Nothing Special   »   [go: up one dir, main page]

WO2022130982A1 - 非水電解質二次電池用正極、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2022130982A1
WO2022130982A1 PCT/JP2021/044094 JP2021044094W WO2022130982A1 WO 2022130982 A1 WO2022130982 A1 WO 2022130982A1 JP 2021044094 W JP2021044094 W JP 2021044094W WO 2022130982 A1 WO2022130982 A1 WO 2022130982A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
transition metal
composite oxide
mol
aqueous electrolyte
Prior art date
Application number
PCT/JP2021/044094
Other languages
English (en)
French (fr)
Inventor
政一 東郷
良憲 青木
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180082668.3A priority Critical patent/CN116670075A/zh
Priority to JP2022569843A priority patent/JPWO2022130982A1/ja
Priority to EP21906345.0A priority patent/EP4265570A4/en
Priority to US18/266,124 priority patent/US20240038970A1/en
Publication of WO2022130982A1 publication Critical patent/WO2022130982A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0566Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction analysing diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • a lithium transition metal composite oxide containing Ni has been attracting attention as a positive electrode active material having a high energy density.
  • the general formula Li x Ni 1- y My O 2 (in the formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, M is selected from Mn, Co, etc.) It is one or more elements to be treated, and is composed of a lithium transition metal composite oxide represented by ⁇ > 0.20).
  • XRD powder X-ray diffraction
  • the half-value width of the diffraction peak on the (003) plane is 0.
  • a positive electrode active material is disclosed in which the temperature is 14 ° or less and the diffraction peak intensity ratio [(104) / (003)] between the (104) plane and the (003) plane is 0.80 or less.
  • Patent Document 2 it is a hexagonal system having a layered structure and is a LiNiMn composite oxide containing Mg, and the lattice constants a and c obtained by the X-ray diffraction method are 2.8640 ⁇ ⁇ a ⁇ 2.
  • a positive electrode active material of .8750 ⁇ and 14.195 ⁇ ⁇ c ⁇ 14.225 ⁇ is disclosed.
  • an object of the present disclosure is to provide a positive electrode for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide having a high Ni content, which contributes to improvement of the charge / discharge cycle characteristics of the battery. be.
  • the positive electrode for a non-aqueous electrolyte secondary battery is a positive electrode for a non-aqueous electrolyte secondary battery containing a positive electrode active material, and the positive electrode active material has a layered structure and contains at least Ni and Mn.
  • the ratio of Ni to the total amount of metal elements excluding Li in the lithium transition metal composite oxide containing the lithium transition metal composite oxide containing the above is in the range of 80 mol% ⁇ Ni ⁇ 95 mol%, and the lithium transition metal.
  • the ratio of Mn to the total amount of metal elements excluding Li in the composite oxide is in the range of 0 mol% ⁇ Mn ⁇ 20 mol%, and the layered structure includes a Li layer in which Li reversibly enters and exits, and Li.
  • the ratio of metal elements other than Li present in the layer is 3 mol% or more and 8 mol% or less with respect to the total molar amount of metal elements excluding Li in the lithium transition metal composite oxide, and X-rays by X-ray diffraction
  • the ratio m / n of the half-value width m of the diffraction peak on the (003) plane to the half-value width n of the diffraction peak on the (110) plane of the diffraction pattern is 0.72 ⁇ m / n ⁇ 0.85, and the non-aqueous electrolyte.
  • the lithium transition metal composite oxide in the positive electrode for a secondary battery is composed of secondary particles formed by agglomeration of primary particles, and the void ratio inside the particles of the secondary particles is 1 to 5%.
  • the non-aqueous electrolyte secondary battery according to one aspect of the present disclosure is characterized by including a positive electrode for the non-aqueous electrolyte secondary battery, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, it is possible to provide a high-capacity non-aqueous electrolyte secondary battery in which a decrease in battery capacity due to charging / discharging is suppressed.
  • the layered structure of the lithium transition metal composite oxide contained in the positive electrode includes a transition metal layer containing Ni and the like, a Li layer, and an oxygen layer, and Li ions present in the Li layer reversibly move in and out.
  • the charging / discharging reaction of the battery proceeds.
  • a lithium transition metal composite oxide having a high Ni content of 80 mol% or more with respect to the total number of moles of metal elements excluding Li is used, many Li ions are extracted from the Li layer when the battery is charged. As a result, the layered structure collapses, leading to a decrease in battery capacity.
  • the lithium transition metal composite oxide having a high Ni content has high activity near the particle surface, and the formation of a surface-deteriorated layer and erosion are likely to occur due to a reaction with an electrolytic solution or the like, which leads to a decrease in battery capacity.
  • the present inventors have made a predetermined amount of Mn in the transition metal layer of the lithium transition metal composite oxide contained in the positive electrode so that the oxidation number does not change during charging and discharging. While containing it, the Li layer contains a predetermined amount of a metal element other than Li, and the ratio of the half-value width m of the (003) plane / the half-value width n of the (110) plane of the X-ray diffraction pattern is within the predetermined range. It was found that the structure of the lithium transition metal composite oxide can be stabilized by forming a layered structure having an appropriate strain in the plane direction.
  • the reaction with the electrolytic solution is controlled, the formation and erosion of the surface deterioration layer are suppressed, and the cycle characteristics are improved. I found it.
  • the cycle characteristics can be improved. It is thought that they were connected.
  • a cylindrical battery in which the wound electrode body 14 is housed in a bottomed cylindrical outer can 16 is illustrated, but the outer body is not limited to the cylindrical outer can, for example, a square outer can. It may be an exterior body made of a laminated sheet including a metal layer and a resin layer. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via a separator.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery 10 which is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 includes a winding type electrode body 14, a non-aqueous electrolyte, and an outer can 16 for accommodating the electrode body 14 and the electrolyte.
  • the electrode body 14 has a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound via the separator 13.
  • the outer can 16 is a bottomed cylindrical metal container having an opening on one side in the axial direction, and the opening of the outer can 16 is closed by a sealing body 17.
  • the battery sealing body 17 side is on the top and the bottom side of the outer can 16 is on the bottom.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles, amides, and a mixed solvent of two or more of these are used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • the electrolyte salt for example, a lithium salt such as LiPF 6 is used.
  • the electrolyte is not limited to the liquid electrolyte, and may be a solid electrolyte using a gel-like polymer or the like.
  • the positive electrode 11, the negative electrode 12, and the separator 13 constituting the electrode body 14 are all strip-shaped long bodies, and are alternately laminated in the radial direction of the electrode body 14 by being wound in a spiral shape.
  • the negative electrode 12 is formed to have a size one size larger than that of the positive electrode 11 in order to prevent the precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed at least one size larger than the positive electrode 11, and are arranged so as to sandwich the positive electrode 11, for example.
  • the electrode body 14 has a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode lead 21 extends to the bottom side of the outer can 16 through the outside of the insulating plate 19.
  • the positive electrode lead 20 is connected to the lower surface of the internal terminal plate 23 of the sealing body 17 by welding or the like, and the cap 27, which is the top plate of the sealing body 17 electrically connected to the internal terminal plate 23, serves as the positive electrode terminal.
  • the negative electrode lead 21 is connected to the inner surface of the bottom of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17 to ensure the airtightness inside the battery.
  • the outer can 16 is formed with a grooved portion 22 that supports the sealing body 17, with a part of the side surface portion protruding inward.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and the sealing body 17 is supported on the upper surface thereof.
  • the sealing body 17 is fixed to the upper part of the outer can 16 by the grooved portion 22 and the opening end portion of the outer can 16 crimped to the sealing body 17.
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at the central portion of each, and an insulating member 25 is interposed between the peripheral portions of each.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the non-aqueous electrolyte secondary battery 10 will be described in detail, particularly the positive electrode 11.
  • the positive electrode 11 has a positive electrode current collector and a positive electrode mixture layer formed on both sides of the positive electrode current collector.
  • a foil of a metal stable in the potential range of the positive electrode 11, such as aluminum or an aluminum alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the positive electrode mixture layer contains a positive electrode active material, a conductive material, and a binder.
  • the positive electrode 11 is formed by applying a positive electrode slurry containing a positive electrode active material, a conductive material, a binder and the like to the surface of a positive electrode current collector (coating step), drying the coating film (drying step), and rolling the positive electrode. It can be produced by forming a material layer on both sides of a positive electrode current collector (rolling step).
  • Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, ketjen black, carbon nanotubes (CNT), graphene, and graphite.
  • Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimides, acrylic resins, and polyolefins. These resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO) and the like.
  • the positive electrode active material contained in the positive electrode mixture layer has a layered structure and contains a lithium transition metal composite oxide containing at least Ni and Mn.
  • Examples of the layered structure of the lithium transition metal composite oxide include a layered structure belonging to the space group R-3m and a layered structure belonging to the space group C2 / m. Among these, a layered structure belonging to the space group R-3m is preferable in terms of high capacity, stability of crystal structure, and the like.
  • the layered structure of the lithium transition metal composite oxide includes a transition metal layer, a Li layer, and an oxygen layer.
  • the Li layer is a layer in which Li reversibly enters and exits.
  • the ratio of Ni to the total amount of metal elements excluding Li in the lithium transition metal composite oxide is in the range of 80 mol% ⁇ Ni ⁇ 95 mol%, preferably 83 mol% or more, and more preferably 85 mol% or more.
  • the ratio of Mn to the total amount of metal elements excluding Li in the lithium transition metal composite oxide is in the range of 0 mol% ⁇ Mn ⁇ 20 mol%, preferably in the range of 2 mol% ⁇ Mn ⁇ 17 mol%. More preferably, mol% ⁇ Mn ⁇ 15 mol%. Since the oxidation number of Mn does not change during charging and discharging, it is considered that the structure of the transition metal layer is stabilized by being contained in the transition metal layer. Mn may be uniformly dispersed in the layered structure of the lithium transition metal composite oxide, may be present in a part of the layered structure, or may have a concentration gradient in the layered structure. May be distributed in
  • the lithium transition metal composite oxide further comprises M (where M is at least one element selected from B, Al, Ca, Co, Fe, Ti, Si, Sr, Nb, Mo, W, Zr, and Zn). May be contained.
  • M is at least one element selected from B, Al, Ca, Co, Fe, Ti, Si, Sr, Nb, Mo, W, Zr, and Zn. May be contained.
  • the ratio of M to the total amount of metal elements excluding Li in the lithium transition metal composite oxide is preferably in the range of 0 mol% ⁇ M ⁇ 7 mol%, more preferably 0.01 mol% ⁇ M ⁇ 5 mol%. 0.05 mol% ⁇ M ⁇ 3 mol% is particularly preferable.
  • the inclusion of M in the lithium transition metal composite oxide improves the charge / discharge capacity and initial efficiency of the battery.
  • the ratio of Co to the total amount of metal elements excluding Li in the lithium transition metal composite oxide is preferably in the range of 0 mol% ⁇ Co ⁇ 5 mol%, more preferably in the range of 0 mol% ⁇ Co ⁇ 3 mol%. It is preferable that 0 mol% ⁇ Co ⁇ 0.1 mol% and substantially no Co is contained. "Substantially free of Co” means a case where Co is not contained at all and a case where Co is mixed as an impurity (when Co is mixed in an amount that cannot be accurately quantified).
  • M is B, Al, Ca, Co, Fe, Ti, Si, Sr, Nb, Mo, W, Zr and It may be represented by at least one element selected from Zn).
  • the positive electrode active material may contain a lithium transition metal composite oxide other than that represented by the above general formula, or other compounds, as long as the object of the present disclosure is not impaired.
  • the molar fraction of the metal element contained in the lithium transition metal composite oxide can be determined by inductively coupled plasma emission spectroscopy (ICP-AES), electron probe microanalyzer (EPMA), energy dispersive X-ray analyzer (EDX), etc. Can be measured by.
  • the lithium transition metal composite oxide is a particle having a volume-based median diameter (D50) of, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m, and particularly preferably 7 ⁇ m to 15 ⁇ m.
  • D50 means a particle size in which the cumulative frequency is 50% from the smaller size in the volume-based particle size distribution, and is also called a medium diameter.
  • the particle size distribution of the lithium transition metal composite oxide can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) and water as a dispersion medium.
  • the lithium transition metal composite oxide is, for example, a secondary particle formed by aggregating a plurality of primary particles.
  • the particle size of the primary particles constituting the secondary particles is, for example, 0.05 ⁇ m to 1 ⁇ m.
  • the particle size of the primary particle is measured as the diameter of the circumscribing circle in the particle image observed by a scanning electron microscope (SEM).
  • the lithium transition metal composite oxide may have a surface modification layer on the surface of the secondary particles or at the interface where the primary particles come into contact with each other.
  • the surface modification layer may contain at least one element selected from Co, Ca, Sr, W, B, Nb, Mo, Al, and Zr (hereinafter referred to as a surface modification element), and in particular, the surface modification layer may contain. It preferably contains at least one element of Ca, Sr, B and W. Since the surface modification layer suppresses a side reaction between the lithium transition metal composite oxide and the electrolytic solution, deterioration of the battery can be suppressed.
  • the content of the surface modifying element in the surface modifying layer can be, for example, 0.05 mol% to 0.50 mol% with respect to the lithium transition metal composite oxide. Within this range, the surface state of the lithium transition metal composite oxide can be stabilized by electronic interaction. The presence of the surface modifying element in the surface modifying layer can be confirmed by energy dispersive X-ray spectroscopy (TEM-EDX). The content of the surface modifying element in the surface modifying layer can be measured by inductively coupled plasma (ICP) emission spectroscopic analysis of a solution in which a lithium transition metal composite oxide is dissolved in a mixed solution of royal water and hydrofluoric acid. can.
  • ICP inductively coupled plasma
  • the thickness of the surface modification layer is, for example, 0.1 nm or more. As a result, the reaction with the electrolytic solution on the surface of the lithium transition metal composite oxide can be suppressed. Further, the thickness of the surface modification layer may be, for example, 5 nm or less.
  • the ratio of metal elements other than Li present in the Li layer is 3 mol% or more with respect to the total molar amount of the metal elements excluding Li in the lithium transition metal composite oxide. It is 8 mol% or less.
  • the ratio of metal elements other than Li in the Li layer is less than 3 mol%, the stability of the layered structure in the state where the Li ions in the Li layer are extracted is lowered, the structure is broken, and the battery capacity is lowered. Connect.
  • the proportion of metal elements other than Li in the Li layer exceeds 8 mol%, the diffusivity of Li ions in the Li layer decreases, and the reaction resistance of the battery increases as the battery capacity decreases.
  • the metal element present in the Li layer is mainly Ni, but other metal elements may be contained.
  • the proportion of metal elements other than Li present in the Li layer is, for example, the amount of Li compound to be mixed when the lithium transition metal composite oxide is prepared, and the mixture of the transition metal oxide and the Li compound is fired in multiple stages. It can be adjusted by the set temperature, holding time, and heating rate.
  • the ratio of metal elements other than Li in the Li layer can be obtained from the result of the Rietbelt analysis of the X-ray diffraction pattern by the X-ray diffraction measurement of the lithium transition metal composite oxide.
  • PDXL2 Rivest Cipher Co., Ltd.
  • Rietveld analysis software can be used for Rietveld analysis of the X-ray diffraction pattern.
  • the ratio m / n of the half width m of the diffraction peak on the (003) plane to the half width n of the diffraction peak on the (110) plane of the X-ray diffraction pattern by the above X-ray diffraction is 0. 72 ⁇ m / n ⁇ 0.85.
  • the layered structure can be in a state of having an appropriate strain in the plane direction, so that a battery having a high capacity and improved charge / discharge cycle characteristics can be obtained.
  • m / n is less than 0.72, the strain of the layered structure is too large and the layered structure becomes brittle. Further, when m / n exceeds 0.85, the battery capacity decreases.
  • the lithium transition metal composite oxide is composed of secondary particles formed by agglomeration of a plurality of primary particles.
  • the porosity inside the secondary particles of the lithium transition metal composite oxide is preferably 1 to 5%, more preferably 1 to 3%. Further, by setting the porosity within the above-mentioned predetermined range, the reaction with the electrolytic solution is controlled, the formation and erosion of the surface deteriorated layer are suppressed, and the cycle characteristics are improved.
  • the void ratio inside the particles of the secondary particles of the lithium transition metal composite oxide is smaller than 1%, the reaction efficiency between the positive electrode and the electrolytic solution is likely to decrease.
  • the void ratio inside the particles of the secondary particles of the lithium transition metal composite oxide in the positive electrode 11 is determined by the heat treatment temperature in the first step and the third step in the rolling process at the time of producing the positive electrode and the method for producing the positive electrode active material described later. It can be adjusted by the firing temperature of.
  • the method for producing a positive electrode active material is, for example, a first step of obtaining a transition metal oxide containing Ni and Mn, a second step of mixing the transition metal oxide and a Li compound to obtain a mixture, and the mixture. It includes a third step of firing to obtain a lithium transition metal composite oxide.
  • the first step for example, while stirring a solution of a metal salt containing Ni and Mn, an alkaline solution such as sodium hydroxide is added dropwise to adjust the pH to the alkaline side (for example, 8.5 to 12.5).
  • an alkaline solution such as sodium hydroxide is added dropwise to adjust the pH to the alkaline side (for example, 8.5 to 12.5).
  • the transition metal hydroxide containing Ni and Mn is precipitated (co-precipitated), and the transition metal hydroxide is heat-treated to obtain the transition metal oxide containing Ni and Mn.
  • the heat treatment temperature is, for example, in the range of 300 ° C to 600 ° C.
  • the transition metal oxide may contain a metal element such as Co other than Ni and Mn.
  • the transition metal oxide obtained in the first step and the Li compound are dry-mixed to obtain a mixture.
  • the Li compound include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH / H 2 O, LiH, LiF and the like.
  • the mixing ratio of the transition metal oxide obtained in the first step and the Li compound is, for example, a ratio in which the molar ratio of the metal element excluding Li: Li is in the range of 1: 0.98 to 1: 1.1. Is preferable.
  • a compound containing a metal element other than Li, Ni and Mn may be added.
  • Examples of the compound containing a metal element other than Li, Ni, and Mn include a Ca compound such as Ca (OH) 2 , an Sr compound such as Sr (OH) 2 , an Al compound such as Al (OH) 3 , and Nb 2 .
  • Examples thereof include Nb compounds such as O 5 and W compounds such as WO 3 .
  • the mixture obtained in the second step is calcined at 950 ° C. or lower for a predetermined time to obtain a lithium transition metal composite oxide.
  • the void ratio of the lithium transition metal composite oxide in the positive electrode 11 may be out of the predetermined range during the rolling step at the time of producing the positive electrode, and a sufficient effect may not be obtained.
  • the firing of the mixture in the third step is obtained by, for example, a first firing step of firing in a firing furnace at a first heating rate to a first set temperature of 450 ° C. to 680 ° C. under an oxygen stream, and a first firing step.
  • a multi-step firing step including a second firing step of firing the fired product in a firing furnace at a second heating rate to a second set temperature of more than 680 ° C and 850 ° C or less under an oxygen stream.
  • the first temperature rise rate is in the range of 1.5 ° C./min to 5.5 ° C./min
  • the second temperature rise rate is slower than the first temperature rise rate, 0.1 ° C./min to 3 It is in the range of .5 ° C / min.
  • a plurality of first temperature rise rate and second temperature rise rate may be set for each temperature region as long as it is within the above-specified range.
  • the holding time of the first set temperature in the first firing step is preferably 5 hours or less, more preferably 3 hours or less.
  • the holding time of the first set temperature is the time for maintaining the first set temperature after reaching the first set temperature.
  • the holding time of the second set temperature in the second firing step is preferably 1 hour to 10 hours, more preferably 1 hour to 5 hours.
  • the holding time of the second set temperature is the time for maintaining the second set temperature after reaching the second set temperature.
  • the ratio m / n of the half width m of the diffraction peak on the (003) plane to the half width n of the diffraction peak on the (110) plane of the X-ray diffraction pattern is the mixing ratio of the compound in the second step and the firing in the third step. It can be adjusted by temperature and firing time. Further, the lithium transition metal composite oxide obtained in the third step may be washed with water.
  • the negative electrode 12 has a negative electrode current collector and a negative electrode mixture layer formed on both sides of the negative electrode current collector.
  • a metal foil stable in the potential range of the negative electrode 12 such as copper or a copper alloy, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the negative electrode mixture layer contains a negative electrode active material and a binder.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied to the surface of the negative electrode current collector, the coating film is dried, and then rolled to obtain a negative electrode mixture layer of the negative electrode current collector. It can be manufactured by forming it on both sides.
  • the negative electrode active material contained in the negative electrode mixture layer is not particularly limited as long as it can reversibly occlude and release lithium ions, and a carbon material such as graphite is generally used.
  • the graphite may be any of natural graphite such as scaly graphite, lump graphite and earthy graphite, and artificial graphite such as lump artificial graphite and graphitized mesophase carbon microbeads.
  • a metal alloying with Li such as Si and Sn, a metal compound containing Si and Sn, and a lithium titanium composite oxide may be used. Further, those having a carbon film may be used.
  • Si-containing compounds represented by SiO x (0.5 ⁇ x ⁇ 1.6) or Li 2y SiO (2 + y) (0 ⁇ y ⁇ 2) containing fine particles of Si in the lithium silicate phase.
  • Dispersed Si-containing compounds and the like may be used in combination with graphite.
  • a fluororesin such as PTFE or PVdF, a PAN, a polyimide, an acrylic resin, a polyolefin or the like may be used as in the case of the positive electrode 11, but styrene-is preferable.
  • Polyolefin rubber (SBR) is used.
  • the negative electrode mixture layer may contain CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like.
  • a porous sheet having ion permeability and insulating property is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a non-woven fabric.
  • polyolefins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 13 may have a single-layer structure or a laminated structure. Further, the surface of the separator 13 may be provided with a resin layer having high heat resistance such as an aramid resin and a filler layer containing a filler of an inorganic compound.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • a non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • halogen substituent examples include a fluorinated cyclic carbonate ester such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate ester, and a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP).
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid ester
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • GBL ⁇ -butyrolactone
  • VL ⁇ -valerolactone
  • MP propyl acetate
  • EP methyl propionate
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • the electrolyte salt is preferably a lithium salt.
  • lithium salts include LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiMnCl 4 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (P (C 2 O 4 ) F 4 ), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2 ), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroboran, lithium lower aliphatic carboxylate, Li 2B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 0 or more ⁇ and other imide salts.
  • lithium salt these may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is, for example, 0.8 mol to 1.8 mol per 1 L of the non-aqueous solvent.
  • a vinylene carbonate or a propane sultone-based additive may be further added.
  • Example 1 The composite hydroxide represented by [Ni 0.91 Mn 0.09 ] (OH) 2 obtained by the coprecipitation method was fired at 500 ° C. for 8 hours, and the composite oxide (Ni 0.91 Mn 0.09 ) was fired at 500 ° C. O 2 ) was obtained (first step). A mixture was obtained by mixing lithium hydroxide (LiOH) so that the total amount of Ni and Mn of the composite oxide and the molar ratio of Li were 1: 1.01 (second step). The mixture was fired from room temperature to 650 ° C.
  • LiOH lithium hydroxide
  • Example 1 shows the results of analysis of the lithium transition metal composite oxide by ICP-AES. In addition, X-ray diffraction measurement was performed on the positive electrode active material of Example 1.
  • the ratio of the metal elements other than Li present in the Li layer to the total molar amount of the metal elements excluding Li in the lithium transition metal composite oxide was 5.1 mol%.
  • the ratio m / n of the half width m of the diffraction peak on the (003) plane to the half width n of the diffraction peak on the (110) plane of the X-ray diffraction pattern by X-ray diffraction was 0.79.
  • the above positive electrode active material was mixed at a ratio of 95 parts by mass, acetylene black as a conductive material at a ratio of 3 parts by mass, and polyvinylidene fluoride as a binder at a ratio of 2 parts by mass, and this was mixed with N-methyl-2-pyrrolidone (NMP). Mixing was performed to prepare a positive electrode slurry. Next, the slurry is applied to a positive electrode current collector made of aluminum foil having a thickness of 15 ⁇ m, the coating film is dried, and then the coating film is rolled by a rolling roller and cut into a predetermined electrode size to form a positive electrode core. A positive electrode having a positive electrode mixture layer formed on both sides thereof was obtained. An exposed portion where the surface of the positive electrode core was exposed was provided on a part of the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed in a volume ratio of 3: 3: 4.
  • a non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in the mixed solvent at a concentration of 1.2 mol / liter.
  • test cell An aluminum lead is attached to the exposed portion of the positive electrode, and a nickel lead is attached to a lithium metal foil as a negative electrode.
  • the positive electrode and the negative electrode are spirally wound via a polyolefin separator, and then press-molded in the radial direction to form a flat shape.
  • a wound electrode body was produced. This electrode body was housed in an exterior body made of an aluminum laminated sheet, and after injecting the non-aqueous electrolytic solution, the opening of the exterior body was sealed to obtain a test cell.
  • the porosity of the lithium transition metal composite oxide in the positive electrode was measured in the above test cell.
  • the method for measuring the porosity is as follows. First, the prepared positive electrode was finished with a cross-section polisher (CP) method, and the polished surface was observed with SIM (Scanning Ion Microscope) under the condition of a magnification of 1,000 to 10,000 times. From the obtained SIM image, the void ratio of the lithium transition metal composite oxide contained in the positive electrode was calculated using the analysis software of Image-Pro PLUS. Specifically, the color of the pores of the secondary particles of the lithium transition metal composite oxide and the color of the portion other than the pores of the secondary particles of the lithium transition metal composite oxide are white and black or black. And the white part was divided, the area of each was obtained, and the void ratio was obtained from the ratio of the areas.
  • Capacity retention rate (%) (30th cycle discharge capacity ⁇ 1st cycle discharge capacity) x 100 ⁇ Cycle test>
  • the test cell is constantly charged at a constant current of 0.2 It at a constant current of 0.2 °C until the battery voltage reaches 4.3 V, and then charged at a constant voltage at 4.3 V until the current value becomes 1/20 It. gone. Then, constant current discharge was performed with a constant current of 0.2 It until the battery voltage reached 2.5 V. This charge / discharge cycle was repeated 30 cycles.
  • the Ca content is 1 mol% with respect to the total amount of Ni and Mn of the transition metal oxide represented by the general formula Ni 0.92 Mn 0.08 O 2 .
  • Transition metal oxide and Ca (OH) 2 were mixed, and lithium hydroxide (LiOH) was further mixed so that the total amount of Ni, Mn, and Ca and the molar ratio of Li were 1: 1.01.
  • a test cell was prepared in the same manner as in Example 1 except for the above, and measurement and evaluation were performed.
  • Example 3 In the production of the positive electrode active material, the content of Sr is 0.5 mol% with respect to the total amount of Ni and Mn of the transition metal oxide represented by the general formula Ni 0.915 Mn 0.085 O 2 . As described above, the transition metal oxide and Sr (OH) 2 are mixed, and then lithium hydroxide (LiOH) is further mixed so that the total amount of Ni, Mn, and Sr and the molar ratio of Li are 1: 1.01. A test cell was prepared in the same manner as in Example 1 except for the above, and measurement and evaluation were performed.
  • LiOH lithium hydroxide
  • Example 4 In the production of the positive electrode active material, the Al content is 2 mol% with respect to the total amount of Ni and Mn of the transition metal oxide represented by the general formula Ni 0.93 Mn 0.07 O 2 . , Transition metal oxide and Al (OH) 3 were mixed, and lithium hydroxide (LiOH) was further mixed so that the total amount of Ni, Mn, and Al and the molar ratio of Li were 1: 1.03. A test cell was prepared in the same manner as in Example 1 except for the above, and measurement and evaluation were performed.
  • Example 5 In the production of the positive electrode active material, the content of Nb is 1 mol% with respect to the total amount of Ni and Mn of the transition metal oxide represented by the general formula Ni 0.91 Mn 0.09 O 2 . , The transition metal oxide and Nb 2 O 5 were mixed, and lithium hydroxide (LiOH) was further mixed so that the total amount of Ni, Mn, and Nb and the molar ratio of Li was 1: 1.02. Prepared a test cell in the same manner as in Example 1, and measured and evaluated it.
  • LiOH lithium hydroxide
  • the content of W is 0.5 mol% with respect to the total amount of Ni and Mn of the transition metal oxide represented by the general formula Ni 0.915 Mn 0.085 O 2 .
  • the transition metal oxide and WO 3 were mixed, and then lithium hydroxide (LiOH) was further mixed so that the total amount of Ni, Mn, and W and the molar ratio of Li were 1: 1.02.
  • LiOH lithium hydroxide
  • Example 7 In the preparation of the positive electrode active material, the composite hydroxide represented by [Ni 0.93 Mn 0.07 ] (OH) 2 obtained by the co-precipitation method was fired at 500 ° C. for 8 hours, and the composite oxide (Ni). 0.93 Mn 0.07 O 2 ) was obtained. Further, in the third step, after firing from room temperature to 650 ° C. at a heating rate of 2 ° C./min, firing from 650 ° C. to 700 ° C. at a heating rate of 1 ° C./min is the same as in Example 1. Then, a test cell was prepared, and measurement and evaluation were performed.
  • the composite hydroxide represented by [Ni 0.93 Mn 0.07 ] (OH) 2 obtained by the co-precipitation method was fired at 500 ° C. for 8 hours, and the composite oxide (Ni). 0.93 Mn 0.07 O 2 ) was obtained. Further, in the third step, after firing from room temperature to 650 ° C. at a heating rate of 2
  • Example 8> In the preparation of the positive electrode active material, the composite hydroxide represented by [Ni 0.85 Mn 0.15 ] (OH) 2 obtained by the co-precipitation method was fired at 500 ° C. for 8 hours, and the composite oxide (Ni). 0.85 Mn 0.15 O 2 ) was obtained. The transition metal oxide and H 3 BO 3 are mixed so that the B content is 2 mol% with respect to the total amount of Ni and Mn of the composite oxide, and Ni, Mn, and B and Li are further mixed. Lithium hydroxide (LiOH) was mixed so that the molar ratio was 1: 1.05 to obtain a mixture (second step). Further, in the third step, after firing from room temperature to 650 ° C.
  • LiOH Lithium hydroxide
  • Example 2 firing from 650 ° C. to 800 ° C. at a heating rate of 1 ° C./min is the same as in Example 1. Then, a test cell was prepared, and measurement and evaluation were performed.
  • Tables 1 to 3 show the initial efficiency and capacity retention rate of Examples and Comparative Examples. The evaluation results of the capacity retention rates shown in Tables 1 to 3 are relative to each other, with the initial efficiency and capacity retention rate of the test cells of Comparative Examples 1, 7 and 8, respectively being 100%.
  • Tables 1 to 3 show the ratio of metal elements other than Li present in the Li layer to the total number of moles of metal elements other than Li, and the diffraction peak of the (110) plane in the X-ray diffraction pattern by X-ray diffraction.
  • the half-value width n, the half-value width m of the diffraction peak on the (003) plane, and the m / n ratio, and the void ratio inside the lithium transition metal composite oxide particles in the positive electrode are also shown.
  • Examples 1 to 8 have higher initial efficiency and capacity retention rate than Comparative Examples 1 to 8. Further, from the comparison between Examples 1 and Examples 2 to 6, the lithium transition metal composite oxide contained in the positive electrode active material is a metal such as Ca, Sr, Al, Nb, W in addition to Li, Ni and Mn. By containing the element, the capacity retention rate becomes higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

この非水電解質二次電池用正極に含まれる正極活物質は、リチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物は、80モル%~95モル%のNiと、0モル%~20モル%のMnを含有し、リチウム遷移金属複合酸化物のLi層には、3モル%~8モル%のLi以外の金属元素の割合が存在し、X線回折によるX線回折パターンの(110)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.72≦m/n≦0.85であり、リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子から構成され、二次粒子の粒子内部の空隙率が1~5%である。

Description

非水電解質二次電池用正極、及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極、及び非水電解質二次電池に関する。
 近年、Niを含有するリチウム遷移金属複合酸化物が、高エネルギー密度の正極活物質として注目されている。例えば、特許文献1には、一般式LiNi1-y(式中、0.9≦x≦1.2、0<y≦0.7、MはMn、Co等から選択される1種以上の元素であり、α>0.20)で表されるリチウム遷移金属複合酸化物からなり、粉末X線回折(XRD)において、(003)面の回折ピークの半値幅が0.14°以下であり、(104)面と(003)面との回折ピーク強度比〔(104)/(003)〕が0.80以下である正極活物質が開示されている。
 また、特許文献2には、層状構造を有する六方晶系で、Mgを含有するLiNiMn複合酸化物であって、X線回折法により求められる格子定数a、cが、2.8640Å≦a≦2.8750Å、14.195Å≦c≦14.225Åである正極活物質が開示されている。
国際公開第2013/084536号 国際公開第2020/027158号
 ところで、正極活物質に含まれるリチウム遷移金属複合酸化物において、Liを除く金属元素の総モル数に対してNiの割合が80モル%以上の場合には、充電時のLiの引き抜き量が多いため、充放電を繰り返すことにより層状の結晶構造が壊れ、容量が低下するという課題がある。なお、特許文献1に開示された技術は、Ni含有率が高いリチウム遷移金属複合酸化物については考慮しておらず、充放電サイクル特性について未だ改良の余地がある。
 そこで、本開示の目的は、Ni含有率が高いリチウム遷移金属複合酸化物を含む非水電解質二次電池用正極であって、電池の充放電サイクル特性の向上に寄与する正極を提供することである。
 本開示の一態様である非水電解質二次電池用正極は、正極活物質を含む非水電解質二次電池用正極であって、正極活物質は、層状構造を有し、少なくともNiとMnとを含有するリチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するNiの割合は、80モル%≦Ni≦95モル%の範囲であり、リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するMnの割合は、0モル%<Mn≦20モル%の範囲であり、層状構造はLiが可逆的に出入りするLi層を含み、且つ、Li層に存在するLi以外の金属元素の割合が、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して3モル%以上8モル%以下であり、X線回折によるX線回折パターンの(110)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.72≦m/n≦0.85であり、非水電解質二次電池用正極中のリチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子から構成され、二次粒子の粒子内部の空隙率が1~5%である。
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極によれば、充放電に伴う電池容量の低下を抑制した高容量の非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の断面図である。
 正極に含まれるリチウム遷移金属複合酸化物の層状構造には、Ni等を含有する遷移金属層、Li層、酸素層が存在し、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。Liを除く金属元素の総モル数に対してNiの割合が80モル%以上とNi含有率の高いリチウム遷移金属複合酸化物を用いた場合、電池の充電時にLi層から多くのLiイオンが引き抜かれるため層状構造が崩れて電池容量の低下につながる。また、Ni含有率の高いリチウム遷移金属複合酸化物は、粒子表面近傍の活性が高く、電解液との反応等により、表面劣化層の生成や浸食が起こりやすく、電池容量の低下につながる。
 そこで、本発明者らは、上記課題を解決するために鋭意検討した結果、正極に含まれるリチウム遷移金属複合酸化物の遷移金属層に、充放電中に酸化数変化が生じないMnを所定量含有させつつ、Li層に所定量のLi以外の金属元素を含有させ、さらに、X線回折パターンの(003)面の半値幅m/(110)面の半値幅nの比が所定範囲内になるような、面方向に適度な歪みを持った層状構造にすることで、リチウム遷移金属複合酸化物の構造を安定化できることが分かった。さらに正極中のリチウム遷移金属複合酸化物の空隙率を所定範囲内とすることで、電解液との反応を制御し、表面劣化層の生成や浸食が抑制され、サイクル特性が改善されることを見出した。前述のリチウム遷移金属複合酸化物の構造安定化と正極中でのリチウム遷移金属複合酸化物の空隙率制御による表面劣化層生成や浸食の抑制との特異的な相乗効果により、サイクル特性の向上につながったと考えられる。
 本明細書において、「数値(A)~数値(B)」との記載は、数値(A)以上、数値(B)以下であることを意味する。
 以下、本開示に係る非水電解質二次電池用正極を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体14が有底円筒形状の外装缶16に収容された円筒形電池を例示するが、外装体は円筒形の外装缶に限定されず、例えば角形の外装缶であってもよく、金属層及び樹脂層を含むラミネートシートで構成された外装体であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である非水電解質二次電池10の断面図である。図1に例示するように、非水電解質二次電池10は、巻回型の電極体14と、非水電解質と、電極体14及び電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、及びセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。電解質塩には、例えばLiPF等のリチウム塩が使用される。なお、電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 電極体14を構成する正極11、負極12、及びセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長手方向及び幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを有する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対して加締められた外装缶16の開口端部とにより、外装缶16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、非水電解質二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に正極11について詳説する。
 [正極]
 正極11は、正極集電体と、正極集電体の両面に形成された正極合材層とを有する。正極集電体には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、導電材、及び結着材を含む。正極11は、正極集電体の表面に正極活物質、導電材、及び結着材等を含む正極スラリーを塗布し(塗布工程)、塗膜を乾燥させ(乾燥工程)、圧延して正極合材層を正極集電体の両面に形成する(圧延工程)ことにより作製できる。
 正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィンなどが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)などが併用されてもよい。
 正極合材層に含まれる正極活物質は、層状構造を有し、少なくともNiとMnとを含有するリチウム遷移金属複合酸化物を含む。
 リチウム遷移金属複合酸化物の層状構造は、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。これらの中では、高容量化、結晶構造の安定性等の点で、空間群R-3mに属する層状構造であることが好ましい。リチウム遷移金属複合酸化物の層状構造は、遷移金属層、Li層、酸素層を含む。Li層は、Liが可逆的に出入りする層である。
 リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するNiの割合は、80モル%≦Ni≦95モル%の範囲であり、83モル%以上が好ましく、85モル%以上がより好ましい。
 リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するMnの割合は、0モル%<Mn≦20モル%の範囲であり、2モル%≦Mn≦17モル%の範囲が好ましく、5モル%≦Mn≦15モル%がより好ましい。Mnは、充放電中にも酸化数変化が生じないため、遷移金属層に含有されることで遷移金属層の構造が安定化すると考えられる。Mnは、例えば、リチウム遷移金属複合酸化物の層状構造内に均一に分散していてもよいし、層状構造内の一部に存在していてもよいし、層状構造内で濃度勾配がある状態で分布してもよい
 リチウム遷移金属複合酸化物は、さらに、M(Mは、B、Al、Ca、Co、Fe、Ti、Si、Sr、Nb、Mo、W、Zr、及びZnから選ばれる少なくとも1種の元素)を含有してもよい。リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するMの割合は、0モル%≦M≦7モル%の範囲が好ましく、0.01モル%≦M≦5モル%がより好ましく、0.05モル%≦M≦3モル%が特に好ましい。リチウム遷移金属複合酸化物がMを含有することで、電池の充放電容量や初期効率が向上する。
 また、リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するCoの割合は、0モル%≦Co≦5モル%の範囲が好ましく、0モル%≦Co≦3モル%の範囲がより好ましく、0モル%≦Co≦0.1モル%で実質的にCoを含有しないことが特に好ましい。「実質的にCoを含有しない」とは、Coが全く含有されない場合、及びCoが不純物として混入する場合(正確に定量できない程度のCoが混入する場合)を意味する。
 リチウム遷移金属複合酸化物は、一般式LiNiMnα2-β(式中、0.95≦x≦1.05、0.80≦y≦0.95、0<z≦0.2、0≦α≦0.07、0≦β≦0.05、y+z+α=1、MはB、Al、Ca、Co、Fe、Ti、Si、Sr、Nb、Mo、W、Zr及びZnから選ばれる少なくとも1種の元素)で表されてもよい。
 正極活物質には、本開示の目的を損なわない範囲で、上記の一般式で表される以外のリチウム遷移金属複合酸化物、或いはその他の化合物が含まれてもよい。リチウム遷移金属複合酸化物に含有される金属元素のモル分率は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、エネルギー分散型X線分析装置(EDX)等により測定することができる。
 リチウム遷移金属複合酸化物は、体積基準のメジアン径(D50)が、例えば3μm~30μm、好ましくは5μm~25μm、特に好ましくは7μm~15μmの粒子である。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。リチウム遷移金属複合酸化物の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 リチウム遷移金属複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。二次粒子を構成する一次粒子の粒径は、例えば0.05μm~1μmである。一次粒子の粒径は、走査型電子顕微鏡(SEM)により観察される粒子画像において外接円の直径として測定される。
 リチウム遷移金属複合酸化物は、二次粒子の表面、又は一次粒子同士が接触する界面に表面修飾層を有してもよい。また、表面修飾層は、Co、Ca、Sr、W、B、Nb、Mo、Al、及びZrから選ばれる少なくとも1種の元素(以下、表面修飾元素という)を含有してもよく、特に、Ca、Sr、B及びWの少なくともいずれかひとつの元素を含有することが好ましい。表面修飾層は、リチウム遷移金属複合酸化物と電解液との間の副反応を抑制するので、電池の劣化を抑制できる。
 表面修飾層における表面修飾元素の含有量は、リチウム遷移金属複合酸化物に対して、例えば、0.05モル%~0.50モル%とすることができる。この範囲であれば、電子的相互作用によりリチウム遷移金属複合酸化物の表面状態を安定化することができる。表面修飾層に表面修飾元素の存在は、エネルギー分散型X線分光法(TEM-EDX)で確認することができる。また、表面修飾層における表面修飾元素の含有量は、リチウム遷移金属複合酸化物を王水とフッ酸の混合溶液に溶解した溶液を誘導結合プラズマ(ICP)発光分光分析することで測定することができる。
 表面修飾層の厚みは、例えば、0.1nm以上である。これにより、リチウム遷移金属複合酸化物の表面における電解液との反応を抑制できる。また、表面修飾層の厚みは、例えば、5nm以下であってもよい。
 リチウム遷移金属複合酸化物の層状構造において、Li層に存在するLi以外の金属元素の割合が、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して3モル%以上8モル%以下である。Li層におけるLi以外の金属元素の割合が、3モル%未満の場合、Li層中のLiイオンが引き抜かれた状態での層状構造の安定性が低下し、構造が壊れ、電池容量の低下につながる。また、Li層におけるLi以外の金属元素の割合が8モル%を超える場合、Li層中のLiイオンの拡散性が低下し、電池容量の低下と共に電池の反応抵抗が高くなる。Li層に存在する金属元素は、主にNiであるが、他の金属元素を含んでもよい。Li層に存在するLi以外の金属元素の割合は、例えば、リチウム遷移金属複合酸化物を作製する際に、混合するLi化合物の量、遷移金属酸化物とLi化合物との混合物を多段階焼成する際の設定温度や保持時間、昇温速度により調整することができる。
 Li層におけるLi以外の金属元素の割合は、リチウム遷移金属複合酸化物のX線回折測定によるX線回折パターンのリートベルト解析結果から得られる。X線回折パターンのリートベルト解析には、例えば、リートベルト解析ソフトであるPDXL2(株式会社リガク)を使用することができる。
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲:15-120°
スキャン速度:4°/min
解析範囲:30-120°
バックグラウンド:B-スプライン
プロファイル関数:分割型擬Voigt関数
束縛条件:Li(3a)+Ni(3a)=1
     Ni(3a)+Ni(3b)=α(αは各々のNi含有割合)
ICSD No.:98-009-4814
 リチウム遷移金属複合酸化物は、上記X線回折によるX線回折パターンの(110)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.72≦m/n≦0.85である。この範囲であれば、層状構造を面方向に適度な歪みを持った状態にすることができるので、高容量で充放電サイクル特性が向上した電池を得ることができる。m/nが0.72未満の場合、層状構造の歪みが大きすぎて層状構造が脆くなる。また、m/nが0.85超の場合、電池容量が低下する。
 正極11において、リチウム遷移金属複合酸化物は、複数の一次粒子が凝集して形成された二次粒子から構成される。正極11中では、リチウム遷移金属複合酸化物の二次粒子の粒子内部の空隙率は1~5%であることが好ましく、1~3%であることがより好ましい。さらに空隙率を上記所定範囲内とすることで、電解液との反応を制御し、表面劣化層の生成や浸食が抑制され、サイクル特性が改善される。正極11において、リチウム遷移金属複合酸化物の二次粒子の粒子内部の空隙率が1%よりも小さいと、正極と電解液との反応効率が低下する可能性が高い。また、空隙率が5%を超えると、リチウム遷移金属複合酸化物表面での副反応が多くなり、正極の劣化が進行しやすい。正極11中のリチウム遷移金属複合酸化物の二次粒子の粒子内部の空隙率は、正極作製時の圧延工程および後述の正極活物質の製造方法における第1工程での熱処理温度や第3工程での焼成温度により調整できる。
 次に、リチウム遷移金属複合酸化物を含む正極活物質の製造方法の一例について説明する。
 正極活物質の製造方法は、例えば、Ni及びMnを含む遷移金属酸化物を得る第1工程と、当該遷移金属酸化物とLi化合物とを混合して混合物を得る第2工程と、当該混合物を焼成してリチウム遷移金属複合酸化物を得る第3工程とを含む。
 第1工程においては、例えば、Ni及びMnを含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整することにより、Ni及びMnを含む遷移金属水酸化物を析出(共沈)させ、当該遷移金属水酸化物を熱処理することにより、Ni及びMnを含む遷移金属酸化物を得る。熱処理温度は、例えば、300℃~600℃の範囲である。なお、遷移金属酸化物は、Ni、Mn以外のCo等の金属元素を含有してもよい。
 第2工程においては、まず、第1工程で得られた遷移金属酸化物と、Li化合物とを乾式混合して、混合物を得る。Li化合物としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。第1工程で得られた遷移金属酸化物とLi化合物との混合割合は、例えば、Liを除く金属元素:Liのモル比が、1:0.98~1:1.1の範囲となる割合とすることが好ましい。また、遷移金属酸化物とLi化合物とを混合する際に、Li、Ni、Mn以外の金属元素を含有する化合物を添加してもよい。Li、Ni、Mn以外の金属元素を含有する化合物としては、例えば、Ca(OH)などのCa化合物、Sr(OH)などのSr化合物、Al(OH)などのAl化合物、NbなどのNb化合物、WOなどのW化合物等が挙げられる。
 第3工程においては、第2工程で得られた混合物を950℃以下で所定時間焼成し、リチウム遷移金属複合酸化物を得る。950℃を超える温度で焼成すると、正極作製時の圧延工程の際に正極11中のリチウム遷移金属複合酸化物の空隙率が所定の範囲外になり、十分な効果が得られない場合がある。第3工程における混合物の焼成は、例えば焼成炉内で、酸素気流下、450℃~680℃の第1設定温度まで第1昇温速度で焼成する第1焼成工程と、第1焼成工程により得られた焼成物を、焼成炉内で、酸素気流下、680℃超850℃以下の第2設定温度まで第2昇温速度で焼成する第2焼成工程とを含む、多段階焼成工程を備える。ここで、第1昇温速度は1.5℃/min~5.5℃/minの範囲であり、第2昇温速度は、第1昇温速度より遅く、0.1℃/min~3.5℃/minの範囲である。なお、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。第1焼成工程における第1設定温度の保持時間は、5時間以下が好ましく、3時間以下がより好ましい。第1設定温度の保持時間とは、第1設定温度に達した後、第1設定温度を維持する時間である。第2焼成工程における第2設定温度の保持時間は、1時間~10時間が好ましく、1時間~5時間がより好ましい。第2設定温度の保持時間とは、第2設定温度に達した後、第2設定温度を維持する時間である。混合物の焼成の際には、上記各パラメータを上記規定した範囲に調整する点で、例えば、酸素濃度60%以上の酸素気流中で行い、酸素気流の流量を、焼成炉10cmあたり、0.2mL/min~4mL/minの範囲及び混合物1kgあたり0.3L/min以上とすることができる。X線回折パターンの(110)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nは、第2工程における化合物の混合割合、並びに第3工程における焼成温度及び焼成時間により調整できる。また、第3工程で得られたリチウム遷移金属複合酸化物は、水洗されてもよい。
 [負極]
 負極12は、負極集電体と、負極集電体の両面に形成された負極合材層とを有する。負極集電体には、銅、銅合金等の負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極合材層は、負極活物質、及び結着材を含む。負極12は、負極集電体の表面に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層を負極集電体の両面に形成することにより作製できる。
 負極合材層に含まれる負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。また、これらに炭素被膜を設けたものを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi含有化合物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極合材層に含まれる結着材には、正極11の場合と同様に、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィンなどを用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、負極合材層には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、積層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiMnCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルである。また、さらにビニレンカーボネートやプロパンスルトン系添加剤を添加してもよい。
 以下、実施例及び比較例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 [正極活物質の作製]
 <実施例1>
 共沈法により得られた[Ni0.91Mn0.09](OH)で表される複合水酸化物を500℃で8時間焼成し、複合酸化物(Ni0.91Mn0.09)を得た(第1工程)。上記複合酸化物のNi及びMnの総量と、Liのモル比が1:1.01となるように水酸化リチウム(LiOH)を混合して混合物を得た(第2工程)。当該混合物を酸素濃度95%の酸素気流下(混合物1kgあたり5L/minの流量)、昇温速度2℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から750℃まで焼成した。この焼成物を水洗により不純物を除去し、実施例1の正極活物質としてのリチウム遷移金属複合酸化物を得た(第3工程)。ICP-AESにより、当該リチウム遷移金属複合酸化物を分析した結果を表1に示す。また、実施例1の正極活物質について、X線回折測定を行った。リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対するLi層に存在するLi以外の金属元素の割合は、5.1モル%であった。X線回折によるX線回折パターンの(110)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nは、0.79であった。
 [正極の作製]
 上記の正極活物質を95質量部、導電材としてアセチレンブラックを3質量部、結着材としてポリフッ化ビニリデンを2質量部の割合で混合し、これをN-メチル-2-ピロリドン(NMP)と混合して正極スラリーを調製した。次いで、当該スラリーを厚み15μmのアルミニウム箔からなる正極集電体に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延して、所定の電極サイズに切断して、正極芯体の両面に正極合材層が形成された正極を得た。なお、正極の一部に正極芯体の表面が露出した露出部を設けた。
[非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 上記正極の露出部にアルミニウムリードを、負極としてリチウム金属箔にニッケルリードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解液を注入した後、外装体の開口部を封止して試験セルを得た。
 [正極中のリチウム遷移金属複合酸化物の空隙率の測定]
 上記試験セルにおける、正極中のリチウム遷移金属複合酸化物の空隙率を測定した。空隙率の測定方法は以下の通りである。まず、作製した正極をクロスセクションポリッシャー(CP)法による仕上げ断面加工し、研磨面をSIM(Scanning Ion Microscopy)で倍率1千~1万倍の条件で観察した。得られたSIM画像から、Image-Pro PLUSの解析ソフトを用いて、正極に含まれるリチウム遷移金属複合酸化物の空隙率を計算した。具体的には、リチウム遷移金属複合酸化物の二次粒子の空孔部分の色と、リチウム遷移金属複合酸化物の二次粒子の空孔部分以外の部分の色とを、白色と黒色又は黒色と白色の部分に分割し、それぞれの面積を求め、その面積の比から空隙率を求めた。
 [初期効率の評価]
 上記試験セルを、25℃の温度環境下、0.2Itの定電流で電池電圧が4.3Vになるまで定電流で充電した後、4.3Vで電流値が1/100Itになるまで定電圧で充電した。その後、0.2Itの定電流で電池電圧が2.5Vになるまで定電流放電を行った。上記の充放電で測定した充電容量及び放電容量から、下記の式にて初期効率を求めた。
 初期効率(%)=放電容量/充電容量×100
 [容量維持率の評価]
 上記試験セルについて、下記サイクル試験を行なった。サイクル試験の1サイクル目の放電容量と、30サイクル目の放電容量を求め、下記式により容量維持率を算出した。
  容量維持率(%)=(30サイクル目放電容量÷1サイクル目放電容量)×100
 <サイクル試験>
 試験セルを、25℃の温度環境下、0.2Itの定電流で電池電圧が4.3Vになるまで定電流充電を行い、4.3Vで電流値が1/20Itになるまで定電圧充電を行った。その後、0.2Itの定電流で電池電圧が2.5Vになるまで定電流放電を行った。この充放電サイクルを30サイクル繰り返した。
 <実施例2>
 正極活物質の作製において、一般式Ni0.92Mn0.08で表される遷移金属酸化物のNi、及びMnの総量に対して、Caの含有量が1モル%となるように、遷移金属酸化物とCa(OH)を混合し、さらにNi、Mn、及びCaの総量と、Liのモル比が1:1.01となるように水酸化リチウム(LiOH)を混合したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <実施例3>
 正極活物質の作製において、一般式Ni0.915Mn0.085で表される遷移金属酸化物のNi、及びMnの総量に対して、Srの含有量が0.5モル%となるように、遷移金属酸化物とSr(OH)を混合し、さらにNi、Mn、及びSrの総量と、Liのモル比が1:1.01となるように水酸化リチウム(LiOH)を混合したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <実施例4>
 正極活物質の作製において、一般式Ni0.93Mn0.07で表される遷移金属酸化物のNi、及びMnの総量に対して、Alの含有量が2モル%となるように、遷移金属酸化物とAl(OH)を混合し、さらにNi、Mn、及びAlの総量と、Liのモル比が1:1.03となるように水酸化リチウム(LiOH)を混合したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <実施例5>
 正極活物質の作製において、一般式Ni0.91Mn0.09で表される遷移金属酸化物のNi、及びMnの総量に対して、Nbの含有量が1モル%となるように、遷移金属酸化物とNbを混合し、さらにNi、Mn、及びNbの総量と、Liのモル比が1:1.02となるように水酸化リチウム(LiOH)を混合したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <実施例6>
 正極活物質の作製において、一般式Ni0.915Mn0.085で表される遷移金属酸化物のNi、及びMnの総量に対して、Wの含有量が0.5モル%となるように、遷移金属酸化物とWOを混合し、さらにNi、Mn、及びWの総量と、Liのモル比が1:1.02となるように水酸化リチウム(LiOH)を混合したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <実施例7>
 正極活物質の作製において、共沈法により得られた[Ni0.93Mn0.07](OH)で表される複合水酸化物を500℃で8時間焼成し、複合酸化物(Ni0.93Mn0.07)を得た。さらに、第3工程において、昇温速度2℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から700℃まで焼成したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <実施例8>
 正極活物質の作製において、共沈法により得られた[Ni0.85Mn0.15](OH)で表される複合水酸化物を500℃で8時間焼成し、複合酸化物(Ni0.85Mn0.15)を得た。上記複合酸化物のNi及びMnの総量に対して、Bの含有量が2モル%となるように、遷移金属酸化物とHBOを混合し、さらにNi、Mn、及びBと、Liのモル比が1:1.05となるように水酸化リチウム(LiOH)を混合して混合物を得た(第2工程)。さらに、第3工程において、昇温速度2℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から800℃まで焼成したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例1>
 正極活物質の作製の第3工程において、昇温速度2℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から780℃まで焼成したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例2>
 正極活物質の作製の第2工程において、複合酸化物のNi及びMnの総量と、Liのモル比が1:1.05となるように水酸化リチウム(LiOH)を混合して混合物を得たこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例3>
 正極活物質の作製の第3工程において、昇温速度2℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から730℃まで焼成したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例4>
 正極活物質の作製の第2工程において、複合酸化物のNi及びMnの総量と、Liのモル比が1:0.98となるように水酸化リチウム(LiOH)を混合して混合物を得たこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例5>
 正極活物質の作製の第3工程において、昇温速度1℃/minで、室温から650℃まで焼成した後、昇温速度0.3℃/minで、650℃から730℃まで焼成したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例6>
 正極活物質の作製の第3工程において、昇温速度3℃/minで、室温から650℃まで焼成した後、昇温速度1℃/minで、650℃から750℃まで焼成したこと以外は実施例1と同様にして試験セルを作製し、測定・評価を行った。
 <比較例7>
 正極活物質の作製の第3工程において、昇温速度3℃/minで、室温から650℃まで焼成した後、昇温速度2℃/minで、650℃から720℃まで焼成したこと以外は実施例7と同様にして試験セルを作製し、測定・評価を行った。
 <比較例8>
 正極活物質の作製の第2工程において、複合酸化物のNi及びMnの総量と、Liのモル比が1:1.05となるように水酸化リチウム(LiOH)を混合して混合物を得たこと以外は実施例8と同様にして試験セルを作製し、測定・評価を行った。
 実施例及び比較例の初期効率及び容量維持率を表1~3に示す。表1~3に示した容量維持率の評価結果は、各々、比較例1、7、8の試験セルの初期効率、容量維持率を100%として、相対的に表したものである。また、表1~3に、Liを除く金属元素の総モル数に対するLi層に存在するLi以外の金属元素の割合、並びに、X線回折によるX線回折パターンにおける、(110)面の回折ピークの半値幅n、(003)面の回折ピークの半値幅m、及びm/n比、正極中のリチウム遷移金属複合酸化物粒子内部の空隙率を併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、実施例1~8は、比較例1~8よりも、初期効率及び容量維持率が高い。また、実施例1と実施例2~6との比較から、正極活物質に含まれるリチウム遷移金属複合酸化物は、Li、Ni、Mn以外に、Ca、Sr、Al、Nb、W等の金属元素を含有することで、容量維持率がより高くなる。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット

Claims (7)

  1.  正極活物質を含む非水電解質二次電池用正極であって、
     前記正極活物質は、層状構造を有し、少なくともNiとMnとを含有するリチウム遷移金属複合酸化物を含み、
     前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するNiの割合は、80モル%≦Ni≦95モル%の範囲であり、
     前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するMnの割合は、0モル%<Mn≦20モル%の範囲であり、
     前記層状構造はLiが可逆的に出入りするLi層を含み、且つ、前記Li層に存在するLi以外の金属元素の割合が、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して3モル%以上8モル%以下であり、
     X線回折によるX線回折パターンの(110)面の回折ピークの半値幅nに対する(003)面の回折ピークの半値幅mの比m/nが、0.72≦m/n≦0.85であり、
     前記非水電解質二次電池用正極中の前記リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子から構成され、前記二次粒子の粒子内部の空隙率が1~5%である非水電解質二次電池用正極。
  2.  前記リチウム遷移金属複合酸化物は、さらに、M(Mは、B、Al、Co、Ca、Fe、Ti、Si、Sr、Nb、Mo、W、Zr、及びZnから選ばれる少なくとも1種の元素)を含有し、
     前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するMの割合は、0モル%≦M≦7モル%の範囲である、請求項1に記載の非水電解質二次電池用正極。
  3. 前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総量に対するCoの割合は、0モル%≦Co≦5モル%の範囲である、請求項1又は2に記載の非水電解質二次電池用正極。
  4.  前記リチウム遷移金属複合酸化物は、前記二次粒子の表面、又は前記一次粒子同士が接触する界面に表面修飾層を有し、
     前記表面修飾層は、Ca、Sr、W、B、Nb、Mo、Al、及びZrから選ばれる少なくとも1種の元素を含有する、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極。
  5.  前記表面修飾層は、Ca、Sr、B及びWの少なくともいずれかひとつの元素を含有する、請求項4に記載の非水電解質二次電池用正極。
  6.  前記リチウム遷移金属複合酸化物は、一般式LiNiMnα2-β(式中、0.95≦x≦1.05、0.80≦y≦0.95、0<z≦0.2、0≦α≦0.07、0≦β≦0.05、y+z+α=1、MはB、Al、Ca、Co、Fe、Ti、Si、Sr、Nb、Mo、W、Zr及びZnから選ばれる少なくとも1種の元素)で表される、請求項1~5のいずれか1項に記載の非水電解質二次電池用正極。
  7.  請求項1~6のいずれか1項に記載の非水電解質二次電池用正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2021/044094 2020-12-18 2021-12-01 非水電解質二次電池用正極、及び非水電解質二次電池 WO2022130982A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180082668.3A CN116670075A (zh) 2020-12-18 2021-12-01 非水电解质二次电池用正极及非水电解质二次电池
JP2022569843A JPWO2022130982A1 (ja) 2020-12-18 2021-12-01
EP21906345.0A EP4265570A4 (en) 2020-12-18 2021-12-01 POSITIVE ELECTRODE OF NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US18/266,124 US20240038970A1 (en) 2020-12-18 2021-12-01 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-209893 2020-12-18
JP2020209893 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022130982A1 true WO2022130982A1 (ja) 2022-06-23

Family

ID=82057551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044094 WO2022130982A1 (ja) 2020-12-18 2021-12-01 非水電解質二次電池用正極、及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US20240038970A1 (ja)
EP (1) EP4265570A4 (ja)
JP (1) JPWO2022130982A1 (ja)
CN (1) CN116670075A (ja)
WO (1) WO2022130982A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054041A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024004578A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2024004676A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004626A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024014376A1 (ja) * 2022-07-12 2024-01-18 株式会社Gsユアサ 蓄電素子
WO2024204407A1 (ja) * 2023-03-29 2024-10-03 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053764A (ja) * 2003-08-07 2005-03-03 Nikko Materials Co Ltd リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
WO2012124240A1 (ja) * 2011-03-11 2012-09-20 三洋電機株式会社 非水電解質二次電池
WO2013084536A1 (ja) 2011-12-07 2013-06-13 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2017525089A (ja) * 2014-06-10 2017-08-31 ユミコア 優れた硬強度を有する正極材料
JP2018014326A (ja) * 2016-07-20 2018-01-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
JP2019021626A (ja) * 2017-07-11 2019-02-07 貴州振華新材料股▲ふん▼有限公司 球状又は類球状のリチウムイオン電池正極材料及びリチウムイオン電池
WO2020027158A1 (ja) 2018-07-31 2020-02-06 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785262B1 (ko) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
JP6435093B2 (ja) * 2013-11-22 2018-12-05 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 正極活物質、およびリチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053764A (ja) * 2003-08-07 2005-03-03 Nikko Materials Co Ltd リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
WO2012124240A1 (ja) * 2011-03-11 2012-09-20 三洋電機株式会社 非水電解質二次電池
WO2013084536A1 (ja) 2011-12-07 2013-06-13 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2017525089A (ja) * 2014-06-10 2017-08-31 ユミコア 優れた硬強度を有する正極材料
JP2018014326A (ja) * 2016-07-20 2018-01-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
JP2019021626A (ja) * 2017-07-11 2019-02-07 貴州振華新材料股▲ふん▼有限公司 球状又は類球状のリチウムイオン電池正極材料及びリチウムイオン電池
WO2020027158A1 (ja) 2018-07-31 2020-02-06 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265570A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054041A1 (ja) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2024004676A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004626A1 (ja) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024004578A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2024014376A1 (ja) * 2022-07-12 2024-01-18 株式会社Gsユアサ 蓄電素子
WO2024204407A1 (ja) * 2023-03-29 2024-10-03 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Also Published As

Publication number Publication date
EP4265570A1 (en) 2023-10-25
CN116670075A (zh) 2023-08-29
JPWO2022130982A1 (ja) 2022-06-23
US20240038970A1 (en) 2024-02-01
EP4265570A4 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021106324A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2021241075A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2020262348A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021152996A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP7573183B2 (ja) 非水電解質二次電池
WO2021039239A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021241078A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP7573196B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2020262100A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JPWO2020174794A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138104A1 (ja) 非水電解質二次電池
WO2021241077A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2022044489A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021152997A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138031A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021241076A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021210444A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021153440A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004686A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024029241A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021095360A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022138846A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004710A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569843

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347038535

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18266124

Country of ref document: US

Ref document number: 202180082668.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906345

Country of ref document: EP

Effective date: 20230718