for example.
- the first bearing 23 is located on the load side of the motor 1 with respect to the permanent magnet 22 .
- the first bearing 23 rotatably supports the load side of the conductive shaft 21 .
- the second bearing 24 is located on the anti-load side of the motor 1 with respect to the permanent magnet 22 .
- a second bearing 24 rotatably supports the non-load side of the conductive shaft 21 .
- the load side of the conductive shaft 21 protrudes outside the conductive housing 5 and the anti-load side of the conductive shaft 21 does not protrude outside the conductive housing 5 . Since the anti-load side of the conductive shaft 21 does not protrude outside the conductive housing 5, the second non-conductive member 4B can be easily provided at the end of the conductive shaft 21 on the anti-load side by integral molding. be able to.
- the anti-load side of the conductive shaft 21 does not protrude outside the conductive housing 5, but the anti-load side of the conductive shaft 21 may protrude outside the conductive housing 5.
- the outer diameter of the end portion of the conductive shaft 21 on the non-load side is smaller than the outer diameter of the other portion of the conductive shaft 21 .
- a second non-conductive member 4B covers the end of the conductive shaft 21 on the non-load side.
- the load side of the conductive shaft 21 is provided with vanes for generating airflow.
- the first bearing 23 has a first conductive inner ring 23A, a first conductive outer ring 23B, and two or more balls 23C. Two or more balls 23C are arranged between the first conductive inner ring 23A and the first conductive outer ring 23B. Each ball 23C is electrically conductive. Lubricant is applied to each ball 23C. The lubricant applied to each ball 23C is non-conductive.
- the first conductive inner ring 23A, the first conductive outer ring 23B, and each ball 23C are made of metal such as iron, for example.
- the first conductive inner ring 23A is fixed to the conductive shaft 21. That is, the first conductive inner ring 23A is in contact with the conductive shaft 21. As shown in FIG.
- the first conductive inner ring 23A is fixed to the conductive shaft 21 by, for example, press fitting or adhesive.
- a thin oil film layer is formed between the outer peripheral surface, which is the raceway surface of the first conductive inner ring 23A, and each ball 23C
- the first conductive A thin oil film layer is formed between the inner peripheral surface, which is the raceway surface of the outer ring 23B, and each ball 23C.
- the first conductive inner ring 23A and the first conductive outer ring 23B are electrically isolated from each ball 23C.
- the first bearing 23 (specifically, the first conductive outer ring 23B) is fixed to the first non-conductive member 4A by, for example, press fitting or adhesive.
- the first bearing 23 (specifically, the first conductive outer ring 23B) may be arranged on the first non-conductive member 4A with a clearance fit.
- the second bearing 24 has a second conductive inner ring 24A, a second conductive outer ring 24B, and two or more balls 24C. Two or more balls 24C are positioned between second conductive inner ring 24A and second conductive outer ring 24B. Each ball 24C is electrically conductive. Lubricant is applied to each ball 24C. The lubricant applied to each ball 24C is non-conductive.
- the second conductive inner ring 24A, the second conductive outer ring 24B, and each ball 24C are made of metal such as iron, for example.
- the second conductive inner ring 24A is fixed to the second non-conductive member 4B by, for example, press fitting or adhesive.
- a thin oil film layer is formed between the outer peripheral surface, which is the raceway surface of the second conductive inner ring 24A, and each ball 24C. is formed, and a thin oil film layer is formed between the inner peripheral surface, which is the raceway surface of the second conductive outer ring 24B, and each ball 24C.
- the second conductive inner ring 24A and the second conductive outer ring 24B are electrically isolated from each ball 24C.
- the outer diameter of the second bearing 24 (specifically, the second conductive outer ring 24B) and the inner diameter of the second housing 52 of the bracket 5B are substantially equal.
- the second bearing 24 (specifically, the second conductive outer ring 24B) is fixed to the conductive housing 5 (specifically, the second housing 52 of the bracket 5B) by, for example, press fitting or adhesive. It is Even if the second bearing 24 (specifically, the second conductive outer ring 24B) is arranged in the conductive housing 5 (specifically, the second housing 52 of the bracket 5B) with a clearance fit, good.
- the thickness of the oil film layer is, for example, 1 ⁇ m or less, but the thickness of the oil film layer changes depending on several factors such as the rotational speed of the rotor 2 and the temperature inside the motor 1 .
- a preload spring is provided between the second bearing 24 and the bracket 5B (specifically, the second housing 52) to apply preload to the second bearing 24 in the axial direction. Since the preload in the axial direction is applied to the first bearing 23 and the second bearing 24 by the preload spring, rattling of the balls 23C and 24C during the rotation of the rotor 2 can be prevented.
- the size of the first bearing 23 is equal to the size of the second bearing 24. Therefore, the outer diameter (ie, diameter) of first conductive outer ring 23B is equal to the outer diameter (ie, diameter) of second conductive outer ring 24B.
- Each of the first bearing 23 and the second bearing 24 is, for example, a 608-type deep groove ball bearing having an outer diameter of 22 mm, an inner diameter of 8 mm, and a width of 7 mm.
- the size of the first bearing 23 is equal to the size of the second bearing 24 in this embodiment, the size of the first bearing 23 may be different from the size of the second bearing 24 .
- FIG. 4 is a cross-sectional view showing the conductive housing 5 shown in FIG.
- the conductive housing 5 has a frame 5A in which the stator 3 and the rotor 2 are arranged, and a bracket 5B that covers the inside of the frame 5A. That is, the stator 3 and the rotor 2 are arranged in a conductive housing 5 (specifically, a frame 5A in FIG. 4).
- the conductive housing 5 is made of metal such as iron, for example.
- the frame 5A is a conductive frame.
- the frame 5A is made of metal such as iron, for example.
- the frame 5A is, for example, a cup-shaped frame.
- the frame 5A has a first housing 51 in which the first non-conductive member 4A is arranged.
- the first housing 51 is part of the frame 5A and is provided at the bottom of the frame 5A. In the example shown in FIG. 4, the first housing 51 is a portion of the bottom of the frame 5A that protrudes in the axial direction and the direction orthogonal to the axial direction in the xy plane.
- the first housing 51 has a through hole 51A, and the conductive shaft 21 protrudes out of the frame 5A through the through hole 51A.
- the maximum inner diameter r1 of the first housing 51 may be larger than the outer diameter of the first bearing 23 (specifically, the first conductive outer ring 23B).
- the maximum width w1 of the through hole 51A of the first housing 51 in the direction orthogonal to the axial direction is larger than the outer diameter of the first bearing 23 (specifically, the first conductive outer ring 23B). big.
- First conductive outer ring 23B of first bearing 23 is not electrically connected to first housing 51 .
- the bracket 5B is a conductive bracket.
- the bracket 5B is made of metal such as iron, for example.
- Bracket 5B has a second housing 52 in which second bearing 24 is arranged. A portion of the bracket 5B other than the second housing 52 is, for example, a flat plate.
- the second housing 52 is a part of the bracket 5B, and is a part of the bracket 5B that protrudes axially from the flat plate. In the example shown in FIG. 1, the second conductive outer ring 24B of the second bearing 24 contacts the second housing 52. In the example shown in FIG.
- the maximum inner diameter r1 of the first housing 51 is larger than the maximum inner diameter r2 of the second housing 52.
- the conductive housing 5 may further have a circuit cover 5C.
- Circuit cover 5C is a conductive cover.
- the circuit cover 5C is made of metal such as iron, for example.
- the circuit cover 5C covers the electric circuit 6.
- the circuit cover 5C covers the electric circuit 6 together with the bracket 5B.
- the electric circuit 6 is arranged inside the conductive housing 5 in the present embodiment, part or all of the electric circuit 6 may be arranged outside the conductive housing 5 .
- a circuit case 5D for fixing the electric circuit 6 may be arranged inside the circuit cover 5C.
- the circuit case 5D is arranged inside the circuit cover 5C.
- Circuit case 5D is fixed to bracket 5B, for example.
- Circuit case 5D is a non-conductive case.
- the circuit case 5D is made of non-conductive resin, for example. For example, by press molding, a recess in which the electric circuit 6 is arranged is formed in the circuit case 5D.
- Each of the frame 5A, bracket 5B, and circuit cover 5C has a flange 53 forming an outer peripheral edge.
- the frame 5A, the bracket 5B, and the flanges 53 of the circuit cover 5C are fixed to each other with screws, for example. Therefore, the frame 5A, bracket 5B, and circuit cover 5C are mechanically coupled and electrically connected to each other. That is, in the example shown in FIG. 1, the conductive housing 5 is partitioned by the bracket 5B into a motor housing portion 54 in which the rotor 2 and the stator 3 are arranged, and a circuit housing portion 55 in which the electric circuit 6 is arranged. It is, in the example shown in FIG. 1, the conductive housing 5 is partitioned by the bracket 5B into a motor housing portion 54 in which the rotor 2 and the stator 3 are arranged, and a circuit housing portion 55 in which the electric circuit 6 is arranged. It is
- connector 7 is fixed to circuit cover 5C.
- the connector 7 has, for example, wiring and a non-conductive cover covering the wiring.
- the wiring of the connector 7 is connected to the electric circuit 6 .
- the first non-conductive member 4A is provided on the load side of the motor 1 with respect to the permanent magnet 22.
- the first non-conductive member 4A is, for example, non-conductive resin.
- the first non-conductive member 4A is fixed to the conductive housing 5 (specifically, the first housing 51 of the frame 5A) by, for example, press fitting or adhesive.
- the first non-conductive member 4A may be arranged in the conductive housing 5 (specifically, the first housing 51 of the frame 5A) with a clearance fit.
- the shape of the first non-conductive member 4A is cylindrical.
- the shape of the first non-conductive member 4A in the xy plane is, for example, an annular shape.
- the shape of the first non-conductive member 4A is a hollow cylindrical shape, and the first non-conductive member 4A has a through hole. Therefore, the first bearing 23 is arranged inside the first non-conductive member 4A. Therefore, the conductive shaft 21 passes through the first non-conductive member 4A.
- first non-conductive member 4A exists between the first conductive outer ring 23B of the first bearing 23 and the first housing 51, the first conductive outer ring of the first bearing 23 23B is electrically insulated from first housing 51 by first non-conductive member 4A.
- the maximum thickness t1 of the first non-conductive member 4A in the radial direction is the distance from the axis A1 to the outer peripheral surface of the first non-conductive member 4A and the inner peripheral surface of the first non-conductive member 4A from the axis A1. is the maximum difference from the distance to In other words, the maximum thickness t1 of the first non-conductive member 4A in the radial direction is the maximum thickness in the radial direction.
- the second non-conductive member 4B is provided on the non-load side of the motor 1 with respect to the permanent magnet 22.
- the second non-conductive member 4B is, for example, non-conductive resin.
- the second non-conductive member 4B is fixed to the conductive shaft 21 by, for example, press fitting or adhesive.
- the second non-conductive member 4B is molded in advance from a non-conductive resin, and the molded second non-conductive member 4B is fixed to the conductive shaft 21.
- the second non-conductive member 4B may be integrally formed with the conductive shaft 21 .
- the shape of the second non-conductive member 4B is, for example, a cylindrical shape including a bottom.
- the shape of the second non-conductive member 4B in the xy plane is, for example, an annular shape. In this case, one end of the conductive shaft 21 is inserted inside the second non-conductive member 4B and axially supported by the bottom of the second non-conductive member 4B.
- the second non-conductive member 4B is arranged between the second bearing 24 and the conductive shaft 21. Specifically, the second non-conductive member 4B is arranged between the second conductive inner ring 24A of the second bearing 24 and the conductive shaft 21 . Since the second non-conductive member 4B exists between the second conductive inner ring 24A of the second bearing 24 and the conductive shaft 21, the second conductive inner ring 24A of the second bearing 24 is electrically insulated from the conductive shaft 21 by a second non-conductive member 4B.
- the maximum thickness t2 of the second non-conductive member 4B in the radial direction is the distance from the axis A1 to the outer peripheral surface of the second non-conductive member 4B and the inner peripheral surface of the second non-conductive member 4B from the axis A1. is the maximum difference from the distance to In other words, the maximum thickness t2 of the second non-conductive member 4B in the radial direction is the maximum thickness in the radial direction.
- the maximum thickness t1 of the first non-conductive member 4A in the radial direction is greater than the maximum thickness t2 of the second non-conductive member 4B in the radial direction.
- first non-conductive member 4A and the second non-conductive member 4B As the material of the first non-conductive member 4A and the second non-conductive member 4B, it is preferable to use a resin having approximately the same coefficient of linear expansion as iron.
- Materials for forming the first non-conductive member 4A and the second non-conductive member 4B include, for example, bulk molding compound resin (BMC resin) as a thermosetting resin.
- BMC resin bulk molding compound resin
- Bulk molding compound resins are thermosetting resins in which various additives are added to unsaturated polyester resins.
- the bulk molding compound resin has, for example, the following characteristics.
- a bulk molding compound resin is used as a material for forming the first non-conductive member 4A and the second non-conductive member 4B. material may be used.
- the motor 1 may be, for example, an embedded permanent magnet motor (IPM motor).
- the rotor 2 has a rotor core with at least one magnet insertion hole, and a permanent magnet is arranged in each magnet insertion hole.
- the rotor core is composed of, for example, a plurality of magnetic steel sheets laminated in the axial direction.
- the first conductive outer ring 23B is insulated from the conductive housing 5 (specifically, the first housing 51) by the first non-conductive member 4A.
- the current flowing through the first bearing 23 can be reduced.
- the second conductive inner ring 24A is insulated from the conductive shaft 21 by the second non-conductive member 4B, so the current flowing through the second bearing 24 can be reduced. can. Therefore, according to the present embodiment, the occurrence of electrolytic corrosion in the first bearing 23 and the second bearing 24 can be prevented, and vibration and noise in the motor 1 can be reduced. As a result, the performance of the motor 1 can be maintained over a long period of time.
- the first conductive outer ring 23B is connected to the first non-conductive shaft. It can be easily insulated from the conductive housing 5 (specifically, the first housing 51) by the conductive member 4A.
- the first bearing 23 can be easily insulated from the conductive housing 5.
- the second bearing 24 can be easily insulated from the conductive shaft 21 .
- the current flowing through the first bearing 23 and the second bearing 24 can be reduced.
- the capacitance between the first conductive outer ring 23B of the first bearing 23 and the first housing 51 is defined as "first capacitance”
- the second conductive inner ring 24A of the second bearing 24 and the conductive shaft 21 is defined as a "second capacitance”.
- the voltage generated between the first conductive inner ring 23A and the first conductive outer ring 23B of the first bearing 23 during rotation of the rotor 2 is defined as "first bearing voltage”
- the first bearing voltage and the second can reduce the difference between the bearing voltage of As a result, the difference in service life between the first bearing 23 and the second bearing 24 due to electrolytic corrosion can be reduced, and the performance of the motor 1 can be maintained over a long period of time.
- the first capacitance is preferably equal to the second capacitance.
- the difference between the first bearing voltage and the second bearing voltage can be effectively reduced.
- the difference in service life between the first bearing 23 and the second bearing 24 due to electrolytic corrosion can be effectively reduced.
- FIG. 5 is a graph showing the relationship between the maximum thickness [mm] in the radial direction and the capacitance [pF] of each of the first non-conductive member 4A and the second non-conductive member 4B.
- each of the first capacitance and the second capacitance is also simply referred to as "capacitance". As shown in FIG. 5, the capacitance increases sharply as the maximum thickness in the radial direction decreases.
- the first capacitance and the second capacitance are preferably 7 pF or less in order to reduce the first bearing voltage and the second bearing voltage. Therefore, as shown in FIG. 5, the first non-conductive member 4A preferably has a maximum radial thickness t1 of 1.6 mm or more. When the maximum thickness t1 of the first non-conductive member 4A in the radial direction is 1.6 mm or more, the first capacitance of the first non-conductive member 4A can be 7 pF or less. As a result, the first bearing voltage can be reduced, and the current flowing through the first bearing 23 can be reduced.
- the second non-conductive member 4B preferably has a maximum radial thickness t2 of 0.5 mm or more.
- the maximum thickness t2 of the second non-conductive member 4B in the radial direction is 0.5 mm or more
- the second capacitance of the second non-conductive member 4B can be 7 pF or less. As a result, the second bearing voltage can be reduced, and the current flowing through the second bearing 24 can be reduced.
- the first bearing voltage and the second bearing voltage can be reduced, and the first bearing 23 and The current flowing through the second bearing 24 can be reduced.
- the capacitance is preferably 1 pF or more. Therefore, as shown in FIG. 5, the first non-conductive member 4A preferably has a maximum radial thickness t1 of 16 mm or less. When the maximum thickness t1 of the first non-conductive member 4A in the radial direction is 16 mm or less, manufacturing costs can be reduced while maintaining the first capacitance at 1 pF or more. As shown in FIG. 5, the second non-conductive member 4B preferably has a maximum radial thickness t2 of 2.4 mm or less. When the maximum thickness t2 of the second non-conductive member 4B in the radial direction is 2.4 mm or less, manufacturing costs can be reduced while maintaining the second capacitance at 1 pF or more.
- the maximum thickness t1 of the first non-conductive member 4A preferably satisfies 1.6mm ⁇ t1 ⁇ 16mm. With this configuration, it is possible to suppress the first bearing voltage while suppressing manufacturing costs. As a result, the current flowing through the first bearing 23 can be reduced.
- a maximum thickness t2 of the second non-conductive member 4B preferably satisfies 0.5 mm ⁇ t1 ⁇ 2.4 mm. With this configuration, it is possible to suppress the second bearing voltage while suppressing the manufacturing cost. As a result, the current flowing through the second bearing 24 can be reduced.
- the relationship between the maximum thickness t1 and the maximum thickness t2 preferably satisfies 1.6 mm ⁇ t1 ⁇ 16 mm and 0.5 mm ⁇ t2 ⁇ 2.4 mm.
- the maximum thickness t1 and the maximum thickness t2 are adjusted so as to satisfy t1>t2. With this configuration, the current flowing through the first bearing 23 and the second bearing 24 can be reduced while suppressing the manufacturing cost.
- FIG. 6 is a graph showing the relationship between the first capacitance and the second capacitance with respect to the ratio t1/t2 when the first capacitance and the second capacitance are equal; be.
- each of the first capacitance and the second capacitance is also simply referred to as "capacitance”.
- the ratio t1/t2 is the ratio between the maximum thickness t1 of the first non-conductive member 4A in the radial direction and the maximum thickness t2 of the second non-conductive member 4B in the radial direction.
- the capacitance As shown in FIG. 6, when the ratio t1/t2 is 3.1 or more, the capacitance is 7 pF or less, and when the ratio t1/t2 is 6.7 or less, the capacitance is 1 pF or more. be. Therefore, when the first capacitance and the second capacitance are equal and the ratio t1/t2 satisfies 3.1 ⁇ (t1/t2) ⁇ 6.7, while suppressing the manufacturing cost, The current flowing through the first bearing 23 and the second bearing 24 can be reduced. As a result, the occurrence of electrolytic corrosion in the first bearing 23 and the second bearing 24 can be prevented while suppressing manufacturing costs.
- the first and the second capacitance can be reduced. As a result, the difference in service life between the first bearing 23 and the second bearing 24 due to electrolytic corrosion can be reduced.
- the first non-conductive member 4A is provided on the load side of the motor 1, and the second non-conductive member 4B is provided on the non-load side of the motor 1. Therefore, the first bearing 23 can be easily isolated from the conductive housing 5, the second bearing 24 can be easily isolated from the conductive shaft 21, and the productivity of the motor 1 can be improved. can.
- the conductive housing 5 has a cup-shaped frame 5A and a bracket 5B that covers the inside of the cup-shaped frame 5A. In this case, even if the conductive housing 5 is a metal housing, electrolytic corrosion of the first bearing 23 and the second bearing 24 can be prevented, and the mechanical strength of the motor 1 can be increased. can be done.
- the first non-conductive member 4A is formed of bulk molding compound resin, even if temperature changes occur in the motor 1, the occurrence of creep in the first non-conductive member 4A can be prevented. As a result, vibration of the first bearing 23 during rotation of the rotor 2 can be prevented.
- the second non-conductive member 4B is formed of bulk molding compound resin, even if temperature changes occur in the motor 1, the second non-conductive member 4B can be prevented from creeping. As a result, vibration of the second bearing 24 during rotation of the rotor 2 can be prevented.
- the motor 1 may be a permanent magnet embedded electric motor.
- the rotor 2 has a rotor core having at least one magnet insertion hole, and a permanent magnet is arranged in each magnet insertion hole. In this case, the loss in the motor 1 can be reduced, and the compact motor 1 with excellent resistance to electrolytic corrosion can be provided.
- FIG. 7 is a diagram schematically showing fan 9 according to the second embodiment.
- the fan 9 has blades 91 and a motor 1 .
- the fan 9 is also called a blower.
- the vanes 91 are made of, for example, polypropylene (PP) containing glass fiber.
- the blades 91 are, for example, sirocco fans, propeller fans, cross-flow fans, or turbo fans.
- the motor 1 is the motor 1 according to the first embodiment.
- Blade 91 is fixed to the shaft of motor 1 .
- a motor 1 drives the blades 91 .
- the motor 1 rotates the vane 91 .
- the blades 91 are rotated to generate an airflow. Thereby, the fan 9 can blow air.
- the fan 9 according to Embodiment 2 has the motor 1 according to Embodiment 1, the same advantages as those described in Embodiment 1 can be obtained. Furthermore, the performance of the fan 9 can be maintained for a long period of time.
- the fan 9 according to Embodiment 2 has the motor 1 according to Embodiment 1, vibration and noise in the fan 9 can be reduced.
- FIG. 8 is a diagram schematically showing the ventilation fan 8 according to Embodiment 3. As shown in FIG. The ventilation fan 8 has blades 81 and a motor 1 that rotates the blades 81 .
- the motor 1 is the motor 1 described in the first embodiment.
- a vane 81 is fixed to the load side of the electrically conductive shaft 21 of the motor 1 .
- the ventilation fan 8 can be used for a wide range of purposes such as residential use and business use. For example, it is used in residential living rooms, kitchens, bathrooms and toilets.
- the blades 81 and at least part of the motor 1 are covered with a fan body 82 .
- the conductive housing 5 of the motor 1 is fixed to the ventilation fan body 82 with screws 83 .
- the ventilation fan body 82 is provided with a power connection terminal block 84 and a ground connection terminal 85 .
- the connector 7 of the motor 1 is connected to the power connection terminal block 84.
- One end of the external connection terminals of the power supply connection terminal block 84 is connected to one end of the AC power supply line through a switch 86, and the other end of the external connection terminals of the power supply connection terminal block 84 is connected to the AC power supply. It is directly connected to the other end of our power line. That is, the power supply to the motor 1 is controlled by turning the switch 86 on and off. When the switch 86 is turned on, power is supplied to the motor 1, the vanes 81 fixed to the conductive shaft 21 of the motor 1 rotate, and the room is ventilated.
- the ventilation fan 8 Since the ventilation fan 8 has the motor 1 according to Embodiment 1, the same advantages as those described in Embodiment 1 can be obtained. As a result, the performance of the ventilation fan 8 can be maintained for a long period of time.
- the ventilation fan 8 has the motor 1 according to Embodiment 1, vibration and noise in the ventilation fan 8 can be reduced.
- the flange 53 of the conductive housing 5 is fixed to the ventilation fan body 82 of the ventilation fan 8 with screws 83 .
- the frame 5A of the motor 1 is arranged inside the ventilation fan body 82.
- the electric circuit 6 of the motor 1 is arranged outside the fan body 82 .
- a bracket 5B is arranged between the electric circuit 6 and the rotor 2 . Therefore, since the electric circuit 6 is isolated from the rotor 2 , the electric circuit 6 is less susceptible to temperature and humidity inside the ventilator body 82 . Therefore, stable performance of the ventilation fan 8 can be maintained for a long period of time. As a result, an increase in noise in the ventilation fan 8 due to electrolytic corrosion of the first bearing 23 and the second bearing 24 can be prevented, and a comfortable space can be provided for a long period of time.
- the conductive housing 5 of the motor 1 is a metal housing
- the strength of the motor 1 for holding the rotor 2 is improved. Therefore, if the conductive housing 5 of the motor 1 is a metal housing, heavy blades such as large blades and metal blades can be applied to the blades 81 .
- the motor 1 is an embedded permanent magnet type electric motor, it is possible to provide a compact motor 1 with excellent resistance to electrolytic corrosion. Therefore, if the motor 1 is a permanent magnet embedded electric motor, the ventilation fan 8 can be made smaller. As a result, the air volume of the ventilation fan 8 can be increased without increasing the size of the ventilation fan body 82 .
- FIG. 9 is a diagram schematically showing the configuration of air conditioner 10 according to Embodiment 4. As shown in FIG.
- An air conditioner 10 according to Embodiment 4 includes an indoor unit 11 as a fan (also referred to as a first fan) and an outdoor unit 13 as a fan (also referred to as a second fan) connected to the indoor unit 11.
- a fan also referred to as a first fan
- an outdoor unit 13 as a fan (also referred to as a second fan) connected to the indoor unit 11.
- the air conditioner 10 has an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13.
- the outdoor unit 13 is connected to the indoor unit 11 through the refrigerant pipe 12 .
- the indoor unit 11 has a motor 11a (for example, the motor 1 according to Embodiment 1), a blower section 11b that blows air by being driven by the motor 11a, and a housing 11c that covers the motor 11a and the blower section 11b.
- the air blower 11b has, for example, blades 11d driven by a motor 11a.
- vanes 11d are fixed to the shaft of motor 11a and generate airflow.
- the outdoor unit 13 includes a motor 13a (for example, the motor 1 according to Embodiment 1), an air blower 13b, a compressor 14, a heat exchanger (not shown), an air blower 13b, a compressor 14, and a heat exchanger. and a housing 13c covering the exchanger.
- the air blower 13b blows air by being driven by the motor 13a.
- the air blower 13b has, for example, blades 13d driven by a motor 13a.
- the vanes 13d are fixed to the shaft of the motor 13a and generate the airflow.
- the compressor 14 includes a motor 14a (for example, the motor 1 according to Embodiment 1), a compression mechanism 14b (for example, a refrigerant circuit) driven by the motor 14a, and a housing 14c that covers the motor 14a and the compression mechanism 14b. have.
- a motor 14a for example, the motor 1 according to Embodiment 1
- a compression mechanism 14b for example, a refrigerant circuit driven by the motor 14a
- a housing 14c that covers the motor 14a and the compression mechanism 14b. have.
- At least one of the indoor unit 11 and the outdoor unit 13 has the motor 1 described in the first embodiment. That is, each of the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 has the motor 1 described in the first embodiment.
- the motor 1 described in the first embodiment is applied to at least one of the motors 11a and 13a as the driving source of the air blower. That is, the motor 1 described in Embodiment 1 is applied to each of the indoor unit 11 and the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13.
- Motor 1 described in the first embodiment may be applied to motor 14 a of compressor 14 .
- the air conditioner 10 can perform air conditioning, for example, a cooling operation in which cold air is blown from the indoor unit 11 and a heating operation in which warm air is blown.
- the motor 11a is a drive source for driving the air blower 11b.
- the air blower 11b can blow the adjusted air.
- the motor 11a is fixed to the housing 11c of the indoor unit 11 with screws, for example.
- the motor 13a is fixed to the housing 13c of the outdoor unit 13 with screws, for example.
- the motor 1 described in Embodiment 1 is applied to at least one of the motors 11a and 13a, so the same advantages as those described in Embodiment 1 can be obtained. can be done. As a result, the performance of the air conditioner 10 can be maintained for a long period of time.
- the motor 1 according to Embodiment 1 when used as the drive source for the blower (for example, the indoor unit 11), the same advantages as those described in Embodiment 1 can be obtained. As a result, the performance of the blower is maintained over a long period of time.
- the fan having the motor 1 according to Embodiment 1 and the blades (for example, the blades 11d or 13d) driven by the motor 1 can be used alone as a device for blowing air. This blower can also be applied to devices other than the air conditioner 10 .
- Embodiment 1 when the motor 1 according to Embodiment 1 is used as the drive source for the compressor 14, the same advantages as those described in Embodiment 1 can be obtained. As a result, the performance of the compressor 14 can be maintained for a long period of time.
- the motor 1 described in Embodiment 1 can be installed in equipment having a drive source, such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10 .
- a drive source such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Frames (AREA)
Abstract
This motor (1) has a rotor (2), a stator (3), a first non-conductive member (4A), a second non-conductive member (4B), and a conductive case (5). A first conductive outer race (23B) of a first bearing (23) is insulated from a first housing (51) of the conductive case (5) by the first non-conductive member (4A). A second conductive inner race (24A) of a second bearing (24) is insulated from a conductive shaft (21) of the rotor (2) by the second non-conductive member (4B). A first conductive inner race (23A) of the first bearing (23) is in contact with the conductive shaft (21). A second conductive outer race (24B) of the second bearing (24) is in contact with a second housing (52) of the conductive case (5).
Description
本開示は、モータ、ファン、換気扇、及び空気調和機に関する。
The present disclosure relates to motors, fans, ventilation fans, and air conditioners.
ロータのシャフトを回転可能に支持する一対の軸受が配置されるハウジングを有するモータが提案されている(例えば、特許文献1参照)。
A motor has been proposed that has a housing in which a pair of bearings that rotatably support the shaft of the rotor are arranged (see, for example, Patent Document 1).
一般に、一対の軸受のうちの第1の軸受が配置されるハウジングが導電性である場合、第1の軸受がハウジングと電気的に接続され、一対の軸受のうちの第2の軸受が固定されているシャフトが導電性である場合、第2の軸受がシャフトと電気的に接続される。この場合、各軸受の内輪と外輪との間の電圧が増加し、軸受に流れる電流が増加する。その結果、軸受に電食が発生し、モータにおける振動及び騒音が増加するという問題がある。
Generally, if the housing in which the first of the pair of bearings is located is electrically conductive, the first bearing is electrically connected to the housing and the second of the pair of bearings is fixed. A second bearing is electrically connected to the shaft if the shaft on which it is mounted is electrically conductive. In this case, the voltage between the inner ring and the outer ring of each bearing increases, and the current flowing through the bearing increases. As a result, electrolytic corrosion occurs in the bearings, increasing vibration and noise in the motor.
本開示の目的は、軸受に流れる電流を低減することである。
The purpose of the present disclosure is to reduce the current flowing through the bearing.
本開示のモータは、
ステータと、
前記ステータの内側に配置されており、導電性シャフトと、前記導電性シャフトを回転可能に支持する第1及び第2の軸受とを有するロータと、
第1の非導電性部材と、
前記第2の軸受と前記導電性シャフトとの間に配置された第2の非導電性部材と、
前記第1の非導電性部材が配置された第1のハウジングと、前記第2の軸受が配置された第2のハウジングとを有し、前記ステータ及びロータが配置された導電性筐体と
を備え、
前記第1の軸受は、第1の導電性内輪と、第1の導電性外輪とを有し、
前記第2の軸受は、第2の導電性内輪と、第2の導電性外輪とを有し、
前記第1の導電性外輪は、前記第1の非導電性部材によって前記第1のハウジングから絶縁されており、
前記第1の導電性内輪は、前記導電性シャフトに接触しており、
前記第2の導電性内輪は、前記第2の非導電性部材によって前記導電性シャフトから絶縁されており、
前記第2の導電性外輪は、前記第2のハウジングに接触している。
本開示の他の態様に係るファンは、
羽根と、
前記羽根を回転させる前記モータと
を備える。
本開示の他の態様に係る換気扇は、
羽根と、
前記羽根を回転させる前記モータと
を備える。
本開示の他の態様に係る空気調和機は、
室内機と、
前記室内機に接続される室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、前記モータを有する。 The motor of the present disclosure is
a stator;
a rotor disposed inside the stator and having an electrically conductive shaft and first and second bearings rotatably supporting the electrically conductive shaft;
a first non-conductive member;
a second non-conductive member disposed between the second bearing and the conductive shaft;
a conductive housing having a first housing in which the first non-conductive member is arranged, a second housing in which the second bearing is arranged, and a conductive housing in which the stator and the rotor are arranged; prepared,
The first bearing has a first conductive inner ring and a first conductive outer ring,
The second bearing has a second conductive inner ring and a second conductive outer ring,
the first electrically conductive outer ring is insulated from the first housing by the first non-conductive member;
the first conductive inner ring is in contact with the conductive shaft;
the second conductive inner ring is insulated from the conductive shaft by the second non-conductive member;
The second conductive outer ring contacts the second housing.
A fan according to another aspect of the present disclosure includes:
feathers and
and the motor that rotates the blade.
A ventilation fan according to another aspect of the present disclosure includes:
feathers and
and the motor that rotates the blade.
An air conditioner according to another aspect of the present disclosure includes
indoor unit and
and an outdoor unit connected to the indoor unit,
Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the motor.
ステータと、
前記ステータの内側に配置されており、導電性シャフトと、前記導電性シャフトを回転可能に支持する第1及び第2の軸受とを有するロータと、
第1の非導電性部材と、
前記第2の軸受と前記導電性シャフトとの間に配置された第2の非導電性部材と、
前記第1の非導電性部材が配置された第1のハウジングと、前記第2の軸受が配置された第2のハウジングとを有し、前記ステータ及びロータが配置された導電性筐体と
を備え、
前記第1の軸受は、第1の導電性内輪と、第1の導電性外輪とを有し、
前記第2の軸受は、第2の導電性内輪と、第2の導電性外輪とを有し、
前記第1の導電性外輪は、前記第1の非導電性部材によって前記第1のハウジングから絶縁されており、
前記第1の導電性内輪は、前記導電性シャフトに接触しており、
前記第2の導電性内輪は、前記第2の非導電性部材によって前記導電性シャフトから絶縁されており、
前記第2の導電性外輪は、前記第2のハウジングに接触している。
本開示の他の態様に係るファンは、
羽根と、
前記羽根を回転させる前記モータと
を備える。
本開示の他の態様に係る換気扇は、
羽根と、
前記羽根を回転させる前記モータと
を備える。
本開示の他の態様に係る空気調和機は、
室内機と、
前記室内機に接続される室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、前記モータを有する。 The motor of the present disclosure is
a stator;
a rotor disposed inside the stator and having an electrically conductive shaft and first and second bearings rotatably supporting the electrically conductive shaft;
a first non-conductive member;
a second non-conductive member disposed between the second bearing and the conductive shaft;
a conductive housing having a first housing in which the first non-conductive member is arranged, a second housing in which the second bearing is arranged, and a conductive housing in which the stator and the rotor are arranged; prepared,
The first bearing has a first conductive inner ring and a first conductive outer ring,
The second bearing has a second conductive inner ring and a second conductive outer ring,
the first electrically conductive outer ring is insulated from the first housing by the first non-conductive member;
the first conductive inner ring is in contact with the conductive shaft;
the second conductive inner ring is insulated from the conductive shaft by the second non-conductive member;
The second conductive outer ring contacts the second housing.
A fan according to another aspect of the present disclosure includes:
feathers and
and the motor that rotates the blade.
A ventilation fan according to another aspect of the present disclosure includes:
feathers and
and the motor that rotates the blade.
An air conditioner according to another aspect of the present disclosure includes
indoor unit and
and an outdoor unit connected to the indoor unit,
Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the motor.
本開示によれば、軸受に流れる電流を低減することができる。
According to the present disclosure, the current flowing through the bearing can be reduced.
実施の形態1.
実施の形態1に係るモータ1について以下に説明する。
各図に示されるxyz直交座標系において、z軸方向(z軸)は、モータ1の軸線A1と平行な方向を示し、x軸方向(x軸)は、z軸方向に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線A1は、ロータ2の回転中心、すなわち、ロータ2の回転軸である。軸線A1と平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2、ステータ3、又はステータコア31の半径の方向であり、軸線A1と直交する方向である。xy平面は、軸方向と直交する平面である。ロータ2、ステータ3、又はステータコア31の周方向を、単に「周方向」とも称する。Embodiment 1.
Amotor 1 according to Embodiment 1 will be described below.
In the xyz orthogonal coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of themotor 1, and the x-axis direction (x-axis) indicates a direction orthogonal to the z-axis direction. , the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction. The axis A<b>1 is the center of rotation of the rotor 2 , that is, the rotation axis of the rotor 2 . The direction parallel to the axis A1 is also referred to as "the axial direction of the rotor 2" or simply "the axial direction". The radial direction is the radial direction of the rotor 2, the stator 3, or the stator core 31, and is the direction perpendicular to the axis A1. The xy plane is a plane perpendicular to the axial direction. The circumferential direction of the rotor 2, stator 3, or stator core 31 is also simply referred to as "circumferential direction".
実施の形態1に係るモータ1について以下に説明する。
各図に示されるxyz直交座標系において、z軸方向(z軸)は、モータ1の軸線A1と平行な方向を示し、x軸方向(x軸)は、z軸方向に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線A1は、ロータ2の回転中心、すなわち、ロータ2の回転軸である。軸線A1と平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2、ステータ3、又はステータコア31の半径の方向であり、軸線A1と直交する方向である。xy平面は、軸方向と直交する平面である。ロータ2、ステータ3、又はステータコア31の周方向を、単に「周方向」とも称する。
A
In the xyz orthogonal coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of the
図1は、実施の形態1に係るモータ1を概略的に示す断面図である。
モータ1は、ロータ2と、ステータ3と、第1の非導電性部材4Aと、第2の非導電性部材4Bと、導電性筐体5とを有する。モータ1は、例えば、永久磁石同期電動機である。 FIG. 1 is a sectional view schematically showing amotor 1 according to Embodiment 1. FIG.
Themotor 1 has a rotor 2 , a stator 3 , a first non-conductive member 4A, a second non-conductive member 4B, and a conductive housing 5 . Motor 1 is, for example, a permanent magnet synchronous motor.
モータ1は、ロータ2と、ステータ3と、第1の非導電性部材4Aと、第2の非導電性部材4Bと、導電性筐体5とを有する。モータ1は、例えば、永久磁石同期電動機である。 FIG. 1 is a sectional view schematically showing a
The
図1に示されるように、モータ1は、電気回路6と、コネクタ7とをさらに有してもよい。
As shown in FIG. 1, the motor 1 may further have an electric circuit 6 and a connector 7.
図1に示されるように、ステータ3は、ステータコア31と、少なくとも1つのインシュレータ32と、少なくとも1つのコイル33と、少なくとも1つの導通ピン34とを有する。各コイル33は、インシュレータ32に巻かれている。ステータ3は、導電性筐体5のフレーム5Aに圧入されている。
As shown in FIG. 1, the stator 3 has a stator core 31, at least one insulator 32, at least one coil 33, and at least one conducting pin 34. Each coil 33 is wound around the insulator 32 . The stator 3 is press-fitted into the frame 5A of the conductive housing 5. As shown in FIG.
〈ステータ3〉
図2は、ステータ3を概略的に示す斜視図である。
図2では、ステータコア31及びインシュレータ32の構造を示すために、コイル33がステータ3から外されている。
ステータコア31は、周方向に延在するヨーク31Aと、複数のティース31Bとを有する。本実施の形態では、ステータコア31は、12個のティース31Bを有する。各ティース31Bは、ヨーク31Aから径方向に延在している。ステータコア31は、円筒形のコアである。例えば、ステータコア31は、軸方向に積層された複数の電磁鋼板で形成されている。この場合、複数の電磁鋼板の各々は、打ち抜き処理によって、予め定められた形状に形成される。これらの電磁鋼板は、かしめ、溶接、又は接着等によって互いに固定される。 <Stator 3>
FIG. 2 is a perspective view schematically showing thestator 3. FIG.
In FIG. 2,coils 33 are removed from stator 3 to show the structure of stator core 31 and insulator 32 .
Thestator core 31 has a yoke 31A extending in the circumferential direction and a plurality of teeth 31B. In this embodiment, stator core 31 has twelve teeth 31B. Each tooth 31B extends radially from the yoke 31A. Stator core 31 is a cylindrical core. For example, the stator core 31 is formed of a plurality of magnetic steel sheets laminated in the axial direction. In this case, each of the plurality of electromagnetic steel sheets is formed into a predetermined shape by punching. These electromagnetic steel sheets are fixed to each other by caulking, welding, adhesion, or the like.
図2は、ステータ3を概略的に示す斜視図である。
図2では、ステータコア31及びインシュレータ32の構造を示すために、コイル33がステータ3から外されている。
ステータコア31は、周方向に延在するヨーク31Aと、複数のティース31Bとを有する。本実施の形態では、ステータコア31は、12個のティース31Bを有する。各ティース31Bは、ヨーク31Aから径方向に延在している。ステータコア31は、円筒形のコアである。例えば、ステータコア31は、軸方向に積層された複数の電磁鋼板で形成されている。この場合、複数の電磁鋼板の各々は、打ち抜き処理によって、予め定められた形状に形成される。これらの電磁鋼板は、かしめ、溶接、又は接着等によって互いに固定される。 <
FIG. 2 is a perspective view schematically showing the
In FIG. 2,
The
コイル33は、U相、V相、及びW相を持つ3相コイルである。
The coil 33 is a three-phase coil having U-phase, V-phase, and W-phase.
各インシュレータ32は、ティース31Bに設けられている。各インシュレータ32は、例えば、ポリブチレンテレフタレート(PBT)等の熱可塑性樹脂である。各インシュレータ32は、ステータコア31(具体的には、ステータコア31の各ティース31B)を電気的に絶縁する。例えば、インシュレータ32は、ステータコア31と一体に成形される。ただし、予めインシュレータ32を成形し、成形されたインシュレータ32をステータコア31と組み合わせてもよい。
Each insulator 32 is provided on the tooth 31B. Each insulator 32 is, for example, a thermoplastic resin such as polybutylene terephthalate (PBT). Each insulator 32 electrically insulates the stator core 31 (specifically, each tooth 31B of the stator core 31). For example, insulator 32 is molded integrally with stator core 31 . However, the insulator 32 may be molded in advance and the molded insulator 32 may be combined with the stator core 31 .
各導通ピン34は、例えば、インシュレータ32に固定される。各導通ピン34は、コイル33と電気回路6とを電気的に接続している。具体的には、各導通ピン34は、コイル33と電気回路6のインバータ回路64のスイッチング回路64bとを電気的に接続している。
Each conduction pin 34 is fixed to the insulator 32, for example. Each conducting pin 34 electrically connects the coil 33 and the electric circuit 6 . Specifically, each conductive pin 34 electrically connects the coil 33 and the switching circuit 64 b of the inverter circuit 64 of the electric circuit 6 .
〈電気回路6〉
図3は、電気回路6の一例を示す回路図である。
図3に示される例では、電気回路6は、ヒューズ61と、フィルタ回路62と、電源回路63と、インバータ回路64とを有する。電気回路6は、交流電源60に電気的に接続されるように構成されている。 <Electric circuit 6>
FIG. 3 is a circuit diagram showing an example of theelectric circuit 6. As shown in FIG.
In the example shown in FIG. 3 , theelectric circuit 6 has a fuse 61 , a filter circuit 62 , a power supply circuit 63 and an inverter circuit 64 . The electric circuit 6 is configured to be electrically connected to an AC power supply 60 .
図3は、電気回路6の一例を示す回路図である。
図3に示される例では、電気回路6は、ヒューズ61と、フィルタ回路62と、電源回路63と、インバータ回路64とを有する。電気回路6は、交流電源60に電気的に接続されるように構成されている。 <
FIG. 3 is a circuit diagram showing an example of the
In the example shown in FIG. 3 , the
交流電源60から交流(例えば、AC100VからAC240V)が電気回路6に供給されると、その交流は、ヒューズ61及びフィルタ回路62を通して電源回路63に供給される。その交流は、電源回路63によって直流に変換される。
When an alternating current (for example, AC 100 V to AC 240 V) is supplied from the AC power supply 60 to the electric circuit 6 , the alternating current is supplied to the power supply circuit 63 through the fuse 61 and the filter circuit 62 . The alternating current is converted to direct current by the power supply circuit 63 .
フィルタ回路62は、Xコンデンサ62aと、コモンモードチョークコイル62bと、Yコンデンサ62c,62dとを有する。この構成により、フィルタ回路62は、ノイズフィルタを構成する。
The filter circuit 62 has an X capacitor 62a, a common mode choke coil 62b, and Y capacitors 62c and 62d. With this configuration, the filter circuit 62 constitutes a noise filter.
電源回路63は、整流回路63aと、平滑用コンデンサ63bと、スイッチング電源63cとを有する。電源回路63では,フィルタ回路62を通して入力された交流が、ダイオードブリッジを持つ整流回路63aによって全波整流され、これにより直流に変換される。その直流は、平滑用コンデンサ63bに蓄積される。平滑用コンデンサ63bにおいて、スイッチング回路64bで必要とされる直流(例えば、DC140V又はDC280V)が生成される。スイッチング電源63cは、平滑用コンデンサ63bにおいて生成された直流を用いて、駆動回路64aで必要とされる制御電力(例えば、DC15V)を生成する。
The power supply circuit 63 has a rectifier circuit 63a, a smoothing capacitor 63b, and a switching power supply 63c. In the power supply circuit 63, the alternating current input through the filter circuit 62 is full-wave rectified by the rectifier circuit 63a having a diode bridge, and is thereby converted to direct current. The direct current is accumulated in the smoothing capacitor 63b. In the smoothing capacitor 63b, a direct current (for example, DC140V or DC280V) required by the switching circuit 64b is generated. The switching power supply 63c uses the direct current generated in the smoothing capacitor 63b to generate the control power (for example, DC 15V) required by the drive circuit 64a.
インバータ回路64は、駆動回路64aと,スイッチング回路64bとを有する。
スイッチング回路64bは、正極母線と負極母線との間に形成されるU相、V相、及びW相の3相ブリッジを構成する。正極母線は平滑用コンデンサ63bの正極端に接続されており、負極母線は平滑用コンデンサ63bの負極端に接続されている。正極母線側の3個のトランジスタは上アームトランジスタである。負極母線側の3個のトランジスタは下アームトランジスタである。各スイッチング素子は、逆並列に還流ダイオードに接続されている。上アームトランジスタ及び下アームトランジスタの各々の接続端は、出力端を構成しており、コイル33のうちのU相、V相、又はW相に接続されている。 Theinverter circuit 64 has a drive circuit 64a and a switching circuit 64b.
Theswitching circuit 64b constitutes a three-phase bridge of U-phase, V-phase, and W-phase formed between the positive bus and the negative bus. The positive bus line is connected to the positive terminal of the smoothing capacitor 63b, and the negative bus line is connected to the negative terminal of the smoothing capacitor 63b. The three transistors on the positive bus line side are upper arm transistors. The three transistors on the negative bus line side are lower arm transistors. Each switching element is connected in antiparallel to a freewheeling diode. A connection terminal of each of the upper arm transistor and the lower arm transistor constitutes an output terminal and is connected to the U phase, V phase, or W phase of the coil 33 .
スイッチング回路64bは、正極母線と負極母線との間に形成されるU相、V相、及びW相の3相ブリッジを構成する。正極母線は平滑用コンデンサ63bの正極端に接続されており、負極母線は平滑用コンデンサ63bの負極端に接続されている。正極母線側の3個のトランジスタは上アームトランジスタである。負極母線側の3個のトランジスタは下アームトランジスタである。各スイッチング素子は、逆並列に還流ダイオードに接続されている。上アームトランジスタ及び下アームトランジスタの各々の接続端は、出力端を構成しており、コイル33のうちのU相、V相、又はW相に接続されている。 The
The
駆動回路64aは、スイッチング回路64bのうちの6個のスイッチング素子をオンオフ駆動するためのPWM信号を生成する。
The driving circuit 64a generates a PWM signal for turning on and off six switching elements of the switching circuit 64b.
本実施の形態では、例えば、ホールIC等の磁極位置センサを用いずに、磁極位置センサレス駆動によりモータ1が駆動される。この場合、モータ1は、ロータ2の磁極位置を推定するための磁極位置推定手段を有している。磁極位置推定手段は、コイル33に流れる電流及びモータ定数からロータ2の位置を推定し、コイル33の各相に供給される電流を制御するためのPWM信号を生成する。その結果、ロータ2が回転する。
In the present embodiment, for example, the motor 1 is driven by magnetic pole position sensorless driving without using a magnetic pole position sensor such as a Hall IC. In this case, the motor 1 has magnetic pole position estimation means for estimating the magnetic pole position of the rotor 2 . The magnetic pole position estimation means estimates the position of the rotor 2 from the current flowing through the coil 33 and the motor constant, and generates PWM signals for controlling the current supplied to each phase of the coil 33 . As a result, the rotor 2 rotates.
〈ロータ2〉
ロータ2は、ステータ3の内側に回転可能に配置されている。ロータ2とステータ3との間には、エアギャップが存在する。ロータ2は、導電性シャフト21と、永久磁石22と、導電性シャフト21を回転可能に支持する第1及び第2の軸受23,24とを有する。ロータ2は、回転軸(すなわち、軸線A1)を中心として回転可能である。 <Rotor 2>
Therotor 2 is rotatably arranged inside the stator 3 . An air gap exists between the rotor 2 and the stator 3 . The rotor 2 has a conductive shaft 21 , permanent magnets 22 , and first and second bearings 23 and 24 that rotatably support the conductive shaft 21 . The rotor 2 is rotatable around a rotation axis (that is, axis A1).
ロータ2は、ステータ3の内側に回転可能に配置されている。ロータ2とステータ3との間には、エアギャップが存在する。ロータ2は、導電性シャフト21と、永久磁石22と、導電性シャフト21を回転可能に支持する第1及び第2の軸受23,24とを有する。ロータ2は、回転軸(すなわち、軸線A1)を中心として回転可能である。 <
The
本実施の形態では、永久磁石22は、プラスチックマグネットである。プラスチックマグネットは、例えば、樹脂に永久磁石の原料を混合して成形することによって作製される。永久磁石22は、周方向において交互に配置されたN極とS極とを有している。
In this embodiment, the permanent magnet 22 is a plastic magnet. A plastic magnet is produced, for example, by molding a mixture of resin with raw materials for a permanent magnet. The permanent magnet 22 has N poles and S poles alternately arranged in the circumferential direction.
永久磁石22の全体がプラスチックマグネットであってもよく、永久磁石22の一部がプラスチックマグネットであってもよい。永久磁石22の一部がプラスチックマグネットである場合、永久磁石22の外周面がプラスチックマグネットで形成されていることが好ましい。この場合、例えば、永久磁石22の外周面がプラスチックマグネットで形成されており、そのプラスチックマグネットの内側に樹脂が充填されていてもよい。
The entire permanent magnet 22 may be a plastic magnet, or part of the permanent magnet 22 may be a plastic magnet. When a part of the permanent magnet 22 is a plastic magnet, it is preferable that the outer peripheral surface of the permanent magnet 22 is formed of the plastic magnet. In this case, for example, the outer peripheral surface of the permanent magnet 22 may be formed of a plastic magnet, and the inside of the plastic magnet may be filled with resin.
永久磁石22は、導電性シャフト21に固定されている。永久磁石22は、第1の軸受23と第2の軸受24との間に位置している。導電性シャフト21は、第1の軸受23及び第2の軸受24によって回転可能に支持されている。導電性シャフト21は、例えば、鉄などの金属で作られている。
The permanent magnet 22 is fixed to the conductive shaft 21. A permanent magnet 22 is positioned between a first bearing 23 and a second bearing 24 . Conductive shaft 21 is rotatably supported by first bearing 23 and second bearing 24 . The conductive shaft 21 is made of metal such as iron, for example.
第1の軸受23は、永久磁石22に対してモータ1の負荷側に位置している。第1の軸受23は、導電性シャフト21の負荷側を回転可能に支持している。第2の軸受24は、永久磁石22に対してモータ1の反負荷側に位置している。第2の軸受24は、導電性シャフト21の反負荷側を回転可能に支持している。
The first bearing 23 is located on the load side of the motor 1 with respect to the permanent magnet 22 . The first bearing 23 rotatably supports the load side of the conductive shaft 21 . The second bearing 24 is located on the anti-load side of the motor 1 with respect to the permanent magnet 22 . A second bearing 24 rotatably supports the non-load side of the conductive shaft 21 .
図1に示される例では、導電性シャフト21の負荷側は導電性筐体5の外部に突出しており、導電性シャフト21の反負荷側は導電性筐体5の外部に突出していない。導電性シャフト21の反負荷側は導電性筐体5の外部に突出していないので、反負荷側の導電性シャフト21の端部に、第2の非導電性部材4Bを一体成形で容易に設けることができる。
In the example shown in FIG. 1 , the load side of the conductive shaft 21 protrudes outside the conductive housing 5 and the anti-load side of the conductive shaft 21 does not protrude outside the conductive housing 5 . Since the anti-load side of the conductive shaft 21 does not protrude outside the conductive housing 5, the second non-conductive member 4B can be easily provided at the end of the conductive shaft 21 on the anti-load side by integral molding. be able to.
本実施の形態では、導電性シャフト21の反負荷側は導電性筐体5の外部に突出していないが、導電性シャフト21の反負荷側が導電性筐体5の外部に突出していてもよい。
In the present embodiment, the anti-load side of the conductive shaft 21 does not protrude outside the conductive housing 5, but the anti-load side of the conductive shaft 21 may protrude outside the conductive housing 5.
図1に示される例では、導電性シャフト21の反負荷側における端部の外径は、導電性シャフト21の他の部分の外径よりも小さい。第2の非導電性部材4Bは、導電性シャフト21の反負荷側におけるその端部を覆っている。例えば、導電性シャフト21の負荷側には、気流を生成するための羽根が設けられる。
In the example shown in FIG. 1, the outer diameter of the end portion of the conductive shaft 21 on the non-load side is smaller than the outer diameter of the other portion of the conductive shaft 21 . A second non-conductive member 4B covers the end of the conductive shaft 21 on the non-load side. For example, the load side of the conductive shaft 21 is provided with vanes for generating airflow.
〈第1の軸受23〉
第1の軸受23は、第1の導電性内輪23Aと、第1の導電性外輪23Bと、2以上の玉23Cとを有する。2以上の玉23Cは、第1の導電性内輪23Aと第1の導電性外輪23Bとの間に配置されている。各玉23Cは、導電性である。各玉23Cには、潤滑材が塗布されている。各玉23Cに塗布されている潤滑材は、非導電性である。第1の導電性内輪23A、第1の導電性外輪23B、及び各玉23Cは、例えば、鉄などの金属で作られている。 <First bearing 23>
Thefirst bearing 23 has a first conductive inner ring 23A, a first conductive outer ring 23B, and two or more balls 23C. Two or more balls 23C are arranged between the first conductive inner ring 23A and the first conductive outer ring 23B. Each ball 23C is electrically conductive. Lubricant is applied to each ball 23C. The lubricant applied to each ball 23C is non-conductive. The first conductive inner ring 23A, the first conductive outer ring 23B, and each ball 23C are made of metal such as iron, for example.
第1の軸受23は、第1の導電性内輪23Aと、第1の導電性外輪23Bと、2以上の玉23Cとを有する。2以上の玉23Cは、第1の導電性内輪23Aと第1の導電性外輪23Bとの間に配置されている。各玉23Cは、導電性である。各玉23Cには、潤滑材が塗布されている。各玉23Cに塗布されている潤滑材は、非導電性である。第1の導電性内輪23A、第1の導電性外輪23B、及び各玉23Cは、例えば、鉄などの金属で作られている。 <First bearing 23>
The
第1の導電性内輪23Aは、導電性シャフト21に固定されている。すなわち、第1の導電性内輪23Aは、導電性シャフト21に接触している。第1の導電性内輪23Aは、例えば、圧入又は接着剤で導電性シャフト21に固定されている。第1の導電性内輪23Aが導電性シャフト21と共に回転すると、第1の導電性内輪23Aの軌道面である外周面と各玉23Cとの間に薄い油膜層が形成され、第1の導電性外輪23Bの軌道面である内周面と各玉23Cとの間に薄い油膜層が形成される。その結果、第1の導電性内輪23A及び第1の導電性外輪23Bは、各玉23Cから電気的に絶縁される。
The first conductive inner ring 23A is fixed to the conductive shaft 21. That is, the first conductive inner ring 23A is in contact with the conductive shaft 21. As shown in FIG. The first conductive inner ring 23A is fixed to the conductive shaft 21 by, for example, press fitting or adhesive. When the first conductive inner ring 23A rotates together with the conductive shaft 21, a thin oil film layer is formed between the outer peripheral surface, which is the raceway surface of the first conductive inner ring 23A, and each ball 23C, and the first conductive A thin oil film layer is formed between the inner peripheral surface, which is the raceway surface of the outer ring 23B, and each ball 23C. As a result, the first conductive inner ring 23A and the first conductive outer ring 23B are electrically isolated from each ball 23C.
第1の軸受23(具体的には、第1の導電性外輪23B)は、例えば、圧入又は接着剤で第1の非導電性部材4Aに固定されている。第1の軸受23(具体的には、第1の導電性外輪23B)は、隙間嵌めで第1の非導電性部材4Aに配置されていてもよい。
The first bearing 23 (specifically, the first conductive outer ring 23B) is fixed to the first non-conductive member 4A by, for example, press fitting or adhesive. The first bearing 23 (specifically, the first conductive outer ring 23B) may be arranged on the first non-conductive member 4A with a clearance fit.
〈第2の軸受24〉
第2の軸受24は、第2の導電性内輪24Aと、第2の導電性外輪24Bと、2以上の玉24Cとを有する。2以上の玉24Cは、第2の導電性内輪24Aと第2の導電性外輪24Bとの間に配置されている。各玉24Cは、導電性である。各玉24Cには、潤滑材が塗布されている。各玉24Cに塗布されている潤滑材は、非導電性である。第2の導電性内輪24A、第2の導電性外輪24B、及び各玉24Cは、例えば、鉄などの金属で作られている。 <Second bearing 24>
Thesecond bearing 24 has a second conductive inner ring 24A, a second conductive outer ring 24B, and two or more balls 24C. Two or more balls 24C are positioned between second conductive inner ring 24A and second conductive outer ring 24B. Each ball 24C is electrically conductive. Lubricant is applied to each ball 24C. The lubricant applied to each ball 24C is non-conductive. The second conductive inner ring 24A, the second conductive outer ring 24B, and each ball 24C are made of metal such as iron, for example.
第2の軸受24は、第2の導電性内輪24Aと、第2の導電性外輪24Bと、2以上の玉24Cとを有する。2以上の玉24Cは、第2の導電性内輪24Aと第2の導電性外輪24Bとの間に配置されている。各玉24Cは、導電性である。各玉24Cには、潤滑材が塗布されている。各玉24Cに塗布されている潤滑材は、非導電性である。第2の導電性内輪24A、第2の導電性外輪24B、及び各玉24Cは、例えば、鉄などの金属で作られている。 <Second bearing 24>
The
第2の導電性内輪24Aは、例えば、圧入又は接着剤で第2の非導電性部材4Bに固定されている。第2の導電性内輪24Aが導電性シャフト21及び第2の非導電性部材4Bと共に回転すると、第2の導電性内輪24Aの軌道面である外周面と各玉24Cとの間に薄い油膜層が形成され、第2の導電性外輪24Bの軌道面である内周面と各玉24Cとの間に薄い油膜層が形成される。その結果、第2の導電性内輪24A及び第2の導電性外輪24Bは、各玉24Cから電気的に絶縁される。
The second conductive inner ring 24A is fixed to the second non-conductive member 4B by, for example, press fitting or adhesive. When the second conductive inner ring 24A rotates together with the conductive shaft 21 and the second non-conductive member 4B, a thin oil film layer is formed between the outer peripheral surface, which is the raceway surface of the second conductive inner ring 24A, and each ball 24C. is formed, and a thin oil film layer is formed between the inner peripheral surface, which is the raceway surface of the second conductive outer ring 24B, and each ball 24C. As a result, the second conductive inner ring 24A and the second conductive outer ring 24B are electrically isolated from each ball 24C.
第2の軸受24(具体的には、第2の導電性外輪24B)の外径とブラケット5Bの第2のハウジング52の内径とはほぼ等しい。第2の軸受24(具体的には、第2の導電性外輪24B)は、例えば、圧入又は接着剤で導電性筐体5(具体的には、ブラケット5Bの第2のハウジング52)に固定されている。第2の軸受24(具体的には、第2の導電性外輪24B)は、隙間嵌めで導電性筐体5(具体的には、ブラケット5Bの第2のハウジング52)に配置されていてもよい。
The outer diameter of the second bearing 24 (specifically, the second conductive outer ring 24B) and the inner diameter of the second housing 52 of the bracket 5B are substantially equal. The second bearing 24 (specifically, the second conductive outer ring 24B) is fixed to the conductive housing 5 (specifically, the second housing 52 of the bracket 5B) by, for example, press fitting or adhesive. It is Even if the second bearing 24 (specifically, the second conductive outer ring 24B) is arranged in the conductive housing 5 (specifically, the second housing 52 of the bracket 5B) with a clearance fit, good.
油膜層の厚みは、例えば、1μm以下であるが、ロータ2の回転速度又はモータ1内の温度などのいくつかの要因によって油膜層の厚みは変化する。
The thickness of the oil film layer is, for example, 1 μm or less, but the thickness of the oil film layer changes depending on several factors such as the rotational speed of the rotor 2 and the temperature inside the motor 1 .
第2の軸受24とブラケット5B(具体的には、第2のハウジング52)との間には、軸方向における予圧を第2の軸受24に与えるための予圧ばねが設けられている。予圧ばねによる軸方向における予圧が第1の軸受23及び第2の軸受24に与えられているので、ロータ2の回転中における玉23C及び玉24Cのがたつきを防止することができる。
A preload spring is provided between the second bearing 24 and the bracket 5B (specifically, the second housing 52) to apply preload to the second bearing 24 in the axial direction. Since the preload in the axial direction is applied to the first bearing 23 and the second bearing 24 by the preload spring, rattling of the balls 23C and 24C during the rotation of the rotor 2 can be prevented.
本実施の形態では、第1の軸受23のサイズは、第2の軸受24のサイズと等しい。したがって、第1の導電性外輪23Bの外径(すなわち、直径)は、第2の導電性外輪24Bの外径(すなわち、直径)と等しい。第1の軸受23及び第2の軸受24の各々は、例えば、外径φ22mm、内径8mm、幅7mmの呼び番号608型の深溝玉軸受である。本実施の形態では、第1の軸受23のサイズは第2の軸受24のサイズと等しいが、第1の軸受23のサイズが第2の軸受24と異なっていてもよい。
In this embodiment, the size of the first bearing 23 is equal to the size of the second bearing 24. Therefore, the outer diameter (ie, diameter) of first conductive outer ring 23B is equal to the outer diameter (ie, diameter) of second conductive outer ring 24B. Each of the first bearing 23 and the second bearing 24 is, for example, a 608-type deep groove ball bearing having an outer diameter of 22 mm, an inner diameter of 8 mm, and a width of 7 mm. Although the size of the first bearing 23 is equal to the size of the second bearing 24 in this embodiment, the size of the first bearing 23 may be different from the size of the second bearing 24 .
〈導電性筐体5〉
図4は、図1に示される導電性筐体5を示す断面図である。
導電性筐体5は、ステータ3及びロータ2が配置されたフレーム5Aと、フレーム5Aの内部を覆うブラケット5Bとを有する。すなわち、ステータ3及びロータ2は、導電性筐体5(図4では、具体的には、フレーム5A)に配置されている。導電性筐体5は、例えば、鉄などの金属で作られている。 <Conductive housing 5>
FIG. 4 is a cross-sectional view showing theconductive housing 5 shown in FIG.
Theconductive housing 5 has a frame 5A in which the stator 3 and the rotor 2 are arranged, and a bracket 5B that covers the inside of the frame 5A. That is, the stator 3 and the rotor 2 are arranged in a conductive housing 5 (specifically, a frame 5A in FIG. 4). The conductive housing 5 is made of metal such as iron, for example.
図4は、図1に示される導電性筐体5を示す断面図である。
導電性筐体5は、ステータ3及びロータ2が配置されたフレーム5Aと、フレーム5Aの内部を覆うブラケット5Bとを有する。すなわち、ステータ3及びロータ2は、導電性筐体5(図4では、具体的には、フレーム5A)に配置されている。導電性筐体5は、例えば、鉄などの金属で作られている。 <
FIG. 4 is a cross-sectional view showing the
The
フレーム5Aは、導電性のフレームである。フレーム5Aは、例えば、鉄などの金属で作られている。フレーム5Aは、例えば、カップ状のフレームである。フレーム5Aは、第1の非導電性部材4Aが配置された第1のハウジング51を有する。第1のハウジング51は、フレーム5Aの一部であり、フレーム5Aの底に設けられている。図4に示される例では、第1のハウジング51は、フレーム5Aの底のうちの、xy平面において軸方向及び軸方向と直交する方向に突出している部分である。
The frame 5A is a conductive frame. The frame 5A is made of metal such as iron, for example. The frame 5A is, for example, a cup-shaped frame. The frame 5A has a first housing 51 in which the first non-conductive member 4A is arranged. The first housing 51 is part of the frame 5A and is provided at the bottom of the frame 5A. In the example shown in FIG. 4, the first housing 51 is a portion of the bottom of the frame 5A that protrudes in the axial direction and the direction orthogonal to the axial direction in the xy plane.
第1のハウジング51は貫通孔51Aを有し、導電性シャフト21がその貫通孔51Aを通してフレーム5Aの外へ突出している。第1のハウジング51の最大内径r1は、第1の軸受23(具体的には、第1の導電性外輪23B)の外径よりも大きくてもよい。
The first housing 51 has a through hole 51A, and the conductive shaft 21 protrudes out of the frame 5A through the through hole 51A. The maximum inner diameter r1 of the first housing 51 may be larger than the outer diameter of the first bearing 23 (specifically, the first conductive outer ring 23B).
xy平面において、軸方向と直交する方向における第1のハウジング51の貫通孔51Aの最大幅w1は、第1の軸受23(具体的には、第1の導電性外輪23B)の外径よりも大きい。第1の軸受23の第1の導電性外輪23Bは、第1のハウジング51と電気的に接続されていない。
In the xy plane, the maximum width w1 of the through hole 51A of the first housing 51 in the direction orthogonal to the axial direction is larger than the outer diameter of the first bearing 23 (specifically, the first conductive outer ring 23B). big. First conductive outer ring 23B of first bearing 23 is not electrically connected to first housing 51 .
ブラケット5Bは、導電性のブラケットである。ブラケット5Bは、例えば、鉄などの金属で作られている。ブラケット5Bは、第2の軸受24が配置された第2のハウジング52を有する。ブラケット5Bのうちの第2のハウジング52以外の部分は、例えば、平板である。第2のハウジング52は、ブラケット5Bの一部であり、ブラケット5Bのうちの平板から軸方向に突出している部分である。図1に示される例では、第2の軸受24の第2の導電性外輪24Bは、第2のハウジング52に接触している。
The bracket 5B is a conductive bracket. The bracket 5B is made of metal such as iron, for example. Bracket 5B has a second housing 52 in which second bearing 24 is arranged. A portion of the bracket 5B other than the second housing 52 is, for example, a flat plate. The second housing 52 is a part of the bracket 5B, and is a part of the bracket 5B that protrudes axially from the flat plate. In the example shown in FIG. 1, the second conductive outer ring 24B of the second bearing 24 contacts the second housing 52. In the example shown in FIG.
第1のハウジング51の最大内径r1は、第2のハウジング52の最大内径r2よりも大きい。
The maximum inner diameter r1 of the first housing 51 is larger than the maximum inner diameter r2 of the second housing 52.
図4に示されるように、導電性筐体5は、回路カバー5Cをさらに有してもよい。回路カバー5Cは、導電性のカバーである。回路カバー5Cは、例えば、鉄などの金属で作られている。図1に示されるように、回路カバー5Cは、電気回路6を覆っている。具体的には、回路カバー5Cは、ブラケット5Bと共に電気回路6を覆っている。本実施の形態では、電気回路6は導電性筐体5の内部に配置されているが、電気回路6の一部又は全部は、導電性筐体5の外に配置されていてもよい。
As shown in FIG. 4, the conductive housing 5 may further have a circuit cover 5C. Circuit cover 5C is a conductive cover. The circuit cover 5C is made of metal such as iron, for example. As shown in FIG. 1, the circuit cover 5C covers the electric circuit 6. As shown in FIG. Specifically, the circuit cover 5C covers the electric circuit 6 together with the bracket 5B. Although the electric circuit 6 is arranged inside the conductive housing 5 in the present embodiment, part or all of the electric circuit 6 may be arranged outside the conductive housing 5 .
図1に示されるように、回路カバー5C内に、電気回路6を固定するための回路ケース5Dが配置されていてもよい。この場合、回路ケース5Dは、回路カバー5C内に配置されている。回路ケース5Dは、例えば、ブラケット5Bに固定されている。回路ケース5Dは、非導電性のケースである。回路ケース5Dは、例えば、非導電性樹脂で作られている。例えば、プレス成形で、電気回路6が配置される凹部を回路ケース5Dに成形する。
As shown in FIG. 1, a circuit case 5D for fixing the electric circuit 6 may be arranged inside the circuit cover 5C. In this case, the circuit case 5D is arranged inside the circuit cover 5C. Circuit case 5D is fixed to bracket 5B, for example. Circuit case 5D is a non-conductive case. The circuit case 5D is made of non-conductive resin, for example. For example, by press molding, a recess in which the electric circuit 6 is arranged is formed in the circuit case 5D.
フレーム5A、ブラケット5B、及び回路カバー5Cの各々は、外周縁を形成するフランジ53を有する。フレーム5A、ブラケット5B、及び回路カバー5Cのフランジ53は、例えば、ネジで互いに固定されている。したがって、フレーム5A、ブラケット5B、及び回路カバー5Cは、機械的に連結されており、互いに電気的に接続されている。すなわち、図1に示される例では、導電性筐体5は、ブラケット5Bによって、ロータ2及びステータ3が配置されたモータ収容部54と、電気回路6が配置された回路収容部55とに仕切られている。
Each of the frame 5A, bracket 5B, and circuit cover 5C has a flange 53 forming an outer peripheral edge. The frame 5A, the bracket 5B, and the flanges 53 of the circuit cover 5C are fixed to each other with screws, for example. Therefore, the frame 5A, bracket 5B, and circuit cover 5C are mechanically coupled and electrically connected to each other. That is, in the example shown in FIG. 1, the conductive housing 5 is partitioned by the bracket 5B into a motor housing portion 54 in which the rotor 2 and the stator 3 are arranged, and a circuit housing portion 55 in which the electric circuit 6 is arranged. It is
〈コネクタ7〉
図1に示されるように、コネクタ7は、回路カバー5Cに固定されている。コネクタ7は、例えば、配線と配線を覆う非導電性のカバーとを有する。コネクタ7の配線は、電気回路6に接続されている。 <Connector 7>
As shown in FIG. 1,connector 7 is fixed to circuit cover 5C. The connector 7 has, for example, wiring and a non-conductive cover covering the wiring. The wiring of the connector 7 is connected to the electric circuit 6 .
図1に示されるように、コネクタ7は、回路カバー5Cに固定されている。コネクタ7は、例えば、配線と配線を覆う非導電性のカバーとを有する。コネクタ7の配線は、電気回路6に接続されている。 <
As shown in FIG. 1,
〈第1の非導電性部材4A〉
図1に示されるように、第1の非導電性部材4Aは、永久磁石22に対してモータ1の負荷側に設けられている。第1の非導電性部材4Aは、例えば、非導電性樹脂である。第1の非導電性部材4Aは、例えば、圧入又は接着剤で導電性筐体5(具体的には、フレーム5Aの第1のハウジング51)に固定されている。第1の非導電性部材4Aは、隙間嵌めで導電性筐体5(具体的には、フレーム5Aの第1のハウジング51)に配置されていてもよい。 <Firstnon-conductive member 4A>
As shown in FIG. 1, the firstnon-conductive member 4A is provided on the load side of the motor 1 with respect to the permanent magnet 22. As shown in FIG. The first non-conductive member 4A is, for example, non-conductive resin. The first non-conductive member 4A is fixed to the conductive housing 5 (specifically, the first housing 51 of the frame 5A) by, for example, press fitting or adhesive. The first non-conductive member 4A may be arranged in the conductive housing 5 (specifically, the first housing 51 of the frame 5A) with a clearance fit.
図1に示されるように、第1の非導電性部材4Aは、永久磁石22に対してモータ1の負荷側に設けられている。第1の非導電性部材4Aは、例えば、非導電性樹脂である。第1の非導電性部材4Aは、例えば、圧入又は接着剤で導電性筐体5(具体的には、フレーム5Aの第1のハウジング51)に固定されている。第1の非導電性部材4Aは、隙間嵌めで導電性筐体5(具体的には、フレーム5Aの第1のハウジング51)に配置されていてもよい。 <First
As shown in FIG. 1, the first
第1の非導電性部材4Aの形状は、円筒形状である。xy平面における第1の非導電性部材4Aの形状は、例えば、円環形状である。この場合、第1の非導電性部材4Aの形状は、中空円筒形状であり、第1の非導電性部材4Aは、貫通孔を有する。したがって、第1の非導電性部材4Aの内側に第1の軸受23が配置されている。したがって、第1の非導電性部材4Aを導電性シャフト21が貫通している。
The shape of the first non-conductive member 4A is cylindrical. The shape of the first non-conductive member 4A in the xy plane is, for example, an annular shape. In this case, the shape of the first non-conductive member 4A is a hollow cylindrical shape, and the first non-conductive member 4A has a through hole. Therefore, the first bearing 23 is arranged inside the first non-conductive member 4A. Therefore, the conductive shaft 21 passes through the first non-conductive member 4A.
第1の軸受23の第1の導電性外輪23Bと第1のハウジング51との間に第1の非導電性部材4Aが存在しているので、第1の軸受23の第1の導電性外輪23Bは、第1の非導電性部材4Aによって第1のハウジング51から電気的に絶縁されている。
Since the first non-conductive member 4A exists between the first conductive outer ring 23B of the first bearing 23 and the first housing 51, the first conductive outer ring of the first bearing 23 23B is electrically insulated from first housing 51 by first non-conductive member 4A.
径方向における第1の非導電性部材4Aの最大厚みt1は、軸線A1から第1の非導電性部材4Aの外周面までの距離と軸線A1から第1の非導電性部材4Aの内周面までの距離との最大差である。言い換えると、径方向における第1の非導電性部材4Aの最大厚みt1は、径方向における最大厚みである。
The maximum thickness t1 of the first non-conductive member 4A in the radial direction is the distance from the axis A1 to the outer peripheral surface of the first non-conductive member 4A and the inner peripheral surface of the first non-conductive member 4A from the axis A1. is the maximum difference from the distance to In other words, the maximum thickness t1 of the first non-conductive member 4A in the radial direction is the maximum thickness in the radial direction.
〈第2の非導電性部材4B〉
図1に示されるように、第2の非導電性部材4Bは、永久磁石22に対してモータ1の反負荷側に設けられている。第2の非導電性部材4Bは、例えば、非導電性樹脂である。第2の非導電性部材4Bは、例えば、圧入又は接着剤で導電性シャフト21に固定されている。この場合、非導電性樹脂から第2の非導電性部材4Bを予め成形し、成形された第2の非導電性部材4Bが導電性シャフト21に固定される。第2の非導電性部材4Bは、一体成形で導電性シャフト21に成形されてもよい。 <Secondnon-conductive member 4B>
As shown in FIG. 1, the secondnon-conductive member 4B is provided on the non-load side of the motor 1 with respect to the permanent magnet 22. As shown in FIG. The second non-conductive member 4B is, for example, non-conductive resin. The second non-conductive member 4B is fixed to the conductive shaft 21 by, for example, press fitting or adhesive. In this case, the second non-conductive member 4B is molded in advance from a non-conductive resin, and the molded second non-conductive member 4B is fixed to the conductive shaft 21. FIG. The second non-conductive member 4B may be integrally formed with the conductive shaft 21 .
図1に示されるように、第2の非導電性部材4Bは、永久磁石22に対してモータ1の反負荷側に設けられている。第2の非導電性部材4Bは、例えば、非導電性樹脂である。第2の非導電性部材4Bは、例えば、圧入又は接着剤で導電性シャフト21に固定されている。この場合、非導電性樹脂から第2の非導電性部材4Bを予め成形し、成形された第2の非導電性部材4Bが導電性シャフト21に固定される。第2の非導電性部材4Bは、一体成形で導電性シャフト21に成形されてもよい。 <Second
As shown in FIG. 1, the second
第2の非導電性部材4Bの形状は、例えば、底部含む円筒形状である。xy平面における第2の非導電性部材4Bの形状は、例えば、円環形状である。この場合、導電性シャフト21の一端は、第2の非導電性部材4Bの内側に挿入されており、第2の非導電性部材4Bの底部によって軸方向に支持されている。
The shape of the second non-conductive member 4B is, for example, a cylindrical shape including a bottom. The shape of the second non-conductive member 4B in the xy plane is, for example, an annular shape. In this case, one end of the conductive shaft 21 is inserted inside the second non-conductive member 4B and axially supported by the bottom of the second non-conductive member 4B.
第2の非導電性部材4Bは、第2の軸受24と導電性シャフト21との間に配置されている。具体的には、第2の非導電性部材4Bは、第2の軸受24の第2の導電性内輪24Aと導電性シャフト21との間に配置されている。第2の軸受24の第2の導電性内輪24Aと導電性シャフト21との間に第2の非導電性部材4Bが存在しているので、第2の軸受24の第2の導電性内輪24Aは、第2の非導電性部材4Bによって導電性シャフト21から電気的に絶縁されている。
The second non-conductive member 4B is arranged between the second bearing 24 and the conductive shaft 21. Specifically, the second non-conductive member 4B is arranged between the second conductive inner ring 24A of the second bearing 24 and the conductive shaft 21 . Since the second non-conductive member 4B exists between the second conductive inner ring 24A of the second bearing 24 and the conductive shaft 21, the second conductive inner ring 24A of the second bearing 24 is electrically insulated from the conductive shaft 21 by a second non-conductive member 4B.
径方向における第2の非導電性部材4Bの最大厚みt2は、軸線A1から第2の非導電性部材4Bの外周面までの距離と軸線A1から第2の非導電性部材4Bの内周面までの距離との最大差である。言い換えると、径方向における第2の非導電性部材4Bの最大厚みt2は、径方向における最大厚みである。
The maximum thickness t2 of the second non-conductive member 4B in the radial direction is the distance from the axis A1 to the outer peripheral surface of the second non-conductive member 4B and the inner peripheral surface of the second non-conductive member 4B from the axis A1. is the maximum difference from the distance to In other words, the maximum thickness t2 of the second non-conductive member 4B in the radial direction is the maximum thickness in the radial direction.
径方向における第1の非導電性部材4Aの最大厚みt1は、径方向における第2の非導電性部材4Bの最大厚みt2よりも大きい。
The maximum thickness t1 of the first non-conductive member 4A in the radial direction is greater than the maximum thickness t2 of the second non-conductive member 4B in the radial direction.
第1の非導電性部材4A及び第2の非導電性部材4Bの材料には、鉄とほぼ同じ線膨張係数を持つ樹脂を使用するのが好ましい。第1の非導電性部材4A及び第2の非導電性部材4Bを形成するための材料として、例えば、熱硬化性樹脂としてのバルクモールディングコンパウンド樹脂(BMC樹脂)が挙げられる。バルクモールディングコンパウンド樹脂は、不飽和ポリエステル樹脂に種々の添加剤が加えられた熱硬化性樹脂である。バルクモールディングコンパウンド樹脂は、例えば、以下の特徴を持つ。
(1)エポキシ樹脂に比べて硬化時間が短いため、生産性が良い;
(2)材料のコストと特性のバランスが良い;
(3)低圧での成形が可能である;
(4)寸法の安定性が高い;
(5)表面硬さが高く、傷が付きにくい;
(6)金属に比べて軽く、複雑形状の成形性に優れ、且つ吸振性にも優れている。 As the material of the firstnon-conductive member 4A and the second non-conductive member 4B, it is preferable to use a resin having approximately the same coefficient of linear expansion as iron. Materials for forming the first non-conductive member 4A and the second non-conductive member 4B include, for example, bulk molding compound resin (BMC resin) as a thermosetting resin. Bulk molding compound resins are thermosetting resins in which various additives are added to unsaturated polyester resins. The bulk molding compound resin has, for example, the following characteristics.
(1) Productivity is good because curing time is shorter than that of epoxy resin;
(2) a good balance between material cost and properties;
(3) Molding at low pressure is possible;
(4) high dimensional stability;
(5) High surface hardness and scratch resistance;
(6) It is lighter than metal, has excellent formability into complicated shapes, and has excellent vibration absorption.
(1)エポキシ樹脂に比べて硬化時間が短いため、生産性が良い;
(2)材料のコストと特性のバランスが良い;
(3)低圧での成形が可能である;
(4)寸法の安定性が高い;
(5)表面硬さが高く、傷が付きにくい;
(6)金属に比べて軽く、複雑形状の成形性に優れ、且つ吸振性にも優れている。 As the material of the first
(1) Productivity is good because curing time is shorter than that of epoxy resin;
(2) a good balance between material cost and properties;
(3) Molding at low pressure is possible;
(4) high dimensional stability;
(5) High surface hardness and scratch resistance;
(6) It is lighter than metal, has excellent formability into complicated shapes, and has excellent vibration absorption.
本実施の形態では、第1の非導電性部材4A及び第2の非導電性部材4Bを形成するための材料として、バルクモールディングコンパウンド樹脂が使用されているが、セラミックなどのバルクモールディングコンパウンド樹脂以外の材料を使用してもよい。
In the present embodiment, a bulk molding compound resin is used as a material for forming the first non-conductive member 4A and the second non-conductive member 4B. material may be used.
変形例.
モータ1は、例えば、永久磁石埋込型電動機(IPMモータ)でもよい。この場合、ロータ2は、少なくとも1つの磁石挿入孔を有するロータコアを有し、各磁石挿入孔に永久磁石が配置されている。ロータコアは、例えば、軸方向に積層された複数の電磁鋼板で構成される。 Modification.
Themotor 1 may be, for example, an embedded permanent magnet motor (IPM motor). In this case, the rotor 2 has a rotor core with at least one magnet insertion hole, and a permanent magnet is arranged in each magnet insertion hole. The rotor core is composed of, for example, a plurality of magnetic steel sheets laminated in the axial direction.
モータ1は、例えば、永久磁石埋込型電動機(IPMモータ)でもよい。この場合、ロータ2は、少なくとも1つの磁石挿入孔を有するロータコアを有し、各磁石挿入孔に永久磁石が配置されている。ロータコアは、例えば、軸方向に積層された複数の電磁鋼板で構成される。 Modification.
The
〈本実施の形態の利点〉
<Advantages of this embodiment>
本実施の形態によれば、第1の導電性外輪23Bは、第1の非導電性部材4Aによって導電性筐体5(具体的には、第1のハウジング51)から絶縁されているので、第1の軸受23に流れる電流を低減することができる。本実施の形態によれば、第2の導電性内輪24Aは、第2の非導電性部材4Bによって導電性シャフト21から絶縁されているので、第2の軸受24に流れる電流を低減することができる。したがって、本実施の形態によれば、第1の軸受23及び第2の軸受24における電食の発生を防ぎ、モータ1における振動及び騒音を低減することができる。その結果、モータ1の性能を長期にわたって維持することができる。
According to the present embodiment, the first conductive outer ring 23B is insulated from the conductive housing 5 (specifically, the first housing 51) by the first non-conductive member 4A. The current flowing through the first bearing 23 can be reduced. According to this embodiment, the second conductive inner ring 24A is insulated from the conductive shaft 21 by the second non-conductive member 4B, so the current flowing through the second bearing 24 can be reduced. can. Therefore, according to the present embodiment, the occurrence of electrolytic corrosion in the first bearing 23 and the second bearing 24 can be prevented, and vibration and noise in the motor 1 can be reduced. As a result, the performance of the motor 1 can be maintained over a long period of time.
さらに、本実施の形態によれば、導電性シャフト21が導電性筐体5(具体的には、フレーム5A)の外へ突出していても、第1の導電性外輪23Bを第1の非導電性部材4Aによって導電性筐体5(具体的には、第1のハウジング51)から容易に絶縁することができる。
Furthermore, according to the present embodiment, even if the conductive shaft 21 protrudes outside the conductive housing 5 (specifically, the frame 5A), the first conductive outer ring 23B is connected to the first non-conductive shaft. It can be easily insulated from the conductive housing 5 (specifically, the first housing 51) by the conductive member 4A.
さらに、本実施の形態によれば、導電性筐体5(例えば、金属製の筐体)を用いた場合であっても、第1の軸受23を導電性筐体5から容易に絶縁することができ、第2の軸受24を導電性シャフト21から容易に絶縁することができる。その結果、第1の軸受23及び第2の軸受24に流れる電流を低減することができる。
Furthermore, according to the present embodiment, even when the conductive housing 5 (for example, a metal housing) is used, the first bearing 23 can be easily insulated from the conductive housing 5. , and the second bearing 24 can be easily insulated from the conductive shaft 21 . As a result, the current flowing through the first bearing 23 and the second bearing 24 can be reduced.
第1の軸受23の第1の導電性外輪23Bと第1のハウジング51との間における静電容量を「第1の静電容量」とし、第2の軸受24の第2の導電性内輪24Aと導電性シャフト21との間における静電容量を「第2の静電容量」とする。径方向における第1の非導電性部材4Aの最大厚みt1が径方向における第2の非導電性部材4Bの最大厚みt2よりも大きい場合、第1の静電容量と第2の静電容量との差を低減することができる。したがって、ロータ2の回転中に発生する第1の軸受23の第1の導電性内輪23Aと第1の導電性外輪23Bとの間の電圧を「第1の軸受電圧」とし、ロータ2の回転中に発生する第2の軸受24の第2の導電性内輪24Aと第2の導電性外輪24Bとの間の電圧を「第2の軸受電圧」としたとき、第1の軸受電圧と第2の軸受電圧との差を低減することができる。その結果、電食による第1の軸受23と第2の軸受24との間の寿命の差を低減することができ、モータ1の性能を長期にわたって維持することができる。
The capacitance between the first conductive outer ring 23B of the first bearing 23 and the first housing 51 is defined as "first capacitance", and the second conductive inner ring 24A of the second bearing 24 and the conductive shaft 21 is defined as a "second capacitance". When the maximum thickness t1 of the first non-conductive member 4A in the radial direction is greater than the maximum thickness t2 of the second non-conductive member 4B in the radial direction, the first capacitance and the second capacitance difference can be reduced. Therefore, the voltage generated between the first conductive inner ring 23A and the first conductive outer ring 23B of the first bearing 23 during rotation of the rotor 2 is defined as "first bearing voltage", When the voltage generated between the second conductive inner ring 24A and the second conductive outer ring 24B of the second bearing 24 is defined as "second bearing voltage", the first bearing voltage and the second can reduce the difference between the bearing voltage of As a result, the difference in service life between the first bearing 23 and the second bearing 24 due to electrolytic corrosion can be reduced, and the performance of the motor 1 can be maintained over a long period of time.
第1の静電容量は、第2の静電容量と等しいことが好ましい。第1の静電容量が第2の静電容量と等しいとき、第1の軸受電圧と第2の軸受電圧との差を効果的に低減することができる。その結果、電食による第1の軸受23と第2の軸受24との間の寿命の差を効果的に低減することができる。
The first capacitance is preferably equal to the second capacitance. When the first capacitance is equal to the second capacitance, the difference between the first bearing voltage and the second bearing voltage can be effectively reduced. As a result, the difference in service life between the first bearing 23 and the second bearing 24 due to electrolytic corrosion can be effectively reduced.
図5は、第1の非導電性部材4A及び第2の非導電性部材4Bの各々の径方向における最大厚み[mm]と静電容量[pF]との関係を示すグラフである。以下、図5に関して、第1の静電容量及び第2の静電容量の各々を単に「静電容量」とも称する。
図5に示されるように、径方向における最大厚みが小さくなるにつれて静電容量が急激に増加する。 FIG. 5 is a graph showing the relationship between the maximum thickness [mm] in the radial direction and the capacitance [pF] of each of the firstnon-conductive member 4A and the second non-conductive member 4B. Hereinafter, with reference to FIG. 5, each of the first capacitance and the second capacitance is also simply referred to as "capacitance".
As shown in FIG. 5, the capacitance increases sharply as the maximum thickness in the radial direction decreases.
図5に示されるように、径方向における最大厚みが小さくなるにつれて静電容量が急激に増加する。 FIG. 5 is a graph showing the relationship between the maximum thickness [mm] in the radial direction and the capacitance [pF] of each of the first
As shown in FIG. 5, the capacitance increases sharply as the maximum thickness in the radial direction decreases.
モータ1では、第1の軸受電圧及び第2の軸受電圧を低減するために、第1の静電容量及び第2の静電容量は、7pF以下であることが好ましい。したがって、図5に示されるように、第1の非導電性部材4Aでは、径方向における最大厚みt1が1.6mm以上であることが好ましい。径方向における第1の非導電性部材4Aの最大厚みt1が1.6mm以上であるとき、第1の非導電性部材4Aの第1の静電容量を7pF以下にすることができる。その結果、第1の軸受電圧を低減することができ、第1の軸受23に流れる電流を低減することができる。
In the motor 1, the first capacitance and the second capacitance are preferably 7 pF or less in order to reduce the first bearing voltage and the second bearing voltage. Therefore, as shown in FIG. 5, the first non-conductive member 4A preferably has a maximum radial thickness t1 of 1.6 mm or more. When the maximum thickness t1 of the first non-conductive member 4A in the radial direction is 1.6 mm or more, the first capacitance of the first non-conductive member 4A can be 7 pF or less. As a result, the first bearing voltage can be reduced, and the current flowing through the first bearing 23 can be reduced.
図5に示されるように、第2の非導電性部材4Bでは、径方向における最大厚みt2が0.5mm以上であることが好ましい。径方向における第2の非導電性部材4Bの最大厚みt2が0.5mm以上であるとき、第2の非導電性部材4Bの第2の静電容量を7pF以下にすることができる。その結果、第2の軸受電圧を低減することができ、第2の軸受24に流れる電流を低減することができる。
As shown in FIG. 5, the second non-conductive member 4B preferably has a maximum radial thickness t2 of 0.5 mm or more. When the maximum thickness t2 of the second non-conductive member 4B in the radial direction is 0.5 mm or more, the second capacitance of the second non-conductive member 4B can be 7 pF or less. As a result, the second bearing voltage can be reduced, and the current flowing through the second bearing 24 can be reduced.
最大厚みt1及び最大厚みt2の関係が、t1≧1.6mm且つt2≧0.5mmを満たすとき、第1の軸受電圧及び第2の軸受電圧を低減することができ、第1の軸受23及び第2の軸受24に流れる電流を低減することができる。
When the relationship between the maximum thickness t1 and the maximum thickness t2 satisfies t1≧1.6 mm and t2≧0.5 mm, the first bearing voltage and the second bearing voltage can be reduced, and the first bearing 23 and The current flowing through the second bearing 24 can be reduced.
製造コストを抑えるために、静電容量は、1pF以上であることが好ましい。したがって、図5に示されるように、第1の非導電性部材4Aでは、径方向における最大厚みt1が16mm以下であることが好ましい。径方向における第1の非導電性部材4Aの最大厚みt1が16mm以下であるとき、第1の静電容量を1pF以上に維持しながら、製造コストを抑えることができる。図5に示されるように、第2の非導電性部材4Bでは、径方向における最大厚みt2が2.4mm以下であることが好ましい。径方向における第2の非導電性部材4Bの最大厚みt2が2.4mm以下であるとき、第2の静電容量を1pF以上に維持しながら、製造コストを抑えることができる。
In order to reduce manufacturing costs, the capacitance is preferably 1 pF or more. Therefore, as shown in FIG. 5, the first non-conductive member 4A preferably has a maximum radial thickness t1 of 16 mm or less. When the maximum thickness t1 of the first non-conductive member 4A in the radial direction is 16 mm or less, manufacturing costs can be reduced while maintaining the first capacitance at 1 pF or more. As shown in FIG. 5, the second non-conductive member 4B preferably has a maximum radial thickness t2 of 2.4 mm or less. When the maximum thickness t2 of the second non-conductive member 4B in the radial direction is 2.4 mm or less, manufacturing costs can be reduced while maintaining the second capacitance at 1 pF or more.
したがって、第1の非導電性部材4Aの最大厚みt1は、1.6mm≦t1≦16mmを満たすことが好ましい。この構成により、製造コストを抑えながら、第1の軸受電圧を抑えることができる。その結果、第1の軸受23に流れる電流を低減することができる。第2の非導電性部材4Bの最大厚みt2は、0.5mm≦t1≦2.4mmを満たすことが好ましい。この構成により、製造コストを抑えながら、第2の軸受電圧を抑えることができる。その結果、第2の軸受24に流れる電流を低減することができる。
Therefore, the maximum thickness t1 of the first non-conductive member 4A preferably satisfies 1.6mm≤t1≤16mm. With this configuration, it is possible to suppress the first bearing voltage while suppressing manufacturing costs. As a result, the current flowing through the first bearing 23 can be reduced. A maximum thickness t2 of the second non-conductive member 4B preferably satisfies 0.5 mm≦t1≦2.4 mm. With this configuration, it is possible to suppress the second bearing voltage while suppressing the manufacturing cost. As a result, the current flowing through the second bearing 24 can be reduced.
最大厚みt1及び最大厚みt2の関係は、1.6mm≦t1≦16mm且つ0.5mm≦t2≦2.4mmを満たすことが好ましい。この場合において、t1>t2を満たすように、最大厚みt1及び最大厚みt2が調整される。この構成により、製造コストを抑えながら、第1の軸受23及び第2の軸受24に流れる電流を低減することができる。
The relationship between the maximum thickness t1 and the maximum thickness t2 preferably satisfies 1.6 mm ≤ t1 ≤ 16 mm and 0.5 mm ≤ t2 ≤ 2.4 mm. In this case, the maximum thickness t1 and the maximum thickness t2 are adjusted so as to satisfy t1>t2. With this configuration, the current flowing through the first bearing 23 and the second bearing 24 can be reduced while suppressing the manufacturing cost.
図6は、第1の静電容量と第2の静電容量とが等しい場合における、比t1/t2に対する第1の静電容量及び第2の静電容量の各々との関係を示すグラフである。以下、図6に関して、第1の静電容量及び第2の静電容量の各々を単に「静電容量」とも称する。比t1/t2は、径方向における第1の非導電性部材4Aの最大厚みt1と、径方向における第2の非導電性部材4Bの最大厚みt2との比である。
FIG. 6 is a graph showing the relationship between the first capacitance and the second capacitance with respect to the ratio t1/t2 when the first capacitance and the second capacitance are equal; be. Hereinafter, with reference to FIG. 6, each of the first capacitance and the second capacitance is also simply referred to as "capacitance". The ratio t1/t2 is the ratio between the maximum thickness t1 of the first non-conductive member 4A in the radial direction and the maximum thickness t2 of the second non-conductive member 4B in the radial direction.
図6に示されるように、比t1/t2が3.1以上であるとき、静電容量は7pF以下であり、比t1/t2が6.7以下であるとき、静電容量は1pF以上である。したがって、第1の静電容量と第2の静電容量とが等しく、なお且つ、比t1/t2が3.1≦(t1/t2)≦6.7を満たすとき、製造コストを抑えながら、第1の軸受23及び第2の軸受24に流れる電流を低減することができる。その結果、製造コストを抑えながら、第1の軸受23及び第2の軸受24における電食の発生を防ぐことができる。
As shown in FIG. 6, when the ratio t1/t2 is 3.1 or more, the capacitance is 7 pF or less, and when the ratio t1/t2 is 6.7 or less, the capacitance is 1 pF or more. be. Therefore, when the first capacitance and the second capacitance are equal and the ratio t1/t2 satisfies 3.1 ≤ (t1/t2) ≤ 6.7, while suppressing the manufacturing cost, The current flowing through the first bearing 23 and the second bearing 24 can be reduced. As a result, the occurrence of electrolytic corrosion in the first bearing 23 and the second bearing 24 can be prevented while suppressing manufacturing costs.
第1の導電性外輪23Bの外径が第2の導電性外輪24Bの外径と等しく、第1のハウジング51の最大内径r1が第2のハウジング52の最大内径r2よりも大きい場合、第1の静電容量と第2の静電容量との差を低減することができる。その結果、電食による第1の軸受23と第2の軸受24との間の寿命の差を低減することができる。
When the outer diameter of the first conductive outer ring 23B is equal to the outer diameter of the second conductive outer ring 24B and the maximum inner diameter r1 of the first housing 51 is greater than the maximum inner diameter r2 of the second housing 52, the first and the second capacitance can be reduced. As a result, the difference in service life between the first bearing 23 and the second bearing 24 due to electrolytic corrosion can be reduced.
第1の非導電性部材4Aは、モータ1の負荷側に設けられており、第2の非導電性部材4Bは、モータ1の反負荷側に設けられている。したがって、第1の軸受23を導電性筐体5から容易に絶縁することができ、第2の軸受24を導電性シャフト21から容易に絶縁することができ、モータ1の生産性を高めることができる。
The first non-conductive member 4A is provided on the load side of the motor 1, and the second non-conductive member 4B is provided on the non-load side of the motor 1. Therefore, the first bearing 23 can be easily isolated from the conductive housing 5, the second bearing 24 can be easily isolated from the conductive shaft 21, and the productivity of the motor 1 can be improved. can.
導電性筐体5は、カップ状のフレーム5Aと、カップ状のフレーム5Aの内部を覆うブラケット5Bとを有する。この場合、導電性筐体5が金属製の筐体であっても、第1の軸受23及び第2の軸受24の電食を防ぐことができるとともに、モータ1の機械的な強度を高めることができる。
The conductive housing 5 has a cup-shaped frame 5A and a bracket 5B that covers the inside of the cup-shaped frame 5A. In this case, even if the conductive housing 5 is a metal housing, electrolytic corrosion of the first bearing 23 and the second bearing 24 can be prevented, and the mechanical strength of the motor 1 can be increased. can be done.
バルクモールディングコンパウンド樹脂で第1の非導電性部材4Aが形成されている場合、モータ1内で温度変化が生じても、第1の非導電性部材4Aにおけるクリープの発生を防ぐことができる。その結果、ロータ2の回転中における第1の軸受23の振動を防ぐことができる。
When the first non-conductive member 4A is formed of bulk molding compound resin, even if temperature changes occur in the motor 1, the occurrence of creep in the first non-conductive member 4A can be prevented. As a result, vibration of the first bearing 23 during rotation of the rotor 2 can be prevented.
バルクモールディングコンパウンド樹脂で第2の非導電性部材4Bが形成されている場合、モータ1内で温度変化が生じても、第2の非導電性部材4Bにおけるクリープの発生を防ぐことができる。その結果、ロータ2の回転中における第2の軸受24の振動を防ぐことができる。
When the second non-conductive member 4B is formed of bulk molding compound resin, even if temperature changes occur in the motor 1, the second non-conductive member 4B can be prevented from creeping. As a result, vibration of the second bearing 24 during rotation of the rotor 2 can be prevented.
変形例で説明したように、モータ1は、永久磁石埋込型電動機でもよい。モータ1が永久磁石埋込型電動機である場合、ロータ2は、少なくとも1つの磁石挿入孔を有するロータコアを有し、各磁石挿入孔に永久磁石が配置されている。この場合、モータ1における損失を低減することができ、電食に対する耐力の優れた小型のモータ1を提供することができる。
As described in the modified example, the motor 1 may be a permanent magnet embedded electric motor. When the motor 1 is an embedded permanent magnet type electric motor, the rotor 2 has a rotor core having at least one magnet insertion hole, and a permanent magnet is arranged in each magnet insertion hole. In this case, the loss in the motor 1 can be reduced, and the compact motor 1 with excellent resistance to electrolytic corrosion can be provided.
実施の形態2.
図7は、実施の形態2に係るファン9を概略的に示す図である。
ファン9は、羽根91と、モータ1とを有する。ファン9は、送風機とも称する。羽根91は、例えば、ガラス繊維を含むポリプロピレン(polypropylene:PP)で形成されている。羽根91は、例えば、シロッコファン、プロペラファン、クロスフローファン、又はターボファンである。Embodiment 2.
FIG. 7 is a diagram schematically showingfan 9 according to the second embodiment.
Thefan 9 has blades 91 and a motor 1 . The fan 9 is also called a blower. The vanes 91 are made of, for example, polypropylene (PP) containing glass fiber. The blades 91 are, for example, sirocco fans, propeller fans, cross-flow fans, or turbo fans.
図7は、実施の形態2に係るファン9を概略的に示す図である。
ファン9は、羽根91と、モータ1とを有する。ファン9は、送風機とも称する。羽根91は、例えば、ガラス繊維を含むポリプロピレン(polypropylene:PP)で形成されている。羽根91は、例えば、シロッコファン、プロペラファン、クロスフローファン、又はターボファンである。
FIG. 7 is a diagram schematically showing
The
モータ1は、実施の形態1に係るモータ1である。羽根91は、モータ1のシャフトに固定されている。モータ1は、羽根91を駆動させる。具体的には、モータ1は、羽根91を回転させる。モータ1が駆動すると、羽根91が回転し、気流が生成される。これにより、ファン9は送風することができる。
The motor 1 is the motor 1 according to the first embodiment. Blade 91 is fixed to the shaft of motor 1 . A motor 1 drives the blades 91 . Specifically, the motor 1 rotates the vane 91 . When the motor 1 is driven, the blades 91 are rotated to generate an airflow. Thereby, the fan 9 can blow air.
実施の形態2に係るファン9は、実施の形態1に係るモータ1を有するので、実施の形態1で説明した利点と同じ利点を得ることができる。さらに、ファン9の性能を長期にわたって維持することができる。
Since the fan 9 according to Embodiment 2 has the motor 1 according to Embodiment 1, the same advantages as those described in Embodiment 1 can be obtained. Furthermore, the performance of the fan 9 can be maintained for a long period of time.
さらに、実施の形態2に係るファン9は実施の形態1に係るモータ1を有するので、ファン9における振動及び騒音を低減することができる。
Furthermore, since the fan 9 according to Embodiment 2 has the motor 1 according to Embodiment 1, vibration and noise in the fan 9 can be reduced.
実施の形態3.
図8は、実施の形態3に係る換気扇8を概略的に示す図である。
換気扇8は、羽根81と、羽根81を回転させるモータ1とを有する。モータ1は、実施の形態1で説明したモータ1である。羽根81は、モータ1の導電性シャフト21の負荷側に固定されている。Embodiment 3.
FIG. 8 is a diagram schematically showing theventilation fan 8 according to Embodiment 3. As shown in FIG.
Theventilation fan 8 has blades 81 and a motor 1 that rotates the blades 81 . The motor 1 is the motor 1 described in the first embodiment. A vane 81 is fixed to the load side of the electrically conductive shaft 21 of the motor 1 .
図8は、実施の形態3に係る換気扇8を概略的に示す図である。
換気扇8は、羽根81と、羽根81を回転させるモータ1とを有する。モータ1は、実施の形態1で説明したモータ1である。羽根81は、モータ1の導電性シャフト21の負荷側に固定されている。
FIG. 8 is a diagram schematically showing the
The
換気扇8は、住宅用、業務用などの幅広い用途に使用できる。例えば、住宅用の、居間、台所、浴室、トイレで使用される。羽根81と、モータ1の少なくとも一部とは、換気扇ボディ82によって覆われている。モータ1の導電性筐体5は、換気扇ボディ82にねじ83で固定されている。換気扇ボディ82には、電源接続端子台84とアース接続端子85とが設けられている。
The ventilation fan 8 can be used for a wide range of purposes such as residential use and business use. For example, it is used in residential living rooms, kitchens, bathrooms and toilets. The blades 81 and at least part of the motor 1 are covered with a fan body 82 . The conductive housing 5 of the motor 1 is fixed to the ventilation fan body 82 with screws 83 . The ventilation fan body 82 is provided with a power connection terminal block 84 and a ground connection terminal 85 .
モータ1のコネクタ7は、電源接続端子台84に接続されている。電源接続端子台84の外部接続端子のうちの一端は、スイッチ86を通して交流電源の電源ラインの一端に接続されており、電源接続端子台84の外部接続端子のうちの他端は、交流電源のうちの電源ラインの他端と直接接続されている。すなわち、スイッチ86のオンオフにより、モータ1への電力の供給が制御される。スイッチ86をオンにすると、モータ1に電力が供給され、モータ1の導電性シャフト21に固定された羽根81が回転し、部屋が換気される。
The connector 7 of the motor 1 is connected to the power connection terminal block 84. One end of the external connection terminals of the power supply connection terminal block 84 is connected to one end of the AC power supply line through a switch 86, and the other end of the external connection terminals of the power supply connection terminal block 84 is connected to the AC power supply. It is directly connected to the other end of our power line. That is, the power supply to the motor 1 is controlled by turning the switch 86 on and off. When the switch 86 is turned on, power is supplied to the motor 1, the vanes 81 fixed to the conductive shaft 21 of the motor 1 rotate, and the room is ventilated.
換気扇8は、実施の形態1に係るモータ1を有するので、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、換気扇8の性能を長期にわたって維持することができる。
Since the ventilation fan 8 has the motor 1 according to Embodiment 1, the same advantages as those described in Embodiment 1 can be obtained. As a result, the performance of the ventilation fan 8 can be maintained for a long period of time.
さらに、換気扇8は実施の形態1に係るモータ1を有するので、換気扇8における振動及び騒音を低減することができる。
Furthermore, since the ventilation fan 8 has the motor 1 according to Embodiment 1, vibration and noise in the ventilation fan 8 can be reduced.
導電性筐体5のフランジ53は、ねじ83で換気扇8の換気扇ボディ82に固定されている。モータ1のフレーム5Aは、換気扇ボディ82の内部に配置されている。モータ1の電気回路6は、換気扇ボディ82の外に配置されている。電気回路6とロータ2との間には、ブラケット5Bが配置されている。したがって、電気回路6は、ロータ2から隔離されているので、電気回路6は、換気扇ボディ82の内部の温度及び湿度の影響を受けにくい。したがって、換気扇8の安定した性能を長期にわたって維持することができる。その結果、第1の軸受23及び第2の軸受24の電食による換気扇8における騒音の増加を防止でき、長期にわたって快適な空間を提供できる。
The flange 53 of the conductive housing 5 is fixed to the ventilation fan body 82 of the ventilation fan 8 with screws 83 . The frame 5A of the motor 1 is arranged inside the ventilation fan body 82. As shown in FIG. The electric circuit 6 of the motor 1 is arranged outside the fan body 82 . A bracket 5B is arranged between the electric circuit 6 and the rotor 2 . Therefore, since the electric circuit 6 is isolated from the rotor 2 , the electric circuit 6 is less susceptible to temperature and humidity inside the ventilator body 82 . Therefore, stable performance of the ventilation fan 8 can be maintained for a long period of time. As a result, an increase in noise in the ventilation fan 8 due to electrolytic corrosion of the first bearing 23 and the second bearing 24 can be prevented, and a comfortable space can be provided for a long period of time.
モータ1の導電性筐体5が金属製の筐体である場合、ロータ2を保持するためのモータ1の強度が向上する。したがって、モータ1の導電性筐体5が金属製の筐体である場合、大型の羽根、金属製の羽根などの重い羽根を、羽根81に適用することができる。
When the conductive housing 5 of the motor 1 is a metal housing, the strength of the motor 1 for holding the rotor 2 is improved. Therefore, if the conductive housing 5 of the motor 1 is a metal housing, heavy blades such as large blades and metal blades can be applied to the blades 81 .
モータ1が永久磁石埋込型電動機である場合、電食に対する耐力の優れた小型のモータ1を提供することができる。したがって、モータ1が永久磁石埋込型電動機である場合、換気扇8を小型化することができる。その結果、換気扇ボディ82を大型化せずに、換気扇8の風量を増加させることができる。
If the motor 1 is an embedded permanent magnet type electric motor, it is possible to provide a compact motor 1 with excellent resistance to electrolytic corrosion. Therefore, if the motor 1 is a permanent magnet embedded electric motor, the ventilation fan 8 can be made smaller. As a result, the air volume of the ventilation fan 8 can be increased without increasing the size of the ventilation fan body 82 .
実施の形態4.
実施の形態4に係る空気調和機10(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
図9は、実施の形態4に係る空気調和機10の構成を概略的に示す図である。Embodiment 4.
An air conditioner 10 (also referred to as a refrigeration air conditioner or a refrigeration cycle device) according toEmbodiment 4 will be described.
FIG. 9 is a diagram schematically showing the configuration ofair conditioner 10 according to Embodiment 4. As shown in FIG.
実施の形態4に係る空気調和機10(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
図9は、実施の形態4に係る空気調和機10の構成を概略的に示す図である。
An air conditioner 10 (also referred to as a refrigeration air conditioner or a refrigeration cycle device) according to
FIG. 9 is a diagram schematically showing the configuration of
実施の形態4に係る空気調和機10は、送風機(第1の送風機とも称する)としての室内機11と、室内機11に接続される送風機(第2の送風機とも称する)としての室外機13とを有する。
An air conditioner 10 according to Embodiment 4 includes an indoor unit 11 as a fan (also referred to as a first fan) and an outdoor unit 13 as a fan (also referred to as a second fan) connected to the indoor unit 11. have
本実施の形態では、空気調和機10は、室内機11と、冷媒配管12と、室外機13とを有する。例えば、室外機13は、冷媒配管12を通して室内機11に接続される。
In this embodiment, the air conditioner 10 has an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13. For example, the outdoor unit 13 is connected to the indoor unit 11 through the refrigerant pipe 12 .
室内機11は、モータ11a(例えば、実施の形態1に係るモータ1)と、モータ11aによって駆動されることにより、送風する送風部11bと、モータ11a及び送風部11bを覆うハウジング11cとを有する。送風部11bは、例えば、モータ11aによって駆動される羽根11dを有する。例えば、羽根11dは、モータ11aのシャフトに固定されており、気流を生成する。
The indoor unit 11 has a motor 11a (for example, the motor 1 according to Embodiment 1), a blower section 11b that blows air by being driven by the motor 11a, and a housing 11c that covers the motor 11a and the blower section 11b. . The air blower 11b has, for example, blades 11d driven by a motor 11a. For example, vanes 11d are fixed to the shaft of motor 11a and generate airflow.
室外機13は、モータ13a(例えば、実施の形態1に係るモータ1)と、送風部13bと、圧縮機14と、熱交換器(図示しない)と、送風部13b、圧縮機14、及び熱交換器を覆うハウジング13cとを有する。送風部13bは、モータ13aによって駆動されることにより、送風する。送風部13bは、例えば、モータ13aによって駆動される羽根13dを有する。例えば、羽根13dは、モータ13aのシャフトに固定されており、気流を生成する。圧縮機14は、モータ14a(例えば、実施の形態1に係るモータ1)と、モータ14aによって駆動される圧縮機構14b(例えば、冷媒回路)と、モータ14a及び圧縮機構14bを覆うハウジング14cとを有する。
The outdoor unit 13 includes a motor 13a (for example, the motor 1 according to Embodiment 1), an air blower 13b, a compressor 14, a heat exchanger (not shown), an air blower 13b, a compressor 14, and a heat exchanger. and a housing 13c covering the exchanger. The air blower 13b blows air by being driven by the motor 13a. The air blower 13b has, for example, blades 13d driven by a motor 13a. For example, the vanes 13d are fixed to the shaft of the motor 13a and generate the airflow. The compressor 14 includes a motor 14a (for example, the motor 1 according to Embodiment 1), a compression mechanism 14b (for example, a refrigerant circuit) driven by the motor 14a, and a housing 14c that covers the motor 14a and the compression mechanism 14b. have.
空気調和機10において、室内機11及び室外機13の少なくとも1つは、実施の形態1で説明したモータ1を有する。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々は、実施の形態1で説明したモータ1を有する。具体的には、送風部の駆動源として、モータ11a及び13aの少なくとも一方に、実施の形態1で説明したモータ1が適用される。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々に、実施の形態1で説明したモータ1が適用される。圧縮機14のモータ14aに、実施の形態1で説明したモータ1を適用してもよい。
In the air conditioner 10, at least one of the indoor unit 11 and the outdoor unit 13 has the motor 1 described in the first embodiment. That is, each of the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 has the motor 1 described in the first embodiment. Specifically, the motor 1 described in the first embodiment is applied to at least one of the motors 11a and 13a as the driving source of the air blower. That is, the motor 1 described in Embodiment 1 is applied to each of the indoor unit 11 and the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13. Motor 1 described in the first embodiment may be applied to motor 14 a of compressor 14 .
空気調和機10は、例えば、室内機11から冷たい空気を送風する冷房運転、温かい空気を送風する暖房運転などの空調を行うことができる。室内機11において、モータ11aは、送風部11bを駆動するための駆動源である。送風部11bは、調整された空気を送風することができる。
The air conditioner 10 can perform air conditioning, for example, a cooling operation in which cold air is blown from the indoor unit 11 and a heating operation in which warm air is blown. In the indoor unit 11, the motor 11a is a drive source for driving the air blower 11b. The air blower 11b can blow the adjusted air.
室内機11において、モータ11aは、例えば、ねじによって室内機11のハウジング11cに固定されている。室外機13において、モータ13aは、例えば、ねじによって室外機13のハウジング13cに固定されている。
In the indoor unit 11, the motor 11a is fixed to the housing 11c of the indoor unit 11 with screws, for example. In the outdoor unit 13, the motor 13a is fixed to the housing 13c of the outdoor unit 13 with screws, for example.
実施の形態4に係る空気調和機10では、モータ11a及び13aの少なくとも一方に、実施の形態1で説明したモータ1が適用されるので、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、空気調和機10の性能を長期にわたって維持することができる。
In the air conditioner 10 according to Embodiment 4, the motor 1 described in Embodiment 1 is applied to at least one of the motors 11a and 13a, so the same advantages as those described in Embodiment 1 can be obtained. can be done. As a result, the performance of the air conditioner 10 can be maintained for a long period of time.
さらに、送風機(例えば、室内機11)の駆動源として、実施の形態1に係るモータ1が用いられる場合、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、送風機の性能を長期にわたって維持する。実施の形態1に係るモータ1とモータ1によって駆動される羽根(例えば、羽根11d又は13d)とを有する送風機は、送風する装置として単独で用いることができる。この送風機は、空気調和機10以外の機器にも適用可能である。
Furthermore, when the motor 1 according to Embodiment 1 is used as the drive source for the blower (for example, the indoor unit 11), the same advantages as those described in Embodiment 1 can be obtained. As a result, the performance of the blower is maintained over a long period of time. The fan having the motor 1 according to Embodiment 1 and the blades (for example, the blades 11d or 13d) driven by the motor 1 can be used alone as a device for blowing air. This blower can also be applied to devices other than the air conditioner 10 .
さらに、圧縮機14の駆動源として、実施の形態1に係るモータ1が用いられる場合、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、圧縮機14の性能を長期にわたって維持することができる。
Furthermore, when the motor 1 according to Embodiment 1 is used as the drive source for the compressor 14, the same advantages as those described in Embodiment 1 can be obtained. As a result, the performance of the compressor 14 can be maintained for a long period of time.
実施の形態1で説明したモータ1は、空気調和機10以外に、換気扇、家電機器、又は工作機など、駆動源を有する機器に搭載できる。
The motor 1 described in Embodiment 1 can be installed in equipment having a drive source, such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10 .
以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに組み合わせることができる。
The features of each embodiment and the features of each modification described above can be combined with each other.
1,11a,13a,14a モータ、 2 ロータ、 3 ステータ、 4A 第1の非導電性部材、 4B 第2の非導電性部材、 5 導電性筐体、 5A フレーム、 5B ブラケット、 6 電気回路、 7 コネクタ、 8 換気扇、 9 ファン、 10 空気調和機、 11 室内機、 12 冷媒配管、 13 室外機、 21 導電性シャフト、 22 永久磁石、 23 第1の軸受、 23A 第1の導電性内輪、 23B 第1の導電性外輪、 23C,24C 玉、 24 第2の軸受、 24A 第2の導電性内輪、 24B 第2の導電性外輪、 31 ステータコア、 32 インシュレータ、 33 コイル、 51 第1のハウジング、 52 第2のハウジング、 81,91 羽根。
1, 11a, 13a, 14a motor, 2 rotor, 3 stator, 4A first non-conductive member, 4B second non-conductive member, 5 conductive housing, 5A frame, 5B bracket, 6 electric circuit, 7 Connector, 8: Ventilation fan, 9: Fan, 10: Air conditioner, 11: Indoor unit, 12: Refrigerant pipe, 13: Outdoor unit, 21: Conductive shaft, 22: Permanent magnet, 23: First bearing, 23A: First conductive inner ring, 23B: Second 1 conductive outer ring, 23C, 24C balls, 24 second bearing, 24A second conductive inner ring, 24B second conductive outer ring, 31 stator core, 32 insulator, 33 coil, 51 first housing, 52 second 2 housings, 81, 91 vanes.
Claims (12)
- ステータと、
前記ステータの内側に配置されており、導電性シャフトと、前記導電性シャフトを回転可能に支持する第1及び第2の軸受とを有するロータと、
第1の非導電性部材と、
前記第2の軸受と前記導電性シャフトとの間に配置された第2の非導電性部材と、
前記第1の非導電性部材が配置された第1のハウジングと、前記第2の軸受が配置された第2のハウジングとを有し、前記ステータ及びロータが配置された導電性筐体と
を備え、
前記第1の軸受は、第1の導電性内輪と、第1の導電性外輪とを有し、
前記第2の軸受は、第2の導電性内輪と、第2の導電性外輪とを有し、
前記第1の導電性外輪は、前記第1の非導電性部材によって前記第1のハウジングから絶縁されており、
前記第1の導電性内輪は、前記導電性シャフトに接触しており、
前記第2の導電性内輪は、前記第2の非導電性部材によって前記導電性シャフトから絶縁されており、
前記第2の導電性外輪は、前記第2のハウジングに接触している
モータ。 a stator;
a rotor disposed inside the stator and having an electrically conductive shaft and first and second bearings rotatably supporting the electrically conductive shaft;
a first non-conductive member;
a second non-conductive member disposed between the second bearing and the conductive shaft;
a conductive housing having a first housing in which the first non-conductive member is arranged, a second housing in which the second bearing is arranged, and a conductive housing in which the stator and the rotor are arranged; prepared,
The first bearing has a first conductive inner ring and a first conductive outer ring,
The second bearing has a second conductive inner ring and a second conductive outer ring,
the first electrically conductive outer ring is insulated from the first housing by the first non-conductive member;
the first conductive inner ring is in contact with the conductive shaft;
the second conductive inner ring is insulated from the conductive shaft by the second non-conductive member;
The second electrically conductive outer ring is in contact with the second housing. Motor. - 前記第1の導電性外輪の外径は、前記第2の導電性外輪の外径と等しく、
前記第1のハウジングの最大内径は、前記第2のハウジングの最大内径よりも大きい
請求項1に記載のモータ。 The outer diameter of the first conductive outer ring is equal to the outer diameter of the second conductive outer ring,
2. The motor according to claim 1, wherein the maximum inner diameter of said first housing is larger than the maximum inner diameter of said second housing. - 径方向における前記第1の非導電性部材の最大厚みは、前記径方向における前記第2の非導電性部材の最大厚みよりも大きい請求項1又は2に記載のモータ。 The motor according to claim 1 or 2, wherein the maximum thickness of the first non-conductive member in the radial direction is greater than the maximum thickness of the second non-conductive member in the radial direction.
- 前記第1の非導電性部材の前記最大厚みは、1.6mm以上16mm以下である請求項3に記載のモータ。 The motor according to claim 3, wherein the maximum thickness of the first non-conductive member is 1.6 mm or more and 16 mm or less.
- 前記第2の非導電性部材の前記最大厚みは、0.5mm以上2.4mm以下である請求項3に記載のモータ。 The motor according to claim 3, wherein the maximum thickness of the second non-conductive member is 0.5 mm or more and 2.4 mm or less.
- 前記第1の非導電性部材の前記最大厚みをt1とし、前記第2の非導電性部材の前記最大厚みをt2としたとき、3.1≦(t1/t2)≦6.7を満たす請求項3に記載のモータ。 3.1≤(t1/t2)≤6.7, where t1 is the maximum thickness of the first non-conductive member and t2 is the maximum thickness of the second non-conductive member. Item 4. The motor according to item 3.
- 前記第1の非導電性部材は、前記モータの負荷側に設けられており、
前記第2の非導電性部材は、前記モータの反負荷側に設けられている
請求項1から6のいずれか1項に記載のモータ。 The first non-conductive member is provided on the load side of the motor,
The motor according to any one of claims 1 to 6, wherein the second non-conductive member is provided on the anti-load side of the motor. - 前記導電性筐体は、
前記第1のハウジングを含み、前記ステータが配置されたカップ状のフレームと、
前記第2のハウジングを含み、前記カップ状のフレームの内部を覆うブラケットと
を有する請求項1から7のいずれか1項に記載のモータ。 The conductive housing is
a cup-shaped frame including the first housing and having the stator disposed thereon;
A motor according to any one of claims 1 to 7, comprising: a bracket containing the second housing and covering the interior of the cup-shaped frame. - 前記ロータは、
磁石挿入孔を有するロータコアと、
前記磁石挿入孔に配置された永久磁石と
を有する請求項1から8のいずれか1項に記載のモータ。 The rotor is
a rotor core having a magnet insertion hole;
The motor according to any one of claims 1 to 8, further comprising permanent magnets arranged in the magnet insertion holes. - 羽根と、
前記羽根を回転させる請求項1から9のいずれか1項に記載のモータと
を備えるファン。 feathers and
and the motor according to any one of claims 1 to 9, which rotates the blades. - 羽根と、
前記羽根を回転させる請求項1から9のいずれか1項に記載のモータと
を備える換気扇。 feathers and
and the motor according to any one of claims 1 to 9, which rotates the blades. - 室内機と、
前記室内機に接続される室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、請求項1から9のいずれか1項に記載のモータを有する
空気調和機。 indoor unit and
and an outdoor unit connected to the indoor unit,
Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the motor according to any one of claims 1 to 9. An air conditioner.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/021838 WO2022259394A1 (en) | 2021-06-09 | 2021-06-09 | Motor, fan, ventilator, and air conditioner |
JP2023526704A JP7450817B2 (en) | 2021-06-09 | 2021-06-09 | Motors, fans, ventilation fans, and air conditioners |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/021838 WO2022259394A1 (en) | 2021-06-09 | 2021-06-09 | Motor, fan, ventilator, and air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022259394A1 true WO2022259394A1 (en) | 2022-12-15 |
Family
ID=84425970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021838 WO2022259394A1 (en) | 2021-06-09 | 2021-06-09 | Motor, fan, ventilator, and air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7450817B2 (en) |
WO (1) | WO2022259394A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024154238A1 (en) * | 2023-01-18 | 2024-07-25 | 三菱電機株式会社 | Motor, fan, ventilation fan, and air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007146958A (en) * | 2005-11-28 | 2007-06-14 | Ntn Corp | Bearing device and its manufacturing method |
JP2016208651A (en) * | 2015-04-22 | 2016-12-08 | パナソニックIpマネジメント株式会社 | Rotational load combination and air conditioner having the same |
WO2020195396A1 (en) * | 2019-03-28 | 2020-10-01 | 日本電産株式会社 | Motor |
JP2021061657A (en) * | 2019-10-03 | 2021-04-15 | 日本電産テクノモータ株式会社 | motor |
-
2021
- 2021-06-09 JP JP2023526704A patent/JP7450817B2/en active Active
- 2021-06-09 WO PCT/JP2021/021838 patent/WO2022259394A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007146958A (en) * | 2005-11-28 | 2007-06-14 | Ntn Corp | Bearing device and its manufacturing method |
JP2016208651A (en) * | 2015-04-22 | 2016-12-08 | パナソニックIpマネジメント株式会社 | Rotational load combination and air conditioner having the same |
WO2020195396A1 (en) * | 2019-03-28 | 2020-10-01 | 日本電産株式会社 | Motor |
JP2021061657A (en) * | 2019-10-03 | 2021-04-15 | 日本電産テクノモータ株式会社 | motor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024154238A1 (en) * | 2023-01-18 | 2024-07-25 | 三菱電機株式会社 | Motor, fan, ventilation fan, and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022259394A1 (en) | 2022-12-15 |
JP7450817B2 (en) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5600610B2 (en) | Motor rotor, mold motor, air conditioner, and mold motor manufacturing method | |
JP7038819B2 (en) | Motors, blowers and air conditioners | |
WO2022259394A1 (en) | Motor, fan, ventilator, and air conditioner | |
JP6895996B2 (en) | Motors, air conditioners, and methods for manufacturing motors | |
WO2024154238A1 (en) | Motor, fan, ventilation fan, and air conditioner | |
WO2023127084A1 (en) | Rotor, motor, fan, ventilator, and air conditioner | |
WO2023162060A1 (en) | Motor, fan, ventilator, and air conditioner | |
JP7550999B2 (en) | Rotors, motors, blowers, ventilators, electrical equipment and air conditioning devices | |
JP7093347B2 (en) | Manufacturing methods for motors, compressors, and air conditioners, and motors | |
KR101010836B1 (en) | Motor for driving fan | |
JP7559044B2 (en) | Electric motors, fans, and air conditioners | |
WO2023095316A1 (en) | Electric motor and air conditioner | |
WO2023148949A1 (en) | Electric motor and air conditioner | |
JP7058740B2 (en) | How to manufacture motors, fans, air conditioners, and motors | |
WO2022249307A1 (en) | Electric motor and air conditioner | |
WO2023233609A1 (en) | Electric motor and air conditioner | |
WO2024089836A1 (en) | Electric motor, fan, and air conditioner | |
WO2024157406A1 (en) | Electric motor, fan, and air conditioner | |
WO2024121879A1 (en) | Electric motor and air conditioner | |
US20070290560A1 (en) | Motor and Electric Apparatus Using the Same Motor | |
WO2022180708A1 (en) | Stator, electric motor, and air conditioner | |
WO2023139739A1 (en) | Electric motor, blower, and air conditioning device | |
AU2019459440A1 (en) | Electric motor, fan, air conditioning device, and method for manufacturing electric motor | |
JP7566627B2 (en) | ROTOR, MOTOR, FAN, AIR CONDITIONER, AND METHOD FOR MANUFACTURING ROTOR | |
WO2022054776A1 (en) | Resin molded stator, outer rotor-type motor, blower device, and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21945071 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023526704 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21945071 Country of ref document: EP Kind code of ref document: A1 |