WO2022131050A1 - 自動操舵システム - Google Patents
自動操舵システム Download PDFInfo
- Publication number
- WO2022131050A1 WO2022131050A1 PCT/JP2021/044710 JP2021044710W WO2022131050A1 WO 2022131050 A1 WO2022131050 A1 WO 2022131050A1 JP 2021044710 W JP2021044710 W JP 2021044710W WO 2022131050 A1 WO2022131050 A1 WO 2022131050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angular velocity
- moving body
- turning
- steering
- target
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 238000013500 data storage Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
Definitions
- the present invention relates to an automatic steering system that controls steering so as to travel according to a target route prepared in advance without depending on an orientation sensor such as an inertial measurement unit when automatically driving a moving body.
- a technique for automatically controlling the steering wheels using an azimuth sensor is known.
- this autopilot technique for example, as shown in FIG. 7, when the vehicle 1'is driven while being steered according to a target path R prepared in advance, the steering angle of the steering wheels is determined by the following steps. Was. (1) Step to prepare the target route R in advance, (2) The current direction and target route of the vehicle 1'using the inertial measurement unit IMU (Inertial satellite unit) that detects the three-dimensional angular velocity and acceleration as the orientation sensor.
- IMU Inertial satellite unit
- Step to calculate the difference ( ⁇ ) between directions (3) Calculate the distance difference (d) between the current position of the vehicle 1'and the target route R using the global positioning system GNSS (Global Navigation Satellite System).
- GNSS Global Navigation Satellite System
- the method of determining the vehicle direction in the above-mentioned conventional automatic control technique is expensive because the measurement is performed by using the inertial measurement unit IMU which is an azimuth sensor and using the sensor fusion (the inertial measurement unit IMU is hundreds of thousands). There was a problem that the manufacturing cost was high because it was (yen to several million yen).
- the accuracy of the measured azimuth is low (about ⁇ 1 degree at the highest), and since it is measured by sensor fusion, it outputs accurately if the wheels do not move (that is, if the vehicle does not start moving). There were problems such as not being able to output and it took time to output at the correct angle.
- the method of determining the vehicle direction in the conventional automatic control technique requires mounting a wheel angle sensor in order to correctly control the angle of the steering wheel, and it is not possible to make the mounting of this angle sensor on the vehicle error-free. It was difficult and there was always a gap. Therefore, there is a problem that the control accuracy of the steering wheel is not improved even though the high cost angle sensor is used.
- control method in the conventional automatic control technique is generally control in which the steering angle target value is given to the steering motor as a command signal.
- the motor driver that drives the actual steering motor can basically control the angular velocity with high accuracy and without delay, but the tracking to the target angle is usually a time delay that cannot be ignored. There was a problem that it occurred.
- an object of the present invention is to provide an automatic steering system capable of low-cost and high-precision steering control without depending on an orientation sensor such as an inertial measurement unit.
- an automatic steering system that controls steering so as to travel according to a target route prepared in advance.
- This automatic steering system is based on an angular velocity measuring means for detecting the turning angular velocity of the moving body, a distance calculating means for calculating the distance between the current position of the moving body and the target path, and a distance calculated by the distance calculating means.
- the steering handle of the moving body is based on the difference between the target angular velocity calculating means for calculating the target angular velocity required for turning the moving body, the target angular velocity calculated by the target angular velocity calculating means, and the turning angular velocity of the moving body measured by the angular velocity measuring means. It includes a turning speed calculating means for calculating the angular velocity to be turned, and a steering control means for transmitting the angular velocity to be turned by the steering handle calculated by the turning speed calculating means to the steering actuator to perform steering control.
- the angular velocity measuring means detects the actual turning angular velocity of the moving body, and the steering handle of the moving body turns from the difference between the target angular velocity required for the moving body to turn and the actual turning angular velocity of the moving body measured by the angular velocity measuring means.
- the calculated angular velocity is low cost and highly accurate without depending on the orientation sensor such as an inertial measurement unit. Steering control is possible.
- the distance between, g is preferably the control function related to the control gain).
- the moving object is a vehicle
- the angular velocity measuring means is one of image processing by a gyroscope, an acceleration sensor or a camera, or a combination of two or more image processing by a gyroscope, an acceleration sensor and a camera, and is a gyroscope.
- the gyroscope is provided on the main body of the vehicle.
- the actual turning angular velocity of the moving body is detected by the angular velocity measuring means (for example, a gyroscope), the target angular velocity required for the moving body to turn, and the actual turning angular velocity of the moving body measured by the angular velocity measuring means.
- the angular velocity at which the steering handle of the moving body should turn is calculated from the difference between the two, and the calculated angular velocity at which the steering handle should turn is transmitted to the steering actuator to perform steering control, thereby relying on an orientation sensor such as an inertial measurement unit. Since an inexpensive gyroscope is used, low cost and high precision steering control is possible.
- FIG. 3 is a block diagram schematically showing a configuration example of an automatic steering system in FIG. 1. It is an image diagram which shows the control method of the automatic steering system of this invention. It is a figure which shows the relational model of a steering wheel turning angle and a turning radius. It is a flow chart which shows the processing process of the steering control in the automatic steering system of FIG. 1 schematically. It is a figure which shows the running test result using the steering control method of the automatic steering system of this invention. It is an image diagram which shows the control method of the conventional automatic steering system.
- FIG. 1 schematically shows an autonomous driving vehicle 1 provided with an automatic steering system 100 according to an embodiment of the present invention
- FIG. 2 shows a configuration of the automatic steering system 100 of FIG. 1
- FIG. 3 shows a configuration.
- the steering control method of the automatic steering system 100 is shown as an image.
- the automatic steering system 100 is provided in the main body of the vehicle (mobile body) 1 and is configured to be able to communicate with the satellite positioning system and the reference station.
- the vehicle 1 includes a steering actuator 2, a steering mechanism 3 having a steering handle, front wheels 4 steered by the steering mechanism 3, and rear wheels 5.
- the vehicle 1 is a tractor.
- the steering actuator 2 is connected to the steering mechanism 3 and is configured to be able to operate the steering mechanism 3 in response to an operation signal from the automatic steering system 100.
- the automatic steering system 100 includes a gyroscope 10, a receiving unit 20, an input unit 30, an output means 40, a data bus 50, a storage unit 60, and a control unit 70. I have.
- the gyroscope 10 is provided as an angular velocity measuring means at substantially the center of the vehicle 1 (center of gravity position G), and is used to detect the direction (traveling direction) and the angular velocity of the vehicle 1.
- the gyroscope 10 is configured to detect the direction of the vehicle 1 and the actual turning angular velocity.
- the gyroscope 10 detects the direction of the vehicle 1 by accumulating the direction changes from the initial direction.
- the receiving unit 20 is configured to communicate with a satellite positioning system (for example, a GPS satellite or the like) and a reference station and receive a positioning signal.
- the positioning data acquired by the receiving unit 20 is stored in the storage unit 60.
- the input unit 30 is composed of a keyboard, a touch panel, or the like, and is for inputting registration information such as a target route, a transmission / reception address, a processing operation start command, and other necessary information.
- the input unit 30 may be connected and installed only when necessary.
- the output means 40 constitutes the transmission unit of the present embodiment, and is configured to transmit an output signal such as steering control processed by the control unit 70 to the steering actuator 2 via a wired or wireless communication network. ing.
- the data bus 50 is connected between the gyroscope 10, the receiving unit 20, the input unit 30, the output means 40, the storage unit 60, and the control unit 70, and is provided to enable data transfer between them according to a control program. ing.
- the storage unit 60 is mainly composed of, for example, a storage medium such as a hard disk drive (HDD) or a solid state drive (SSD), a volatile memory such as RAM, and a non-volatile memory such as ROM or Flash memory.
- the storage unit 60 is provided with a control program storage unit 60a, a positioning data storage unit 60b, a direction data storage unit 60c, and a target route storage unit 60d.
- the control program storage unit 60a stores a program for controlling the operation of the automatic steering system 100.
- the positioning data storage unit 60b stores the data of the current position of the vehicle 1 received from the satellite positioning system.
- the direction data storage unit 60c stores the direction and angular velocity of the vehicle 1 detected by the gyroscope 10.
- the target route storage unit 60d stores data of the target route prepared in advance.
- the control unit 70 is mainly composed of a microcomputer, includes a CPU (Central Processing Unit), controls the entire operation of the automatic steering system 100 according to a control program, and uses this control program to control the current position acquisition means 70a and the current position acquisition means 70a.
- the distance calculation means 70b, the target angular velocity calculation means 70c, the turning speed calculation means 70d, and the steering control means 70e are configured to be constructed.
- the current position acquisition means 70a is configured to receive data on the current position of the vehicle 1 from the satellite positioning system.
- the distance calculating means 70b is configured to calculate the distance d between the current position acquired by the current position acquiring means 70a and the target path R prepared in advance.
- the target angular velocity calculating means 70c is configured to calculate the target angular velocity ⁇ required for the vehicle 1 to turn based on the distance d calculated by the distance calculating means 70b.
- the turning speed calculating means 70d is an angular velocity ⁇ that the steering handle of the vehicle 1 should turn from the difference between the target angular velocity ⁇ calculated by the target angular velocity calculating means 70c and the actual turning angular velocity ⁇ of the vehicle 1 measured by the gyroscope 10. Is configured to calculate.
- the steering control means 70e is configured to transmit the angular velocity ⁇ to be turned by the steering handle calculated by the turning speed calculating means 70d to the steering actuator 2 to perform steering control.
- PID control In the present invention, an example using PID control is shown, but it is not limited to PID control, and it is desirable to use a control system with higher robustness (for example, a sliding mode control system).
- FIG. 4 shows the relationship between the steering wheel turning angle and the turning radius.
- the dot (.) Attached above the symbol represents the first-order time derivative d / dt.
- L is the distance (constant) between the front wheels and the rear wheels. Therefore, once the required turning radius ⁇ is determined, the steering wheel turning angle ⁇ can be calculated. If the forward speed v is 0, the vehicle itself does not move, so that the vehicle 1 Is also 0. In order to turn the vehicle 1, it is necessary that both the forward speed v and the steering wheel turning angle ⁇ are not 0. As shown in FIG. 4, the vehicle 1 And the forward speed v and the turning radius ⁇ are related to the equation (2).
- the formula (3) can be rearranged into the formula (4).
- equation (4) Substituting equation (4) into equation (1) yields equation (5). From equation (5), vehicle 1 If is determined, it can be seen that the turning radius ⁇ is uniquely determined. Therefore, when performing automatic steering control, the vehicle 1 If is controlled, the turning radius ⁇ of the vehicle 1 can be controlled.
- the target angular velocity ⁇ can be calculated by the equation (6). That is, the goal of automatic steering is to bring d closer to zero. When d is large, a high turning angular velocity is required, and when d is small, a slow turning angular velocity is required.
- d is the distance between the current position and the target path
- k p1 , ki 1 , and k d 1 are control gains (feedback gains), which are constants adjusted in the experiment.
- the angular velocity ⁇ to be turned by the steering wheel can be calculated by using the equation (7).
- ⁇ is the result calculated by the equation (6)
- ⁇ is the actual turning angular velocity of the vehicle 1 measured by the gyroscope 10.
- k p2 , ki2 , and k d2 are control gains (feedback gains), which are constants adjusted in the experiment. It is desirable to use a control system with higher robustness instead of this equation (7).
- the automatic steering system 100 needs to set a target route in advance. Steering control is performed so as to travel along this target route.
- the gyroscope 10 detects the actual turning angular velocity ⁇ of the vehicle 1 (step S1).
- the data of the current position of the vehicle 1 is received using the satellite positioning system (step S2).
- the distance d between the current position of the vehicle 1 and the target route is calculated (step S3).
- the angular velocity ⁇ to be turned by the steering handle of the vehicle 1 is calculated from the difference ( ⁇ - ⁇ ) between the target angular velocity ⁇ calculated in step S4 and the actual turning angular velocity ⁇ of the vehicle 1 measured by the gyroscope 10 ( ⁇ - ⁇ ).
- h is a control function.
- the angular velocity ⁇ of the steering wheel to be turned calculated in step S5 is transmitted to the steering actuator 2, and steering control of the vehicle 1 is performed (step S6).
- FIG. 6 shows the results of a running experiment of the vehicle 1 using the automatic steering system 100 of the present invention.
- the traveling speed of the vehicle 1 using the automatic steering system 100 is 1 m / s
- the lateral deviation immediately converges within 0.02 m from ⁇ 0.04 m at the start. After that, it was confirmed that the vehicle could run stably within 0.02 m in the lateral deviation.
- the automatic steering system 100 is provided in the main body of the vehicle 1 and is configured to be able to communicate with the satellite positioning system and the reference station.
- the automatic steering system 100 includes a gyroscope 10, a receiving unit 20, an input unit 30, an output means 40, a data bus 50, a storage unit 60, and a control unit 70.
- the vehicle 1 includes a steering actuator 2, a steering mechanism 3 having a steering handle, front wheels 4 steered by the steering mechanism 3, and rear wheels 5.
- the actual turning angular velocity ⁇ of the vehicle 1 is detected by the gyroscope 10 provided in the vehicle 1, and the difference between the target angular velocity ⁇ required for the vehicle 1 to turn and the actual turning angular velocity ⁇ of the vehicle 1 measured by the gyroscope 10.
- the angular velocity ⁇ of the steering handle of the vehicle 1 to be turned is calculated from, and the calculated angular velocity of the steering handle to be turned is transmitted to the steering actuator 2 to perform steering control. Therefore, an inexpensive gyroscope is used, so that an inertial measurement unit is used. It is possible to perform low-cost and high-precision steering control that does not depend on the orientation sensor such as.
- the automatic steering system 100 of the present invention is not measured by sensor fusion, the angle representing the direction of the vehicle cannot be accurately output unless the vehicle moves as in the conventional case, and it takes time to output the correct angle. You can solve the problem.
- the angular speed at which the steering handle should turn is used as a control signal for the command signal to the motor driver of the steering actuator 2, and the motor driver is considerably accurate by the steering angular speed signal commanded to the motor driver.
- the steering angle speed d ⁇ / dt can be controlled.
- the present invention is not limited to this.
- it can be applied to a transfer robot, a caterpillar type vehicle, and the like.
- the present invention is not limited thereto.
- image processing by an accelerometer or a camera may be used.
- a combination of two or more of image processing by a gyroscope, an acceleration sensor, and a camera may be used.
- the automatic steering system of the present invention can be used for the purpose of detecting the position and posture of a moving body and performing steering control according to a target path prepared in advance, which does not depend on the directional sensor.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
自動操舵システムは、移動体の旋回角速度を検出する角速度計測手段と、移動体の現在位置と目標経路との間の距離を算出する距離算出手段と、距離算出手段が算出した距離に基づいて、移動体の旋回に必要な目標角速度を算出する目標角速度算出手段と、目標角速度算出手段が算出した目標角速度と角速度計測手段で測定した移動体の旋回角速度との差から移動体の操舵ハンドルが旋回すべき角速度を算出する旋回速度算出手段と、旋回速度算出手段が算出した操舵ハンドルが旋回すべき角速度を操舵アクチュエータに送信し操舵制御を行う操舵制御手段とを備えている。
Description
本発明は、移動体の自動運転を行う場合に、慣性計測装置のような方位センサに依存することなく、予め用意された目標経路に従って走行するように操舵制御を行う自動操舵システムに関する。
無軌道車両等の移動体を自動運転させるためには操舵車輪を自動制御することが必要であり、そのための方法として、方位センサを用いて操舵車輪を自動制御する技術が知られている。この自動操縦技術は、例えば、図7に示すように、車両1'を予め用意された目標経路Rに従って操舵制御をしながら走行させる際に、操舵車輪の操舵角度を以下のようなステップで決定していた。(1)目標経路Rを事前に用意するステップ、(2)方位センサとして、3次元の角速度と加速度を検出する慣性計測装置IMU(Inertial measurement unit)を用い、車両1'の現在方向と目標経路方向間の差分(θ)を計算するステップ、(3)全地球測位システムGNSS(Global Navigation Satellite System)を用いて、車両1'の現在位置と目標経路R間の距離差分(d)を計算するステップ、(4)この2つの差分を用いて操舵車輪(前輪)4の角度(α)を計算するステップ、(5)計算した操舵車輪4の角度(α)を操舵アクチュエータに送信し、操舵車輪を操縦するステップを用いて決定していた。
しかしながら、上述した従来の自動制御技術における車両方向の決定方法は、方位センサである慣性計測装置IMUを使用し、センサーフュージョンを用いて測定を行っていたため、高価(慣性計測装置IMUは数十万円~数百万円)となり、製造コストが高いという問題点があった。
また、上述した方位センサを用いる場合、測定した方位の精度は低く(高くても±1度程度)、センサーフュージョンにより測定するので車輪が移動しないと(即ち、車両が動き出さないと)正確に出力されない、正しい角度の出力まで時間を要する等の問題点があった。
さらに、従来の自動制御技術における車両方向の決定方法は、操舵車輪の角度制御を正しく行うために車輪角度センサを取り付けることを要し、この角度センサの車両への取り付けを無誤差とすることは困難であって必ずズレが発生していた。そのため、高いコストの角度センサを利用するにもかかわらず操舵車輪の制御精度が向上しないという問題点があった。
また、従来の自動制御技術における制御方法は、操舵角度目標値を指令信号として、操舵用モータに与えるような制御が一般的である。しかしながら、実際の操舵用モータを駆動するモータドライバは、基本的には、角速度については高精度でかつ遅れなく制御が可能であるが、目標角度への追従については通常無視できない程度の時間的遅れが生じるという問題点があった。
従って、本発明の目的は、慣性計測装置のような方位センサに依存することなく、低コストで、かつ高精度の操舵制御ができる自動操舵システムを提供することにある。
本発明によれば、予め用意された目標経路に従って走行するように操舵制御を行う自動操舵システムが提供される。この自動操舵システムは、移動体の旋回角速度を検出する角速度計測手段と、移動体の現在位置と目標経路との間の距離を算出する距離算出手段と、距離算出手段が算出した距離に基づいて、移動体の旋回に必要な目標角速度を算出する目標角速度算出手段と、目標角速度算出手段が算出した目標角速度と角速度計測手段で測定した移動体の旋回角速度との差から移動体の操舵ハンドルが旋回すべき角速度を算出する旋回速度算出手段と、旋回速度算出手段が算出した操舵ハンドルが旋回すべき角速度を操舵アクチュエータに送信し操舵制御を行う操舵制御手段とを備えている。
角速度計測手段で移動体の実際の旋回角速度を検出し、移動体が旋回に必要な目標角速度と角速度計測手段で測定した移動体の実際の旋回角速度との差から移動体の操舵ハンドルが旋回すべき角速度を算出し、算出した操舵ハンドルが旋回すべき角速度を操舵アクチュエータに送信し操舵制御を行うことにより、慣性計測装置のような方位センサに依存することなく、低コストで、かつ高精度の操舵制御が可能となる。
目標角速度算出手段が、式:γ=g(d)を用いて移動体の旋回に必要な目標角速度を算出するように構成されている(式中、dは移動体の現在位置と目標経路との間の距離、gは制御ゲインに関連する制御関数)ことが好ましい。
旋回速度算出手段が、式:μ=h(γ―ω)を用いて操舵ハンドルが旋回すべき角速度を算出するように構成されている(式中、γは移動体の旋回に必要な目標角速度、ωは角速度計測手段で測定した移動体の旋回角速度、hは制御ゲインに関連する制御関数)ことも好ましい。
移動体が車両であり、角速度計測手段はジャイロスコープ、加速度センサ又はカメラによる画像処理のうちいずれか1つ、又はジャイロスコープ、加速度センサ及びカメラによる画像処理の2つ以上の組み合わせであり、ジャイロスコープを用いる場合は、ジャイロスコープが車両の本体に設けられていることも好ましい。
衛星測位システムからの測位信号を受信する受信手段と、測位信号に基づいて移動体の現在位置を取得する現在位置取得手段とをさらに備えていることも好ましい。
本発明によれば、角速度計測手段(例えば、ジャイロスコープ)で移動体の実際の旋回角速度を検出し、移動体が旋回に必要な目標角速度と角速度計測手段で測定した移動体の実際の旋回角速度との差から移動体の操舵ハンドルが旋回すべき角速度を算出し、算出した操舵ハンドルが旋回すべき角速度を操舵アクチュエータに送信し操舵制御を行うことにより、慣性計測装置のような方位センサに依存することなく安価なジャイロスコープを用いているため、低コストで、かつ高精度の操舵制御が可能となる。
以下、本発明に係る自動操舵システムの実施形態を、図を参照して説明する。
図1は本発明の一実施形態に係る自動操舵システム100を備えた自動運転車両1を概略的に示しており、図2は図1の自動操舵システム100の構成を示しており、図3は自動操舵システム100の操舵制御方法をイメージで示している。
図1に示すように、自動操舵システム100は、車両(移動体)1の本体に設けられ、衛星測位システム及び基準局と通信することができるように構成されている。車両1は、操舵アクチュエータ2と、操舵ハンドルを有する操舵機構3と、操舵機構3によって操舵される前輪4と、後輪5とを備えている。本実施形態では、車両1は、トラクターである。操舵アクチュエータ2は、操舵機構3に接続されており、自動操舵システム100からの操作信号に応じて操舵機構3を操作することができるように構成されている。
また、図2に示すように、自動操舵システム100は、ジャイロスコープ10と、受信部20と、入力部30と、出力手段40と、データバス50と、格納部60と、制御部70とを備えている。
ジャイロスコープ10は、角速度計測手段として、車両1のほぼ中央部(重心位置G)に設けられ、車両1の方位(進行方向)や角速度を検出するために用いられているものである。ここで、ジャイロスコープ10は、車両1の方位及び実際の旋回角速度を検出するように構成されている。ジャイロスコープ10は、初期方位からの方位変化を累積することによって車両1の方位を検出する。
受信部20は、図1に示すように、衛星測位システム(例えば、GPS衛星等)及び基準局と通信し、測位信号を受信するように構成されている。この受信部20により取得した測位データは、格納部60に記憶される。
入力部30は、キーボード又はタッチパネル等からなり、目標経路等の登録情報、送受信アドレス、処理動作開始指令、その他必要な情報等を入力するためのものである。なお、入力部30は、必要なときのみ接続して設置しても良い。
出力手段40は、本実施形態の送信部を構成しており、制御部70において処理された操舵制御等の出力信号を有線又は無線の通信ネットワークを介して操舵アクチュエータ2へ送信するように構成されている。
データバス50は、ジャイロスコープ10、受信部20、入力部30、出力手段40、格納部60、及び制御部70間に接続され、制御プログラムに従ってこれらの間でデータ転送可能にするために設けられている。
格納部60は、例えば、ハードデスクドライブ(HDD)やソリッドステートドライブ(SSD)などの記憶媒体、並びにRAMなどの揮発メモリ及びROMもしくはFlashメモリなどの不揮発メモリから主として構成される。この格納部60には、制御用プログラム格納部60a、測位データ格納部60b、方位データ格納部60c及び目標経路格納部60dが設けられている。制御用プログラム格納部60aには、自動操舵システム100の動作を制御するためのプログラムが格納されている。測位データ格納部60bには、衛星測位システムから受信した車両1の現在位置のデータが格納されている。方位データ格納部60cには、ジャイロスコープ10により検出された車両1の向きや角速度が格納されている。目標経路格納部60dには、予め用意された目標経路のデータが格納されている。
制御部70は、マイクロコンピュータを主体として構成され、CPU(Central Processing Unit)を備え、制御用プログラムに従って自動操舵システム100の全体動作を制御すると共に、この制御プログラムによって、現在位置取得手段70aと、距離算出手段70bと、目標角速度算出手段70cと、旋回速度算出手段70dと、操舵制御手段70eとを構築するように構成されている。現在位置取得手段70aは、衛星測位システムから車両1の現在位置のデータを受信するように構成されている。距離算出手段70bは、現在位置取得手段70aにより取得された現在位置と予め用意された目標経路Rとの間の距離dを算出するように構成されている。目標角速度算出手段70cは、距離算出手段70bによって算出された距離dを基に、車両1が旋回に必要な目標角速度γを算出するように構成されている。旋回速度算出手段70dは、目標角速度算出手段70cによって算出された目標角速度γとジャイロスコープ10で測定された車両1の実際の旋回角速度ωとの差から車両1の操舵ハンドルが旋回すべき角速度μを算出するように構成されている。操舵制御手段70eは、旋回速度算出手段70dによって算出された操舵ハンドルが旋回すべき角速度μを操舵アクチュエータ2に送信し、操舵制御を行うように構成されている。本発明では、PID制御を用いた例を示すが、PID制御には限定されず、よりロバスト性の高い制御系(例えば、スライディングモード制御系等)を用いることが望ましい。
以下、本発明の操舵制御モデルについて、図4を参照して説明する。図4は操舵輪旋回角度と旋回半径との関係を示している。なお、本明細書中において、記号の上に付されたドット(・)は一階の時間微分d/dtを表すものとする。
式中、Lは前輪と後輪間距離(定数)である。したがって、必要な旋回半径ρが決まれば、操舵輪旋回角度δを計算することができる。前進速度vが0であれば、車両自体は移動しないため、車両1の
も0となる。車両1を旋回させるためには、前進速度vと操舵輪旋回角度δとの両方が0でないことが必要である。図4に示すように、車両1の
と前進速度v及び旋回半径ρとは式(2)の関係がある。
式(4)を式(1)に代入すると、式(5)となる。
式(5)から、車両1の
が決まっていれば、旋回半径ρが一意に決まることが分かる。したがって、自動操舵制御する際に、車両1の
を制御すれば、車両1の旋回半径ρを制御できる。
式(5)から、車両1の
が決まっていれば、旋回半径ρが一意に決まることが分かる。したがって、自動操舵制御する際に、車両1の
を制御すれば、車両1の旋回半径ρを制御できる。
目標角速度γは式(6)で算出することができる。即ち、自動操舵の目標は、dを0に近づけることである。dが大きい時に速い旋回角速度が必要であり、dが小さい時に遅い旋回角速度が必要である。
式中、dは現在位置と目標経路との間の距離であり、kp1、ki1、kd1は制御ゲイン(フィードバックゲイン)であり、実験で調整する定数である。
式中、dは現在位置と目標経路との間の距離であり、kp1、ki1、kd1は制御ゲイン(フィードバックゲイン)であり、実験で調整する定数である。
操舵ハンドルの旋回すべき角速度μは、式(7)を用いて算出することができる。
式中、γは式(6)で計算した結果であり、ωはジャイロスコープ10で計測した車両1の実際の旋回角速度である。また、kp2、ki2、kd2は制御ゲイン(フィードバックゲイン)であり、実験で調整する定数である。なお、この式(7)に替えてよりロバスト性の高い制御系を用いることが望ましい。
式中、γは式(6)で計算した結果であり、ωはジャイロスコープ10で計測した車両1の実際の旋回角速度である。また、kp2、ki2、kd2は制御ゲイン(フィードバックゲイン)であり、実験で調整する定数である。なお、この式(7)に替えてよりロバスト性の高い制御系を用いることが望ましい。
上述したように、本発明の自動操舵システム100における操舵は、操舵車輪ではなく、車両自体が旋回に必要な目標角速度γ(γ=g(d)、ここで、gは制御関数である)を算出する。これにより、操舵輪に角度センサを取り付ける必要がなく、コストの削減が可能となる。また、車輪式以外の車両、例えばキャタピラ式の車両にも搭載できる。
次に、図5を参照しながら、本発明の自動操舵システム100の操舵動作を説明する。自動操舵システム100は、予め目標経路を設定することが必要である。この目標経路に沿って走行するように操舵制御を行う。
自動操舵システム100の操舵制御において、まず、ジャイロスコープ10で車両1の実際の旋回角速度ωを検出する(ステップS1)。次いで、衛星測位システムを利用して車両1の現在位置のデータを受信する(ステップS2)。次いで、車両1の現在位置と目標経路との間の距離dを算出する(ステップS3)。ステップS3で算出した距離を基に、車両1が旋回に必要な目標角速度γ(γ=g(d))を算出する(ステップS4)(式(6)参照)。次いで、ステップS4で算出した目標角速度γとジャイロスコープ10で測定した車両1の実際の旋回角速度ωとの差(γ-ω)、から車両1の操舵ハンドルの旋回すべき角速度μを算出する(ステップS5)。操舵ハンドルの旋回すべき角速度はμ=h(γ-ω)で計算する(式(7)参照)。ここで、hは制御関数である。次いで、ステップS5で算出した操舵ハンドルの旋回すべき角速度μを操舵アクチュエータ2に送信し、車両1の操舵制御を行う(ステップS6)。
図6は、本発明の自動操舵システム100を用いた車両1の走行実験の結果を示している。図6に示すように、自動操舵システム100を用いた車両1の走行速度が、1m/sである場合、横方向の偏差は、開始時の-0.04mから直ちに0.02m以内に収束し、その後、横方向の偏差が0.02m以内で安定して走行できることが確認できた。
このように本実施形態においては、自動操舵システム100は、車両1の本体に設けられ、衛星測位システム及び基準局と通信できるように構成されている。自動操舵システム100は、ジャイロスコープ10と、受信部20と、入力部30と、出力手段40と、データバス50と、格納部60と、制御部70とを備えている。また、車両1は、操舵アクチュエータ2と、操舵ハンドルを有する操舵機構3と、操舵機構3によって操舵される前輪4と、後輪5とを備えている。
車両1に設けられたジャイロスコープ10で車両1の実際の旋回角速度ωを検出し、車両1が旋回に必要な目標角速度γとジャイロスコープ10で測定した車両1の実際の旋回角速度ωとの差から車両1の操舵ハンドルの旋回すべき角速度μを算出し、算出した操舵ハンドルの旋回すべき角速度を操舵アクチュエータ2に送信し操舵制御を行うことにより、安価なジャイロスコープを用いるため、慣性計測装置のような方位センサに依存しない、低コストで、かつ高精度の操舵制御ができる。
また、本発明の自動操舵システム100は、センサーフュージョンによる測定ではないため、従来のような車両が移動しないと車両の方位を表す角度が正確に出力されない、及び正しい角度の出力まで時間を要するという問題点を解決できる。
また、本発明の自動操舵システム100は、操舵アクチュエータ2のモータドライバへの指令信号には操舵ハンドルが旋回すべき角速度を制御信号として用い、モータドライバに指令する操舵角速度信号によりモータドライバはかなり正確に操舵角速度dδ/dtを制御できる。
なお、上述した実施の形態においては、移動体として車両(トラクター)の操舵制御の実施例を説明したが、本発明はこれに限定されるものではない。例えば、搬送ロボット、キャタピラ式の車両等にも適用できる。
また、上述した実施の形態においては、角速度計測手段としてジャイロスコープ10を用いた例を説明したが、本発明はこれに限定されるものではない。例えば、加速度センサ又はカメラによる画像処理を用いても良い。又は、ジャイロスコープ、加速度センサ及びカメラによる画像処理の2つ以上を組み合わせたものを用いても良い。
以上述べた実施形態は本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
本発明の自動操舵システムは、予め用意された目標経路に従って、方位センサに依存しない、移動体の位置及び姿勢を検出し操舵制御を行う目的に利用できる。
1、1' 車両(移動体)
2 操舵アクチュエータ
3 操舵機構
4 前輪
5 後輪
10 ジャイロスコープ(角速度計測手段)
20 受信部
30 入力部
40 出力手段
50 データバス
60 格納部
60a 制御用プログラム格納部
60b 測位データ格納部
60c 方位データ格納部
60d 目標経路格納部
70 制御部
70a 現在位置取得手段
70b 距離算出手段
70c 目標角速度算出手段
70d 旋回速度算出手段
70e 操舵制御手段
100 自動操舵システム
G 重心
R 目標経路
2 操舵アクチュエータ
3 操舵機構
4 前輪
5 後輪
10 ジャイロスコープ(角速度計測手段)
20 受信部
30 入力部
40 出力手段
50 データバス
60 格納部
60a 制御用プログラム格納部
60b 測位データ格納部
60c 方位データ格納部
60d 目標経路格納部
70 制御部
70a 現在位置取得手段
70b 距離算出手段
70c 目標角速度算出手段
70d 旋回速度算出手段
70e 操舵制御手段
100 自動操舵システム
G 重心
R 目標経路
Claims (9)
- 予め用意された目標経路に従って走行するように操舵制御を行う自動操舵システムであって、
移動体の旋回角速度を検出する角速度計測手段と、
前記移動体の現在位置と目標経路との間の距離を算出する距離算出手段と、
前記距離算出手段が算出した距離に基づいて、前記移動体の旋回に必要な目標角速度を算出する目標角速度算出手段と、
前記目標角速度算出手段が算出した目標角速度と前記角速度計測手段で測定した前記移動体の旋回角速度との差から前記移動体の操舵ハンドルが旋回すべき角速度を算出する旋回速度算出手段と、
前記旋回速度算出手段が算出した前記操舵ハンドルが旋回すべき角速度を操舵アクチュエータに送信し操舵制御を行う操舵制御手段とを備えていることを特徴とする自動操舵システム。 - 前記目標角速度算出手段が、式:γ=g(d)を用いて前記移動体の旋回に必要な目標角速度を算出するように構成されている(式中、dは前記移動体の現在位置と目標経路との間の距離、gは制御ゲインに関連する制御関数)ことを特徴とする請求項1に記載の自動操舵システム。
- 前記旋回速度算出手段が、式:μ=h(γ―ω)を用いて前記操舵ハンドルが旋回すべき角速度を算出するように構成されている(式中、γは前記移動体の旋回に必要な目標角速度、ωは前記角速度計測手段で測定した前記移動体の旋回角速度、hは制御ゲインに関連する制御関数)ことを特徴とする請求項1又は2に記載の自動操舵システム。
- 前記移動体が車両であり、前記角速度計測手段はジャイロスコープ、加速度センサ又はカメラによる画像処理のうちいずれか1つ、又はジャイロスコープ、加速度センサ及びカメラによる画像処理の2つ以上の組み合わせであり、前記ジャイロスコープを用いる場合は、前記ジャイロスコープが前記車両の本体に設けられていることを特徴とする請求項1又は2に記載の自動操舵システム。
- 前記移動体が車両であり、前記角速度計測手段はジャイロスコープ、加速度センサ又はカメラによる画像処理のうちいずれか1つ、又はジャイロスコープ、加速度センサ及びカメラによる画像処理の2つ以上の組み合わせであり、前記ジャイロスコープを用いる場合は、前記ジャイロスコープが前記車両の本体に設けられていることを特徴とする請求項3に記載の自動操舵システム。
- 前記衛星測位システムからの測位信号を受信する受信手段と、前記測位信号に基づいて前記移動体の現在位置を取得する現在位置取得手段とをさらに備えていることを特徴とする請求項1又は2に記載の自動操舵システム。
- 前記衛星測位システムからの測位信号を受信する受信手段と、前記測位信号に基づいて前記移動体の現在位置を取得する現在位置取得手段とをさらに備えていることを特徴とする請求項3に記載の自動操舵システム。
- 前記衛星測位システムからの測位信号を受信する受信手段と、前記測位信号に基づいて前記移動体の現在位置を取得する現在位置取得手段とをさらに備えていることを特徴とする請求項4に記載の自動操舵システム。
- 前記衛星測位システムからの測位信号を受信する受信手段と、前記測位信号に基づいて前記移動体の現在位置を取得する現在位置取得手段とをさらに備えていることを特徴とする請求項5に記載の自動操舵システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022569876A JPWO2022131050A1 (ja) | 2020-12-18 | 2021-12-06 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-210059 | 2020-12-18 | ||
JP2020210059 | 2020-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022131050A1 true WO2022131050A1 (ja) | 2022-06-23 |
Family
ID=82057693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044710 WO2022131050A1 (ja) | 2020-12-18 | 2021-12-06 | 自動操舵システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022131050A1 (ja) |
WO (1) | WO2022131050A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010506794A (ja) * | 2006-10-16 | 2010-03-04 | オートリブ ディベロップメント エービー | 車両安全システム |
JP2013218377A (ja) * | 2012-04-04 | 2013-10-24 | Denso Corp | 車両用無線通信装置 |
JP2015067039A (ja) * | 2013-09-27 | 2015-04-13 | 株式会社アドヴィックス | 車両の制御装置 |
JP2019170199A (ja) * | 2018-03-27 | 2019-10-10 | ヤンマー株式会社 | 自律操舵装置 |
JP2020130130A (ja) * | 2019-02-25 | 2020-08-31 | 井関農機株式会社 | 移植機の並走作業システム |
JP2020131797A (ja) * | 2019-02-14 | 2020-08-31 | トヨタ自動車株式会社 | 車両制御システム |
-
2021
- 2021-12-06 JP JP2022569876A patent/JPWO2022131050A1/ja active Pending
- 2021-12-06 WO PCT/JP2021/044710 patent/WO2022131050A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010506794A (ja) * | 2006-10-16 | 2010-03-04 | オートリブ ディベロップメント エービー | 車両安全システム |
JP2013218377A (ja) * | 2012-04-04 | 2013-10-24 | Denso Corp | 車両用無線通信装置 |
JP2015067039A (ja) * | 2013-09-27 | 2015-04-13 | 株式会社アドヴィックス | 車両の制御装置 |
JP2019170199A (ja) * | 2018-03-27 | 2019-10-10 | ヤンマー株式会社 | 自律操舵装置 |
JP2020131797A (ja) * | 2019-02-14 | 2020-08-31 | トヨタ自動車株式会社 | 車両制御システム |
JP2020130130A (ja) * | 2019-02-25 | 2020-08-31 | 井関農機株式会社 | 移植機の並走作業システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022131050A1 (ja) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3171134B1 (en) | Sensor alignment calibration | |
CA2616613C (en) | Guidance, navigation, and control system for a vehicle | |
US9618938B2 (en) | Field-based torque steering control | |
AU2016256796B2 (en) | Single-mode implement steering | |
US8930058B1 (en) | System and method for controlling a vehicle traveling along a path | |
US20100161224A1 (en) | Apparatus and method for detecting position and orientation of mobile object | |
EP2715470B1 (en) | Vehicle navigation | |
KR20140104611A (ko) | 차량의 자동 주차 장치 및 이를 이용한 방법 | |
US20240286422A1 (en) | Printing systems | |
US7308345B2 (en) | Steering assistance method and device for a motor vehicle | |
US9250086B1 (en) | Machine positioning system having alignment error detection | |
CN110398966B (zh) | 一种路径跟踪控制方法及路径跟踪系统 | |
KR102183204B1 (ko) | 차량 및 차량의 제어 방법 | |
JP2007213356A (ja) | 無人搬送設備 | |
JP2018169319A (ja) | 車両の走行車線推定装置 | |
WO2022131050A1 (ja) | 自動操舵システム | |
KR20160010175A (ko) | 방향각 오차를 이용한 차량형 이동 로봇의 오도메트리 오차 보정 방법 | |
US20090319186A1 (en) | Method and apparatus for determining a navigational state of a vehicle | |
CN112550449B (zh) | 车辆无线充电引导的横向控制 | |
JPH0728524A (ja) | 搬送車 | |
JP4269170B2 (ja) | 軌道追従制御方法および装置 | |
Baer et al. | EgoMaster: A central ego motion estimation for driver assist systems | |
JP7388522B1 (ja) | ヨーレート制御装置、ヨーレート制御方法及びプログラム | |
JP5390360B2 (ja) | 自動搬送車 | |
Lemmer et al. | Calibration of a car-like mobile robot with a high-precision positioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21906413 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022569876 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21906413 Country of ref document: EP Kind code of ref document: A1 |