WO2022116589A1 - 电解液添加剂及应用和包括该添加剂的非水电解液 - Google Patents
电解液添加剂及应用和包括该添加剂的非水电解液 Download PDFInfo
- Publication number
- WO2022116589A1 WO2022116589A1 PCT/CN2021/112377 CN2021112377W WO2022116589A1 WO 2022116589 A1 WO2022116589 A1 WO 2022116589A1 CN 2021112377 W CN2021112377 W CN 2021112377W WO 2022116589 A1 WO2022116589 A1 WO 2022116589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- carbonate
- additive
- lithium
- compounds
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application belongs to the field of lithium ion batteries, and relates to electrolyte additives and applications for improving the cycle performance and storage performance of lithium ion batteries, and non-aqueous electrolytes including the additives.
- the electrolyte During the first charging process of lithium-ion batteries, the electrolyte will react with the negative electrode to form an SEI film, which has an important impact on the main electrical properties of lithium-ion batteries (such as cycle life, self-discharge and power, etc.).
- the SEI film may dissolve, decompose, rupture, reorganize or thicken, which will gradually weaken the battery performance; especially when the lithium-ion battery is used at high temperature, the deterioration rate will be greatly accelerated. . Due to the demand for battery energy density, the voltage of batteries is now getting higher and higher.
- the positive active material is in a lithium-deficient state, which has strong oxidizing properties, and is easy to oxidize and decompose the electrolyte in direct contact with it, accompanied by the generation of a large amount of gas; in addition, in an excessive lithium-deficient state
- the positive active material is relatively unstable, and is prone to some side reactions (such as oxygen release, phase change, transition metal ion dissolution, etc.), which will rapidly deteriorate the performance of lithium-ion batteries; similarly, high temperature will greatly accelerate the deterioration rate.
- the purpose of the present application is to provide an unsaturated cyclic phosphate compound electrolyte solution additive capable of forming a passivation film on the surface of the positive electrode and the negative electrode at the same time, and an electrolyte solution composed thereof, and the electrolyte solution can be formed on the positive electrode and the negative electrode interface with good protection.
- the interfacial film that acts as an interface film solves the main problems faced by lithium-ion batteries when they are used under extreme conditions.
- the present application provides an electrolyte additive, which contains an unsaturated cyclic phosphate compound.
- the unsaturated cyclic phosphoric acid ester compound is selected from at least one of the compounds having the structure of formula I;
- R is respectively selected from C1-C5 straight-chain or branched alkane group, C1-C10 straight-chain or branched unsaturated hydrocarbon group (including alkene group, alkynyl group, aryl group) or C1-C5 straight-chain or substituted by halogen branched chain alkyl.
- the unsaturated cyclic phosphate compound is selected from at least one of the compounds having the structures of formula A1, A2, A3 and A4;
- the electrolyte additive further includes a film-forming additive;
- the film-forming additive is vinylene carbonate (VC), fluoroethylene carbonate (FEC), 1,3-propane sultone (PS) ), propenyl-1,3-sultone (PST), vinyl sulfate (DTD), lithium difluorophosphate (LiPO 2 F 2 ), lithium bis(fluorosulfonyl)imide (LiFSI), difluoro One or more of lithium oxalate borate (LiDFOB).
- VC vinylene carbonate
- FEC fluoroethylene carbonate
- PS 1,3-propane sultone
- PST propenyl-1,3-sultone
- DTD vinyl sulfate
- LiPO 2 F 2 lithium difluorophosphate
- LiFSI lithium bis(fluorosulfonyl)imide
- LiDFOB difluoro One or more of lithium oxalate borate
- the present application also provides the application of the above electrolyte additive in the electrolyte of lithium ion battery.
- the present application provides a non-aqueous electrolyte solution, including the electrolyte solution additive described above, and the content of the unsaturated cyclic phosphate compound in the non-aqueous electrolyte solution is 0.3-1.8%. Optionally, the content is 0.8-1.3%.
- the non-aqueous electrolyte also includes a non-aqueous organic solvent and a lithium salt; wherein the content of each component in the non-aqueous electrolyte in terms of mass percentage is: 0.3-1.8% of unsaturated cyclic phosphate compounds, forming a film Additives 0.1-10%; electrolyte lithium salts 8-16%; the rest are non-aqueous organic solvents.
- the electrolyte lithium salt is lithium hexafluorophosphate (LiPF 6 ).
- the non-aqueous organic solvent includes carbonate compounds and/or carboxylate compounds having 1 to 4 carbon atoms; the carbonate compounds include cyclic carbonates and chain carbonates;
- the non-aqueous organic solvent is selected from ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propionic acid One or more of ethyl ester (EP) and propyl propionate (PP);
- the non-aqueous organic solvent is ethylene carbonate and ethyl methyl carbonate, and the mass ratio of ethylene carbonate and ethyl methyl carbonate is 3:7.
- the mass percentage content of each film-forming additive in the electrolyte is 0.1% to 3%.
- the present application also relates to the use of electrolyte additives as described above in lithium-ion batteries.
- the unsaturated cyclic phosphoric acid ester compounds with the structure of formula I can be synthesized by the following conventional route:
- the unsaturated cyclic phosphate compound is selected from at least one of the compounds having the structures of formula A1, A2, A3 and A4, but is not limited thereto;
- the electrolyte can form a film on the positive and negative interfaces, which can effectively protect the positive and negative interfaces.
- the electrolyte additive provided in the present application and the electrolyte using the additive can solve the main problems faced by lithium ion batteries when they are used under extreme conditions, and significantly improve the high temperature cycle performance and high temperature storage performance of the battery.
- test reagents used in the following examples are conventional biochemical reagents unless otherwise specified; the experimental methods are conventional unless otherwise specified.
- the electrolytes described in the comparative example and Examples 1-7 were respectively used for battery preparation, made into batteries, and subjected to subsequent electrical performance tests.
- the specific battery preparation method is as follows:
- the batteries used in the examples and comparative examples of the present application are all soft-pack lithium-ion batteries, wherein the positive electrode is ternary nickel cobalt manganate (NCM622), the negative electrode is artificial graphite, the capacity is 2.9Ah, and the cut-off voltage is 2.75V-4.3 V.
- the battery to be injected is prepared by homogenizing, coating, rolling, slitting, punching, lamination, packaging, and baking, and then the above electrolyte is injected into the dried battery, and then pre-charged and aged , chemical formation, degas, aging and capacity division and other processes to complete the preparation of soft-pack lithium-ion batteries.
- Capacity retention rate (%) discharge capacity at the end of the cycle / first cycle discharge capacity ⁇ 100%
- High temperature storage capacity recovery rate C 2 /C 0 ⁇ 100%
- Table 2 shows the high temperature cycling and high temperature storage data of Comparative Examples and Examples 1-7.
- A4 can play a role when it accounts for 0.3 wt %-1.8 wt % of the total mass of the electrolyte.
- the content can be optionally 0.8 %-1.3 % of the total mass of the electrolyte.
- the four unsaturated cyclic phosphate compounds can improve the high-temperature storage performance and high-temperature cycle performance of the battery.
- the Best results When their content accounts for 0.8wt% of the electrolyte, the Best results.
- the non-aqueous electrolyte can form a film on the positive and negative interfaces, which can effectively protect the positive and negative interfaces, thereby solving the main problems faced by lithium-ion batteries when they are used under extreme conditions, and significantly improving the high-temperature cycle performance of the battery. High temperature storage performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
本申请涉及电解液添加剂及应用和包括该添加剂的非水电解液,该电解液添加剂含有不饱和环状磷酸酯类化合物。所述不饱和环状磷酸酯类化合物选自具有式Ⅰ结构化合物中的至少一种;其中,R分别选自C1-C5直链或支链烷烃基、C1-C10直链或支链不饱和烃基(包括烯烃基、炔烃基、芳香基)或被卤素取代的C1-C5直链或支链的烷基。
Description
本申请属于锂离子电池领域,涉及改善锂离子电池循环性能和存储性能的电解液添加剂及应用、包括该添加剂的非水电解液。
当前,能源紧张和环境污染已成为世界性问题,为了缓解这些问题,开发新能源汽车以替代传统燃油车已到了刻不容缓的地步。鉴于锂离子电池具有能量密度大、寿命长和环境友好等优点,近年来,随着锂离子电池生产成本的不断降低和相关技术日新月异,它被越来越广泛应用于新能源汽车领域,其被认为是目前最有潜力取代传统燃油车的技术。
锂离子电池在首次充电过程中,电解液会与负极反应形成一层SEI膜,SEI膜对锂离子电池的主要电性能(如循环寿命、自放电和功率等)有着重要影响。但是随着充放电的进行,SEI膜可能会发生溶解、分解、破裂、重组或增厚等现象,使电池性能逐渐衰减;尤其是当锂离子电池在高温状态下使用时,劣化速度会大大加快。出于对电池能量密度的需求,现在电池的电压越来越高。而在高电压时,正极活性物质处于缺锂状态,其具有很强的氧化性,易使与它直接接触的电解液氧化分解,同时伴随着大量气体的产生;此外,处于过度缺锂状态的正极活性物质较不稳定,易发生一些副反应(如释氧、相变、过渡金属离子溶出等),从而使得锂离子电池的性能快速劣化;同样的,高温会极大加快劣化速度。
现有技术的缺点:锂离子电池在极端条件下使用时(如高电压/高温),其性能会快速劣化;同时,极端条件下,锂离子电池内部不稳定,其安全性能也经受到极大考验。因此,解决锂离子电池在极端条件下使用时出现的问题是目前行业内的迫切需求。而开发出对正、负极均具有良好保护作用的电解液能有效解决锂离子电池在极端条件下使用时所面临的如上问题,具有重大的商业和社会效益。
发明内容
本申请旨在提供能同时在正、负极表面形成钝化膜的不饱和环状磷酸酯类化合物电解液添加剂及由其组成的电解液,所述电解液可在正、负极界面形成 具有良好保护作用的界面膜,从而解决锂离子电池在极端条件下使用时所面临的主要问题。
本申请采用的技术方案包括:
本申请提供了一种电解液添加剂,该电解液添加剂含有不饱和环状磷酸酯类化合物。
可选地,所述不饱和环状磷酸酯类化合物选自具有式Ⅰ结构化合物中的至少一种;
其中,R分别选自C1-C5直链或支链烷烃基、C1-C10直链或支链不饱和烃基(包括烯烃基、炔烃基、芳香基)或被卤素取代的C1-C5直链或支链的烷基。
可选地,所述不饱和环状磷酸酯类化合物选自具有式A1、A2、A3和A4结构的化合物中的至少一种;
可选地,所述电解液添加剂,还包括成膜添加剂;所述成膜添加剂为碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)、1,3-丙烷磺酸内酯(PS)、丙烯基-1,3-磺酸内酯(PST)、硫酸乙烯酯(DTD)、二氟磷酸锂(LiPO
2F
2)、双(氟磺酰)亚 胺锂(LiFSI)、二氟草酸硼酸锂(LiDFOB)中的一种或两种以上。
可选地,本申请还提供了上述电解液添加剂在锂离子电池电解液中的应用。
本申请提供了一种非水电解液,包括如上所述的电解液添加剂,所述的不饱和环状磷酸酯类化合物在非水电解液中的含量为0.3-1.8%。可选地,含量为0.8-1.3%。
该非水电解液,还包括非水有机溶剂和锂盐;其中以质量百分数计,各组分在非水电解液中的含量为:不饱和环状磷酸酯类化合物0.3-1.8%,成膜添加剂0.1-10%;电解质锂盐8-16%;其余为非水有机溶剂。
可选地,所述电解质锂盐为六氟磷酸锂(LiPF
6)。
可选地,其非水有机溶剂包括碳原子数为1~4的碳酸酯类化合物和/或羧酸酯类化合物;所述碳酸酯类化合物包括环状碳酸酯、链状碳酸酯;
可选地,非水有机溶剂选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、丙酸乙酯(EP)、丙酸丙酯(PP)中的一种或一种以上;
可选地,非水有机溶剂为碳酸乙烯酯和碳酸甲乙酯,且碳酸乙烯酯和碳酸甲乙酯的质量比为3:7。
可选地,每种成膜添加剂在电解液中的质量百分比含量为0.1%~3%。
本申请还涉及如上所述的电解液添加剂在锂离子电池中的应用。
本申请中,具有式Ⅰ结构的不饱和环状磷酸酯类化合物可以采用如下常规路线合成:
较佳的,所述不饱和环状磷酸酯类化合物选自具有式A1、A2、A3和A4结构的化合物中的至少一种,但不限制于此;
本申请所具有的有益效果:
本申请通过使用不饱和环状磷酸酯类化合物作为添加剂组分配制成的非水电解液,在使用其制备的锂离子电池,截止电压为2.75V-4.3V的高电压下,所述非水电解液在正、负极界面均可成膜,可有效保护正、负极界面。
本申请提供的电解液添加剂和使用该添加剂的电解液,所述电解液可解决锂离子电池在极端条件下使用时所面临的主要问题,显著提升电池的高温循环性能和高温存储性能。
下面结合实施例来详细说明本申请,但不限定本申请的保护范围。
除有定义外,以下实施例中所用的技术术语具有与本申请所属领域技术人员普遍理解的相同含义。以下实施例中所用的试验试剂,如无特殊说明,均为常规生化试剂;所述实验方法,如无特殊说明,均为常规
一、非水电解液的配制
电解液的配制:在充满氩气的手套箱中(H
2O<10ppm,Ar>99.99%),将碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)按质量比为EC:EMC=3:7进行混合,再加入基于电解液总重量13.5%的六氟磷酸锂(LiPF
6),然后分别加入基于电解液总重量1.2%的VC,基于电解液总重量0.5%的PS,基于电解液总重量0.8%的LiPO
2F
2,基于电解液总重量0.8%不饱和环状磷酸酯类化合物A4,混合均匀后得到实施例1的锂离子电池电解液。
在对比例与实施例1-7中,除了电解液各添加剂成分组成配比按表1所示外,其它均与实施例1相同。
表1对比例与实施例1-7的电解液添加剂各成分组成配比%:质量百分比
备注:1、表1中各组分质量百分比之和为100%,非水有机溶液为除了锂盐和添加剂含量以外的余量。
二、电池的制备
将对比例和实施例1-7所述的电解液分别用于电池制备,制作成电池,进行后续电性能测试。具体的电池制备方法如下:
本申请的实施例和对比例使用的电池都为软包锂离子电池,其中正极为三元镍钴锰酸锂(NCM622),负极为人造石墨,容量为2.9Ah,截止电压为2.75V-4.3V。通过匀浆、涂布、碾压、分切、冲切、叠片、封装、烘烤制得待注液电池,然后将上述电解液注入到干燥后的电池中,再经过预充、陈化、化成、degas、老化和分容等流程,完成软包锂离子电池的制备。
三、电性能测试
对对比例和实施例1-7制得电池进行高温循环和高温存储测试,具体实验方法为:
1、高温循环实验:在45℃下,将制备完成的电池按1C(2.9A)恒流恒压充至4.25V,恒流截止电流0.05C(0.145A),然后1C(2.9A)恒流放电至2.75V,依次循环,直至电池的容量保持率达到80%。
容量保持率(%)=循环截止时放电容量/首次循环放电容量×100%
2、高温存储实验:在25℃下,将制备完成的电池进行两次充放电循环(1C/1C,2.75V-4.3V),并测量存储前的放电容量(C
0),再将电池充满电,在55℃下存储14天,然后将存储完的电池再进行两次充放电循环(1C/1C,2.75V-4.3V),并测量两次循环放电容量(分别为C
1和C
2)。
高温存储容量保持率=C
1/C
0×100%
高温存储容量恢复率=C
2/C
0×100%
对比例和实施例1-7高温循环和高温存储数据如表2所示。
表2对比例和实施例1-7高温循环和高温存储数据
由对比例和实施例1、5、6和7的电性能测试结果比较可知:在电解液中加入0.8wt%的不饱和环状磷酸酯类化合物作为添加剂,均可明显改善电池的高温循环性能和高温存储性能,其中含有A4的电池具有最好的高温存储和高温循环性能。
由实施例1-4的电性能测试结果比较可知:不饱和环状磷酸酯类化合物A4的含量占电解液总质量的0.3wt%时,即可在电池正、负极表面形成良好的保护膜,改善锂离子电池的高温循环性能和高温存储性能;当它的含量从0.8wt%上升到1.3wt%时,对电池的高温循环性能和高温存储性能提升不明显;进一步将含量增加到1.8wt%会导致电池的高温循环性能和高温存储性下降(推测是由于添加剂加入过量会导致电池成膜阻抗过大)。所以A4占电解液总质量的0.3 wt%-1.8wt%时可以起到作用,在动力电池中使用时,可选地含量为电解液总质量的0.8%-1.3%。
综合上述结果可以明显地看出,在高电压下,四种不饱和环状磷酸酯类化合物均可改善电池的高温存储性能和高温循环性能,当其含量占电解液质量百分比0.8wt%时,效果最佳。所述非水电解液在正、负极界面均可成膜,可有效保护正、负极界面,从而可解决锂离子电池在极端条件下使用时所面临的主要问题,显著提升电池的高温循环性能和高温存储性能。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请。本申请的范围由权利要求书限定。
Claims (10)
- 一种电解液添加剂,其含有不饱和环状磷酸酯类化合物。
- 根据权利要求1-3任一项所述的电解液添加剂,其还包括成膜添加剂;所述成膜添加剂为碳酸亚乙烯酯、氟代碳酸乙烯酯、1,3-丙烷磺酸内酯、丙烯基-1,3-磺酸内酯、硫酸乙烯酯、二氟磷酸锂、双(氟磺酰)亚胺锂、二氟草酸硼酸锂中的一种或两种以上。
- 权利要求1-4任一项所述电解液添加剂在锂离子电池电解液中的应用。
- 一种非水电解液,其中:包括权利要求1-4任一项所述的电解液添加剂。
- 根据权利要求6所述的非水电解液,其中:所述的不饱和环状磷酸酯类化 合物在非水电解液中的含量为0.3-1.8%;可选为0.8-1.3%。
- 根据权利要求6或7所述的非水电解液,其还包括非水有机溶剂和锂盐;其中以质量百分数计,各组分在非水电解液中的含量为:不饱和环状磷酸酯类化合物0.3-1.8%,成膜添加剂0.1-10%;电解质锂盐8-16%;其余为非水有机溶剂。
- 根据权利要求8所述的非水电解液,其中:所述电解质锂盐为六氟磷酸锂;所述非水有机溶剂包括碳原子数为1~4的碳酸酯类化合物和/或羧酸酯类化合物;所述碳酸酯类化合物包括环状碳酸酯、链状碳酸酯;可选地,非水有机溶剂选自碳酸乙烯酯、碳酸丙烯酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、丙酸乙酯、丙酸丙酯中的一种或一种以上;可选地,非水有机溶剂为碳酸乙烯酯和碳酸甲乙酯,且碳酸乙烯酯和碳酸甲乙酯的质量比为3:7;每种成膜添加剂在电解液中的质量百分比含量为0.1%~3%。
- 权利要求1-4任一项所述电解液添加剂在锂离子电池中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21844944.5A EP4040560A4 (en) | 2020-12-03 | 2021-08-13 | ELECTROLYTE ADDITIVE, ITS USE AND NON-AQUEOUS ELECTROLYTE CONTAINING ADDITIVE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011395171.0A CN112531210A (zh) | 2020-12-03 | 2020-12-03 | 电解液添加剂及应用和包括该添加剂的非水电解液 |
CN202011395171.0 | 2020-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022116589A1 true WO2022116589A1 (zh) | 2022-06-09 |
Family
ID=74996650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/112377 WO2022116589A1 (zh) | 2020-12-03 | 2021-08-13 | 电解液添加剂及应用和包括该添加剂的非水电解液 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4040560A4 (zh) |
CN (1) | CN112531210A (zh) |
WO (1) | WO2022116589A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112531210A (zh) * | 2020-12-03 | 2021-03-19 | 天津市捷威动力工业有限公司 | 电解液添加剂及应用和包括该添加剂的非水电解液 |
CN115677931A (zh) * | 2021-07-26 | 2023-02-03 | 北京卫蓝新能源科技有限公司 | 一种聚合物材料、电解质及电池 |
KR102659656B1 (ko) * | 2021-09-27 | 2024-04-23 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
US20240162490A1 (en) * | 2021-09-27 | 2024-05-16 | Lg Energy Solution, Ltd. | Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same |
JP2024508442A (ja) * | 2021-11-12 | 2024-02-27 | エルジー エナジー ソリューション リミテッド | リチウム二次電池用非水系電解液及びこれを含むリチウム二次電池 |
US11978859B2 (en) | 2021-11-12 | 2024-05-07 | Lg Energy Solution, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same |
WO2023085731A1 (ko) * | 2021-11-12 | 2023-05-19 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250191A (ja) * | 2006-03-13 | 2007-09-27 | Sony Corp | 電解質および電池 |
JP2011049153A (ja) * | 2009-07-28 | 2011-03-10 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液二次電池 |
KR20150128569A (ko) * | 2014-05-09 | 2015-11-18 | 주식회사 엘지화학 | 비스포스페이트계 화합물을 포함하는 이차전지용 첨가제와, 이를 포함하는 전해액, 전극 및 이차전지 |
CN109273764A (zh) * | 2018-09-14 | 2019-01-25 | 东莞市杉杉电池材料有限公司 | 一种锂离子电池电解液及含有该电解液的锂离子电池 |
CN112531210A (zh) * | 2020-12-03 | 2021-03-19 | 天津市捷威动力工业有限公司 | 电解液添加剂及应用和包括该添加剂的非水电解液 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5181754B2 (ja) * | 2008-03-18 | 2013-04-10 | ソニー株式会社 | 二次電池用電解液、二次電池および電子機器 |
CN103887563A (zh) * | 2014-04-08 | 2014-06-25 | 厦门首能科技有限公司 | 一种锂离子二次电池电解液 |
CN107171022B (zh) * | 2017-06-14 | 2019-10-29 | 厦门首能科技有限公司 | 一种锂离子电解液及其锂离子电池 |
CN111430800B (zh) * | 2020-05-20 | 2021-08-03 | 天津市捷威动力工业有限公司 | 电解液添加剂及应用、包括该添加剂的非水电解液和电池 |
-
2020
- 2020-12-03 CN CN202011395171.0A patent/CN112531210A/zh active Pending
-
2021
- 2021-08-13 WO PCT/CN2021/112377 patent/WO2022116589A1/zh unknown
- 2021-08-13 EP EP21844944.5A patent/EP4040560A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007250191A (ja) * | 2006-03-13 | 2007-09-27 | Sony Corp | 電解質および電池 |
JP2011049153A (ja) * | 2009-07-28 | 2011-03-10 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液二次電池 |
KR20150128569A (ko) * | 2014-05-09 | 2015-11-18 | 주식회사 엘지화학 | 비스포스페이트계 화합물을 포함하는 이차전지용 첨가제와, 이를 포함하는 전해액, 전극 및 이차전지 |
CN109273764A (zh) * | 2018-09-14 | 2019-01-25 | 东莞市杉杉电池材料有限公司 | 一种锂离子电池电解液及含有该电解液的锂离子电池 |
CN112531210A (zh) * | 2020-12-03 | 2021-03-19 | 天津市捷威动力工业有限公司 | 电解液添加剂及应用和包括该添加剂的非水电解液 |
Also Published As
Publication number | Publication date |
---|---|
EP4040560A1 (en) | 2022-08-10 |
CN112531210A (zh) | 2021-03-19 |
EP4040560A4 (en) | 2023-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109585925B (zh) | 一种电解液及使用该电解液的锂离子电池 | |
CN106505249B (zh) | 一种锂离子电池电解液及含该电解液的锂离子电池 | |
WO2022116589A1 (zh) | 电解液添加剂及应用和包括该添加剂的非水电解液 | |
CN109873206B (zh) | 锂离子电池电解液及锂离子电池 | |
CN109921092A (zh) | 一种硅基负极锂离子电池非水电解液及含该电解液的硅基负极锂离子电池 | |
US20190214680A1 (en) | Lithium ion battery and electrolytic soluton thereof | |
WO2023142693A1 (zh) | 一种锂离子电池 | |
CN111048830B (zh) | 非水电解液及锂离子二次电池 | |
CN113517470A (zh) | 一种高镍高电压三元锂离子电池非水电解液及锂离子电池 | |
CN113140796B (zh) | 一种锂离子电池电解液及含有该电解液的锂离子电池 | |
CN111211353A (zh) | 一种用于高电压体系的锂离子电池电解液 | |
CN111029655A (zh) | 一种锂离子电池电解液及含有该电解液的锂离子电池 | |
CN112701349B (zh) | 电解液及包含其的电化学装置和电子设备 | |
CN111834665B (zh) | 一种高镍三元锂离子电池电解液及锂离子电池 | |
CN113991178A (zh) | 锂离子电池非水电解液及其应用 | |
CN110911748B (zh) | 一种锂二次电池电解液和锂二次电池 | |
CN109473717B (zh) | 一种适用于高电压高镍动力电池的电解液及高电压高镍电池 | |
CN114039094A (zh) | 一种锂离子电池非水电解液和锂离子电池 | |
CN117039151A (zh) | 一种锂离子电池电解液及含有其的锂离子电池 | |
CN111430800B (zh) | 电解液添加剂及应用、包括该添加剂的非水电解液和电池 | |
CN115207472A (zh) | 一种电解液、制备方法及包含其的锂离子电池 | |
CN111244550B (zh) | 用于高镍体系的锂离子电池电解液添加剂及电解液和电池 | |
CN112563572B (zh) | 一种高电压下使用的高镍锂离子电池电解液及锂离子电池 | |
CN114520370A (zh) | 一种锂离子电池电解液及锂离子电池 | |
CN113078357A (zh) | 一种高电压锂离子电池非水电解液及锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021844944 Country of ref document: EP Effective date: 20220128 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |