WO2022242504A1 - 一种低应力fpc柔性电路板及电子器件 - Google Patents
一种低应力fpc柔性电路板及电子器件 Download PDFInfo
- Publication number
- WO2022242504A1 WO2022242504A1 PCT/CN2022/091906 CN2022091906W WO2022242504A1 WO 2022242504 A1 WO2022242504 A1 WO 2022242504A1 CN 2022091906 W CN2022091906 W CN 2022091906W WO 2022242504 A1 WO2022242504 A1 WO 2022242504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stress
- low
- flexible substrate
- flexible
- circuit board
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 120
- 238000005452 bending Methods 0.000 claims abstract description 94
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000007639 printing Methods 0.000 claims description 13
- -1 Polyethylene terephthalate Polymers 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 229910001338 liquidmetal Inorganic materials 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229920000106 Liquid crystal polymer Polymers 0.000 description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000006023 eutectic alloy Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000011112 polyethylene naphthalate Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000013039 cover film Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- SPAHBIMNXMGCMI-UHFFFAOYSA-N [Ga].[In] Chemical compound [Ga].[In] SPAHBIMNXMGCMI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001870 copolymer plastic Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007649 pad printing Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0277—Bendability or stretchability details
- H05K1/028—Bending or folding regions of flexible printed circuits
Definitions
- the application belongs to the technical field of electronic circuits, and in particular relates to a low-stress FPC flexible circuit board and electronic devices.
- FPC Flexible Printed Circuit board, flexible printed circuit board
- flexible circuit board also known as flexible circuit board, which is made of a series of film materials such as polyimide or polyester film, has high reliability and is absolutely
- the best flexible printed circuit board, referred to as soft board or FPC has the characteristics of high wiring density, light weight, and thin thickness. It is widely used in many fields such as automotive electronics, consumer electronics, home appliances, and industrial equipment.
- FPC flexible circuit boards In order to meet the development needs of miniaturization and miniaturization of electronic devices, the demand for FPC flexible circuit boards is no longer limited to bending resistance, but needs to be coordinated to meet more precise control. For example, in some electronic devices, FPC often needs to cooperate with other components to perform linkage changes such as movement, rotation, and bending. However, due to the limited external driving force that can be provided in miniaturized equipment, its strength may be lower than that of FPC itself. Material stress, resulting in the failure of FPC to achieve coordinated linkage, or the expected degree of linkage effect, especially in the current popular multi-layer FPC structure, which needs to be solved urgently.
- an object of the present application is to propose a low-stress FPC flexible circuit board to solve the problem in the prior art that the internal stress of the FPC circuit board itself is too large and it is difficult to achieve coordination and linkage.
- the low-stress FPC flexible circuit board includes: a flexible substrate formed by laminating at least one flexible substrate, and conductive circuits distributed on the flexible substrate; wherein the flexible substrate At least one deformation area for bending is designed on the top, and the flexible substrate in the deformation area has a low-stress structure for reducing the rebound stress of the flexible substrate.
- At least two deformation regions for realizing different bending directions are designed on the flexible substrate.
- first deformation regions and second deformation regions there are at least partially overlapping first deformation regions and second deformation regions among the at least two deformation regions for realizing different bending directions.
- the flexible substrate is a laminated structure formed by bending at least one flexible substrate.
- the low-stress structure includes: at least one cutting line intersecting the bending line on the deformation region, arranged at intervals, to reduce the The integrated dimension of the flexible base material in the extending direction of the bending line.
- the low-stress structure includes: a hollow structure, used to reduce the size of the flexible substrate located in the deformation region in the extending direction of the bending line.
- the entirety of the flexible substrate is a hollow structure.
- the conductive circuit is formed on the flexible substrate by printing.
- the conductive circuit includes: a first conductive circuit distributed on the deformed area of the flexible substrate, and a second conductive circuit distributed on the non-deformed area of the flexible substrate; The first conductive circuit is connected to the second conductive circuit.
- Another purpose of the present application is to propose an electronic device to solve the problems existing in the prior art.
- the electronic device includes the low-stress FPC flexible circuit board described in any one of the above.
- the deformation region of the flexible substrate is designed as a low-stress structure, thereby reducing the springback stress of the flexible substrate in the deformation region, so that the deformation region can be more easily linked with an external driving force.
- Fig. 1 is a bending example 1 in the embodiment of the present application
- Figure 2 is the second bending example in the embodiment of the present application.
- Fig. 3 is a structure example 1 of the low-stress FPC flexible circuit board in the embodiment of the present application;
- Fig. 4 is the structure example 2 of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Fig. 5 is a structure example three of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Fig. 6 is a structural example 1 of the low-stress structure in the embodiment of the present application.
- FIG. 7 is a second structural example of the low-stress structure in the embodiment of the present application.
- Fig. 8 is a structure example four of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Fig. 9 is a structure example five of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Figure 10 is a sixth example of the structure of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Fig. 11 is a structure example seven of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Fig. 12 is a structural example eight of the low-stress FPC flexible circuit board in the embodiment of the present application.
- Fig. 13 is a structural example nine of the low-stress FPC flexible circuit board in the embodiment of the present application.
- FIG. 14 is a tenth structural example of the low-stress FPC flexible circuit board in the embodiment of the present application.
- “Bending” in the embodiments of the present application refers to the bending deformation of the flexible substrate under the action of external force, and its bending change angle ⁇ can be between 0° and 180°.
- the line connecting the stress concentration points on the bending surface It is called a bending line, and in the case of "bending" to generate a crease, the bending line refers to the crease line, and the bending direction refers to a straight line (plane) direction perpendicular to the bending line.
- Fig. 1 shows a bending example 1, in which there are creases, the crease lines constitute a bending line M, and the bending direction P is perpendicular to the bending line M.
- Fig. 2 shows the second bending example, in which the line connecting the stress concentration points on the bending curve constitutes the bending line M, and the bending direction P is perpendicular to the bending line M.
- the embodiment of the present application discloses a low-stress FPC flexible circuit board, specifically, as shown in Figure 3-5, Figure 3 is a structure example 1 of the low-stress FPC flexible circuit board in the embodiment of the present application;
- FIG. 5 is the third structural example of the low-stress FPC flexible circuit board in the embodiment of the present application;
- a flexible substrate 10 formed by stacking multiple flexible substrates 11 (flexible substrates 12), and conductive circuits 20 distributed on the flexible substrate 10; wherein, the flexible substrate 10 is designed with at least one deformation region 30 for bending, the The flexible substrate 20 in the deformation region 30 has a low stress structure 40 for reducing the springback stress of the flexible substrate.
- the deformation region of the flexible substrate is designed as a low-stress structure, thereby reducing the springback stress of the flexible substrate in the deformation region, so that the deformation region can be more easily linked with an external driving force.
- the low-stress structure in the embodiment of the present application is not limited to reducing the springback stress of the flexible substrate by reducing the size of the flexible substrate, and reducing the flexible substrate by splitting the entire flexible substrate into several segments.
- the low-stress structure 40 may include a hollow structure, and the hollow structure is used to reduce the size of the flexible substrate located in the deformation region in the direction of the extension of the bending line, so as to achieve flexibility. Low springback stress of the base material at the bend line.
- the hollow structures can be arranged regularly or irregularly.
- the hollow figure in the hollow structure can be one of regular or irregular figures such as circle, triangle, square, rhombus or any combination.
- the flexible base material in the deformation area is designed as a hollow structure, thereby reducing the overall size of the flexible base material in the direction of the bending line, effectively reducing the springback stress of the deformation area of the base material.
- the low-stress structure 40 may include at least one cutting line intersecting the bending line on the deformed region, arranged at intervals, so as to reduce the The integrated dimension of the flexible base material in the extending direction of the bending line.
- the cutting line in the embodiment of the present application refers to a slit penetrating through the base material, so as to split the partial integrated structure of the base material into several sections.
- the number of cutting lines can be multiple, and the cutting lines can be designed perpendicular to the bending lines, so as to achieve the best effect of reducing springback stress.
- the integrated size in the direction of the bending line is reduced, thereby changing the stress moment of the base material, effectively reducing the rebound stress of the deformed area of the base material.
- the low-stress structure may include easy-bending creases (not shown), so as to break the original internal stress of the substrate, thereby achieving the effect of reducing the springback stress of the deformed region of the substrate.
- the low-stress structure in the embodiment of the present application may be any one of the above-mentioned ones or any combination of two or more of the above-mentioned ones, which is not limited thereto.
- the flexible substrate in the embodiment of the present application includes but not limited to PET (polyester, Polyethylene terephthalate), PTFE (polytetrafluoroethylene, Poly tetrafluoroethylene), PI (polyimide, Polyimide), PC (polycarbonate, Polycarbonate), ABS (copolymer plastic, Acrylonitrile Butadiene Styrene plastic), LCP (liquid crystal polymer, Liquid Crystal Polymer), PEN (Polyethylene naphthalate two formic acid glycol ester, polyethylene naphthalate), PP (Polypropylene, Polypropylene), coated paper, woven fabric (including elastic woven fabric and non-stretchable woven fabric), etc.
- the conductive circuit can be formed by copper foil, aluminum foil, gold foil, and conductive paste.
- the conductive paste includes but not limited to carbon-based conductive paste, metal particle conductive paste, inorganic conductive paste, liquid metal, etc.
- the carbon-based conductive paste includes at least conductive carbon black or graphene
- the metal particle conductive paste includes at least conductive metal particles, such as copper, silver, gold, silver-coated copper, and the like.
- Liquid metals include at least low-melting metals with a melting point below 300°C, such as gallium-based alloys, tin-based alloys, and bismuth-based alloys.
- the liquid metals are gallium-indium eutectic alloys, gallium-indium-tin eutectic alloys, gallium-indium-tin Zinc eutectic alloy, this type of liquid metal has the property of showing a liquid state at room temperature, and is suitable for making flexible and stretchable conductive circuits.
- the conductive paste in the embodiment of the present application can be selected as the conductive paste doped with liquid metal in the liquid state at room temperature.
- the bending resistance and reliability of the conductive circuit can be significantly improved. tensile properties.
- the conductive paste in the embodiment of the present application is a metal particle conductive paste, such as silver paste.
- the conductive paste in the embodiment of the present application is silver paste doped with liquid metal.
- the conductive circuit in the embodiment of the present application can be formed by etching, punching, vapor deposition, magnetron sputtering, printing, printing and the like.
- the conductive circuit in the embodiment of the present application is formed by printing or printing using conductive paste, and the printing method is not limited to extrusion printing, spray printing, direct writing printing, etc., and the printing method is not limited to screen printing, Coating printing, pad printing, letterpress printing, gravure printing, flexographic printing, etc.
- the conductive lines in the embodiment of the present application may only be distributed on the deformed area of the flexible substrate (flexible base material), and in other embodiments, the conductive lines may be distributed only on the flexible substrate (flexible base material)
- the conductive lines are distributed on both the deformed area and the non-deformed area. Wherein, the conductive lines distributed on the deformed area and the conductive lines distributed on the non-deformed area may be connected to each other.
- the routing of the conductive circuit needs to avoid the cutting line segment or the hollow pattern.
- the conductive circuit may include a first conductive circuit distributed on the deformed area of the flexible substrate, and a second conductive circuit distributed on the non-deformed area of the flexible substrate; the first conductive circuit and the connected to the second conductive line.
- the deformed region 30 of the flexible substrate 10 divides the flexible substrate 10 into at least three regions, namely a first non-deformed region, a deformed region and a second non-deformed region, and the conductive circuit 20 includes The first conductive lines 21 on the first non-deformed area, the second conductive lines 22 distributed on the deformed area, and the third conductive lines 23 distributed on the second non-deformed area.
- the conductive lines in the embodiment of the present application can be distributed on the first surface and the second surface of the flexible substrate, that is, the conductive lines 20a on the first surface, and the conductive lines 20a on the second surface.
- the circuit 20b thereby forming a double-sided conductive circuit.
- the conductive traces 20a and 20b on the first surface and the second surface can be interconnected through the metallized via hole 20c penetrating the flexible substrate.
- the conductive circuit when the flexible substrate is a single-layer structure, can be a single-sided conductive circuit or a double-sided conductive circuit; when the flexible substrate is a multi-layer structure, the conductive circuit can be a single-sided conductive circuit , Double-sided conductive lines or multi-layer conductive lines.
- the flexible substrate in the embodiment of the present application can be formed by stacking at least one flexible substrate, and the number of flexible substrates can be a stacked structure formed by 2 or more, and the stacked structure At least one flexible substrate in the position corresponding to the deformed area of the flexible substrate has a low-stress structure, thereby reducing the springback stress of the deformed area of the flexible substrate.
- the position opposite to the deformation region 33 is a low-stress structure 40, and the second flexible The substrate 12 maintains the original state of the substrate (ie, not a low-stress structure).
- the position opposite the first flexible substrate 11 to the deformation region 31 is a low-stress structure 40
- the second The position opposite to the flexible substrate 12 and the deformed area 31 is also a low-stress structure 40 .
- the relative positions of the first flexible substrate and the third flexible substrate and the deformed area are The low-stress structure, the second flexible substrate maintains the original state of the substrate (ie, not the low-stress structure).
- the flexible substrate can be formed by bending at least one flexible substrate to form a laminated structure.
- the flexible substrate of the laminated structure can be formed by bending or bending one flexible substrate.
- the bending is not limited to producing creases or not forming creases, and the bending angle can be between 0°-180°, preferably, the bending angle can be between 0°-90°.
- the flexible substrate can be a laminated structure formed by bending a flexible substrate at least once, for example, the flexible substrate is a laminated structure of a C-shaped structure formed by bending one flexible substrate once
- a flexible substrate which is a laminated body that forms an S-shaped structure by bending a flexible base material twice.
- the flexible substrate in the embodiment of the present application may also be a laminated structure formed by bending three times or bending four times.
- the flexible substrate can also form a further stacked laminated structure by bending at least two flexible substrates in a stacked state, for example, a flexible substrate with a 4-layer structure can be formed after bending two flexible substrates in a stacked state .
- Others such as the bending of the flexible substrates in 3 stacked states and the flexible substrates in 4 stacked states, will not be repeated here.
- At least two deformation regions for different bending directions are designed on the flexible substrate, and each deformation region has a low stress for reducing the rebound stress after bending structure.
- the flexible substrate can be easily bent in multiple directions, and the requirement of simultaneous bending can be avoided to avoid changes in the internal stress of other positions caused by the substrate in a bent state , affecting the linkage requirements of other locations.
- first deformation regions and second deformation regions there are at least partially overlapping first deformation regions and second deformation regions in at least two deformation regions used to achieve different bending directions.
- the first deformation region has direction
- the second deformation region has a low-stress structure that meets the second bending direction
- the overlapping portion of the first deformation region and the second deformation region not only meets the low springback stress requirements of the first bending direction, but also meets the requirements of the second bending direction.
- the flexible substrate has a first deformation region for bending in a first bending direction and a second deformation region for bending in a second bending direction, wherein the first bending direction is perpendicular to the second bending direction, that is, the first The difference between the bending direction and the second bending direction is 90°, the first deformation area and the second deformation area partially overlap, the overlapping part of the first deformation area and the second deformation area is a hollow structure, and the non-overlapping part of the first deformation area is vertical
- Several cutting lines on the bending line on the first deformation area, the non-overlapping part of the second deformation area is a number of cutting lines perpendicular to the bending line on the second deformation area, the non-overlapping part of the first deformation area and the second deformation area
- the cutting lines on the non-overlapping parts of the two deformation regions are perpendicular to each other.
- the flexible substrate has a first deformation region 31 for bending in a first bending direction and a second deformation region 32 for bending in a second bending direction, wherein the first bending direction and the second bending direction
- the two bending directions are perpendicular, that is, the difference between the first bending direction and the second bending direction is 90°, the first deformation region 31 and the second deformation region 32 partially overlap, and both the first deformation region 31 and the second deformation region 32 are hollow structures.
- the flexible base material in the embodiment of the present application may be a flexible base material with a hollow structure as a whole, and the flexible base material formed by the flexible base material can meet the requirement of low springback stress for bending in any direction.
- the flexible substrate is formed of a flexible base material with a hollow structure as a whole, on which are designed a first deformation region 31 bent in a first bending direction, and a second deformation region 31 bent in a second bending direction.
- the low-stress FPC flexible circuit board in the embodiment of the present application is suitable for forming a flexible FPC cable linked with external components.
- the flexible FPC cable includes: a flexible substrate 10, and At least one conductive circuit 20; wherein, each conductive circuit 20 includes: a first electrode 201 and a second electrode 203 located at the edge of the flexible substrate 10, and a connecting line 202; the first electrode 201 and the second electrode 203 are connected by the connecting line 202 .
- There is at least one low-stress structure 40 on the flexible substrate 10 each low-stress structure 40 corresponds to a deformation region 30 , and the low-stress structure 40 can avoid the first electrode 201 and the second electrode 203 of the conductive circuit 20 .
- the first electrode and the second electrode of the conductive circuit may be formed with a metal plating layer, such as one or more stacks of copper, nickel, gold, silver, and tin, so as to improve the electrical performance of the electrodes, One or more of properties such as corrosion resistance, oxidation resistance, and scratch resistance.
- a metal plating layer such as one or more stacks of copper, nickel, gold, silver, and tin, so as to improve the electrical performance of the electrodes, One or more of properties such as corrosion resistance, oxidation resistance, and scratch resistance.
- metal plating may also be formed on the connecting wires of the conductive circuits, so as to improve the electrical performance of the connecting wires.
- the low-stress FPC flexible circuit board in the embodiments of the present application may further include: a cover film attached on the surface of the flexible substrate to cover the connecting lines of the conductive circuits.
- the covering film can perform one or more of performances such as waterproof, oxygen barrier and reinforcement.
- the area opposite to the covering film and the low-stress structure can also be the same low-stress structure.
- the low-stress structure may not be designed, and only the low-stress structure on the flexible substrate can reduce the springback stress of the local area of the low-stress FPC flexible circuit board.
- the low-stress FPC flexible circuit board in the embodiments of the present application can also be applied to conductive lines, circuits, antennas, electronic devices, sensors, shielding and other products.
- Another object of the present application is to propose an electronic device to solve the problems existing in the prior art, wherein the electronic device includes the low-stress FPC flexible circuit board described in any one of the above-mentioned embodiments of the application, Realize precise control in electronic devices with low-stress FPC flexible circuit boards that are easily linked with external components (external driving force).
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Structure Of Printed Boards (AREA)
Abstract
本申请公开了一种低应力FPC柔性电路板及电子器件,涉及柔性电子电路技术领域。该低应力FPC柔性电路板,包括:由至少1个柔性基材层叠形成的柔性基板,以及分布在所述柔性基板上的导电线路;其中,所述柔性基板上设计有至少1个用以弯曲的变形区域,该变形区域内的柔性基板具有用以减小柔性基板回弹应力的低应力结构。本申请实施例中通过将柔性基板的变形区域设计为低应力结构,从而减小变形区域内的柔性基板的回弹应力,从而使变形区域更易配合外部驱动力进行联动。
Description
本申请要求于2021年05月19日提交中国专利局、申请号为202110544698.3、申请名称为“一种低应力FPC柔性电路板及电子器件”的中国专利申请的优先权,其全部内容通过引用在本申请中。
本申请属于电子电路技术领域,尤其涉及一种低应力FPC柔性电路板及电子器件。
FPC(Flexible Printed Circuit board,柔性印刷线路板),亦称为柔性电路板,其是以聚酰亚胺或聚酯薄膜等一系列薄膜材料为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板,简称软板或FPC,具有配线密度高、重量轻、厚度薄的特点,广泛应用在汽车电子、消费电子、家电、工业设备等众多领域。
为了满足电子器件的小型化、微型化的发展需求,对于FPC柔性电路板的需求不再仅停留在耐弯折性能上,而是需要配合满足更为精密的控制。例如在一些电子器件中,FPC往往需要配合其它零部件进行移动、转动、弯曲等联动变化,但由于在小型化设备中所能提供的外部驱动力非常有限,其强度可能低于FPC自身的基材应力,导致FPC无法实现配合联动,或者无法达到预期程度的联动效果,尤其是在目前应用热门的多层FPC结构上问题尤为明显,亟待解决。
申请内容
有鉴于此,本申请的一个目的是提出一种低应力FPC柔性电路板,以解决现有技术中FPC电路板自身的内应力过大,不易实现配合联动的问题。
在一些说明性实施例中,所述低应力FPC柔性电路板,包括:由至少1个柔性基材层叠形成的柔性基板,以及分布在所述柔性基板上的导电线路;其中,所述柔性基板上设计有至少1个用以弯曲的变形区域,该变形区域内的柔性基板具有用以减小柔性基板回弹应力的低应力结构。
在一些可选地实施例中,所述柔性基板上设计有至少2个用以实现不同弯曲方向的变形区域。
在一些可选地实施例中,所述至少2个用以实现不同弯曲方向的变形区域中存在至少部分重叠的第一变形区域和第二变形区域。
在一些可选地实施例中,所述柔性基板为由至少1个柔性基材弯曲后形成的层叠结构。
在一些可选地实施例中,所述低应力结构包括:相交于所述变形区域上的折弯线的、间隔排布的至少1条切割线,用以减小位于所述变形区域内的柔性基材在所述折弯线的延伸方向上的一体化尺寸。
在一些可选地实施例中,所述低应力结构包括:镂空结构,用以减小位于所述变形区域内的柔性基材在折弯线的延伸方向上的尺寸。
在一些可选地实施例中,所述柔性基材的整体为镂空结构。
在一些可选地实施例中,所述导电线路通过印制形成在所述柔性基板上。
在一些可选地实施例中,所述导电线路包括:分布在所述柔性基板的变形区域上的第一导电线路,以及分布在所述柔性基板的非变形区域 上的第二导电线路;所述第一导电线路和所述第二导电线路相连。
本申请的另一个目的在于提出一种电子器件,以解决现有技术中存在的问题。
在一些说明性实施例中,所述电子器件,包括上述中任一项所述的低应力FPC柔性电路板。
与现有技术相比,本申请具有如下优势:
本申请实施例中通过将柔性基板的变形区域设计为低应力结构,从而减小变形区域内的柔性基板的回弹应力,从而使变形区域更易配合外部驱动力进行联动。
图1是本申请实施例中的弯曲示例一;
图2是本申请实施例中的弯曲示例二;
图3是本申请实施例中的低应力FPC柔性电路板的结构示例一;
图4是本申请实施例中的低应力FPC柔性电路板的结构示例二;
图5是本申请实施例中的低应力FPC柔性电路板的结构示例三;
图6是本申请实施例中的低应力结构的结构示例一;
图7是本申请实施例中的低应力结构的结构示例二;
图8是本申请实施例中的低应力FPC柔性电路板的结构示例四;
图9是本申请实施例中的低应力FPC柔性电路板的结构示例五;
图10是本申请实施例中的低应力FPC柔性电路板的结构示例六;
图11是本申请实施例中的低应力FPC柔性电路板的结构示例七;
图12是本申请实施例中的低应力FPC柔性电路板的结构示例八;
图13是本申请实施例中的低应力FPC柔性电路板的结构示例九;
图14是本申请实施例中的低应力FPC柔性电路板的结构示例十。
以下描述和附图充分地示出本申请的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本申请的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,本申请的这些实施方案可以被单独地或总地用术语“申请”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的申请,不是要自动地限制该应用的范围为任何单个申请或申请构思。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
本申请实施例中的“弯曲”是指柔性基材在外力的作用下所产生的弯曲形变,其弯曲变化角度α可以在0°~180°之间,弯曲面上的应力集中点的连线称为折弯线,在“弯曲”产生折痕的情况下,该折弯线是指该折痕线,弯曲方向是指垂直于折弯线的直线(平面)方向。图1示出了弯曲示例一,该示例中具有折痕,其该折痕线构成折弯线M,弯曲方向P垂直于折弯线M。图2示出了弯曲示例二,该示例中弯曲曲线上的应力集中点的连线构成折弯线M,弯曲方向P垂直于折弯线 M。
本申请实施例公开了一种低应力FPC柔性电路板,具体地,如图3-5所示,图3是本申请实施例中的低应力FPC柔性电路板的结构示例一;图4是本申请实施例中的低应力FPC柔性电路板的结构示例二;图5是本申请实施例中的低应力FPC柔性电路板的结构示例三;该低应力FPC柔性电路板100,包括:由至少1个柔性基材11(柔性基材12)层叠形成的柔性基板10,以及分布在柔性基板10上的导电线路20;其中,柔性基板10上设计有至少1个用以弯曲的变形区域30,该变形区域30内的柔性基板20具有用以减小柔性基板回弹应力的低应力结构40。
本申请实施例中通过将柔性基板的变形区域设计为低应力结构,从而减小变形区域内的柔性基板的回弹应力,从而使变形区域更易配合外部驱动力进行联动。
本申请实施例中的低应力结构不限于通过减小柔性基材尺寸的结构实现减小柔性基板回弹应力的效果、通过将整片的柔性基板分拆为若干段的结构实现减小柔性基板回弹应力的效果、通过在柔性基板上形成折痕的结构实现减小柔性基板回弹应力的效果、或者现有技术中其它起到相同或相似功能的结构。
在一些实施例中,如图6所示,低应力结构40可以包括镂空结构,该镂空结构用以减小位于变形区域内的柔性基材在折弯线的延伸方向上的尺寸,从而实现柔性基材在折弯线位置处的低回弹应力。在一些实施例中,镂空结构可以为规则排布或不规则排布。镂空结构中的镂空图形可以为圆形、三角形、方形、菱形等规则或不规则图形中的一种或任意组合。
该实施例中通过将变形区域中的柔性基材设计为镂空结构,从而减小了柔性基材在折弯线的方向上的整体尺寸,有效的降低了基材的变形 区域的回弹应力。
在一些实施例中,如图7所示,低应力结构40可以包括相交于变形区域上的折弯线的、间隔排布的至少1条切割线,用以减小位于所述变形区域内的柔性基材在所述折弯线的延伸方向上的一体化尺寸。其中,本申请实施例中的切割线是指贯穿基材的切缝,以此将基材的局部的一体化结构拆分成若干段。优选地,切割线的数量可以为多条,切割线可垂直于折弯线设计,以此达到降低回弹应力的最佳效果。
该实施例中通过减小折弯线的方向上的一体化尺寸,从而改变了基材应力的力矩,有效的降低了基材的变形区域的回弹应力。
在一些实施例中,低应力结构可以包括易弯折的折痕(未示出),以此破坏基材原本的内应力,从而达到降低基材的变形区域的回弹应力的效果。
本申请实施例中的低应力结构可以选用上述任意一种或者上述2个或2个以上的任意组合,对此不进行限制。
本申请实施例中的柔性基材包括但不限于PET(聚酯,Polyethylene terephthalate)、PTFE(聚四氟乙烯,Poly tetra fluoroethylene)、PI(聚酰亚胺,Polyimide)、PC(聚碳酸脂,Polycarbonate)、ABS(共聚物塑料,Acrylonitrile Butadiene Styrene plastic)、LCP(液晶聚合物,Liquid Crystal Polymer)、PEN(Polyethylene naphthalate two formic acid glycol ester,聚萘二甲酸乙二醇酯)、PP(Polypropylene,聚丙烯)、铜版纸、织布(含弹力织布和不可拉伸织布)等。
本申请实施例中导电线路可以由铜箔、铝箔、金箔、以及导电浆料形成,导电浆料包括但不限于碳基导电浆料、金属颗粒导电浆料、无机导电浆料、液态金属等现有技术中的导电浆料。其中,碳基导电浆料中至少包括导电炭黑或石墨烯,金属颗粒导电浆料中至少包含导电金属颗粒,如铜、银、金、银包铜等。液态金属中至少包括熔点在300℃以下 的低熔点金属,例如镓基合金、锡基合金、铋基合金,优选地,液态金属选用镓铟共晶合金、镓铟锡共晶合金、镓铟锡锌共晶合金,该类液态金属具有室温下呈现液体状态的性质,适宜制作柔性可拉伸导电线路。
在一些实施例中,本申请实施例中的导电浆料可选用掺杂了室温下液体状态的液态金属的导电浆料,通过加入该类液态金属,可以显著提升导电线路的耐弯折和可拉伸性能。
优选地,本申请实施例中导电浆料选用金属颗粒导电浆料,例如银浆。进一步的,本申请实施例中的导电浆料选用掺杂了液态金属的银浆。
本申请实施例中的导电线路可以通过蚀刻、冲切、蒸镀、磁控溅射、打印、印刷等方式形成。优选地,本申请实施例中的导电线路利用导电浆料通过打印或印刷的方式形成,打印方式不限于挤出式打印、喷涂打印、直写式的打印等,印刷方式不限于丝网印刷、涂布印刷、移印、凸版印刷、凹版印刷、柔板印刷等。
在一些实施例中,本申请实施例中导电线路可仅分布在柔性基板(柔性基材)的变形区域上,在另一些实施例中,导电线路可仅分布在柔性基板(柔性基材)的非变形区域上,在另一些实施例中,导电线路既分布在变形区域上,又分布在非变形区域上。其中,分布在变形区域上的导电线路和非变形区域上的导电线路可以相互连接。
其中,在低应力结构为切割线或镂空结构的情况下,导电线路的走线需要避开切割线段或镂空图形。
示例性的,导电线路可包括分布在所述柔性基板的变形区域上的第一导电线路,以及分布在所述柔性基板的非变形区域上的第二导电线路;所述第一导电线路和所述第二导电线路相连。
示例性的,如图8所示,柔性基板10的变形区域30将柔性基板10分割为至少3个区域,即第一非变形区域、变形区域和第二非变形 区域,导电线路20包括分布在第一非变形区域上的第一导电线路21、分布在变形区域上的第二导电线路22和分布在第二非变形区域上的第三导电线路23。
如图9所示,在一些实施例中,本申请实施例中的导电线路可分布在柔性基板的第一表面和第二表面,即第一表面上的导电线路20a,第二表面上的导电线路20b,以此形成双面导电线路。在一些实施例中,位于第一表面和第二表面上的导电线路20a和20b可以通过贯穿柔性基板的金属化过孔20c实现互联。
在一些实施例中,在柔性基板为单层结构的情况下,导电线路可为单面导电线路或双面导电线路;在柔性基板为多层结构的情况下,导电线路可为单面导电线路、双面导电线路或多层导电线路。
继续参照图4,在一些实施例中,本申请实施例中的柔性基板可由至少1个柔性基材层叠形成,柔性基材的数量可以为2个及2个以上形成的层叠结构,该层叠结构的柔性基板与变形区域相对应的位置中的至少1个柔性基材具备低应力结构,从而降低柔性基板的变形区域的回弹应力。
示例性的,由第一柔性基材11和第二柔性基材12层叠形成双层结构的柔性基板10中的第一柔性基材与变形区域33相对位置处为低应力结构40,第二柔性基材12则为保持基材的初始状态(即非低应力结构)。
示例性的,由第一柔性基材11和第二柔性基材12层叠形成双层结构的柔性基板10中的第一柔性基材11与变形区域31相对位置处为低应力结构40,第二柔性基材12与变形区域31相对位置处同样为低应力结构40。
示例性的,由第一柔性基材、第二柔性基材和第三柔性基材形成的三层结构的柔性基板中的第一柔性基材和第三柔性基材与变形区域相对位置处为低应力结构,第二柔性基材则为保持基材的初始状态(即非 低应力结构)。
继续参照图5,在一些实施例中,柔性基板可由至少1个柔性基材弯曲后形成的层叠结构,该实施例中层叠结构的柔性基板可以通过弯曲或弯折1个柔性基材后形成,其弯曲不限于产生折痕或未产生折痕,弯曲角度可在0°~180°之间,优选地,弯曲角度可在0°~90°之间。
如图10-11所示,在一些实施例中,柔性基板可以由柔性基材经过至少一次弯曲形成的层叠结构,例如柔性基板为由1个柔性基材经过一次弯曲形成的C型结构的层叠体,又例如柔性基板为由1个柔性基材经过二次弯曲形成S型结构的层叠体。本申请实施例中的柔性基板还可以通过三次弯曲、四次弯曲形成的层叠结构。
继续参照图10,在一些实施例中,本申请实施例中的柔性基材上具有至少2个区域具有低应力结构,通过弯曲层叠后使该柔性基材上的2个低应力结构区域重叠,从而实现柔性基板上变形区域上的低应力结构。
在另一些实施例中,柔性基板也可以通过至少2个层叠状态的柔性基材经过弯曲后形成进一步叠加的层叠结构,例如2个层叠状态的柔性基材经过弯曲后形成4层结构的柔性基板。其它亦如3个层叠状态的柔性基材,4个层叠状态的柔性基材进行的弯曲,在此不再赘述。
继续参照图3,在一些实施例中,柔性基板上设计有至少2个用以实现不同弯曲方向的变形区域,每个变形区域内均具有用以减小其弯曲后的回弹应力的低应力结构。通过设计在柔性基板上设计多个低回弹应力的变形区域,实现柔性基板多个方向的易弯曲需求,以及同时弯曲的需求,避免基材在弯曲状态下导致其它位置的内应力的发生变化,影响其它位置的联动需求。
在一些实施例中,至少2个用以实现不同弯曲方向的变形区域中存在至少部分重叠的第一变形区域和第二变形区域,具体地,该实施例中 第一变形区域具有满足第一弯曲方向的低应力结构,第二变形区域具有满足第二弯曲方向的低应力结构,该第一变形区域和第二变形区域的重叠部分既满足第一弯曲方向的低回弹应力需求,又满足第二弯曲方向的低回弹应力需求。
示例性的,柔性基板上具有用以第一弯曲方向弯曲的第一变形区域和用以第二弯曲方向弯曲的第二变形区域,其中,第一弯曲方向与第二弯曲方向垂直,即第一弯曲方向与第二弯曲方向相差90°,第一变形区域和第二变形区域存在部分重叠,第一变形区域和第二变形区域的重叠部分为镂空结构,第一变形区域的非重叠部分为垂直于第一变形区域上的折弯线的若干切割线,第二变形区域的非重叠部分为垂直于第二变形区域上的折弯线的若干切割线,第一变形区域的非重叠部分和第二变形区域的非重叠部分上的切割线相互垂直。
示例性的,如图12所示,柔性基板上具有用以第一弯曲方向弯曲的第一变形区域31和用以第二弯曲方向弯曲的第二变形区域32,其中,第一弯曲方向与第二弯曲方向垂直,即第一弯曲方向与第二弯曲方向相差90°,第一变形区域31和第二变形区域32存在部分重叠,第一变形区域31和第二变形区域32均为镂空结构。
在一些实施例中,本申请实施例中的柔性基材可以选用整体为镂空结构的柔性基材,该柔性基材形成的柔性基板可以满足任意方向的弯曲的低回弹应力需求。
示例性的,如图13所示,柔性基板由整体为镂空结构的柔性基材形成,其上设计有用以第一弯曲方向弯曲的第一变形区域31、用以第二弯曲方向弯曲的第二变形区域32、用以第三弯曲方向弯曲的第三变形区域33、用以第四弯曲方向弯曲的第四变形区域34。
本申请实施例中的低应力FPC柔性电路板适用于形成与外部件联动的柔性FPC排线,如图14所示,该柔性FPC排线包括:柔性基板 10、以及分布在柔性基板10上的至少一条导电线路20;其中,每条导电线路20包括:位于柔性基板10边缘的第一电极201和第二电极203、以及连接线202;第一电极201和第二电极203通过连接线202连接。柔性基板10上具有至少一个低应力结构40,每个低应力结构40对应一个变形区域30,该低应力结构40可避开导电线路20的第一电极201和第二电极203。
在一些实施例中,导电线路的第一电极和第二电极上可形成有金属镀层,例如铜、镍、金、银、锡中的一种或多种层叠,以此提升电极的电学性能、耐腐蚀、抗氧化、耐刮蹭等性能中的一项或多项。
在一些实施例中,导电线路的连接线上亦可形成有金属镀层,以此提升连接线的电学性能等。
在一些实施例中,本申请实施例中的低应力FPC柔性电路板,还可包括:覆盖膜,贴附在柔性基板的表面,用以遮盖导电线路的连接线。该覆盖膜可起到防水、隔氧、增强等性能中的一项或多项。
其中,在覆盖膜分布在低应力结构上的情况,覆盖膜与低应力结构相对区域亦可为相同的低应力结构。在另一些实施例中,在覆盖膜分布在低应力结构上的情况,亦可不设计低应力结构,仅通过柔性基板上的低应力结构降低低应力FPC柔性电路板的局部区域的回弹应力。
在一些实施例中,本申请实施例中的低应力FPC柔性电路板还可以应用于导电线路、电路、天线、电子器件、传感器、屏蔽等产品上。
本申请的另一个目的在于提出一种电子器件,以解决现有技术中存在的问题,其中,所述电子器件,包括上述本申请实施例中任一项所述的低应力FPC柔性电路板,以容易与外部件(外部驱动力)联动的低应力FPC柔性电路板实现电子器件中的精密控制。
本领域技术人员还应当理解,结合本文的实施例描述的各种说明性 的逻辑框、模块、电路和算法步骤均可以实现成电子硬件、计算机软件或其组合。为了清楚地说明硬件和软件之间的可交换性,上面对各种说明性的部件、框、模块、电路和步骤均围绕其功能进行了一般地描述。至于这种功能是实现成硬件还是实现成软件,取决于特定的应用和对整个系统所施加的设计约束条件。熟练的技术人员可以针对每个特定应用,以变通的方式实现所描述的功能,但是,这种实现决策不应解释为背离本公开的保护范围。
Claims (10)
- 一种低应力FPC柔性电路板,其特征在于,包括:由至少1个柔性基材层叠形成的柔性基板,以及分布在所述柔性基板上的导电线路;其中,所述柔性基板上设计有至少1个用以弯曲的变形区域,该变形区域内的柔性基板具有用以减小柔性基板回弹应力的低应力结构。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述柔性基板上设计有至少2个用以实现不同弯曲方向的变形区域。
- 根据权利要求2所述的低应力FPC柔性电路板,其特征在于,所述用以实现不同完全方向的变向区域中存在至少部分重叠的第一变形区域和第二变形区域。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述柔性基板为由至少1个柔性基材弯曲后形成的层叠结构。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述低应力结构包括:相交于所述变形区域上的折弯线的、间隔排布的至少1条切割线,用以减小位于所述变形区域内的柔性基材在所述折弯线的延伸方向上的一体化尺寸。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述低应力结构包括:镂空结构,用以减小位于所述变形区域内的柔性基材在折弯线的延伸方向上的尺寸。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述柔性基材的整体为镂空结构。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述导电线路通过印制形成在所述柔性基板上。
- 根据权利要求1所述的低应力FPC柔性电路板,其特征在于,所述导电线路包括:分布在所述柔性基板的变形区域上的第一导电线路,以及分布在所述柔性基板的非变形区域上的第二导电线路;所述第一导电线路和所述第二导电线路相连。
- 一种电子器件,其特征在于,包括权利要求1所述的低应力FPC柔性电路板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110544698.3A CN113133190A (zh) | 2021-05-19 | 2021-05-19 | 一种低应力fpc柔性电路板及电子器件 |
CN202110544698.3 | 2021-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022242504A1 true WO2022242504A1 (zh) | 2022-11-24 |
Family
ID=76783168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/091906 WO2022242504A1 (zh) | 2021-05-19 | 2022-05-10 | 一种低应力fpc柔性电路板及电子器件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113133190A (zh) |
WO (1) | WO2022242504A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115023025B (zh) * | 2021-09-29 | 2023-04-18 | 荣耀终端有限公司 | 柔性电路板以及电子设备 |
TWI832647B (zh) * | 2022-12-30 | 2024-02-11 | 尼克森微電子股份有限公司 | 電路板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109547911A (zh) * | 2018-12-05 | 2019-03-29 | 常州波速传感器有限公司 | 定向发声的超声波模组 |
CN209897344U (zh) * | 2019-04-30 | 2020-01-03 | 深圳市比亚迪电子部品件有限公司 | 一种易折叠柔性电路板 |
CN111625137A (zh) * | 2020-05-21 | 2020-09-04 | 昆山国显光电有限公司 | 触控显示面板和触控显示装置 |
CN111757592A (zh) * | 2020-06-18 | 2020-10-09 | 昆山国显光电有限公司 | 一种柔性电路板和显示屏体组件 |
CN112333913A (zh) * | 2020-10-22 | 2021-02-05 | Tcl通讯(宁波)有限公司 | 一种柔性线路板结构 |
-
2021
- 2021-05-19 CN CN202110544698.3A patent/CN113133190A/zh active Pending
-
2022
- 2022-05-10 WO PCT/CN2022/091906 patent/WO2022242504A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109547911A (zh) * | 2018-12-05 | 2019-03-29 | 常州波速传感器有限公司 | 定向发声的超声波模组 |
CN209897344U (zh) * | 2019-04-30 | 2020-01-03 | 深圳市比亚迪电子部品件有限公司 | 一种易折叠柔性电路板 |
CN111625137A (zh) * | 2020-05-21 | 2020-09-04 | 昆山国显光电有限公司 | 触控显示面板和触控显示装置 |
CN111757592A (zh) * | 2020-06-18 | 2020-10-09 | 昆山国显光电有限公司 | 一种柔性电路板和显示屏体组件 |
CN112333913A (zh) * | 2020-10-22 | 2021-02-05 | Tcl通讯(宁波)有限公司 | 一种柔性线路板结构 |
Also Published As
Publication number | Publication date |
---|---|
CN113133190A (zh) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022242504A1 (zh) | 一种低应力fpc柔性电路板及电子器件 | |
JP6191991B2 (ja) | 伸縮性フレキシブル基板およびその製造方法 | |
CN104991688B (zh) | 基板及其制作方法、显示器件 | |
US9173289B2 (en) | Multilayer substrate | |
CN111309175B (zh) | 触控面板及其制备方法、触控显示装置 | |
JP5175256B2 (ja) | 静電容量式タッチパネル及びその製造方法 | |
JP6177072B2 (ja) | タッチパネルの製造方法 | |
CN105830170B (zh) | 导电结构体及其制备方法 | |
JP2017152696A (ja) | 可とう性配線基板または可とう性導電体構造物、その製造方法、およびこれを含む電子素子 | |
CN101365294B (zh) | 覆铜基材及使用该覆铜基材的柔性电路板 | |
CN215010826U (zh) | 一种低应力fpc柔性电路板及电子器件 | |
CN114327118A (zh) | 透明导电薄膜、透明导电薄膜的制造方法以及触控面板 | |
CN216565705U (zh) | 双层导电线路及显示模组 | |
CN108334243A (zh) | 一种全柔性透明触控系统 | |
CN108471677B (zh) | 触摸屏的制作方法和触摸屏、电子设备 | |
JP4356789B2 (ja) | 回路基板 | |
JP3126118U (ja) | プリント回路軟硬複合板構造 | |
WO2018199084A1 (ja) | 配線基板およびその製造方法 | |
CN115023025B (zh) | 柔性电路板以及电子设备 | |
CN216930463U (zh) | 一种lcp电路板、多层lcp电路板及电子器件 | |
WO2024135026A1 (ja) | 電子デバイス用積層体及びその製造方法、並びに、それを用いた電子デバイス | |
CN212229613U (zh) | 触控面板 | |
CN212061907U (zh) | 导电层叠构和折叠式电子装置 | |
CN219459373U (zh) | 一种可高强度弯折的fpc结构 | |
TWI827856B (zh) | 導電層疊構和折疊式電子裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22803826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/04/2024) |