Nothing Special   »   [go: up one dir, main page]

WO2022135002A1 - 一种馈电网络、基站天线及基站设备 - Google Patents

一种馈电网络、基站天线及基站设备 Download PDF

Info

Publication number
WO2022135002A1
WO2022135002A1 PCT/CN2021/132766 CN2021132766W WO2022135002A1 WO 2022135002 A1 WO2022135002 A1 WO 2022135002A1 CN 2021132766 W CN2021132766 W CN 2021132766W WO 2022135002 A1 WO2022135002 A1 WO 2022135002A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeder
feeding
conductor
feed
pcb
Prior art date
Application number
PCT/CN2021/132766
Other languages
English (en)
French (fr)
Inventor
肖伟宏
刘新明
崔莎
周杰君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022135002A1 publication Critical patent/WO2022135002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/04Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • G01R27/06Measuring reflection coefficients; Measuring standing-wave ratio
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a feeder network, a base station antenna, and base station equipment.
  • MIMO multiple input multiple output
  • FIG. 1 exemplarily shows a schematic flow chart of a method for connecting a detection cable.
  • the method firstly connects one end of at least one cable to a receiver port (such as an antenna port) provided with a keyboard display circuit, and then transmits a radio frequency signal by using
  • the transmitter (such as a radio frequency device) sends a signal at the other end of the at least one cable, so, according to the signal sequence received by each cable in the at least one cable automatically recorded by the receiver provided with the keyboard display circuit, It can be determined whether there is a cable with a connection problem in at least one of the cables.
  • FIG. 2 exemplarily shows a schematic flow chart of another method for connecting a detection cable.
  • the base station device first receives the signal sent by the terminal device through the smart antenna, and then according to the signal received by each antenna of the smart antenna Calculate the shaping weights and the argument vector in turn, and analyze the arguments corresponding to each antenna according to the argument vector.
  • the arguments corresponding to each antenna are determined to form an arithmetic sequence, determine each line in the base station equipment. The cable connection is normal, otherwise it is determined that there is a cable with connection problems in the base station equipment.
  • the base station equipment actually consists of the base station antenna and some other devices, such as radio frequency devices and baseband devices.
  • the antenna port of the base station antenna is connected to one radio frequency communication port of the radio frequency device, and the other radio frequency communication port of the radio frequency device is connected to the baseband device.
  • the detection method shown in Figure 1 can actually only detect the cable connection between the antenna port of the base station antenna and the radio frequency device, while the detection method shown in Figure 2 can only detect the baseband unit and each antenna. Cable connections between ports.
  • these two detection methods can only detect the cable connection between the antenna port and other devices (such as radio frequency devices or baseband devices), but cannot detect the cable connection inside the base station antenna.
  • the present application provides a feeder network, a base station antenna, and base station equipment, which are used to detect the cable connection inside the base station antenna.
  • the present application provides a feeding network, including a first feeding point, a second feeding point, and a feeding detection unit, wherein the first feeding point and the second feeding point are located in the same feeding link, and the A feed point is connected to the first end of the feed detection unit, and a second feed point is connected to the second end of the feed detection unit.
  • the feed detection unit may acquire the first electrical signal at the first feed point and the second electrical signal at the second feed point when the feed link is in a preset working state, and according to the first electrical signal and the second electrical signal The signal is calculated to obtain the standing wave ratio of the feeder link.
  • the preset working state may refer to a normal working state or an abnormal working state, the VSWR corresponding to the normal working state is not less than the preset VSWR threshold, and the VSWR corresponding to the abnormal working state is less than the preset VSWR Burst threshold.
  • a feed detection unit is set in the feed network of the base station antenna, and the feed detection unit is used to detect the feed link in the feed network (belonging to the internal part between the antenna port of the base station antenna and the antenna array). It can accurately locate the internal cable connection problem of the base station antenna, which is convenient to calibrate the internal cable connection of the base station antenna in advance before leaving the factory, and connect the correct base station antenna with the factory internal cable. Further, the feed detection unit can also be used to perform secondary detection after the base station antenna is connected to an external device. Since it has been determined that the internal cable connection of the base station antenna is correct, if the secondary detection still detects a connection problem, Then it can be determined that there is a problem with the external cable connection of the base station antenna.
  • the design can accurately locate the internal cable connection problems and external cable connection problems of the base station antenna, which is convenient for calibrating the cable connections in the base station equipment in advance before launching or installing the base station equipment, and reduces the return of the base station equipment to the factory for maintenance. and the probability that the user redeploys the base station antenna.
  • the first end of the feed detection unit corresponds to the first feed point
  • the second end of the feed detection unit corresponds to the second feed point.
  • the feed detection unit is further used for: before acquiring the first electrical signal at the first feed point and the second electrical signal at the second feed point, control the feed link to be in a preset operation state, and, after determining the standing wave ratio of the feeder link according to the first electrical signal and the second electrical signal, if it is determined that the standing wave ratio matches the standing wave ratio corresponding to the preset working state, Then it is determined that the connection of the feeder link is normal, and after it is determined that the connection of the feeder link is normal, the feeder link is controlled to be in a normal working state.
  • the feeder detection unit can not only be used to detect the connection of the feeder link, but also participate in the feeder adjustment process synchronously to the feeder link. Even if no detection is required, the feeder detection unit can It can also be used to realize feed adjustment, which helps to maximize the utilization of resources in the feed network, and saves the deployment cost of base station antennas as much as possible while improving resource utilization.
  • the feeder detection unit is specifically used for: detecting an abnormal connection problem of the feeder link itself, and/or detecting the line sequence of at least two feeder links.
  • the feeder detection unit can not only locate the connection problem caused by the fault of the software and hardware of the feeder link itself, but also locate multiple feeder links when the software and hardware of the feeder link itself is not faulty. The problem of out-of-order connection between them helps to improve the detection ability of various cable connection errors.
  • the abnormal operating state may include an open circuit state, a mismatch state, or a short circuit state.
  • the abnormal working state caused by various reasons can be detected by the feeder detection unit, and the abnormal connection problem of the feeder link can be accurately located.
  • the power feeding detection unit may include a first controller, a first transmission component, a first tape conductor, a second tape conductor, and a third tape conductor.
  • the first conducting belt line is connected to the first feeding point
  • the second conducting belt line is connected to the second feeding point
  • the first conducting belt line and the second conducting belt line are not in contact
  • the first transmission part is respectively connected to the first controller and the second feeding point.
  • Tri-conductor line Tri-conductor line.
  • the first controller can control the first transmission component to drive the third tape conductor to move to the first position, and when the third tape conductor is at the first position
  • the third conduction strip line is in contact with the first conduction strip line and the second conduction strip line respectively, so that the first feeding point and the second feeding point can pass through the conductive first conduction strip line and the third conduction strip line.
  • Conduction with the second conducting strip line so as to realize that the feeding link where the first feeding point and the second feeding point are located is in a normal working state.
  • the first controller can control the first transmission component to drive the third tape conductor to move to the second position, and when the third tape conductor is in the second position, The third conducting strip line does not contact the first conducting strip line and/or does not contact the second conducting strip line, so that the feeder link where the first feeding point and the second feeding point are located is in an abnormal working state.
  • the feed detection unit can change the access and disconnection of the feeder link through mechanical transmission, so as to change the working state of the feeder link.
  • the first conduction strip line, the second conduction strip line and the third conduction strip line may be implemented in the form of microstrip lines.
  • the three conducting strip lines can be fixed at their respective positions without deformation or abnormal movement. This not only enables the feeding detection unit to realize the feeding detection function through the three conducting strip lines, so as to save the deployment space and cost of the feeding detection unit, but also avoids the plug connection through the connection between the microstrip line and other components. , in order to effectively reduce the insertion loss.
  • the feed detection unit may further include a first cavity, the first feed point and the second feed point are symmetrically arranged on the outer sides of two opposite sides of the first cavity, the first conducting strip line, the second The conduction band line and the third conduction band line are located in the first cavity.
  • the first tape conductor, the second tape conductor and the third tape conductor may be provided as suspended tape lines or sheet metal tape lines.
  • the feed detection unit may further include a first printed circuit board (PCB) and a second PCB that are disposed opposite to each other, and a first slideway, and the first PCB is engaged with In the first cavity, the first slideway is located on the surface of the first cavity relative to the first PCB, or on the surface of the first PCB relative to the second PCB, and the second PCB slides along the first slideway.
  • the first and second conductive strip lines are located on the surface of the first PCB opposite to the second PCB, and the third conductive strip line is located on the surface of the second PCB opposite to the first PCB.
  • the first controller may control the first transmission component to drive the second PCB to slide along the first slideway, so as to drive the third tape conductor on the second PCB to slide to the first position or the second position.
  • the first PCB to carry the first and second strip conductors, and the second PCB to carry the third strip conductor, not only can the three conductor lines be effectively fixed, but also the The sliding of the second PCB drives the third guide belt line to move, so as to avoid the wear phenomenon caused by the transmission component directly driving the third guide belt line to move.
  • the feeding network may include K first feeding points and K second feeding points respectively located in the K feeder links
  • the feeding detection unit may include a first feeding point located at the first K first and K second conduction strip lines on the PCB, and M third conduction strip lines on the second PCB, the K first conduction strip lines are respectively connected to the K first feeding points , the K second conducting strip lines are respectively connected to the K second feeding points.
  • the first controller may also firstly control the first transmission component to drive the second PCB to slide along the first slideway, so as to satisfy the requirements of the L third belt conductors among the M third belt conductors and K respectively.
  • the L first conduction strip lines of the first conduction strip lines and the L second conduction strip lines of the K second conduction strip lines are in contact to conduct the L first conduction strip lines and the L first conduction strip lines that are in contact with each other.
  • L feeder links corresponding to the second conducting strip line.
  • the first controller calculates and obtains the first standing wave ratio of the L feeder links in this case.
  • the first controller controls the first transmission component to drive the second PCB to slide along the first slideway, so as to satisfy the requirement that the L third tape conductors do not contact the L first tape conductors or the L second tape conductors. , to disconnect the L feeder links.
  • the first controller then calculates and obtains the second standing wave ratios of the L feeder links in this case.
  • the first controller may determine that the L feeder links are abnormally connected.
  • K and M are positive integers greater than or equal to 2
  • L is a positive integer less than or equal to M.
  • the standing wave detection is completed by combining the standing wave ratio of each feeder link under different working states, which can not only detect the abnormal connection of the feeder link itself, but also detect the abnormal connection of the feeder link itself.
  • the cable sequence detection (CSD) of the electrical link determines the dislocation connection between the feeder links, which helps to improve the accuracy of the standing wave detection.
  • the feed detection unit may include a second controller, a second transmission part, a fourth conductive strip line and a conductor part, the fourth conductive strip line communicates with the first feeding point and the second feeding point, and the conductor part
  • the ground circuit is coupled, and the second transmission part is respectively connected to the second controller and the conductor part.
  • the second controller can control the second transmission part to drive the conductor part to move to the third position, and when the conductor part is in the third position, the conductor part does not Contact the fourth conductive strip line, so that the fourth conductive strip line can conduct the first feeding point and the second feeding point, so that the feeder link where the first feeding point and the second feeding point are located is in a normal state working status.
  • the second controller can control the second transmission part to drive the conductor part to move to the fourth position; when the conductor part is in the fourth position, the conductor part contacts the fourth conductor strip line, In this way, the impedance on the fourth conducting strip line is affected by the conductor components, so that the feeding link where the first feeding point and the second feeding point are located is in a state of impedance mismatch.
  • the feeder detection unit can change the impedance on the feeder link through mechanical transmission to change the working state of the feeder link.
  • the third and fourth conduction strip lines can be implemented in multiple ways:
  • the third conduction strip line and the fourth conduction strip line may be implemented in the form of microstrip lines.
  • the feed detection unit can not only realize the feed detection function through the two conducting strip lines to save the deployment space and cost of the feed detection unit, but also avoid the plug connection through the connection between the microstrip line and other components , in order to effectively reduce the insertion loss.
  • the feed detection unit may further include a second cavity, the second cavity is formed of a conductive material, and the conductor component is coupled to the second cavity to couple to the ground circuit.
  • the second cavity is formed of a conductive material
  • the conductor component is coupled to the second cavity to couple to the ground circuit.
  • the feed detection unit may further include a third PCB.
  • the third PCB is clamped in the second cavity to achieve positional fixation.
  • the fourth conductor strip is located on the surface of the third PCB opposite to the conductor part, so that when the conductor part moves to the position where the fourth conductor part is located, the conductor part can contact the opposite fourth conductor part.
  • the conductor component may be a conductor spring
  • the first end of the conductor spring is coupled to the second cavity
  • the second end of the conductor spring is suspended on the fourth strip line relative to the conductor spring side.
  • the feed detection unit may further include a second slideway, and the second slideway is located on a surface of the second cavity opposite to the third PCB, or on a surface of the third PCB.
  • the face opposite the conductor part In this case, the conductor part can be moved to the third or fourth position in various ways, for example:
  • the conductor component may be a sliding conductor, and the sliding conductor slides along the second slideway to the third position or the fourth position;
  • the feed detection unit may further include a sliding medium, one end of the conductor component is embedded in the sliding medium, and the sliding medium slides along the second slideway to drive the conductor component embedded in the sliding medium to move to the third position or fourth position;
  • the feed detection unit may further include a fourth PCB, the conductor component is a fifth conducting strip line, the fifth conducting strip line is laid flat inside the fourth PCB, and the fourth PCB runs along the second slideway. Slide to drive the tiled fifth tape conductor in the fourth PCB to move to the third position or the fourth position.
  • the feeding network may include P first feeding points and P second feeding points respectively located in P feeding links
  • the feeding detection unit may include P th feeding points
  • the four conductive strip lines and the P conductor components, and the P fourth conductive strip lines respectively conduct the P first feeding points and the P second feeding points.
  • the second controller may firstly control the second transmission part to drive the Q conductor parts among the P conductor parts to move, so that the Q conductor parts do not contact the Q ones of the P fourth conductor strip lines. Fourth Conductor Line.
  • the Q feeder links corresponding to the Q conduction strip lines are theoretically in a normal working state, and the second controller can calculate the third standing wave ratio of the Q feeder links in this case.
  • the second controller may further control the second transmission part to drive the Q conductor parts to move respectively, so that the Q conductor parts contact the Q fourth conductor strip lines.
  • the second controller can calculate and obtain the fourth standing wave ratio of the Q feeder links in this case. If the difference between the third VSWR and the fourth VSWR is not greater than the preset difference threshold, it means that the Q feeder links have not changed their working states with the control of the second controller, so the second controller It can be determined that the Q feeder links are abnormally connected.
  • P is a positive integer greater than or equal to 2
  • Q is a positive integer less than or equal to P.
  • the feed detection unit may include a third controller and a switch unit, the first electrode of the switch unit is connected to the first feed point, the second electrode of the switch unit is connected to the second feed point, and the control electrode of the switch unit Connect a third controller.
  • the third controller can turn on the first electrode and the second electrode of the switching unit, so that the first feeding point and the second feeding point The first electrode and the second electrode can be turned on, and the feed link where the first feed point and the second feed point are located is in a normal working state.
  • the third controller can disconnect the first electrode and the second electrode of the switch unit.
  • the feeder detection unit can switch the feeder link on or off by means of switch control, so as to change the working state of the feeder link.
  • the present application provides a base station antenna, including an antenna port, an antenna array, and a feeding network according to any one of the above-mentioned first aspect.
  • the first end of the feeding network can be connected to the antenna port, and the second end of the feeding network can be connected to the antenna array.
  • the feeder network in normal working state: in the downlink transmission, the feeder network can feed and process the transmitted signal from the antenna port and then send it to the antenna array, and the antenna array radiates the feed-processed transmission signal;
  • the antenna array In uplink transmission, the antenna array can send the received signal to the feeder network after receiving the signal, and the feeder network processes the received signal from the antenna array and sends it to the antenna port.
  • the present application provides a base station device, comprising one or more transceivers and the base station antenna as in the second aspect above, wherein the one or more transceivers can be connected to the base station antenna.
  • the transceiver may be a remote radio unit.
  • FIG. 1 exemplarily shows a schematic flowchart of a method for connecting a detection cable
  • FIG. 2 exemplarily shows a schematic flowchart of another method for connecting a detection cable
  • FIG. 3 exemplarily shows a schematic diagram of a system architecture to which an embodiment of the present application is applicable
  • FIG. 4 exemplarily shows a schematic diagram of the internal architecture of a base station antenna provided by an embodiment of the present application
  • FIG. 5A exemplarily shows a schematic structural diagram of a base station antenna provided in Embodiment 1 of the present application
  • FIG. 5B exemplarily shows a schematic structural diagram of another base station antenna provided in Embodiment 1 of the present application.
  • FIG. 6 exemplarily shows a schematic structural diagram of still another base station antenna provided in Embodiment 1 of the present application.
  • FIG. 7 exemplarily shows a schematic structural diagram of a feeder network provided in Embodiment 2 of the present application.
  • FIG. 8 exemplarily shows a schematic structural diagram of a feed detection unit provided in Embodiment 2 of the present application.
  • FIG. 9 exemplarily shows a schematic structural diagram of a first PCB and a second PCB provided in Embodiment 2 of the present application.
  • FIG. 10 exemplarily shows a schematic structural diagram of a feeder network provided in Embodiment 3 of the present application.
  • FIG. 11 exemplarily shows a system architecture diagram corresponding to a feeder network provided in Embodiment 3 of the present application.
  • FIG. 12 exemplarily shows a schematic structural diagram of a feeder network provided in Embodiment 4 of the present application.
  • FIG. 13 exemplarily shows a schematic structural diagram of a feed detection unit provided in Embodiment 4 of the present application.
  • FIG. 14 exemplarily shows a schematic structural diagram of a third PCB and conductor components provided in Embodiment 4 of the present application;
  • FIG. 15 exemplarily shows a schematic structural diagram of another feed detection unit provided in Embodiment 4 of the present application.
  • FIG. 16 exemplarily shows a schematic structural diagram of a fourth conducting strip line and a conductor component provided in Embodiment 4 of the present application;
  • FIG. 17 exemplarily shows a schematic structural diagram of another feed detection unit provided in Embodiment 4 of the present application.
  • FIG. 18 exemplarily shows a schematic structural diagram of a third PCB and a fourth PCB provided in Embodiment 4 of the present application;
  • FIG. 19 exemplarily shows a schematic structural diagram of another feed detection unit provided in Embodiment 4 of the present application.
  • FIG. 20 exemplarily shows a schematic structural diagram of another fourth conductive strip line and a conductor component provided in Embodiment 4 of the present application.
  • the base station antenna provided in the embodiments of the present application may be applicable to various communication systems, such as: a fifth generation (5th Generation, 5G) communication system or a new radio (new radio, NR) system, a 6G communication system, a long term evolution (long term evolution) LTE) system, global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) ) system, general packet radio service (general packet radio service, referred to as GPRS) system, LTE frequency division duplex (frequency division duplex, referred to as FDD) system, LTE time division duplexing (time division duplexing, referred to as TDD) system, general mobile communication System (universal mobile telecommunication system, UMTS for short), worldwide interoperability for microwave access (WiMAX for short) communication system, etc.
  • 5G fifth generation
  • 5G fifth generation
  • 6G 6G communication system
  • long term evolution LTE long term evolution
  • GSM global system of mobile communication
  • FIG. 3 exemplarily shows a schematic diagram of a system architecture to which the embodiments of the present application are applicable.
  • the system architecture may include radio access network devices, such as but not limited to the base station 100 shown in FIG. 3 .
  • the radio access network equipment may be located in a base station subsystem (base btation bubsystem, BBS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or an evolved terrestrial radio access network (evolved universal terrestrial radio access, E- UTRAN), it is used for cell coverage of wireless signals to realize the connection between the terminal equipment and the radio frequency end of the wireless network.
  • base station subsystem base btation bubsystem, BBS
  • UMTS terrestrial radio access network UTRAN
  • E- UTRAN evolved terrestrial radio access network
  • the base station 100 may be a base station (base transceiver station, BTS) in a GSM or CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station (evolutional NodeB) in an LTE system , eNB or eNodeB), can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the base station 100 can also be a relay station, an access point, an in-vehicle device, a wearable device, and future
  • a base station in a 5G network or a base station in a PLMN network to be evolved in the future, for example, a new wireless base station, is not limited in the embodiments of the present application.
  • a possible structure of the base station 100 may include a base station antenna 110 , a transceiver 120 and a baseband processing unit 130 .
  • the base station antenna can choose an analog beamforming antenna to form an antenna system, or a digital beamforming antenna can be used to form an antenna system, and a new generation of beamforming antennas can also be used to form an antenna system, such as using an analog beamforming antenna.
  • a hybrid beamforming (Hybrid Beamforming, HBF) antenna system is formed with a digital beamforming antenna.
  • the transceiver 120 can be connected to the antenna port of the base station antenna 110, so that the base station antenna 110 can receive the transmission signal sent by the transceiver 120 through its antenna port and radiate it through the radiating element of the base station antenna 110, or radiate the signal of the base station antenna 110.
  • the received signal received by the radiation unit is sent to the transceiver 120 .
  • the base station antenna 110 may also be integrated with the transceiver 120 in the same device, such as an active antenna unit (AAU).
  • AAU active antenna unit
  • the transceiver 120 may be a remote radio frequency unit
  • the baseband processing unit 130 may be a baseband unit.
  • the baseband unit can be used to process the baseband signal to be sent and transmit it to the remote radio frequency unit, or to receive the received signal sent by the remote radio frequency unit (that is, the received radio frequency signal received by the base station antenna 110 during the signal reception process passes through the remote radio frequency unit.
  • the baseband signal obtained after the conversion processing of the end radio frequency unit) and processing.
  • the remote radio frequency unit can convert the baseband signal to be sent sent by the baseband unit into a transmit radio frequency signal (including performing necessary signal processing on the baseband signal to be sent, such as signal amplification, etc.), and then transmit the radio frequency signal through the base station antenna 110.
  • the antenna port is sent to the base station antenna 110, and the base station antenna 110 radiates the transmitted radio frequency signal.
  • the remote radio frequency unit may also receive the received radio frequency signal sent by the antenna port of the base station antenna 110, convert it into a received baseband signal, and send it to the baseband unit.
  • FIG. 3 only illustrates the connection relationship between one transceiver 120 and one antenna port of the base station antenna 110 .
  • the number of antenna ports in the base station antenna 110 may also be at least two, and the number of transceivers 120 may also be at least two, wherein each antenna port may be connected to one transceiver 120, multiple transceivers 120 may be connected to the same baseband processing unit 130.
  • FIG. 3 also exemplarily shows a possible deployment scenario of the base station antenna.
  • the deployment scenario may include a pole, an antenna adjustment bracket, a feeder, a joint seal, and a grounding device.
  • the end of the base station antenna 110 close to the antenna port can be fixedly connected to the pole, and the end of the base station antenna 110 away from the antenna port can be movably connected to the pole through the antenna adjustment bracket, so that the position of the base station antenna 110 can be adjusted through the antenna adjustment bracket.
  • the outgoing feeder at the antenna port of the base station antenna 110 is connected to the transceiver 120, and the feeder can also extend to the grounding pipe to connect the grounding device.
  • connection between the antenna port and the feeder, and the connection between the feeder and the grounding pipe can be sealed through the joint seal.
  • FIG. 3 only shows the deployment mode of the base station antenna including one antenna.
  • the base station antenna may also include multiple antennas installed around the pole, and the installation positions of the multiple antennas may be the same or different. , when the installation positions are different, multiple antennas can form their own different beam coverage.
  • the internal architecture of the base station antenna in the embodiments of the present application is exemplarily introduced.
  • FIG. 4 exemplarily shows a schematic diagram of the internal architecture of a base station antenna provided by an embodiment of the present application.
  • the base station antenna may include an antenna port, a feeding network, and an antenna array.
  • the feeding network and antenna array are usually placed in the radome.
  • the radome has good electromagnetic wave penetration characteristics in electrical performance and can withstand the external harsh environment in mechanical performance. These components are isolated from the external environment through the radome. Helps protect these components from harsh external environments.
  • the antenna port is usually placed on the outside of the radome to allow for docking with the transceiver.
  • the base station antenna may include at least one antenna array composed of multiple radiating elements (as in Figure 4, each "x" in the figure is a radiating element) and a metal reflector.
  • the front side of the metal reflector can reflect the antenna signal incident on the front side of the metal reflector to the receiving point of the radiation unit, so as to improve the receiving sensitivity of the antenna signal and strengthen the receiving ability of the antenna.
  • other electrical components in the base station antenna such as various components in the feeding network
  • the metal reflector can also be called a bottom plate, an antenna panel or a reflector, etc.
  • the frequencies of the radiating elements in the same antenna array may be the same or different.
  • the base station antenna can also include a transmission or calibration network (such as transmission components or calibration network) connected to the feeder network.
  • the base station antenna can control the feeder network through the transmission component to achieve different beam radiation directions, and can also obtain calibration signals through the calibration network. (such as the target phase), adjust the phase-shifted feed parameters in the feed network according to the deviation between the actual phase of the antenna array and the target phase, so as to gradually adjust the actual phase of the antenna array to the target phase to achieve accurate transceiver operations.
  • Radiating unit It is the unit that constitutes the basic structure of the antenna, which is used to radiate or receive radio waves.
  • the radiating unit in the base station antenna mainly includes two types: vibrator unit and patch unit.
  • the vibrator unit also known as the antenna vibrator or vibrator, is mainly used for dual-polarized antennas, low-frequency antennas or high-frequency antennas.
  • SMD units are mainly used for narrowband antennas, single-band antennas and indoor antennas.
  • the radiation unit in this application can be used for a single-band antenna or a multi-band antenna, and can be used for either a single-polarized antenna or a multi-polarized antenna, which is not specifically limited in this application.
  • the feeder network in this application may be composed of at least one feeder link, and each feeder link in the at least one feeder link usually consists of a controllable impedance transmission line (referred to as a feeder line for short).
  • the feeder chain may include feeder components such as a phaser (Phaser) or a power divider (PD), such as only a phaser, only a power divider, or both a phaser and power divider.
  • the phase shifter is a device that can adjust the phase of the signal, and can include two types of digital phase shifters and analog phase shifters.
  • a power divider is a device that can divide an input signal into two or more output signals according to the energy. The energy of the two or more output signals can be equal or unequal.
  • the power divider can also synthesize two or more input signals into one output signal according to the energy, and the energy of the output signal is equal to the sum of the energy of the two or more input signals.
  • a power divider used in reverse can also be called a combiner.
  • the feeder link can feed the transmitted signal to the radiating unit according to a certain phase, or send the received signal to the remote radio frequency unit according to a certain phase.
  • the feeder link can feed the transmit signal to the radiating unit with a certain amplitude, or send the received signal to the remote radio unit with a certain amplitude.
  • the feeder link can feed the transmitted signal to the radiating unit according to a certain amplitude and phase, or send the received signal to the remote end according to a certain amplitude and phase. radio unit.
  • the feeder link may also include one or more other feeder components, such as a combiner/splitter as shown in FIG. 4 . or filter.
  • the filter is a passive device with frequency selection function, which can effectively filter out the frequency point of a specific frequency or frequencies other than a certain frequency point, so that the signal with a specific frequency in the signal passes through and attenuates the signal of other frequencies.
  • a combiner/splitter is a functional combination of combiner and splitter.
  • a combiner is a device that can combine two or more radio frequency signals corresponding to two or more frequency points into one radio frequency signal.
  • a splitter is a device that can divide one radio frequency signal into two or more radio frequency signals corresponding to two or more frequency points.
  • the combiner/splitter refers to a combination of two or more radio frequency signals corresponding to two or more frequency points into one radio frequency signal, and can also divide one radio frequency signal into two or more frequency points.
  • Combiners, splitters, and combiners/splitters can also avoid mutual interference between signals at various frequencies.
  • the multiple feeder components can be integrated on the same physical unit, or on different physical units respectively, or in any combination.
  • a part is integrated on the same physical unit, and the other part is integrated on a different physical unit, which is not specifically limited.
  • the multiple feeder links may have the same feeder components and connection relationships, or may have different feeder components or different connection relationships.
  • the feeder link may correspond to the same antenna port and the same antenna array, or may correspond to different antenna ports and different antenna arrays, which is not specifically limited in this application.
  • Standing wave refers to a distribution state formed by two waves with the same frequency and opposite transmission directions along the transmission line. These two kinds of waves can be radio waves or other waves. One of these two waves is generally a reflection of the other. To facilitate the description of standing waves, the present application also introduces a standing wave ratio to characterize the transmission of waves.
  • the standing wave ratio can be represented by the ratio of the electrical parameters (such as voltage or electrical power, etc., hereinafter referred to as electrical signals) used to characterize the waves emitted by the sending end to the electrical parameters used to characterize the waves received by the receiving end.
  • the ratio of the electrical parameter used to characterize the reflected wave (such as the difference between the power of the wave sent by the transmitter and the power of the wave received by the receiver) and the wave used to characterize the wave sent by the sender.
  • the standing wave ratio is smaller, it means that there are fewer reflected waves, and more waves emitted by the sender can be sent to the receiver.
  • the standing wave ratio is larger, it means that there are more reflected waves, and only a small part of the waves emitted by the sender can be sent to the receiver.
  • each feeder link in the feeder network consists of its corresponding impedance transmission line, and each feeder link actually matches its corresponding antenna array according to a preset impedance relationship. If a feeder link is abnormal (such as a feeder link open circuit, a feeder link short circuit, or a feeder link impedance mismatch), the impedance on the feeder link will also change, affecting the The working status of the feeder link and even the entire feeder network. Considering that the standing wave ratio of the feeder link will become larger under abnormal conditions such as the feeder link open circuit, the feeder link short circuit and the impedance mismatch of the feeder link, this application can detect the feeder link's VSWR. The standing wave ratio is used to detect the working status of each feeder link, so as to maintain the normal operation of the base station antenna as much as possible.
  • each port is only illustrative, and in other optional implementation manners, each port may also have other names. As long as a port with the same or similar function as the port in this application can be implemented, even if the port name is different from the port name in this application, it still falls within the protection scope of this application, and this application will not repeat them one by one.
  • ports and ports have a corresponding relationship, which may mean that the two ports are the same port or that the two ports are connected through a line, which is not specifically limited in this application.
  • connection refers to an electrical connection, and the connection of two electrical elements may be a direct or indirect connection between the two electrical elements.
  • connection between A and B can be either a direct connection between A and B, or an indirect connection between A and B through one or more other electrical components, such as the connection between A and B, or the direct connection between A and C.
  • C and B are directly connected, and A and B are connected through C.
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or importance of multiple objects degree.
  • first, second, third, and fourth conduction strips are only used to distinguish different conduction strips, but not to indicate the priority or importance of the four conduction strips. different degrees.
  • FIGS. 5A and 5B exemplarily show schematic structural diagrams of two base station antennas provided in Embodiment 1 of the present application.
  • the base station antenna may include an antenna port (TR), a feeding network, and an antenna array , the antenna port TR is connected to the first end (A 1 ) of the feeding network, and the second end (A 2 ) of the feeding network is connected to the antenna array.
  • the feed network may include a first feed point (B 1 ), a second feed point (B 2 ) and a feed detection unit, and the first feed point B 1 is connected to the first end (B 1 ) of the feed detection unit.
  • the feeder link L may also be provided with one or more feeder components, such as the phase shifters, power dividers, combiners, etc.
  • a splitter, a splitter, a combiner/splitter, or a filter which will not be described in detail in this application.
  • the feeder link L may have the following two working states:
  • the feeder link L can feed the transmitted signal from the antenna port and then send it to the antenna array, or feed the received signal from the antenna array. After processing, it is sent to the antenna port.
  • the first feeding point B 1 and the second feeding point B 2 are turned on, and the input feeding point in the first feeding point B 1 and the second feeding point B 2 (in the downlink transmission scenario)
  • the input feed point is B 1
  • the input feed point in the uplink transmission scenario is B 2
  • the output feed in the first feed point B 1 and the second feed point B 2 The output feed point in the downlink transmission scenario is B 2
  • the output feed point in the uplink transmission scenario is B 1 ).
  • There is little difference between the electrical signals sent by the first feed point B 1 and the second feed point The VSWR of the feeder between B2 is relatively small.
  • the abnormal working state of the feeder link L includes an open circuit state, a short circuit state or a mismatch state. Assuming that the abnormal working state of the feeder link L is caused by the abnormality of the feeder between the first feeder point B1 and the second feeder point B2, then: when the feeder link L is in an open state (that is, the first When the feeder between the first feeding point B1 and the second feeding point B2 is disconnected), the electrical signals received by the input feeding points in the first feeding point B1 and the second feeding point B2 cannot be transmitted to the output feed points in the first feed point B 1 and the second feed point B 2 , therefore, the output from the output feed points in the first feed point B 1 and the second feed point B 2 The electrical signal becomes less, which causes the standing wave of the feeder between the first feeding point B 1 and the second feeding point B 2 to become larger; when the feeding link L is in a short-circuit state (that is, the first feeding point B 1 and When the feeder between the second feeding point B2 is short-circuited), the impedance mis
  • the feeder link L when the working state of the feeder link L needs to be detected, the feeder link L may be controlled to be in a certain preset working state (such as a normal working state or an abnormal working state), and then A detection signal is sent from the input end of the feeder link L to the output end of the feeder link L (eg, a downlink detection signal is sent through a baseband unit, or an uplink detection signal is sent through a terminal device).
  • a certain preset working state such as a normal working state or an abnormal working state
  • the first electrical signal at the first feeding point B1 and the second electrical signal at the second feeding point B2 are collected by the power feeding detection unit, and then the first electrical signal and the second electrical signal are input
  • the ratio of the electrical signal to the output electrical signal is used as the current standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 (in the downlink transmission scenario, the electrical signal at the feeding point B 1 is the input
  • the electrical signal and the electrical signal at the feed point B 2 is the output electrical signal, or in the uplink transmission scenario the electrical signal at the feed point B 2 is the input electrical signal and the electrical signal at the feed point B 1 is the output electrical signal ).
  • the current standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 is not much different from the standing wave ratio corresponding to the preset working state, it means that the first feeding point B 1
  • the current working state of the feeder between the feeder and the second feeder point B2 is the same as the preset working state of the pre-control feeder link L, between the first feeder point B1 and the second feeder point B2
  • the feeder of the feeder is connected normally. If the other feeders on the feeder link L are also connected normally, the feeder link L is connected normally.
  • the first feeding point B 1 is connected to the first end C 1 of the feeding detection unit, and the second feeding point B 2 is connected to the second end C 2 of the feeding detection unit”, Can refer to any of the following:
  • the first feeding point B 1 and the second feeding point B 2 themselves are connected through a feed line, and the first feeding point B 1 is also connected to the first end C 1 of the feeding detection unit through a line, And the second feed point B 2 is also connected to the second end C 2 of the feed detection unit through a line.
  • the feeder link L is actually constituted by a whole section of feeder line located between the first end A1 of the feeder network and the second end A2 of the feeder network, and the feeder detection unit is provided with On the outside of the feeder link L, it is only used to realize the above-mentioned standing wave detection function;
  • the first feed point B 1 is the first end C 1 of the feed detection unit
  • the second feed point B 2 is the second end C 2 of the feed detection unit.
  • the feeder link L actually consists of a first segment of feeder located between the first end A1 of the feeder network and the first feeder point B1, a feeder detection unit, and a second feeder located between the first end A1 and the first feeder point B1.
  • the second segment of the feeder line between the electric point B 2 and the second end A 2 of the feed network is formed, and the feed detection unit exists as a part of the feed link L.
  • the power feeding detection unit can not only be used to realize the above-mentioned standing wave detection function, but also participate in the power feeding adjustment process to the power feeding link L synchronously.
  • the power feeding detection unit may first turn on the first feeding point B 1 and the second feeding point B 2 .
  • the feed line between the first feeding point B 1 and the second feeding point B 2 should theoretically be in a normal working state.
  • the feed detection unit determines the standing wave ratio of the feeder between the first feed point B 1 and the second feed point B 2 through the above standing wave detection process, if the standing wave is relatively large (such as greater than the preset standing wave) ratio threshold), it means that the feeder between the first feeding point B1 and the second feeding point B2 is actually in an abnormal working state, and the feeder link L is abnormally connected. If the standing wave ratio is small (for example, not greater than the preset standing wave ratio threshold), it means that the feeder between the first feeding point B 1 and the second feeding point B 2 is actually in a normal working state, and the feeder link The L connection is normal.
  • the standing wave ratio is small (for example, not greater than the preset standing wave ratio threshold)
  • the feeder detection unit may continue to conduct the first feed point B 1 and the second feed point B 2 to maintain the normal operation of the base station antenna. In this way, even when standing wave detection does not need to be performed, the feed detection unit can also be used to participate in feed adjustment, which helps maximize the use of resources in the feed network, and improves resource utilization. At the same time, try to save the deployment cost of the base station antenna.
  • the feeder detection unit can be set at any of the following positions:
  • the feeder detection unit In the first position, the first end C 1 of the feed detection unit is connected to the antenna port, and the second end C 2 of the feed detection unit is connected to the first end M 11 of the combiner/splitter or filter.
  • the feeder detection unit In this setting mode, the feeder detection unit is used to detect the feeder connection between the antenna port and the end M11 ;
  • the first end C1 of the feed detection unit is connected to the antenna port, and the second end C2 of the feed detection unit is connected to the second end M12 of the combiner/splitter or filter (or the first end of the phase shifter). terminal M 21 ).
  • the combiner/splitter or filter can be integrated inside the feed detection unit. In this way, the feed detection unit can not only be used to detect the connection of the feeder between the antenna port and M 12 (or the end M 21 ), but also to perform combining processing, branch processing or filter processing;
  • the first end C1 of the feed detection unit is connected to the antenna port, and the second end C2 of the feed detection unit is connected to the second end M22 (or antenna array) of the phase shifter.
  • the phase shifter, the combiner/splitter or the filter are all integrated inside the feed detection unit.
  • the feed detection unit can not only be used to detect the feeder connection between the antenna port and the end M 22 (or the antenna array), but also perform phase-shift processing, combining processing, Demultiplexing or filtering.
  • the first feeding point B 1 and the second feeding point B 2 may correspond to the existing two cable joints on the feeding link L,
  • the cable joint corresponding to the antenna port TR and the cable joint corresponding to the antenna array
  • the power feeding detection unit can be directly arranged between two existing cable joints, so that the power feeding link between the two cable joints does not need to be additionally split, and the power feeding between the two cable joints can be
  • the adjustment and feeder detection functions are simultaneously integrated on one feeder detection unit, which helps to use the existing cable structure as much as possible to simplify the design complexity of adding a feeder detection function inside the base station antenna.
  • the above content is introduced by taking the feeder network including a feeder link as an example.
  • the feeder detection unit performs a standing wave detection operation to detect the connection of a feeder link.
  • the feeder network may also include multiple feeder links, and the feeder detection unit may detect one or more feeders in the multiple feeder links through one standing wave detection operation connection status of the link. For example:
  • FIG. 6 exemplarily shows a schematic structural diagram of another base station antenna provided in Embodiment 1 of the present application.
  • the feeding network may include K first feeding points (such as feeding point B 11 , feeding point B 12 , ..., feeding point B 1K ), K second feeding points (such as feeding point B 21 , feeding point B 22 , ..., feeding point B 2K ) and the feed detection unit, the K first feed points B 11 to B 1K are in one-to-one correspondence with the K second feed points B 21 to B 2K , and any corresponding first feed point and second feed point It can be located in the same feeder link, for example, the corresponding feeder point B11 and feeder point B21 are located in the feeder link L1, and the corresponding feeder point B12 and feeder point B22 are located in the feeder link L2 , ..., the corresponding feeding point B 1K and feeding point B 2K are located in the feeding link L K , where K is a positive integer greater than or equal to 2.
  • the feed detection unit may include K first terminals (eg, terminal C 11 , terminal C 12 , . . . , terminal C 1K ) and K second terminals (eg, terminal C 21 , terminal C 22 , ..., terminals C 2K ), the K first terminals C 11 to C 1K of the power feeding detection unit are respectively connected to the K first feeding points B 11 to B 1K , and the K second terminals C 21 of the power feeding detection unit are respectively connected ⁇ C 2K are respectively connected to the K second feeding points B 21 ⁇ B 2K .
  • K first terminals eg, terminal C 11 , terminal C 12 , . . . , terminal C 1K
  • K second terminals eg, terminal C 21 , terminal C 22 , ..., terminals C 2K
  • the feeder detection unit can control the R feeder links by controlling The first feeder point and the second feeder point of each feeder link in the feeder link are turned on, off, or impedance mismatch, etc., so that the R feeder links are in a preset working state, and then The current standing wave ratio of each of the R feeder links is determined according to the above standing wave detection method.
  • the feeder detection unit may perform a standing wave alarm for the one or more feeder links (for example, send an alarm message to the remote radio frequency unit) to indicate the one or more feeder links. or multiple feeder links are connected incorrectly.
  • the standing wave ratio corresponding to the preset working state may be a fixed value set by those skilled in the art based on experience, or may be obtained by comparison with the standing wave ratio corresponding to another working state.
  • the feeder detection unit can control a feeder link to be in a normal working state and an abnormal working state successively, and obtain respectively
  • the VSWR of the feeder link under normal working state and the VSWR of the feeder link under abnormal working state should be quite different in theory.
  • the difference between the standing wave ratios in these two states is not large (for example, it is not greater than the preset difference threshold), it means that the current connection of the feeder link is in error. If the difference is large (for example, greater than the preset difference threshold), it means that the current connection of the feeder link is normal.
  • this method also takes into account the problem that different process deviations correspond to different standing wave scenarios. Even if a process deviation causes a larger reflected wave in the circuit environment and another process deviation results in a smaller reflected wave in the circuit environment, this comparison The difference of standing wave ratio determined by the method can also accurately reflect the same or different working states, which helps the feed detection unit to accurately detect the connection condition under various process deviations, and effectively improves the feed detection unit to resist different process deviations. ability to influence.
  • the production personnel can use the feed detection unit to detect the connection of each feeder link inside the feeder network of the base station antenna. If it is determined that each feeder link is properly connected, the base station The internal cable connection of the antenna is correct, and the production personnel can leave the base station antenna. If it is determined that one or more feeder links are abnormally connected, the production personnel can repair the one or more feeder links first, and then use the feeder detection unit to detect the connection of each feeder link after the overhaul is completed. The antenna of the base station is shipped from the factory until it is determined that all feeder links are connected correctly. By performing the initial inspection before leaving the factory, the base station antenna can be connected to the correct internal cable as far as possible.
  • the feed detection can be reused. unit for secondary inspection. If there is no connection problem detected in the second test, it means that there is no problem with the internal and external cable connections of the base station antenna, and the base station equipment can be sold or installed in the future. If the second test still detects a connection problem, since the internal cable connection of the base station antenna has been determined to be correct, the connection problem is obviously caused by a problem with the external cable connection of the base station antenna.
  • external equipment such as a remote radio frequency unit or baseband unit
  • feeder link 1 will be in a normal working state and feeder link 2 will be in an abnormal working state, that is, the feeder detection unit should theoretically detect that the standing wave of feeder link 1 is small and the feeder link
  • the feeder detection unit should theoretically detect that the standing wave of feeder link 1 is small and the feeder link
  • it can be determined that there is a problem with the connection between external cable 1 and external cable 2 such as The external device 1 is connected to the feeder link 2 through the external cable 1 , and the external device 2 is connected to the feeder link 1 through the external cable 2 .
  • the manufacturer or user can reconnect the base station antenna and external equipment, and reuse the feed detection unit for detection, and then sell or install the base station equipment until it is found that there is no connection problem.
  • the manufacturer or user can reconnect the base station antenna and external equipment, and reuse the feed detection unit for detection, and then sell or install the base station equipment until it is found that there is no connection problem.
  • By performing secondary inspection before selling or installing base station equipment it is possible to sell or install base station equipment with correct internal and external cable connections.
  • the feeding network in the first embodiment can not only accurately locate the internal cable connection problem of the base station antenna, but also accurately locate the external cable connection problem of the base station antenna. This method is helpful for launching or installing the base station. Before the equipment, calibrate each cable connection in the base station equipment in advance to increase the possibility of launching or installing base station antennas with correct cable connections, and reduce the probability of the base station equipment being returned to the factory for repair or reinstallation of the base station equipment.
  • the structure of the feed detection unit is further described below from the second embodiment to the fourth embodiment. It should be pointed out that the present application does not limit the feed detection unit to only have the following structures. As long as the feed detection unit can realize the two functions of controlling the working state of the feeder link and detecting the standing wave, all of them are included in this application. within the protection scope of the application.
  • FIG. 7 exemplarily shows a schematic structural diagram of a feed network provided in Embodiment 2 of the present application.
  • the feed detection unit may include a first controller, a first transmission component, a first A conduction strip line, a second conduction strip line and a third conduction strip line, the first conduction strip line is connected to the first feeding point B 1 , the second conduction strip line is connected to the second feeding point B 2 , and the first conduction strip line Not in contact with the second conductive strip line.
  • the third belt wire may be fixedly connected to the first transmission component, and the transmission direction of the first transmission component may be shown as "V1" or "V2" in FIG. 7 (just an example).
  • the first controller may be respectively connected to the control end of the first transmission component, the data acquisition end of the first feeding point B1 and the data acquisition end of the second feeding point B2.
  • the first controller may firstly control the first transmission component to drive the third belt guide to move to the first position (the dotted line position in FIG. 7 ) along the “V1” direction shown in FIG. 7 .
  • the third tape line is located at the first position, one end of the third tape line is in contact with the first tape line, and the other end of the third tape line is in contact with the second tape line.
  • the first feeding point B 1 and the second feeding point B 2 can be conducted through the connected first conducting strip line, the third conducting strip line and the second conducting strip line, and the first feeding point B 1 and the first conducting strip line
  • the feeder between the two feeding points B2 is in normal working condition.
  • the first controller obtains the first electrical signal at the first feeding point B1 from the data collecting end of the first feeding point B1, and obtains the first electrical signal from the data collecting end of the second feeding point B2
  • the first standing wave of the feeder line between the first feeding point B1 and the second feeding point B2 is calculated according to the first electrical signal and the second electrical signal Compare.
  • the feeder between the first feeding point B 1 and the second feeding point B 2 should have a small standing wave ratio under normal working conditions.
  • the feeder detection unit may perform a standing wave on the feeder line between the first feeder point B1 and the second feeder point B2 alert;
  • the first standing wave of the feed line between the first feeding point B 1 and the second feeding point B 2 is relatively small, it may be the first feeding point B 1 and the second feeding point B 2 It may be caused by the normal connection of the feeder between the two feeders, or it may be caused by the connection between the first feeding point B 1 and the second feeding point B 2 respectively connecting the second feeding point and the first feeding point on other feeder links. of.
  • the first controller can also control the first transmission component to drive the third belt line to move to the second position along the “V2” direction shown in FIG. line position).
  • the third conductive strip line When the third conductive strip line is in the second position, the third conductive strip line is not in contact with the first conductive strip line and/or is not in contact with the second conductive strip line, the first feeding point B 1 and the second feeding point B2 is disconnected, causing the feeder between the first feeding point B1 and the second feeding point B2 to switch to an open circuit state.
  • the first controller obtains the third electrical signal at the first feeding point B1 from the data collecting end of the first feeding point B1, and obtains the third electrical signal from the data collecting end of the second feeding point B2
  • the fourth electrical signal at the second feeding point B2 the second standing wave of the feeder line between the first feeding point B1 and the second feeding point B2 is calculated according to the third electrical signal and the fourth electrical signal Compare.
  • the difference between the second standing wave ratio and the first standing wave ratio is greater than the preset difference threshold, it means that the feeder between the first feeding point B 1 and the second feeding point B 2 will be detected along with the feeding
  • the switching operation of the unit corresponds to the change of the working state, and the feeder connection between the first feeding point B 1 and the second feeding point B 2 is normal. If the difference between the second standing wave ratio and the first standing wave ratio is not greater than the preset difference threshold, it means that the feeder between the first feeding point B 1 and the second feeding point B 2 does not follow the feeding
  • the working state changes due to the switching operation of the electrical detection unit, the first feeding point B 1 and the second feeding point B 2 may be respectively connected to the second feeding point and the first feeding point of other feeding links.
  • the feeder connection between the first feed point B 1 and the second feed point B 2 is abnormal, so the feed detection unit can The feeder gives a standing wave alarm.
  • the feeder detection unit as shown in Figure 7 can change the working state of the feeder link by controlling the passage and disconnection of the feeder link, and complete the standing wave by combining the standing wave ratio of the feeder link under different working states. Detection, not only can detect the abnormal connection of the feeder link itself, but also detect the line sequence connection error between the feeder link and other feeder links, which helps to improve the accuracy of standing wave detection .
  • FIG. 8 exemplarily shows a schematic structural diagram of a feed detection unit provided in Embodiment 2 of the present application, wherein (a) in FIG. 8 shows a top view of the feed detection unit, (b) in FIG. 8 illustrates a side view of the feed detection unit.
  • the power feeding detection unit may further include a first cavity, each first feeding point (eg B 11 -B 15 ) and each second feeding point (eg B 21 -B ) 25 ) It is arranged on the outside of the first cavity. For example, it can be symmetrically distributed on the outside of the two opposite sides of the first cavity in the manner shown in FIG.
  • the outer sides of the two sides of the first cavity can also be arranged side by side on the outside of the same side of the first cavity, and of course they can also be distributed on the outside of one or more sides of the first cavity in other ways, which are not specifically limited.
  • the first conduction band line, the second conduction band line and the third conduction band line can be arranged inside the first cavity, for example, the first conduction band line, the second conduction band line and the third conduction band line all have Rigid, the first conducting strip is connected to the first feeding point to achieve positional fixation, the second conducting strip is connected to the second feeding point to achieve positional fixing, and the third conducting strip is flexibly connected to the first cavity
  • the side of the body opposite to the first or second conductive strip lines is close to or far from the first and second conductive strip lines.
  • the feed detection unit may further include a first PCB and a second PCB disposed opposite to each other, a first slideway, a first conducting strip line and a second conducting strip line.
  • the strip line may be provided on the opposite side of the first PCB to the second PCB (the T1 side as shown in (b) in FIG. 8 ), and the third conductive strip line may be provided on the second PCB on the opposite side of the second PCB.
  • An opposite side of the PCB (side T2 as shown in (b) of Figure 8 ).
  • at least one inner side wall of the first cavity may also be provided with a chute, and the first PCB is clamped in the chute to achieve positional fixation.
  • the first slideway can be arranged on the surface of the first PCB opposite to the second PCB, and also on the surface of the first cavity opposite to the first PCB, and the second PCB can slide along the first slideway.
  • the sliding direction of the first slideway needs to have an included angle with the connecting line of the first and second guide strip lines, which can be perpendicular to the first and second guide strip lines as shown in (a) in FIG. 8 .
  • the direction of the connection between the conducting strip lines may also be other directions that have an included angle with the connecting line of the first conducting strip line and the second conducting strip line, which is not specifically limited.
  • the first controller can be controlled to drive the second PCB to slide along the first slide to the direction close to the connecting line between the first feeding point B 11 and the second feeding point B 21 , until the third conductive belt on the second PCB
  • the sliding of the second PCB is stopped. In this way, the first feeding point B 11 and the second feeding point B 21 can be conducted through the connected first, third and second conducting strip lines.
  • the first controller can control the first transmission component to drive the second PCB to move away from the first slideway
  • the direction of the connecting line between the first feeding point B 11 and the second feeding point B 21 slides until the two ends of the third conducting strip line on the second PCB are not in contact with the first and second conducting strip lines , stop the sliding of the second PCB.
  • the first conduction strip line, the third conduction strip line and the second conduction strip line do not form a connected link, the first feeding point B 11 and the second feeding point B 21 are disconnected.
  • FIG. 8 is only described by taking as an example that the first conducting strip line and the second conducting strip line are arranged on the side of the T1 surface of the first PCB.
  • the first and second conductive strip lines may also be arranged on the side of the T3 surface of the first PCB, or on the side of the T1 surface and the T3 surface of the first PCB at the same time. face side.
  • the second PCB may include a first PCB which is arranged on the T1 side of the first PCB A part and a second part disposed on the side of the T3 surface of the first PCB, each of the first part and the second part may be provided with a third strip conductor on a surface opposite to the first PCB.
  • the structure of the feeder detection unit when the feeder network includes K feeder links is further introduced.
  • K is 5
  • the 5 first feed points (B 11 ⁇ B 15 ) and the 5 second feed points (B 21 ⁇ B 25 ) corresponding to the 5 feeder links are shown in the figure
  • the manner shown in (a) of 8 is symmetrically arranged on the outside of the two opposite sides of the first cavity.
  • FIG. 9 exemplarily shows a schematic structural diagram of a first PCB and a second PCB provided in Embodiment 2 of the present application, wherein (a) in FIG. 9 shows a top view of the first PCB, and (b) in FIG. 9 A top view of the second PCB is illustrated. As shown in (a) of FIG. 9
  • the first PCB may include a first slideway, and five first conductive strip lines (1.1, 2.1, 3.1, 4.1 and 5.1) and 5 second conductive strip lines (1.2, 2.2, 3.2, 4.2 and 5.2), the 5 first conductive strip lines 1.1 to 5.1 and the 5 second conductive strip lines 1.2 to 5.2 are symmetrically deployed in the On the inner sides of the two opposite sides of the first cavity, the first conducting strip line corresponding to each feeding link can be connected to the first feeding point in the corresponding feeding link (for example, the first conducting strip line 1.1
  • the first feeding point B 11 shown in (a) in FIG. 8 is connected, and the first conducting strip line 2.1 is connected with the first feeding point B 12 shown in (a) in FIG.
  • the strip line 5.1 is connected to the first feeding point B 15 ) shown in (a) of FIG. 8
  • the second conductive strip line corresponding to each feeder link can be connected to the second feeder link in the corresponding feeder link.
  • the feeding point (for example, the second conductive strip line 1.2 is connected to the second feeding point B 21 shown in (a) in FIG. 8
  • the second conductive strip line 2.2 is connected to the second feeding point shown in (a) in FIG. 8 .
  • the electrical points B 22 , . . . , the second conductive strip line 5.2 are connected to the second feeding point B 25 ) illustrated in (a) of FIG. 8 .
  • the second PCB may include at least one third conductive strip line, such as a third conductive strip line 1 , a third conductive strip line 2 , and a third conductive strip line 3.
  • the third tape guide 4 , the third tape line 5 , the third tape line 6 , the third tape line 7 , the third tape line 8 and the third tape line 9 are also included in (b) of FIG. 9 .
  • the first controller may firstly control the first transmission component to drive the second PCB to slide along the first slideway to the left as shown in (a) in FIG. 8 , until the five third tape conductors 1 in the second PCB ⁇ 5 are respectively overlapped with the 5 first conductive strip lines 1.1 to 5.1 and the 5 second conductive strip lines 1.2 to 5.2 on the first PCB, that is, the two ends of the third conductive strip line 1 respectively contact the first conductive strip line 1.1 and the second conducting strip line 1.2, the two ends of the third conducting strip line 2 respectively contact the first conducting strip line 2.1 and the second conducting strip line 2.2, ..., the two ends of the third conducting strip line 5 respectively contact the first conducting strip line 5 Strip line 5.1 and second conductive strip line 5.2.
  • the third conducting strip line 1 conducts the first feeding point B 11 and the second feeding point B 21
  • the third conducting strip line 2 conducts the first feeding point B 12 and the second feeding point
  • the third conducting strip line 3 conducts the first feeding point B 13 and the second feeding point B 23
  • the third conducting strip line 4 conducts the first feeding point B 14 and the second feeding point B 24
  • the third conducting strip line 5 conducts the first feeding point B 15 and the second feeding point B 25
  • the third conducting strip lines 6 to 9 are idle.
  • the first controller determines the first standing wave ratio of the feeder between the first feeding point B 11 and the second feeding point B 21 , the first feeding point B 12 and the second feeding point B 12 respectively according to the above standing wave detection method.
  • the first controller can then control the first transmission component to drive the second PCB to slide along the first slideway to the right as shown in (a) in FIG. 8 , until the four third guide belts in the second PCB Lines 1 to 4 are respectively overlapped with the four first conductive strip lines 2.1 to 5.1 and the four second conductive strip lines 2.2 to 5.2 on the first PCB, that is, both ends of the third conductive strip line 1 respectively contact the first conductive strip.
  • both ends of the third tape line 2 contact the first tape line 3.1 and the second tape line 3.2 respectively, and both ends of the third tape line 3 contact the first tape line respectively
  • the two ends of the wire 4.1 and the second conductive strip 4.2, and the third conductive strip 4 respectively contact the first conductive strip 5.1 and the second conductive strip 5.2.
  • the third conducting strip line 1 conducts the first feeding point B 12 and the second feeding point B 22
  • the third conducting strip line 2 conducts the first feeding point B 13 and the second feeding point B 22 .
  • the third conducting strip line 3 conducts the first feeding point B 14 and the second feeding point B 24
  • the third conducting strip line 4 conducts the first feeding point B 15 and the second feeding point B 25.
  • the third conductive strip lines 5 to 9 are idle, and the connection relationship is shown in (a) of FIG. 8 .
  • the first controller respectively determines the second standing wave ratio of the feeder between the first feeding point B 11 and the second feeding point B 21 , the first feeding point B 12 and the second feeding point B 21 according to the above standing wave detection method.
  • the second standing wave ratio of the feeder between the electrical points B 22 , . . . the second standing wave ratio of the feeder between the first feed point B 15 and the second feed point B 25 .
  • the first feeding points B 12 ⁇ B 15 and the second feeding points B 22 ⁇ B 25 are still connected respectively, while the first feeding point B 11 and the second feeding point B 21 are switched by conduction. until disconnection, so the first standing wave of the feeder between the first feeding point B 12 ⁇ B 15 and the corresponding first feeding point and the second feeding point B 22 ⁇ B 25
  • the ratio and the second standing wave ratio should not be much different, while the first standing wave ratio and the second standing wave ratio of the feeder between the first feeding point B 11 and the second feeding point B 21 should be quite different.
  • the first controller can then control the first transmission component to drive the second PCB to continue to slide to the right side as shown in (a) in FIG. 8 along the first slideway, until the four third conductors in the second PCB
  • the strip lines 9 and 1 to 3 are respectively overlapped with the four first conduction strip lines 1.1 and 3.1 to 5.1 and the four second conduction strip lines 1.2 and 3.2 to 5.2 on the first PCB.
  • the ends respectively contact the first and second conducting strip lines 1.1 and 1.2
  • the ends of the third conducting strip line 1 respectively contact the first and second conducting strip lines 3.1 and 3.2
  • the two ends of the third conducting strip line 2 respectively.
  • the ends respectively contact the first and second conducting strip lines 4.1 and 4.2, and the two ends of the third conducting strip line 3 respectively contact the first and second conducting strip lines 5.1 and 5.2.
  • the third conducting strip line 9 conducts the first feeding point B 11 and the second feeding point B 21
  • the third conducting strip line 1 conducts the first feeding point B 13 and the second feeding point B 13 respectively.
  • the third conducting strip line 2 conducts the first feeding point B 14 and the second feeding point B 24 respectively
  • the third conducting strip line 5 conducts the first feeding point B 15 and the second feeding point B 15 respectively
  • the third tape lines 4 , 5 , 6 , 7 and 8 are idle.
  • the first controller determines the third standing wave ratio of the feeder between the first feeding point B 11 and the second feeding point B 21 , the first feeding point B 12 and the second feeding point B 12 respectively according to the above standing wave detection method.
  • the first feeding points B 11 , B 13 ⁇ B 15 and the second feeding points B 21 , B 22 ⁇ B 25 are still connected respectively, and the first feeding point B 12 and the second feeding point B 22 are switched from on to off .
  • the first and third standing wave ratios of the feeder line between the corresponding first and second feeding points should not be much different, while the first and second feeding points B 12 and B 22
  • the first VSWR and the third VSWR of the feeder should be quite different. Therefore, if there is a certain corresponding gap between the first feeding point B 11 , B 13 ⁇ B 15 and the second feeding point B 21 , B 22 ⁇ B 25 , between the first feeding point and the second feeding point
  • the first VSWR and the third VSWR of the feeder are quite different, or if the feeder between the first feeding point B 12 and the second feeding point B 22 has the first VSWR and the third VSWR If the difference is not significant, it means that the feeder links corresponding to the first feed point and the second feed point are abnormal, and the first controller may issue a standing wave alarm for these abnormal feeder links.
  • the first controller can control the first transmission component to drive the second PCB to move to the right along the first slide, and each movement can control one of the feeder links to be disconnected and the other feeder links to conduct. on until all feeder links have been disconnected at least once.
  • the first controller can determine the line sequence of each feeder link according to the variation of the standing wave ratio of each feeder link. For example, when a feeder link is controlled to switch from the on state to the off state, the VSWR of this feeder link does not change, while the VSWR of the other feeder link changes from small to large and If the change is obvious, it can be determined that the connection relationship between the other feeder link and the feeder link is misplaced.
  • the scheme can not only detect the abnormal connection problem of the feeder link itself, but also determine the dislocation connection problem between the feeder links through the line sequence detection of each feeder link.
  • the second PCB shown in (b) of FIG. 9 is only an exemplary introduction for the convenience of introducing the solution, and the number and position of the third conductive strip lines set in the second PCB can Adjust according to actual needs.
  • only the third conductor as shown in (b) in FIG. 9 may be set in the second PCB.
  • the strip lines 6 to 8 and the third conduction strip lines 1 to 5, or only the third conduction strip lines 6, 8, 9 and the third conduction strip lines 1 to 5 as shown in (b) of FIG. 9 may be provided , or only the third conductive strip lines 6 and 7 and the third conductive strip lines 1 to 5 as shown in (b) of FIG. 9 may be provided, which will not be described in detail in this application.
  • FIG. 10 exemplarily shows a schematic structural diagram of a feeder network provided in Embodiment 3 of the present application
  • FIG. 11 exemplarily shows a system architecture diagram corresponding to the feeder network.
  • the feeding detection unit may include a third controller and a switching unit (K)
  • the first electrode (d 1 ) of the switching unit K is connected to the first feeding point B 1
  • the second electrode (d 2 ) of the switching unit is connected to the first feeding point B 1 .
  • the control electrode (d 0 ) of the switch unit K is connected to the third controller.
  • the third controller may first send a first control signal to the control electrode d 0 of the switch unit K to control the switch
  • the unit K conducts its first electrode d 1 and second electrode d 2 , and detects the first standing wave ratio of the feed line between the first feeding point B 1 and the second feeding point B 2 in this scenario .
  • the third controller can send a second control signal to the control electrode d 0 of the switch unit K to control the switch unit K to disconnect the first electrode d 1 and the second electrode d 2 thereof, and detect the first feeding point The second standing wave ratio of the feeder between B 1 and the second feed point B 2 in this scenario.
  • the feeder between the first feeder point B1 and the second feeder point B2 is in the conducting state in the above-mentioned first scenario, and in the In the above-mentioned second scenario, it is disconnected, and the first VSWR and the second VSWR should be quite different in these two scenarios. Therefore, if the difference between the first standing wave ratio and the second standing wave ratio is not greater than the preset difference threshold, it means that the feeder connection between the first feeding point B 1 and the second feeding point B 2 is abnormal,
  • the third controller may perform a standing wave alarm for the feeder between the first feeding point B 1 and the second feeding point B 2 .
  • the switch unit K may refer to any unit that can realize the function of link on and off, such as a triode, a transistor, or a voltage diode.
  • the first control signal may refer to a forward voltage signal
  • the second control signal may refer to a reverse cutoff voltage signal.
  • the feeder detection unit can also change the working state of the feeder link by controlling the passage and disconnection of the feeder link, and can combine the standing wave ratio of the feeder link under different working states to determine Complete standing wave detection.
  • the above content is only introduced by taking the feeder network including a feeder link as an example.
  • the third controller may be respectively connected to the control terminals of the multiple switch units corresponding to the multiple feeder links. In this way, the third controller controls the multiple feeder links by controlling the The on and off of one or more switch units corresponding to one or more feeder links in the link can realize the detection of the connection condition of one or more feeder links.
  • the above-mentioned second embodiment for a specific implementation manner of how to detect one or more feeder links, please refer to the above-mentioned second embodiment, and details will not be repeated this time.
  • FIG. 12 exemplarily shows a schematic structural diagram of a feeder network provided in Embodiment 4 of the present application.
  • the feeder detection unit may include a second controller, a second transmission component, a first There are four conducting strip lines and conductor parts, the fourth conducting strip line is connected to the first feeding point B 1 and the second feeding point B 2 , and the conductor parts are coupled to the ground circuit.
  • the conductor part may be fixedly connected to the second transmission part, and the transmission direction of the second transmission part may be shown as "V3" or "V4" in FIG. 12 (just an example).
  • the second controller may be respectively connected to the control end of the second transmission component, the data acquisition end of the first feeding point B1 and the data acquisition end of the second feeding point B2.
  • the second controller may firstly control the second transmission part to drive the conductor part to move to the third position (the solid line position in FIG. 12 ) along the “V4” direction shown in FIG. 12 .
  • the conductor part When the conductor part is in the third position, the conductor part does not contact the fourth conductor strip line, the impedance on the feeder line between the first feeding point B1 and the second feeding point B2 does not change, so the first feeding The feeder between point B 1 and the second feed point B 2 is in normal operation.
  • the second controller obtains the first electrical signal at the first feeding point B1 from the data collecting end of the first feeding point B1, and obtains the first electrical signal from the data collecting end of the second feeding point B2
  • the first standing wave of the feeder line between the first feeding point B1 and the second feeding point B2 is calculated according to the first electrical signal and the second electrical signal Compare.
  • the feeder between the first feeding point B 1 and the second feeding point B 2 should have a small standing wave ratio under normal working conditions.
  • the feeder detection unit may perform a standing wave on the feeder line between the first feeder point B1 and the second feeder point B2 alert;
  • the first standing wave of the feed line between the first feeding point B 1 and the second feeding point B 2 is relatively small, it may be the first feeding point B 1 and the second feeding point B 2 It may be caused by the normal connection of the feeder between the two feeders, or it may be caused by the connection between the first feeding point B 1 and the second feeding point B 2 respectively connecting the second feeding point and the first feeding point on other feeder links. of.
  • the second controller can further control the second transmission part to drive the conductor part to move to the fourth position (the dotted line position in FIG. 12 ) along the “V3” direction shown in FIG. 12 .
  • the conductor part When the conductor part is in the fourth position, the conductor part contacts the fourth conductor strip line, the impedance on the feeder line between the first feeding point B 1 and the second feeding point B 2 changes, and the first feeding point B 1 Most of the signal on the feeder between B1 and the second feedpoint B2 will be driven to the ground circuit through the conductor parts, causing the feeder between the first feedpoint B1 and the second feedpoint B2 to switch to impedance loss. match status.
  • the second controller obtains the third electrical signal at the first feed point B 1 from the data collection end of the first feed point B 1 , and obtains the third electrical signal from the data collection end of the second feed point B 2
  • the second standing wave of the feeder line between the first feeding point B1 and the second feeding point B2 is calculated according to the third electrical signal and the fourth electrical signal Compare. If the difference between the second standing wave ratio and the first standing wave ratio is greater than the preset difference threshold, it means that the feeder between the first feeding point B 1 and the second feeding point B 2 will be detected along with the feeding
  • the switching operation of the unit corresponds to the change of the working state, and the feeder connection between the first feeding point B 1 and the second feeding point B 2 is normal.
  • the difference between the second standing wave ratio and the first standing wave ratio is not greater than the preset difference threshold, it means that the feeder between the first feeding point B 1 and the second feeding point B 2 does not follow the feeding
  • the first feeding point B 1 and the second feeding point B 2 may be respectively connected to the second feeding point and the first feeding point of other feeding links.
  • the feeder connection between the first feed point B 1 and the second feed point B 2 is abnormal, so the feed detection unit can The feeder gives a standing wave alarm.
  • the feeder detection unit shown in Figure 12 can change the working state of the feeder link by controlling the impedance change of the feeder link, and complete the standing wave detection by combining the standing wave ratio of the feeder link under different working states , which can not only detect the abnormal connection of the feeder link itself, but also detect the line sequence connection error between the feeder link and other feeder links, which helps to improve the accuracy of standing wave detection.
  • FIG. 13 exemplarily shows a schematic structural diagram of a feed detection unit provided in Embodiment 4 of the present application, wherein (a) in FIG. 13 shows a top view of the feed detection unit, (b) in FIG. 13 illustrates a side view of the feed detection unit.
  • the power feeding detection unit may further include a second cavity, each first feeding point (eg B 11 ⁇ B 15 ) and each second feeding point (eg B 21 ⁇ B ) 25 ) It is arranged on the outside of the second cavity. For example, it can be symmetrically distributed on the outside of the two opposite sides of the second cavity in the manner shown in (a) in FIG.
  • the fourth conducting strip line and the conductor component may be arranged inside the second cavity.
  • the fourth conductive strip line may have rigidity, and the fourth conductive strip line can be fixed in position by connecting the corresponding first feeding point and the second feeding point.
  • the conductor component can be fixed in position by movably connecting the second cavity, fixedly connecting the transmission component or magnetic levitation.
  • the second cavity may be made of conductive material, the second cavity is provided with a coupling point as shown in (b) in FIG. 13 , and the conductor part is connected to the coupling point by electrical connection or coupling to connect the ground circuit. .
  • the second cavity by utilizing the original components in the feeding network (ie, the second cavity) to realize the grounding of the conductor components, it is not only possible to avoid the need for additional grounding components, thereby helping to save the cost of the feeding network, and to utilize the second cavity.
  • the large area of the body quickly changes the impedance distribution on the feeder link when the conductor part contacts the fourth conducting strip line, so that the feeder link is switched from the normal working state to the impedance mismatch state more quickly.
  • the feed detection unit may further include a third PCB disposed opposite to the conductor part, and a fourth conductive strip line may be disposed on the surface opposite to the conductor part on the third PCB (as shown in FIG. 13 ( b) The indicated T4 side).
  • a third PCB disposed opposite to the conductor part
  • a fourth conductive strip line may be disposed on the surface opposite to the conductor part on the third PCB (as shown in FIG. 13 ( b) The indicated T4 side).
  • at least one inner side wall of the second cavity may also be provided with a chute, and the third PCB is clamped in the chute to achieve positional fixation.
  • the conductor component can slide in a direction close to or away from the fourth belt line under the drive of the transmission component.
  • the transmission The component includes a telescopic rod, and there is an included angle between the telescopic direction of the telescopic rod and the fourth belt guide line, such as the direction perpendicular to the fourth belt guide line, and the conductor component is fixedly connected to the telescopic rod of the transmission component.
  • the telescopic operation of the telescopic rod on the upper part can drive the conductor part to slide toward the direction of approaching the fourth tape guide line or away from the fourth tape line.
  • the feed detection unit may further include a second slideway (not shown in FIG.
  • the second slideway may be provided on the surface of the third PCB opposite to the conductor component, and also provided on the second slideway.
  • On the surface of the cavity relative to the third PCB there is an angle between the sliding direction of the second slideway and the fourth guide strip line, and the conductor component slides along the second slide way to approach the fourth guide strip line or away from the fourth guide strip line. Swipe in the direction of the line.
  • the second controller when it is necessary to control the feeder between the first feeding point (eg B 11 ) and the second feeding point (B 21 ) on a certain feeder link to be in a normal working state, the second controller The second transmission part can be controlled to drive the conductor part to slide along the second slideway to the direction away from the fourth conductor tape line connecting the first feeding point B11 and the second feeding point B21 , until the conductor part does not touch the first feeding point B11 and B21 at all. In the case of a four-conductor tape line, stop the sliding of the conductor parts. In this way, the first feeding point B 11 and the second feeding point B 21 can be conducted through the preset impedance on the fourth conducting strip line.
  • the second controller can control the second transmission part to drive the conductor part to approach the connection along the second slideway
  • the direction of the fourth conducting strip line of the first feeding point B 11 and the second feeding point B 21 is moved until the conductor member overlaps with the fourth conducting strip line, and the sliding of the conductor member is stopped.
  • the impedance on the feeder line between the first feed point B 11 and the second feed point B 21 is changed by the conductor part and the connected second cavity, resulting in the first feed point B 11 and the second feed point
  • the feeder between points B 21 is in an impedance mismatched state.
  • FIG. 13 is only described by taking as an example that the fourth conductive strip line is arranged on the side of the T4 surface of the third PCB.
  • the fourth strip conductor can also be arranged on the T5 side of the third PCB, or on both the T4 side and the T5 side of the third PCB.
  • the conductor part may include a first portion provided on the T4 side of the third PCB and a first portion provided on the third PCB The second part of the T 5 side.
  • the structure of the feeder detection unit when the feeder network includes K feeder links is further introduced.
  • K is 5
  • the 5 first feed points (B 11 ⁇ B 15 ) and the 5 second feed points (B 21 ⁇ B 25 ) corresponding to the 5 feeder links are shown in the figure
  • the manner shown in (a) of 13 is symmetrically arranged on the outside of the two opposite sides of the second cavity.
  • FIG. 14 exemplarily shows a schematic structural diagram of a third PCB and conductor components provided in Embodiment 4 of the present application, wherein (a) in FIG. 14 shows a top view of the third PCB, and (b) in FIG. 14 shows The top view of the conductor member is shown, and (c) of FIG. 14 shows a side view of the conductor member. As shown in (a) of FIG.
  • the third PCB may include 5 fourth conductive strip lines (1, 2, 3, 4 and 5) corresponding to the 5 feeder links respectively , the fourth conducting strip line corresponding to each feeding link can be connected to the first feeding point and the second feeding point in the corresponding feeding link, for example, the two ends of the fourth conducting strip line 1 are connected respectively In the first feeding point B 11 and the second feeding point B 21 shown in (a) of FIG. 13 , both ends of the fourth conducting strip line 2 are respectively connected to the first feeding point B 11 shown in (a) in FIG. 13 .
  • the electrical point B 12 and the second feeding point B 22 , . . .
  • the two ends of the fourth conductive strip line 5 are respectively connected to the first feeding point B 15 and the second feeding point shown in (a) of FIG. 13 . B 25 .
  • the second slides may be arranged in a direction perpendicular to each of the fourth conductor belt lines.
  • the conductor parts may be connected by the first conductor plate (R 1 ), the second conductor plate (R 2 ), the first conductor The conductor plate R1 is parallel to the conductor plate R2, and the two ends of the conductor connection member F1 are respectively fixedly connected to one end of the conductor plate R1 and the conductor plate R2 .
  • One end of the conductor connector F2 is fixedly connected to the other end of the conductor plate R1 and the other end of the conductor plate R2 respectively. Disposing the conductor parts in this hollow manner can not only realize the coupling between the conductor parts and the second cavity, but also reduce the materials required for disposing the conductor parts as much as possible, and save the cost and weight of the feed detection unit.
  • the second controller may firstly control the second transmission part to drive the conductor part to slide to the left side as shown in (a) in FIG. 13 along the second slideway, until the conductor plate R2 on the conductor part and the conductor plate R2 on the third PCB None of the five fourth conducting strip lines 1 to 5 are in contact.
  • the fourth conductive strip lines 1 to 5 respectively conduct the five first feeding points B 11 ⁇ B 15 and the five second feeding points B 21 ⁇ B 25 .
  • the second controller determines the first standing wave ratio of the feeder between the first feeding point B11 and the second feeding point B21 , the first feeding point B12 and the second feeding The first standing wave ratio of the feeder between the electrical points B 22 , . . . , the first standing wave ratio of the feeder between the first feed point B 15 and the second feed point B 25 .
  • the second controller can control the second transmission part to drive the second PCB to slide to the right side as shown in (a) of FIG. 13 along the first slideway, until the conductor plate R2 on the conductor part and the third
  • the fourth conductive strip line 1 on the PCB is in contact with and not in contact with the fourth conductive strip lines 2 to 5 on the third PCB, as shown in (a) of FIG. 13 .
  • the feed lines between the first feeding points B 12 ⁇ B 15 and the second feeding points B 22 ⁇ B 25 are still connected respectively, and the first feeding point B 11 and the second feeding point Part of the signal on the feeder between B21 will be transmitted to the second cavity through conductor plate R2, conductor connector F1, conductor connector F2, conductor plate R1 and the coupling point on the second cavity ground circuit), resulting in an impedance mismatch on the feeder line between the first feed point B 11 and the second feed point B 21 .
  • the second controller determines the second standing wave ratio of the feeder between the first feeding point B 11 and the second feeding point B 21 , the first feeding point B 12 and the second feeding point B 21 respectively according to the above standing wave detection method.
  • the second standing wave ratio of the feeder between the electrical points B 22 , . . . , the second standing wave ratio of the feeder between the first feed point B 15 and the second feed point B 25 are still connected respectively, while the first feeding point B 11 and the second feeding point B 21 are switched by conduction.
  • the second controller can control the second transmission part to continue to drive the conductor part to slide to the right side as shown in (a) of FIG. 13 along the second slideway, until the conductor plate R2 on the conductor part and the third
  • the fourth conductive strip line 2 on the PCB is in contact with the fourth conductive strip lines 1 , 3 to 5 on the third PCB, and the first feeding points B 11 , B 13 ⁇ B 15 are in contact with the second feeding point B 21.
  • the feed lines between B 23 and B 25 are still connected respectively, and part of the signals on the feed lines between the first feeding point B 12 and the second feeding point B 22 will pass through the conductor plate R 2 , the conductor connecting piece F 1 , conductor connection F 2 , conductor plate R 1 , and the coupling point on the second cavity transmit to the ground circuit, resulting in an impedance on the feed line between the first feed point B 12 and the second feed point B 22 lost pair.
  • the second controller determines the third standing wave ratio of the feeder between the first feeding point B 11 and the second feeding point B 21 , the first feeding point B 12 and the second feeding point B 12 respectively according to the above-mentioned standing wave detection method.
  • the third standing wave ratio of the feeder between the first feed point B 15 and the second feed point B 25 compared with the scenario of the first standing wave ratio, the first feeding points B 11 , B 13 ⁇ B 15 and the second feeding points B 21 , B 22 ⁇ B 25 are still connected respectively, and the first feeding points B 11 , B 13 ⁇ B 15
  • the feed point B 12 and the second feed point B 22 are switched from conduction to impedance mismatch, and the first feed points B 11 , B 13 ⁇ B 15 and the second feed points B 21 , B 22 ⁇ B 25 are
  • the first VSWR and the third VSWR of the feeder between the corresponding first and second feed points should be little different, while the first feed point B 12 and the second feed point B
  • the first standing wave ratio and the third standing wave ratio of the feeder between 22 should be quite different.
  • the first VSWR and the third VSWR of the feeder are quite different, or if the feeder between the first feeding point B 12 and the second feeding point B 22 has the first VSWR and the third VSWR If the difference is not significant, it means that the feeder links corresponding to the first feeder point and the second feeder point are abnormal, and the second controller may issue a standing wave alarm for these abnormal feeder links.
  • the second controller can control the second transmission part to drive the conductor part to move to the right along the second slide in turn, and each movement can control one of the feeder links to be disconnected and the other feeder links to be turned on , until all feeder links have been disconnected at least once.
  • the second controller can determine the line sequence of each feeder link according to the variation of the standing wave ratio of each feeder link.
  • the conductor parts shown in (b) of FIG. 14 are only an exemplary introduction for the convenience of introducing the solution, and the number, position, shape or size of the conductor parts can be adjusted according to actual needs. .
  • the conductor parts may also be provided as solid blocks, hollow lead frames, or spheres.
  • the size of the conductor part can also be set to cover at least two fourth conductive strip lines at the same time, so as to realize standing wave detection on at least two feeder links through one sliding operation, etc., which is not discussed in this application. Repeat.
  • FIG. 15 exemplarily shows a schematic structural diagram of another feed detection unit provided in Embodiment 4 of the present application, wherein (a) in FIG. 15 shows that the feed detection unit is in The top view when the feeder line is in the impedance mismatch state, (b) in FIG. 15 shows the top view of the feeder detection unit when the feeder line is in a normal working state, and (c) in FIG. 15 shows the feeder Side view of the detection unit.
  • the feed detection unit may further include a second cavity, and the first feed point B 1 and the second feed point B 2 may be in accordance with (a) or (b) in 15 The illustrated way is arranged side by side on the outside of the same side of the second cavity.
  • the fourth strip conductor and the conductor part may be disposed inside the second cavity.
  • the fourth conductive strip line may have rigidity, and the fourth conductive strip line can be fixed in position by connecting the first feeding point B 1 and the second feeding point B 2 .
  • the second cavity may be configured as a conductive structure, and the conductor member is connected to the coupling point by electrical connection or coupling to connect to the ground circuit.
  • the feed detection unit may further include a sliding medium arranged relative to the fourth tape guide, the conductor member is arranged on the sliding medium, and the sliding direction of the sliding medium is the same as that of the fourth tape line. There is an angle.
  • the sliding medium can be directly slid along the sliding direction under the driving of the transmission component to be close to the fourth belt guide line or away from the fourth belt line, or the feed detection unit can also include a second slide (in FIG. 15 ).
  • the second slideway is arranged on the surface of the second cavity relative to the fourth guide strip line, or is arranged on the surface of the fourth guide strip line relative to the conductor component, and the sliding medium slides along the second The track slides to drive the conductor part closer to or away from the fourth tape conductor.
  • FIG. 16 exemplarily shows a schematic structural diagram of the fourth conducting strip line and the conductor component corresponding to this structural design, wherein (a) in FIG. 16 shows a top view of the fourth conducting strip line, and (b) in FIG. 16 ) shows a top view of the conductor member, and (c) in FIG. 16 shows a side view of the conductor member.
  • the fourth conducting strip line may be an arcuate structure, one end (I 1 ) of the arcuate structure is connected to the first feeding point B 1 , and the other end (I 1 ) of the arcuate structure is connected to the first feeding point B 1 .
  • the conductor part may be an embedded conductor embedded in the sliding medium on the side opposite to the fourth conductor strip line .
  • each part of the sliding medium can embed a piece of embedded conductor on one side of the fourth strip conductor.
  • the two parts of the sliding medium can be fixedly connected to realize simultaneous sliding, or can be set independently for each sliding, which is not specifically limited.
  • the second controller may firstly control the second transmission component to drive the sliding medium to slide to the left side as shown in (a) of FIG. 15 along the second slideway, until the embedded conductor on the sliding medium does not contact the fourth tape line , stop the sliding of the sliding medium, as shown in (b) of Figure 15 .
  • the impedance on the feeder line between the first feeding point B1 and the second feeding point B2 does not change, the first feeding point The feeder between B 1 and the second feed point B 2 is in normal working condition.
  • the second controller determines the first standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 according to the above standing wave detection method, and the first standing wave ratio theoretically corresponds to the normal working state lower standing wave ratio.
  • the second controller can then control the second transmission component to drive the sliding medium to slide to the right side as shown in (b) in FIG. 15 along the second slideway, until the embedded conductor on the sliding medium and the fourth tape guide line When overlapping, the sliding of the sliding medium is stopped, as shown in (a) of FIG. 15 .
  • the impedance on the feeder line between the first feed point B 1 and the second feed point B 2 changes, resulting in the first feed point B
  • the feeder between 1 and the second feed point B2 switches to an impedance mismatched state.
  • the second controller determines the second standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 according to the above standing wave detection method, and the second standing wave ratio theoretically corresponds to impedance mismatch The standing wave ratio in the state. If there is no problem with the feeder connection between the first feeding point B 1 and the second feeding point B 2 , the difference between the first standing wave ratio and the second standing wave ratio should be large. Therefore, if the difference between the first standing wave ratio and the second standing wave ratio is not greater than the preset difference threshold, it means that the feeder connection between the first feeding point B 1 and the second feeding point B 2 is abnormal, The second controller may perform a standing wave alarm for the feeder between the first feeding point B 1 and the second feeding point B 2 .
  • the arcuate center position of the fourth conducting strip line may also be set as a protruding structure, and the part of the protruding structure is used to contact the embedded conductor in the sliding medium in the state of impedance mismatch.
  • the sliding medium can realize the switching between the normal working state and the impedance mismatching state of the feeder link through a small displacement, which helps to save the sliding length, and improves the flexibility of manipulation and the response speed of working state switching.
  • FIG. 16 is only described by taking as an example that the sliding medium and the embedded conductor are arranged on both sides of the fourth strip conductor.
  • the sliding medium and the embedded conductor may also be arranged on one side of the fourth tape line, such as the upper side or the lower side as shown in (c) of FIG. 16 , which is not specifically limited.
  • the sliding medium and the embedded conductors shown in (c) of FIG. 16 are only an exemplary introduction for the convenience of introducing the solution. It can be adjusted according to actual needs.
  • at least two embedded conductors may also be embedded in the sliding medium at the same time, so as to realize standing wave detection of at least two feeder links through one sliding operation, etc., which will not be described in detail in this application.
  • FIG. 17 exemplarily shows a schematic structural diagram of another feed detection unit provided by the fourth embodiment of the present application, wherein (a) in FIG. 17 shows that the feed detection unit is in The top view when the feeder line is in the impedance mismatch state, (b) in FIG. 17 shows the top view of the feeder detection unit when the feeder line is in a normal working state, and (c) in FIG. 17 shows the feeder Side view of the detection unit.
  • the feed detection unit may further include a second cavity, and the first feed point B 1 and the second feed point B 2 may be in accordance with (a) or (b) in 17 The illustrated way is arranged side by side on the outside of the same side of the second cavity.
  • the fourth strip conductor and the conductor part may be disposed inside the second cavity.
  • the second cavity may be configured as a conductive structure, and the conductor component is connected to the second cavity through electrical connection or coupling to couple with the ground circuit.
  • the feed detection unit may further include a third PCB, a fourth PCB and a second slide.
  • a chute may be provided on the inner side wall of the second cavity, and the third PCB is clamped in the chute to achieve positional fixation.
  • the fourth strip line may be disposed on a face of the third PCB opposite to the conductor part, and the conductor part may be disposed on a face of the fourth PCB opposite to the third strip line.
  • the second slideway may be disposed on the surface of the third PCB opposite to the conductor component, or may be disposed on the surface of the second cavity relative to the third PCB, which is not specifically limited.
  • FIG. 18 exemplarily shows the structural schematic diagrams of the third PCB and the fourth PCB corresponding to this structural design, wherein (a) in FIG. 18 illustrates a top view of the third PCB, and (b) in FIG. 18 illustrates Top view of the fourth PCB.
  • the fourth conductive strip line is in an arcuate structure on the third PCB, one end (I 1 ) of the arcuate structure is connected to the first feeding point B 1 , and the The other end (I 2 ) is connected to the second feeding point B 2 to connect the first feeding point B 1 and the second feeding point B 2 .
  • the second slide may be provided on the side of the third PCB opposite to the conductor part.
  • the sliding direction of the second slideway can be set as (a) in FIG. 18 ) indicated the polyline.
  • the conductor component may be a fifth conductive strip line, and the fifth conductive strip line is tiled inside the fourth PCB, for example, it may be a wrap around the inside of the fourth PCB rectangle.
  • the second controller may firstly control the second transmission component to apply a leftward force as shown in (a) in FIG. 17 to the fourth PCB, so that the fourth PCB drives the fifth guide belt under the reaction force of the second slideway
  • the wire slides along the second slide in the direction away from the fourth wire guide (ie, the lower left as shown in (a) in Figure 17 ), until the fifth wire guide in the fourth PCB does not touch the fourth wire.
  • the sliding of the fourth PCB is stopped, as shown in (b) of FIG. 17 .
  • the fifth conducting strip line does not contact the fourth conducting strip line, the impedance on the feeding line between the first feeding point B 1 and the second feeding point B 2 does not change, and the first feeding The feeder between the electrical point B 1 and the second feed point B 2 is in a normal working state.
  • the second controller determines the first standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 according to the above standing wave detection method, and the first standing wave ratio corresponds to the normal working state. standing wave ratio.
  • the second controller can control the second transmission component to apply a rightward force as shown in (b) in FIG. 17 to the fourth PCB, so that the fourth PCB drives the fifth PCB under the reaction force of the second slide.
  • the tape conductor slides along the second slide to the direction close to the fourth tape conductor (ie, the upper right shown in (b) in FIG. 17 ), until the fifth conductor tape in the fourth PCB is When the tape lines are coincident, the sliding of the fourth PCB is stopped, as shown in (a) of FIG. 17 .
  • the second controller determines the second standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 according to the above-mentioned standing wave detection method, and the second standing wave ratio corresponds to that in the mismatched state. standing wave ratio. If there is no problem with the feeder connection between the first feeding point B 1 and the second feeding point B 2 , the first standing wave ratio and the second standing wave ratio should theoretically have a large difference.
  • the difference between the first standing wave ratio and the second standing wave ratio is not greater than the preset difference threshold, it means that the feeder connection between B 1 and the second feeding point B 2 is abnormal, and the second controller can A standing wave alarm is performed for the feeder between B 1 and the second feed point B 2 .
  • the fourth strip conductor is disposed on one side of the third PCB, such as the upper side as shown in (c) of FIG. 18 .
  • the fourth conductive strip line may also be disposed on the lower side of the third PCB as shown in (c) of FIG. 18 .
  • the fourth PCB can also be composed of two parts arranged on both sides of the third PCB, wherein each part can be provided with a fifth strip conductor on one side opposite to the third PCB.
  • FIG. 19 exemplarily shows a schematic structural diagram of another feed detection unit provided in Embodiment 4 of the present application, wherein (a) in FIG. 19 shows that the feed detection unit is in A side view of the feeder line in an impedance mismatch state, (b) in FIG. 19 illustrates a side view of the feeder detection unit when the feeder line is in a normal working state, and (c) in FIG. 19 illustrates the Top view of the feed detection unit.
  • the feed detection unit may further include a second cavity, and the first feed point B 1 and the second feed point B 2 may be in the manner shown in (c) in 19 They are arranged side by side on the outside of the same side of the second cavity.
  • the fourth strip conductor and the conductor part may be disposed inside the second cavity.
  • the second cavity may also be configured as a conductive structure, and the conductor component is connected to the second cavity through electrical connection or coupling to couple with the ground circuit.
  • FIG. 20 exemplarily shows a schematic structural diagram of the fourth conducting strip line and the conductor component corresponding to this structural design, wherein (a) in FIG. 20 shows a top view of the fourth conducting strip line, and (b) in FIG. 20 ) shows a side view of the conductor member, and (c) in FIG. 20 shows a plan view of the conductor member.
  • the fourth conductive strip line can be set as an arcuate structure, one end (I 1 ) of the arcuate structure is connected to the first feeding point B 1 , and the other end (I 1 ) of the arcuate structure is connected to the first feeding point B 1 .
  • the conductor part may be a conductor elastic sheet, and the first end (M 1 ) of the conductor elastic sheet is fixedly connected to the second cavity to realize connection with the second cavity coupling, the second end (M 2 ) of the conductor spring has elasticity. Under the condition that the conductor elastic sheet is not stressed, the second end M2 of the conductor elastic sheet does not deform, and there is a certain interval between the second end M2 of the conductor elastic sheet and the fourth conducting strip line, that is, it does not contact the fourth conducting strip line .
  • the second controller may not apply force to the conductor elastic sheet first, at this time, the second end M2 of the conductor elastic sheet does not deform, so the second end M2 of the conductor elastic sheet does not contact the fourth conducting strip line, as shown in FIG. 19 . (b).
  • the conductor elastic piece does not contact the fourth conductive strip line, the impedance on the feeder line between the first feeding point B 1 and the second feeding point B 2 does not change, and the first feeding point B
  • the feeder between 1 and the second feed point B 2 is in normal working condition.
  • the second controller determines the first standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 according to the above standing wave detection method, and the first standing wave ratio corresponds to the normal working state. standing wave ratio.
  • the second controller can control the second transmission component to apply the force to the right as shown in (b) of FIG. 19 to the second end M2 of the conductor elastic piece, so that the second end M2 of the conductor elastic piece is deformed, At this time, the second end M 2 of the conductor elastic piece can approach the fourth tape line until it contacts the fourth tape line, as shown in (a) of FIG. 19 .
  • the impedance on the feeder line between the first feed point B 1 and the second feed point B 2 changes due to the conductor spring contacting the fourth conductor strip line, and the first feed point B 1 The feeder between it and the second feed point B2 is switched to an impedance mismatched state.
  • the second controller determines the second standing wave ratio of the feeder between the first feeding point B 1 and the second feeding point B 2 according to the above-mentioned standing wave detection method, and the second standing wave ratio corresponds to that in the mismatched state. standing wave ratio. If there is no problem with the feeder connection between the first feeding point B 1 and the second feeding point B 2 , the first standing wave ratio and the second standing wave ratio should theoretically have a large difference. Therefore, if the difference between the first standing wave ratio and the second standing wave ratio is not greater than the preset difference threshold, it means that the feeder connection between B 1 and the second feeding point B 2 is abnormal, and the second controller can A standing wave alarm is performed for the feeder between B 1 and the second feed point B 2 .
  • the conductor elastic piece disposed on one side of the fourth strip conductor as an example, such as the upper side as shown in (a) or (b) of FIG. 19 .
  • the conductor elastic pieces can also be arranged on both sides of the fourth strip conductor, such as the upper side and the lower side as shown in (a) or (b) of FIG. 19 , or only the It is arranged on the lower side of the fourth conduction band line as shown in (a) or (b) of FIG. 19 , which is not specifically limited.
  • the feeder detection unit may also include multiple conductor elastic sheets, and by utilizing the deformability of the multiple conductor elastic sheets, the multiple conductor elastic sheets are controlled to contact or not to contact the corresponding fourth conductor strip line In order to realize the detection of multiple feeder links.
  • the feed detection unit may also include a conductor elastic sheet that can cover at least two fourth conducting strip lines, and the deformation capability of the larger-sized conductor elastic sheet can also realize the detection of multiple feeder links. This will not be repeated one by one.
  • the feed detection unit introduced in the above-mentioned embodiments of the present application may be integrated with a certain feed component in the feed network on the same physical unit, or may be integrated with each feed component in the feed network They are respectively arranged on different physical units, which are not specifically limited in this application.
  • each component in the above embodiments of the present application refers to functional devices, and the present application does not limit the specific implementation of these functional components.
  • each conducting strip line in the feed detection unit can be implemented in the form of a microstrip line.
  • the feed detection unit includes a cavity.
  • Each conductive strip line in the electrical detection unit can be realized by a suspended strip line or a sheet metal strip line, or, each conductive strip line in the feed detection unit can also be realized by other devices with conductive functions , which is not specifically limited.
  • the second embodiment above is to switch the feeder link to an abnormal working state by controlling the disconnection of the feeder link through mechanical transmission
  • the third embodiment above is to switch the feeder link by controlling the disconnection of the feeder link through electrical signal conduction
  • the fourth embodiment above is to switch the feeder link to the abnormal working state by controlling the impedance mismatch of the feeder link through mechanical transmission.
  • the feeder detection unit in addition to controlling the feeder link to switch to the abnormal working state by way of open circuit and impedance mismatch, can also control the feeder link to switch to the abnormal working state by short-circuiting , for example, the feed detection unit can also include a wire with very strong reflection ability and a switch assembly arranged on the wire, one end of the wire is connected to the first feeding point, and the other end of the wire is connected to the second feeding point, When it is necessary to switch to an abnormal working state, the feed detection unit can turn on the switch assembly, so as to short-circuit the feed line between the first feed point and the second feed point, all or most of the feed line The signal is reflected to other locations to switch the feeder to an abnormal working state by changing the impedance of the feeder.
  • the feed detection unit can also control the feeder link to switch to the abnormal working state by short-circuiting , for example, the feed detection unit can also include a wire with very strong reflection ability and a switch assembly arranged on the wire, one end of the wire is connected to the first feeding point
  • an embodiment of the present application further provides a base station antenna, including an antenna port, an antenna array, and a feeding network provided by the embodiment of the present application.
  • the first end of the feeding network is connected to the antenna port, and the The second end is connected to the antenna array.
  • the feeding network is used to feed the transmitted signal from the antenna port and then send it to the antenna array under normal working conditions, or send the received signal from the antenna array to the antenna port after feeding and processing.
  • the antenna array is used to radiate the feed-processed transmit signal, or receive the receive signal and send it to the feed network.
  • the embodiments of the present application also provide a base station device, including the base station antenna provided by the embodiments of the present application, and one or more transceivers, wherein the one or more transceivers can be respectively connected with the base station. Multiple antenna ports in the antenna are connected one by one.
  • the transceiver in the base station equipment may be a remote radio frequency unit.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc., that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Set Structure (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种馈电网络、基站天线及基站设备,馈电网络包括馈电检测单元和位于同一馈电链路的第一馈电点和第二馈电点,馈电检测单元在馈电链路处于预设工作状态时根据第一馈电点处的第一电信号和第二馈电点处的第二电信号确定出馈电链路的驻波比,若馈电链路的驻波比与预设工作状态所对应的驻波比不匹配,则确定馈电链路连接异常。通过在馈电网络中设置馈电检测单元,不仅能在出厂基站天线之前提前校准基站天线内部的线缆连接,还能在连线外部设备后进一步检出基站天线外部的线缆连接问题,以便于投放或安装线缆连接无误的基站设备,降低基站设备返厂维修及用户重新部署基站天线的概率。

Description

一种馈电网络、基站天线及基站设备
相关申请的交叉引用
本申请要求在2020年12月25日提交中国专利局、申请号为202011560877.8、申请名称为“一种馈电网络、基站天线及基站设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种馈电网络、基站天线及基站设备。
背景技术
随着多输入多输出(multiple input multiple output,MIMO)技术的发展,基站设备中设置的天线数量也越来越多,这导致基站设备中的天线端口数量和内部线缆数量也随之增多,生产基站设备和安装基站设备的复杂程度相应增大。如果不在投放或安装基站设备之前先对其内部的线缆连接情况进行检测,则很可能会产生线缆连接出错的问题,增大基站设备生产返工的概率及用户安装基站天线的成本。
现有技术中存在一些对基站设备的线缆连接情况进行检测的方案。如图1示例性示出一种检测线缆连接方法的流程示意图,该方法首先将至少一条线缆的一端连接在设置有键盘显示电路的接收机端口(如天线端口),再使用发送射频信号的发射机(如射频器件)在至少一条线缆的另一端发送信号,如此,根据设置有键盘显示电路的接收机自动记录的至少一条线缆中的每一条线缆所收到的信号顺序,能确定出至少一条线缆中是否存在连接出现问题的线缆。如图2示例性示出另一种检测线缆连接方法的流程示意图,在该方法中,基站设备首先通过智能天线接收终端设备发送的信号,再根据智能天线的每根天线所接收到的信号依次计算得到赋型权值和幅角向量,根据幅角向量分析各根天线分别对应的幅角,当确定各根天线分别对应的幅角形成等差数列时,确定基站设备中的各条线缆连接正常,否则确定基站设备中存在连接出现问题的线缆。
然而,基站设备实际上由基站天线和其它一些器件构成,如射频器件和基带器件。基站天线的天线端口连接射频器件的一个射频通信端口,射频器件的另一个射频通信端口连接基带器件。在这种情况下,图1所示意的检测方式实际上只能检测基站天线的天线端口与射频器件之间的线缆连接情况,而图2所示意的检测方式只能检测基带单元与各天线端口之间的线缆连接情况。显然,这两种检测方式都只能检测天线端口与其它设备(如射频器件或基带器件)之间的线缆连接情况,而无法检测基站天线内部的线缆连接情况。
发明内容
本申请提供一种馈电网络、基站天线及基站设备,用以检测基站天线内部的线缆连接情况。
第一方面,本申请提供一种馈电网络,包括第一馈电点、第二馈电点和馈电检测单元,第一馈电点和第二馈电点位于同一馈电链路,第一馈电点连接馈电检测单元的第一端,第 二馈电点连接馈电检测单元的第二端。馈电检测单元可以在馈电链路处于预设工作状态时获取第一馈电点处的第一电信号和第二馈电点处的第二电信号,根据第一电信号和第二电信号计算得到该馈电链路的驻波比,若确定该馈电链路的驻波比与预设工作状态所对应的驻波比不匹配,则可以确定该馈电链路连接异常。其中,预设工作状态可以是指正常工作状态或异常工作状态,正常工作状态所对应的驻波比不小于预设的驻波比阈值,异常工作状态所对应的驻波比小于预设的驻波比阈值。
在上述设计中,通过在基站天线的馈电网络中设置馈电检测单元,并利用馈电检测单元对馈电网络中的馈电链路(属于基站天线的天线端口与天线阵列之间的内部线缆)进行连接情况的检测,能准确定位出基站天线的内部线缆连接问题,便于在出厂基站天线之前提前校准基站天线的内部线缆连接,以出厂内部线缆连接无误的基站天线。更进一步的,该馈电检测单元还可以用于在基站天线连线外部设备后进行二次检测,由于已确定基站天线的内部线缆连接无误,因此如果二次检测仍检出连线问题,则可以确定基站天线的外部线缆连接存在问题。由此可知,该设计能准确定位出基站天线的内部线缆连接问题以及外部线缆连接问题,便于在投放或安装基站设备之前提前校准基站设备中的各线缆连接,降低基站设备返厂维修及用户重新部署基站天线的概率。
在一种可能的设计中,馈电检测单元的第一端对应为第一馈电点,馈电检测单元的第二端对应为第二馈电点。在这种情况下,馈电检测单元还用于:在获取第一馈电点处的第一电信号和第二馈电点处的第二电信号之前,控制馈电链路处于预设工作状态,以及,在根据所述第一电信号和所述第二电信号确定所述馈电链路的驻波比之后,若确定该驻波比与预设工作状态对应的驻波比匹配,则确定馈电链路连接正常,在确定馈电链路连接正常后,控制馈电链路处于正常工作状态。通过该设计,馈电检测单元不仅能用于检测馈电链路的连接情况,还能同步参与至馈电链路的馈电调节流程,即使在不需要执行检测的情况下,馈电检测单元同样也可以利用起来以实现馈电调节,这有助于最大化地利用馈电网络中的资源,在提高资源利用率的同时尽量节省基站天线的部署成本。
在一种可能的设计中,馈电检测单元具体用于:检测馈电链路自身的异常连接问题,和/或检测至少两条馈电链路的线序。如此,馈电检测单元不仅能定位出由于馈电链路自身的软硬件出错所导致的连接问题,还能在馈电链路自身的软硬件未出错的情况下定位出多条馈电链路之间的错序连接问题,有助于提高对各种线缆连接错误的检测能力。
在一种可能的设计中,异常工作状态可以包括断路状态、失配状态或短路状态。通过馈电检测单元检测各种原因所导致的异常工作状态,能准确定位馈电链路所出现的异常连接问题。
本申请实施例中,馈电检测单元的具体结构存在多种可能,示例来说:
结构一
在结构一中,馈电检测单元可以包括第一控制器、第一传动部件、第一导带线、第二导带线和第三导带线。第一导带线连接第一馈电点,第二导带线连接第二馈电点,第一导带线和第二导带线不接触,第一传动部件分别连接第一控制器和第三导带线。在该设计中,在需要控制馈电链路处于正常工作状态时,第一控制器可以控制第一传动部件带动第三导带线移动至第一位置,当第三导带线位于第一位置时,第三导带线分别接触第一导带线和第二导带线,如此,第一馈电点与第二馈电点能通过导通的第一导带线、第三导带线和第二导带线导通,以实现第一馈电点与第二馈电点所在的馈电链路处于正常工作状态。对应 的,在需要控制馈电链路处于异常工作状态时,第一控制器可以控制第一传动部件带动第三导带线移动至第二位置,当第三导带线位于第二位置时,第三导带线不接触第一导带线和/或不接触第二导带线,如此,第一馈电点与第二馈电点所在的馈电链路处于异常工作状态。在该设计中,馈电检测单元能通过机械传动方式改变馈电链路的通路和断路,以改变馈电链路的工作状态。
在结构一中,第一导带线、第二导带线和第三导带线有多种实现方式:
实现方式一,第一导带线、第二导带线和第三导带线可以通过微带线形式来实现。通过该设计,即使不在馈电检测单元中设置支撑件,这三个导带线也能固定在各自所对应的位置,而不发生变形或异常移动的现象。这不仅能使馈电检测单元通过这三个导带线来实现馈电检测功能,以节省馈电检测单元的部署空间和成本,还能通过微带线与其它部件的连接方式避免插接连接,以有效降低插损。
实现方式二,馈电检测单元还可以包括第一腔体,第一馈电点和第二馈电点对称部署在第一腔体相对设置的两个侧面外侧,第一导带线、第二导带线和第三导带线位于第一腔体内。在这种情况下,第一导带线、第二导带线和第三导带线可以设置为悬置带线或钣金带线。通过该设计,这三个导带线不仅能通过第一腔体固定在各自所对应的位置,还能通过带线与其它部件连接的方式来避免插接连接,以有效降低插损。
在实现方式二的一种可能的设计中,馈电检测单元还可以包括相对设置的第一印刷电路板(printed circuit board,PCB)和第二PCB、以及第一滑道,第一PCB卡合在第一腔体内,第一滑道位于第一腔体上的相对于第一PCB的面,或位于第一PCB上的相对于第二PCB的面,第二PCB沿第一滑道滑动。第一导带线和第二导带线位于第一PCB上的与第二PCB相对的面,第三导带线位于第二PCB上的与第一PCB相对的面。在这种情况下,第一控制器可以控制第一传动部件带动第二PCB沿第一滑道滑动,以带动第二PCB上的第三导带线滑动至第一位置或第二位置。在该设计中,通过设置第一PCB承载第一导带线和第二导带线,以及设置第二PCB承载第三导带线,不仅能有效固定这三个导带线,还能通过第二PCB的滑动带动第三导带线移动来避免传动部件直接带动第三导带线移动而导致的磨损现象。
在结构一的一种可能的设计中,馈电网络可以包括分别位于K条馈电链路的K个第一馈电点和K个第二馈电点,馈电检测单元可以包括位于第一PCB上的K个第一导带线和K个第二导带线、以及位于第二PCB上的M个第三导带线,K个第一导带线分别连接K个第一馈电点,K个第二导带线分别连接K个第二馈电点。在这种情况下,第一控制器还可以先控制第一传动部件带动第二PCB沿第一滑道滑动,以满足M个第三导带线中的L个第三导带线分别与K个第一导带线中的L个第一导带线和K个第二导带线中的L个第二导带线接触,以导通相互接触的L个第一导带线和L个第二导带线所对应的L条馈电链路。第一控制器计算得到该种情况下这L条馈电链路的第一驻波比。之后,第一控制器再控制第一传动部件带动第二PCB沿第一滑道滑动,以满足L个第三导带线不与L个第一导带线或L个第二导带线接触,以断开这L条馈电链路。第一控制器再计算得到该种情况下L个馈电链路的第二驻波比。如果第一驻波比和第二驻波比的差值不大于预设的差值阈值,说明这L条馈电链路的工作状态并未随着第一控制器的控制而发生变化,因此第一控制器可以确定L条馈电链路连接异常。其中,K、M为大于或等于2的正整数,L为小于或等于M的正整数。在上述设计中,通过结合各馈电链路在不同工作状态下的驻波比来完 成驻波检测,不仅能检测出馈电链路本身所出现的连接异常情况,还能通过对各条馈电链路的线序检测(cable sequence detection,CSD)确定出各条馈电链路之间的错位连接问题,有助于提高驻波检测的准确性。
结构二
在结构二中,馈电检测单元可以包括第二控制器、第二传动部件、第四导带线和导体部件,第四导带线连通第一馈电点和第二馈电点,导体部件耦合接地电路,第二传动部件分别连接第二控制器和导体部件。在这种情况下,在需要控制馈电链路处于正常工作状态时,第二控制器可以控制第二传动部件带动导体部件移动至第三位置,当导体部件位于第三位置时,导体部件不接触第四导带线,如此,第四导带线可以导通第一馈电点和第二馈电点,以使第一馈电点和第二馈电点所在的馈电链路处于正常工作状态。在需要控制馈电链路处于异常工作状态时,第二控制器可以控制第二传动部件带动导体部件移动至第四位置,当导体部件位于第四位置时,导体部件接触第四导带线,如此,第四导带线上的阻抗受到导体部件的影响,以使第一馈电点和第二馈电点所在的馈电链路处于阻抗失配状态。在该设计中,馈电检测单元能通过机械传动方式改变馈电链路上的阻抗,以改变馈电链路的工作状态。
在结构二中,第三导带线和第四导带线有多种实现方式:
在实现方式一中,第三导带线和第四导带线可以通过微带线形式来实现。如此,馈电检测单元不仅能通过这两个导带线来实现馈电检测功能,以节省馈电检测单元的部署空间和成本,还能通过微带线与其它部件的连接方式避免插接连接,以有效降低插损。
在实现方式二中,馈电检测单元还可以包括第二腔体,第二腔体由导电材料构成,导体部件通过耦合第二腔体以耦合接地电路。如此,通过利用馈电网络中原有的部件(即第二腔体)实现导体部件的接地,不仅可以免于设置额外的接地部件,有助于节省馈电网络的成本,还能利用第二腔体的大面积在导体部件接触到第四导带线时快速改变馈电链路上的阻抗分布,更快地使馈电链路由正常工作状态切换到阻抗失配状态。
在实现方式二的一种可能的设计中,馈电检测单元还可以包括第三PCB。第三PCB通过卡合在第二腔体内以实现位置上的固定。第四导带线位于第三PCB上的与导体部件相对的面,如此,当导体部移动到第四导带线所在的位置时,导体部件能与相对的第四导带线接触。
在实现方式二的一种可能的设计中,导体部件可以为导体弹片,导体弹片的第一端耦合第二腔体,导体弹片的第二端悬置在第四导带线的相对于导体弹片的一侧。如此,在第二传动部件带动导体部件向第四位置移动时,导体弹片的第二端发生形变以接触第四导带线。该设计能通过控制导体弹片的变形来改变馈电链路的阻抗,以改变馈电链路的工作状态。
在实现方式二的一种可能的设计中,馈电检测单元还可以包括第二滑道,第二滑道位于第二腔体上的与第三PCB相对的面,或位于第三PCB上的与导体部件相对的面。在这种情况下,导体部件可以通过多种方式移动至第三位置或第四位置,例如:
一种具体结构设计中,导体部件可以为滑动导体,滑动导体沿第二滑道滑动至第三位置或第四位置;
另一种具体结构设计中,馈电检测单元还可以包括滑动介质,导体部件的一端嵌入在滑动介质中,滑动介质沿第二滑道滑动以带动滑动介质中嵌入的导体部件移动至第三位置 或第四位置;
又一种具体结构设计中,馈电检测单元还可以包括第四PCB,导体部件为第五导带线,第五导带线平铺于第四PCB的内部,第四PCB沿第二滑道滑动以带动第四PCB中平铺的第五导带线移动至第三位置或第四位置。
在结构二的一种可能的设计中,馈电网络可以包括分别位于P条馈电链路的P个第一馈电点和P个第二馈电点,馈电检测单元可以包括P个第四导带线和P个导体部件,P个第四导带线分别导通P个第一馈电点和P个第二馈电点。在这种情况下,第二控制器可以先控制第二传动部件分别带动P个导体部件中的Q个导体部件移动,以满足Q个导体部件不接触P个第四导带线中的Q个第四导带线。如此,Q个导带线所对应的Q条馈电链路理论上处于正常工作状态,第二控制器可以计算得到该种情况下这Q条馈电链路的第三驻波比。之后,第二控制器可以再控制第二传动部件分别带动Q个导体部件移动,以满足Q个导体部件接触Q个第四导带线。如此,Q条馈电链路理论上处于异常工作状态,第二控制器可以计算得到该种情况下这Q条馈电链路的第四驻波比。如果第三驻波比和第四驻波比的差值不大于预设的差值阈值,说明Q条馈电链路并未随着第二控制器的控制改变工作状态,因此第二控制器可以确定这Q条馈电链路连接异常。其中,P为大于或等于2的正整数,Q为小于或等于P的正整数。该方式不仅能通过一次移动操作实现对任意多条馈电链路的连接情况进行检测,还能通过对任意多条馈电链路的线序检测确定出多条馈电链路之间的错位连接问题。
结构三
在结构三中,馈电检测单元可以包括第三控制器和开关单元,开关单元的第一电极连接第一馈电点,开关单元的第二电极连接第二馈电点,开关单元的控制电极连接第三控制器。在这种情况下,在需要控制馈电链路处于正常工作状态时,第三控制器可以导通开关单元的第一电极和第二电极,如此,第一馈电点和第二馈电点能够通过导通的第一电极和第二电极导通,第一馈电点和第二馈电点所处的馈电链路处于正常工作状态。在需要控制馈电链路处于异常工作状态时,第三控制器可以断开开关单元的第一电极和第二电极,如此,第一馈电点和第二馈电点断开,第一馈电点和第二馈电点所处的馈电链路处于异常工作状态。在该设计中,馈电检测单元能通过开关控制方式切换馈电链路的通路或断路,以改变馈电链路的工作状态。
第二方面,本申请提供一种基站天线,包括天线端口、天线阵列、以及如上述第一方面任一项中的馈电网络。其中,馈电网络的第一端可以连接天线端口,馈电网络的第二端可以连接天线阵列。当馈电网络处于正常工作状态时:在下行传输中,馈电网络可以对来自天线端口的发送信号进行馈电处理后发送给天线阵列,由天线阵列辐射馈电处理后的该发送信号;在上行传输中,天线阵列可以在接收到接收信号后发送给馈电网络,由馈电网络对来自天线阵列的接收信号进行馈电处理后发送给天线端口。
第三方面,本申请提供一种基站设备,包括一个或多个收发信机以及如上述第二方面中的基站天线,其中,一个或多个收发信机可以与基站天线连接。
在一种可能的设计中,收发信机可以为远端射频单元。
上述第一方面至第三方面中的各项设计,具体将在以下实施例中进行详细介绍。
附图说明
图1示例性示出一种检测线缆连接方法的流程示意图;
图2示例性示出另一种检测线缆连接方法的流程示意图;
图3示例性示出本申请实施例适用的一种系统架构示意图;
图4示例性示出本申请实施例提供的一种基站天线的内部架构示意图;
图5A示例性示出本申请实施例一提供的一种基站天线的结构示意图;
图5B示例性示出本申请实施例一提供的另一种基站天线的结构示意图;
图6示例性示出本申请实施例一提供的又一种基站天线的结构示意图;
图7示例性示出本申请实施例二提供的一种馈电网络的结构示意图;
图8示例性示出本申请实施例二提供的一种馈电检测单元的结构示意图;
图9示例性示出本申请实施例二提供的一种第一PCB和第二PCB的结构示意图;
图10示例性示出本申请实施例三提供的一种馈电网络的结构示意图;
图11示例性示出本申请实施例三提供的一种馈电网络所对应的系统架构图;
图12示例性示出本申请实施例四提供的一种馈电网络的结构示意图;
图13示例性示出本申请实施例四提供的一种馈电检测单元的结构示意图;
图14示例性示出本申请实施例四提供的一种第三PCB和导体部件的结构示意图;
图15示例性示出本申请实施例四提供的另一种馈电检测单元的结构示意图;
图16示例性示出本申请实施例四提供的一种第四导带线和导体部件的结构示意图;
图17示例性示出本申请实施例四提供的又一种馈电检测单元的结构示意图;
图18示例性示出本申请实施例四提供的一种第三PCB和第四PCB的结构示意图;
图19示例性示出本申请实施例四提供的又一种馈电检测单元的结构示意图;
图20示例性示出本申请实施例四提供的另一种第四导带线和导体部件的结构示意图。
具体实施方式
本申请实施例提供的基站天线可以适用于各种通信系统,例如:第五代(5th Generation,5G)通信系统或新无线(new radio,NR)系统、6G通信系统、长期演进(long term evolution,简称LTE)系统、全球移动通讯(global system of mobile communication,简称GSM)系统、码分多址(code division multiple access,简称CDMA)系统、宽带码分多址(wideband code division multiple access,简称WCDMA)系统、通用分组无线业务(general packet radio service,简称GPRS)系统、LTE频分双工(frequency division duplex,简称FDD)系统、LTE时分双工(time division duplexing,简称TDD)系统、通用移动通信系统(universal mobile telecommunication system,简称UMTS)、全球互联微波接入(worldwide interoperability for microwave access,简称WiMAX)通信系统等,当然也可以为其它非授权频段的通信系统,不作限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行具体描述。应理解,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
图3示例性示出本申请实施例适用的一种系统架构示意图,如图3所示,该系统架构中可以包括无线接入网设备,如包括但不限于图3所示的基站100。该无线接入网设备可以位于基站子系统(base btation bubsystem,BBS)、陆地无线接入网(UMTS terrestrial radio  access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络射频端之间的衔接。具体来说,基站100可以是GSM或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该基站100也可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站或者未来演进的PLMN网络中的基站等,例如,新无线基站,本申请实施例并不限定。
如图3所示,基站100的一种可能的结构可以包括基站天线110、收发信机120和基带处理单元130。其中,基站天线可以选用模拟波束赋形天线以构成天线系统,也可以选用数字波束赋形天线以构成天线系统,还可以选用新一代波束赋形天线以构成天线系统,如采用模拟波束赋形天线和数字波束赋形天线构成混合波束赋形(Hybrid Beamforming,HBF)天线系统。收发信机120可以与基站天线110的天线端口连接,如此,基站天线110可以通过其天线端口接收收发信机120发送的发送信号并经由基站天线110的辐射单元辐射出去,或将基站天线110的辐射单元接收的接收信号发送至收发信机120。此外,基站天线110还可以与收发信机120集成在同一器件中,如有源天线单元(active antenna unit,AAU)。
在实施中,收发信机120可以是远端射频单元,基带处理单元130可以是基带单元。这种情况下,基带单元可用于对待发送的基带信号进行处理并传输至远端射频单元,或者接收远端射频单元发送的接收信号(即信号接收过程中基站天线110接收的接收射频信号经过远端射频单元的转化处理后得到的基带信号)并进行处理。远端射频单元可将基带单元发送的待发送的基带信号转换成发送射频信号(包括对待发送的基带信号进行必要的信号处理,如进行信号放大等),之后可将发送射频信号通过基站天线110的天线端口发送至基站天线110,由基站天线110对该发送射频信号进行辐射。或者,远端射频单元还可接收基站天线110的天线端口发送的接收射频信号,将其转化为接收基带信号后发送至基带单元。
应理解,图3仅示意出一个收发信机120和基站天线110的一个天线端口的连接关系。在其它可选地实施方式中,基站天线110中的天线端口的数量也可以为至少两个,收发信机120的数量也可以为至少两个,其中每个天线端口可以连接至一个收发信机120,多个收发信机120可以连接至同一基带处理单元130。
图3还示例性示出基站天线的一种可能的部署场景,如图3所示,该部署场景中可以包括抱杆、天线调整支架、馈线、接头密封件和接地装置。其中,基站天线110上靠近天线端口的一端可以固定连接抱杆,基站天线110上远离天线端口的一端可以通过天线调整支架活动连接抱杆,从而基站天线110的位置可以通过天线调整支架进行调节。基站天线110的天线端口处引出馈线连接至收发信机120,该馈线还可以延伸至接地管道以连接接地装置。其中,天线端口和馈线的连接处、以及馈线和接地管道的连接处,都可以通过接头密封件实现密封连接。应理解,图3仅示出包括一个天线的基站天线的部署方式,在其它场景中,基站天线也可以包括环绕抱杆所安装的多个天线,多个天线的安装位置可以相同,也可以不同,当安装位置不同时,多个天线可以形成各自不同的波束覆盖范围。
示例性介绍下本申请实施例中的基站天线的内部架构。
图4示例性示出本申请实施例提供的一种基站天线的内部架构示意图,如图4所示,基站天线可以包括天线端口、馈电网络和天线阵列。馈电网络和天线阵列通常放置在天线罩中,天线罩在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的作用,通过天线罩将这些部件和外部环境相隔离,有助于保护这些部件免受外部恶劣环境的影响。天线端口通常放置在天线罩的外部,以实现与收发信机的插接。基站天线中可以包括由多个辐射单元(如图4中的每个图形“×”都为一个辐射单元)和金属反射板所构成的至少一个天线阵列,多个辐射单元通常放置在金属反射板的正面,金属反射板可以将射入金属反射板正面的天线信号反射聚集到辐射单元的接收点上,以提高天线信号的接收灵敏度,加强天线的接收能力。与辐射单元相反的,基站天线中的其它电气部件(如馈电网络中的各个部件)通常设置在金属反射板的背面,如此,金属反射板还能阻挡或屏蔽来自其背面的其它电气部件发射的电波,以降低其它电波对接收信号的干扰。金属反射板还可以称为底板、天线面板或反射面等。同一天线阵列中的各辐射单元的频率可以相同,也可以不同。基站天线中还可以包括与馈电网络连接的传动或校准网络(如传动部件或校准网络),基站天线可以通过传动部件控制馈电网络实现不同的波束辐射指向,也可以通过校准网络获取校准信号(如目标相位),根据天线阵列的实际相位和目标相位的偏差调节馈电网络中的移相馈电参数,以逐渐将天线阵列的实际相位调整到目标相位,实现准确的收发操作。
进一步介绍本申请的下列实施例所涉及到的部分术语:
(1)、辐射单元:是构成天线基本结构的单元,用于辐射或接收无线电波。基站天线中的辐射单元主要包括振子单元和贴片单元两种。振子单元又称为天线振子或振子,主要用于双极化天线、低频天线或高频天线等。贴片单元主要用于窄带天线、单频段天线及室内天线等。本申请中的辐射单元可以用于单频段天线,也可以用于多频段天线,既可以用于单极化天线,也可以用于多极化天线,本申请对此不作具体限定。
(2)、馈电网络:本申请中的馈电网络可以由至少一条馈电链路构成,至少一条馈电链路中的每条馈电链路通常由可控的阻抗传输线(简称为馈线)构成,馈电链路上可包括移相器(Phaser)或功率分配器(power divider,PD)等馈电部件,如只包括移相器、只包括功率分配器、或同时包括移相器和功率分配器。其中,移相器是一种能对信号的相位进行调整的器件,可以包括数字移相器和模拟移相器两种。功率分配器是一种能将一路输入信号按照能量划分为两路或多路输出信号的器件,两路或多路输出信号的能量可以相等,也可以不相等。当功率分配器反过来用时,功率分配器还可以将两路或多路输入信号按照能量合成为一路输出信号,输出信号的能量等于两路或多路输入信号的能量之和。反过来用的功率分配器也可以也称为合路器。当馈电链路上只包括移相器,则馈电链路可以将发送信号按照一定的相位馈送到辐射单元,或者将接收信号按照一定的相位发送到远端射频单元。当馈电链路上只包括功率分配器,则馈电链路可以将发送信号按照一定的幅度馈送到辐射单元,或者将接收信号按照一定的幅度发送到远端射频单元。当馈电链路上同时包括功率分配器和移相器,则馈电链路可以将发送信号按照一定的幅度和相位馈送到辐射单元,或者将接收信号按照一定的幅度和相位发送到远端射频单元。
本申请实施例中,馈电链路上除了可以包括移相器和/或功率分配器之外,还可以包括一个或多个其它馈电部件,如图4所示出的合/分路器或滤波器。其中,滤波器是一种具有选频功能的无源器件,能有效滤除特定频率的频点或除某频点以外的频率,使信号中具有 特定频率的信号通过并衰减其它频率的信号,以起到滤除干扰噪声或进行频谱分析的功能。合/分路器是合路器和分路器的功能综合体。合路器是指能将两个或多个频点所对应的两路或多路射频信号合为一路射频信号的器件。分路器是指能将一路射频信号分为两个或多个频点所对应的两路或多路射频信号的器件。而合/分路器是指既能将两个或多个频点所对应的两路或多路射频信号合为一路射频信号、又能将一路射频信号分为两个或多个频点所对应的两路或多路射频信号的器件。合路器、分路器和合/分路器还能避免各频点信号之间的相互干扰。
需要指出的是,当馈电链路中包括多个馈电部件时,多个馈电部件可以集成在同一物理单元上,也可以分别集成在不同的物理单元上,还可以按照任意组合的形式部分集成在同一物理单元上,另一部分集成在不同的物理单元上,具体不作限定。
应理解,当馈电网络中包括多条馈电链路时,多条馈电链路可以具有相同的馈电部件及连接关系,也可以具有不同的馈电部件或不同的连接关系,多条馈电链路可以对应同一天线端口和同一天线阵列,也可以分别对应不同的天线端口和不同的天线阵列,本申请对此不作具体限定。
(3)、驻波和驻波比:驻波是指由频率相同且传输方向相反的两种波沿传输线路所形成的一种分布状态。这两种波可以为电波,也可以为其它波。这两种波中的其中一个波一般是另一个波的反射波。为便于描述驻波,本申请还引入驻波比来表征波的发送情况。驻波比可以由用于表征发送端所发出的波的电学参数(如电压或电功率等,下文称为电信号)与用于表征接收端所接收到的波的电学参数的比值来表示,也可以由用于表征反射波的电学参数(如发送端所发出的波的功率与接收端所接收到的波的功率的差值)与用于表征发送端所发出的波的比值来表示。当驻波比越小时,说明反射波越少,发送端所发出的波能更多地发送给接收端。当驻波比越大时,说明反射波越多,发送端所发出的波只有很少一部分能发送给接收端。
在基站天线中,馈电网络中的各条馈电链路由各自所对应的阻抗传输线构成,各条馈电链路实际上按照预设的阻抗关系匹配各自所对应的天线阵列。如果某一条馈电链路异常(如馈电链路断路、馈电链路短路或馈电链路的阻抗失配),则该条馈电链路上的阻抗也会发生变化,从而影响到该条馈电链路甚至整个馈电网络的工作状态。考虑到馈电链路的驻波比在馈电链路断路、馈电链路短路和馈电链路的阻抗失配等异常情况下都会变大,因此本申请可以通过检测馈电链路的驻波比来检测各条馈电链路的工作状态,以尽量维持基站天线的正常工作。
下面以具体的实施例来介绍本申请中的驻波检测方案。
需要指出的是,在下文的描述中,各个端口的名称只是一种示例性地说明,在其它可选地实施方式中,各个端口也可以具有其它名称。只要能实现与本申请中端口的功能相同或相似的端口,即使端口名称与本申请中的端口名称不同,也落在本申请的保护范围内,本申请对此不再一一赘述。
需要指出的是,在下文的描述中,端口和端口具有对应关系,可以是指这两个端口为同一端口,也可以是指这两个端口通过线路连接,本申请对此也不作具体限定。
需要指出的是,在下文的描述中,“连接”指的是电连接,两个电学元件连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元件间接连接,如A与B连接,也可以是A 与C直接连接,C与B直接连接,A与B之间通过C实现了连接。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一导带线、第二导带线、第三导带线和第四导带线,只是为了区分不同的导带线,而并不是表示这四个导带线的优先级或者重要程度等的不同。
【实施例一】
图5A和图5B示例性示出本申请实施例一提供的两种基站天线的结构示意图,如图5A和图5B所示,该基站天线可以包括天线端口(TR)、馈电网络和天线阵列,天线端口TR连接馈电网络的第一端(A 1),馈电网络的第二端(A 2)连接天线阵列。其中,馈电网络中可以包括第一馈电点(B 1)、第二馈电点(B 2)和馈电检测单元,第一馈电点B 1连接馈电检测单元的第一端(C 1),第二馈电点B 1连接馈电检测单元的第二端(C 2),第一馈电点B 1和第二馈电点B 2位于同一馈电链路(L)。需要指出的是,虽然图5A和图5B中未进行示意,但馈电链路L上还可以设置有一个或多个馈电部件,如上述内容所介绍的移相器、功率分配器、合路器、分路器、合/分路器或滤波器中的一个或多个,本申请对此不再具体介绍。
本申请实施例中,馈电链路L可以具有如下两种工作状态:
正常工作状态:当馈电链路L处于正常工作状态时,馈电链路L可以对来自天线端口的发送信号进行馈电处理后发送至天线阵列,或对来自天线阵列的接收信号进行馈电处理后发送至天线端口。在这种情况下,第一馈电点B 1和第二馈电点B 2导通,第一馈电点B 1和第二馈电点B 2中的输入馈电点(下行传输场景中的输入馈电点为B 1,上行传输场景中的输入馈电点为B 2)所接收到的电信号、与第一馈电点B 1和第二馈电点B 2中的输出馈电点(下行传输场景中的输出馈电点为B 2,上行传输场景中的输出馈电点为B 1)所发出的电信号差别不大,第一馈电点B 1和第二馈电点B 2之间的馈线的驻波比比较小。
异常工作状态:馈电链路L的异常工作状态包括断路状态、短路状态或失配状态。假设馈电链路L的异常工作状态是由第一馈电点B 1和第二馈电点B 2之间的馈线异常而导致的,则:当馈电链路L处于断路状态(即第一馈电点B 1和第二馈电点B 2之间的馈线断路)时,第一馈电点B 1和第二馈电点B 2中的输入馈电点所接收到的电信号无法传送给第一馈电点B 1和第二馈电点B 2中的输出馈电点,因此,第一馈电点B 1和第二馈电点B 2中的输出馈电点所发出的电信号变少,导致第一馈电点B 1和第二馈电点B 2之间的馈线的驻波变大;当馈电链路L处于短路状态(即第一馈电点B 1和第二馈电点B 2之间的馈线短路)时,第一馈电点B 1和第二馈电点B 2之间的馈电链路上的阻抗失配,导致第一馈电点B 1和第二馈电点B 2中的输入馈电点所接收到的电信号全部反射出去,几乎不存在电信号传送给第一 馈电点B1和第二馈电点B2中的输出馈电点,导致第一馈电点B 1和第二馈电点B 2之间的馈线的驻波比变大;当馈电链路L处于阻抗失配状态时,第一馈电点B 1和第二馈电点B 2中的输入馈电点所接收到的电信号一部分传送给第一馈电点B 1和第二馈电点B 2中的输出馈电点,另一部分传送给其它电路,第一馈电点B 1和第二馈电点B 2中的输出馈电点所发出的电信号变少,同样导致第一馈电点B 1和第二馈电点B 2之间的馈线的驻波比变大。由此可知,当馈电链路L的异常工作状态由第一馈电点B 1和第二馈电点B 2之间的馈线决定时,无论馈电链路L处于哪种异常工作状态,第一馈电点B 1和第二馈电点B 2之间的馈线的驻波比都变大。
有鉴于此,本申请实施例中,在需要检测馈电链路L的工作状态时,可以先控制馈电链路L处于某一预设工作状态(如正常工作状态或异常工作状态),然后从馈电链路L的输入端向馈电链路L的输出端发送检测信号(如通过基带单元发送下行检测信号,或通过终端设备发送上行检测信号)。之后,由馈电检测单元采集第一馈电点B 1处的第一电信号以及第二馈电点B 2处的第二电信号,然后将第一电信号和第二电信号中的输入电信号和输出电信号的比值作为第一馈电点B 1和第二馈电点B 2之间的馈线的当前驻波比(在下行传输场景中馈电点B 1处的电信号为输入电信号且馈电点B 2处的电信号为输出电信号,或在上行传输场景中馈电点B 2处的电信号为输入电信号且馈电点B 1处的电信号为输出电信号)。当第一馈电点B 1和第二馈电点B 2之间的馈线的当前驻波比与该预设工作状态所对应的驻波比差别较大时,说明第一馈电点B 1和第二馈电点B 2之间的馈线的当前工作状态与预先控制馈电链路L所处的预设工作状态不同,第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,导致馈电链路L的连接异常。当第一馈电点B 1和第二馈电点B 2之间的馈线的当前驻波比与该预设工作状态所对应的驻波比差别不大时,说明第一馈电点B 1和第二馈电点B 2之间的馈线的当前工作状态与预先控制馈电链路L所处的预设工作状态相同,第一馈电点B 1和第二馈电点B 2之间的馈线连接正常,如果馈电链路L上的其它馈线连接也正常,则馈电链路L连接正常。
需要说明的是,上述内容所述的“第一馈电点B 1连接馈电检测单元的第一端C 1,第二馈电点B 2连接馈电检测单元的第二端C 2”,可以是指如下任一内容:
如图5B所示意的,第一馈电点B 1和第二馈电点B 2本身通过馈线连通,且第一馈电点B 1还通过线路连接馈电检测单元的第一端C 1,且第二馈电点B 2还通过线路连接馈电检测单元的第二端C 2。在这种情况下,馈电链路L实际上是由位于馈电网络的第一端A 1和馈电网络的第二端A 2之间的一整段馈线构成,而馈电检测单元设置在馈电链路L的外侧,只用于实现上述驻波检测功能;
如图5A所示意的,第一馈电点B 1即为馈电检测单元的第一端C 1,且第二馈电点B 2即为馈电检测单元的第二端C 2。在这种情况下,馈电链路L实际上由位于馈电网络的第一端A 1和第一馈电点B 1之间的第一段馈线、馈电检测单元、以及位于第二馈电点B 2和馈电网络的第二端A 2之间的第二段馈线构成,馈电检测单元作为馈电链路L中的一部分而存在。在该种连接方式下,馈电检测单元不仅可以用于实现上述驻波检测功能,还可以同步参与至馈电链路L的馈电调节流程。示例来说,以预设工作状态为正常工作状态为例,在需要执行驻波检测时,馈电检测单元可以先导通第一馈电点B 1和第二馈电点B 2,在这种情况下,第一馈电点B 1和第二馈电点B 2之间的馈线理论上应该处于正常工作状态。馈电检测单元通过上述驻波检测流程确定出第一馈电点B 1和第二馈电点B 2之间的馈线的驻波 比后,若驻波比较大(如大于预设的驻波比阈值),则说明第一馈电点B 1和第二馈电点B 2之间的馈线实际上处于异常工作状态,馈线链路L连接异常。若驻波比较小(如不大于预设的驻波比阈值),则说明第一馈电点B 1和第二馈电点B 2之间的馈线实际上也处于正常工作状态,馈线链路L连接正常。在确定馈电链路L连接正常的情况下,馈电检测单元还可以继续导通第一馈电点B 1和第二馈电点B 2,以维持基站天线的正常工作。如此,即使在不需要执行驻波检测的情况下,馈电检测单元同样也可以利用起来以参与馈电调节,这有助于最大化地利用馈电网络中的资源,在提高资源利用率的同时尽量节省基站天线的部署成本。
下文以图5A所示意的连接方式为例进行介绍。在该种连接方式下,如果馈电链路L如图4所示意的包括移相器、以及合/分路器或滤波器,则馈电检测单元可以设置在如下任一位置:
位置一,馈电检测单元的第一端C 1连接天线端口,馈电检测单元的第二端C 2连接合/分路器或滤波器的第一端M 11。在该种设置方式下,馈电检测单元用于检测天线端口至端M 11之间的馈线连接情况;
位置二,馈电检测单元的第一端C 1连接天线端口,馈电检测单元的第二端C 2连接合/分路器或滤波器的第二端M 12(或移相器的第一端M 21)。在该种设置方式下,合/分路器或滤波器可以集成在馈电检测单元的内部。如此,馈电检测单元不仅能用于检测天线端口至M 12(或端M 21)之间的馈线连接情况,还能对馈电链路L上的收发信号进行合路处理、分路处理或滤波处理;
位置三,馈电检测单元的第一端C 1连接天线端口,馈电检测单元的第二端C 2连接移相器的第二端M 22(或天线阵列)。在该种设置方式下,移相器、以及合/分路器或滤波器都集成在馈电检测单元的内部。如此,馈电检测单元不仅能用于检测天线端口至端M 22(或天线阵列)之间的馈线连接情况,还能对馈电链路L上的收发信号进行移相处理、合路处理、分路处理或滤波处理。
在一种可选地实施方式中,为配合实际生产需求,第一馈电点B 1和第二馈电点B 2可以对应为馈电链路L上的已有的两个线缆接头,如天线端口TR所对应的线缆接头和天线阵列所对应的线缆接头。采用该种实施方式,馈电检测单元可以直接设置在两个现有的线缆接头之间,如此既不用再额外拆分馈电链路,又能将两个线缆接口之间的馈电调节和馈线检测功同时集成在一个馈电检测单元上来实现,有助于尽可能地多利用已有的线缆结构来简化在基站天线内部新增馈线检测功能的设计复杂程度。
上述内容是以馈电网络中包括一条馈电链路为例进行介绍,馈电检测单元执行一次驻波检测操作可以检测出一条馈电链路的连接情况。在其它可选地实施方式中,馈电网络中也可以包括多条馈电链路,馈电检测单元通过一次驻波检测操作可以检测出多条馈电链路中的一条或多条馈电链路的连接情况。示例来说:
图6示例性示出本申请实施例一提供的又一种基站天线的结构示意图,如图6所示,在该示例中,馈电网络中可以包括K个第一馈电点(如馈电点B 11、馈电点B 12、……、馈电点B 1K)、K个第二馈电点(如馈电点B 21、馈电点B 22、……、馈电点B 2K)和馈电检测单元,K个第一馈电点B 11~B 1K与K个第二馈电点B 21~B 2K一一对应,任一对应的第一馈电点与第二馈电点可以位于同一馈电链路,如对应的馈电点B 11和馈电点B 21位于馈电链路L 1,对应的馈电点B 12和馈电点B 22位于馈电链路L 2,……,对应的馈电点B 1K和馈电 点B 2K位于馈电链路L K,K为大于或等于2的正整数。这K条馈电链路L 1~L K中的每条馈电链路均可以参照上述图5A中的内容进行设置,此处不再重复赘述。在这种情况下,馈电检测单元可以包括K个第一端(如端C 11、端C 12、……、端C 1K)和K个第二端(如端C 21、端C 22、……、端C 2K),馈电检测单元的K个第一端C 11~C 1K分别连接K个第一馈电点B 11~B 1K,馈电检测单元的K个第二端C 21~C 2K分别连接K个第二馈电点B 21~B 2K。在需要通过一次驻波检测操作确定出K条馈电链路中的R(R为小于或等于K的正整数)条馈电链路的连接情况时,馈电检测单元可以通过控制这R条馈电链路中的每条馈电链路的第一馈电点和第二馈电点导通、断开或阻抗失配等方式使这R条馈电链路处于预设工作状态,然后按照上述驻波检测方式确定出R条馈电链路中的每条馈电链路的当前驻波比,如果R条馈电链路中存在当前驻波比与预设工作状态对应的驻波比不匹配的一条或多条馈电链路,则馈电检测单元可以针对于该一条或多条馈电链路进行驻波告警(如向远端射频单元发送告警消息),以指示该一条或多条馈电链路连接出错。
需要说明的是,本申请实施例中,预设工作状态对应的驻波比可以是由本领域技术人员根据经验设置的一个固定值,也可以由另一工作状态对应的驻波比来对比得到。当预设工作状态对应的驻波比由另一工作状态对应的驻波比来对比得到时,馈电检测单元可以先后控制某条馈电链路处于正常工作状态和异常工作状态,并分别获取该条馈电链路在正常工作状态下的驻波比和该条馈电链路在异常工作状态下的驻波比,理论上来说这两个状态下的驻波比应该相差比较大,因此如果这两个状态下的驻波比的差值不大(如不大于预设的差值阈值),则说明该条馈电链路当前连接出错,如果这两个状态下的驻波比的差值较大(如大于预设的差值阈值),则说明该条馈电链路当前连接正常。该方式实际上还考虑到了不同工艺偏差对应不同驻波场景的问题,即使某一工艺偏差导致电路环境中的反射波较大而另一工艺偏差导致电路环境下的反射波较小,这种对比方式所确定出的驻波比差值也能准确体现出相同或不同的工作状态,有助于馈电检测单元在各工艺偏差下准确检测出连接情况,有效提高馈电检测单元抵御不同工艺偏差影响的能力。
现基于图6所示意的馈电网络,介绍一种具体的馈电检测流程:
在出厂基站天线之前,生产人员可以先利用馈电检测单元检测基站天线的馈电网络内部的各条馈电链路的连接情况,如果确定各条馈电链路都连接正常,则可以确定基站天线的内部线缆连接无误,生产人员可以出厂该基站天线。如果确定存在一条或多条馈电链路连接异常,则生产人员可以先检修这一条或多条馈电链路,并在检修完成后重新利用馈电检测单元检测各条馈电链路的连接情况,直至确定各条馈电链路都连接无误后,出厂该基站天线。通过在出厂基站天线前进行初次检测,能尽量出厂内部线缆连接无误的基站天线。
在组装基站天线与外部设备(如远端射频单元或基带单元)之后(如用户购买基站天线之后安装基站设备之前,或生产人员在组装基站设备之后售卖基站设备之前),可以再利用馈电检测单元进行二次检测。如果二次检测未检出连线问题,则说明基站天线的内外部线缆连接都没有问题,后续可以售卖或安装该基站设备。如果二次检测仍检出连线问题,则由于出厂的基站天线的内部线缆连接已确定无误,因此该连线问题显然是由基站天线的外部线缆连接存在问题而导致的。示例来说,假设外部设备1通过外部线缆1连接馈电链路1,外部设备2通过外部线缆2连接馈电链路2,当通过外部设备1发出检测信号而外部设备2不发出检测信号时,理论上馈电链路1会处于正常工作状态而馈电链路2会处于异常工作状态,即馈电检测单元理论上应该检测到馈电链路1的驻波小而馈电链路2的驻 波大,然而,如果检测到馈电链路1的驻波大而馈电链路2的驻波小,则可以确定外部线缆1和外部线缆2的连接出现问题,如外部设备1通过外部线缆1连在了馈电链路2上,外部设备2通过外部线缆2连在了馈电链路1上。在这种情况下,生产人员或用户可以重新连接基站天线与外部设备,并重新利用馈电检测单元进行检测,直至检出不存在连线问题后,售卖或安装该基站设备。通过在售卖或安装基站设备之前进行二次检测,能尽量售卖或安装内外部线缆连接均无误的基站设备。
由此可知,实施例一中的馈电网络不仅能准确定位出基站天线的内部线缆连接问题,还能准确定位出基站天线的外部线缆连接问题,该方式有助于在投放或安装基站设备之前提前校准基站设备中的各线缆连接,以提高投放或安装线缆连接无误的基站天线的可能性,降低基站设备返厂维修或重新安装基站设备的概率。
下面分别从实施例二至实施例四进一步介绍馈电检测单元的结构。需要指出的是,本申请并不限定馈电检测单元只能具有如下几种结构,只要能实现控制馈电链路的工作状态和驻波检测这两个功能的馈电检测单元,都在本申请的保护范围内。
【实施例二】
图7示例性示出本申请实施例二提供的一种馈电网络的结构示意图,如图7所示,在该示例中,馈电检测单元可以包括第一控制器、第一传动部件、第一导带线、第二导带线和第三导带线,第一导带线连接第一馈电点B 1,第二导带线连接第二馈电点B 2,第一导带线和第二导带线不接触。第三导带线可以固定连接第一传动部件,第一传动部件的传动方向可以如图7中的“V1”或“V2”所示(只是一种示例)。第一控制器可以分别连接第一传动部件的控制端、第一馈电点B 1的数据采集端和第二馈电点B 2的数据采集端。
在需要检测第一馈电点B 1和第二馈电点B 2之间的馈线连接情况时:
第一控制器可以先控制第一传动部件带动第三导带线沿着图7所示意的“V1”方向移动至第一位置(如图7中的虚线位置)。当第三导带线位于第一位置时,第三导带线的一端与第一导带线接触,第三导带线的另一端与第二导带线接触。如此,第一馈电点B 1和第二馈电点B 2能通过连通的第一导带线、第三导带线和第二导带线导通,第一馈电点B 1和第二馈电点B 2之间的馈线处于正常工作状态。在这种情况下,第一控制器从第一馈电点B 1的数据采集端获取第一馈电点B 1处的第一电信号,从第二馈电点B 2的数据采集端获取第二馈电点B 2处的第二电信号,根据第一电信号和第二电信号计算得到第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比。理论上来说,第一馈电点B 1和第二馈电点B 2之间的馈线在正常工作状态下应该具有较小的驻波比,因此,如果第一驻波比较大,则说明第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,馈电检测单元可以针对于第一馈电点B 1和第二馈电点B 2之间的馈线进行驻波告警;
更进一步的,如果第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比较小,则可能是第一馈电点B 1和第二馈电点B 2之间的馈线连接正常所导致的,也可能是第一馈电点B 1和第二馈电点B 2分别连接其它馈电链路上的第二馈电点和第一馈电点所导致的。为提高驻波检测的准确性,第一控制器还可以再控制第一传动部件带动第三导带线沿着图7所示意的“V2”方向移动至第二位置(如图7中的实线位置)。当第三导带线位于第二位置时,第三导带线不与第一导带线接触和/或不与第二导带线接触,第一馈电点B 1和第二馈电点B 2断开,导致第一馈电点B 1和第二馈电点B 2之间的馈线切换到断路状态。在这种 情况下,第一控制器从第一馈电点B 1的数据采集端获取第一馈电点B 1处的第三电信号,从第二馈电点B 2的数据采集端获取第二馈电点B 2处的第四电信号,根据第三电信号和第四电信号计算得到第一馈电点B 1和第二馈电点B 2之间的馈线的第二驻波比。如果第二驻波比与第一驻波比的差值大于预设的差值阈值,则说明第一馈电点B 1和第二馈电点B 2之间的馈线会随着馈电检测单元的切换操作而对应发生工作状态的变化,第一馈电点B 1和第二馈电点B 2之间的馈线连接正常。如果第二驻波比与第一驻波比的差值不大于预设的差值阈值,则说明第一馈电点B 1和第二馈电点B 2之间的馈线并没有随着馈电检测单元的切换操作而发生工作状态的变化,第一馈电点B 1和第二馈电点B 2可能分别连通在了其它馈电链路的第二馈电点和第一馈电点上,第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,因此馈电检测单元可以针对于第一馈电点B 1和第二馈电点B 2之间的馈线进行驻波告警。
如图7所示意的馈电检测单元能通过控制馈电链路的通路和断路来改变馈电链路的工作状态,通过结合馈电链路在不同工作状态下的驻波比来完成驻波检测,不仅能检测出馈电链路本身所出现的连接异常情况,还能检测出馈电链路与其它馈电链路的线序连接出错的问题,有助于提高驻波检测的准确性。
现基于图7中的设计思路,示例性介绍馈电检测单元的具体结构。
一种具体的结构设计中,图8示例性示出本申请实施例二提供的一种馈电检测单元的结构示意图,其中,图8中的(a)示意出该馈电检测单元的俯视图,图8中的(b)示意出该馈电检测单元的侧视图。如图8所示,在该示例中,馈电检测单元还可以包括第一腔体,各第一馈电点(如B 11~B 15)和各第二馈电点(如B 21~B 25)设置在第一腔体的外侧,如可以按照图8中的(a)所示意的方式对称分布在第一腔体相对的两个侧面的外侧,也可以对称分布在第一腔体相交的两个侧面的外侧,还可以并列部署在第一腔体的同一侧面的外侧,当然也可以按照其它方式分布在第一腔体的一个或多个侧面的外侧,具体不作限定。对应的,第一导带线、第二导带线和第三导带线可以设置在第一腔体的内侧,如第一导带线、第二导带线和第三导带线均具有刚性,第一导带线通过连接第一馈电点以实现位置上的固定,第二导带线通过连接第二馈电点以实现位置上的固定,第三导带线活动连接第一腔体上的相对于第一导带线或第二导带线的一面以靠近或远离第一导带线和第二导带线。
在一种可选地实施方式中,继续参照图8所示,馈电检测单元还可以包括相对设置的第一PCB和第二PCB、以及第一滑道,第一导带线和第二导带线可以设置在第一PCB上的与第二PCB相对的面(如图8中的(b)所示意出的T 1面),第三导带线可以设置在第二PCB上的与第一PCB相对的面(如图8中的(b)所示意出的T 2面)。其中,第一腔体的至少一个内侧壁上还可以开设有滑槽,第一PCB通过卡合在该滑槽内以实现位置上的固定。第一滑道可以设置在第一PCB上的相对于第二PCB的面,也设置在第一腔体上的相对于第一PCB的面,第二PCB可沿第一滑道滑动。第一滑道的滑动方向需要与第一导带线和第二导带线的连线存在夹角,如可以为图8中的(a)所示意的垂直于第一导带线和第二导带线之间的连线方向,也可以为与第一导带线和第二导带线的连线存在夹角的其它方向,具体不作限定。
按照上述实施方式,在需要控制某条馈电链路上的第一馈电点(如B 11)和第二馈电点(B 21)之间的馈线处于正常工作状态时,第一控制器可以控制第一传动部件带动第二PCB沿着第一滑道向靠近第一馈电点B 11和第二馈电点B 21的连线的方向滑动,直至第二PCB上的第三导带线的两端分别与第一导带线和第二导带线重合时,停止第二PCB的滑 动。如此,第一馈电点B 11和第二馈电点B 21能通过连通的第一导带线、第三导带线和第二导带线导通。在需要控制第一馈电点B 11和第二馈电点B 21之间的馈线处于异常工作状态时,第一控制器可以控制第一传动部件带动第二PCB沿着第一滑道向远离第一馈电点B 11和第二馈电点B 21的连线的方向滑动,直至第二PCB上的第三导带线的两端与第一导带线和第二导带线不接触时,停止第二PCB的滑动。如此,由于第一导带线、第三导带线和第二导带线未构成连通的链路,因此第一馈电点B 11和第二馈电点B 21断开。
需要说明的是,图8仅是以将第一导带线和第二导带线设置在第一PCB的T 1面一侧为例进行介绍。在其它可选地实施方式中,第一导带线和第二导带线也可以设置在第一PCB的T 3面一侧,或同时设置在第一PCB的T 1面一侧和T 3面一侧。当第一导带线和第二导带线同时设置在第一PCB的T 1面一侧和T 3面一侧时,第二PCB可以包括设置在第一PCB的T 1面一侧的第一部分和设置在第一PCB的T 3面一侧的第二部分,第一部分和第二部分中的每个部分在相对于第一PCB的面上都可以设置有第三导带线。
进一步介绍当馈电网络中包括K条馈电链路时馈电检测单元的结构。在该示例中,假设K为5,5条馈电链路所对应的5个第一馈电点(B 11~B 15)和5个第二馈电点(B 21~B 25)如图8中的(a)所示意的方式对称部署在第一腔体相对的两个侧面的外侧。
图9示例性示出本申请实施例二提供的一种第一PCB和第二PCB的结构示意图,其中,图9中的(a)示意出第一PCB的俯视图,图9中的(b)示意出第二PCB的俯视图。如图9中的(a)所示,在该示例中,第一PCB上可以包括第一滑道、以及与5条馈电链路分别对应的5条第一导带线(1.1、2.1、3.1、4.1和5.1)和5条第二导带线(1.2、2.2、3.2、4.2和5.2),5条第一导带线1.1~5.1和5条第二导带线1.2~5.2对称部署在第一腔体相对的两个侧面的内侧,与每条馈电链路对应的第一导带线可以连接所对应的馈电链路中的第一馈电点(如第一导带线1.1连接图8中的(a)所示意的第一馈电点B 11,第一导带线2.1连接图8中的(a)所示意的第一馈电点B 12,……,第一导带线5.1连接图8中的(a)所示意的第一馈电点B 15),与每条馈电链路对应的第二导带线可以连接所对应的馈电链路中的第二馈电点(如第二导带线1.2连接图8中的(a)所示意的第二馈电点B 21,第二导带线2.2连接图8中的(a)所示意的第二馈电点B 22,……,第二导带线5.2连接图8中的(a)所示意的第二馈电点B 25)。第一滑道沿着垂直于第一导带线和第二导带线的连线方向进行布置。如图9中的(b)所示,在该示例中,第二PCB上可以包括至少一条第三导带线,如第三导带线1、第三导带线2、第三导带线3、第三导带线4、第三导带线5、第三导带线6、第三导带线7、第三导带线8和第三导带线9。
继续参照图8和图9所示,在需要检测这5条馈电链路的连接情况时:
第一控制器可以先控制第一传动部件带动第二PCB沿着第一滑道向图8中的(a)所示意的左侧滑动,直至第二PCB中的5条第三导带线1~5分别与第一PCB上的5条第一导带线1.1~5.1和5条第二导带线1.2~5.2重合,即第三导带线1的两端分别接触第一导带线1.1和第二导带线1.2,第三导带线2的两端分别接触第一导带线2.1和第二导带线2.2,……,第三导带线5的两端分别接触第一导带线5.1和第二导带线5.2。在这种情况下,第三导带线1导通第一馈电点B 11与第二馈电点B 21,第三导带线2导通第一馈电点B 12与第二馈电点B 22,第三导带线3导通第一馈电点B 13与第二馈电点B 23,第三导带线4导通第一馈电点B 14与第二馈电点B 24,第三导带线5导通第一馈电点B 15与第二馈电点B 25,而第三导带线6~9闲置。第一控制器按照上述驻波检测方式分别确定出第一馈电点 B 11与第二馈电点B 21之间的馈线的第一驻波比、第一馈电点B 12与第二馈电点B 22之间的馈线的第一驻波比、……、第一馈电点B 15与第二馈电点B 25之间的馈线的第一驻波比。
之后,第一控制器可以再控制第一传动部件带动第二PCB沿着第一滑道向图8中的(a)所示意的右侧滑动,直至第二PCB中的4条第三导带线1~4分别与第一PCB上的4条第一导带线2.1~5.1和4条第二导带线2.2~5.2重合,即第三导带线1的两端分别接触第一导带线2.1和第二导带线2.2,第三导带线2的两端分别接触第一导带线3.1和第二导带线3.2,第三导带线3的两端分别接触第一导带线4.1和第二导带线4.2,第三导带线4的两端分别接触第一导带线5.1和第二导带线5.2。在这种情况下,第三导带线1导通第一馈电点B 12与第二馈电点B 22,第三导带线2导通第一馈电点B 13与第二馈电点B 23,第三导带线3导通第一馈电点B 14与第二馈电点B 24,第三导带线4导通第一馈电点B 15与第二馈电点B 25,第三导带线5~9闲置,连接关系参照图8中的(a)所示。第一控制器按照上述驻波检测方式分别确定出第一馈电点B 11与第二馈电点B 21之间的馈线的第二驻波比、第一馈电点B 12与第二馈电点B 22之间的馈线的第二驻波比、……、第一馈电点B 15与第二馈电点B 25之间的馈线的第二驻波比。理论上来说,第一馈电点B 12~B 15与第二馈电点B 22~B 25仍然分别导通,而第一馈电点B 11与第二馈电点B 21由导通切换到断开,因此第一馈电点B 12~B 15与第二馈电点B 22~B 25中的对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第二驻波比应该相差不大,而第一馈电点B 11与第二馈电点B 21之间的馈线的第一驻波比与第二驻波比应该相差较大。因此,如果第一馈电点B 12~B 15与第二馈电点B 22~B 25中存在某一对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第二驻波比相差较大,或者如果第一馈电点B 11与第二馈电点B 21之间的馈线的第一驻波比与第二驻波比相差不大,则说明这些第一馈电点和第二馈电点所对应的馈电链路异常,第一控制器可以针对于这些异常的馈电链路进行驻波告警。
之后,第一控制器可以再控制第一传动部件带动第二PCB沿着第一滑道继续向图8中的(a)所示意的右侧滑动,直至第二PCB中的4条第三导带线9、1~3分别与第一PCB上的4条第一导带线1.1、3.1~5.1和4条第二导带线1.2、3.2~5.2重合,即第三导带线9的两端分别接触第一导带线1.1和第二导带线1.2,第三导带线1的两端分别接触第一导带线3.1和第二导带线3.2,第三导带线2的两端分别接触第一导带线4.1和第二导带线4.2,第三导带线3的两端分别接触第一导带线5.1和第二导带线5.2。这种情况下,第三导带线9导通第一馈电点B 11和第二馈电点B 21,第三导带线1分别导通第一馈电点B 13与第二馈电点B 23,第三导带线2分别导通第一馈电点B 14与第二馈电点B 24,第三导带线5分别导通第一馈电点B 15与第二馈电点B 25,第三导带线4、5、6、7和8闲置。第一控制器按照上述驻波检测方式分别确定出第一馈电点B 11与第二馈电点B 21之间的馈线的第三驻波比、第一馈电点B 12与第二馈电点B 22之间的馈线的第三驻波比、……、第一馈电点B 15与第二馈电点B 25之间的馈线的第三驻波比。与第一驻波比的场景相比,第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 22~B 25仍然分别导通,而第一馈电点B 12与第二馈电点B 22由导通切换到断开,理论上来说,第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 22~B 25中的对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第三驻波比应该相差不大,而第一馈电点B 12与第二馈电点B 22之间的馈线的第一驻波比与第三驻波比应该相差较大。因此,如果第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 22~B 25中存在某一对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第三驻波比相差较大,或者如果第一馈电点B 12与第 二馈电点B 22之间的馈线的第一驻波比与第三驻波比相差不大,则说明这些第一馈电点和第二馈电点所对应的馈电链路异常,第一控制器可以针对于这些异常的馈电链路进行驻波告警。
按照上述思路,第一控制器可以控制第一传动部件带动第二PCB沿着第一滑道依次向右移动,每次移动都可以控制其中一条馈电链路断开而其它馈电链路导通,直至所有的馈电链路都至少断开过一次。在这样执行一轮驻波检测之后,第一控制器能根据各条馈电链路的驻波比变化情况,确定出各条馈电链路的线序。例如,当控制某条馈电链路从导通状态切换到断开状态时,该条馈电链路的驻波比不变,而另一条馈电链路的驻波比由小变大且变化较为明显,则可以确定另一条馈电链路与该条馈电链路之间的连接关系发生错位。该方案不仅能检测出馈电链路本身的异常连接问题,还能通过对各条馈电链路的线序检测确定出各条馈电链路之间的错位连接问题。
需要说明的是,图9中的(b)所示意的第二PCB只是为了便于介绍方案而给出的一种示例性介绍,第二PCB中所设置的第三导带线的数量和位置可以根据实际需求进行调整。例如,在另一种场景下,当需要通过一次移动检测出两条馈电链路的连接情况时,第二PCB中也可以只设置如图9中的(b)所示意出的第三导带线6~8和第三导带线1~5,或可以只设置如图9中的(b)所示意出的第三导带线6、8、9和第三导带线1~5,或可以只设置如图9中的(b)所示意出的第三导带线6、7和第三导带线1~5等,本申请对此不再一一赘述。
【实施例三】
图10示例性示出本申请实施例三提供的一种馈电网络的结构示意图,图11示例性示出该种馈电网络所对应的系统架构图,如图10和图11所示,在该示例中,馈电检测单元可以包括第三控制器和开关单元(K),开关单元K的第一电极(d 1)连接第一馈电点B 1,开关单元的第二电极(d 2)连接第二馈电点B 2,开关单元K的控制电极(d 0)连接第三控制器。在需要检测第一馈电点B 1和第二馈电点B 2之间的馈线的连接情况时,第三控制器可以先向开关单元K的控制电极d 0发送第一控制信号以控制开关单元K导通其第一电极d 1和第二电极d 2,并检测得到第一馈电点B 1和第二馈电点B 2之间的馈线在该种场景下的第一驻波比。之后,第三控制器可以再向开关单元K的控制电极d 0发送第二控制信号以控制开关单元K断开其第一电极d 1和第二电极d 2,并检测得到第一馈电点B 1和第二馈电点B 2之间的馈线该种场景下的第二驻波比。理论上来说,如果馈电链路L的连接未出现问题,则第一馈电点B 1和第二馈电点B 2之间的馈线在上述第一种场景下处于导通状态、且在上述第二中场景下处于断开状态,这两种场景下的第一驻波比和第二驻波比应该相差较大。因此,如果第一驻波比和第二驻波比的差值不大于预设的差值阈值,则说明第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,第三控制器可以针对于第一馈电点B 1和第二馈电点B 2之间的馈线进行驻波告警。
本申请实施例中,开关单元K可以是指能实现链路通断功能的任意单元,如三极管、晶体管或电压二极管等。当开关单元K为电压二极管时,第一控制信号可以是指正向导通的电压信号,第二控制信号可以是指反向截止的电压信号。
在上述实施例三中,馈电检测单元也能通过控制馈电链路的通路和断路来改变馈电链路的工作状态,并能结合馈电链路在不同工作状态下的驻波比来完成驻波检测。需要说明 的是,上述内容仅是以馈电网络中包括一条馈电链路为例进行介绍。当馈电网络中包括多条馈电链路时,第三控制器可以分别连接多条馈电链路所对应的多个开关单元的控制端,如此,第三控制器通过控制多条馈电链路中的一条或多条馈电链路所对应的一个或多个开关单元的导通和断开,能实现对一条或多条馈电链路的连接情况进行检测。关于如何检测一条或多条馈电链路的具体实现方式,请参照上述实施例二,此次不再重复赘述。
【实施例四】
图12示例性示出本申请实施例四提供的一种馈电网络的结构示意图,如图12所示,在该示例中,馈电检测单元可以包括第二控制器、第二传动部件、第四导带线和导体部件,第四导带线连通第一馈电点B 1和第二馈电点B 2,导体部件耦合接地电路。且,导体部件可以固定连接第二传动部件,第二传动部件的传动方向可以如图12中的“V3”或“V4”所示(只是一种示例)。第二控制器可以分别连接第二传动部件的控制端、第一馈电点B 1的数据采集端和第二馈电点B 2的数据采集端。
在需要检测第一馈电点B 1和第二馈电点B 2之间的馈线连接情况时:
第二控制器可以先控制第二传动部件带动导体部件沿着图12所示意的“V4”方向移动至第三位置(如图12中的实线位置)。当导体部件位于第三位置时,导体部件不接触第四导带线,第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗未发生变化,因此第一馈电点B 1和第二馈电点B 2之间的馈线处于正常工作状态。在这种情况下,第二控制器从第一馈电点B 1的数据采集端获取第一馈电点B 1处的第一电信号,从第二馈电点B 2的数据采集端获取第二馈电点B 2处的第二电信号,根据第一电信号和第二电信号计算得到第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比。理论上来说,第一馈电点B 1和第二馈电点B 2之间的馈线在正常工作状态下应该具有较小的驻波比,因此,如果第一驻波比较大,则说明第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,馈电检测单元可以针对于第一馈电点B 1和第二馈电点B 2之间的馈线进行驻波告警;
更进一步的,如果第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比较小,则可能是第一馈电点B 1和第二馈电点B 2之间的馈线连接正常所导致的,也可能是第一馈电点B 1和第二馈电点B 2分别连接其它馈电链路上的第二馈电点和第一馈电点所导致的。为提高驻波检测的准确性,第二控制器还可以再控制第二传动部件带动导体部件沿着图12所示意的“V3”方向移动至第四位置(如图12中的虚线位置)。当导体部件位于第四位置时,导体部件接触第四导带线,第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗发生变化,第一馈电点B 1和第二馈电点B 2之间的馈线上的大部分信号会通过导体部件传动至接地电路,导致第一馈电点B 1和第二馈电点B 2之间的馈线切换到阻抗失配状态。在这种情况下,第二控制器从第一馈电点B 1的数据采集端获取第一馈电点B 1处的第三电信号,从第二馈电点B 2的数据采集端获取第二馈电点B 2处的第四电信号,根据第三电信号和第四电信号计算得到第一馈电点B 1和第二馈电点B 2之间的馈线的第二驻波比。如果第二驻波比与第一驻波比的差值大于预设的差值阈值,则说明第一馈电点B 1和第二馈电点B 2之间的馈线会随着馈电检测单元的切换操作而对应发生工作状态的变化,第一馈电点B 1和第二馈电点B 2之间的馈线连接正常。如果第二驻波比与第一驻波比的差值不大于预设的差值阈值,则说明第一馈电点B 1和第二馈电点B 2之间的馈线并没有随着馈电检测单元的切换操作而发生工作状态的变化,第一馈电点B 1和第二馈电点B 2可能分别连通在了其它馈电 链路的第二馈电点和第一馈电点上,第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,因此馈电检测单元可以针对于第一馈电点B 1和第二馈电点B 2之间的馈线进行驻波告警。
如图12所示意的馈电检测单元能通过控制馈电链路的阻抗变化来改变馈电链路的工作状态,通过结合馈电链路在不同工作状态下的驻波比来完成驻波检测,不仅能检测出馈电链路本身所出现的连接异常情况,还能检测出馈电链路与其它馈电链路的线序连接出错的问题,有助于提高驻波检测的准确性。
现基于图12中的设计思路,示例性介绍几种馈电检测单元的具体结构。
结构一
一种具体的结构设计中,图13示例性示出本申请实施例四提供的一种馈电检测单元的结构示意图,其中,图13中的(a)示意出该馈电检测单元的俯视图,图13中的(b)示意出该馈电检测单元的侧视图。如图13所示,在该示例中,馈电检测单元还可以包括第二腔体,各第一馈电点(如B 11~B 15)和各第二馈电点(如B 21~B 25)设置在第二腔体的外侧,如可以按照图13中的(a)所示意的方式对称分布在第二腔体相对的两个侧面的外侧,也可以对称分布在第二腔体相交的两个侧面的外侧,还可以并排部署在第二腔体的同一侧面的外侧,当然也可以按照其它方式分布在第二腔体的一个或多个侧面的外侧,具体不作限定。对应的,第四导带线和导体部件可以设置在第二腔体的内侧。如第四导带线可以具有刚性,第四导带线通过连接所对应的第一馈电点和第二馈电点以实现位置上的固定。导体部件可以通过活动连接第二腔体、固定连接传动部件或磁悬浮等方式以实现位置上的固定。
示例性地,第二腔体可以由导电材料构成,第二腔体上设置有如图13中的(b)所示意的耦合点,导体部件通过电连接或耦合方式连接该耦合点以连接接地电路。如此,通过利用馈电网络中原有的部件(即第二腔体)实现导体部件的接地,不仅可以免于设置额外的接地部件,有助于节省馈电网络的成本,还能利用第二腔体的大面积在导体部件接触到第四导带线时快速改变馈电链路上的阻抗分布,更快地使馈电链路由正常工作状态切换到阻抗失配状态。
继续参照图13所示,馈电检测单元还可以包括与导体部件相对设置的第三PCB,第四导带线可以设置在第三PCB上的与导体部件相对的面(如图13中的(b)所示意出的T 4面)。其中,第二腔体的至少一个内侧壁上还可以开设有滑槽,第三PCB通过卡合在该滑槽内以实现位置上的固定。
本申请实施例中,导体部件能在传动部件的带动下沿着靠近第四导带线或远离第四导带线的方向滑动,可能的实现方式有很多,例如:在一种情况下,传动部件包括伸缩杆,伸缩杆的伸缩方向与第四导带线之间存在夹角,如可以为垂直于第四导带线的方向,导体部件固定连接传动部件的伸缩杆,如此,通过传动部件上的伸缩杆的伸缩操作即能带动导体部件向靠近第四导带线或远离第四导带线的方向滑动。另一种情况下,馈电检测单元还可以包括第二滑道(图13中未进行示意),第二滑道可以设置在第三PCB上的相对于导体部件的面,也设置在第二腔体上的相对于第三PCB的面,第二滑道的滑动方向与第四导带线存在夹角,导体部件沿第二滑道滑动以向靠近第四导带线或远离第四导带线的方向滑动。
按照上述结构设计,在需要控制某条馈电链路上的第一馈电点(如B 11)和第二馈电点(B 21)之间的馈线处于正常工作状态时,第二控制器可以控制第二传动部件带动导体部件沿着第二滑道向远离连接第一馈电点B 11和第二馈电点B 21的第四导带线的方向滑动, 直至导体部件完全不接触第四导带线时,停止导体部件的滑动。如此,第一馈电点B 11和第二馈电点B 21能通过第四导带线上的预置的阻抗导通。在需要控制第一馈电点B 11和第二馈电点B 21之间的馈线处于异常工作状态时,第二控制器可以控制第二传动部件带动导体部件沿着第二滑道向靠近连接第一馈电点B 11和第二馈电点B 21的第四导带线的方向移动,直至导体部件与第四导带线重合时,停止导体部件的滑动。如此,第一馈电点B 11和第二馈电点B 21之间的馈线上的阻抗被导体部件和所连接的第二腔体改变,导致第一馈电点B 11和第二馈电点B 21之间的馈线处于阻抗失配状态。
需要说明的是,图13仅是以将第四导带线设置在第三PCB的T 4面一侧为例进行介绍。在其它可选地实施方式中,第四导带线也可以设置在第三PCB的T 5面一侧,或同时设置在第三PCB的T 4面一侧和T 5面一侧。当第四导带线同时设置在第一PCB的T 4面一侧和T 5面一侧时,导体部件可以包括设置在第三PCB的T 4面一侧的第一部分和设置在第三PCB的T 5面一侧的第二部分。
进一步介绍当馈电网络中包括K条馈电链路时馈电检测单元的结构。在该示例中,假设K为5,5条馈电链路所对应的5个第一馈电点(B 11~B 15)和5个第二馈电点(B 21~B 25)如图13中的(a)所示意的方式对称部署在第二腔体相对的两个侧面的外侧。
图14示例性示出本申请实施例四提供的一种第三PCB和导体部件的结构示意图,其中,图14中的(a)示意出第三PCB的俯视图,图14中的(b)示意出导体部件的俯视图,图14中的(c)示意出导体部件的侧视图。如图14中的(a)所示,在该示例中,第三PCB上可以包括与5条馈电链路分别对应的5条第四导带线(1、2、3、4和5),与每条馈电链路对应的第四导带线可以连通所对应的馈电链路中的第一馈电点和第二馈电点,如第四导带线1的两端分别连接图13中的(a)所示意的第一馈电点B 11和第二馈电点B 21,第四导带线2的两端分别连接图13中的(a)所示意的第一馈电点B 12和第二馈电点B 22,……,第四导带线5的两端分别连接图13中的(a)所示意的第一馈电点B 15和第二馈电点B 25。第二滑道可沿垂直于各第四导带线的方向进行布置。如图14中的(b)和图14中的(c)所示,在该示例中,导体部件可以由第一导体板(R 1)、第二导体板(R 2)、第一导体连接件(F 1)和第二导体连接件(F 2)构成,导体板R 1与导体板R 2平行,导体连接件F 1的两端分别固定连接导体板R 1的一端与导体板R 2的一端,导体连接件F 2的两端分别固定连接导体板R 1的另一端与导体板R 2的另一端。采用该种中空方式设置导体部件,不仅能实现导体部件与第二腔体的耦合,还能尽量减少设置导体部件所需的材料,节省馈电检测单元的成本和重量。
继续参照图13和图14所示,在需要检测这5条馈电链路的线序连接情况时:
第二控制器可以先控制第二传动部件带动导体部件沿着第二滑道向图13中的(a)所示意的左侧滑动,直至导体部件上的导体板R 2与第三PCB上的5条第四导带线1~5均不接触。在这种情况下,第四导带线1~5分别导通5个第一馈电点B 11~B 15与5个第二馈电点B 21~B 25。第二控制器按照上述驻波检测方式分别确定出第一馈电点B 11与第二馈电点B 21之间的馈线的第一驻波比、第一馈电点B 12与第二馈电点B 22之间的馈线的第一驻波比、……、第一馈电点B 15与第二馈电点B 25之间的馈线的第一驻波比。
之后,第二控制器可以再控制第二传动部件带动第二PCB沿着第一滑道向图13中的(a)所示意的右侧滑动,直至导体部件上的导体板R 2与第三PCB上的第四导带线1接触且与第三PCB上的第四导带线2~5不接触,如图13中的(a)所示。在这种情况下,第一 馈电点B 12~B 15与第二馈电点B 22~B 25之间的馈线仍然分别导通,而第一馈电点B 11与第二馈电点B 21之间的馈线上的部分信号会通过导体板R 2、导体连接件F 1、导体连接件F 2、导体板R 1和第二腔体上的耦合点传送到第二腔体(即接地电路),导致第一馈电点B 11与第二馈电点B 21之间的馈线上的阻抗失配。第二控制器按照上述驻波检测方式分别确定出第一馈电点B 11与第二馈电点B 21之间的馈线的第二驻波比、第一馈电点B 12与第二馈电点B 22之间的馈线的第二驻波比、……、第一馈电点B 15与第二馈电点B 25之间的馈线的第二驻波比。理论上来说,第一馈电点B 12~B 15与第二馈电点B 22~B 25仍然分别导通,而第一馈电点B 11与第二馈电点B 21由导通切换到阻抗失配,因此第一馈电点B 12~B 15与第二馈电点B 22~B 25中的对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第二驻波比应该相差不大,而第一馈电点B 11与第二馈电点B 21之间的馈线的第一驻波比与第二驻波比应该相差较大。因此,如果第一馈电点B 12~B 15与第二馈电点B 22~B 25中存在某一对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第二驻波比相差较大,或者如果第一馈电点B 11与第二馈电点B 21之间的馈线的第一驻波比与第二驻波比相差不大,则说明这些第一馈电点和第二馈电点所对应的馈电链路异常,第二控制器可以针对于这些异常的馈电链路进行驻波告警。
之后,第二控制器可以再控制第二传动部件继续带动导体部件沿着第二滑道向图13中的(a)所示意的右侧滑动,直至导体部件上的导体板R 2与第三PCB上的第四导带线2接触且与第三PCB上的第四导带线1、3~5不接触,第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 23~B 25之间的馈线依旧分别导通,而第一馈电点B 12与第二馈电点B 22之间的馈线上的部分信号会通过导体板R 2、导体连接件F 1、导体连接件F 2、导体板R 1和第二腔体上的耦合点传送到接地电路,导致第一馈电点B 12与第二馈电点B 22之间的馈线上的阻抗失配。第二控制器按照上述驻波检测方式分别确定出第一馈电点B 11与第二馈电点B 21之间的馈线的第三驻波比、第一馈电点B 12与第二馈电点B 22之间的馈线的第三驻波比、……、第一馈电点B 15与第二馈电点B 25之间的馈线的第三驻波比。理论上来说,与第一驻波比的场景相比,第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 22~B 25仍然分别导通,而第一馈电点B 12与第二馈电点B 22由导通切换到阻抗失配,第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 22~B 25中的对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第三驻波比应该相差不大,而第一馈电点B 12与第二馈电点B 22之间的馈线的第一驻波比与第三驻波比应该相差较大。因此,如果第一馈电点B 11、B 13~B 15与第二馈电点B 21、B 22~B 25中存在某一对应的第一馈电点和第二馈电点之间的馈线的第一驻波比与第三驻波比相差较大,或者如果第一馈电点B 12与第二馈电点B 22之间的馈线的第一驻波比与第三驻波比相差不大,则说明这些第一馈电点和第二馈电点所对应的馈电链路异常,第二控制器可以针对于这些异常的馈电链路进行驻波告警。
按照上述思路,第二控制器可以控制第二传动部件带动导体部件沿着第二滑道依次向右移动,每次移动都可以控制其中一条馈电链路断开而其它馈电链路导通,直至所有的馈电链路都至少断开过一次。在这样执行一轮驻波检测之后,第二控制器能根据各条馈电链路的驻波比变化情况,确定出各条馈电链路的线序。
需要说明的是,图14中的(b)所示意的导体部件只是为了便于介绍方案而给出的一种示例性介绍,导体部件的数量、位置、形状或大小等均可以根据实际需求进行调整。例如,在其它可选地实施方式中,导体部件也可以设置为实体块、中空的导体框或球体等。 或者,导体部件的尺寸也可以设置为能同时覆盖至少两个第四导带线,以通过一次滑动操作实现对至少两个馈电链路的驻波检测等,本申请对此不再一一赘述。
结构二
另一种具体的结构设计中,图15示例性示出本申请实施例四提供的另一种馈电检测单元的结构示意图,其中,图15中的(a)示意出该馈电检测单元在馈电线路处于阻抗失配状态时的俯视图,图15中的(b)示意出该馈电检测单元在馈电线路处于正常工作状态时的俯视图,图15中的(c)示意出该馈电检测单元的侧视图。如图15所示,在该示例中,馈电检测单元还可以包括第二腔体,第一馈电点B 1和第二馈电点B 2可以按照15中的(a)或(b)所示意的方式并列部署在第二腔体的同一侧面的外侧。第四导带线和导体部件可以设置在第二腔体的内侧。如第四导带线可以具有刚性,第四导带线通过连接第一馈电点B 1和第二馈电点B 2以实现位置上的固定。第二腔体可以设置为导电结构,导体部件通过电连接或耦合方式连接该耦合点以连接接地电路。
继续参照图15中的(c)所示,馈电检测单元还可以包括相对于第四导带线设置的滑动介质,导体部件设置在滑动介质上,滑动介质的滑动方向与第四导带线存在夹角。例如,滑动介质可以在传动部件的带动下直接沿着该滑动方向滑动以靠近第四导带线或远离第四导带线,也可以是馈电检测单元还包括第二滑道(图15中未进行示意),第二滑道设置在第二腔体上的相对于第四导带线的面,或设置在第四导带线上的相对于导体部件的面,滑动介质沿第二滑道滑动以带动导体部件靠近第四导带线或远离第四导带线。
图16示例性示出该种结构设计所对应的第四导带线和导体部件的结构示意图,其中,图16中的(a)示意出第四导带线的俯视图,图16中的(b)示意出导体部件的俯视图,图16中的(c)示意出导体部件的侧视图。如图16中的(a)所示,在该示例中,第四导带线可以为弓形结构,弓形结构的一端(I 1)连接第一馈电点B 1,弓形结构的另一端(I 2)连接第二馈电点B 2,以连通第一馈电点B 1和第二馈电点B 2。如图16中的(b)和图16中的(c)所示,在该示例中,导体部件可以为嵌入导体,该嵌入导体嵌入在滑动介质上的相对于第四导带线的一侧。当馈电检测单元包括分别设置在第四导带线的两个侧面的两部分滑动介质时,每部分滑动介质相对于第四导带线的一面都可以嵌入一块嵌入导体。且,这两部分滑动介质可以固连以实现同时滑动,也可以单独设置以各自滑动,具体不作限定。
继续参照图15和图16所示,在需要检测第一馈电点B 1和第二馈电点B 2之间的馈线连接情况时:
第二控制器可以先控制第二传动部件带动滑动介质沿着第二滑道向图15中的(a)所示意的左侧滑动,直至滑动介质上的嵌入导体不接触第四导带线时,停止滑动介质的滑动,如图15中的(b)所示。在这种情况下,由于嵌入导体未接触到第四导带线,因此第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗未发生变化,第一馈电点B 1和第二馈电点B 2之间的馈线处于正常工作状态。第二控制器按照上述驻波检测方式确定出第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比,第一驻波比理论上对应为正常工作状态下的驻波比。
之后,第二控制器可以再控制第二传动部件带动滑动介质沿着第二滑道向图15中的(b)所示意的右侧滑动,直至滑动介质上的嵌入导体与第四导带线重合时,停止滑动介质的滑动,如图15中的(a)所示。在这种情况下,由于嵌入导体接触到第四导带线,因此第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗发生变化,导致第一馈电点B 1和第 二馈电点B 2之间的馈线切换到阻抗失配状态。第二控制器按照上述驻波检测方式确定出第一馈电点B 1和第二馈电点B 2之间的馈线的第二驻波比,第二驻波比理论上对应为阻抗失配状态下的驻波比。如果第一馈电点B 1和第二馈电点B 2之间的馈线连接未出现问题,则第一驻波比与第二驻波比应该相差较大。因此,如果第一驻波比与第二驻波比的差值不大于预设的差值阈值,则说明第一馈电点B 1和第二馈电点B 2之间的馈线连接异常,第二控制器可以针对于第一馈电点B 1和第二馈电点B 2之间的馈线进行驻波告警。
示例性地,如图16所示,第四导带线的弓形中心位置还可以设置为凸出结构,该部分凸出结构用于在阻抗失配状态下接触滑动介质中的嵌入导体。如此,滑动介质通过很小的位移就能实现对馈电链路的正常工作状态和阻抗失配状态的切换,有助于节省滑动长度,提高操控的灵活性和工作状态切换的响应速度。
需要说明的是,图16仅是以将滑动介质和嵌入导体设置在第四导带线的两侧为例进行介绍。在其它可选地实施方式中,滑动介质和嵌入导体也可以设置在第四导带线的一侧,如图16中的(c)所示意的上侧或下侧,具体不作限定。且,图16中的(c)所示意的滑动介质和嵌入导体只是为了便于介绍方案而给出的一种示例性介绍,滑动介质上所嵌入的嵌入导体的数量、位置、形状或大小等均可以根据实际需求进行调整。如,滑动介质上还可以同时嵌入至少两个嵌入导体,以通过一次滑动操作实现对至少两个馈电链路的驻波检测等,本申请对此不再一一赘述。
结构三
又一种具体的结构设计中,图17示例性示出本申请实施四例提供的又一种馈电检测单元的结构示意图,其中,图17中的(a)示意出该馈电检测单元在馈电线路处于阻抗失配状态时的俯视图,图17中的(b)示意出该馈电检测单元在馈电线路处于正常工作状态时的俯视图,图17中的(c)示意出该馈电检测单元的侧视图。如图17所示,在该示例中,馈电检测单元还可以包括第二腔体,第一馈电点B 1和第二馈电点B 2可以按照17中的(a)或(b)所示意的方式并列部署在第二腔体的同一侧面的外侧。第四导带线和导体部件可以设置在第二腔体的内侧。其中,第二腔体可以设置为导电结构,导体部件通过电连接或耦合方式连接第二腔体以耦合接地电路。
继续参照图17所示,馈电检测单元还可以包括第三PCB、第四PCB和第二滑道。第二腔体的内侧壁上可以设置有滑槽,第三PCB通过卡合在滑槽内以实现位置上的固定。第四导带线可以设置在第三PCB上的相对于导体部件的面,导体部件可以设置在第四PCB上的相对于第三导带线的面。第二滑道可以设置在第三PCB上的相对于导体部件的面,也可以设置在第二腔体上的相对于第三PCB的面,具体不作限定。
图18示例性示出该种结构设计所对应的第三PCB和第四PCB的结构示意图,其中,图18中的(a)示意出第三PCB的俯视图,图18中的(b)示意出第四PCB的俯视图。如图18中的(a)所示,在该示例中,第四导带线在第三PCB上呈弓形结构,弓形结构的一端(I 1)连接第一馈电点B 1,弓形结构的另一端(I 2)连接第二馈电点B 2,以连通第一馈电点B 1和第二馈电点B 2。第二滑道可以设置第三PCB上的相对于导体部件的一侧。且,考虑到第二传动部件一般都是按照图18中的(a)所示意的左右方向向第四PCB施加驱动力,因此第二滑道的滑动方向可以设置为如图18中的(a)所示意的折线。如此,当第二控制器控制第二传动部件向第四PCB施加如图18中的(a)所示意的左右方向的驱动力时,第四PCB能在第二滑道所给的反作用力作用下实现如图18中的(a)所示意的上下方向的 滑动。如图18中的(b)所示,在该示例中,导体部件可以为第五导带线,第五导带线平铺于第四PCB的内部,如可以为环绕在第四PCB内部的长方形。
继续参照图17和图18所示,在需要检测第一馈电点B 1和第二馈电点B 2之间的馈线连接情况时:
第二控制器可以先控制第二传动部件向第四PCB施加图17中的(a)所示意的向左的力,以使第四PCB在第二滑道的反作用力下带动第五导带线沿着第二滑道向远离第四导带线的方向(即图17中的(a)所示意的左下方)滑动,直至第四PCB中的第五导带线不接触第四导带线时,停止第四PCB的滑动,如图17中的(b)所示。在这种情况下,由于第五导带线不接触第四导带线,因此第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗未发生变化,第一馈电点B 1和第二馈电点B 2之间的馈线处于正常工作状态。第二控制器按照上述驻波检测方式确定出第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比,第一驻波比对应为正常工作状态下的驻波比。
之后,第二控制器可以再控制第二传动部件向第四PCB施加图17中的(b)所示意的向右的力,以使第四PCB在第二滑道的反作用力下带动第五导带线沿着第二滑道向靠近第四导带线的方向(即图17中的(b)所示意的右上方)滑动,直至第四PCB中的第五导带线与第四导带线重合时,停止第四PCB的滑动,如图17中的(a)所示。在这种情况下,由于第五导带线接触到第四导带线,因此第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗发生变化,第一馈电点B 1和第二馈电点B 2之间的馈线切换到阻抗失配状态。第二控制器按照上述驻波检测方式确定出第一馈电点B 1和第二馈电点B 2之间的馈线的第二驻波比,第二驻波比对应为失配状态下的驻波比。如果第一馈电点B 1和第二馈电点B 2之间的馈线连接未出现问题,则第一驻波比与第二驻波比理论上应该相差较大。因此,如果第一驻波比与第二驻波比的差值不大于预设的差值阈值,则说明B 1和第二馈电点B 2之间的馈线连接异常,第二控制器可以针对于B 1和第二馈电点B 2之间的馈线进行驻波告警。
需要说明的是,上述内容仅是以第四导带线设置在第三PCB的一侧为例进行介绍,如图18中的(c)所示意的上侧。在其它可选地实施方式中,第四导带线也可以设置在第三PCB上的如图18中的(c)所示意的下侧。或同时设置在第三PCB上的如图18中的(c)所示意的上侧和下侧。在这种情况下,第四PCB也可以由设置在第三PCB两侧的两部分构成,其中每部分在相对于第三PCB的一面都可以设置第五导带线。且,图18中的(c)所示意的第四PCB和第五导带线只是为了便于介绍方案而给出的一种示例性介绍,第四PCB或第五导带线的数量、位置、形状或大小等均可以根据实际需求进行调整。如,第四PCB上还可以同时设置至少两个第五导带线(或设置一个尺寸较大的第五导带线),或者还可以设置至少两个如图18所示的第四PCB,以通过一次滑动操作实现对至少两个馈电链路的驻波检测等,本申请对此不再一一赘述。
结构四
又一种具体的结构设计中,图19示例性示出本申请实施例四提供的又一种馈电检测单元的结构示意图,其中,图19中的(a)示意出该馈电检测单元在馈电线路处于阻抗失配状态时的侧视图,图19中的(b)示意出该馈电检测单元在馈电线路处于正常工作状态时的侧视图,图19中的(c)示意出该馈电检测单元的俯视图。如图19所示,在该示例中,馈电检测单元还可以包括第二腔体,第一馈电点B 1和第二馈电点B 2可以按照19中的(c)所示意的方式并列部署在第二腔体的同一侧面的外侧。第四导带线和导体部件可以设置在 第二腔体的内侧。其中,第二腔体还可以设置为导电结构,导体部件通过电连接或耦合方式连接第二腔体以耦合接地电路。
图20示例性示出该种结构设计所对应的第四导带线和导体部件的结构示意图,其中,图20中的(a)示意出第四导带线的俯视图,图20中的(b)示意出导体部件的侧视图,图20中的(c)示意出导体部件的俯视图。如图20中的(a)所示,在该示例中,第四导带线可以设置为弓形结构,弓形结构的一端(I 1)连接第一馈电点B 1,弓形结构的另一端(I 2)连接第二馈电点B 2,以连通第一馈电点B 1和第二馈电点B 2。如图20中的(b)和图20中的(c)所示,导体部件可以是指导体弹片,导体弹片的第一端(M 1)固定连接第二腔体以实现与第二腔体的耦合,导体弹片的第二端(M 2)具有弹性。在导体弹片未受力的情况下,导体弹片的第二端M 2不发生形变,导体弹片的第二端M 2与第四导带线之间存在一定间隔,即不接触第四导带线。
继续参照图19和图20所示,在需要检测第一馈电点B 1和第二馈电点B 2之间的馈线连接情况时:
第二控制器可以先不给导体弹片施加力,此时,导体弹片的第二端M 2不发生形变,因此导体弹片的第二端M 2不接触第四导带线,如图19中的(b)所示。在这种情况下,由于导体弹片不接触第四导带线,因此第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗未发生变化,第一馈电点B 1和第二馈电点B 2之间的馈线处于正常工作状态。第二控制器按照上述驻波检测方式确定出第一馈电点B 1和第二馈电点B 2之间的馈线的第一驻波比,第一驻波比对应为正常工作状态下的驻波比。
之后,第二控制器可以再控制第二传动部件给导体弹片的第二端M 2施加图19中的(b)所示意的向右的力,使导体弹片的第二端M 2发生形变,此时,导体弹片的第二端M 2可以向第四导带线靠近直至接触到第四导带线,如图19中的(a)所示。在这种情况下,由于导体弹片接触到第四导带线,因此第一馈电点B 1和第二馈电点B 2之间的馈线上的阻抗发生变化,第一馈电点B 1和第二馈电点B 2之间的馈线切换到阻抗失配状态。第二控制器按照上述驻波检测方式确定出第一馈电点B 1和第二馈电点B 2之间的馈线的第二驻波比,第二驻波比对应为失配状态下的驻波比。如果第一馈电点B 1和第二馈电点B 2之间的馈线连接未出现问题,则第一驻波比与第二驻波比理论上应该相差较大。因此,如果第一驻波比与第二驻波比的差值不大于预设的差值阈值,则说明B 1和第二馈电点B 2之间的馈线连接异常,第二控制器可以针对于B 1和第二馈电点B 2之间的馈线进行驻波告警。
需要说明的是,上述内容仅是以将导体弹片设置在第四导带线的一侧为例进行介绍,如图19中的(a)或(b)所示意的上侧。在其它可选地实施方式中,导体弹片也可以设置在第四导带线的两侧,如图19中的(a)或(b)所示意的上侧和下侧,或者,也可以只设置在第四导带线的如图19中的(a)或(b)所示意的下侧,具体不作限定。且,图19所示意的导体弹片只是为了便于介绍方案而给出的一种示例性介绍,导体弹片的数量、位置、形状或大小等均可以根据实际需求进行调整。如,当存在多条馈电链路时,馈电检测单元也可以包括多个导体弹片,通过利用多个导体弹片的形变能力控制多个导体弹片接触或不接触所对应的第四导带线以实现对多条馈电链路的检测。或者,馈电检测单元也可以包括能覆盖至少两个第四导带线的导体弹片,通过该尺寸较大的导体弹片的形变能力也能实现对多条馈电链路进行检测,本申请对此不再一一赘述。
需要说明的是,本申请的上述实施例所介绍的馈电检测单元可以与馈电网络中的某个 馈电部件集成在同一个物理单元上,也可以与馈电网络中的各个馈电部件分别设置在不同的物理单元上,本申请对此不作具体限定。
应理解,本申请上述实施例中的各个部件均是指功能器件,本申请并不限定这些功能部件的具体实现方式。例如,在上述实施例中,当馈电检测单元不包括腔体时,馈电检测单元中的各条导带线可以通过微带线形式来实现,当馈电检测单元包括腔体时,馈电检测单元中的各条导带线可以通过悬置带线或钣金带线等形式来实现,或者,馈电检测单元中的各条导带线还可以通过其它具有导电功能的器件来实现,具体不作限定。
上述实施例二是通过机械传动控制馈电链路断路的方式将馈电链路切换到异常工作状态,上述实施例三是通过电信号传导控制馈电链路断路的方式将馈电链路切换到异常工作状态,上述实施例四是通过机械传动控制馈电链路阻抗失配的方式将馈电链路切换到异常工作状态。需要说明的是,上述实施例二至实施例四只是示例性给出几种能够实现断路或阻抗失配的馈电检测单元的具体结构,本申请并不限定馈电检测单元只能具有该种结构,只要能控制馈电链路断路或阻抗失配的馈电检测单元都在本申请的保护范围内。且,在其它可选地实施例中,除了可以通过断路和阻抗失配方式控制馈电链路切换到异常工作状态,馈电检测单元还可以通过短路方式控制馈电链路切换到异常工作状态,如馈电检测单元还可以包括一根反射能力非常强的导线和设置在该导线上的开关组件,该导线的一端连接第一馈电点,该导线的另一端连接第二馈电点,在需要切换到异常工作状态时,馈电检测单元可以导通该开关组件,以通过短路第一馈电点和第二馈电点之间的馈线的方式,将该馈线中的全部或大部分信号反射到其它位置,以通过改变馈线阻抗的方式将馈线切换到异常工作状态。可选地实现方式有很多,本申请对此不再一一重复赘述。
应理解,本申请的上述各实施例中的相关设计还可以相互结合以形成新的实施例。
基于相同的发明构思,本申请实施例还提供一种基站天线,包括天线端口、天线阵列以及本申请实施例所提供的馈电网络,馈电网络的第一端连接天线端口,馈电网络的第二端连接天线阵列。馈电网络用于在正常工作状态下,对来自天线端口的发送信号进行馈电处理后发送至天线阵列,或对来自天线阵列的接收信号进行馈电处理后发送至天线端口。天线阵列用于辐射馈电处理后的发送信号,或接收到接收信号后发送给馈电网络。
基于相同的发明构思,本申请实施例还提供一种基站设备,包括本申请实施例提供的基站天线,以及包括一个或多个收发信机,其中,一个或多个收发信机可以分别与基站天线中的多个天线端口一一连接。
示例性的,基站设备中的收发信机可以为远端射频单元。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数 据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
尽管已描述了本申请中一些可能的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括本申请实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种馈电网络,其特征在于,包括第一馈电点、第二馈电点和馈电检测单元,所述第一馈电点和所述第二馈电点位于同一馈电链路,所述第一馈电点连接所述馈电检测单元的第一端,所述第二馈电点连接所述馈电检测单元的第二端;
    所述馈电检测单元,用于:
    在所述馈电链路处于预设工作状态时,获取所述第一馈电点处的第一电信号和所述第二馈电点处的第二电信号,根据所述第一电信号和所述第二电信号确定所述馈电链路的驻波比,当所述驻波比与所述预设工作状态对应的驻波比不匹配时,确定所述馈电链路连接异常;
    其中,所述预设工作状态为正常工作状态或异常工作状态,所述正常工作状态对应的驻波比小于预设的驻波比阈值,所述异常工作状态对应的驻波比不小于所述预设的驻波比阈值。
  2. 如权利要求1所述的馈电网络,其特征在于,所述馈电检测单元的第一端对应为所述第一馈电点,所述馈电检测单元的第二端对应为所述第二馈电点;
    所述馈电检测单元,还用于:
    在获取所述第一馈电点处的第一电信号和所述第二馈电点处的第二电信号之前,控制所述馈电链路处于预设工作状态;
    在根据所述第一电信号和所述第二电信号确定所述馈电链路的驻波比之后,若所述驻波比与所述预设工作状态对应的驻波比匹配,则确定所述馈电链路连接正常;
    在确定所述馈电链路连接正常的情况下,控制所述馈电链路处于正常工作状态。
  3. 如权利要求1或2所述的馈电网络,其特征在于,所述异常工作状态包括断路状态、失配状态或短路状态。
  4. 如权利要求2或3所述的馈电网络,其特征在于,所述馈电检测单元包括第一控制器、第一传动部件、第一导带线、第二导带线和第三导带线;所述第一导带线连接所述第一馈电点,所述第二导带线连接所述第二馈电点,所述第一导带线和所述第二导带线不接触;所述第一传动部件分别连接所述第一控制器和所述第三导带线;
    所述第一控制器,用于:
    在需要控制所述馈电链路处于正常工作状态时,控制所述第一传动部件带动所述第三导带线移动至第一位置,当所述第三导带线位于所述第一位置时,所述第三导带线分别接触所述第一导带线和所述第二导带线;或者,
    在需要控制所述馈电链路处于异常工作状态时,控制所述第一传动部件带动所述第三导带线移动至第二位置,当所述第三导带线位于所述第二位置时,所述第三导带线不接触所述第一导带线和/或不接触所述第二导带线。
  5. 如权利要求4所述的馈电网络,其特征在于,所述馈电检测单元还包括第一腔体,所述第一馈电点和所述第二馈电点对称部署在所述第一腔体相对设置的两个侧面外侧,所述第一导带线、所述第二导带线和所述第三导带线位于所述第一腔体内。
  6. 如权利要求5所述的馈电网络,其特征在于,所述馈电检测单元还包括相对设置的第一印刷电路板PCB和第二PCB、以及第一滑道,所述第一PCB卡合在所述第一腔体内,所述第一滑道位于所述第一腔体上的相对于所述第一PCB的面,或位于所述第一PCB上 的相对于所述第二PCB的面,所述第二PCB沿所述第一滑道滑动;所述第一导带线和所述第二导带线位于所述第一PCB上的与所述第二PCB相对的面,所述第三导带线位于所述第二PCB上的与所述第一PCB相对的面;
    所述第一控制器,具体用于:
    控制所述第一传动部件带动所述第二PCB沿所述第一滑道滑动,以带动所述第二PCB上的第三导带线滑动至所述第一位置或所述第二位置。
  7. 如权利要求6所述的馈电网络,其特征在于,所述馈电网络包括分别位于K条馈电链路的K个第一馈电点和K个第二馈电点,所述馈电检测单元包括位于所述第一PCB上的K个第一导带线和K个第二导带线、以及位于所述第二PCB上的M个第三导带线,所述K个第一导带线分别连接所述K个第一馈电点,所述K个第二导带线分别连接所述K个第二馈电点;K、M为大于或等于2的正整数;
    所述第一控制器,还用于:
    控制所述第一传动部件带动所述第二PCB沿所述第一滑道滑动,以满足所述M个第三导带线中的L个第三导带线分别与所述K个第一导带线中的L个第一导带线和所述K个第二导带线中的L个第二导带线接触,计算得到接触的L个第一导带线和L个第二导带线所对应的L条馈电链路的第一驻波比;L为小于或等于M的正整数;
    控制所述第一传动部件带动所述第二PCB沿所述第一滑道滑动,以满足所述L个第三导带线不与所述L个第一导带线或所述L个第二导带线接触,计算得到所述L个馈电链路的第二驻波比;
    当所述第一驻波比和所述第二驻波比的差值不大于预设的差值阈值时,确定所述L条馈电链路连接异常。
  8. 如权利要求2或3所述的馈电网络,其特征在于,所述馈电检测单元包括第二控制器、第二传动部件、第四导带线和导体部件;所述第四导带线连通所述第一馈电点和所述第二馈电点,所述导体部件耦合接地电路;所述第二传动部件分别连接所述第二控制器和所述导体部件;
    所述第二控制器,用于:
    在需要控制所述馈电链路处于正常工作状态时,控制所述第二传动部件带动所述导体部件移动至第三位置,当所述导体部件位于所述第三位置时,所述导体部件不接触所述第四导带线;或者,
    在需要控制所述馈电链路处于异常工作状态时,控制所述第二传动部件带动所述导体部件移动至第四位置,当所述导体部件位于所述第四位置时,所述导体部件接触所述第四导带线。
  9. 如权利要求8所述的馈电网络,其特征在于,所述馈电检测单元还包括第二腔体,所述导体部件通过耦合所述第二腔体以耦合所述接地电路。
  10. 如权利要求8或9所述的馈电网络,其特征在于,所述馈电检测单元还包括第三PCB,所述第三PCB卡合在所述第二腔体内,所述第四导带线位于所述第三PCB上的与所述导体部件相对的面。
  11. 如权利要求9或10所述的馈电网络,其特征在于,所述导体部件为导体弹片,所述导体弹片的第一端耦合所述第二腔体,所述导体弹片的第二端悬置在所述第四导带线的相对于所述导体弹片的一侧;
    在所述第二传动部件带动所述导体部件向所述第四位置移动时,所述导体弹片的第二端发生形变以接触所述第四导带线。
  12. 如权利要求9或10所述的馈电网络,其特征在于,所述馈电检测单元还包括第二滑道,所述第二滑道位于所述第二腔体上的与所述第三PCB相对的面,或位于所述第三PCB上的与所述导体部件相对的面;
    所述导体部件为滑动导体,所述滑动导体沿所述第二滑道滑动至所述第三位置或所述第四位置;或者,
    所述馈电检测单元还包括滑动介质,所述导体部件的一端嵌入在所述滑动介质中,所述滑动介质沿所述第二滑道滑动以带动所述滑动介质中嵌入的所述导体部件移动至所述第三位置或所述第四位置;或者,
    所述馈电检测单元还包括第四PCB,所述导体部件为第五导带线,所述第五导带线平铺于第四PCB的内部,所述第四PCB沿所述第二滑道滑动以带动所述第四PCB中平铺的所述第五导带线移动至所述第三位置或所述第四位置。
  13. 如权利要求8所述的馈电网络,其特征在于,所述馈电网络包括分别位于P条馈电链路的P个第一馈电点和P个第二馈电点,所述馈电检测单元包括P个第四导带线和P个导体部件,所述P个第四导带线分别导通所述P个第一馈电点和所述P个第二馈电点;P为大于或等于2的正整数;
    所述第二控制器,还用于:
    控制所述第二传动部件分别带动所述P个导体部件中的Q个导体部件移动,以满足所述Q个导体部件不接触所述P个第四导带线中的Q个第四导带线,计算得到所述Q个导带线所对应的Q条馈电链路的第三驻波比;Q为小于或等于P的正整数;
    控制所述第二传动部件分别带动所述Q个导体部件移动,以满足所述Q个导体部件接触所述Q个第四导带线,计算得到所述Q条馈电链路的第四驻波比;
    当所述第三驻波比和所述第四驻波比的差值不大于所述预设的差值阈值时,确定所述Q条馈电链路连接异常。
  14. 如权利要求2或3所述的馈电网络,其特征在于,所述馈电检测单元包括第三控制器和开关单元,所述开关单元的第一电极连接所述第一馈电点,所述开关单元的第二电极连接所述第二馈电点,所述开关单元的控制电极连接所述第三控制器;
    所述第三控制器,用于:
    在需要控制所述馈电链路处于正常工作状态时,导通所述开关单元的所述第一电极和所述第二电极;或者,
    在需要控制所述馈电链路处于异常工作状态时,断开所述开关单元的所述第一电极和所述第二电极。
  15. 一种基站天线,其特征在于,包括天线端口、天线阵列、以及如权利要求1至14任一所述的馈电网络;所述馈电网络的第一端连接所述天线端口,所述馈电网络的第二端连接所述天线阵列;
    所述馈电网络,用于在正常工作状态下对来自所述天线端口的发送信号进行馈电处理后发送给所述天线阵列,或,在正常工作状态下对来自所述天线阵列的接收信号进行馈电处理后发送给所述天线端口;
    所述天线阵列,用于辐射馈电处理后的所述发送信号,或接收到所述接收信号后发送 给所述馈电网络。
  16. 一种基站设备,其特征在于,包括一个或多个收发信机以及如权利要求15所述的基站天线;
    所述一个或多个收发信机与所述基站天线连接。
  17. 如权利要求16所述的基站设备,其特征在于,所述收发信机为远端射频单元。
PCT/CN2021/132766 2020-12-25 2021-11-24 一种馈电网络、基站天线及基站设备 WO2022135002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011560877.8 2020-12-25
CN202011560877.8A CN114696086A (zh) 2020-12-25 2020-12-25 一种馈电网络、基站天线及基站设备

Publications (1)

Publication Number Publication Date
WO2022135002A1 true WO2022135002A1 (zh) 2022-06-30

Family

ID=82130270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132766 WO2022135002A1 (zh) 2020-12-25 2021-11-24 一种馈电网络、基站天线及基站设备

Country Status (2)

Country Link
CN (1) CN114696086A (zh)
WO (1) WO2022135002A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118381572A (zh) * 2024-06-24 2024-07-23 国营洛阳丹城无线电厂 一种产品无线电检测位置调节装置
WO2024175203A1 (en) * 2023-02-24 2024-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Method for checking a cable mating of a multi-band antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159278A (zh) * 1994-07-26 1997-09-10 艾利森电话股份有限公司 天线和馈电电缆测试器
JPH1194890A (ja) * 1997-09-19 1999-04-09 Nec Corp アンテナ系の監視装置
US6380748B1 (en) * 1999-11-10 2002-04-30 Hyundai Electronics Industries Co., Ltd. Apparatus and method for diagnosing antennas using switches
WO2016032114A1 (ko) * 2014-08-29 2016-03-03 주식회사 케이엠더블유 기지국 안테나의 정재파비 제어 방법
WO2017035731A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 移相器、天线和基站
CN107994959A (zh) * 2016-10-26 2018-05-04 普天信息技术有限公司 远端射频单元rru驻波比的检测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159278A (zh) * 1994-07-26 1997-09-10 艾利森电话股份有限公司 天线和馈电电缆测试器
JPH1194890A (ja) * 1997-09-19 1999-04-09 Nec Corp アンテナ系の監視装置
US6380748B1 (en) * 1999-11-10 2002-04-30 Hyundai Electronics Industries Co., Ltd. Apparatus and method for diagnosing antennas using switches
WO2016032114A1 (ko) * 2014-08-29 2016-03-03 주식회사 케이엠더블유 기지국 안테나의 정재파비 제어 방법
WO2017035731A1 (zh) * 2015-08-31 2017-03-09 华为技术有限公司 移相器、天线和基站
CN107994959A (zh) * 2016-10-26 2018-05-04 普天信息技术有限公司 远端射频单元rru驻波比的检测方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024175203A1 (en) * 2023-02-24 2024-08-29 Telefonaktiebolaget Lm Ericsson (Publ) Method for checking a cable mating of a multi-band antenna
CN118381572A (zh) * 2024-06-24 2024-07-23 国营洛阳丹城无线电厂 一种产品无线电检测位置调节装置

Also Published As

Publication number Publication date
CN114696086A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
KR101706882B1 (ko) 무선 단말기의 성능을 테스팅하기 위한 방법 및 디바이스
EP2926470B1 (en) Reconfigurable single and multi-sector cell site system
WO2022135002A1 (zh) 一种馈电网络、基站天线及基站设备
EP3560118B1 (en) Antenna calibration for multiple input multiple output
WO2016172820A1 (zh) 一种天线测试装置、系统、方法以及相关设备
WO2015106602A1 (zh) 一种支持多制式的多天线阵列
US10560856B2 (en) Phase shifter, antenna, and base station
JP5312601B2 (ja) 移動通信システムにおける基地局アンテナ
KR102116278B1 (ko) 분리도 제공 장치를 구비한 이중편파 안테나
US20230138221A1 (en) Antenna arrangements for a radio transceiver device
US9763108B2 (en) Remote electrical tilt antenna, base station, and method for matching RCU with RF port
KR20200005934A (ko) 외부 전자 장치의 상태를 확인하기 위한 장치 및 방법
KR20200144010A (ko) 다중 안테나를 갖는 단말을 위한 무선 연결 장치
CN216928916U (zh) 天线模组及移动终端
WO2023071839A1 (zh) 馈电电路,天线设备,通信设备及通信系统
US9397394B2 (en) Antenna arrays with modified Yagi antenna units
US20230155299A1 (en) Antenna array grouping
CN222107031U (zh) 双极化相控阵天线系统
US20230344529A1 (en) Antenna calibration method and system
US20240313430A1 (en) Antenna system and base station antenna feeder system
CN118784019A (zh) 码本生成方法、系统、天线装置及电子设备
US20190393943A1 (en) Signal transmission diversity
CN118263679A (zh) 天线及基站
CN118707198A (zh) 天线检测装置及天线检测系统
KR20180120133A (ko) 분리도 제공 장치를 구비한 이중편파 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909001

Country of ref document: EP

Kind code of ref document: A1