Nothing Special   »   [go: up one dir, main page]

WO2022118849A1 - 気体分離システム及び気体の製造方法 - Google Patents

気体分離システム及び気体の製造方法 Download PDF

Info

Publication number
WO2022118849A1
WO2022118849A1 PCT/JP2021/043900 JP2021043900W WO2022118849A1 WO 2022118849 A1 WO2022118849 A1 WO 2022118849A1 JP 2021043900 W JP2021043900 W JP 2021043900W WO 2022118849 A1 WO2022118849 A1 WO 2022118849A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas separation
separation membrane
membrane unit
pipe
Prior art date
Application number
PCT/JP2021/043900
Other languages
English (en)
French (fr)
Inventor
洋帆 広沢
耀介 水野
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021572109A priority Critical patent/JPWO2022118849A1/ja
Publication of WO2022118849A1 publication Critical patent/WO2022118849A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Definitions

  • the present invention relates to a gas separation system provided with a gas separation membrane and a method for producing a gas using the gas separation system.
  • Hydrogen is obtained by gasifying fossil fuels such as natural gas and coal and removing carbon dioxide from a mixed gas containing hydrogen and carbon dioxide as main components.
  • the gas to be treated has undergone steam reforming and an aqueous gas shift, and is characterized by high temperature and high pressure.
  • hydrogen is also used in the Haber-Bosch process, which synthesizes ammonia. This is a method of synthesizing ammonia by reacting hydrogen and nitrogen at high temperature and high pressure, but a process of separating and recovering unreacted hydrogen and nitrogen in a production plant is required.
  • Patent Document 1 includes one gas separation membrane unit in the front stage and two gas separation membrane units in the rear stage, and the total amount of gas obtained from one gas separation membrane unit in the rear stage is separated into the gas in the front stage.
  • a technique for circulating in a membrane unit is disclosed.
  • Patent Documents 2 and 3 disclose a technique in which one gas separation membrane unit is provided in the front stage and one gas separation membrane unit is provided in the rear stage, and the entire amount of gas obtained from the rear stage is circulated to the gas separation membrane unit in the front stage. There is.
  • Patent Document 4 discloses a technique for recovering helium while circulating helium that has passed through the separation membrane unit in a supply gas.
  • the present invention for achieving the above object includes the following 1 to 15.
  • a gas separation system that enriches at least one component from a mixed gas containing 1.2 or more components.
  • the gas separation system includes a specific gas separation membrane unit and is equipped with a specific gas separation membrane unit.
  • the specific gas separation membrane unit includes an inlet for a supply gas, an outlet for a permeated gas, and an outlet for a concentrated gas.
  • a supply gas pipe is connected to the inlet of the supply gas.
  • a permeated gas discharge pipe is connected to the permeated gas discharge port.
  • a concentrated gas discharge pipe is connected to the concentrated gas discharge port.
  • the permeated gas discharge pipe or the concentrated gas discharge pipe has a branch portion, a pipe located upstream of the pipe having the branch portion has a merging portion, and the branch portion and the merging portion are connected by a branch pipe.
  • There is only one specific gas separation membrane unit in the gas separation system The gas separation system according to 1 above, wherein the supply gas pipe has the confluence and does not include another gas separation membrane unit.
  • 3. A method for producing a gas using the gas separation system according to 1 or 2 above.
  • a method for producing a gas which comprises a step of controlling the concentration of enriched components in the supplied gas supplied to the specific gas separation membrane unit to 30 mol% or less. 4.
  • Another gas separation membrane unit is further provided upstream of the specific gas separation membrane unit, and a permeated gas or a concentrated gas that has passed through the other gas separation membrane unit is supplied to the specific gas separation membrane unit.
  • the gas separation system described. 5 Another gas separation membrane unit is further provided downstream of the specific gas separation membrane unit, and the permeated gas or concentrated gas that has passed through the specific gas separation membrane unit is supplied to the other gas separation membrane unit.
  • the gas separation system described. 6 The gas separation system according to any one of 1, 2, 4 or 5, wherein the separation membrane in the specific gas separation membrane unit is a polyamide membrane. 7.
  • a gas separation system that enriches at least one component from a mixed gas containing two or more components.
  • the gas separation system includes a first gas separation membrane unit and a second gas separation membrane unit connected by a connecting pipe.
  • the first gas separation membrane unit includes a first inlet, a first permeation outlet, and a first concentration outlet.
  • the second gas separation membrane unit includes a second inlet, a second permeation outlet, and a second concentration outlet.
  • a first supply gas pipe is connected to the first inlet.
  • the connecting pipe connects the first permeation outlet or the first concentration outlet with the second inlet.
  • a second permeation gas discharge pipe is connected to the second permeation outlet.
  • a second concentrated gas discharge pipe is connected to the second concentration outlet.
  • the second permeated gas discharge pipe or the second concentrated gas discharge pipe has a branch portion, the first supply gas pipe or the connecting pipe has a merging portion, and the branch portion and the merging portion have a merging portion.
  • the connecting pipe connects the first concentration outlet and the second inlet.
  • the gas separation system according to any one of 8 to 10 wherein the branch portion is provided in the second permeated gas discharge pipe. 12.
  • the connecting pipe connects the first permeation outlet and the second inlet.
  • At least one gas can be enriched from a mixed gas containing two or more components while achieving both high recovery rate and high purity.
  • FIG. 1 is a flow chart of a gas separation system according to the first embodiment.
  • FIG. 2 is a flow chart of the gas separation system in Examples 2 to 7.
  • FIG. 3 is a flow chart showing an example of a gas separation system according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of the gas separation system in Examples 8 to 12.
  • FIG. 5 is a flow chart of the gas separation system in Examples 13 to 16.
  • FIG. 6 is a flow chart of the gas separation system in Comparative Examples 3 to 6.
  • the present invention is a gas separation system that enriches at least one component from a mixed gas containing two or more components, wherein the gas separation system includes a specific gas separation membrane unit, and the specific gas separation membrane unit is
  • the supply gas is provided with an inlet for the supply gas (hereinafter also referred to as "inlet"), an outlet for the permeated gas (hereinafter also referred to as the "permeation outlet”), and an outlet for the concentrated gas (hereinafter also referred to as the "concentrated outlet”).
  • a supply gas pipe is connected to the inlet of the gas, a permeated gas discharge pipe is connected to the permeated gas discharge port, and a concentrated gas discharge pipe is connected to the concentrated gas discharge port.
  • the pipe or the concentrated gas discharge pipe has a branch portion, the pipe located upstream of the pipe having the branch portion has a merging portion, and the branch portion and the merging portion are connected by a branch pipe.
  • the gas separation system according to the embodiment of the present invention includes a specific gas separation membrane unit.
  • the gas separation membrane unit refers to a portion having the ability to enrich at least one component from a mixed gas containing two or more components by providing the separation membrane, and a specific preferable configuration will be described later. do.
  • the specific gas separation membrane unit is a gas separation membrane unit having the above-mentioned configuration.
  • the gas separation system according to the embodiment of the present invention may include a specific gas separation membrane unit and another gas separation membrane unit. That is, the other gas separation membrane unit refers to a gas separation membrane unit further included in the gas separation membrane system in addition to the specific gas separation membrane unit included in at least the gas separation membrane system.
  • the other gas separation membrane unit may not have the above configuration as the specific gas separation membrane unit, but does not exclude the case where the other gas separation membrane unit has the above configuration as the specific gas separation membrane unit.
  • the specific gas separation membrane unit and other gas separation membrane units may be collectively referred to simply as a gas separation membrane unit.
  • the inlet (inlet) of the supplied gas is the inlet of the gas supplied to the gas separation membrane unit.
  • the supplied gas is supplied through a supply gas pipe connected to the inlet.
  • the supply gas pipe may be a connecting pipe connecting the inlet and the permeation outlet or the concentration outlet of another gas separation membrane unit.
  • the permeated gas discharge port (permeation outlet) is an outlet from which the gas (permeated gas) that has permeated the separation membrane in the gas separation membrane unit is discharged.
  • the permeated gas is discharged from the gas separation membrane unit through the permeated gas discharge pipe connected to the permeation outlet.
  • the concentrated gas discharge port is an outlet from which the remaining gas (concentrated gas) that does not permeate the separation membrane in the gas separation membrane unit is discharged.
  • the concentrated gas is discharged from the gas separation membrane unit through a concentrated gas discharge pipe connected to the concentration outlet.
  • the concentrated gas discharge pipe and the permeated gas discharge pipe may be connecting pipes connected to the inlets of different gas separation membrane units, respectively.
  • the permeated gas discharge pipe or the concentrated gas discharge pipe has a branch portion, and the pipe located upstream of the pipe having the branch portion has a confluence portion. The branch portion and the merging portion are connected by a branch pipe.
  • the pipe located upstream of the pipe having the branch portion is, in other words, the gas flow through the gas separation membrane unit (specific separation membrane unit) to which the pipe having the branch portion is connected when viewed from the branch portion.
  • the branch pipe is a pipe that branches the flowing gas in different directions, and the merging part flows to the gas that has flowed from the branch part to the pipe that is located upstream of the pipe that has the branch part. It is a pipe where gas merges.
  • the merging portion may be provided with a mixer that efficiently mixes the gas.
  • the gas discharged from the specific gas separation membrane unit is divided into a circulating flow that reaches the confluence from the branching part through the branching pipe and a recovery flow that is recovered as a gas containing the target component with high purity.
  • the gas separation system according to the embodiment of the present invention includes the following first and second embodiments.
  • the gas separation system according to the embodiment of the present invention may include at least one gas separation membrane unit, and at least one of the gas separation membrane units may be a specific gas separation membrane unit.
  • the following (a) or (b) can be mentioned.
  • Another gas separation membrane unit is further provided downstream of the specific gas separation membrane unit, and the permeated gas or concentrated gas that has passed through the specific gas separation membrane unit is supplied to the other gas separation membrane unit. system.
  • the first gas separation system is provided with a first gas separation membrane unit as another gas separation membrane unit and a second gas separation membrane unit as a specific gas separation membrane unit.
  • the gas separation system according to the embodiment of the above is specifically exemplified. That is, the gas separation system according to the first embodiment of the present invention includes a first gas separation membrane unit and a second gas separation membrane unit connected by a connecting pipe, and the first gas separation membrane unit is , A first inlet, a first permeation outlet, and a first concentration outlet, the second gas separation membrane unit comprises a second inlet, a second permeation outlet, and a second concentration outlet.
  • a first supply gas pipe is connected to the first inlet, and the connecting pipe connects the first permeation outlet or the first concentration outlet to the second inlet, and the first.
  • a second permeated gas discharge pipe is connected to the permeation outlet of 2
  • a second concentrated gas discharge pipe is connected to the second enrichment outlet, and the second permeate gas discharge pipe or the second is said.
  • the concentrated gas discharge pipe of No. 1 has a branch portion, the first supply gas pipe or the connecting pipe has a merging portion, and the branch portion and the merging portion are connected by a branch pipe. That is, the first embodiment is characterized in that it has at least two gas separation membrane units in the embodiment of the present invention.
  • the second embodiment there is only one specific gas separation membrane unit in the gas separation system, the supply gas pipe has a confluence, and the gas separation system is another gas separation membrane unit. Not equipped. That is, the second embodiment is characterized in that it has only one gas separation membrane unit in the embodiment of the present invention.
  • the gas separation system 100 includes a first gas separation membrane unit 1 and a second gas separation membrane unit 2 connected by a connecting pipe 8.
  • the first gas separation membrane unit 1 is another gas separation membrane unit
  • the second gas separation membrane unit 2 is a specific gas separation membrane unit. This will be described below.
  • FIGS. 1 to 4 are diagrams schematically illustrating the gas system according to the first embodiment of the present invention, respectively.
  • the first gas separation membrane unit 1 includes a first inlet 11, a first permeation outlet 12, and a first concentration outlet 13.
  • the second gas separation membrane unit 2 includes a second inlet 21, a second permeation outlet 22, and a second concentration outlet 23.
  • a first supply gas pipe 41 is connected to the first inlet 11.
  • the connecting pipe 8 connects the first permeation outlet 12 or the first concentration outlet 13 and the second inlet 21. At this time, the connecting pipe 8 also serves as a supply gas pipe connected to the second inlet 21. Further, the connecting pipe 8 also serves as a permeated gas discharge pipe connected to the first permeation outlet 12 or a concentrated gas discharge pipe connected to the first concentrating outlet 13. Of the first permeation outlet 12 or the first concentration outlet 13, the outlet to which the connecting pipe 8 is not connected is the permeation gas discharge pipe or the first permeation gas discharge pipe 51 or the first as the concentrated gas discharge pipe. Concentrated gas discharge pipe 61 is connected. Here, as shown in FIGS. 1 to 4, the first permeated gas discharge pipe 51 may merge with the second permeated gas discharge pipe 52, if necessary. Alternatively, the first concentrated gas discharge pipe 61 may merge with the second concentrated gas discharge pipe 62.
  • a second permeated gas discharge pipe 52 is connected to the second permeation outlet 22, and a second concentrated gas discharge pipe 62 is connected to the second concentration outlet 23.
  • the second permeated gas discharge pipe 52 or the second concentrated gas discharge pipe 62 has a branch portion 9, and the first supply gas pipe 41 or the connecting pipe 8 has a merging portion.
  • the branch portion 9 and the merging portion 10 are connected by a branch pipe 7.
  • the merging portion 10 is provided in the first supply gas pipe 41 or the connecting pipe 8 which is a pipe located upstream of the pipe having the branching portion in the aspects of FIGS. 1 to 4, but the merging portion has the branching portion. It may be provided in a pipe located upstream of the flow of the supply gas. That is, the merging portion may be provided at least on the upstream side via the second gas separation membrane unit 2 when viewed from the branching portion.
  • the branch pipe 7 is a pipe that branches the flowing gas in different directions, and the merging portion 10 connects the gas flowing through the branch pipe 7 from the branch portion 9 to the first supply gas pipe 41 or the connecting pipe 8. It is a pipe where the flowing gas joins.
  • the merging portion 10 may include a mixer that efficiently mixes the gas.
  • the connecting pipe 8 connects the first concentration outlet 13 and the second inlet 21, the second permeated gas discharge pipe 52 has the branch portion 9, and the second The supply gas pipe 41 of No. 1 has a confluence portion 10.
  • the connecting pipe 8 connects the first concentration outlet 13 and the second inlet 21, the second permeated gas discharge pipe 52 has a branch portion 9, and the connecting pipe 8 has a branch portion 9. It has a structure having a merging portion 10.
  • the connecting pipe 8 connects the first permeation outlet 12 and the second inlet 21, the second concentrated gas discharge pipe 62 has the branch portion 9, and the first supply.
  • the gas pipe 41 has a confluence portion 10.
  • the connecting pipe 8 connects the first permeation outlet 12 and the second inlet 21, the second concentrated gas discharge pipe 62 has a branch portion 9, and the connecting pipe 8 has a branch portion 9. It has a structure having a merging portion 10.
  • the gas discharged from the second gas separation membrane unit 2 is recovered together with the circulating flow reaching the confluence portion 10 from the branch portion 9 through the branch pipe 7 and the gas discharged from the first gas separation membrane unit 1. It is divided into recovery streams.
  • the concentration of the component to be permeated or concentrated in the separation membrane is increased, and the partial pressure affecting the filtration is increased, so that the permeation or concentration is promoted.
  • the selective separability in the gas separation membrane unit can be further improved, and the components to be enriched as a gas separation membrane unit can be obtained with high recovery rate and high purity. Can be done.
  • the concentration of the component to be permeated or concentrated in the separation membrane is relatively low. is doing. Therefore, in the configuration having the merging portion 10 in the connecting pipe 8 as exemplified in FIGS. 2 and 4, the effect of improving the partial pressure by supplying the circulating flow to the second gas separation membrane unit 2 is shown in FIG. And as illustrated in FIG. 3, the first supply gas pipe 41 is higher than the configuration having the merging portion 10.
  • the merging portion 10 may be provided at least on the upstream side via the second gas separation membrane unit 2 when viewed from the branching portion, and is concrete in the embodiments exemplified in FIGS. 1 to 4. It may be provided in either the first supply gas pipe 41 or the connecting pipe 8, but it is more preferable that the merging portion 10 is provided in the connecting pipe 8.
  • the connecting pipe 8 connects the first concentration outlet 13 of the first gas separation membrane unit 1 and the second inlet 21 of the second gas separation membrane unit 2. It is provided in. Further, the branch portion 9 is provided in the second permeated gas discharge pipe 52. 1 and 2 are diagrams showing a configuration example in this case. In such a configuration, since the component to be enriched is contained in the permeated gas with high purity, the permeated gas is recovered. That is, in such a configuration, it is preferable that the second permeated gas discharge pipe 52 is connected to the branch pipe 7 and the recovery device via the branch portion 9.
  • the connecting pipe 8 is the first. Is provided so as to connect the first permeation outlet 12 of the gas separation membrane unit 1 and the second inlet 21 of the second gas separation membrane unit 2. Further, the branch portion 9 is provided in the second concentrated gas discharge pipe 62. 3 and 4 are diagrams showing a configuration example in this case. In such a configuration, since the component to be enriched is contained in the concentrated gas with high purity, the concentrated gas is recovered. That is, in such a configuration, it is preferable that the second concentrated gas discharge pipe 62 is connected to the branch pipe 7 and the recovery device via the branch portion 9.
  • a part of the permeated gas discharged from the second gas separation membrane unit 2 is recovered as an enriched gas by using a gas separation system equipped with a membrane that selectively permeates the components to be enriched, and the permeation that is not recovered.
  • a gas separation system equipped with a membrane that selectively permeates the components to be enriched, and the permeation that is not recovered.
  • each gas separation membrane unit in the gas separation system may be composed of one gas separation membrane module, or may be configured by arranging a plurality of gas separation membrane modules in parallel or in series.
  • a flat membrane or a hollow fiber membrane can be used as the form of the membrane mounted on the gas separation membrane module, and the membrane is modularized and stored in a pressure vessel for use.
  • the number of gas separation membrane units inside is not particularly limited as long as it is two or more, and there may be three or more gas separation membrane units.
  • the second permeation outlet 22 or the second concentration outlet 23 of the second gas separation membrane unit and the inlet of another gas separation membrane unit that may be further contained may be connected by a connecting pipe.
  • the first supply gas pipe may be a connecting pipe connected to a permeation outlet or a concentration outlet of another gas separation membrane unit that may be further contained.
  • the merging portion may be provided at least on the upstream side via the second gas separation membrane unit 2 when viewed from the branch portion.
  • the confluence may be provided in a supply gas pipe or a connecting pipe connected to the inlet of the other gas separation membrane unit. good.
  • first gas separation membrane unit and the second gas separation membrane unit are combined is described in detail as a configuration example of the first embodiment, but the gas separation system of the first embodiment is described in detail.
  • a mode may be provided in which a plurality of branch portions, merging portions, and connecting pipes are provided.
  • a plurality of gas separation systems of the first embodiment are combined.
  • the first gas separation membrane unit and other gas separation membrane units that may be further contained may have a configuration corresponding to the specific separation membrane unit together with the second gas separation membrane unit.
  • the gas separation system according to the second embodiment of the present invention is a gas separation system that enriches at least one component from two or more kinds of gases, and the gas separation system includes a specific gas separation membrane unit.
  • the specific gas separation membrane unit includes an inlet for a supply gas (hereinafter, also referred to as an inlet), an outlet for a permeated gas (hereinafter, also referred to as a permeation outlet), and an outlet for a concentrated gas (hereinafter, also referred to as a concentrated outlet).
  • a supply gas pipe is connected to the inlet, a permeated gas discharge pipe is connected to the permeation outlet, a concentrated gas discharge pipe is connected to the concentrated outlet, and the permeated gas discharge pipe or the concentrated gas is connected.
  • the discharge pipe has a branch portion, and the pipe located upstream of the pipe having the branch portion has a merging portion, and the branch portion and the merging portion are connected by a branch pipe.
  • the gas separation system according to the second embodiment has only one specific gas separation membrane unit in the gas separation system, the supply gas pipe has a confluence, and the gas separation system has another gas separation membrane. It is characterized by not having a unit. That is, the gas separation system 200 according to the second embodiment of the present invention includes a gas separation membrane unit in which one module or a plurality of modules are connected in parallel or in series as a specific separation membrane unit. This will be described below.
  • the specific gas separation membrane unit 2 includes an inlet 21, a permeation outlet 22, and a concentration outlet 23, and a supply gas pipe 4 is connected to the inlet 21. Further, a permeation gas discharge pipe 5 is connected to the permeation outlet 22, and a concentrated gas discharge pipe 6 is connected to the concentration outlet 23.
  • FIG. 5 is a configuration example in which the permeated gas discharge pipe 5 has a branch portion.
  • the branch portion 9 and the merging portion 10 are connected by a branch pipe 7.
  • the branch pipe 7 is a pipe that branches the flowing gas in different directions
  • the merging portion 10 is a pipe in which the gas flowing through the branch pipe 7 from the branch portion 9 and the gas flowing in the supply gas pipe 4 merge. Is.
  • the merging portion 10 may include a mixer that efficiently mixes the gas.
  • the gas discharged from the specific gas separation membrane unit 2 is divided into a circulating flow that reaches the confluence portion 10 from the branch portion 9 through the branch pipe 7 and a recovery flow that is recovered as a gas containing the target component with high purity.
  • the branch portion Reference numeral 9 is provided in the permeated gas discharge pipe 5.
  • the permeated gas discharge pipe 5 is connected to the branch pipe 7 and the recovery device via the branch portion 9.
  • the branch portion 9 is provided in the concentrated gas discharge pipe 6.
  • the concentrated gas discharge pipe 6 is connected to the branch pipe 7 and the recovery device via the branch portion 9.
  • the gas separation membrane unit in the gas separation system according to the embodiment of the present invention includes a separation membrane.
  • the separation membrane is provided in the gas separation membrane unit, preferably in the form of a gas separation membrane module.
  • the gas separation membrane unit may be composed of one gas separation membrane module, or may be configured by arranging a plurality of gas separation membrane modules in parallel or in series.
  • the gas separation membrane module In the gas separation membrane module, filtration is continuously performed from the inlet to the concentration outlet. As the filtration progresses, the partial pressure of the components that permeate the membrane decreases, so the closer to the concentration outlet of the gas separation membrane module, the more difficult it is for the gas to permeate.
  • the second gas separation membrane unit is more difficult to permeate because the filtration is more advanced than that of the first gas separation membrane unit. Therefore, it is preferable to eliminate the concentration polarization on the membrane surface, which is a permeation resistance, by increasing the flow velocity of the supply gas.
  • the means include a method of thinning the flow path material on the supply side, and a method of sending the supply gas from the end face of the gas separation membrane module and discharging it from the outer peripheral portion in the case of a flat membrane.
  • the ratio of the circulating flow rate to the recovered flow rate is called the circulation ratio.
  • the larger the circulation ratio the easier it is to increase the amount of permeation in the gas separation membrane unit to which the circulating flow is supplied, but the smaller the amount of recovered flow, the smaller the flow rate of the obtained enriched gas tends to be. Therefore, the circulation ratio can be adjusted according to the desired recovery rate and purity of the enriched gas.
  • the circulation ratio is preferably adjusted in the range of 1 to 15. Since the more preferable range of the circulation ratio varies depending on the composition of the supply gas, it can be appropriately adjusted in this range.
  • the recovery rate is the ratio of the recovered enriched components to the enriched components in the supplied gas, and the closer the recovery rate is to 100%, the more efficiently the gas separation is performed.
  • the separation membrane in the first gas separation membrane unit and the separation membrane in the second gas separation membrane unit in the gas separation membrane unit of the first embodiment can be appropriately selected depending on the type of gas to be enriched.
  • the separation membrane the same ones used so far in the art can be used without particular limitation. Examples thereof include rubber-like polymer materials such as silicone resin and polybutadiene resin, polymer films such as polyimide, polyetherimide, polyamide, polyamideimide, polysulfone, polycarbonate, cellulose and carbon, and inorganic films such as zeolite, silica and palladium. ..
  • the separation membrane mounted on the gas separation membrane unit may be a homogeneous membrane, an asymmetric membrane composed of a homogeneous layer and a porous layer, a microporous membrane, or the like.
  • the form of storing the separation membrane in the pressure vessel may be any of a plate and frame type, a spiral type, a hollow fiber type and the like.
  • a polyamide membrane, a silica membrane, a zeolite membrane, or a graphene membrane can be used.
  • the polyamide film is preferable because it can be highly filled in the module and the amount of gas permeation can be increased. Therefore, in the first embodiment of the present invention, the separation membrane in the first gas separation membrane unit and the separation membrane in the second gas separation membrane unit are preferably polyamide films.
  • the same one as that used in the first embodiment can be selected.
  • the gas separation system according to the embodiment of the present invention can be used for methods such as hydrogen purification and recovery of methane from exhaust gas from a plant or biogas. That is, in the gas separation system, the enriched components in the supply gas supplied to the gas separation membrane unit are not particularly limited, but hydrogen and methane are preferable, and hydrogen is more preferable.
  • the gas separation system may be any one that enriches at least one component from a mixed gas containing two or more components, for example, enriches two or more components from a mixed gas containing three or more components. It may be a thing.
  • a pressure pump and a decompression pump can be provided before and after the gas separation membrane unit in order to improve the filtration efficiency.
  • ⁇ Enrichment method (gas production method)> A method for producing a gas using the gas separation system according to the present embodiment will be described.
  • a gas production method includes, for example, a step of supplying a mixed gas containing two or more components to the gas separation system according to the present embodiment, and a permeated gas or a concentrated gas that has passed through a gas separation membrane unit in the gas separation system. Including the step of recovering.
  • the enriched components contained in the gas discharged from the first gas separation membrane unit and not supplied to the second gas separation membrane unit It is preferable to have a step of controlling the amount of the gas to be 30% by volume or more and 80% by volume or less of the enriched components in the supply gas supplied to the first gas separation membrane unit.
  • the gas discharged from the first gas separation membrane unit 1 and not supplied to the second gas separation membrane unit 2 is a case where the connecting pipe 8 connects the first concentration outlet 13 and the second inlet 21. Refers to the permeated gas discharged from the first permeation outlet.
  • the connecting pipe 8 connects the first permeation outlet 12 and the second inlet 21, it means the concentrated gas discharged from the first enrichment outlet.
  • the ratio of the amount of gas is more preferably 40% by volume or more, further preferably 50% by volume or more.
  • the proportion of the amount of gas is preferably 70% by volume or less, more preferably 60% by volume or less.
  • the amount of enriched components contained in the gas discharged from the first gas separation membrane unit and not supplied to the second gas separation membrane unit is controlled by, for example, changing the supply gas amount, operating pressure, and temperature. can.
  • the concentration of the enriched component in the supply gas supplied to the second gas separation membrane unit is increased, and as a result, the partial pressure is increased and the performance related to permeation or concentration is improved. Therefore, while the separation in the first gas separation membrane unit is performed with high recovery rate and high purity, the separation in the second gas separation membrane unit can also be performed with high recovery rate and high purity.
  • the concentration of the enriched component contained in the feed gas is more preferably 10 mol% or less, further preferably 5 mol% or less.
  • the concentration of the enriched component contained in the feed gas can be controlled by using, for example, an adsorption method or an absorption method.
  • the porous support layer was added to an aqueous solution in which 2-ethylpiperazine was dissolved at 5.5% by mass, sodium dodecyldiphenyl ether disulfonate was 500 ppm (mass basis), and trisodium phosphate was 2.0% by mass.
  • an n-decane solution containing 0.2% by mass of trimesic acid chloride heated to 70 ° C. was uniformly applied to the surface of the porous support and held at a film surface temperature of 60 ° C. for 3 seconds.
  • the film surface temperature was cooled to 10 ° C. and left for 1 minute in an air atmosphere while maintaining this temperature to form a separation functional layer (polyamide film).
  • the obtained separation membrane was held vertically, drained, and washed with pure water at 60 ° C. for 2 minutes to obtain a separation membrane.
  • a separation film air-dried under a greenhouse at 25 ° C. was cut into a circle with an effective film area of 25 cm 2 and attached to a transmission cell separated by two chambers on the supply side and the permeation side, containing 60 mol% helium and 40 mol% oxygen.
  • the supplied gas was supplied at a pressure of 0.1 MPa, a temperature of 25 ° C., and 100 mL / min, and the permeation side was reduced to ⁇ 0.05 MPa for operation.
  • the permeated gas is sampled, the permeated gas is sent to gas chromatography having a TCD (thermal conductivity detector), the concentration of the permeated gas in this mixed gas is analyzed, and the permeability of helium and oxygen is determined. Calculated.
  • helium / oxygen selectivity was calculated by dividing the helium permeability by the oxygen permeability. As a result, the helium permeability was 10 nmol / m 2 / s / Pa, the oxygen permeability was 0.5 nmol / m 2 / s / Pa, and the helium / oxygen selectivity was 20.
  • Helium permeability of gas separation membrane to methane The permeability of helium and methane and the selectivity of helium / methane were calculated in the same manner as the evaluation of helium permeability to oxygen of the gas separation membrane except that the type of gas was changed from oxygen to methane.
  • the helium permeability was 10 nmol / m 2 / s / Pa
  • the methane permeability was 0.25 nmol / m 2 / s / Pa
  • the helium / methane selectivity was 40.
  • the prepared separation membrane was used to separate the mixed gas containing helium, but the separation membrane is a polyamide membrane that can selectively permeate relatively small gas such as hydrogen and helium. be. Therefore, when a mixed gas containing hydrogen is used for each gas separation system used in this example, the separation can be performed in the same manner, and the effect of the present invention can be obtained in the same manner. Further, as described above, the effect of the present invention can be obtained in the same manner even when the type of the separation membrane is appropriately changed according to the type of the enriched gas.
  • the laminate (number of leaves: 5 sheets, effective membrane area 1.0 m 2 ) is spirally surrounded by an ABS resin water collecting pipe (width: 300 mm, diameter: 17 mm, number of holes 80 x 2 rows of straight lines).
  • a separation membrane module with a diameter of 2.5 inches was produced.
  • the mixed gas containing helium and oxygen was separated by the gas separation system under the conditions shown in the table.
  • the operating temperature was 30 ° C., and the operating pressure of each gas separation membrane unit was 0.1 MPa.
  • the permeated gas 1 hour after the start of operation was sampled with a mass spectrometer (CGM2-051 manufactured by ULVAC SOLUTIONS), the volumes of helium and oxygen were analyzed, and the helium purity was calculated from the following formula.
  • Helium purity (% by volume) permeated helium amount (L / min) / permeated gas (total of helium and oxygen) amount (L / min) x 100 Subsequently, the permeated gas was sent to a soap membrane type flow meter (VP-1U manufactured by Horiba STEC), and the obtained measured value was taken as the permeated gas amount (L / min), and the helium recovery rate was calculated from the following formula.
  • the amount of supplied helium is a value obtained by dividing the product of the supply flow rate and the volume% of helium in each embodiment by 100.
  • the gas type was changed to a mixed gas containing 60 mol% of methane and 40 mol% of helium, and the methane purity and recovery rate were calculated by the same method as the helium purity and recovery rate. It was evaluated in the same way.
  • Example 1 In the gas separation system having the configuration shown in FIG. 1, a mixed gas (7 L / min) containing 60 mol% of helium and 40 mol% of oxygen was separated by the gas separation system. The results are shown in Table 1.
  • Examples 2 to 7 The performance of the gas separation system was evaluated in the same manner as in Example 1 except that the configuration of the gas separation system was changed to that shown in FIG. 2 and the number of modules and the circulation ratio were changed as shown in the table. The results are shown in Table 1.
  • Example 8 to 12 The supply gas was 60 mol% of methane and 40 mol% of helium, the configuration of the gas separation system was changed to that shown in FIG. 4, and the number of modules and the circulation ratio were changed as shown in Table 2. Similarly, the performance of the gas separation system was evaluated. The results are shown in Table 2.
  • Example 13 to 16 The supply gas was a mixed gas (3 L / min) prepared to have the composition shown in Table 4 containing helium and oxygen, the configuration of the gas separation system was changed to that shown in FIG. 5, and the number of modules and the circulation ratio were changed to those shown in Table 4. The performance of the gas separation system was evaluated in the same manner as in Example 1 except that the changes were made as per. The results are shown in Table 4.
  • Example 1 In the configuration of the gas separation system shown in FIG. 1, all the same as in Example 1 except that the second permeation gas discharge pipe in the second gas separation membrane unit is not provided and the second permeation outlet is sealed. The gas separation system was operated. The results are shown in Table 3. That is, although the partial pressure of helium in the first gas separation membrane unit increased, the filtration in the first gas separation membrane unit was not sufficiently performed, and the recovery rate of helium deteriorated.
  • the gas separation system was operated in the same manner as in Examples 13 to 16, except that the configuration of the gas separation system was such that no branch portion was provided as shown in FIG.
  • the gas separation membrane unit 1 in the gas separation system 300 of FIG. 6 has an inlet 11 to which the supply gas pipe 4 is connected, a permeation outlet 12 to which the permeation gas discharge pipe 5 is connected, and a concentration outlet to which the concentrated gas discharge pipe 6 is connected. 13 is provided.
  • Table 4 The results are shown in Table 4. That is, the partial pressure of helium in the gas separation membrane unit decreased, and the amount of helium permeation deteriorated, so that the purity of helium recovered by the gas separation system deteriorated.
  • the gas separation system in Examples 1 to 16 was able to achieve both high recovery rate and high purity for the components to be enriched. It can be said that such a gas separation system is excellent in separation for enriching at least one component from a mixed gas containing two or more components.
  • the gas separation system of the present invention can purify the components to be enriched with high recovery rate and high purity, it can be suitably used for separation of enriching at least one of two or more kinds of gases.
  • Gas Separation System 1 Gas Separation Membrane Unit (1st Gas Separation Membrane Unit) 11 Supply gas inlet (first inlet) 12 Permeated gas discharge port (first permeated outlet) 13 Concentrated gas discharge port (first concentrated gas outlet) 2 Specific gas separation membrane unit (second gas separation membrane unit) 21 Supply gas inlet (second inlet) 22 Permeated gas discharge port (second permeation outlet) 23 Concentrated gas outlet (second concentrated outlet) 4 Supply gas pipe 41 First supply gas pipe 5 Permeated gas discharge pipe 51 First permeated gas discharge pipe 52 Second permeated gas discharge pipe 6 Concentrated gas discharge pipe 61 First concentrated gas discharge pipe 62 Second enrichment Gas discharge pipe 7 Branch pipe 8 Connecting pipe 9 Branching part 10 Confluence part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、特定気体分離膜ユニットを備え、前記特定気体分離膜ユニットの供給気体の入口に供給気体管が接続され、透過気体の排出口に透過気体排出管が接続され、濃縮気体の排出口に濃縮気体排出管が接続され、前記透過気体排出管又は前記濃縮気体排出管は分岐部を有し、前記分岐部を有する管よりも上流に位置する管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている、気体分離システムに関する。

Description

気体分離システム及び気体の製造方法
 本発明は、気体分離膜を備える気体分離システムと、それを用いた気体の製造方法に関する。
 近年クリーンなエネルギー源として、水素が注目されている。水素は、天然気体及び石炭等の化石燃料を気体化し、主成分として水素と二酸化炭素を含む混合気体から二酸化炭素を除去することによって得られている。処理対象となる気体は水蒸気改質、水性気体シフトを経ており、高温、高圧であることが特徴である。さらに、水素はアンモニアを合成するハーバー・ボッシュ法にも用いられている。これは、水素と窒素を高温、高圧で反応させることでアンモニアを合成する方法であるが、生産プラントにおいて未反応の水素と窒素を分離回収するプロセスが必要である。
 低コストで混合気体から特定の気体を濃縮させる方法として、素材の持つ気体透過性の違いを利用して目的気体を選択的に透過させる膜分離法が注目されている。
 分離膜を備える気体分離システムに関し、例えば特許文献1には、前段に1つと後段に2つの気体分離膜ユニットを備え、後段の1つの気体分離膜ユニットから得られる気体の全量を前段の気体分離膜ユニットに循環させる技術が開示されている。
 特許文献2や3には、前段に1つの気体分離膜ユニットと後段に1つの気体分離膜ユニットを備え、後段から得られる気体の全量を前段の気体分離膜ユニットに循環させる技術が開示されている。
 また、特許文献4には、分離膜ユニットを透過したヘリウムを、供給気体に循環させながらヘリウムを回収する技術が開示されている。
日本国特開2016-187770号公報 日本国特開昭51-147480号公報 日本国特開平09-066217号公報 日本国特開2019-072658号公報
 しかしながら、従来の気体分離膜を備える気体分離システムでは、高回収率かつ高純度を両立して富化することが難しく、精製効率が十分でない場合があった。
 そこで本発明は、冨化される成分を高回収率かつ高純度で精製可能な気体分離システムを提供することを課題とする。
 上記目的を達成するための本発明は、以下の1~15を包含する。
1.2種以上の成分を含む混合気体から少なくとも1種の成分を富化する気体分離システムであって、
 前記気体分離システムは特定気体分離膜ユニットを備え、
 前記特定気体分離膜ユニットは、供給気体の入口、透過気体の排出口、及び濃縮気体の排出口を備え、
 前記供給気体の入口には、供給気体管が接続され、
 前記透過気体の排出口には、透過気体排出管が接続され、
 前記濃縮気体の排出口には、濃縮気体排出管が接続され、
 前記透過気体排出管又は前記濃縮気体排出管は分岐部を有し、前記分岐部を有する管よりも上流に位置する管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている、気体分離システム。
2.前記特定気体分離膜ユニットは、前記気体分離システム中に1つのみ存在し、
 前記供給気体管が前記合流部を有し、他の気体分離膜ユニットを備えない、前記1に記載の気体分離システム。
3.前記1または2に記載の気体分離システムを用いた気体の製造方法であって、
 前記特定気体分離膜ユニットへ供給される供給気体中の、富化される成分の濃度を30mol%以下に制御する工程を含む、気体の製造方法。
4.前記特定気体分離膜ユニットの上流に他の気体分離膜ユニットをさらに備え、前記他の気体分離膜ユニットを通った透過気体又は濃縮気体が、前記特定気体分離膜ユニットに供給される、前記1に記載の気体分離システム。
5.前記特定気体分離膜ユニットの下流に他の気体分離膜ユニットをさらに備え、前記特定気体分離膜ユニットを通った透過気体又は濃縮気体が、前記他の気体分離膜ユニットに供給される、前記1に記載の気体分離システム。
6.前記特定気体分離膜ユニット中の分離膜が、ポリアミド膜である、前記1、2、4または5のいずれか1に記載の気体分離システム。
7.前記特定気体分離膜ユニットへ供給される供給気体中の、富化される成分が水素である、前記1、2、4、5または6のいずれか1に記載の気体分離システム。
8.2種以上の成分を含む混合気体から少なくとも1種の成分を富化する気体分離システムであって、
 前記気体分離システムは、連結管によって接続された第1の気体分離膜ユニット及び第2の気体分離膜ユニットを含み、
 前記第1の気体分離膜ユニットは、第1の入口、第1の透過出口、及び第1の濃縮出口を備え、
 前記第2の気体分離膜ユニットは、第2の入口、第2の透過出口、及び第2の濃縮出口を備え、
 前記第1の入口には第1の供給気体管が接続され、
 前記連結管は、前記第1の透過出口又は前記第1の濃縮出口と、前記第2の入口とを連結し、
 前記第2の透過出口には、第2の透過気体排出管が接続され、
 前記第2の濃縮出口には、第2の濃縮気体排出管が接続され、
 前記第2の透過気体排出管又は前記第2の濃縮気体排出管は分岐部を有し、前記第1の供給気体管又は前記連結管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている、気体分離システム。
9.前記連結管が前記合流部を有する、前記8に記載の気体分離システム。
10.前記第1の気体分離膜ユニット中の分離膜及び前記第2の気体分離膜ユニット中の分離膜が、ポリアミド膜である、前記8または9に記載の気体分離システム。
11.前記連結管は、前記第1の濃縮出口と、前記第2の入口とを連結しており、
 前記分岐部は、前記第2の透過気体排出管に設けられる、前記8~10のいずれか1に記載の気体分離システム。
12.前記連結管は、前記第1の透過出口と、前記第2の入口とを連結しており、
 前記分岐部は、前記第2の濃縮気体排出管に設けられる、前記8~10のいずれか1に記載の気体分離システム。
13.前記第2の透過気体排出管又は前記第2の濃縮気体排出管は、前記分岐部を介して前記分岐管及び回収装置と連結している、前記11又は12に記載の気体分離システム。
14.前記第1の気体分離膜ユニット及び前記第2の気体分離膜ユニットへ供給される供給気体中の、富化される成分が水素である、前記11に記載の気体分離システム。
15.前記11又は12に記載の気体分離システムを用いた気体の製造方法であって、
 前記第1の気体分離膜ユニットから排出され、前記第2の気体分離膜ユニットへ供給されない気体に含まれる富化される成分の気体量を、前記第1の気体分離膜ユニットへ供給される供給気体中の富化される成分の30体積%以上80体積%以下に制御する工程を含む、気体の製造方法。
 本発明によって2種以上の成分を含む混合気体から、少なくとも1種の気体を高回収率と高純度を両立しながら富化することができる。
図1は、実施例1における気体分離システムのフロー図である。 図2は、実施例2~7における気体分離システムのフロー図である。 図3は、本発明の実施形態に係る気体分離システムの一例を示すフロー図である。 図4は、実施例8~12における気体分離システムのフロー図である。 図5は、実施例13~16における気体分離システムのフロー図である。 図6は、比較例3~6における気体分離システムのフロー図である。
 本発明は、2種以上の成分を含む混合気体から少なくとも1種の成分を富化する気体分離システムであって、前記気体分離システムは特定気体分離膜ユニットを備え、前記特定気体分離膜ユニットは、供給気体の入口(以下「入口」ともいう)、透過気体の排出口(以下「透過出口」ともいう)、及び濃縮気体の排出口(以下「濃縮出口」ともいう)を備え、前記供給気体の入口には、供給気体管が接続され、前記透過気体の排出口には、透過気体排出管が接続され、前記濃縮気体の排出口には、濃縮気体排出管が接続され、前記透過気体排出管又は前記濃縮気体排出管は分岐部を有し、前記分岐部を有する管よりも上流に位置する管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている、気体分離システムに関する。
 本発明の実施形態に係る気体分離システムは、特定気体分離膜ユニットを備える。ここで、気体分離膜ユニットとは、分離膜を備えることで、2種以上の成分を含む混合気体から少なくとも1種の成分を富化する性能を有する部分をいい、具体的な好ましい構成は後述する。特定気体分離膜ユニットは、気体分離膜ユニットのなかでも、上述した構成を備えるものをいう。本発明の実施形態に係る気体分離システムは、特定気体分離膜ユニットと、さらに他の気体分離膜ユニットとを備える場合がある。すなわち、他の気体分離膜ユニットとは、気体分離システムに少なくとも含まれる特定気体分離膜ユニットの他に、さらに気体分離膜システムに含まれる気体分離膜ユニットのことをいう。他の気体分離膜ユニットは特定気体分離膜ユニットとしての上記構成を備えなくてもよいが、特定気体分離膜ユニットとしての上記構成を備える場合をなんら排除するものではない。本明細書において、特定気体分離膜ユニットと他の気体分離膜ユニットとを総称して、単に気体分離膜ユニットという場合がある。
 気体分離膜ユニットにおいて、供給気体の入口(入口)は、気体分離膜ユニットに供給される気体の入口である。供給される気体は、入口に接続された供給気体管を通じて供給される。なお、供給気体管は、入口と、別の気体分離膜ユニットの透過出口または濃縮出口とを接続する連結管であってもよい。
 透過気体の排出口(透過出口)は、気体分離膜ユニット中の分離膜を透過した気体(透過気体)が排出される出口である。透過気体は、透過出口に接続された透過気体排出管を通じて気体分離膜ユニットから排出される。一方、濃縮気体の排出口(濃縮出口)は、気体分離膜ユニット中の分離膜を透過せずに残った気体(濃縮気体)が排出される出口である。濃縮気体は、濃縮出口に接続された濃縮気体排出管を通じて気体分離膜ユニットから排出される。濃縮気体排出管及び透過気体排出管はそれぞれ、別の気体分離膜ユニットの入口に接続される連結管であってもよい。
 また、特定気体分離膜ユニットにおいて、透過気体排出管又は濃縮気体排出管は分岐部を有し、前記分岐部を有する管よりも上流に位置する管は合流部を有する。そして、分岐部及び合流部は分岐管により連結されている。分岐部を有する管よりも上流に位置する管とは、換言すれば、分岐部からみて、分岐部を有する管が接続された気体分離膜ユニット(特定分離膜ユニット)を介して気体の流れの上流側に位置する管のことをいう。分岐管は、流れてくる気体を異なる方向へ分岐する配管であり、合流部は、分岐部から分岐管を流れてきた気体と、分岐部を有する管よりも上流に位置する管に流れている気体が合流する配管である。合流部は、気体を効率良く混合させる混合器を備えていても良い。
 特定気体分離膜ユニットから排出された気体は、分岐部から分岐管を通じて合流部に到達する循環流と、目的成分を高純度で含む気体として回収される回収流に分断される。循環流を設けることで、循環流が供給される気体分離膜ユニットにおいて、分離膜に透過させたい成分が高濃度化し、ろ過に影響する分圧が高まるため透過が促進される。この操作を気体分離膜ユニットにおける気体濃度が平衡になるまで繰り返すことで、気体分離膜ユニットにおける選択分離性をさらに高め、気体分離システムとして冨化される成分を高回収率かつ高純度で得ることができる。なお、上記は気体分離膜ユニットに搭載された分離膜が、いずれも冨化される成分を選択的に透過させる場合の説明であるが、分離膜が、いずれも冨化される成分を選択的に透過させない場合は、上述の「透過」を「濃縮」に読み替えることができ、同様に本発明の効果を得られる。以下、同様の読み替えが可能な部分について、「透過又は濃縮」という場合がある。
 本発明の実施形態に係る気体分離システムは、以下の第1の実施形態及び第2の実施形態を含む。
 本発明の実施形態に係る気体分離システムは、気体分離膜ユニットを少なくとも1つ含むものであればよく、該気体分離膜ユニットのうち少なくとも1つが特定気体分離膜ユニットであればよい。ここで、気体分離システムが気体分離膜ユニットを2つ以上備える場合の構成例として、下記(a)又は(b)が挙げられる。
 (a)特定気体分離膜ユニットの上流に他の気体分離膜ユニットをさらに備え、他の気体分離膜ユニットを通った透過気体又は濃縮気体が、特定気体分離膜ユニットに供給される、気体分離システム。
 (b)特定気体分離膜ユニットの下流に他の気体分離膜ユニットをさらに備え、前記特定気体分離膜ユニットを通った透過気体又は濃縮気体が、他の気体分離膜ユニットに供給される、気体分離システム。
 なかでも、上記(a)の場合において、他の気体分離膜ユニットとして第1の気体分離膜ユニットを備え、特定気体分離膜ユニットとして第2の気体分離膜ユニットを備える気体分離システムを、第1の実施形態に係る気体分離システムとして具体的に例示する。すなわち、本発明の第1の実施形態に係る気体分離システムは、連結管によって接続された第1の気体分離膜ユニット及び第2の気体分離膜ユニットを含み、前記第1の気体分離膜ユニットは、第1の入口、第1の透過出口、及び第1の濃縮出口を備え、前記第2の気体分離膜ユニットは、第2の入口、第2の透過出口、及び第2の濃縮出口を備え、前記第1の入口には第1の供給気体管が接続され、前記連結管は、前記第1の透過出口又は前記第1の濃縮出口と、前記第2の入口とを連結し、前記第2の透過出口には、第2の透過気体排出管が接続され、前記第2の濃縮出口には、第2の濃縮気体排出管が接続され、前記第2の透過気体排出管又は前記第2の濃縮気体排出管は分岐部を有し、前記第1の供給気体管又は前記連結管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている。
 つまり第1の実施形態は、本発明の実施形態の中でも気体分離膜ユニットを少なくとも2つ有する点に特徴を有する。
 第2の実施形態の気体分離システムにおいては、特定気体分離膜ユニットは、気体分離システム中に1つのみ存在し、供給気体管が合流部を有し、気体分離システムは他の気体分離膜ユニットを備えない。つまり第2の実施形態は、本発明の実施形態の中でも気体分離膜ユニットを1つのみ有する点に特徴を有する。
 以下、このような第1の実施形態と第2の実施形態を包含する本発明の実施の形態について、詳細に説明する。
 <気体分離システムおよび気体分離膜ユニット>
 (第1の実施形態:複数の気体分離膜ユニットを有する気体分離システム)
 第1の実施形態に係る気体分離システム100は、連結管8によってつながれた第1の気体分離膜ユニット1、第2の気体分離膜ユニット2を含んで構成される。ここで、第1の気体分離膜ユニット1は他の気体分離膜ユニットであり、第2の気体分離膜ユニット2は特定気体分離膜ユニットである。以下、これについて説明する。
 図1~4はそれぞれ、本発明の第1の実施形態に係る気体システムを模式的に例示する図である。図1~4において、第1の気体分離膜ユニット1は、第1の入口11、第1の透過出口12、及び第1の濃縮出口13を備える。第2の気体分離膜ユニット2は、第2の入口21、第2の透過出口22、及び第2の濃縮出口23を備える。第1の入口11には、第1の供給気体管41が接続されている。
 連結管8は、第1の透過出口12又は第1の濃縮出口13と、第2の入口21とを接続している。このとき、連結管8は、第2の入口21に接続される供給気体管を兼ねる。また、連結管8は、第1の透過出口12に接続される透過気体排出管又は第1の濃縮出口13に接続される濃縮気体排出管を兼ねる。第1の透過出口12又は第1の濃縮出口13のうち、連結管8が接続されていない出口には、透過気体排出管又は前記濃縮気体排出管として第1の透過気体排出管51又は第1の濃縮気体排出管61が接続される。ここで、図1~4に示すように、必要に応じて第1の透過気体排出管51は第2の透過気体排出管52と合流してもよい。又は、第1の濃縮気体排出管61は第2の濃縮気体排出管62と合流してもよい。
 第2の透過出口22には、第2の透過気体排出管52が接続され、第2の濃縮出口23には、第2の濃縮気体排出管62が接続されている。第2の透過気体排出管52又は前記第2の濃縮気体排出管62は分岐部9を有し、第1の供給気体管41又は連結管8は合流部を有する。ここで、分岐部9及び合流部10は分岐管7により連結されている。合流部10は、図1~4の態様においては分岐部を有する管よりも上流に位置する管である第1の供給気体管41又は連結管8に設けられるが、合流部は、分岐部を有する管よりも供給気体の流れの上流に位置する管に設けられればよい。すなわち、合流部は、分岐部からみて、少なくとも第2の気体分離膜ユニット2を介した上流側に設けられればよい。
 分岐管7は、流れてくる気体を異なる方向へ分岐する配管であり、合流部10は、分岐部9から分岐管7を流れてきた気体と、第1の供給気体管41又は連結管8に流れている気体が合流する配管である。合流部10は、気体を効率良く混合させる混合器を備えていても良い。
 ここで、図1に例示される構成は、連結管8が第1の濃縮出口13と第2の入口21とを接続し、第2の透過気体排出管52が分岐部9を有し、第1の供給気体管41が合流部10を有する構成である。
 図2に例示される構成は、連結管8が第1の濃縮出口13と第2の入口21とを接続し、第2の透過気体排出管52が分岐部9を有し、連結管8が合流部10を有する構成である。
 図3に例示される構成は、連結管8が第1の透過出口12と第2の入口21とを接続し、第2の濃縮気体排出管62が分岐部9を有し、第1の供給気体管41が合流部10を有する構成である。
 図4に例示される構成は、連結管8が第1の透過出口12と第2の入口21とを接続し、第2の濃縮気体排出管62が分岐部9を有し、連結管8が合流部10を有する構成である。
 第2の気体分離膜ユニット2から排出された気体は、分岐部9から分岐管7を通じて合流部10に到達する循環流と、第1の気体分離膜ユニット1から排出された気体と共に回収される回収流に分断される。循環流を設けることで、循環流が供給される気体分離膜ユニットにおいて、分離膜に透過又は濃縮させたい成分が高濃度化し、ろ過に影響する分圧が高まるため透過又は濃縮が促進される。この操作を気体分離膜ユニットにおける気体濃度が平衡になるまで繰り返すことで、気体分離膜ユニットにおける選択分離性をさらに高め、気体分離システムとして冨化される成分を高回収率かつ高純度で得ることができる。
 特に、第1の気体分離膜ユニット1から第2の気体分離膜ユニット2へと排出される気体、すなわち連結管8を通過する気体において、分離膜を透過又は濃縮させたい成分濃度が比較的低下している。そのため、図2及び図4に例示されるような、連結管8に合流部10を有する構成においては、第2の気体分離膜ユニット2への循環流供給による分圧の向上効果は、図1や図3に例示されるような、第1の供給気体管41が合流部10を有する構成に比べて高くなる。
 したがって、第1の実施形態においては、合流部10は分岐部からみて、少なくとも第2の気体分離膜ユニット2を介した上流側に設けられればよく、図1~4に例示される態様において具体的には第1の供給気体管41又は連結管8のいずれかに設けられていれば構わないが、合流部10が連結管8に設けられることがより好ましい。
 第1の気体分離膜ユニット1および第2の気体分離膜ユニット2に搭載された分離膜が、いずれも冨化される成分を選択的に透過させる場合、つまり非冨化される成分よりも冨化される成分の透過度が高い場合、連結管8は、第1の気体分離膜ユニット1の第1の濃縮出口13と第2の気体分離膜ユニット2の第2の入口21を連結するように設けられる。また分岐部9は、第2の透過気体排出管52に設けられる。図1及び図2は、この場合の構成例を示す図である。かかる構成において、冨化される成分は透過気体に高純度で含まれるため、透過気体を回収する。すなわち、かかる構成において、第2の透過気体排出管52は、分岐部9を介して分岐管7及び回収装置と連結していることが好ましい。
 一方で、第1の気体分離膜ユニット1および第2の気体分離膜ユニット2に搭載された分離膜が、いずれも冨化される成分を選択的に透過させない場合、連結管8は、第1の気体分離膜ユニット1の第1の透過出口12と第2の気体分離膜ユニット2の第2の入口21を連結するように設けられる。また、分岐部9は第2の濃縮気体排出管62に設けられる。図3及び図4は、この場合の構成例を示す図である。かかる構成において、冨化される成分は濃縮気体に高純度で含まれるため、濃縮気体を回収する。つまり、かかる構成において、第2の濃縮気体排出管62は、分岐部9を介して分岐管7及び回収装置と連結していることが好ましい。
 冨化される成分を選択透過させる膜を搭載した気体分離システムを用いて第2の気体分離膜ユニット2から排出される透過気体の一部を富化気体として回収すると共に、回収しなかった透過気体を第2の気体分離膜ユニット2の供給気体と合流させることで、第2の気体分離膜ユニット2の供給側での冨化される成分の分圧が高まり、冨化される成分の透過量が増加するため、冨化される成分を高回収率かつ高純度で得ることができる。
 また、冨化される成分を選択透過させる膜を搭載した場合と同様の構成の気体分離システムにおいて、逆に非冨化される成分を選択透過する膜を用いて同様の操作を行うと、第2の気体分離膜ユニット2の、供給側の非冨化される成分の分圧が高まり、非冨化される成分の透過量が増加する。つまり透過側で非冨化される成分を高回収率かつ高純度で得ることができる。
 ここで、気体分離システムにおける各気体分離膜ユニットは、一本の気体分離膜モジュールから構成されてもよく、あるいは複数本の気体分離膜モジュールを並列または直列に配列して構成されてよい。気体分離膜モジュールに搭載される膜の形態は平膜や中空糸膜を用いることができ、モジュール化して圧力容器に収納して使用される。
 なお、ここでは第1の気体分離膜ユニットおよび第2の気体分離膜ユニットを組み合わせた構成を、第1の実施形態の構成例として詳述しているが、第1の実施形態の気体分離システム中の気体分離膜ユニットの数は、2つ以上であれば特に限定されるものではなく、気体分離膜ユニットは3つ以上あってもよい。例えば、第2の気体分離膜ユニットの第2の透過出口22又は第2の濃縮出口23と、さらに含まれ得る他の気体分離膜ユニットの入口とが連結管で接続されていてもよいし、第1の供給気体管は、さらに含まれ得る他の気体分離膜ユニットの透過出口又は濃縮出口と接続された連結管であってもよい。また、気体分離膜ユニットが3つ以上で構成される場合も、上述の通り、合流部は分岐部からみて、少なくとも第2の気体分離膜ユニット2を介した上流側に設けられればよい。例えば第1の気体分離膜ユニットより上流にさらに他の気体分離膜ユニットを含む場合、合流部は、当該他の気体分離膜ユニットの入口に接続された供給気体管あるいは連結管に設けられてもよい。
 同様に、ここでは第1の気体分離膜ユニットおよび第2の気体分離膜ユニットを組み合わせた場合を第1の実施形態の構成例として詳述しているが、第1の実施形態の気体分離システムにおいては、複数の気体分離システムを連結した構造とすることで、複数の分岐部や合流部、連結管を有する態様としてもよく、このように第1の実施形態の気体分離システムを複数組み合わせても、同様の効果を得ることができる。あるいは、第1の気体分離膜ユニットや、さらに含まれ得る他の気体分離膜ユニットが、第2の気体分離膜ユニットとともに特定分離膜ユニットに該当する構成を備えてもよい。
 (第2の実施形態:1つのみの気体分離膜ユニットを有する気体分離システム)
 本発明の第2の実施形態に係る気体分離システムは、2種以上の気体から少なくとも1種の成分を富化する気体分離システムであって、前記気体分離システムは特定気体分離膜ユニットを備え、前記特定気体分離膜ユニットは、供給気体の入口(以下、入口ともいう)、透過気体の排出口(以下、透過出口ともいう)、及び濃縮気体の排出口(以下、濃縮出口ともいう)を備え、前記入口には、供給気体管が接続され、前記透過出口には、透過気体排出管が接続され、前記濃縮出口には、濃縮気体排出管が接続され、前記透過気体排出管又は前記濃縮気体排出管は分岐部を有し、前記分岐部を有する管よりも上流に位置する管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結している。そして、第2の実施形態に係る気体分離システムは、特定気体分離膜ユニットが気体分離システム中に1つのみ存在し、供給気体管が合流部を有し、気体分離システムは他の気体分離膜ユニットを備えないことを特徴とする。つまり本発明の第2の実施形態に係る気体分離システム200では、1本のモジュール、または複数のモジュールが並列や直列につながれた気体分離膜ユニットを特定分離膜ユニットとして備える。以下、これについて説明する。
 図5に例示するように、特定気体分離膜ユニット2は、入口21、透過出口22、及び濃縮出口23を備え、入口21には、供給気体管4が接続されている。また、透過出口22には透過気体排出管5が接続され、濃縮出口23には、濃縮気体排出管6が接続されている。
 さらに、透過気体排出管5又は濃縮気体排出管6は分岐部9を有する。図5は、透過気体排出管5が分岐部を有する場合の構成例である。そして、分岐部を有する管、すなわち透過気体排出管5又は濃縮気体排出管6よりも上流に位置する管である供給気体管4は合流部10を有する。分岐部9及び合流部10は分岐管7により連結されている。分岐管7は流れてくる気体を異なる方向へ分岐する配管であり、合流部10は、分岐部9から分岐管7を流れてきた気体と、供給気体管4に流れている気体が合流する配管である。合流部10は、気体を効率良く混合させる混合器を備えていても良い。
 特定気体分離膜ユニット2から排出された気体は、分岐部9から分岐管7を通じて合流部10に到達する循環流と、目的成分を高純度で含む気体として回収される回収流に分断される。循環流を設けることで、循環流が供給される気体分離膜ユニットにおいて、分離膜に透過又は濃縮させたい成分が高濃度化し、ろ過に影響する分圧が高まるため透過又は濃縮が促進される。この操作を気体分離膜ユニットにおける気体濃度が平衡になるまで繰り返すことで、気体分離膜ユニットにおける選択分離性をさらに高め、気体分離システムとして冨化される成分を高回収率かつ高純度で得ることができる。
 特定気体分離膜ユニット2に搭載された分離膜が、冨化される成分を選択的に透過させる場合、つまり非冨化される成分よりも冨化される成分の透過度が高い場合、分岐部9は、透過気体排出管5に設けられる。かかる構成において、冨化される成分は透過気体に高純度で含まれるため、透過気体を回収する。すなわち、かかる構成において、透過気体排出管5は、分岐部9を介して分岐管7及び回収装置と連結していることが好ましい。
 特定気体分離膜ユニット2に搭載された分離膜が、冨化される成分を選択的に透過させない場合、分岐部9は濃縮気体排出管6に設けられる。かかる構成において、冨化される成分は濃縮気体に高純度で含まれるため、濃縮気体を回収する。つまり、かかる構成において、濃縮気体排出管6は、分岐部9を介して分岐管7及び回収装置と連結していることが好ましい。
 <気体分離膜モジュール>
 本発明の実施形態に係る気体分離システム中の気体分離膜ユニットは、分離膜を備える。分離膜は、好ましくは気体分離膜モジュールの形態で気体分離膜ユニットに備えられる。気体分離膜ユニットは、一本の気体分離膜モジュールから構成されていても、複数本の気体分離膜モジュールを並列または直列に配列して構成されてもよい。
 気体分離膜モジュールでは、入口から濃縮出口に向かって連続的にろ過が行われる。ろ過が進むと膜を透過する成分の分圧が低下するため、気体分離膜モジュールの濃縮出口に近づくほど気体が透過しがたくなる。特に第1の実施形態において、第2の気体分離膜ユニットでは、第1の気体分離膜ユニットに比べてろ過が進んでいるため透過しがたい。そのため、透過抵抗となる膜面での濃度分極を供給気体の高流速化により解消させることが好ましい。その手段としては供給側流路材を薄型化する方法や、平膜の場合では気体分離膜モジュールの端面から供給気体を送り込み外周部から排出する方法が挙げられる。
 <循環比>
 回収流量に対する循環流量の比率を循環比とよぶ。循環比が大きくなるほど循環流が供給される気体分離膜ユニットでの透過量を増加させやすいが、回収流の量が小さくなるため得られる富化気体の流量は減少する傾向がある。そのため、循環比は、所望の富化気体の回収率や純度に応じて調整できる。例えば、循環比は1~15の範囲で調整することが好ましい。なお、循環比のより好ましい範囲は、供給気体の組成によって変わるため、本範囲において適宜調整できる。
 循環比の調整手段としては、連結管または回収流の配管に設けられたバルブの開度を変更することが挙げられる。なお、回収率とは供給気体中の富化される成分に対する回収した富化される成分の比率であり、回収率が100%に近いほど効率良く気体分離が行われていることになる。
 <分離膜>
 第1の実施形態の気体分離システム中の第1の気体分離膜ユニット中の分離膜及び第2の気体分離膜ユニット中の分離膜は、富化される気体の種類に応じて適宜選択できる。分離膜としては、当該技術分野においてこれまで用いられているものと同様のものを特に制限なく用いることができる。例えばシリコーン樹脂、ポリブタジエン樹脂などのゴム状ポリマー材料、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリカーボネート、セルロース、炭素などの高分子膜や、ゼオライトやシリカ、パラジウムなどの無機膜が挙げられる。
 また気体分離膜ユニットに搭載される分離膜は、均質膜、均質層と多孔層とからなる非対称膜、微多孔質膜などいずれであってもよい。分離膜の圧力容器への収納形態も、プレートアンドフレーム型、スパイラル型、中空糸型などいずれであってもよい。水素やヘリウムなどの比較的サイズの小さい気体を透過させる場合、ポリアミド膜やシリカ膜、ゼオライト膜、グラフェン膜を用いることができる。特に、ポリアミド膜はモジュールに高充填でき、気体の透過量を高めることができるため好ましい。したがって、本発明の第1の実施形態において、第1の気体分離膜ユニット中の分離膜及び第2の気体分離膜ユニット中の分離膜は、ポリアミド膜であることが好ましい。
 なお、第2の実施形態に係る気体分離システム中の気体分離膜ユニット中の分離膜においても、第1の実施形態で用いられるものと同様のものを選択することができる。また、この他の実施形態における、特定気体分離膜ユニットを含む各気体分離膜ユニット中の分離膜についても同様であり、好ましくはポリアミド膜が用いられる。
 <ポンプによるろ過効率向上>
 本発明の実施形態に係る気体分離システムは、例えば、水素精製、及びプラントからの排ガスやバイオガスからのメタンの回収などの方法に使用することができる。すなわち、気体分離システムにおいて、気体分離膜ユニットへ供給される供給気体中の、富化される成分は特に限定されないが、水素やメタンが好ましく、水素がより好ましい。気体分離システムは、2種以上の成分を含む混合気体から少なくとも1種の成分を富化するものであればよく、例えば3種以上の成分を含む混合気体から2種以上の成分を富化するものであってもよい。本発明の実施形態に係る気体分離システムにおいて、ろ過効率を高めるために気体分離膜ユニットの前後に昇圧ポンプや減圧ポンプを設けることができる。
 <富化方法(気体の製造方法)>
 本実施形態に係る気体分離システムを用いた気体の製造方法について説明する。かかる気体の製造方法は、例えば本実施形態に係る気体分離システムに2種以上の成分を含む混合気体を供給する工程と、前記気体分離システム中の気体分離膜ユニットを通った透過気体又は濃縮気体を回収する工程と、を含む。
 (複数の気体分離膜ユニットを有する気体分離システム)
 第1の実施形態に係る気体分離システムを用いた気体の製造方法においては、第1の気体分離膜ユニットから排出され、第2の気体分離膜ユニットへ供給されない気体に含まれる富化される成分の気体量を、第1の気体分離膜ユニットへ供給される供給気体中の富化される成分の30体積%以上80体積%以下に制御する工程を有することが好ましい。第1の気体分離膜ユニット1から排出され、第2の気体分離膜ユニット2へ供給されない気体とは、連結管8が第1の濃縮出口13と第2の入口21とを接続している場合は第1の透過出口から排出される透過気体のことをいう。また、連結管8が第1の透過出口12と第2の入口21とを接続している場合は第1の濃縮出口から排出される濃縮気体のことをいう。かかる気体量の割合は40体積%以上がより好ましく、50体積%以上がさらに好ましい。また、かかる気体量の割合は70体積%以下が好ましく、60体積%以下がさらに好ましい。第1の気体分離膜ユニットから排出され、第2の気体分離膜ユニットへ供給されない気体に含まれる富化される成分の気体量は、例えば供給気体量や運転圧力、温度を変更することで制御できる。
 このようにすることで、第2の気体分離膜ユニットに供給される供給気体中の富化される成分濃度が高まり、その結果、高分圧となり透過又は濃縮に係る性能が向上する。そのため、第1の気体分離膜ユニットでの分離を高回収率、高純度で行いつつ、第2の気体分離膜ユニットにおいても高回収率、高純度で分離できる。
 (1つのみの気体分離膜ユニットを有する気体分離システム)
 第2の実施形態に係る気体分離システムを用いた気体の製造方法においては、特定気体分離膜ユニットへ供給される供給気体中に含まれる富化される成分の濃度を30mol%以下に制御する工程、つまり供給される供給気体中の富化される成分の濃度を低く保つ工程を有することが好ましい。供給気体中に含まれる富化される成分の濃度は10mol%以下がより好ましく、5mol%以下がさらに好ましい。供給気体中に含まれる富化される成分の濃度は、例えば吸着法や吸収法を用いることで制御できる。
 第2の実施形態に係る気体分離システムを用いる場合、供給気体が始めに分離膜によって処理される特定気体分離膜ユニットにおいて、供給される供給気体中の富化される成分の濃度を高めることができる。そのため、供給気体中の富化される成分の濃度が高濃度の場合よりも低濃度の場合の方が高い効果を発揮することができる。なお、かかる態様は、特定気体分離膜ユニットに搭載された分離膜が、冨化される成分を選択的に透過させる場合及び冨化される成分を選択的に透過させない場合のいずれにおいても好適である。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
 (気体分離膜の作製)
 抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm/秒)上に、ポリスルホンの18質量%ジメチルホルムアミド(DMF)溶液を室温(25℃)、塗布厚み190μmでキャストした後、直ちに純水中に5分間浸漬することによって、基材である不織布上に多孔性支持層を形成した。
 次に、2-エチルピペラジンが5.5質量%、ドデシルジフェニルエーテルジスルホン酸ナトリウムが500ppm(質量基準)、リン酸3ナトリウムが2.0質量%になるように溶解した水溶液に、多孔性支持層を形成した基材を10秒間浸漬した後、エアーノズルから窒素を吹き付けて、余分な水溶液を除去した。続いて70℃に加温した0.2質量%のトリメシン酸クロリドを含むn-デカン溶液を、多孔性支持体の表面に均一に塗布し、60℃の膜面温度で3秒間保持した後に、膜面温度を10℃まで冷却し、この温度を維持したまま空気雰囲気下で1分間放置し、分離機能層(ポリアミド膜)を形成した。得られた分離膜を垂直に保持して液切りし、60℃の純水で2分間洗浄して分離膜を得た。
 (気体分離膜の酸素に対するヘリウム透過性)
 25℃の温室下で風乾した分離膜を有効膜面積25cmの円形に切り取り、供給側と透過側の2つのチャンバに隔てられた透過セルに取り付け、ヘリウム60モル%、酸素40モル%を含む供給気体を圧力0.1MPa、温度25℃、100mL/minにて供給し透過側を-0.05MPaに減圧して運転した。運転開始から30分間後に透過気体をサンプリングし、TCD(熱伝導度検出器)を有するガスクロマトグラフィーへ透過気体を送り、この混合気体における透過気体の濃度を分析し、ヘリウムおよび酸素の透過度を算出した。また、ヘリウム透過度を酸素透過度で除して、ヘリウム/酸素選択性を算出した。その結果、ヘリウム透過度は10nmol/m/s/Pa、酸素透過度は0.5nmol/m/s/Pa、ヘリウム/酸素選択性は20であった。
 (気体分離膜のメタンに対するヘリウム透過性)
 気体の種類を酸素からメタンに変更したこと以外は全て気体分離膜の酸素に対するヘリウム透過性評価と同様にして、ヘリウムおよびメタンの透過度、ヘリウム/メタン選択性を算出した。その結果、ヘリウム透過度は10nmol/m/s/Pa、メタン透過度は0.25nmol/m/s/Pa、ヘリウム/メタン選択性は40であった。
 なお、本実施例では作製した分離膜を用い、ヘリウムを含む混合気体に対し分離を行ったが、当該分離膜は水素やヘリウムなど、比較的サイズの小さい気体を選択的に透過できるポリアミド膜である。したがって、本実施例で用いた各気体分離システムに水素を含む混合気体を用いた場合も同様に分離を行うことができ、同様に本発明の効果を得ることができる。また、富化される気体の種類に応じて分離膜の種類を適宜変更した場合であっても、同様に本発明の効果が得られることは上述の通りである。
 (気体分離膜モジュール)
 気体分離膜を幅300mmに裁断した後、25℃の温室下で風乾後に折り畳み、供給側流路材(Diomesh PET-Screen 100-55PT(innovex社製))を折り畳まれた分離膜に挟んだ。気体分離膜の透過側面に、透過側流路材(Diomesh PET-Screen 100-55PT(innovex社製))を配置し、透過側流路材の端部3辺に接着剤を塗布し、これらの積層物(リーフ数:5枚、有効膜面積1.0m)を、ABS樹脂製集水管(幅:300mm、径:17mm、孔数80個×直線2列)にスパイラル状に巻囲し、直径2.5インチの分離膜モジュールを作製した。
 (ヘリウム回収率およびヘリウム純度)
 表に示す条件で、気体分離システムによるヘリウム及び酸素を含む混合気体の分離を行った。運転温度は30℃であり、各気体分離膜ユニットの運転圧力は0.1MPaであった。
 運転開始から1時間後の透過気体を質量分析計(ULVAC SOLUTIONS社製 CGM2-051)でサンプリングし、ヘリウムと酸素の体積を分析し、下記式からヘリウム純度を算出した。
 ヘリウム純度(体積%)=透過ヘリウム量(L/分)/透過気体(ヘリウムと酸素の合計)量(L/分)×100
 引き続き、透過気体を石鹸膜式流量計(堀場エステック社製 VP-1U)に送り込み、得られた測定値を透過気体量(L/分)とし、下記式からヘリウム回収率を算出した。
 ヘリウム回収率(体積%)=供給ヘリウム量(L/分)/透過気体(ヘリウムと酸素の合計)量(L/分)×(ヘリウム純度/100)×100
 なお、供給ヘリウム量は、各実施例における供給流量とヘリウム体積%の積を100で除した値である。
 (メタン回収率およびメタン純度)
 気体の種類としてメタン60モル%及びヘリウム40モル%を含む混合気体に変更し、ヘリウム純度および回収率と同様の方法でメタン純度および回収率を算出したこと以外は全てヘリウム回収率およびヘリウム純度と同様にして評価した。
 (実施例1)
 図1に示す構成の気体分離システムにおいて、気体分離システムによるヘリウム60モル%及び酸素40モル%を含む混合気体(7L/分)の分離を行った。結果を表1に示す。
 (実施例2~7)
 気体分離システムの構成を図2に示すものに変更し、モジュール本数及び循環比を表の通りに変更したこと以外は全て実施例1と同様にして、気体分離システムの性能を評価した。結果を表1に示す。
 (実施例8~12)
 供給気体をメタン60モル%及びヘリウム40モル%とし、気体分離システムの構成を図4に示すものに変更し、モジュール本数及び循環比を表2の通りに変更したこと以外は全て実施例1と同様にして、気体分離システムの性能を評価した。結果を表2に示す。
 (実施例13~16)
 供給気体をヘリウム及び酸素を含み、表4に示す組成に調製した混合気体(3L/分)とし、気体分離システムの構成を図5に示すものに変更し、モジュール本数及び循環比を表4の通りに変更したこと以外は全て実施例1と同様にして、気体分離システムの性能を評価した。結果を表4に示す。
 (比較例1)
 図1に示す気体分離システムの構成において、第2の気体分離膜ユニットにおける第2の透過気体排出管を設けず、第2の透過出口を封止したこと以外は全て実施例1と同様にして気体分離システムを運転した。結果を表3に示す。すなわち第1の気体分離膜ユニットでのヘリウム分圧が高くなったものの、第1の気体分離膜ユニットでのろ過が十分に行われずヘリウムの回収率が悪化した。
 (比較例2)
 図2に示す気体分離システムの構成において、第2の気体分離膜ユニットにおいて第2の透過気体排出管に分岐部を設けなかったこと以外は、全て実施例2と同様にして、気体分離システムを運転した。結果を表3に示す。すなわち第2の気体分離膜ユニットにおけるヘリウム分圧が低下し、ヘリウム透過量が悪化したため、気体分離システムで回収したヘリウムの純度が悪化した。
 (比較例3~6)
 気体分離システムの構成を図6に示すように分岐部を設けない構成としたこと以外は、全て実施例13~16と同様にして、気体分離システムを運転した。図6の気体分離システム300における気体分離膜ユニット1は、供給気体管4が接続された入口11、透過気体排出管5が接続された透過出口12、濃縮気体排出管6が接続された濃縮出口13を備える。結果を表4に示す。すなわち気体分離膜ユニットにおけるヘリウム分圧が低下し、ヘリウム透過量が悪化したため、気体分離システムで回収したヘリウムの純度が悪化した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4に示す結果から明らかなように、実施例1~16における気体分離システムは、冨化される成分について高回収率及び高純度を両立できる結果となった。かかる気体分離システムは、2種以上の成分を含む混合気体から少なくとも一種の成分を富化する分離に優れているといえる。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年12月2日出願の日本特許出願(特願2020-199999)及び2020年12月23日出願の日本特許出願(特願2020-213307)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の気体分離システムは、冨化される成分を高回収率及び高純度で精製できるため、2種以上の気体から少なくとも1種を富化する分離に好適に用いることができる。
100、200、300 気体分離システム
1 気体分離膜ユニット(第1の気体分離膜ユニット)
11 供給気体の入口(第1の入口)
12 透過気体の排出口(第1の透過出口)
13 濃縮気体の排出口(第1の濃縮出口)
2 特定気体分離膜ユニット(第2の気体分離膜ユニット)
21 供給気体の入口(第2の入口)
22 透過気体の排出口(第2の透過出口)
23 濃縮気体の排出口(第2の濃縮出口)
4 供給気体管
41 第1の供給気体管
5 透過気体排出管
51 第1の透過気体排出管
52 第2の透過気体排出管
6 濃縮気体排出管
61 第1の濃縮気体排出管
62 第2の濃縮気体排出管
7 分岐管
8 連結管
9 分岐部
10 合流部

Claims (15)

  1.  2種以上の成分を含む混合気体から少なくとも1種の成分を富化する気体分離システムであって、
     前記気体分離システムは特定気体分離膜ユニットを備え、
     前記特定気体分離膜ユニットは、供給気体の入口、透過気体の排出口、及び濃縮気体の排出口を備え、
     前記供給気体の入口には、供給気体管が接続され、
     前記透過気体の排出口には、透過気体排出管が接続され、
     前記濃縮気体の排出口には、濃縮気体排出管が接続され、
     前記透過気体排出管又は前記濃縮気体排出管は分岐部を有し、前記分岐部を有する管よりも上流に位置する管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている、気体分離システム。
  2.  前記特定気体分離膜ユニットは、前記気体分離システム中に1つのみ存在し、
     前記供給気体管が前記合流部を有し、他の気体分離膜ユニットを備えない、請求項1に記載の気体分離システム。
  3.  請求項1または2に記載の気体分離システムを用いた気体の製造方法であって、
     前記特定気体分離膜ユニットへ供給される供給気体中の、富化される成分の濃度を30mol%以下に制御する工程を含む、気体の製造方法。
  4.  前記特定気体分離膜ユニットの上流に他の気体分離膜ユニットをさらに備え、前記他の気体分離膜ユニットを通った透過気体又は濃縮気体が、前記特定気体分離膜ユニットに供給される、請求項1に記載の気体分離システム。
  5.  前記特定気体分離膜ユニットの下流に他の気体分離膜ユニットをさらに備え、前記特定気体分離膜ユニットを通った透過気体又は濃縮気体が、前記他の気体分離膜ユニットに供給される、請求項1に記載の気体分離システム。
  6.  前記特定気体分離膜ユニット中の分離膜が、ポリアミド膜である、請求項1、2、4または5のいずれか1項に記載の気体分離システム。
  7.  前記特定気体分離膜ユニットへ供給される供給気体中の、富化される成分が水素である、請求項1、2、4、5または6のいずれか1項に記載の気体分離システム。
  8.  2種以上の成分を含む混合気体から少なくとも1種の成分を富化する気体分離システムであって、
     前記気体分離システムは、連結管によって接続された第1の気体分離膜ユニット及び第2の気体分離膜ユニットを含み、
     前記第1の気体分離膜ユニットは、第1の入口、第1の透過出口、及び第1の濃縮出口を備え、
     前記第2の気体分離膜ユニットは、第2の入口、第2の透過出口、及び第2の濃縮出口を備え、
     前記第1の入口には第1の供給気体管が接続され、
     前記連結管は、前記第1の透過出口又は前記第1の濃縮出口と、前記第2の入口とを連結し、
     前記第2の透過出口には、第2の透過気体排出管が接続され、
     前記第2の濃縮出口には、第2の濃縮気体排出管が接続され、
     前記第2の透過気体排出管又は前記第2の濃縮気体排出管は分岐部を有し、前記第1の供給気体管又は前記連結管は合流部を有し、前記分岐部及び前記合流部が分岐管により連結されている、気体分離システム。
  9.  前記連結管が前記合流部を有する、請求項8に記載の気体分離システム。
  10.  前記第1の気体分離膜ユニット中の分離膜及び前記第2の気体分離膜ユニット中の分離膜が、ポリアミド膜である、請求項8または9に記載の気体分離システム。
  11.  前記連結管は、前記第1の濃縮出口と、前記第2の入口とを連結しており、
     前記分岐部は、前記第2の透過気体排出管に設けられる、請求項8~10のいずれか1項に記載の気体分離システム。
  12.  前記連結管は、前記第1の透過出口と、前記第2の入口とを連結しており、
     前記分岐部は、前記第2の濃縮気体排出管に設けられる、請求項8~10のいずれか1項に記載の気体分離システム。
  13.  前記第2の透過気体排出管又は前記第2の濃縮気体排出管は、前記分岐部を介して前記分岐管及び回収装置と連結している、請求項11又は12に記載の気体分離システム。
  14.  前記第1の気体分離膜ユニット及び前記第2の気体分離膜ユニットへ供給される供給気体中の、富化される成分が水素である、請求項11に記載の気体分離システム。
  15.  請求項11又は12に記載の気体分離システムを用いた気体の製造方法であって、
     前記第1の気体分離膜ユニットから排出され、前記第2の気体分離膜ユニットへ供給されない気体に含まれる富化される成分の気体量を、前記第1の気体分離膜ユニットへ供給される供給気体中の富化される成分の30体積%以上80体積%以下に制御する工程を含む、気体の製造方法。
     
PCT/JP2021/043900 2020-12-02 2021-11-30 気体分離システム及び気体の製造方法 WO2022118849A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021572109A JPWO2022118849A1 (ja) 2020-12-02 2021-11-30

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-199999 2020-12-02
JP2020199999 2020-12-02
JP2020213307 2020-12-23
JP2020-213307 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022118849A1 true WO2022118849A1 (ja) 2022-06-09

Family

ID=81853311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043900 WO2022118849A1 (ja) 2020-12-02 2021-11-30 気体分離システム及び気体の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022118849A1 (ja)
WO (1) WO2022118849A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549841A (ja) * 1991-07-29 1993-03-02 Nitto Denko Corp 凝縮性有機蒸気の回収方法
JP2016093767A (ja) * 2014-11-12 2016-05-26 三菱重工業株式会社 ガス中のco2分離装置及びその膜分離方法、ガス中のco2分離装置の膜分離管理方法
JP2016187769A (ja) * 2015-03-30 2016-11-04 宇部興産株式会社 ガス分離システム及び富化ガスの製造方法
JP2019072658A (ja) * 2017-10-13 2019-05-16 宇部興産株式会社 ヘリウム富化ガスの製造方法及びガス分離システム
JP2020524212A (ja) * 2017-06-14 2020-08-13 リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツングLinde GmbH 一酸化炭素含有ガス生成物の製造方法及びシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549841A (ja) * 1991-07-29 1993-03-02 Nitto Denko Corp 凝縮性有機蒸気の回収方法
JP2016093767A (ja) * 2014-11-12 2016-05-26 三菱重工業株式会社 ガス中のco2分離装置及びその膜分離方法、ガス中のco2分離装置の膜分離管理方法
JP2016187769A (ja) * 2015-03-30 2016-11-04 宇部興産株式会社 ガス分離システム及び富化ガスの製造方法
JP2020524212A (ja) * 2017-06-14 2020-08-13 リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツングLinde GmbH 一酸化炭素含有ガス生成物の製造方法及びシステム
JP2019072658A (ja) * 2017-10-13 2019-05-16 宇部興産株式会社 ヘリウム富化ガスの製造方法及びガス分離システム

Also Published As

Publication number Publication date
JPWO2022118849A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
Perry et al. Polymer membranes for hydrogen separations
JP7365453B2 (ja) ガス分離のためのプロセスおよび機器
JP7469319B2 (ja) 変化する組成又は流量を有するガス流からガス成分を分離するための装置及び膜プロセス
US20120292574A1 (en) Process For The Production Of Hydrogen And Carbon Dioxide
US20120118011A1 (en) Process For The Production Of Hydrogen And Carbon Dioxide
WO2012064938A1 (en) Process for recovering hydrogen and carbon dioxide
CN113457390B (zh) 用于非渗透气体的高回收率的膜工艺和系统
CN106000016B (zh) 气体分离系统及富化气体的制造方法
Harlacher et al. Gas–gas separation by membranes
WO2022118849A1 (ja) 気体分離システム及び気体の製造方法
JP2022113214A (ja) 気体分離システム及び気体の製造方法
KR102318737B1 (ko) 분리막과 psa 혼합법에 의한 수소 회수율 제고 방법
JP2022184754A (ja) 気体の分離方法
JP7031214B2 (ja) ヘリウム富化ガスの製造方法及びガス分離システム
JP6511912B2 (ja) ガス分離システム及び富化ガスの製造方法
JP7468822B1 (ja) ガス分離システム及びメタン富化ガスの製造方法
JP2022176139A (ja) 気体分離プロセス
EP4357004A2 (en) Membrane process and system for high recovery of a nonpermeating gas utilizing a sweep gas
JP2023004586A (ja) 気体分離システム
CN107473484A (zh) Nf‑ro‑md分盐脱盐系统
Ghasem 9 Hollow Fiber Membrane
CN207512006U (zh) Nf-ro-md分盐脱盐系统
KR20130046626A (ko) Cbm으로부터 멤브레인에 의한 메탄 분리방법
JP2022014436A (ja) 分離膜モジュール、及び水素の製造方法
KR20200076093A (ko) Gtl 합성공정에서 분리막을 이용한 이산화탄소 분리방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572109

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900602

Country of ref document: EP

Kind code of ref document: A1